1 /* 2 * kernel/locking/mutex.c 3 * 4 * Mutexes: blocking mutual exclusion locks 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * 10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 11 * David Howells for suggestions and improvements. 12 * 13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 14 * from the -rt tree, where it was originally implemented for rtmutexes 15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 16 * and Sven Dietrich. 17 * 18 * Also see Documentation/locking/mutex-design.txt. 19 */ 20 #include <linux/mutex.h> 21 #include <linux/ww_mutex.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/rt.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/debug.h> 26 #include <linux/export.h> 27 #include <linux/spinlock.h> 28 #include <linux/interrupt.h> 29 #include <linux/debug_locks.h> 30 #include <linux/osq_lock.h> 31 32 #ifdef CONFIG_DEBUG_MUTEXES 33 # include "mutex-debug.h" 34 #else 35 # include "mutex.h" 36 #endif 37 38 void 39 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 40 { 41 atomic_long_set(&lock->owner, 0); 42 spin_lock_init(&lock->wait_lock); 43 INIT_LIST_HEAD(&lock->wait_list); 44 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 45 osq_lock_init(&lock->osq); 46 #endif 47 48 debug_mutex_init(lock, name, key); 49 } 50 EXPORT_SYMBOL(__mutex_init); 51 52 /* 53 * @owner: contains: 'struct task_struct *' to the current lock owner, 54 * NULL means not owned. Since task_struct pointers are aligned at 55 * at least L1_CACHE_BYTES, we have low bits to store extra state. 56 * 57 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 58 * Bit1 indicates unlock needs to hand the lock to the top-waiter 59 * Bit2 indicates handoff has been done and we're waiting for pickup. 60 */ 61 #define MUTEX_FLAG_WAITERS 0x01 62 #define MUTEX_FLAG_HANDOFF 0x02 63 #define MUTEX_FLAG_PICKUP 0x04 64 65 #define MUTEX_FLAGS 0x07 66 67 static inline struct task_struct *__owner_task(unsigned long owner) 68 { 69 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 70 } 71 72 static inline unsigned long __owner_flags(unsigned long owner) 73 { 74 return owner & MUTEX_FLAGS; 75 } 76 77 /* 78 * Trylock variant that retuns the owning task on failure. 79 */ 80 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 81 { 82 unsigned long owner, curr = (unsigned long)current; 83 84 owner = atomic_long_read(&lock->owner); 85 for (;;) { /* must loop, can race against a flag */ 86 unsigned long old, flags = __owner_flags(owner); 87 unsigned long task = owner & ~MUTEX_FLAGS; 88 89 if (task) { 90 if (likely(task != curr)) 91 break; 92 93 if (likely(!(flags & MUTEX_FLAG_PICKUP))) 94 break; 95 96 flags &= ~MUTEX_FLAG_PICKUP; 97 } else { 98 #ifdef CONFIG_DEBUG_MUTEXES 99 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP); 100 #endif 101 } 102 103 /* 104 * We set the HANDOFF bit, we must make sure it doesn't live 105 * past the point where we acquire it. This would be possible 106 * if we (accidentally) set the bit on an unlocked mutex. 107 */ 108 flags &= ~MUTEX_FLAG_HANDOFF; 109 110 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags); 111 if (old == owner) 112 return NULL; 113 114 owner = old; 115 } 116 117 return __owner_task(owner); 118 } 119 120 /* 121 * Actual trylock that will work on any unlocked state. 122 */ 123 static inline bool __mutex_trylock(struct mutex *lock) 124 { 125 return !__mutex_trylock_or_owner(lock); 126 } 127 128 #ifndef CONFIG_DEBUG_LOCK_ALLOC 129 /* 130 * Lockdep annotations are contained to the slow paths for simplicity. 131 * There is nothing that would stop spreading the lockdep annotations outwards 132 * except more code. 133 */ 134 135 /* 136 * Optimistic trylock that only works in the uncontended case. Make sure to 137 * follow with a __mutex_trylock() before failing. 138 */ 139 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 140 { 141 unsigned long curr = (unsigned long)current; 142 unsigned long zero = 0UL; 143 144 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr)) 145 return true; 146 147 return false; 148 } 149 150 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 151 { 152 unsigned long curr = (unsigned long)current; 153 154 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr) 155 return true; 156 157 return false; 158 } 159 #endif 160 161 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 162 { 163 atomic_long_or(flag, &lock->owner); 164 } 165 166 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 167 { 168 atomic_long_andnot(flag, &lock->owner); 169 } 170 171 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 172 { 173 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 174 } 175 176 /* 177 * Give up ownership to a specific task, when @task = NULL, this is equivalent 178 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves 179 * WAITERS. Provides RELEASE semantics like a regular unlock, the 180 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 181 */ 182 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 183 { 184 unsigned long owner = atomic_long_read(&lock->owner); 185 186 for (;;) { 187 unsigned long old, new; 188 189 #ifdef CONFIG_DEBUG_MUTEXES 190 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 191 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); 192 #endif 193 194 new = (owner & MUTEX_FLAG_WAITERS); 195 new |= (unsigned long)task; 196 if (task) 197 new |= MUTEX_FLAG_PICKUP; 198 199 old = atomic_long_cmpxchg_release(&lock->owner, owner, new); 200 if (old == owner) 201 break; 202 203 owner = old; 204 } 205 } 206 207 #ifndef CONFIG_DEBUG_LOCK_ALLOC 208 /* 209 * We split the mutex lock/unlock logic into separate fastpath and 210 * slowpath functions, to reduce the register pressure on the fastpath. 211 * We also put the fastpath first in the kernel image, to make sure the 212 * branch is predicted by the CPU as default-untaken. 213 */ 214 static void __sched __mutex_lock_slowpath(struct mutex *lock); 215 216 /** 217 * mutex_lock - acquire the mutex 218 * @lock: the mutex to be acquired 219 * 220 * Lock the mutex exclusively for this task. If the mutex is not 221 * available right now, it will sleep until it can get it. 222 * 223 * The mutex must later on be released by the same task that 224 * acquired it. Recursive locking is not allowed. The task 225 * may not exit without first unlocking the mutex. Also, kernel 226 * memory where the mutex resides must not be freed with 227 * the mutex still locked. The mutex must first be initialized 228 * (or statically defined) before it can be locked. memset()-ing 229 * the mutex to 0 is not allowed. 230 * 231 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 232 * checks that will enforce the restrictions and will also do 233 * deadlock debugging) 234 * 235 * This function is similar to (but not equivalent to) down(). 236 */ 237 void __sched mutex_lock(struct mutex *lock) 238 { 239 might_sleep(); 240 241 if (!__mutex_trylock_fast(lock)) 242 __mutex_lock_slowpath(lock); 243 } 244 EXPORT_SYMBOL(mutex_lock); 245 #endif 246 247 static __always_inline void 248 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 249 { 250 #ifdef CONFIG_DEBUG_MUTEXES 251 /* 252 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 253 * but released with a normal mutex_unlock in this call. 254 * 255 * This should never happen, always use ww_mutex_unlock. 256 */ 257 DEBUG_LOCKS_WARN_ON(ww->ctx); 258 259 /* 260 * Not quite done after calling ww_acquire_done() ? 261 */ 262 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 263 264 if (ww_ctx->contending_lock) { 265 /* 266 * After -EDEADLK you tried to 267 * acquire a different ww_mutex? Bad! 268 */ 269 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 270 271 /* 272 * You called ww_mutex_lock after receiving -EDEADLK, 273 * but 'forgot' to unlock everything else first? 274 */ 275 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 276 ww_ctx->contending_lock = NULL; 277 } 278 279 /* 280 * Naughty, using a different class will lead to undefined behavior! 281 */ 282 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 283 #endif 284 ww_ctx->acquired++; 285 } 286 287 static inline bool __sched 288 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) 289 { 290 return a->stamp - b->stamp <= LONG_MAX && 291 (a->stamp != b->stamp || a > b); 292 } 293 294 /* 295 * Wake up any waiters that may have to back off when the lock is held by the 296 * given context. 297 * 298 * Due to the invariants on the wait list, this can only affect the first 299 * waiter with a context. 300 * 301 * The current task must not be on the wait list. 302 */ 303 static void __sched 304 __ww_mutex_wakeup_for_backoff(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) 305 { 306 struct mutex_waiter *cur; 307 308 lockdep_assert_held(&lock->wait_lock); 309 310 list_for_each_entry(cur, &lock->wait_list, list) { 311 if (!cur->ww_ctx) 312 continue; 313 314 if (cur->ww_ctx->acquired > 0 && 315 __ww_ctx_stamp_after(cur->ww_ctx, ww_ctx)) { 316 debug_mutex_wake_waiter(lock, cur); 317 wake_up_process(cur->task); 318 } 319 320 break; 321 } 322 } 323 324 /* 325 * After acquiring lock with fastpath or when we lost out in contested 326 * slowpath, set ctx and wake up any waiters so they can recheck. 327 */ 328 static __always_inline void 329 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 330 { 331 ww_mutex_lock_acquired(lock, ctx); 332 333 lock->ctx = ctx; 334 335 /* 336 * The lock->ctx update should be visible on all cores before 337 * the atomic read is done, otherwise contended waiters might be 338 * missed. The contended waiters will either see ww_ctx == NULL 339 * and keep spinning, or it will acquire wait_lock, add itself 340 * to waiter list and sleep. 341 */ 342 smp_mb(); /* ^^^ */ 343 344 /* 345 * Check if lock is contended, if not there is nobody to wake up 346 */ 347 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) 348 return; 349 350 /* 351 * Uh oh, we raced in fastpath, wake up everyone in this case, 352 * so they can see the new lock->ctx. 353 */ 354 spin_lock(&lock->base.wait_lock); 355 __ww_mutex_wakeup_for_backoff(&lock->base, ctx); 356 spin_unlock(&lock->base.wait_lock); 357 } 358 359 /* 360 * After acquiring lock in the slowpath set ctx. 361 * 362 * Unlike for the fast path, the caller ensures that waiters are woken up where 363 * necessary. 364 * 365 * Callers must hold the mutex wait_lock. 366 */ 367 static __always_inline void 368 ww_mutex_set_context_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 369 { 370 ww_mutex_lock_acquired(lock, ctx); 371 lock->ctx = ctx; 372 } 373 374 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 375 376 static inline 377 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 378 struct mutex_waiter *waiter) 379 { 380 struct ww_mutex *ww; 381 382 ww = container_of(lock, struct ww_mutex, base); 383 384 /* 385 * If ww->ctx is set the contents are undefined, only 386 * by acquiring wait_lock there is a guarantee that 387 * they are not invalid when reading. 388 * 389 * As such, when deadlock detection needs to be 390 * performed the optimistic spinning cannot be done. 391 * 392 * Check this in every inner iteration because we may 393 * be racing against another thread's ww_mutex_lock. 394 */ 395 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 396 return false; 397 398 /* 399 * If we aren't on the wait list yet, cancel the spin 400 * if there are waiters. We want to avoid stealing the 401 * lock from a waiter with an earlier stamp, since the 402 * other thread may already own a lock that we also 403 * need. 404 */ 405 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 406 return false; 407 408 /* 409 * Similarly, stop spinning if we are no longer the 410 * first waiter. 411 */ 412 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 413 return false; 414 415 return true; 416 } 417 418 /* 419 * Look out! "owner" is an entirely speculative pointer access and not 420 * reliable. 421 * 422 * "noinline" so that this function shows up on perf profiles. 423 */ 424 static noinline 425 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 426 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 427 { 428 bool ret = true; 429 430 rcu_read_lock(); 431 while (__mutex_owner(lock) == owner) { 432 /* 433 * Ensure we emit the owner->on_cpu, dereference _after_ 434 * checking lock->owner still matches owner. If that fails, 435 * owner might point to freed memory. If it still matches, 436 * the rcu_read_lock() ensures the memory stays valid. 437 */ 438 barrier(); 439 440 /* 441 * Use vcpu_is_preempted to detect lock holder preemption issue. 442 */ 443 if (!owner->on_cpu || need_resched() || 444 vcpu_is_preempted(task_cpu(owner))) { 445 ret = false; 446 break; 447 } 448 449 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 450 ret = false; 451 break; 452 } 453 454 cpu_relax(); 455 } 456 rcu_read_unlock(); 457 458 return ret; 459 } 460 461 /* 462 * Initial check for entering the mutex spinning loop 463 */ 464 static inline int mutex_can_spin_on_owner(struct mutex *lock) 465 { 466 struct task_struct *owner; 467 int retval = 1; 468 469 if (need_resched()) 470 return 0; 471 472 rcu_read_lock(); 473 owner = __mutex_owner(lock); 474 475 /* 476 * As lock holder preemption issue, we both skip spinning if task is not 477 * on cpu or its cpu is preempted 478 */ 479 if (owner) 480 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 481 rcu_read_unlock(); 482 483 /* 484 * If lock->owner is not set, the mutex has been released. Return true 485 * such that we'll trylock in the spin path, which is a faster option 486 * than the blocking slow path. 487 */ 488 return retval; 489 } 490 491 /* 492 * Optimistic spinning. 493 * 494 * We try to spin for acquisition when we find that the lock owner 495 * is currently running on a (different) CPU and while we don't 496 * need to reschedule. The rationale is that if the lock owner is 497 * running, it is likely to release the lock soon. 498 * 499 * The mutex spinners are queued up using MCS lock so that only one 500 * spinner can compete for the mutex. However, if mutex spinning isn't 501 * going to happen, there is no point in going through the lock/unlock 502 * overhead. 503 * 504 * Returns true when the lock was taken, otherwise false, indicating 505 * that we need to jump to the slowpath and sleep. 506 * 507 * The waiter flag is set to true if the spinner is a waiter in the wait 508 * queue. The waiter-spinner will spin on the lock directly and concurrently 509 * with the spinner at the head of the OSQ, if present, until the owner is 510 * changed to itself. 511 */ 512 static __always_inline bool 513 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 514 const bool use_ww_ctx, struct mutex_waiter *waiter) 515 { 516 if (!waiter) { 517 /* 518 * The purpose of the mutex_can_spin_on_owner() function is 519 * to eliminate the overhead of osq_lock() and osq_unlock() 520 * in case spinning isn't possible. As a waiter-spinner 521 * is not going to take OSQ lock anyway, there is no need 522 * to call mutex_can_spin_on_owner(). 523 */ 524 if (!mutex_can_spin_on_owner(lock)) 525 goto fail; 526 527 /* 528 * In order to avoid a stampede of mutex spinners trying to 529 * acquire the mutex all at once, the spinners need to take a 530 * MCS (queued) lock first before spinning on the owner field. 531 */ 532 if (!osq_lock(&lock->osq)) 533 goto fail; 534 } 535 536 for (;;) { 537 struct task_struct *owner; 538 539 /* Try to acquire the mutex... */ 540 owner = __mutex_trylock_or_owner(lock); 541 if (!owner) 542 break; 543 544 /* 545 * There's an owner, wait for it to either 546 * release the lock or go to sleep. 547 */ 548 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 549 goto fail_unlock; 550 551 /* 552 * The cpu_relax() call is a compiler barrier which forces 553 * everything in this loop to be re-loaded. We don't need 554 * memory barriers as we'll eventually observe the right 555 * values at the cost of a few extra spins. 556 */ 557 cpu_relax(); 558 } 559 560 if (!waiter) 561 osq_unlock(&lock->osq); 562 563 return true; 564 565 566 fail_unlock: 567 if (!waiter) 568 osq_unlock(&lock->osq); 569 570 fail: 571 /* 572 * If we fell out of the spin path because of need_resched(), 573 * reschedule now, before we try-lock the mutex. This avoids getting 574 * scheduled out right after we obtained the mutex. 575 */ 576 if (need_resched()) { 577 /* 578 * We _should_ have TASK_RUNNING here, but just in case 579 * we do not, make it so, otherwise we might get stuck. 580 */ 581 __set_current_state(TASK_RUNNING); 582 schedule_preempt_disabled(); 583 } 584 585 return false; 586 } 587 #else 588 static __always_inline bool 589 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 590 const bool use_ww_ctx, struct mutex_waiter *waiter) 591 { 592 return false; 593 } 594 #endif 595 596 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 597 598 /** 599 * mutex_unlock - release the mutex 600 * @lock: the mutex to be released 601 * 602 * Unlock a mutex that has been locked by this task previously. 603 * 604 * This function must not be used in interrupt context. Unlocking 605 * of a not locked mutex is not allowed. 606 * 607 * This function is similar to (but not equivalent to) up(). 608 */ 609 void __sched mutex_unlock(struct mutex *lock) 610 { 611 #ifndef CONFIG_DEBUG_LOCK_ALLOC 612 if (__mutex_unlock_fast(lock)) 613 return; 614 #endif 615 __mutex_unlock_slowpath(lock, _RET_IP_); 616 } 617 EXPORT_SYMBOL(mutex_unlock); 618 619 /** 620 * ww_mutex_unlock - release the w/w mutex 621 * @lock: the mutex to be released 622 * 623 * Unlock a mutex that has been locked by this task previously with any of the 624 * ww_mutex_lock* functions (with or without an acquire context). It is 625 * forbidden to release the locks after releasing the acquire context. 626 * 627 * This function must not be used in interrupt context. Unlocking 628 * of a unlocked mutex is not allowed. 629 */ 630 void __sched ww_mutex_unlock(struct ww_mutex *lock) 631 { 632 /* 633 * The unlocking fastpath is the 0->1 transition from 'locked' 634 * into 'unlocked' state: 635 */ 636 if (lock->ctx) { 637 #ifdef CONFIG_DEBUG_MUTEXES 638 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); 639 #endif 640 if (lock->ctx->acquired > 0) 641 lock->ctx->acquired--; 642 lock->ctx = NULL; 643 } 644 645 mutex_unlock(&lock->base); 646 } 647 EXPORT_SYMBOL(ww_mutex_unlock); 648 649 static inline int __sched 650 __ww_mutex_lock_check_stamp(struct mutex *lock, struct mutex_waiter *waiter, 651 struct ww_acquire_ctx *ctx) 652 { 653 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 654 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); 655 struct mutex_waiter *cur; 656 657 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) 658 goto deadlock; 659 660 /* 661 * If there is a waiter in front of us that has a context, then its 662 * stamp is earlier than ours and we must back off. 663 */ 664 cur = waiter; 665 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { 666 if (cur->ww_ctx) 667 goto deadlock; 668 } 669 670 return 0; 671 672 deadlock: 673 #ifdef CONFIG_DEBUG_MUTEXES 674 DEBUG_LOCKS_WARN_ON(ctx->contending_lock); 675 ctx->contending_lock = ww; 676 #endif 677 return -EDEADLK; 678 } 679 680 static inline int __sched 681 __ww_mutex_add_waiter(struct mutex_waiter *waiter, 682 struct mutex *lock, 683 struct ww_acquire_ctx *ww_ctx) 684 { 685 struct mutex_waiter *cur; 686 struct list_head *pos; 687 688 if (!ww_ctx) { 689 list_add_tail(&waiter->list, &lock->wait_list); 690 return 0; 691 } 692 693 /* 694 * Add the waiter before the first waiter with a higher stamp. 695 * Waiters without a context are skipped to avoid starving 696 * them. 697 */ 698 pos = &lock->wait_list; 699 list_for_each_entry_reverse(cur, &lock->wait_list, list) { 700 if (!cur->ww_ctx) 701 continue; 702 703 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { 704 /* Back off immediately if necessary. */ 705 if (ww_ctx->acquired > 0) { 706 #ifdef CONFIG_DEBUG_MUTEXES 707 struct ww_mutex *ww; 708 709 ww = container_of(lock, struct ww_mutex, base); 710 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); 711 ww_ctx->contending_lock = ww; 712 #endif 713 return -EDEADLK; 714 } 715 716 break; 717 } 718 719 pos = &cur->list; 720 721 /* 722 * Wake up the waiter so that it gets a chance to back 723 * off. 724 */ 725 if (cur->ww_ctx->acquired > 0) { 726 debug_mutex_wake_waiter(lock, cur); 727 wake_up_process(cur->task); 728 } 729 } 730 731 list_add_tail(&waiter->list, pos); 732 return 0; 733 } 734 735 /* 736 * Lock a mutex (possibly interruptible), slowpath: 737 */ 738 static __always_inline int __sched 739 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 740 struct lockdep_map *nest_lock, unsigned long ip, 741 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 742 { 743 struct mutex_waiter waiter; 744 bool first = false; 745 struct ww_mutex *ww; 746 int ret; 747 748 might_sleep(); 749 750 ww = container_of(lock, struct ww_mutex, base); 751 if (use_ww_ctx && ww_ctx) { 752 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 753 return -EALREADY; 754 } 755 756 preempt_disable(); 757 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 758 759 if (__mutex_trylock(lock) || 760 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) { 761 /* got the lock, yay! */ 762 lock_acquired(&lock->dep_map, ip); 763 if (use_ww_ctx && ww_ctx) 764 ww_mutex_set_context_fastpath(ww, ww_ctx); 765 preempt_enable(); 766 return 0; 767 } 768 769 spin_lock(&lock->wait_lock); 770 /* 771 * After waiting to acquire the wait_lock, try again. 772 */ 773 if (__mutex_trylock(lock)) { 774 if (use_ww_ctx && ww_ctx) 775 __ww_mutex_wakeup_for_backoff(lock, ww_ctx); 776 777 goto skip_wait; 778 } 779 780 debug_mutex_lock_common(lock, &waiter); 781 debug_mutex_add_waiter(lock, &waiter, current); 782 783 lock_contended(&lock->dep_map, ip); 784 785 if (!use_ww_ctx) { 786 /* add waiting tasks to the end of the waitqueue (FIFO): */ 787 list_add_tail(&waiter.list, &lock->wait_list); 788 789 #ifdef CONFIG_DEBUG_MUTEXES 790 waiter.ww_ctx = MUTEX_POISON_WW_CTX; 791 #endif 792 } else { 793 /* Add in stamp order, waking up waiters that must back off. */ 794 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 795 if (ret) 796 goto err_early_backoff; 797 798 waiter.ww_ctx = ww_ctx; 799 } 800 801 waiter.task = current; 802 803 if (__mutex_waiter_is_first(lock, &waiter)) 804 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 805 806 set_current_state(state); 807 for (;;) { 808 /* 809 * Once we hold wait_lock, we're serialized against 810 * mutex_unlock() handing the lock off to us, do a trylock 811 * before testing the error conditions to make sure we pick up 812 * the handoff. 813 */ 814 if (__mutex_trylock(lock)) 815 goto acquired; 816 817 /* 818 * Check for signals and wound conditions while holding 819 * wait_lock. This ensures the lock cancellation is ordered 820 * against mutex_unlock() and wake-ups do not go missing. 821 */ 822 if (unlikely(signal_pending_state(state, current))) { 823 ret = -EINTR; 824 goto err; 825 } 826 827 if (use_ww_ctx && ww_ctx && ww_ctx->acquired > 0) { 828 ret = __ww_mutex_lock_check_stamp(lock, &waiter, ww_ctx); 829 if (ret) 830 goto err; 831 } 832 833 spin_unlock(&lock->wait_lock); 834 schedule_preempt_disabled(); 835 836 /* 837 * ww_mutex needs to always recheck its position since its waiter 838 * list is not FIFO ordered. 839 */ 840 if ((use_ww_ctx && ww_ctx) || !first) { 841 first = __mutex_waiter_is_first(lock, &waiter); 842 if (first) 843 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF); 844 } 845 846 set_current_state(state); 847 /* 848 * Here we order against unlock; we must either see it change 849 * state back to RUNNING and fall through the next schedule(), 850 * or we must see its unlock and acquire. 851 */ 852 if (__mutex_trylock(lock) || 853 (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter))) 854 break; 855 856 spin_lock(&lock->wait_lock); 857 } 858 spin_lock(&lock->wait_lock); 859 acquired: 860 __set_current_state(TASK_RUNNING); 861 862 mutex_remove_waiter(lock, &waiter, current); 863 if (likely(list_empty(&lock->wait_list))) 864 __mutex_clear_flag(lock, MUTEX_FLAGS); 865 866 debug_mutex_free_waiter(&waiter); 867 868 skip_wait: 869 /* got the lock - cleanup and rejoice! */ 870 lock_acquired(&lock->dep_map, ip); 871 872 if (use_ww_ctx && ww_ctx) 873 ww_mutex_set_context_slowpath(ww, ww_ctx); 874 875 spin_unlock(&lock->wait_lock); 876 preempt_enable(); 877 return 0; 878 879 err: 880 __set_current_state(TASK_RUNNING); 881 mutex_remove_waiter(lock, &waiter, current); 882 err_early_backoff: 883 spin_unlock(&lock->wait_lock); 884 debug_mutex_free_waiter(&waiter); 885 mutex_release(&lock->dep_map, 1, ip); 886 preempt_enable(); 887 return ret; 888 } 889 890 static int __sched 891 __mutex_lock(struct mutex *lock, long state, unsigned int subclass, 892 struct lockdep_map *nest_lock, unsigned long ip) 893 { 894 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 895 } 896 897 static int __sched 898 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass, 899 struct lockdep_map *nest_lock, unsigned long ip, 900 struct ww_acquire_ctx *ww_ctx) 901 { 902 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true); 903 } 904 905 #ifdef CONFIG_DEBUG_LOCK_ALLOC 906 void __sched 907 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 908 { 909 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 910 } 911 912 EXPORT_SYMBOL_GPL(mutex_lock_nested); 913 914 void __sched 915 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 916 { 917 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 918 } 919 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 920 921 int __sched 922 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 923 { 924 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 925 } 926 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 927 928 int __sched 929 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 930 { 931 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 932 } 933 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 934 935 void __sched 936 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 937 { 938 int token; 939 940 might_sleep(); 941 942 token = io_schedule_prepare(); 943 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 944 subclass, NULL, _RET_IP_, NULL, 0); 945 io_schedule_finish(token); 946 } 947 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 948 949 static inline int 950 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 951 { 952 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 953 unsigned tmp; 954 955 if (ctx->deadlock_inject_countdown-- == 0) { 956 tmp = ctx->deadlock_inject_interval; 957 if (tmp > UINT_MAX/4) 958 tmp = UINT_MAX; 959 else 960 tmp = tmp*2 + tmp + tmp/2; 961 962 ctx->deadlock_inject_interval = tmp; 963 ctx->deadlock_inject_countdown = tmp; 964 ctx->contending_lock = lock; 965 966 ww_mutex_unlock(lock); 967 968 return -EDEADLK; 969 } 970 #endif 971 972 return 0; 973 } 974 975 int __sched 976 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 977 { 978 int ret; 979 980 might_sleep(); 981 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 982 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 983 ctx); 984 if (!ret && ctx && ctx->acquired > 1) 985 return ww_mutex_deadlock_injection(lock, ctx); 986 987 return ret; 988 } 989 EXPORT_SYMBOL_GPL(ww_mutex_lock); 990 991 int __sched 992 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 993 { 994 int ret; 995 996 might_sleep(); 997 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 998 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 999 ctx); 1000 1001 if (!ret && ctx && ctx->acquired > 1) 1002 return ww_mutex_deadlock_injection(lock, ctx); 1003 1004 return ret; 1005 } 1006 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 1007 1008 #endif 1009 1010 /* 1011 * Release the lock, slowpath: 1012 */ 1013 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 1014 { 1015 struct task_struct *next = NULL; 1016 DEFINE_WAKE_Q(wake_q); 1017 unsigned long owner; 1018 1019 mutex_release(&lock->dep_map, 1, ip); 1020 1021 /* 1022 * Release the lock before (potentially) taking the spinlock such that 1023 * other contenders can get on with things ASAP. 1024 * 1025 * Except when HANDOFF, in that case we must not clear the owner field, 1026 * but instead set it to the top waiter. 1027 */ 1028 owner = atomic_long_read(&lock->owner); 1029 for (;;) { 1030 unsigned long old; 1031 1032 #ifdef CONFIG_DEBUG_MUTEXES 1033 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 1034 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); 1035 #endif 1036 1037 if (owner & MUTEX_FLAG_HANDOFF) 1038 break; 1039 1040 old = atomic_long_cmpxchg_release(&lock->owner, owner, 1041 __owner_flags(owner)); 1042 if (old == owner) { 1043 if (owner & MUTEX_FLAG_WAITERS) 1044 break; 1045 1046 return; 1047 } 1048 1049 owner = old; 1050 } 1051 1052 spin_lock(&lock->wait_lock); 1053 debug_mutex_unlock(lock); 1054 if (!list_empty(&lock->wait_list)) { 1055 /* get the first entry from the wait-list: */ 1056 struct mutex_waiter *waiter = 1057 list_first_entry(&lock->wait_list, 1058 struct mutex_waiter, list); 1059 1060 next = waiter->task; 1061 1062 debug_mutex_wake_waiter(lock, waiter); 1063 wake_q_add(&wake_q, next); 1064 } 1065 1066 if (owner & MUTEX_FLAG_HANDOFF) 1067 __mutex_handoff(lock, next); 1068 1069 spin_unlock(&lock->wait_lock); 1070 1071 wake_up_q(&wake_q); 1072 } 1073 1074 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1075 /* 1076 * Here come the less common (and hence less performance-critical) APIs: 1077 * mutex_lock_interruptible() and mutex_trylock(). 1078 */ 1079 static noinline int __sched 1080 __mutex_lock_killable_slowpath(struct mutex *lock); 1081 1082 static noinline int __sched 1083 __mutex_lock_interruptible_slowpath(struct mutex *lock); 1084 1085 /** 1086 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 1087 * @lock: The mutex to be acquired. 1088 * 1089 * Lock the mutex like mutex_lock(). If a signal is delivered while the 1090 * process is sleeping, this function will return without acquiring the 1091 * mutex. 1092 * 1093 * Context: Process context. 1094 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1095 * signal arrived. 1096 */ 1097 int __sched mutex_lock_interruptible(struct mutex *lock) 1098 { 1099 might_sleep(); 1100 1101 if (__mutex_trylock_fast(lock)) 1102 return 0; 1103 1104 return __mutex_lock_interruptible_slowpath(lock); 1105 } 1106 1107 EXPORT_SYMBOL(mutex_lock_interruptible); 1108 1109 /** 1110 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 1111 * @lock: The mutex to be acquired. 1112 * 1113 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 1114 * the current process is delivered while the process is sleeping, this 1115 * function will return without acquiring the mutex. 1116 * 1117 * Context: Process context. 1118 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1119 * fatal signal arrived. 1120 */ 1121 int __sched mutex_lock_killable(struct mutex *lock) 1122 { 1123 might_sleep(); 1124 1125 if (__mutex_trylock_fast(lock)) 1126 return 0; 1127 1128 return __mutex_lock_killable_slowpath(lock); 1129 } 1130 EXPORT_SYMBOL(mutex_lock_killable); 1131 1132 /** 1133 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1134 * @lock: The mutex to be acquired. 1135 * 1136 * Lock the mutex like mutex_lock(). While the task is waiting for this 1137 * mutex, it will be accounted as being in the IO wait state by the 1138 * scheduler. 1139 * 1140 * Context: Process context. 1141 */ 1142 void __sched mutex_lock_io(struct mutex *lock) 1143 { 1144 int token; 1145 1146 token = io_schedule_prepare(); 1147 mutex_lock(lock); 1148 io_schedule_finish(token); 1149 } 1150 EXPORT_SYMBOL_GPL(mutex_lock_io); 1151 1152 static noinline void __sched 1153 __mutex_lock_slowpath(struct mutex *lock) 1154 { 1155 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1156 } 1157 1158 static noinline int __sched 1159 __mutex_lock_killable_slowpath(struct mutex *lock) 1160 { 1161 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1162 } 1163 1164 static noinline int __sched 1165 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1166 { 1167 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1168 } 1169 1170 static noinline int __sched 1171 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1172 { 1173 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL, 1174 _RET_IP_, ctx); 1175 } 1176 1177 static noinline int __sched 1178 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1179 struct ww_acquire_ctx *ctx) 1180 { 1181 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL, 1182 _RET_IP_, ctx); 1183 } 1184 1185 #endif 1186 1187 /** 1188 * mutex_trylock - try to acquire the mutex, without waiting 1189 * @lock: the mutex to be acquired 1190 * 1191 * Try to acquire the mutex atomically. Returns 1 if the mutex 1192 * has been acquired successfully, and 0 on contention. 1193 * 1194 * NOTE: this function follows the spin_trylock() convention, so 1195 * it is negated from the down_trylock() return values! Be careful 1196 * about this when converting semaphore users to mutexes. 1197 * 1198 * This function must not be used in interrupt context. The 1199 * mutex must be released by the same task that acquired it. 1200 */ 1201 int __sched mutex_trylock(struct mutex *lock) 1202 { 1203 bool locked = __mutex_trylock(lock); 1204 1205 if (locked) 1206 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1207 1208 return locked; 1209 } 1210 EXPORT_SYMBOL(mutex_trylock); 1211 1212 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1213 int __sched 1214 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1215 { 1216 might_sleep(); 1217 1218 if (__mutex_trylock_fast(&lock->base)) { 1219 if (ctx) 1220 ww_mutex_set_context_fastpath(lock, ctx); 1221 return 0; 1222 } 1223 1224 return __ww_mutex_lock_slowpath(lock, ctx); 1225 } 1226 EXPORT_SYMBOL(ww_mutex_lock); 1227 1228 int __sched 1229 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1230 { 1231 might_sleep(); 1232 1233 if (__mutex_trylock_fast(&lock->base)) { 1234 if (ctx) 1235 ww_mutex_set_context_fastpath(lock, ctx); 1236 return 0; 1237 } 1238 1239 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1240 } 1241 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1242 1243 #endif 1244 1245 /** 1246 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1247 * @cnt: the atomic which we are to dec 1248 * @lock: the mutex to return holding if we dec to 0 1249 * 1250 * return true and hold lock if we dec to 0, return false otherwise 1251 */ 1252 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1253 { 1254 /* dec if we can't possibly hit 0 */ 1255 if (atomic_add_unless(cnt, -1, 1)) 1256 return 0; 1257 /* we might hit 0, so take the lock */ 1258 mutex_lock(lock); 1259 if (!atomic_dec_and_test(cnt)) { 1260 /* when we actually did the dec, we didn't hit 0 */ 1261 mutex_unlock(lock); 1262 return 0; 1263 } 1264 /* we hit 0, and we hold the lock */ 1265 return 1; 1266 } 1267 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1268