xref: /openbmc/linux/kernel/locking/mutex.c (revision 6f69e2a3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/locking/mutex.c
4  *
5  * Mutexes: blocking mutual exclusion locks
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *
11  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12  * David Howells for suggestions and improvements.
13  *
14  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15  *    from the -rt tree, where it was originally implemented for rtmutexes
16  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17  *    and Sven Dietrich.
18  *
19  * Also see Documentation/locking/mutex-design.rst.
20  */
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
32 
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 #else
36 # include "mutex.h"
37 #endif
38 
39 void
40 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
41 {
42 	atomic_long_set(&lock->owner, 0);
43 	spin_lock_init(&lock->wait_lock);
44 	INIT_LIST_HEAD(&lock->wait_list);
45 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
46 	osq_lock_init(&lock->osq);
47 #endif
48 
49 	debug_mutex_init(lock, name, key);
50 }
51 EXPORT_SYMBOL(__mutex_init);
52 
53 /*
54  * @owner: contains: 'struct task_struct *' to the current lock owner,
55  * NULL means not owned. Since task_struct pointers are aligned at
56  * at least L1_CACHE_BYTES, we have low bits to store extra state.
57  *
58  * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup.
59  * Bit1 indicates unlock needs to hand the lock to the top-waiter
60  * Bit2 indicates handoff has been done and we're waiting for pickup.
61  */
62 #define MUTEX_FLAG_WAITERS	0x01
63 #define MUTEX_FLAG_HANDOFF	0x02
64 #define MUTEX_FLAG_PICKUP	0x04
65 
66 #define MUTEX_FLAGS		0x07
67 
68 /*
69  * Internal helper function; C doesn't allow us to hide it :/
70  *
71  * DO NOT USE (outside of mutex code).
72  */
73 static inline struct task_struct *__mutex_owner(struct mutex *lock)
74 {
75 	return (struct task_struct *)(atomic_long_read(&lock->owner) & ~MUTEX_FLAGS);
76 }
77 
78 static inline struct task_struct *__owner_task(unsigned long owner)
79 {
80 	return (struct task_struct *)(owner & ~MUTEX_FLAGS);
81 }
82 
83 bool mutex_is_locked(struct mutex *lock)
84 {
85 	return __mutex_owner(lock) != NULL;
86 }
87 EXPORT_SYMBOL(mutex_is_locked);
88 
89 __must_check enum mutex_trylock_recursive_enum
90 mutex_trylock_recursive(struct mutex *lock)
91 {
92 	if (unlikely(__mutex_owner(lock) == current))
93 		return MUTEX_TRYLOCK_RECURSIVE;
94 
95 	return mutex_trylock(lock);
96 }
97 EXPORT_SYMBOL(mutex_trylock_recursive);
98 
99 static inline unsigned long __owner_flags(unsigned long owner)
100 {
101 	return owner & MUTEX_FLAGS;
102 }
103 
104 /*
105  * Trylock variant that retuns the owning task on failure.
106  */
107 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
108 {
109 	unsigned long owner, curr = (unsigned long)current;
110 
111 	owner = atomic_long_read(&lock->owner);
112 	for (;;) { /* must loop, can race against a flag */
113 		unsigned long old, flags = __owner_flags(owner);
114 		unsigned long task = owner & ~MUTEX_FLAGS;
115 
116 		if (task) {
117 			if (likely(task != curr))
118 				break;
119 
120 			if (likely(!(flags & MUTEX_FLAG_PICKUP)))
121 				break;
122 
123 			flags &= ~MUTEX_FLAG_PICKUP;
124 		} else {
125 #ifdef CONFIG_DEBUG_MUTEXES
126 			DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP);
127 #endif
128 		}
129 
130 		/*
131 		 * We set the HANDOFF bit, we must make sure it doesn't live
132 		 * past the point where we acquire it. This would be possible
133 		 * if we (accidentally) set the bit on an unlocked mutex.
134 		 */
135 		flags &= ~MUTEX_FLAG_HANDOFF;
136 
137 		old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags);
138 		if (old == owner)
139 			return NULL;
140 
141 		owner = old;
142 	}
143 
144 	return __owner_task(owner);
145 }
146 
147 /*
148  * Actual trylock that will work on any unlocked state.
149  */
150 static inline bool __mutex_trylock(struct mutex *lock)
151 {
152 	return !__mutex_trylock_or_owner(lock);
153 }
154 
155 #ifndef CONFIG_DEBUG_LOCK_ALLOC
156 /*
157  * Lockdep annotations are contained to the slow paths for simplicity.
158  * There is nothing that would stop spreading the lockdep annotations outwards
159  * except more code.
160  */
161 
162 /*
163  * Optimistic trylock that only works in the uncontended case. Make sure to
164  * follow with a __mutex_trylock() before failing.
165  */
166 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
167 {
168 	unsigned long curr = (unsigned long)current;
169 	unsigned long zero = 0UL;
170 
171 	if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
172 		return true;
173 
174 	return false;
175 }
176 
177 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
178 {
179 	unsigned long curr = (unsigned long)current;
180 
181 	if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr)
182 		return true;
183 
184 	return false;
185 }
186 #endif
187 
188 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
189 {
190 	atomic_long_or(flag, &lock->owner);
191 }
192 
193 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
194 {
195 	atomic_long_andnot(flag, &lock->owner);
196 }
197 
198 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
199 {
200 	return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
201 }
202 
203 /*
204  * Add @waiter to a given location in the lock wait_list and set the
205  * FLAG_WAITERS flag if it's the first waiter.
206  */
207 static void __sched
208 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
209 		   struct list_head *list)
210 {
211 	debug_mutex_add_waiter(lock, waiter, current);
212 
213 	list_add_tail(&waiter->list, list);
214 	if (__mutex_waiter_is_first(lock, waiter))
215 		__mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
216 }
217 
218 /*
219  * Give up ownership to a specific task, when @task = NULL, this is equivalent
220  * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves
221  * WAITERS. Provides RELEASE semantics like a regular unlock, the
222  * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
223  */
224 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
225 {
226 	unsigned long owner = atomic_long_read(&lock->owner);
227 
228 	for (;;) {
229 		unsigned long old, new;
230 
231 #ifdef CONFIG_DEBUG_MUTEXES
232 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
233 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
234 #endif
235 
236 		new = (owner & MUTEX_FLAG_WAITERS);
237 		new |= (unsigned long)task;
238 		if (task)
239 			new |= MUTEX_FLAG_PICKUP;
240 
241 		old = atomic_long_cmpxchg_release(&lock->owner, owner, new);
242 		if (old == owner)
243 			break;
244 
245 		owner = old;
246 	}
247 }
248 
249 #ifndef CONFIG_DEBUG_LOCK_ALLOC
250 /*
251  * We split the mutex lock/unlock logic into separate fastpath and
252  * slowpath functions, to reduce the register pressure on the fastpath.
253  * We also put the fastpath first in the kernel image, to make sure the
254  * branch is predicted by the CPU as default-untaken.
255  */
256 static void __sched __mutex_lock_slowpath(struct mutex *lock);
257 
258 /**
259  * mutex_lock - acquire the mutex
260  * @lock: the mutex to be acquired
261  *
262  * Lock the mutex exclusively for this task. If the mutex is not
263  * available right now, it will sleep until it can get it.
264  *
265  * The mutex must later on be released by the same task that
266  * acquired it. Recursive locking is not allowed. The task
267  * may not exit without first unlocking the mutex. Also, kernel
268  * memory where the mutex resides must not be freed with
269  * the mutex still locked. The mutex must first be initialized
270  * (or statically defined) before it can be locked. memset()-ing
271  * the mutex to 0 is not allowed.
272  *
273  * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
274  * checks that will enforce the restrictions and will also do
275  * deadlock debugging)
276  *
277  * This function is similar to (but not equivalent to) down().
278  */
279 void __sched mutex_lock(struct mutex *lock)
280 {
281 	might_sleep();
282 
283 	if (!__mutex_trylock_fast(lock))
284 		__mutex_lock_slowpath(lock);
285 }
286 EXPORT_SYMBOL(mutex_lock);
287 #endif
288 
289 /*
290  * Wait-Die:
291  *   The newer transactions are killed when:
292  *     It (the new transaction) makes a request for a lock being held
293  *     by an older transaction.
294  *
295  * Wound-Wait:
296  *   The newer transactions are wounded when:
297  *     An older transaction makes a request for a lock being held by
298  *     the newer transaction.
299  */
300 
301 /*
302  * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
303  * it.
304  */
305 static __always_inline void
306 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
307 {
308 #ifdef CONFIG_DEBUG_MUTEXES
309 	/*
310 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
311 	 * but released with a normal mutex_unlock in this call.
312 	 *
313 	 * This should never happen, always use ww_mutex_unlock.
314 	 */
315 	DEBUG_LOCKS_WARN_ON(ww->ctx);
316 
317 	/*
318 	 * Not quite done after calling ww_acquire_done() ?
319 	 */
320 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
321 
322 	if (ww_ctx->contending_lock) {
323 		/*
324 		 * After -EDEADLK you tried to
325 		 * acquire a different ww_mutex? Bad!
326 		 */
327 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
328 
329 		/*
330 		 * You called ww_mutex_lock after receiving -EDEADLK,
331 		 * but 'forgot' to unlock everything else first?
332 		 */
333 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
334 		ww_ctx->contending_lock = NULL;
335 	}
336 
337 	/*
338 	 * Naughty, using a different class will lead to undefined behavior!
339 	 */
340 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
341 #endif
342 	ww_ctx->acquired++;
343 	ww->ctx = ww_ctx;
344 }
345 
346 /*
347  * Determine if context @a is 'after' context @b. IOW, @a is a younger
348  * transaction than @b and depending on algorithm either needs to wait for
349  * @b or die.
350  */
351 static inline bool __sched
352 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b)
353 {
354 
355 	return (signed long)(a->stamp - b->stamp) > 0;
356 }
357 
358 /*
359  * Wait-Die; wake a younger waiter context (when locks held) such that it can
360  * die.
361  *
362  * Among waiters with context, only the first one can have other locks acquired
363  * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
364  * __ww_mutex_check_kill() wake any but the earliest context.
365  */
366 static bool __sched
367 __ww_mutex_die(struct mutex *lock, struct mutex_waiter *waiter,
368 	       struct ww_acquire_ctx *ww_ctx)
369 {
370 	if (!ww_ctx->is_wait_die)
371 		return false;
372 
373 	if (waiter->ww_ctx->acquired > 0 &&
374 			__ww_ctx_stamp_after(waiter->ww_ctx, ww_ctx)) {
375 		debug_mutex_wake_waiter(lock, waiter);
376 		wake_up_process(waiter->task);
377 	}
378 
379 	return true;
380 }
381 
382 /*
383  * Wound-Wait; wound a younger @hold_ctx if it holds the lock.
384  *
385  * Wound the lock holder if there are waiters with older transactions than
386  * the lock holders. Even if multiple waiters may wound the lock holder,
387  * it's sufficient that only one does.
388  */
389 static bool __ww_mutex_wound(struct mutex *lock,
390 			     struct ww_acquire_ctx *ww_ctx,
391 			     struct ww_acquire_ctx *hold_ctx)
392 {
393 	struct task_struct *owner = __mutex_owner(lock);
394 
395 	lockdep_assert_held(&lock->wait_lock);
396 
397 	/*
398 	 * Possible through __ww_mutex_add_waiter() when we race with
399 	 * ww_mutex_set_context_fastpath(). In that case we'll get here again
400 	 * through __ww_mutex_check_waiters().
401 	 */
402 	if (!hold_ctx)
403 		return false;
404 
405 	/*
406 	 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
407 	 * it cannot go away because we'll have FLAG_WAITERS set and hold
408 	 * wait_lock.
409 	 */
410 	if (!owner)
411 		return false;
412 
413 	if (ww_ctx->acquired > 0 && __ww_ctx_stamp_after(hold_ctx, ww_ctx)) {
414 		hold_ctx->wounded = 1;
415 
416 		/*
417 		 * wake_up_process() paired with set_current_state()
418 		 * inserts sufficient barriers to make sure @owner either sees
419 		 * it's wounded in __ww_mutex_check_kill() or has a
420 		 * wakeup pending to re-read the wounded state.
421 		 */
422 		if (owner != current)
423 			wake_up_process(owner);
424 
425 		return true;
426 	}
427 
428 	return false;
429 }
430 
431 /*
432  * We just acquired @lock under @ww_ctx, if there are later contexts waiting
433  * behind us on the wait-list, check if they need to die, or wound us.
434  *
435  * See __ww_mutex_add_waiter() for the list-order construction; basically the
436  * list is ordered by stamp, smallest (oldest) first.
437  *
438  * This relies on never mixing wait-die/wound-wait on the same wait-list;
439  * which is currently ensured by that being a ww_class property.
440  *
441  * The current task must not be on the wait list.
442  */
443 static void __sched
444 __ww_mutex_check_waiters(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
445 {
446 	struct mutex_waiter *cur;
447 
448 	lockdep_assert_held(&lock->wait_lock);
449 
450 	list_for_each_entry(cur, &lock->wait_list, list) {
451 		if (!cur->ww_ctx)
452 			continue;
453 
454 		if (__ww_mutex_die(lock, cur, ww_ctx) ||
455 		    __ww_mutex_wound(lock, cur->ww_ctx, ww_ctx))
456 			break;
457 	}
458 }
459 
460 /*
461  * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
462  * and wake up any waiters so they can recheck.
463  */
464 static __always_inline void
465 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
466 {
467 	ww_mutex_lock_acquired(lock, ctx);
468 
469 	/*
470 	 * The lock->ctx update should be visible on all cores before
471 	 * the WAITERS check is done, otherwise contended waiters might be
472 	 * missed. The contended waiters will either see ww_ctx == NULL
473 	 * and keep spinning, or it will acquire wait_lock, add itself
474 	 * to waiter list and sleep.
475 	 */
476 	smp_mb(); /* See comments above and below. */
477 
478 	/*
479 	 * [W] ww->ctx = ctx	    [W] MUTEX_FLAG_WAITERS
480 	 *     MB		        MB
481 	 * [R] MUTEX_FLAG_WAITERS   [R] ww->ctx
482 	 *
483 	 * The memory barrier above pairs with the memory barrier in
484 	 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
485 	 * and/or !empty list.
486 	 */
487 	if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS)))
488 		return;
489 
490 	/*
491 	 * Uh oh, we raced in fastpath, check if any of the waiters need to
492 	 * die or wound us.
493 	 */
494 	spin_lock(&lock->base.wait_lock);
495 	__ww_mutex_check_waiters(&lock->base, ctx);
496 	spin_unlock(&lock->base.wait_lock);
497 }
498 
499 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
500 
501 static inline
502 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
503 			    struct mutex_waiter *waiter)
504 {
505 	struct ww_mutex *ww;
506 
507 	ww = container_of(lock, struct ww_mutex, base);
508 
509 	/*
510 	 * If ww->ctx is set the contents are undefined, only
511 	 * by acquiring wait_lock there is a guarantee that
512 	 * they are not invalid when reading.
513 	 *
514 	 * As such, when deadlock detection needs to be
515 	 * performed the optimistic spinning cannot be done.
516 	 *
517 	 * Check this in every inner iteration because we may
518 	 * be racing against another thread's ww_mutex_lock.
519 	 */
520 	if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
521 		return false;
522 
523 	/*
524 	 * If we aren't on the wait list yet, cancel the spin
525 	 * if there are waiters. We want  to avoid stealing the
526 	 * lock from a waiter with an earlier stamp, since the
527 	 * other thread may already own a lock that we also
528 	 * need.
529 	 */
530 	if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
531 		return false;
532 
533 	/*
534 	 * Similarly, stop spinning if we are no longer the
535 	 * first waiter.
536 	 */
537 	if (waiter && !__mutex_waiter_is_first(lock, waiter))
538 		return false;
539 
540 	return true;
541 }
542 
543 /*
544  * Look out! "owner" is an entirely speculative pointer access and not
545  * reliable.
546  *
547  * "noinline" so that this function shows up on perf profiles.
548  */
549 static noinline
550 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
551 			 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
552 {
553 	bool ret = true;
554 
555 	rcu_read_lock();
556 	while (__mutex_owner(lock) == owner) {
557 		/*
558 		 * Ensure we emit the owner->on_cpu, dereference _after_
559 		 * checking lock->owner still matches owner. If that fails,
560 		 * owner might point to freed memory. If it still matches,
561 		 * the rcu_read_lock() ensures the memory stays valid.
562 		 */
563 		barrier();
564 
565 		/*
566 		 * Use vcpu_is_preempted to detect lock holder preemption issue.
567 		 */
568 		if (!owner->on_cpu || need_resched() ||
569 				vcpu_is_preempted(task_cpu(owner))) {
570 			ret = false;
571 			break;
572 		}
573 
574 		if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
575 			ret = false;
576 			break;
577 		}
578 
579 		cpu_relax();
580 	}
581 	rcu_read_unlock();
582 
583 	return ret;
584 }
585 
586 /*
587  * Initial check for entering the mutex spinning loop
588  */
589 static inline int mutex_can_spin_on_owner(struct mutex *lock)
590 {
591 	struct task_struct *owner;
592 	int retval = 1;
593 
594 	if (need_resched())
595 		return 0;
596 
597 	rcu_read_lock();
598 	owner = __mutex_owner(lock);
599 
600 	/*
601 	 * As lock holder preemption issue, we both skip spinning if task is not
602 	 * on cpu or its cpu is preempted
603 	 */
604 	if (owner)
605 		retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner));
606 	rcu_read_unlock();
607 
608 	/*
609 	 * If lock->owner is not set, the mutex has been released. Return true
610 	 * such that we'll trylock in the spin path, which is a faster option
611 	 * than the blocking slow path.
612 	 */
613 	return retval;
614 }
615 
616 /*
617  * Optimistic spinning.
618  *
619  * We try to spin for acquisition when we find that the lock owner
620  * is currently running on a (different) CPU and while we don't
621  * need to reschedule. The rationale is that if the lock owner is
622  * running, it is likely to release the lock soon.
623  *
624  * The mutex spinners are queued up using MCS lock so that only one
625  * spinner can compete for the mutex. However, if mutex spinning isn't
626  * going to happen, there is no point in going through the lock/unlock
627  * overhead.
628  *
629  * Returns true when the lock was taken, otherwise false, indicating
630  * that we need to jump to the slowpath and sleep.
631  *
632  * The waiter flag is set to true if the spinner is a waiter in the wait
633  * queue. The waiter-spinner will spin on the lock directly and concurrently
634  * with the spinner at the head of the OSQ, if present, until the owner is
635  * changed to itself.
636  */
637 static __always_inline bool
638 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
639 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
640 {
641 	if (!waiter) {
642 		/*
643 		 * The purpose of the mutex_can_spin_on_owner() function is
644 		 * to eliminate the overhead of osq_lock() and osq_unlock()
645 		 * in case spinning isn't possible. As a waiter-spinner
646 		 * is not going to take OSQ lock anyway, there is no need
647 		 * to call mutex_can_spin_on_owner().
648 		 */
649 		if (!mutex_can_spin_on_owner(lock))
650 			goto fail;
651 
652 		/*
653 		 * In order to avoid a stampede of mutex spinners trying to
654 		 * acquire the mutex all at once, the spinners need to take a
655 		 * MCS (queued) lock first before spinning on the owner field.
656 		 */
657 		if (!osq_lock(&lock->osq))
658 			goto fail;
659 	}
660 
661 	for (;;) {
662 		struct task_struct *owner;
663 
664 		/* Try to acquire the mutex... */
665 		owner = __mutex_trylock_or_owner(lock);
666 		if (!owner)
667 			break;
668 
669 		/*
670 		 * There's an owner, wait for it to either
671 		 * release the lock or go to sleep.
672 		 */
673 		if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
674 			goto fail_unlock;
675 
676 		/*
677 		 * The cpu_relax() call is a compiler barrier which forces
678 		 * everything in this loop to be re-loaded. We don't need
679 		 * memory barriers as we'll eventually observe the right
680 		 * values at the cost of a few extra spins.
681 		 */
682 		cpu_relax();
683 	}
684 
685 	if (!waiter)
686 		osq_unlock(&lock->osq);
687 
688 	return true;
689 
690 
691 fail_unlock:
692 	if (!waiter)
693 		osq_unlock(&lock->osq);
694 
695 fail:
696 	/*
697 	 * If we fell out of the spin path because of need_resched(),
698 	 * reschedule now, before we try-lock the mutex. This avoids getting
699 	 * scheduled out right after we obtained the mutex.
700 	 */
701 	if (need_resched()) {
702 		/*
703 		 * We _should_ have TASK_RUNNING here, but just in case
704 		 * we do not, make it so, otherwise we might get stuck.
705 		 */
706 		__set_current_state(TASK_RUNNING);
707 		schedule_preempt_disabled();
708 	}
709 
710 	return false;
711 }
712 #else
713 static __always_inline bool
714 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
715 		      const bool use_ww_ctx, struct mutex_waiter *waiter)
716 {
717 	return false;
718 }
719 #endif
720 
721 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
722 
723 /**
724  * mutex_unlock - release the mutex
725  * @lock: the mutex to be released
726  *
727  * Unlock a mutex that has been locked by this task previously.
728  *
729  * This function must not be used in interrupt context. Unlocking
730  * of a not locked mutex is not allowed.
731  *
732  * This function is similar to (but not equivalent to) up().
733  */
734 void __sched mutex_unlock(struct mutex *lock)
735 {
736 #ifdef CONFIG_DEBUG_MUTEXES
737 	WARN_ON(in_interrupt());
738 #endif
739 #ifndef CONFIG_DEBUG_LOCK_ALLOC
740 	if (__mutex_unlock_fast(lock))
741 		return;
742 #endif
743 	__mutex_unlock_slowpath(lock, _RET_IP_);
744 }
745 EXPORT_SYMBOL(mutex_unlock);
746 
747 /**
748  * ww_mutex_unlock - release the w/w mutex
749  * @lock: the mutex to be released
750  *
751  * Unlock a mutex that has been locked by this task previously with any of the
752  * ww_mutex_lock* functions (with or without an acquire context). It is
753  * forbidden to release the locks after releasing the acquire context.
754  *
755  * This function must not be used in interrupt context. Unlocking
756  * of a unlocked mutex is not allowed.
757  */
758 void __sched ww_mutex_unlock(struct ww_mutex *lock)
759 {
760 	/*
761 	 * The unlocking fastpath is the 0->1 transition from 'locked'
762 	 * into 'unlocked' state:
763 	 */
764 	if (lock->ctx) {
765 #ifdef CONFIG_DEBUG_MUTEXES
766 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
767 #endif
768 		if (lock->ctx->acquired > 0)
769 			lock->ctx->acquired--;
770 		lock->ctx = NULL;
771 	}
772 
773 	mutex_unlock(&lock->base);
774 }
775 EXPORT_SYMBOL(ww_mutex_unlock);
776 
777 
778 static __always_inline int __sched
779 __ww_mutex_kill(struct mutex *lock, struct ww_acquire_ctx *ww_ctx)
780 {
781 	if (ww_ctx->acquired > 0) {
782 #ifdef CONFIG_DEBUG_MUTEXES
783 		struct ww_mutex *ww;
784 
785 		ww = container_of(lock, struct ww_mutex, base);
786 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock);
787 		ww_ctx->contending_lock = ww;
788 #endif
789 		return -EDEADLK;
790 	}
791 
792 	return 0;
793 }
794 
795 
796 /*
797  * Check the wound condition for the current lock acquire.
798  *
799  * Wound-Wait: If we're wounded, kill ourself.
800  *
801  * Wait-Die: If we're trying to acquire a lock already held by an older
802  *           context, kill ourselves.
803  *
804  * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
805  * look at waiters before us in the wait-list.
806  */
807 static inline int __sched
808 __ww_mutex_check_kill(struct mutex *lock, struct mutex_waiter *waiter,
809 		      struct ww_acquire_ctx *ctx)
810 {
811 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
812 	struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx);
813 	struct mutex_waiter *cur;
814 
815 	if (ctx->acquired == 0)
816 		return 0;
817 
818 	if (!ctx->is_wait_die) {
819 		if (ctx->wounded)
820 			return __ww_mutex_kill(lock, ctx);
821 
822 		return 0;
823 	}
824 
825 	if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx))
826 		return __ww_mutex_kill(lock, ctx);
827 
828 	/*
829 	 * If there is a waiter in front of us that has a context, then its
830 	 * stamp is earlier than ours and we must kill ourself.
831 	 */
832 	cur = waiter;
833 	list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) {
834 		if (!cur->ww_ctx)
835 			continue;
836 
837 		return __ww_mutex_kill(lock, ctx);
838 	}
839 
840 	return 0;
841 }
842 
843 /*
844  * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
845  * first. Such that older contexts are preferred to acquire the lock over
846  * younger contexts.
847  *
848  * Waiters without context are interspersed in FIFO order.
849  *
850  * Furthermore, for Wait-Die kill ourself immediately when possible (there are
851  * older contexts already waiting) to avoid unnecessary waiting and for
852  * Wound-Wait ensure we wound the owning context when it is younger.
853  */
854 static inline int __sched
855 __ww_mutex_add_waiter(struct mutex_waiter *waiter,
856 		      struct mutex *lock,
857 		      struct ww_acquire_ctx *ww_ctx)
858 {
859 	struct mutex_waiter *cur;
860 	struct list_head *pos;
861 	bool is_wait_die;
862 
863 	if (!ww_ctx) {
864 		__mutex_add_waiter(lock, waiter, &lock->wait_list);
865 		return 0;
866 	}
867 
868 	is_wait_die = ww_ctx->is_wait_die;
869 
870 	/*
871 	 * Add the waiter before the first waiter with a higher stamp.
872 	 * Waiters without a context are skipped to avoid starving
873 	 * them. Wait-Die waiters may die here. Wound-Wait waiters
874 	 * never die here, but they are sorted in stamp order and
875 	 * may wound the lock holder.
876 	 */
877 	pos = &lock->wait_list;
878 	list_for_each_entry_reverse(cur, &lock->wait_list, list) {
879 		if (!cur->ww_ctx)
880 			continue;
881 
882 		if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) {
883 			/*
884 			 * Wait-Die: if we find an older context waiting, there
885 			 * is no point in queueing behind it, as we'd have to
886 			 * die the moment it would acquire the lock.
887 			 */
888 			if (is_wait_die) {
889 				int ret = __ww_mutex_kill(lock, ww_ctx);
890 
891 				if (ret)
892 					return ret;
893 			}
894 
895 			break;
896 		}
897 
898 		pos = &cur->list;
899 
900 		/* Wait-Die: ensure younger waiters die. */
901 		__ww_mutex_die(lock, cur, ww_ctx);
902 	}
903 
904 	__mutex_add_waiter(lock, waiter, pos);
905 
906 	/*
907 	 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
908 	 * wound that such that we might proceed.
909 	 */
910 	if (!is_wait_die) {
911 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
912 
913 		/*
914 		 * See ww_mutex_set_context_fastpath(). Orders setting
915 		 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
916 		 * such that either we or the fastpath will wound @ww->ctx.
917 		 */
918 		smp_mb();
919 		__ww_mutex_wound(lock, ww_ctx, ww->ctx);
920 	}
921 
922 	return 0;
923 }
924 
925 /*
926  * Lock a mutex (possibly interruptible), slowpath:
927  */
928 static __always_inline int __sched
929 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
930 		    struct lockdep_map *nest_lock, unsigned long ip,
931 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
932 {
933 	struct mutex_waiter waiter;
934 	bool first = false;
935 	struct ww_mutex *ww;
936 	int ret;
937 
938 	might_sleep();
939 
940 #ifdef CONFIG_DEBUG_MUTEXES
941 	DEBUG_LOCKS_WARN_ON(lock->magic != lock);
942 #endif
943 
944 	ww = container_of(lock, struct ww_mutex, base);
945 	if (use_ww_ctx && ww_ctx) {
946 		if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
947 			return -EALREADY;
948 
949 		/*
950 		 * Reset the wounded flag after a kill. No other process can
951 		 * race and wound us here since they can't have a valid owner
952 		 * pointer if we don't have any locks held.
953 		 */
954 		if (ww_ctx->acquired == 0)
955 			ww_ctx->wounded = 0;
956 	}
957 
958 	preempt_disable();
959 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
960 
961 	if (__mutex_trylock(lock) ||
962 	    mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) {
963 		/* got the lock, yay! */
964 		lock_acquired(&lock->dep_map, ip);
965 		if (use_ww_ctx && ww_ctx)
966 			ww_mutex_set_context_fastpath(ww, ww_ctx);
967 		preempt_enable();
968 		return 0;
969 	}
970 
971 	spin_lock(&lock->wait_lock);
972 	/*
973 	 * After waiting to acquire the wait_lock, try again.
974 	 */
975 	if (__mutex_trylock(lock)) {
976 		if (use_ww_ctx && ww_ctx)
977 			__ww_mutex_check_waiters(lock, ww_ctx);
978 
979 		goto skip_wait;
980 	}
981 
982 	debug_mutex_lock_common(lock, &waiter);
983 
984 	lock_contended(&lock->dep_map, ip);
985 
986 	if (!use_ww_ctx) {
987 		/* add waiting tasks to the end of the waitqueue (FIFO): */
988 		__mutex_add_waiter(lock, &waiter, &lock->wait_list);
989 
990 
991 #ifdef CONFIG_DEBUG_MUTEXES
992 		waiter.ww_ctx = MUTEX_POISON_WW_CTX;
993 #endif
994 	} else {
995 		/*
996 		 * Add in stamp order, waking up waiters that must kill
997 		 * themselves.
998 		 */
999 		ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx);
1000 		if (ret)
1001 			goto err_early_kill;
1002 
1003 		waiter.ww_ctx = ww_ctx;
1004 	}
1005 
1006 	waiter.task = current;
1007 
1008 	set_current_state(state);
1009 	for (;;) {
1010 		/*
1011 		 * Once we hold wait_lock, we're serialized against
1012 		 * mutex_unlock() handing the lock off to us, do a trylock
1013 		 * before testing the error conditions to make sure we pick up
1014 		 * the handoff.
1015 		 */
1016 		if (__mutex_trylock(lock))
1017 			goto acquired;
1018 
1019 		/*
1020 		 * Check for signals and kill conditions while holding
1021 		 * wait_lock. This ensures the lock cancellation is ordered
1022 		 * against mutex_unlock() and wake-ups do not go missing.
1023 		 */
1024 		if (signal_pending_state(state, current)) {
1025 			ret = -EINTR;
1026 			goto err;
1027 		}
1028 
1029 		if (use_ww_ctx && ww_ctx) {
1030 			ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
1031 			if (ret)
1032 				goto err;
1033 		}
1034 
1035 		spin_unlock(&lock->wait_lock);
1036 		schedule_preempt_disabled();
1037 
1038 		/*
1039 		 * ww_mutex needs to always recheck its position since its waiter
1040 		 * list is not FIFO ordered.
1041 		 */
1042 		if ((use_ww_ctx && ww_ctx) || !first) {
1043 			first = __mutex_waiter_is_first(lock, &waiter);
1044 			if (first)
1045 				__mutex_set_flag(lock, MUTEX_FLAG_HANDOFF);
1046 		}
1047 
1048 		set_current_state(state);
1049 		/*
1050 		 * Here we order against unlock; we must either see it change
1051 		 * state back to RUNNING and fall through the next schedule(),
1052 		 * or we must see its unlock and acquire.
1053 		 */
1054 		if (__mutex_trylock(lock) ||
1055 		    (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter)))
1056 			break;
1057 
1058 		spin_lock(&lock->wait_lock);
1059 	}
1060 	spin_lock(&lock->wait_lock);
1061 acquired:
1062 	__set_current_state(TASK_RUNNING);
1063 
1064 	if (use_ww_ctx && ww_ctx) {
1065 		/*
1066 		 * Wound-Wait; we stole the lock (!first_waiter), check the
1067 		 * waiters as anyone might want to wound us.
1068 		 */
1069 		if (!ww_ctx->is_wait_die &&
1070 		    !__mutex_waiter_is_first(lock, &waiter))
1071 			__ww_mutex_check_waiters(lock, ww_ctx);
1072 	}
1073 
1074 	mutex_remove_waiter(lock, &waiter, current);
1075 	if (likely(list_empty(&lock->wait_list)))
1076 		__mutex_clear_flag(lock, MUTEX_FLAGS);
1077 
1078 	debug_mutex_free_waiter(&waiter);
1079 
1080 skip_wait:
1081 	/* got the lock - cleanup and rejoice! */
1082 	lock_acquired(&lock->dep_map, ip);
1083 
1084 	if (use_ww_ctx && ww_ctx)
1085 		ww_mutex_lock_acquired(ww, ww_ctx);
1086 
1087 	spin_unlock(&lock->wait_lock);
1088 	preempt_enable();
1089 	return 0;
1090 
1091 err:
1092 	__set_current_state(TASK_RUNNING);
1093 	mutex_remove_waiter(lock, &waiter, current);
1094 err_early_kill:
1095 	spin_unlock(&lock->wait_lock);
1096 	debug_mutex_free_waiter(&waiter);
1097 	mutex_release(&lock->dep_map, ip);
1098 	preempt_enable();
1099 	return ret;
1100 }
1101 
1102 static int __sched
1103 __mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1104 	     struct lockdep_map *nest_lock, unsigned long ip)
1105 {
1106 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
1107 }
1108 
1109 static int __sched
1110 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass,
1111 		struct lockdep_map *nest_lock, unsigned long ip,
1112 		struct ww_acquire_ctx *ww_ctx)
1113 {
1114 	return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true);
1115 }
1116 
1117 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1118 void __sched
1119 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
1120 {
1121 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
1122 }
1123 
1124 EXPORT_SYMBOL_GPL(mutex_lock_nested);
1125 
1126 void __sched
1127 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
1128 {
1129 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
1130 }
1131 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
1132 
1133 int __sched
1134 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
1135 {
1136 	return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
1137 }
1138 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
1139 
1140 int __sched
1141 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
1142 {
1143 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
1144 }
1145 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
1146 
1147 void __sched
1148 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
1149 {
1150 	int token;
1151 
1152 	might_sleep();
1153 
1154 	token = io_schedule_prepare();
1155 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
1156 			    subclass, NULL, _RET_IP_, NULL, 0);
1157 	io_schedule_finish(token);
1158 }
1159 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
1160 
1161 static inline int
1162 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1163 {
1164 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
1165 	unsigned tmp;
1166 
1167 	if (ctx->deadlock_inject_countdown-- == 0) {
1168 		tmp = ctx->deadlock_inject_interval;
1169 		if (tmp > UINT_MAX/4)
1170 			tmp = UINT_MAX;
1171 		else
1172 			tmp = tmp*2 + tmp + tmp/2;
1173 
1174 		ctx->deadlock_inject_interval = tmp;
1175 		ctx->deadlock_inject_countdown = tmp;
1176 		ctx->contending_lock = lock;
1177 
1178 		ww_mutex_unlock(lock);
1179 
1180 		return -EDEADLK;
1181 	}
1182 #endif
1183 
1184 	return 0;
1185 }
1186 
1187 int __sched
1188 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1189 {
1190 	int ret;
1191 
1192 	might_sleep();
1193 	ret =  __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
1194 			       0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1195 			       ctx);
1196 	if (!ret && ctx && ctx->acquired > 1)
1197 		return ww_mutex_deadlock_injection(lock, ctx);
1198 
1199 	return ret;
1200 }
1201 EXPORT_SYMBOL_GPL(ww_mutex_lock);
1202 
1203 int __sched
1204 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1205 {
1206 	int ret;
1207 
1208 	might_sleep();
1209 	ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
1210 			      0, ctx ? &ctx->dep_map : NULL, _RET_IP_,
1211 			      ctx);
1212 
1213 	if (!ret && ctx && ctx->acquired > 1)
1214 		return ww_mutex_deadlock_injection(lock, ctx);
1215 
1216 	return ret;
1217 }
1218 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
1219 
1220 #endif
1221 
1222 /*
1223  * Release the lock, slowpath:
1224  */
1225 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
1226 {
1227 	struct task_struct *next = NULL;
1228 	DEFINE_WAKE_Q(wake_q);
1229 	unsigned long owner;
1230 
1231 	mutex_release(&lock->dep_map, ip);
1232 
1233 	/*
1234 	 * Release the lock before (potentially) taking the spinlock such that
1235 	 * other contenders can get on with things ASAP.
1236 	 *
1237 	 * Except when HANDOFF, in that case we must not clear the owner field,
1238 	 * but instead set it to the top waiter.
1239 	 */
1240 	owner = atomic_long_read(&lock->owner);
1241 	for (;;) {
1242 		unsigned long old;
1243 
1244 #ifdef CONFIG_DEBUG_MUTEXES
1245 		DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current);
1246 		DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP);
1247 #endif
1248 
1249 		if (owner & MUTEX_FLAG_HANDOFF)
1250 			break;
1251 
1252 		old = atomic_long_cmpxchg_release(&lock->owner, owner,
1253 						  __owner_flags(owner));
1254 		if (old == owner) {
1255 			if (owner & MUTEX_FLAG_WAITERS)
1256 				break;
1257 
1258 			return;
1259 		}
1260 
1261 		owner = old;
1262 	}
1263 
1264 	spin_lock(&lock->wait_lock);
1265 	debug_mutex_unlock(lock);
1266 	if (!list_empty(&lock->wait_list)) {
1267 		/* get the first entry from the wait-list: */
1268 		struct mutex_waiter *waiter =
1269 			list_first_entry(&lock->wait_list,
1270 					 struct mutex_waiter, list);
1271 
1272 		next = waiter->task;
1273 
1274 		debug_mutex_wake_waiter(lock, waiter);
1275 		wake_q_add(&wake_q, next);
1276 	}
1277 
1278 	if (owner & MUTEX_FLAG_HANDOFF)
1279 		__mutex_handoff(lock, next);
1280 
1281 	spin_unlock(&lock->wait_lock);
1282 
1283 	wake_up_q(&wake_q);
1284 }
1285 
1286 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1287 /*
1288  * Here come the less common (and hence less performance-critical) APIs:
1289  * mutex_lock_interruptible() and mutex_trylock().
1290  */
1291 static noinline int __sched
1292 __mutex_lock_killable_slowpath(struct mutex *lock);
1293 
1294 static noinline int __sched
1295 __mutex_lock_interruptible_slowpath(struct mutex *lock);
1296 
1297 /**
1298  * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
1299  * @lock: The mutex to be acquired.
1300  *
1301  * Lock the mutex like mutex_lock().  If a signal is delivered while the
1302  * process is sleeping, this function will return without acquiring the
1303  * mutex.
1304  *
1305  * Context: Process context.
1306  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1307  * signal arrived.
1308  */
1309 int __sched mutex_lock_interruptible(struct mutex *lock)
1310 {
1311 	might_sleep();
1312 
1313 	if (__mutex_trylock_fast(lock))
1314 		return 0;
1315 
1316 	return __mutex_lock_interruptible_slowpath(lock);
1317 }
1318 
1319 EXPORT_SYMBOL(mutex_lock_interruptible);
1320 
1321 /**
1322  * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
1323  * @lock: The mutex to be acquired.
1324  *
1325  * Lock the mutex like mutex_lock().  If a signal which will be fatal to
1326  * the current process is delivered while the process is sleeping, this
1327  * function will return without acquiring the mutex.
1328  *
1329  * Context: Process context.
1330  * Return: 0 if the lock was successfully acquired or %-EINTR if a
1331  * fatal signal arrived.
1332  */
1333 int __sched mutex_lock_killable(struct mutex *lock)
1334 {
1335 	might_sleep();
1336 
1337 	if (__mutex_trylock_fast(lock))
1338 		return 0;
1339 
1340 	return __mutex_lock_killable_slowpath(lock);
1341 }
1342 EXPORT_SYMBOL(mutex_lock_killable);
1343 
1344 /**
1345  * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1346  * @lock: The mutex to be acquired.
1347  *
1348  * Lock the mutex like mutex_lock().  While the task is waiting for this
1349  * mutex, it will be accounted as being in the IO wait state by the
1350  * scheduler.
1351  *
1352  * Context: Process context.
1353  */
1354 void __sched mutex_lock_io(struct mutex *lock)
1355 {
1356 	int token;
1357 
1358 	token = io_schedule_prepare();
1359 	mutex_lock(lock);
1360 	io_schedule_finish(token);
1361 }
1362 EXPORT_SYMBOL_GPL(mutex_lock_io);
1363 
1364 static noinline void __sched
1365 __mutex_lock_slowpath(struct mutex *lock)
1366 {
1367 	__mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1368 }
1369 
1370 static noinline int __sched
1371 __mutex_lock_killable_slowpath(struct mutex *lock)
1372 {
1373 	return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1374 }
1375 
1376 static noinline int __sched
1377 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1378 {
1379 	return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1380 }
1381 
1382 static noinline int __sched
1383 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1384 {
1385 	return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL,
1386 			       _RET_IP_, ctx);
1387 }
1388 
1389 static noinline int __sched
1390 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1391 					    struct ww_acquire_ctx *ctx)
1392 {
1393 	return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL,
1394 			       _RET_IP_, ctx);
1395 }
1396 
1397 #endif
1398 
1399 /**
1400  * mutex_trylock - try to acquire the mutex, without waiting
1401  * @lock: the mutex to be acquired
1402  *
1403  * Try to acquire the mutex atomically. Returns 1 if the mutex
1404  * has been acquired successfully, and 0 on contention.
1405  *
1406  * NOTE: this function follows the spin_trylock() convention, so
1407  * it is negated from the down_trylock() return values! Be careful
1408  * about this when converting semaphore users to mutexes.
1409  *
1410  * This function must not be used in interrupt context. The
1411  * mutex must be released by the same task that acquired it.
1412  */
1413 int __sched mutex_trylock(struct mutex *lock)
1414 {
1415 	bool locked;
1416 
1417 #ifdef CONFIG_DEBUG_MUTEXES
1418 	DEBUG_LOCKS_WARN_ON(lock->magic != lock);
1419 	WARN_ON(in_interrupt());
1420 #endif
1421 
1422 	locked = __mutex_trylock(lock);
1423 	if (locked)
1424 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1425 
1426 	return locked;
1427 }
1428 EXPORT_SYMBOL(mutex_trylock);
1429 
1430 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1431 int __sched
1432 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1433 {
1434 	might_sleep();
1435 
1436 	if (__mutex_trylock_fast(&lock->base)) {
1437 		if (ctx)
1438 			ww_mutex_set_context_fastpath(lock, ctx);
1439 		return 0;
1440 	}
1441 
1442 	return __ww_mutex_lock_slowpath(lock, ctx);
1443 }
1444 EXPORT_SYMBOL(ww_mutex_lock);
1445 
1446 int __sched
1447 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1448 {
1449 	might_sleep();
1450 
1451 	if (__mutex_trylock_fast(&lock->base)) {
1452 		if (ctx)
1453 			ww_mutex_set_context_fastpath(lock, ctx);
1454 		return 0;
1455 	}
1456 
1457 	return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1458 }
1459 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1460 
1461 #endif
1462 
1463 /**
1464  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1465  * @cnt: the atomic which we are to dec
1466  * @lock: the mutex to return holding if we dec to 0
1467  *
1468  * return true and hold lock if we dec to 0, return false otherwise
1469  */
1470 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1471 {
1472 	/* dec if we can't possibly hit 0 */
1473 	if (atomic_add_unless(cnt, -1, 1))
1474 		return 0;
1475 	/* we might hit 0, so take the lock */
1476 	mutex_lock(lock);
1477 	if (!atomic_dec_and_test(cnt)) {
1478 		/* when we actually did the dec, we didn't hit 0 */
1479 		mutex_unlock(lock);
1480 		return 0;
1481 	}
1482 	/* we hit 0, and we hold the lock */
1483 	return 1;
1484 }
1485 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
1486