xref: /openbmc/linux/kernel/locking/mutex.c (revision 62e7ca52)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 #include "mcs_spinlock.h"
29 
30 /*
31  * In the DEBUG case we are using the "NULL fastpath" for mutexes,
32  * which forces all calls into the slowpath:
33  */
34 #ifdef CONFIG_DEBUG_MUTEXES
35 # include "mutex-debug.h"
36 # include <asm-generic/mutex-null.h>
37 /*
38  * Must be 0 for the debug case so we do not do the unlock outside of the
39  * wait_lock region. debug_mutex_unlock() will do the actual unlock in this
40  * case.
41  */
42 # undef __mutex_slowpath_needs_to_unlock
43 # define  __mutex_slowpath_needs_to_unlock()	0
44 #else
45 # include "mutex.h"
46 # include <asm/mutex.h>
47 #endif
48 
49 void
50 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
51 {
52 	atomic_set(&lock->count, 1);
53 	spin_lock_init(&lock->wait_lock);
54 	INIT_LIST_HEAD(&lock->wait_list);
55 	mutex_clear_owner(lock);
56 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
57 	osq_lock_init(&lock->osq);
58 #endif
59 
60 	debug_mutex_init(lock, name, key);
61 }
62 
63 EXPORT_SYMBOL(__mutex_init);
64 
65 #ifndef CONFIG_DEBUG_LOCK_ALLOC
66 /*
67  * We split the mutex lock/unlock logic into separate fastpath and
68  * slowpath functions, to reduce the register pressure on the fastpath.
69  * We also put the fastpath first in the kernel image, to make sure the
70  * branch is predicted by the CPU as default-untaken.
71  */
72 __visible void __sched __mutex_lock_slowpath(atomic_t *lock_count);
73 
74 /**
75  * mutex_lock - acquire the mutex
76  * @lock: the mutex to be acquired
77  *
78  * Lock the mutex exclusively for this task. If the mutex is not
79  * available right now, it will sleep until it can get it.
80  *
81  * The mutex must later on be released by the same task that
82  * acquired it. Recursive locking is not allowed. The task
83  * may not exit without first unlocking the mutex. Also, kernel
84  * memory where the mutex resides mutex must not be freed with
85  * the mutex still locked. The mutex must first be initialized
86  * (or statically defined) before it can be locked. memset()-ing
87  * the mutex to 0 is not allowed.
88  *
89  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
90  *   checks that will enforce the restrictions and will also do
91  *   deadlock debugging. )
92  *
93  * This function is similar to (but not equivalent to) down().
94  */
95 void __sched mutex_lock(struct mutex *lock)
96 {
97 	might_sleep();
98 	/*
99 	 * The locking fastpath is the 1->0 transition from
100 	 * 'unlocked' into 'locked' state.
101 	 */
102 	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
103 	mutex_set_owner(lock);
104 }
105 
106 EXPORT_SYMBOL(mutex_lock);
107 #endif
108 
109 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
110 /*
111  * In order to avoid a stampede of mutex spinners from acquiring the mutex
112  * more or less simultaneously, the spinners need to acquire a MCS lock
113  * first before spinning on the owner field.
114  *
115  */
116 
117 /*
118  * Mutex spinning code migrated from kernel/sched/core.c
119  */
120 
121 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
122 {
123 	if (lock->owner != owner)
124 		return false;
125 
126 	/*
127 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
128 	 * lock->owner still matches owner, if that fails, owner might
129 	 * point to free()d memory, if it still matches, the rcu_read_lock()
130 	 * ensures the memory stays valid.
131 	 */
132 	barrier();
133 
134 	return owner->on_cpu;
135 }
136 
137 /*
138  * Look out! "owner" is an entirely speculative pointer
139  * access and not reliable.
140  */
141 static noinline
142 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
143 {
144 	rcu_read_lock();
145 	while (owner_running(lock, owner)) {
146 		if (need_resched())
147 			break;
148 
149 		cpu_relax_lowlatency();
150 	}
151 	rcu_read_unlock();
152 
153 	/*
154 	 * We break out the loop above on need_resched() and when the
155 	 * owner changed, which is a sign for heavy contention. Return
156 	 * success only when lock->owner is NULL.
157 	 */
158 	return lock->owner == NULL;
159 }
160 
161 /*
162  * Initial check for entering the mutex spinning loop
163  */
164 static inline int mutex_can_spin_on_owner(struct mutex *lock)
165 {
166 	struct task_struct *owner;
167 	int retval = 1;
168 
169 	if (need_resched())
170 		return 0;
171 
172 	rcu_read_lock();
173 	owner = ACCESS_ONCE(lock->owner);
174 	if (owner)
175 		retval = owner->on_cpu;
176 	rcu_read_unlock();
177 	/*
178 	 * if lock->owner is not set, the mutex owner may have just acquired
179 	 * it and not set the owner yet or the mutex has been released.
180 	 */
181 	return retval;
182 }
183 #endif
184 
185 __visible __used noinline
186 void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
187 
188 /**
189  * mutex_unlock - release the mutex
190  * @lock: the mutex to be released
191  *
192  * Unlock a mutex that has been locked by this task previously.
193  *
194  * This function must not be used in interrupt context. Unlocking
195  * of a not locked mutex is not allowed.
196  *
197  * This function is similar to (but not equivalent to) up().
198  */
199 void __sched mutex_unlock(struct mutex *lock)
200 {
201 	/*
202 	 * The unlocking fastpath is the 0->1 transition from 'locked'
203 	 * into 'unlocked' state:
204 	 */
205 #ifndef CONFIG_DEBUG_MUTEXES
206 	/*
207 	 * When debugging is enabled we must not clear the owner before time,
208 	 * the slow path will always be taken, and that clears the owner field
209 	 * after verifying that it was indeed current.
210 	 */
211 	mutex_clear_owner(lock);
212 #endif
213 	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
214 }
215 
216 EXPORT_SYMBOL(mutex_unlock);
217 
218 /**
219  * ww_mutex_unlock - release the w/w mutex
220  * @lock: the mutex to be released
221  *
222  * Unlock a mutex that has been locked by this task previously with any of the
223  * ww_mutex_lock* functions (with or without an acquire context). It is
224  * forbidden to release the locks after releasing the acquire context.
225  *
226  * This function must not be used in interrupt context. Unlocking
227  * of a unlocked mutex is not allowed.
228  */
229 void __sched ww_mutex_unlock(struct ww_mutex *lock)
230 {
231 	/*
232 	 * The unlocking fastpath is the 0->1 transition from 'locked'
233 	 * into 'unlocked' state:
234 	 */
235 	if (lock->ctx) {
236 #ifdef CONFIG_DEBUG_MUTEXES
237 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
238 #endif
239 		if (lock->ctx->acquired > 0)
240 			lock->ctx->acquired--;
241 		lock->ctx = NULL;
242 	}
243 
244 #ifndef CONFIG_DEBUG_MUTEXES
245 	/*
246 	 * When debugging is enabled we must not clear the owner before time,
247 	 * the slow path will always be taken, and that clears the owner field
248 	 * after verifying that it was indeed current.
249 	 */
250 	mutex_clear_owner(&lock->base);
251 #endif
252 	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
253 }
254 EXPORT_SYMBOL(ww_mutex_unlock);
255 
256 static inline int __sched
257 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
258 {
259 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
260 	struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
261 
262 	if (!hold_ctx)
263 		return 0;
264 
265 	if (unlikely(ctx == hold_ctx))
266 		return -EALREADY;
267 
268 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
269 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
270 #ifdef CONFIG_DEBUG_MUTEXES
271 		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
272 		ctx->contending_lock = ww;
273 #endif
274 		return -EDEADLK;
275 	}
276 
277 	return 0;
278 }
279 
280 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
281 						   struct ww_acquire_ctx *ww_ctx)
282 {
283 #ifdef CONFIG_DEBUG_MUTEXES
284 	/*
285 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
286 	 * but released with a normal mutex_unlock in this call.
287 	 *
288 	 * This should never happen, always use ww_mutex_unlock.
289 	 */
290 	DEBUG_LOCKS_WARN_ON(ww->ctx);
291 
292 	/*
293 	 * Not quite done after calling ww_acquire_done() ?
294 	 */
295 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
296 
297 	if (ww_ctx->contending_lock) {
298 		/*
299 		 * After -EDEADLK you tried to
300 		 * acquire a different ww_mutex? Bad!
301 		 */
302 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
303 
304 		/*
305 		 * You called ww_mutex_lock after receiving -EDEADLK,
306 		 * but 'forgot' to unlock everything else first?
307 		 */
308 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
309 		ww_ctx->contending_lock = NULL;
310 	}
311 
312 	/*
313 	 * Naughty, using a different class will lead to undefined behavior!
314 	 */
315 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
316 #endif
317 	ww_ctx->acquired++;
318 }
319 
320 /*
321  * after acquiring lock with fastpath or when we lost out in contested
322  * slowpath, set ctx and wake up any waiters so they can recheck.
323  *
324  * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
325  * as the fastpath and opportunistic spinning are disabled in that case.
326  */
327 static __always_inline void
328 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
329 			       struct ww_acquire_ctx *ctx)
330 {
331 	unsigned long flags;
332 	struct mutex_waiter *cur;
333 
334 	ww_mutex_lock_acquired(lock, ctx);
335 
336 	lock->ctx = ctx;
337 
338 	/*
339 	 * The lock->ctx update should be visible on all cores before
340 	 * the atomic read is done, otherwise contended waiters might be
341 	 * missed. The contended waiters will either see ww_ctx == NULL
342 	 * and keep spinning, or it will acquire wait_lock, add itself
343 	 * to waiter list and sleep.
344 	 */
345 	smp_mb(); /* ^^^ */
346 
347 	/*
348 	 * Check if lock is contended, if not there is nobody to wake up
349 	 */
350 	if (likely(atomic_read(&lock->base.count) == 0))
351 		return;
352 
353 	/*
354 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
355 	 * so they can see the new lock->ctx.
356 	 */
357 	spin_lock_mutex(&lock->base.wait_lock, flags);
358 	list_for_each_entry(cur, &lock->base.wait_list, list) {
359 		debug_mutex_wake_waiter(&lock->base, cur);
360 		wake_up_process(cur->task);
361 	}
362 	spin_unlock_mutex(&lock->base.wait_lock, flags);
363 }
364 
365 /*
366  * Lock a mutex (possibly interruptible), slowpath:
367  */
368 static __always_inline int __sched
369 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
370 		    struct lockdep_map *nest_lock, unsigned long ip,
371 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
372 {
373 	struct task_struct *task = current;
374 	struct mutex_waiter waiter;
375 	unsigned long flags;
376 	int ret;
377 
378 	preempt_disable();
379 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
380 
381 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
382 	/*
383 	 * Optimistic spinning.
384 	 *
385 	 * We try to spin for acquisition when we find that the lock owner
386 	 * is currently running on a (different) CPU and while we don't
387 	 * need to reschedule. The rationale is that if the lock owner is
388 	 * running, it is likely to release the lock soon.
389 	 *
390 	 * Since this needs the lock owner, and this mutex implementation
391 	 * doesn't track the owner atomically in the lock field, we need to
392 	 * track it non-atomically.
393 	 *
394 	 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
395 	 * to serialize everything.
396 	 *
397 	 * The mutex spinners are queued up using MCS lock so that only one
398 	 * spinner can compete for the mutex. However, if mutex spinning isn't
399 	 * going to happen, there is no point in going through the lock/unlock
400 	 * overhead.
401 	 */
402 	if (!mutex_can_spin_on_owner(lock))
403 		goto slowpath;
404 
405 	if (!osq_lock(&lock->osq))
406 		goto slowpath;
407 
408 	for (;;) {
409 		struct task_struct *owner;
410 
411 		if (use_ww_ctx && ww_ctx->acquired > 0) {
412 			struct ww_mutex *ww;
413 
414 			ww = container_of(lock, struct ww_mutex, base);
415 			/*
416 			 * If ww->ctx is set the contents are undefined, only
417 			 * by acquiring wait_lock there is a guarantee that
418 			 * they are not invalid when reading.
419 			 *
420 			 * As such, when deadlock detection needs to be
421 			 * performed the optimistic spinning cannot be done.
422 			 */
423 			if (ACCESS_ONCE(ww->ctx))
424 				break;
425 		}
426 
427 		/*
428 		 * If there's an owner, wait for it to either
429 		 * release the lock or go to sleep.
430 		 */
431 		owner = ACCESS_ONCE(lock->owner);
432 		if (owner && !mutex_spin_on_owner(lock, owner))
433 			break;
434 
435 		/* Try to acquire the mutex if it is unlocked. */
436 		if (!mutex_is_locked(lock) &&
437 		    (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
438 			lock_acquired(&lock->dep_map, ip);
439 			if (use_ww_ctx) {
440 				struct ww_mutex *ww;
441 				ww = container_of(lock, struct ww_mutex, base);
442 
443 				ww_mutex_set_context_fastpath(ww, ww_ctx);
444 			}
445 
446 			mutex_set_owner(lock);
447 			osq_unlock(&lock->osq);
448 			preempt_enable();
449 			return 0;
450 		}
451 
452 		/*
453 		 * When there's no owner, we might have preempted between the
454 		 * owner acquiring the lock and setting the owner field. If
455 		 * we're an RT task that will live-lock because we won't let
456 		 * the owner complete.
457 		 */
458 		if (!owner && (need_resched() || rt_task(task)))
459 			break;
460 
461 		/*
462 		 * The cpu_relax() call is a compiler barrier which forces
463 		 * everything in this loop to be re-loaded. We don't need
464 		 * memory barriers as we'll eventually observe the right
465 		 * values at the cost of a few extra spins.
466 		 */
467 		cpu_relax_lowlatency();
468 	}
469 	osq_unlock(&lock->osq);
470 slowpath:
471 	/*
472 	 * If we fell out of the spin path because of need_resched(),
473 	 * reschedule now, before we try-lock the mutex. This avoids getting
474 	 * scheduled out right after we obtained the mutex.
475 	 */
476 	if (need_resched())
477 		schedule_preempt_disabled();
478 #endif
479 	spin_lock_mutex(&lock->wait_lock, flags);
480 
481 	/*
482 	 * Once more, try to acquire the lock. Only try-lock the mutex if
483 	 * it is unlocked to reduce unnecessary xchg() operations.
484 	 */
485 	if (!mutex_is_locked(lock) && (atomic_xchg(&lock->count, 0) == 1))
486 		goto skip_wait;
487 
488 	debug_mutex_lock_common(lock, &waiter);
489 	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
490 
491 	/* add waiting tasks to the end of the waitqueue (FIFO): */
492 	list_add_tail(&waiter.list, &lock->wait_list);
493 	waiter.task = task;
494 
495 	lock_contended(&lock->dep_map, ip);
496 
497 	for (;;) {
498 		/*
499 		 * Lets try to take the lock again - this is needed even if
500 		 * we get here for the first time (shortly after failing to
501 		 * acquire the lock), to make sure that we get a wakeup once
502 		 * it's unlocked. Later on, if we sleep, this is the
503 		 * operation that gives us the lock. We xchg it to -1, so
504 		 * that when we release the lock, we properly wake up the
505 		 * other waiters. We only attempt the xchg if the count is
506 		 * non-negative in order to avoid unnecessary xchg operations:
507 		 */
508 		if (atomic_read(&lock->count) >= 0 &&
509 		    (atomic_xchg(&lock->count, -1) == 1))
510 			break;
511 
512 		/*
513 		 * got a signal? (This code gets eliminated in the
514 		 * TASK_UNINTERRUPTIBLE case.)
515 		 */
516 		if (unlikely(signal_pending_state(state, task))) {
517 			ret = -EINTR;
518 			goto err;
519 		}
520 
521 		if (use_ww_ctx && ww_ctx->acquired > 0) {
522 			ret = __mutex_lock_check_stamp(lock, ww_ctx);
523 			if (ret)
524 				goto err;
525 		}
526 
527 		__set_task_state(task, state);
528 
529 		/* didn't get the lock, go to sleep: */
530 		spin_unlock_mutex(&lock->wait_lock, flags);
531 		schedule_preempt_disabled();
532 		spin_lock_mutex(&lock->wait_lock, flags);
533 	}
534 	mutex_remove_waiter(lock, &waiter, current_thread_info());
535 	/* set it to 0 if there are no waiters left: */
536 	if (likely(list_empty(&lock->wait_list)))
537 		atomic_set(&lock->count, 0);
538 	debug_mutex_free_waiter(&waiter);
539 
540 skip_wait:
541 	/* got the lock - cleanup and rejoice! */
542 	lock_acquired(&lock->dep_map, ip);
543 	mutex_set_owner(lock);
544 
545 	if (use_ww_ctx) {
546 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
547 		struct mutex_waiter *cur;
548 
549 		/*
550 		 * This branch gets optimized out for the common case,
551 		 * and is only important for ww_mutex_lock.
552 		 */
553 		ww_mutex_lock_acquired(ww, ww_ctx);
554 		ww->ctx = ww_ctx;
555 
556 		/*
557 		 * Give any possible sleeping processes the chance to wake up,
558 		 * so they can recheck if they have to back off.
559 		 */
560 		list_for_each_entry(cur, &lock->wait_list, list) {
561 			debug_mutex_wake_waiter(lock, cur);
562 			wake_up_process(cur->task);
563 		}
564 	}
565 
566 	spin_unlock_mutex(&lock->wait_lock, flags);
567 	preempt_enable();
568 	return 0;
569 
570 err:
571 	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
572 	spin_unlock_mutex(&lock->wait_lock, flags);
573 	debug_mutex_free_waiter(&waiter);
574 	mutex_release(&lock->dep_map, 1, ip);
575 	preempt_enable();
576 	return ret;
577 }
578 
579 #ifdef CONFIG_DEBUG_LOCK_ALLOC
580 void __sched
581 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
582 {
583 	might_sleep();
584 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
585 			    subclass, NULL, _RET_IP_, NULL, 0);
586 }
587 
588 EXPORT_SYMBOL_GPL(mutex_lock_nested);
589 
590 void __sched
591 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
592 {
593 	might_sleep();
594 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
595 			    0, nest, _RET_IP_, NULL, 0);
596 }
597 
598 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
599 
600 int __sched
601 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
602 {
603 	might_sleep();
604 	return __mutex_lock_common(lock, TASK_KILLABLE,
605 				   subclass, NULL, _RET_IP_, NULL, 0);
606 }
607 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
608 
609 int __sched
610 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
611 {
612 	might_sleep();
613 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
614 				   subclass, NULL, _RET_IP_, NULL, 0);
615 }
616 
617 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
618 
619 static inline int
620 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
621 {
622 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
623 	unsigned tmp;
624 
625 	if (ctx->deadlock_inject_countdown-- == 0) {
626 		tmp = ctx->deadlock_inject_interval;
627 		if (tmp > UINT_MAX/4)
628 			tmp = UINT_MAX;
629 		else
630 			tmp = tmp*2 + tmp + tmp/2;
631 
632 		ctx->deadlock_inject_interval = tmp;
633 		ctx->deadlock_inject_countdown = tmp;
634 		ctx->contending_lock = lock;
635 
636 		ww_mutex_unlock(lock);
637 
638 		return -EDEADLK;
639 	}
640 #endif
641 
642 	return 0;
643 }
644 
645 int __sched
646 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
647 {
648 	int ret;
649 
650 	might_sleep();
651 	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
652 				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
653 	if (!ret && ctx->acquired > 1)
654 		return ww_mutex_deadlock_injection(lock, ctx);
655 
656 	return ret;
657 }
658 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
659 
660 int __sched
661 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
662 {
663 	int ret;
664 
665 	might_sleep();
666 	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
667 				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
668 
669 	if (!ret && ctx->acquired > 1)
670 		return ww_mutex_deadlock_injection(lock, ctx);
671 
672 	return ret;
673 }
674 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
675 
676 #endif
677 
678 /*
679  * Release the lock, slowpath:
680  */
681 static inline void
682 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
683 {
684 	struct mutex *lock = container_of(lock_count, struct mutex, count);
685 	unsigned long flags;
686 
687 	/*
688 	 * some architectures leave the lock unlocked in the fastpath failure
689 	 * case, others need to leave it locked. In the later case we have to
690 	 * unlock it here
691 	 */
692 	if (__mutex_slowpath_needs_to_unlock())
693 		atomic_set(&lock->count, 1);
694 
695 	spin_lock_mutex(&lock->wait_lock, flags);
696 	mutex_release(&lock->dep_map, nested, _RET_IP_);
697 	debug_mutex_unlock(lock);
698 
699 	if (!list_empty(&lock->wait_list)) {
700 		/* get the first entry from the wait-list: */
701 		struct mutex_waiter *waiter =
702 				list_entry(lock->wait_list.next,
703 					   struct mutex_waiter, list);
704 
705 		debug_mutex_wake_waiter(lock, waiter);
706 
707 		wake_up_process(waiter->task);
708 	}
709 
710 	spin_unlock_mutex(&lock->wait_lock, flags);
711 }
712 
713 /*
714  * Release the lock, slowpath:
715  */
716 __visible void
717 __mutex_unlock_slowpath(atomic_t *lock_count)
718 {
719 	__mutex_unlock_common_slowpath(lock_count, 1);
720 }
721 
722 #ifndef CONFIG_DEBUG_LOCK_ALLOC
723 /*
724  * Here come the less common (and hence less performance-critical) APIs:
725  * mutex_lock_interruptible() and mutex_trylock().
726  */
727 static noinline int __sched
728 __mutex_lock_killable_slowpath(struct mutex *lock);
729 
730 static noinline int __sched
731 __mutex_lock_interruptible_slowpath(struct mutex *lock);
732 
733 /**
734  * mutex_lock_interruptible - acquire the mutex, interruptible
735  * @lock: the mutex to be acquired
736  *
737  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
738  * been acquired or sleep until the mutex becomes available. If a
739  * signal arrives while waiting for the lock then this function
740  * returns -EINTR.
741  *
742  * This function is similar to (but not equivalent to) down_interruptible().
743  */
744 int __sched mutex_lock_interruptible(struct mutex *lock)
745 {
746 	int ret;
747 
748 	might_sleep();
749 	ret =  __mutex_fastpath_lock_retval(&lock->count);
750 	if (likely(!ret)) {
751 		mutex_set_owner(lock);
752 		return 0;
753 	} else
754 		return __mutex_lock_interruptible_slowpath(lock);
755 }
756 
757 EXPORT_SYMBOL(mutex_lock_interruptible);
758 
759 int __sched mutex_lock_killable(struct mutex *lock)
760 {
761 	int ret;
762 
763 	might_sleep();
764 	ret = __mutex_fastpath_lock_retval(&lock->count);
765 	if (likely(!ret)) {
766 		mutex_set_owner(lock);
767 		return 0;
768 	} else
769 		return __mutex_lock_killable_slowpath(lock);
770 }
771 EXPORT_SYMBOL(mutex_lock_killable);
772 
773 __visible void __sched
774 __mutex_lock_slowpath(atomic_t *lock_count)
775 {
776 	struct mutex *lock = container_of(lock_count, struct mutex, count);
777 
778 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
779 			    NULL, _RET_IP_, NULL, 0);
780 }
781 
782 static noinline int __sched
783 __mutex_lock_killable_slowpath(struct mutex *lock)
784 {
785 	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
786 				   NULL, _RET_IP_, NULL, 0);
787 }
788 
789 static noinline int __sched
790 __mutex_lock_interruptible_slowpath(struct mutex *lock)
791 {
792 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
793 				   NULL, _RET_IP_, NULL, 0);
794 }
795 
796 static noinline int __sched
797 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
798 {
799 	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
800 				   NULL, _RET_IP_, ctx, 1);
801 }
802 
803 static noinline int __sched
804 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
805 					    struct ww_acquire_ctx *ctx)
806 {
807 	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
808 				   NULL, _RET_IP_, ctx, 1);
809 }
810 
811 #endif
812 
813 /*
814  * Spinlock based trylock, we take the spinlock and check whether we
815  * can get the lock:
816  */
817 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
818 {
819 	struct mutex *lock = container_of(lock_count, struct mutex, count);
820 	unsigned long flags;
821 	int prev;
822 
823 	/* No need to trylock if the mutex is locked. */
824 	if (mutex_is_locked(lock))
825 		return 0;
826 
827 	spin_lock_mutex(&lock->wait_lock, flags);
828 
829 	prev = atomic_xchg(&lock->count, -1);
830 	if (likely(prev == 1)) {
831 		mutex_set_owner(lock);
832 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
833 	}
834 
835 	/* Set it back to 0 if there are no waiters: */
836 	if (likely(list_empty(&lock->wait_list)))
837 		atomic_set(&lock->count, 0);
838 
839 	spin_unlock_mutex(&lock->wait_lock, flags);
840 
841 	return prev == 1;
842 }
843 
844 /**
845  * mutex_trylock - try to acquire the mutex, without waiting
846  * @lock: the mutex to be acquired
847  *
848  * Try to acquire the mutex atomically. Returns 1 if the mutex
849  * has been acquired successfully, and 0 on contention.
850  *
851  * NOTE: this function follows the spin_trylock() convention, so
852  * it is negated from the down_trylock() return values! Be careful
853  * about this when converting semaphore users to mutexes.
854  *
855  * This function must not be used in interrupt context. The
856  * mutex must be released by the same task that acquired it.
857  */
858 int __sched mutex_trylock(struct mutex *lock)
859 {
860 	int ret;
861 
862 	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
863 	if (ret)
864 		mutex_set_owner(lock);
865 
866 	return ret;
867 }
868 EXPORT_SYMBOL(mutex_trylock);
869 
870 #ifndef CONFIG_DEBUG_LOCK_ALLOC
871 int __sched
872 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
873 {
874 	int ret;
875 
876 	might_sleep();
877 
878 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
879 
880 	if (likely(!ret)) {
881 		ww_mutex_set_context_fastpath(lock, ctx);
882 		mutex_set_owner(&lock->base);
883 	} else
884 		ret = __ww_mutex_lock_slowpath(lock, ctx);
885 	return ret;
886 }
887 EXPORT_SYMBOL(__ww_mutex_lock);
888 
889 int __sched
890 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
891 {
892 	int ret;
893 
894 	might_sleep();
895 
896 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
897 
898 	if (likely(!ret)) {
899 		ww_mutex_set_context_fastpath(lock, ctx);
900 		mutex_set_owner(&lock->base);
901 	} else
902 		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
903 	return ret;
904 }
905 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
906 
907 #endif
908 
909 /**
910  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
911  * @cnt: the atomic which we are to dec
912  * @lock: the mutex to return holding if we dec to 0
913  *
914  * return true and hold lock if we dec to 0, return false otherwise
915  */
916 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
917 {
918 	/* dec if we can't possibly hit 0 */
919 	if (atomic_add_unless(cnt, -1, 1))
920 		return 0;
921 	/* we might hit 0, so take the lock */
922 	mutex_lock(lock);
923 	if (!atomic_dec_and_test(cnt)) {
924 		/* when we actually did the dec, we didn't hit 0 */
925 		mutex_unlock(lock);
926 		return 0;
927 	}
928 	/* we hit 0, and we hold the lock */
929 	return 1;
930 }
931 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
932