1 /* 2 * kernel/locking/mutex.c 3 * 4 * Mutexes: blocking mutual exclusion locks 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * 10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 11 * David Howells for suggestions and improvements. 12 * 13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 14 * from the -rt tree, where it was originally implemented for rtmutexes 15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 16 * and Sven Dietrich. 17 * 18 * Also see Documentation/locking/mutex-design.txt. 19 */ 20 #include <linux/mutex.h> 21 #include <linux/ww_mutex.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/rt.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/debug.h> 26 #include <linux/export.h> 27 #include <linux/spinlock.h> 28 #include <linux/interrupt.h> 29 #include <linux/debug_locks.h> 30 #include <linux/osq_lock.h> 31 32 #ifdef CONFIG_DEBUG_MUTEXES 33 # include "mutex-debug.h" 34 #else 35 # include "mutex.h" 36 #endif 37 38 void 39 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 40 { 41 atomic_long_set(&lock->owner, 0); 42 spin_lock_init(&lock->wait_lock); 43 INIT_LIST_HEAD(&lock->wait_list); 44 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 45 osq_lock_init(&lock->osq); 46 #endif 47 48 debug_mutex_init(lock, name, key); 49 } 50 EXPORT_SYMBOL(__mutex_init); 51 52 /* 53 * @owner: contains: 'struct task_struct *' to the current lock owner, 54 * NULL means not owned. Since task_struct pointers are aligned at 55 * at least L1_CACHE_BYTES, we have low bits to store extra state. 56 * 57 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 58 * Bit1 indicates unlock needs to hand the lock to the top-waiter 59 * Bit2 indicates handoff has been done and we're waiting for pickup. 60 */ 61 #define MUTEX_FLAG_WAITERS 0x01 62 #define MUTEX_FLAG_HANDOFF 0x02 63 #define MUTEX_FLAG_PICKUP 0x04 64 65 #define MUTEX_FLAGS 0x07 66 67 static inline struct task_struct *__owner_task(unsigned long owner) 68 { 69 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 70 } 71 72 static inline unsigned long __owner_flags(unsigned long owner) 73 { 74 return owner & MUTEX_FLAGS; 75 } 76 77 /* 78 * Trylock variant that retuns the owning task on failure. 79 */ 80 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 81 { 82 unsigned long owner, curr = (unsigned long)current; 83 84 owner = atomic_long_read(&lock->owner); 85 for (;;) { /* must loop, can race against a flag */ 86 unsigned long old, flags = __owner_flags(owner); 87 unsigned long task = owner & ~MUTEX_FLAGS; 88 89 if (task) { 90 if (likely(task != curr)) 91 break; 92 93 if (likely(!(flags & MUTEX_FLAG_PICKUP))) 94 break; 95 96 flags &= ~MUTEX_FLAG_PICKUP; 97 } else { 98 #ifdef CONFIG_DEBUG_MUTEXES 99 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP); 100 #endif 101 } 102 103 /* 104 * We set the HANDOFF bit, we must make sure it doesn't live 105 * past the point where we acquire it. This would be possible 106 * if we (accidentally) set the bit on an unlocked mutex. 107 */ 108 flags &= ~MUTEX_FLAG_HANDOFF; 109 110 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags); 111 if (old == owner) 112 return NULL; 113 114 owner = old; 115 } 116 117 return __owner_task(owner); 118 } 119 120 /* 121 * Actual trylock that will work on any unlocked state. 122 */ 123 static inline bool __mutex_trylock(struct mutex *lock) 124 { 125 return !__mutex_trylock_or_owner(lock); 126 } 127 128 #ifndef CONFIG_DEBUG_LOCK_ALLOC 129 /* 130 * Lockdep annotations are contained to the slow paths for simplicity. 131 * There is nothing that would stop spreading the lockdep annotations outwards 132 * except more code. 133 */ 134 135 /* 136 * Optimistic trylock that only works in the uncontended case. Make sure to 137 * follow with a __mutex_trylock() before failing. 138 */ 139 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 140 { 141 unsigned long curr = (unsigned long)current; 142 143 if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr)) 144 return true; 145 146 return false; 147 } 148 149 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 150 { 151 unsigned long curr = (unsigned long)current; 152 153 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr) 154 return true; 155 156 return false; 157 } 158 #endif 159 160 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 161 { 162 atomic_long_or(flag, &lock->owner); 163 } 164 165 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 166 { 167 atomic_long_andnot(flag, &lock->owner); 168 } 169 170 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 171 { 172 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 173 } 174 175 /* 176 * Give up ownership to a specific task, when @task = NULL, this is equivalent 177 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves 178 * WAITERS. Provides RELEASE semantics like a regular unlock, the 179 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 180 */ 181 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 182 { 183 unsigned long owner = atomic_long_read(&lock->owner); 184 185 for (;;) { 186 unsigned long old, new; 187 188 #ifdef CONFIG_DEBUG_MUTEXES 189 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 190 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); 191 #endif 192 193 new = (owner & MUTEX_FLAG_WAITERS); 194 new |= (unsigned long)task; 195 if (task) 196 new |= MUTEX_FLAG_PICKUP; 197 198 old = atomic_long_cmpxchg_release(&lock->owner, owner, new); 199 if (old == owner) 200 break; 201 202 owner = old; 203 } 204 } 205 206 #ifndef CONFIG_DEBUG_LOCK_ALLOC 207 /* 208 * We split the mutex lock/unlock logic into separate fastpath and 209 * slowpath functions, to reduce the register pressure on the fastpath. 210 * We also put the fastpath first in the kernel image, to make sure the 211 * branch is predicted by the CPU as default-untaken. 212 */ 213 static void __sched __mutex_lock_slowpath(struct mutex *lock); 214 215 /** 216 * mutex_lock - acquire the mutex 217 * @lock: the mutex to be acquired 218 * 219 * Lock the mutex exclusively for this task. If the mutex is not 220 * available right now, it will sleep until it can get it. 221 * 222 * The mutex must later on be released by the same task that 223 * acquired it. Recursive locking is not allowed. The task 224 * may not exit without first unlocking the mutex. Also, kernel 225 * memory where the mutex resides must not be freed with 226 * the mutex still locked. The mutex must first be initialized 227 * (or statically defined) before it can be locked. memset()-ing 228 * the mutex to 0 is not allowed. 229 * 230 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging 231 * checks that will enforce the restrictions and will also do 232 * deadlock debugging) 233 * 234 * This function is similar to (but not equivalent to) down(). 235 */ 236 void __sched mutex_lock(struct mutex *lock) 237 { 238 might_sleep(); 239 240 if (!__mutex_trylock_fast(lock)) 241 __mutex_lock_slowpath(lock); 242 } 243 EXPORT_SYMBOL(mutex_lock); 244 #endif 245 246 static __always_inline void 247 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 248 { 249 #ifdef CONFIG_DEBUG_MUTEXES 250 /* 251 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 252 * but released with a normal mutex_unlock in this call. 253 * 254 * This should never happen, always use ww_mutex_unlock. 255 */ 256 DEBUG_LOCKS_WARN_ON(ww->ctx); 257 258 /* 259 * Not quite done after calling ww_acquire_done() ? 260 */ 261 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 262 263 if (ww_ctx->contending_lock) { 264 /* 265 * After -EDEADLK you tried to 266 * acquire a different ww_mutex? Bad! 267 */ 268 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 269 270 /* 271 * You called ww_mutex_lock after receiving -EDEADLK, 272 * but 'forgot' to unlock everything else first? 273 */ 274 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 275 ww_ctx->contending_lock = NULL; 276 } 277 278 /* 279 * Naughty, using a different class will lead to undefined behavior! 280 */ 281 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 282 #endif 283 ww_ctx->acquired++; 284 } 285 286 static inline bool __sched 287 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) 288 { 289 return a->stamp - b->stamp <= LONG_MAX && 290 (a->stamp != b->stamp || a > b); 291 } 292 293 /* 294 * Wake up any waiters that may have to back off when the lock is held by the 295 * given context. 296 * 297 * Due to the invariants on the wait list, this can only affect the first 298 * waiter with a context. 299 * 300 * The current task must not be on the wait list. 301 */ 302 static void __sched 303 __ww_mutex_wakeup_for_backoff(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) 304 { 305 struct mutex_waiter *cur; 306 307 lockdep_assert_held(&lock->wait_lock); 308 309 list_for_each_entry(cur, &lock->wait_list, list) { 310 if (!cur->ww_ctx) 311 continue; 312 313 if (cur->ww_ctx->acquired > 0 && 314 __ww_ctx_stamp_after(cur->ww_ctx, ww_ctx)) { 315 debug_mutex_wake_waiter(lock, cur); 316 wake_up_process(cur->task); 317 } 318 319 break; 320 } 321 } 322 323 /* 324 * After acquiring lock with fastpath or when we lost out in contested 325 * slowpath, set ctx and wake up any waiters so they can recheck. 326 */ 327 static __always_inline void 328 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 329 { 330 ww_mutex_lock_acquired(lock, ctx); 331 332 lock->ctx = ctx; 333 334 /* 335 * The lock->ctx update should be visible on all cores before 336 * the atomic read is done, otherwise contended waiters might be 337 * missed. The contended waiters will either see ww_ctx == NULL 338 * and keep spinning, or it will acquire wait_lock, add itself 339 * to waiter list and sleep. 340 */ 341 smp_mb(); /* ^^^ */ 342 343 /* 344 * Check if lock is contended, if not there is nobody to wake up 345 */ 346 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) 347 return; 348 349 /* 350 * Uh oh, we raced in fastpath, wake up everyone in this case, 351 * so they can see the new lock->ctx. 352 */ 353 spin_lock(&lock->base.wait_lock); 354 __ww_mutex_wakeup_for_backoff(&lock->base, ctx); 355 spin_unlock(&lock->base.wait_lock); 356 } 357 358 /* 359 * After acquiring lock in the slowpath set ctx. 360 * 361 * Unlike for the fast path, the caller ensures that waiters are woken up where 362 * necessary. 363 * 364 * Callers must hold the mutex wait_lock. 365 */ 366 static __always_inline void 367 ww_mutex_set_context_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 368 { 369 ww_mutex_lock_acquired(lock, ctx); 370 lock->ctx = ctx; 371 } 372 373 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 374 375 static inline 376 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 377 struct mutex_waiter *waiter) 378 { 379 struct ww_mutex *ww; 380 381 ww = container_of(lock, struct ww_mutex, base); 382 383 /* 384 * If ww->ctx is set the contents are undefined, only 385 * by acquiring wait_lock there is a guarantee that 386 * they are not invalid when reading. 387 * 388 * As such, when deadlock detection needs to be 389 * performed the optimistic spinning cannot be done. 390 * 391 * Check this in every inner iteration because we may 392 * be racing against another thread's ww_mutex_lock. 393 */ 394 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 395 return false; 396 397 /* 398 * If we aren't on the wait list yet, cancel the spin 399 * if there are waiters. We want to avoid stealing the 400 * lock from a waiter with an earlier stamp, since the 401 * other thread may already own a lock that we also 402 * need. 403 */ 404 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 405 return false; 406 407 /* 408 * Similarly, stop spinning if we are no longer the 409 * first waiter. 410 */ 411 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 412 return false; 413 414 return true; 415 } 416 417 /* 418 * Look out! "owner" is an entirely speculative pointer access and not 419 * reliable. 420 * 421 * "noinline" so that this function shows up on perf profiles. 422 */ 423 static noinline 424 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 425 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 426 { 427 bool ret = true; 428 429 rcu_read_lock(); 430 while (__mutex_owner(lock) == owner) { 431 /* 432 * Ensure we emit the owner->on_cpu, dereference _after_ 433 * checking lock->owner still matches owner. If that fails, 434 * owner might point to freed memory. If it still matches, 435 * the rcu_read_lock() ensures the memory stays valid. 436 */ 437 barrier(); 438 439 /* 440 * Use vcpu_is_preempted to detect lock holder preemption issue. 441 */ 442 if (!owner->on_cpu || need_resched() || 443 vcpu_is_preempted(task_cpu(owner))) { 444 ret = false; 445 break; 446 } 447 448 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 449 ret = false; 450 break; 451 } 452 453 cpu_relax(); 454 } 455 rcu_read_unlock(); 456 457 return ret; 458 } 459 460 /* 461 * Initial check for entering the mutex spinning loop 462 */ 463 static inline int mutex_can_spin_on_owner(struct mutex *lock) 464 { 465 struct task_struct *owner; 466 int retval = 1; 467 468 if (need_resched()) 469 return 0; 470 471 rcu_read_lock(); 472 owner = __mutex_owner(lock); 473 474 /* 475 * As lock holder preemption issue, we both skip spinning if task is not 476 * on cpu or its cpu is preempted 477 */ 478 if (owner) 479 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 480 rcu_read_unlock(); 481 482 /* 483 * If lock->owner is not set, the mutex has been released. Return true 484 * such that we'll trylock in the spin path, which is a faster option 485 * than the blocking slow path. 486 */ 487 return retval; 488 } 489 490 /* 491 * Optimistic spinning. 492 * 493 * We try to spin for acquisition when we find that the lock owner 494 * is currently running on a (different) CPU and while we don't 495 * need to reschedule. The rationale is that if the lock owner is 496 * running, it is likely to release the lock soon. 497 * 498 * The mutex spinners are queued up using MCS lock so that only one 499 * spinner can compete for the mutex. However, if mutex spinning isn't 500 * going to happen, there is no point in going through the lock/unlock 501 * overhead. 502 * 503 * Returns true when the lock was taken, otherwise false, indicating 504 * that we need to jump to the slowpath and sleep. 505 * 506 * The waiter flag is set to true if the spinner is a waiter in the wait 507 * queue. The waiter-spinner will spin on the lock directly and concurrently 508 * with the spinner at the head of the OSQ, if present, until the owner is 509 * changed to itself. 510 */ 511 static __always_inline bool 512 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 513 const bool use_ww_ctx, struct mutex_waiter *waiter) 514 { 515 if (!waiter) { 516 /* 517 * The purpose of the mutex_can_spin_on_owner() function is 518 * to eliminate the overhead of osq_lock() and osq_unlock() 519 * in case spinning isn't possible. As a waiter-spinner 520 * is not going to take OSQ lock anyway, there is no need 521 * to call mutex_can_spin_on_owner(). 522 */ 523 if (!mutex_can_spin_on_owner(lock)) 524 goto fail; 525 526 /* 527 * In order to avoid a stampede of mutex spinners trying to 528 * acquire the mutex all at once, the spinners need to take a 529 * MCS (queued) lock first before spinning on the owner field. 530 */ 531 if (!osq_lock(&lock->osq)) 532 goto fail; 533 } 534 535 for (;;) { 536 struct task_struct *owner; 537 538 /* Try to acquire the mutex... */ 539 owner = __mutex_trylock_or_owner(lock); 540 if (!owner) 541 break; 542 543 /* 544 * There's an owner, wait for it to either 545 * release the lock or go to sleep. 546 */ 547 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 548 goto fail_unlock; 549 550 /* 551 * The cpu_relax() call is a compiler barrier which forces 552 * everything in this loop to be re-loaded. We don't need 553 * memory barriers as we'll eventually observe the right 554 * values at the cost of a few extra spins. 555 */ 556 cpu_relax(); 557 } 558 559 if (!waiter) 560 osq_unlock(&lock->osq); 561 562 return true; 563 564 565 fail_unlock: 566 if (!waiter) 567 osq_unlock(&lock->osq); 568 569 fail: 570 /* 571 * If we fell out of the spin path because of need_resched(), 572 * reschedule now, before we try-lock the mutex. This avoids getting 573 * scheduled out right after we obtained the mutex. 574 */ 575 if (need_resched()) { 576 /* 577 * We _should_ have TASK_RUNNING here, but just in case 578 * we do not, make it so, otherwise we might get stuck. 579 */ 580 __set_current_state(TASK_RUNNING); 581 schedule_preempt_disabled(); 582 } 583 584 return false; 585 } 586 #else 587 static __always_inline bool 588 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 589 const bool use_ww_ctx, struct mutex_waiter *waiter) 590 { 591 return false; 592 } 593 #endif 594 595 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 596 597 /** 598 * mutex_unlock - release the mutex 599 * @lock: the mutex to be released 600 * 601 * Unlock a mutex that has been locked by this task previously. 602 * 603 * This function must not be used in interrupt context. Unlocking 604 * of a not locked mutex is not allowed. 605 * 606 * This function is similar to (but not equivalent to) up(). 607 */ 608 void __sched mutex_unlock(struct mutex *lock) 609 { 610 #ifndef CONFIG_DEBUG_LOCK_ALLOC 611 if (__mutex_unlock_fast(lock)) 612 return; 613 #endif 614 __mutex_unlock_slowpath(lock, _RET_IP_); 615 } 616 EXPORT_SYMBOL(mutex_unlock); 617 618 /** 619 * ww_mutex_unlock - release the w/w mutex 620 * @lock: the mutex to be released 621 * 622 * Unlock a mutex that has been locked by this task previously with any of the 623 * ww_mutex_lock* functions (with or without an acquire context). It is 624 * forbidden to release the locks after releasing the acquire context. 625 * 626 * This function must not be used in interrupt context. Unlocking 627 * of a unlocked mutex is not allowed. 628 */ 629 void __sched ww_mutex_unlock(struct ww_mutex *lock) 630 { 631 /* 632 * The unlocking fastpath is the 0->1 transition from 'locked' 633 * into 'unlocked' state: 634 */ 635 if (lock->ctx) { 636 #ifdef CONFIG_DEBUG_MUTEXES 637 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); 638 #endif 639 if (lock->ctx->acquired > 0) 640 lock->ctx->acquired--; 641 lock->ctx = NULL; 642 } 643 644 mutex_unlock(&lock->base); 645 } 646 EXPORT_SYMBOL(ww_mutex_unlock); 647 648 static inline int __sched 649 __ww_mutex_lock_check_stamp(struct mutex *lock, struct mutex_waiter *waiter, 650 struct ww_acquire_ctx *ctx) 651 { 652 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 653 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); 654 struct mutex_waiter *cur; 655 656 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) 657 goto deadlock; 658 659 /* 660 * If there is a waiter in front of us that has a context, then its 661 * stamp is earlier than ours and we must back off. 662 */ 663 cur = waiter; 664 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { 665 if (cur->ww_ctx) 666 goto deadlock; 667 } 668 669 return 0; 670 671 deadlock: 672 #ifdef CONFIG_DEBUG_MUTEXES 673 DEBUG_LOCKS_WARN_ON(ctx->contending_lock); 674 ctx->contending_lock = ww; 675 #endif 676 return -EDEADLK; 677 } 678 679 static inline int __sched 680 __ww_mutex_add_waiter(struct mutex_waiter *waiter, 681 struct mutex *lock, 682 struct ww_acquire_ctx *ww_ctx) 683 { 684 struct mutex_waiter *cur; 685 struct list_head *pos; 686 687 if (!ww_ctx) { 688 list_add_tail(&waiter->list, &lock->wait_list); 689 return 0; 690 } 691 692 /* 693 * Add the waiter before the first waiter with a higher stamp. 694 * Waiters without a context are skipped to avoid starving 695 * them. 696 */ 697 pos = &lock->wait_list; 698 list_for_each_entry_reverse(cur, &lock->wait_list, list) { 699 if (!cur->ww_ctx) 700 continue; 701 702 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { 703 /* Back off immediately if necessary. */ 704 if (ww_ctx->acquired > 0) { 705 #ifdef CONFIG_DEBUG_MUTEXES 706 struct ww_mutex *ww; 707 708 ww = container_of(lock, struct ww_mutex, base); 709 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); 710 ww_ctx->contending_lock = ww; 711 #endif 712 return -EDEADLK; 713 } 714 715 break; 716 } 717 718 pos = &cur->list; 719 720 /* 721 * Wake up the waiter so that it gets a chance to back 722 * off. 723 */ 724 if (cur->ww_ctx->acquired > 0) { 725 debug_mutex_wake_waiter(lock, cur); 726 wake_up_process(cur->task); 727 } 728 } 729 730 list_add_tail(&waiter->list, pos); 731 return 0; 732 } 733 734 /* 735 * Lock a mutex (possibly interruptible), slowpath: 736 */ 737 static __always_inline int __sched 738 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 739 struct lockdep_map *nest_lock, unsigned long ip, 740 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 741 { 742 struct mutex_waiter waiter; 743 bool first = false; 744 struct ww_mutex *ww; 745 int ret; 746 747 might_sleep(); 748 749 ww = container_of(lock, struct ww_mutex, base); 750 if (use_ww_ctx && ww_ctx) { 751 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 752 return -EALREADY; 753 } 754 755 preempt_disable(); 756 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 757 758 if (__mutex_trylock(lock) || 759 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) { 760 /* got the lock, yay! */ 761 lock_acquired(&lock->dep_map, ip); 762 if (use_ww_ctx && ww_ctx) 763 ww_mutex_set_context_fastpath(ww, ww_ctx); 764 preempt_enable(); 765 return 0; 766 } 767 768 spin_lock(&lock->wait_lock); 769 /* 770 * After waiting to acquire the wait_lock, try again. 771 */ 772 if (__mutex_trylock(lock)) { 773 if (use_ww_ctx && ww_ctx) 774 __ww_mutex_wakeup_for_backoff(lock, ww_ctx); 775 776 goto skip_wait; 777 } 778 779 debug_mutex_lock_common(lock, &waiter); 780 debug_mutex_add_waiter(lock, &waiter, current); 781 782 lock_contended(&lock->dep_map, ip); 783 784 if (!use_ww_ctx) { 785 /* add waiting tasks to the end of the waitqueue (FIFO): */ 786 list_add_tail(&waiter.list, &lock->wait_list); 787 788 #ifdef CONFIG_DEBUG_MUTEXES 789 waiter.ww_ctx = MUTEX_POISON_WW_CTX; 790 #endif 791 } else { 792 /* Add in stamp order, waking up waiters that must back off. */ 793 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 794 if (ret) 795 goto err_early_backoff; 796 797 waiter.ww_ctx = ww_ctx; 798 } 799 800 waiter.task = current; 801 802 if (__mutex_waiter_is_first(lock, &waiter)) 803 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 804 805 set_current_state(state); 806 for (;;) { 807 /* 808 * Once we hold wait_lock, we're serialized against 809 * mutex_unlock() handing the lock off to us, do a trylock 810 * before testing the error conditions to make sure we pick up 811 * the handoff. 812 */ 813 if (__mutex_trylock(lock)) 814 goto acquired; 815 816 /* 817 * Check for signals and wound conditions while holding 818 * wait_lock. This ensures the lock cancellation is ordered 819 * against mutex_unlock() and wake-ups do not go missing. 820 */ 821 if (unlikely(signal_pending_state(state, current))) { 822 ret = -EINTR; 823 goto err; 824 } 825 826 if (use_ww_ctx && ww_ctx && ww_ctx->acquired > 0) { 827 ret = __ww_mutex_lock_check_stamp(lock, &waiter, ww_ctx); 828 if (ret) 829 goto err; 830 } 831 832 spin_unlock(&lock->wait_lock); 833 schedule_preempt_disabled(); 834 835 /* 836 * ww_mutex needs to always recheck its position since its waiter 837 * list is not FIFO ordered. 838 */ 839 if ((use_ww_ctx && ww_ctx) || !first) { 840 first = __mutex_waiter_is_first(lock, &waiter); 841 if (first) 842 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF); 843 } 844 845 set_current_state(state); 846 /* 847 * Here we order against unlock; we must either see it change 848 * state back to RUNNING and fall through the next schedule(), 849 * or we must see its unlock and acquire. 850 */ 851 if (__mutex_trylock(lock) || 852 (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter))) 853 break; 854 855 spin_lock(&lock->wait_lock); 856 } 857 spin_lock(&lock->wait_lock); 858 acquired: 859 __set_current_state(TASK_RUNNING); 860 861 mutex_remove_waiter(lock, &waiter, current); 862 if (likely(list_empty(&lock->wait_list))) 863 __mutex_clear_flag(lock, MUTEX_FLAGS); 864 865 debug_mutex_free_waiter(&waiter); 866 867 skip_wait: 868 /* got the lock - cleanup and rejoice! */ 869 lock_acquired(&lock->dep_map, ip); 870 871 if (use_ww_ctx && ww_ctx) 872 ww_mutex_set_context_slowpath(ww, ww_ctx); 873 874 spin_unlock(&lock->wait_lock); 875 preempt_enable(); 876 return 0; 877 878 err: 879 __set_current_state(TASK_RUNNING); 880 mutex_remove_waiter(lock, &waiter, current); 881 err_early_backoff: 882 spin_unlock(&lock->wait_lock); 883 debug_mutex_free_waiter(&waiter); 884 mutex_release(&lock->dep_map, 1, ip); 885 preempt_enable(); 886 return ret; 887 } 888 889 static int __sched 890 __mutex_lock(struct mutex *lock, long state, unsigned int subclass, 891 struct lockdep_map *nest_lock, unsigned long ip) 892 { 893 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 894 } 895 896 static int __sched 897 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass, 898 struct lockdep_map *nest_lock, unsigned long ip, 899 struct ww_acquire_ctx *ww_ctx) 900 { 901 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true); 902 } 903 904 #ifdef CONFIG_DEBUG_LOCK_ALLOC 905 void __sched 906 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 907 { 908 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 909 } 910 911 EXPORT_SYMBOL_GPL(mutex_lock_nested); 912 913 void __sched 914 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 915 { 916 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 917 } 918 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 919 920 int __sched 921 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 922 { 923 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 924 } 925 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 926 927 int __sched 928 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 929 { 930 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 931 } 932 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 933 934 void __sched 935 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 936 { 937 int token; 938 939 might_sleep(); 940 941 token = io_schedule_prepare(); 942 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 943 subclass, NULL, _RET_IP_, NULL, 0); 944 io_schedule_finish(token); 945 } 946 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 947 948 static inline int 949 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 950 { 951 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 952 unsigned tmp; 953 954 if (ctx->deadlock_inject_countdown-- == 0) { 955 tmp = ctx->deadlock_inject_interval; 956 if (tmp > UINT_MAX/4) 957 tmp = UINT_MAX; 958 else 959 tmp = tmp*2 + tmp + tmp/2; 960 961 ctx->deadlock_inject_interval = tmp; 962 ctx->deadlock_inject_countdown = tmp; 963 ctx->contending_lock = lock; 964 965 ww_mutex_unlock(lock); 966 967 return -EDEADLK; 968 } 969 #endif 970 971 return 0; 972 } 973 974 int __sched 975 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 976 { 977 int ret; 978 979 might_sleep(); 980 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 981 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 982 ctx); 983 if (!ret && ctx && ctx->acquired > 1) 984 return ww_mutex_deadlock_injection(lock, ctx); 985 986 return ret; 987 } 988 EXPORT_SYMBOL_GPL(ww_mutex_lock); 989 990 int __sched 991 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 992 { 993 int ret; 994 995 might_sleep(); 996 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 997 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 998 ctx); 999 1000 if (!ret && ctx && ctx->acquired > 1) 1001 return ww_mutex_deadlock_injection(lock, ctx); 1002 1003 return ret; 1004 } 1005 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 1006 1007 #endif 1008 1009 /* 1010 * Release the lock, slowpath: 1011 */ 1012 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 1013 { 1014 struct task_struct *next = NULL; 1015 DEFINE_WAKE_Q(wake_q); 1016 unsigned long owner; 1017 1018 mutex_release(&lock->dep_map, 1, ip); 1019 1020 /* 1021 * Release the lock before (potentially) taking the spinlock such that 1022 * other contenders can get on with things ASAP. 1023 * 1024 * Except when HANDOFF, in that case we must not clear the owner field, 1025 * but instead set it to the top waiter. 1026 */ 1027 owner = atomic_long_read(&lock->owner); 1028 for (;;) { 1029 unsigned long old; 1030 1031 #ifdef CONFIG_DEBUG_MUTEXES 1032 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 1033 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); 1034 #endif 1035 1036 if (owner & MUTEX_FLAG_HANDOFF) 1037 break; 1038 1039 old = atomic_long_cmpxchg_release(&lock->owner, owner, 1040 __owner_flags(owner)); 1041 if (old == owner) { 1042 if (owner & MUTEX_FLAG_WAITERS) 1043 break; 1044 1045 return; 1046 } 1047 1048 owner = old; 1049 } 1050 1051 spin_lock(&lock->wait_lock); 1052 debug_mutex_unlock(lock); 1053 if (!list_empty(&lock->wait_list)) { 1054 /* get the first entry from the wait-list: */ 1055 struct mutex_waiter *waiter = 1056 list_first_entry(&lock->wait_list, 1057 struct mutex_waiter, list); 1058 1059 next = waiter->task; 1060 1061 debug_mutex_wake_waiter(lock, waiter); 1062 wake_q_add(&wake_q, next); 1063 } 1064 1065 if (owner & MUTEX_FLAG_HANDOFF) 1066 __mutex_handoff(lock, next); 1067 1068 spin_unlock(&lock->wait_lock); 1069 1070 wake_up_q(&wake_q); 1071 } 1072 1073 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1074 /* 1075 * Here come the less common (and hence less performance-critical) APIs: 1076 * mutex_lock_interruptible() and mutex_trylock(). 1077 */ 1078 static noinline int __sched 1079 __mutex_lock_killable_slowpath(struct mutex *lock); 1080 1081 static noinline int __sched 1082 __mutex_lock_interruptible_slowpath(struct mutex *lock); 1083 1084 /** 1085 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals. 1086 * @lock: The mutex to be acquired. 1087 * 1088 * Lock the mutex like mutex_lock(). If a signal is delivered while the 1089 * process is sleeping, this function will return without acquiring the 1090 * mutex. 1091 * 1092 * Context: Process context. 1093 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1094 * signal arrived. 1095 */ 1096 int __sched mutex_lock_interruptible(struct mutex *lock) 1097 { 1098 might_sleep(); 1099 1100 if (__mutex_trylock_fast(lock)) 1101 return 0; 1102 1103 return __mutex_lock_interruptible_slowpath(lock); 1104 } 1105 1106 EXPORT_SYMBOL(mutex_lock_interruptible); 1107 1108 /** 1109 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals. 1110 * @lock: The mutex to be acquired. 1111 * 1112 * Lock the mutex like mutex_lock(). If a signal which will be fatal to 1113 * the current process is delivered while the process is sleeping, this 1114 * function will return without acquiring the mutex. 1115 * 1116 * Context: Process context. 1117 * Return: 0 if the lock was successfully acquired or %-EINTR if a 1118 * fatal signal arrived. 1119 */ 1120 int __sched mutex_lock_killable(struct mutex *lock) 1121 { 1122 might_sleep(); 1123 1124 if (__mutex_trylock_fast(lock)) 1125 return 0; 1126 1127 return __mutex_lock_killable_slowpath(lock); 1128 } 1129 EXPORT_SYMBOL(mutex_lock_killable); 1130 1131 /** 1132 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O 1133 * @lock: The mutex to be acquired. 1134 * 1135 * Lock the mutex like mutex_lock(). While the task is waiting for this 1136 * mutex, it will be accounted as being in the IO wait state by the 1137 * scheduler. 1138 * 1139 * Context: Process context. 1140 */ 1141 void __sched mutex_lock_io(struct mutex *lock) 1142 { 1143 int token; 1144 1145 token = io_schedule_prepare(); 1146 mutex_lock(lock); 1147 io_schedule_finish(token); 1148 } 1149 EXPORT_SYMBOL_GPL(mutex_lock_io); 1150 1151 static noinline void __sched 1152 __mutex_lock_slowpath(struct mutex *lock) 1153 { 1154 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1155 } 1156 1157 static noinline int __sched 1158 __mutex_lock_killable_slowpath(struct mutex *lock) 1159 { 1160 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1161 } 1162 1163 static noinline int __sched 1164 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1165 { 1166 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1167 } 1168 1169 static noinline int __sched 1170 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1171 { 1172 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL, 1173 _RET_IP_, ctx); 1174 } 1175 1176 static noinline int __sched 1177 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1178 struct ww_acquire_ctx *ctx) 1179 { 1180 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL, 1181 _RET_IP_, ctx); 1182 } 1183 1184 #endif 1185 1186 /** 1187 * mutex_trylock - try to acquire the mutex, without waiting 1188 * @lock: the mutex to be acquired 1189 * 1190 * Try to acquire the mutex atomically. Returns 1 if the mutex 1191 * has been acquired successfully, and 0 on contention. 1192 * 1193 * NOTE: this function follows the spin_trylock() convention, so 1194 * it is negated from the down_trylock() return values! Be careful 1195 * about this when converting semaphore users to mutexes. 1196 * 1197 * This function must not be used in interrupt context. The 1198 * mutex must be released by the same task that acquired it. 1199 */ 1200 int __sched mutex_trylock(struct mutex *lock) 1201 { 1202 bool locked = __mutex_trylock(lock); 1203 1204 if (locked) 1205 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1206 1207 return locked; 1208 } 1209 EXPORT_SYMBOL(mutex_trylock); 1210 1211 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1212 int __sched 1213 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1214 { 1215 might_sleep(); 1216 1217 if (__mutex_trylock_fast(&lock->base)) { 1218 if (ctx) 1219 ww_mutex_set_context_fastpath(lock, ctx); 1220 return 0; 1221 } 1222 1223 return __ww_mutex_lock_slowpath(lock, ctx); 1224 } 1225 EXPORT_SYMBOL(ww_mutex_lock); 1226 1227 int __sched 1228 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1229 { 1230 might_sleep(); 1231 1232 if (__mutex_trylock_fast(&lock->base)) { 1233 if (ctx) 1234 ww_mutex_set_context_fastpath(lock, ctx); 1235 return 0; 1236 } 1237 1238 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1239 } 1240 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1241 1242 #endif 1243 1244 /** 1245 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1246 * @cnt: the atomic which we are to dec 1247 * @lock: the mutex to return holding if we dec to 0 1248 * 1249 * return true and hold lock if we dec to 0, return false otherwise 1250 */ 1251 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1252 { 1253 /* dec if we can't possibly hit 0 */ 1254 if (atomic_add_unless(cnt, -1, 1)) 1255 return 0; 1256 /* we might hit 0, so take the lock */ 1257 mutex_lock(lock); 1258 if (!atomic_dec_and_test(cnt)) { 1259 /* when we actually did the dec, we didn't hit 0 */ 1260 mutex_unlock(lock); 1261 return 0; 1262 } 1263 /* we hit 0, and we hold the lock */ 1264 return 1; 1265 } 1266 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1267