1 /* 2 * kernel/locking/mutex.c 3 * 4 * Mutexes: blocking mutual exclusion locks 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * 10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and 11 * David Howells for suggestions and improvements. 12 * 13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline 14 * from the -rt tree, where it was originally implemented for rtmutexes 15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale 16 * and Sven Dietrich. 17 * 18 * Also see Documentation/locking/mutex-design.txt. 19 */ 20 #include <linux/mutex.h> 21 #include <linux/ww_mutex.h> 22 #include <linux/sched/signal.h> 23 #include <linux/sched/rt.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/export.h> 26 #include <linux/spinlock.h> 27 #include <linux/interrupt.h> 28 #include <linux/debug_locks.h> 29 #include <linux/osq_lock.h> 30 31 #ifdef CONFIG_DEBUG_MUTEXES 32 # include "mutex-debug.h" 33 #else 34 # include "mutex.h" 35 #endif 36 37 void 38 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) 39 { 40 atomic_long_set(&lock->owner, 0); 41 spin_lock_init(&lock->wait_lock); 42 INIT_LIST_HEAD(&lock->wait_list); 43 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 44 osq_lock_init(&lock->osq); 45 #endif 46 47 debug_mutex_init(lock, name, key); 48 } 49 EXPORT_SYMBOL(__mutex_init); 50 51 /* 52 * @owner: contains: 'struct task_struct *' to the current lock owner, 53 * NULL means not owned. Since task_struct pointers are aligned at 54 * at least L1_CACHE_BYTES, we have low bits to store extra state. 55 * 56 * Bit0 indicates a non-empty waiter list; unlock must issue a wakeup. 57 * Bit1 indicates unlock needs to hand the lock to the top-waiter 58 * Bit2 indicates handoff has been done and we're waiting for pickup. 59 */ 60 #define MUTEX_FLAG_WAITERS 0x01 61 #define MUTEX_FLAG_HANDOFF 0x02 62 #define MUTEX_FLAG_PICKUP 0x04 63 64 #define MUTEX_FLAGS 0x07 65 66 static inline struct task_struct *__owner_task(unsigned long owner) 67 { 68 return (struct task_struct *)(owner & ~MUTEX_FLAGS); 69 } 70 71 static inline unsigned long __owner_flags(unsigned long owner) 72 { 73 return owner & MUTEX_FLAGS; 74 } 75 76 /* 77 * Trylock variant that retuns the owning task on failure. 78 */ 79 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock) 80 { 81 unsigned long owner, curr = (unsigned long)current; 82 83 owner = atomic_long_read(&lock->owner); 84 for (;;) { /* must loop, can race against a flag */ 85 unsigned long old, flags = __owner_flags(owner); 86 unsigned long task = owner & ~MUTEX_FLAGS; 87 88 if (task) { 89 if (likely(task != curr)) 90 break; 91 92 if (likely(!(flags & MUTEX_FLAG_PICKUP))) 93 break; 94 95 flags &= ~MUTEX_FLAG_PICKUP; 96 } else { 97 #ifdef CONFIG_DEBUG_MUTEXES 98 DEBUG_LOCKS_WARN_ON(flags & MUTEX_FLAG_PICKUP); 99 #endif 100 } 101 102 /* 103 * We set the HANDOFF bit, we must make sure it doesn't live 104 * past the point where we acquire it. This would be possible 105 * if we (accidentally) set the bit on an unlocked mutex. 106 */ 107 flags &= ~MUTEX_FLAG_HANDOFF; 108 109 old = atomic_long_cmpxchg_acquire(&lock->owner, owner, curr | flags); 110 if (old == owner) 111 return NULL; 112 113 owner = old; 114 } 115 116 return __owner_task(owner); 117 } 118 119 /* 120 * Actual trylock that will work on any unlocked state. 121 */ 122 static inline bool __mutex_trylock(struct mutex *lock) 123 { 124 return !__mutex_trylock_or_owner(lock); 125 } 126 127 #ifndef CONFIG_DEBUG_LOCK_ALLOC 128 /* 129 * Lockdep annotations are contained to the slow paths for simplicity. 130 * There is nothing that would stop spreading the lockdep annotations outwards 131 * except more code. 132 */ 133 134 /* 135 * Optimistic trylock that only works in the uncontended case. Make sure to 136 * follow with a __mutex_trylock() before failing. 137 */ 138 static __always_inline bool __mutex_trylock_fast(struct mutex *lock) 139 { 140 unsigned long curr = (unsigned long)current; 141 142 if (!atomic_long_cmpxchg_acquire(&lock->owner, 0UL, curr)) 143 return true; 144 145 return false; 146 } 147 148 static __always_inline bool __mutex_unlock_fast(struct mutex *lock) 149 { 150 unsigned long curr = (unsigned long)current; 151 152 if (atomic_long_cmpxchg_release(&lock->owner, curr, 0UL) == curr) 153 return true; 154 155 return false; 156 } 157 #endif 158 159 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag) 160 { 161 atomic_long_or(flag, &lock->owner); 162 } 163 164 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag) 165 { 166 atomic_long_andnot(flag, &lock->owner); 167 } 168 169 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter) 170 { 171 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter; 172 } 173 174 /* 175 * Give up ownership to a specific task, when @task = NULL, this is equivalent 176 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOF, preserves 177 * WAITERS. Provides RELEASE semantics like a regular unlock, the 178 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff. 179 */ 180 static void __mutex_handoff(struct mutex *lock, struct task_struct *task) 181 { 182 unsigned long owner = atomic_long_read(&lock->owner); 183 184 for (;;) { 185 unsigned long old, new; 186 187 #ifdef CONFIG_DEBUG_MUTEXES 188 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 189 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); 190 #endif 191 192 new = (owner & MUTEX_FLAG_WAITERS); 193 new |= (unsigned long)task; 194 if (task) 195 new |= MUTEX_FLAG_PICKUP; 196 197 old = atomic_long_cmpxchg_release(&lock->owner, owner, new); 198 if (old == owner) 199 break; 200 201 owner = old; 202 } 203 } 204 205 #ifndef CONFIG_DEBUG_LOCK_ALLOC 206 /* 207 * We split the mutex lock/unlock logic into separate fastpath and 208 * slowpath functions, to reduce the register pressure on the fastpath. 209 * We also put the fastpath first in the kernel image, to make sure the 210 * branch is predicted by the CPU as default-untaken. 211 */ 212 static void __sched __mutex_lock_slowpath(struct mutex *lock); 213 214 /** 215 * mutex_lock - acquire the mutex 216 * @lock: the mutex to be acquired 217 * 218 * Lock the mutex exclusively for this task. If the mutex is not 219 * available right now, it will sleep until it can get it. 220 * 221 * The mutex must later on be released by the same task that 222 * acquired it. Recursive locking is not allowed. The task 223 * may not exit without first unlocking the mutex. Also, kernel 224 * memory where the mutex resides must not be freed with 225 * the mutex still locked. The mutex must first be initialized 226 * (or statically defined) before it can be locked. memset()-ing 227 * the mutex to 0 is not allowed. 228 * 229 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging 230 * checks that will enforce the restrictions and will also do 231 * deadlock debugging. ) 232 * 233 * This function is similar to (but not equivalent to) down(). 234 */ 235 void __sched mutex_lock(struct mutex *lock) 236 { 237 might_sleep(); 238 239 if (!__mutex_trylock_fast(lock)) 240 __mutex_lock_slowpath(lock); 241 } 242 EXPORT_SYMBOL(mutex_lock); 243 #endif 244 245 static __always_inline void 246 ww_mutex_lock_acquired(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx) 247 { 248 #ifdef CONFIG_DEBUG_MUTEXES 249 /* 250 * If this WARN_ON triggers, you used ww_mutex_lock to acquire, 251 * but released with a normal mutex_unlock in this call. 252 * 253 * This should never happen, always use ww_mutex_unlock. 254 */ 255 DEBUG_LOCKS_WARN_ON(ww->ctx); 256 257 /* 258 * Not quite done after calling ww_acquire_done() ? 259 */ 260 DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire); 261 262 if (ww_ctx->contending_lock) { 263 /* 264 * After -EDEADLK you tried to 265 * acquire a different ww_mutex? Bad! 266 */ 267 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww); 268 269 /* 270 * You called ww_mutex_lock after receiving -EDEADLK, 271 * but 'forgot' to unlock everything else first? 272 */ 273 DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0); 274 ww_ctx->contending_lock = NULL; 275 } 276 277 /* 278 * Naughty, using a different class will lead to undefined behavior! 279 */ 280 DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class); 281 #endif 282 ww_ctx->acquired++; 283 } 284 285 static inline bool __sched 286 __ww_ctx_stamp_after(struct ww_acquire_ctx *a, struct ww_acquire_ctx *b) 287 { 288 return a->stamp - b->stamp <= LONG_MAX && 289 (a->stamp != b->stamp || a > b); 290 } 291 292 /* 293 * Wake up any waiters that may have to back off when the lock is held by the 294 * given context. 295 * 296 * Due to the invariants on the wait list, this can only affect the first 297 * waiter with a context. 298 * 299 * The current task must not be on the wait list. 300 */ 301 static void __sched 302 __ww_mutex_wakeup_for_backoff(struct mutex *lock, struct ww_acquire_ctx *ww_ctx) 303 { 304 struct mutex_waiter *cur; 305 306 lockdep_assert_held(&lock->wait_lock); 307 308 list_for_each_entry(cur, &lock->wait_list, list) { 309 if (!cur->ww_ctx) 310 continue; 311 312 if (cur->ww_ctx->acquired > 0 && 313 __ww_ctx_stamp_after(cur->ww_ctx, ww_ctx)) { 314 debug_mutex_wake_waiter(lock, cur); 315 wake_up_process(cur->task); 316 } 317 318 break; 319 } 320 } 321 322 /* 323 * After acquiring lock with fastpath or when we lost out in contested 324 * slowpath, set ctx and wake up any waiters so they can recheck. 325 */ 326 static __always_inline void 327 ww_mutex_set_context_fastpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 328 { 329 ww_mutex_lock_acquired(lock, ctx); 330 331 lock->ctx = ctx; 332 333 /* 334 * The lock->ctx update should be visible on all cores before 335 * the atomic read is done, otherwise contended waiters might be 336 * missed. The contended waiters will either see ww_ctx == NULL 337 * and keep spinning, or it will acquire wait_lock, add itself 338 * to waiter list and sleep. 339 */ 340 smp_mb(); /* ^^^ */ 341 342 /* 343 * Check if lock is contended, if not there is nobody to wake up 344 */ 345 if (likely(!(atomic_long_read(&lock->base.owner) & MUTEX_FLAG_WAITERS))) 346 return; 347 348 /* 349 * Uh oh, we raced in fastpath, wake up everyone in this case, 350 * so they can see the new lock->ctx. 351 */ 352 spin_lock(&lock->base.wait_lock); 353 __ww_mutex_wakeup_for_backoff(&lock->base, ctx); 354 spin_unlock(&lock->base.wait_lock); 355 } 356 357 /* 358 * After acquiring lock in the slowpath set ctx. 359 * 360 * Unlike for the fast path, the caller ensures that waiters are woken up where 361 * necessary. 362 * 363 * Callers must hold the mutex wait_lock. 364 */ 365 static __always_inline void 366 ww_mutex_set_context_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 367 { 368 ww_mutex_lock_acquired(lock, ctx); 369 lock->ctx = ctx; 370 } 371 372 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER 373 374 static inline 375 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 376 struct mutex_waiter *waiter) 377 { 378 struct ww_mutex *ww; 379 380 ww = container_of(lock, struct ww_mutex, base); 381 382 /* 383 * If ww->ctx is set the contents are undefined, only 384 * by acquiring wait_lock there is a guarantee that 385 * they are not invalid when reading. 386 * 387 * As such, when deadlock detection needs to be 388 * performed the optimistic spinning cannot be done. 389 * 390 * Check this in every inner iteration because we may 391 * be racing against another thread's ww_mutex_lock. 392 */ 393 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx)) 394 return false; 395 396 /* 397 * If we aren't on the wait list yet, cancel the spin 398 * if there are waiters. We want to avoid stealing the 399 * lock from a waiter with an earlier stamp, since the 400 * other thread may already own a lock that we also 401 * need. 402 */ 403 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS)) 404 return false; 405 406 /* 407 * Similarly, stop spinning if we are no longer the 408 * first waiter. 409 */ 410 if (waiter && !__mutex_waiter_is_first(lock, waiter)) 411 return false; 412 413 return true; 414 } 415 416 /* 417 * Look out! "owner" is an entirely speculative pointer access and not 418 * reliable. 419 * 420 * "noinline" so that this function shows up on perf profiles. 421 */ 422 static noinline 423 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner, 424 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter) 425 { 426 bool ret = true; 427 428 rcu_read_lock(); 429 while (__mutex_owner(lock) == owner) { 430 /* 431 * Ensure we emit the owner->on_cpu, dereference _after_ 432 * checking lock->owner still matches owner. If that fails, 433 * owner might point to freed memory. If it still matches, 434 * the rcu_read_lock() ensures the memory stays valid. 435 */ 436 barrier(); 437 438 /* 439 * Use vcpu_is_preempted to detect lock holder preemption issue. 440 */ 441 if (!owner->on_cpu || need_resched() || 442 vcpu_is_preempted(task_cpu(owner))) { 443 ret = false; 444 break; 445 } 446 447 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) { 448 ret = false; 449 break; 450 } 451 452 cpu_relax(); 453 } 454 rcu_read_unlock(); 455 456 return ret; 457 } 458 459 /* 460 * Initial check for entering the mutex spinning loop 461 */ 462 static inline int mutex_can_spin_on_owner(struct mutex *lock) 463 { 464 struct task_struct *owner; 465 int retval = 1; 466 467 if (need_resched()) 468 return 0; 469 470 rcu_read_lock(); 471 owner = __mutex_owner(lock); 472 473 /* 474 * As lock holder preemption issue, we both skip spinning if task is not 475 * on cpu or its cpu is preempted 476 */ 477 if (owner) 478 retval = owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 479 rcu_read_unlock(); 480 481 /* 482 * If lock->owner is not set, the mutex has been released. Return true 483 * such that we'll trylock in the spin path, which is a faster option 484 * than the blocking slow path. 485 */ 486 return retval; 487 } 488 489 /* 490 * Optimistic spinning. 491 * 492 * We try to spin for acquisition when we find that the lock owner 493 * is currently running on a (different) CPU and while we don't 494 * need to reschedule. The rationale is that if the lock owner is 495 * running, it is likely to release the lock soon. 496 * 497 * The mutex spinners are queued up using MCS lock so that only one 498 * spinner can compete for the mutex. However, if mutex spinning isn't 499 * going to happen, there is no point in going through the lock/unlock 500 * overhead. 501 * 502 * Returns true when the lock was taken, otherwise false, indicating 503 * that we need to jump to the slowpath and sleep. 504 * 505 * The waiter flag is set to true if the spinner is a waiter in the wait 506 * queue. The waiter-spinner will spin on the lock directly and concurrently 507 * with the spinner at the head of the OSQ, if present, until the owner is 508 * changed to itself. 509 */ 510 static __always_inline bool 511 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 512 const bool use_ww_ctx, struct mutex_waiter *waiter) 513 { 514 if (!waiter) { 515 /* 516 * The purpose of the mutex_can_spin_on_owner() function is 517 * to eliminate the overhead of osq_lock() and osq_unlock() 518 * in case spinning isn't possible. As a waiter-spinner 519 * is not going to take OSQ lock anyway, there is no need 520 * to call mutex_can_spin_on_owner(). 521 */ 522 if (!mutex_can_spin_on_owner(lock)) 523 goto fail; 524 525 /* 526 * In order to avoid a stampede of mutex spinners trying to 527 * acquire the mutex all at once, the spinners need to take a 528 * MCS (queued) lock first before spinning on the owner field. 529 */ 530 if (!osq_lock(&lock->osq)) 531 goto fail; 532 } 533 534 for (;;) { 535 struct task_struct *owner; 536 537 /* Try to acquire the mutex... */ 538 owner = __mutex_trylock_or_owner(lock); 539 if (!owner) 540 break; 541 542 /* 543 * There's an owner, wait for it to either 544 * release the lock or go to sleep. 545 */ 546 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter)) 547 goto fail_unlock; 548 549 /* 550 * The cpu_relax() call is a compiler barrier which forces 551 * everything in this loop to be re-loaded. We don't need 552 * memory barriers as we'll eventually observe the right 553 * values at the cost of a few extra spins. 554 */ 555 cpu_relax(); 556 } 557 558 if (!waiter) 559 osq_unlock(&lock->osq); 560 561 return true; 562 563 564 fail_unlock: 565 if (!waiter) 566 osq_unlock(&lock->osq); 567 568 fail: 569 /* 570 * If we fell out of the spin path because of need_resched(), 571 * reschedule now, before we try-lock the mutex. This avoids getting 572 * scheduled out right after we obtained the mutex. 573 */ 574 if (need_resched()) { 575 /* 576 * We _should_ have TASK_RUNNING here, but just in case 577 * we do not, make it so, otherwise we might get stuck. 578 */ 579 __set_current_state(TASK_RUNNING); 580 schedule_preempt_disabled(); 581 } 582 583 return false; 584 } 585 #else 586 static __always_inline bool 587 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx, 588 const bool use_ww_ctx, struct mutex_waiter *waiter) 589 { 590 return false; 591 } 592 #endif 593 594 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip); 595 596 /** 597 * mutex_unlock - release the mutex 598 * @lock: the mutex to be released 599 * 600 * Unlock a mutex that has been locked by this task previously. 601 * 602 * This function must not be used in interrupt context. Unlocking 603 * of a not locked mutex is not allowed. 604 * 605 * This function is similar to (but not equivalent to) up(). 606 */ 607 void __sched mutex_unlock(struct mutex *lock) 608 { 609 #ifndef CONFIG_DEBUG_LOCK_ALLOC 610 if (__mutex_unlock_fast(lock)) 611 return; 612 #endif 613 __mutex_unlock_slowpath(lock, _RET_IP_); 614 } 615 EXPORT_SYMBOL(mutex_unlock); 616 617 /** 618 * ww_mutex_unlock - release the w/w mutex 619 * @lock: the mutex to be released 620 * 621 * Unlock a mutex that has been locked by this task previously with any of the 622 * ww_mutex_lock* functions (with or without an acquire context). It is 623 * forbidden to release the locks after releasing the acquire context. 624 * 625 * This function must not be used in interrupt context. Unlocking 626 * of a unlocked mutex is not allowed. 627 */ 628 void __sched ww_mutex_unlock(struct ww_mutex *lock) 629 { 630 /* 631 * The unlocking fastpath is the 0->1 transition from 'locked' 632 * into 'unlocked' state: 633 */ 634 if (lock->ctx) { 635 #ifdef CONFIG_DEBUG_MUTEXES 636 DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired); 637 #endif 638 if (lock->ctx->acquired > 0) 639 lock->ctx->acquired--; 640 lock->ctx = NULL; 641 } 642 643 mutex_unlock(&lock->base); 644 } 645 EXPORT_SYMBOL(ww_mutex_unlock); 646 647 static inline int __sched 648 __ww_mutex_lock_check_stamp(struct mutex *lock, struct mutex_waiter *waiter, 649 struct ww_acquire_ctx *ctx) 650 { 651 struct ww_mutex *ww = container_of(lock, struct ww_mutex, base); 652 struct ww_acquire_ctx *hold_ctx = READ_ONCE(ww->ctx); 653 struct mutex_waiter *cur; 654 655 if (hold_ctx && __ww_ctx_stamp_after(ctx, hold_ctx)) 656 goto deadlock; 657 658 /* 659 * If there is a waiter in front of us that has a context, then its 660 * stamp is earlier than ours and we must back off. 661 */ 662 cur = waiter; 663 list_for_each_entry_continue_reverse(cur, &lock->wait_list, list) { 664 if (cur->ww_ctx) 665 goto deadlock; 666 } 667 668 return 0; 669 670 deadlock: 671 #ifdef CONFIG_DEBUG_MUTEXES 672 DEBUG_LOCKS_WARN_ON(ctx->contending_lock); 673 ctx->contending_lock = ww; 674 #endif 675 return -EDEADLK; 676 } 677 678 static inline int __sched 679 __ww_mutex_add_waiter(struct mutex_waiter *waiter, 680 struct mutex *lock, 681 struct ww_acquire_ctx *ww_ctx) 682 { 683 struct mutex_waiter *cur; 684 struct list_head *pos; 685 686 if (!ww_ctx) { 687 list_add_tail(&waiter->list, &lock->wait_list); 688 return 0; 689 } 690 691 /* 692 * Add the waiter before the first waiter with a higher stamp. 693 * Waiters without a context are skipped to avoid starving 694 * them. 695 */ 696 pos = &lock->wait_list; 697 list_for_each_entry_reverse(cur, &lock->wait_list, list) { 698 if (!cur->ww_ctx) 699 continue; 700 701 if (__ww_ctx_stamp_after(ww_ctx, cur->ww_ctx)) { 702 /* Back off immediately if necessary. */ 703 if (ww_ctx->acquired > 0) { 704 #ifdef CONFIG_DEBUG_MUTEXES 705 struct ww_mutex *ww; 706 707 ww = container_of(lock, struct ww_mutex, base); 708 DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock); 709 ww_ctx->contending_lock = ww; 710 #endif 711 return -EDEADLK; 712 } 713 714 break; 715 } 716 717 pos = &cur->list; 718 719 /* 720 * Wake up the waiter so that it gets a chance to back 721 * off. 722 */ 723 if (cur->ww_ctx->acquired > 0) { 724 debug_mutex_wake_waiter(lock, cur); 725 wake_up_process(cur->task); 726 } 727 } 728 729 list_add_tail(&waiter->list, pos); 730 return 0; 731 } 732 733 /* 734 * Lock a mutex (possibly interruptible), slowpath: 735 */ 736 static __always_inline int __sched 737 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, 738 struct lockdep_map *nest_lock, unsigned long ip, 739 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx) 740 { 741 struct mutex_waiter waiter; 742 bool first = false; 743 struct ww_mutex *ww; 744 int ret; 745 746 might_sleep(); 747 748 ww = container_of(lock, struct ww_mutex, base); 749 if (use_ww_ctx && ww_ctx) { 750 if (unlikely(ww_ctx == READ_ONCE(ww->ctx))) 751 return -EALREADY; 752 } 753 754 preempt_disable(); 755 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip); 756 757 if (__mutex_trylock(lock) || 758 mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, NULL)) { 759 /* got the lock, yay! */ 760 lock_acquired(&lock->dep_map, ip); 761 if (use_ww_ctx && ww_ctx) 762 ww_mutex_set_context_fastpath(ww, ww_ctx); 763 preempt_enable(); 764 return 0; 765 } 766 767 spin_lock(&lock->wait_lock); 768 /* 769 * After waiting to acquire the wait_lock, try again. 770 */ 771 if (__mutex_trylock(lock)) { 772 if (use_ww_ctx && ww_ctx) 773 __ww_mutex_wakeup_for_backoff(lock, ww_ctx); 774 775 goto skip_wait; 776 } 777 778 debug_mutex_lock_common(lock, &waiter); 779 debug_mutex_add_waiter(lock, &waiter, current); 780 781 lock_contended(&lock->dep_map, ip); 782 783 if (!use_ww_ctx) { 784 /* add waiting tasks to the end of the waitqueue (FIFO): */ 785 list_add_tail(&waiter.list, &lock->wait_list); 786 787 #ifdef CONFIG_DEBUG_MUTEXES 788 waiter.ww_ctx = MUTEX_POISON_WW_CTX; 789 #endif 790 } else { 791 /* Add in stamp order, waking up waiters that must back off. */ 792 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx); 793 if (ret) 794 goto err_early_backoff; 795 796 waiter.ww_ctx = ww_ctx; 797 } 798 799 waiter.task = current; 800 801 if (__mutex_waiter_is_first(lock, &waiter)) 802 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS); 803 804 set_current_state(state); 805 for (;;) { 806 /* 807 * Once we hold wait_lock, we're serialized against 808 * mutex_unlock() handing the lock off to us, do a trylock 809 * before testing the error conditions to make sure we pick up 810 * the handoff. 811 */ 812 if (__mutex_trylock(lock)) 813 goto acquired; 814 815 /* 816 * Check for signals and wound conditions while holding 817 * wait_lock. This ensures the lock cancellation is ordered 818 * against mutex_unlock() and wake-ups do not go missing. 819 */ 820 if (unlikely(signal_pending_state(state, current))) { 821 ret = -EINTR; 822 goto err; 823 } 824 825 if (use_ww_ctx && ww_ctx && ww_ctx->acquired > 0) { 826 ret = __ww_mutex_lock_check_stamp(lock, &waiter, ww_ctx); 827 if (ret) 828 goto err; 829 } 830 831 spin_unlock(&lock->wait_lock); 832 schedule_preempt_disabled(); 833 834 /* 835 * ww_mutex needs to always recheck its position since its waiter 836 * list is not FIFO ordered. 837 */ 838 if ((use_ww_ctx && ww_ctx) || !first) { 839 first = __mutex_waiter_is_first(lock, &waiter); 840 if (first) 841 __mutex_set_flag(lock, MUTEX_FLAG_HANDOFF); 842 } 843 844 set_current_state(state); 845 /* 846 * Here we order against unlock; we must either see it change 847 * state back to RUNNING and fall through the next schedule(), 848 * or we must see its unlock and acquire. 849 */ 850 if (__mutex_trylock(lock) || 851 (first && mutex_optimistic_spin(lock, ww_ctx, use_ww_ctx, &waiter))) 852 break; 853 854 spin_lock(&lock->wait_lock); 855 } 856 spin_lock(&lock->wait_lock); 857 acquired: 858 __set_current_state(TASK_RUNNING); 859 860 mutex_remove_waiter(lock, &waiter, current); 861 if (likely(list_empty(&lock->wait_list))) 862 __mutex_clear_flag(lock, MUTEX_FLAGS); 863 864 debug_mutex_free_waiter(&waiter); 865 866 skip_wait: 867 /* got the lock - cleanup and rejoice! */ 868 lock_acquired(&lock->dep_map, ip); 869 870 if (use_ww_ctx && ww_ctx) 871 ww_mutex_set_context_slowpath(ww, ww_ctx); 872 873 spin_unlock(&lock->wait_lock); 874 preempt_enable(); 875 return 0; 876 877 err: 878 __set_current_state(TASK_RUNNING); 879 mutex_remove_waiter(lock, &waiter, current); 880 err_early_backoff: 881 spin_unlock(&lock->wait_lock); 882 debug_mutex_free_waiter(&waiter); 883 mutex_release(&lock->dep_map, 1, ip); 884 preempt_enable(); 885 return ret; 886 } 887 888 static int __sched 889 __mutex_lock(struct mutex *lock, long state, unsigned int subclass, 890 struct lockdep_map *nest_lock, unsigned long ip) 891 { 892 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false); 893 } 894 895 static int __sched 896 __ww_mutex_lock(struct mutex *lock, long state, unsigned int subclass, 897 struct lockdep_map *nest_lock, unsigned long ip, 898 struct ww_acquire_ctx *ww_ctx) 899 { 900 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, ww_ctx, true); 901 } 902 903 #ifdef CONFIG_DEBUG_LOCK_ALLOC 904 void __sched 905 mutex_lock_nested(struct mutex *lock, unsigned int subclass) 906 { 907 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_); 908 } 909 910 EXPORT_SYMBOL_GPL(mutex_lock_nested); 911 912 void __sched 913 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest) 914 { 915 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_); 916 } 917 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock); 918 919 int __sched 920 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) 921 { 922 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_); 923 } 924 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); 925 926 int __sched 927 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) 928 { 929 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_); 930 } 931 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); 932 933 void __sched 934 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass) 935 { 936 int token; 937 938 might_sleep(); 939 940 token = io_schedule_prepare(); 941 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 942 subclass, NULL, _RET_IP_, NULL, 0); 943 io_schedule_finish(token); 944 } 945 EXPORT_SYMBOL_GPL(mutex_lock_io_nested); 946 947 static inline int 948 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 949 { 950 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH 951 unsigned tmp; 952 953 if (ctx->deadlock_inject_countdown-- == 0) { 954 tmp = ctx->deadlock_inject_interval; 955 if (tmp > UINT_MAX/4) 956 tmp = UINT_MAX; 957 else 958 tmp = tmp*2 + tmp + tmp/2; 959 960 ctx->deadlock_inject_interval = tmp; 961 ctx->deadlock_inject_countdown = tmp; 962 ctx->contending_lock = lock; 963 964 ww_mutex_unlock(lock); 965 966 return -EDEADLK; 967 } 968 #endif 969 970 return 0; 971 } 972 973 int __sched 974 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 975 { 976 int ret; 977 978 might_sleep(); 979 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 980 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 981 ctx); 982 if (!ret && ctx && ctx->acquired > 1) 983 return ww_mutex_deadlock_injection(lock, ctx); 984 985 return ret; 986 } 987 EXPORT_SYMBOL_GPL(ww_mutex_lock); 988 989 int __sched 990 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 991 { 992 int ret; 993 994 might_sleep(); 995 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 996 0, ctx ? &ctx->dep_map : NULL, _RET_IP_, 997 ctx); 998 999 if (!ret && ctx && ctx->acquired > 1) 1000 return ww_mutex_deadlock_injection(lock, ctx); 1001 1002 return ret; 1003 } 1004 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible); 1005 1006 #endif 1007 1008 /* 1009 * Release the lock, slowpath: 1010 */ 1011 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip) 1012 { 1013 struct task_struct *next = NULL; 1014 DEFINE_WAKE_Q(wake_q); 1015 unsigned long owner; 1016 1017 mutex_release(&lock->dep_map, 1, ip); 1018 1019 /* 1020 * Release the lock before (potentially) taking the spinlock such that 1021 * other contenders can get on with things ASAP. 1022 * 1023 * Except when HANDOFF, in that case we must not clear the owner field, 1024 * but instead set it to the top waiter. 1025 */ 1026 owner = atomic_long_read(&lock->owner); 1027 for (;;) { 1028 unsigned long old; 1029 1030 #ifdef CONFIG_DEBUG_MUTEXES 1031 DEBUG_LOCKS_WARN_ON(__owner_task(owner) != current); 1032 DEBUG_LOCKS_WARN_ON(owner & MUTEX_FLAG_PICKUP); 1033 #endif 1034 1035 if (owner & MUTEX_FLAG_HANDOFF) 1036 break; 1037 1038 old = atomic_long_cmpxchg_release(&lock->owner, owner, 1039 __owner_flags(owner)); 1040 if (old == owner) { 1041 if (owner & MUTEX_FLAG_WAITERS) 1042 break; 1043 1044 return; 1045 } 1046 1047 owner = old; 1048 } 1049 1050 spin_lock(&lock->wait_lock); 1051 debug_mutex_unlock(lock); 1052 if (!list_empty(&lock->wait_list)) { 1053 /* get the first entry from the wait-list: */ 1054 struct mutex_waiter *waiter = 1055 list_first_entry(&lock->wait_list, 1056 struct mutex_waiter, list); 1057 1058 next = waiter->task; 1059 1060 debug_mutex_wake_waiter(lock, waiter); 1061 wake_q_add(&wake_q, next); 1062 } 1063 1064 if (owner & MUTEX_FLAG_HANDOFF) 1065 __mutex_handoff(lock, next); 1066 1067 spin_unlock(&lock->wait_lock); 1068 1069 wake_up_q(&wake_q); 1070 } 1071 1072 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1073 /* 1074 * Here come the less common (and hence less performance-critical) APIs: 1075 * mutex_lock_interruptible() and mutex_trylock(). 1076 */ 1077 static noinline int __sched 1078 __mutex_lock_killable_slowpath(struct mutex *lock); 1079 1080 static noinline int __sched 1081 __mutex_lock_interruptible_slowpath(struct mutex *lock); 1082 1083 /** 1084 * mutex_lock_interruptible - acquire the mutex, interruptible 1085 * @lock: the mutex to be acquired 1086 * 1087 * Lock the mutex like mutex_lock(), and return 0 if the mutex has 1088 * been acquired or sleep until the mutex becomes available. If a 1089 * signal arrives while waiting for the lock then this function 1090 * returns -EINTR. 1091 * 1092 * This function is similar to (but not equivalent to) down_interruptible(). 1093 */ 1094 int __sched mutex_lock_interruptible(struct mutex *lock) 1095 { 1096 might_sleep(); 1097 1098 if (__mutex_trylock_fast(lock)) 1099 return 0; 1100 1101 return __mutex_lock_interruptible_slowpath(lock); 1102 } 1103 1104 EXPORT_SYMBOL(mutex_lock_interruptible); 1105 1106 int __sched mutex_lock_killable(struct mutex *lock) 1107 { 1108 might_sleep(); 1109 1110 if (__mutex_trylock_fast(lock)) 1111 return 0; 1112 1113 return __mutex_lock_killable_slowpath(lock); 1114 } 1115 EXPORT_SYMBOL(mutex_lock_killable); 1116 1117 void __sched mutex_lock_io(struct mutex *lock) 1118 { 1119 int token; 1120 1121 token = io_schedule_prepare(); 1122 mutex_lock(lock); 1123 io_schedule_finish(token); 1124 } 1125 EXPORT_SYMBOL_GPL(mutex_lock_io); 1126 1127 static noinline void __sched 1128 __mutex_lock_slowpath(struct mutex *lock) 1129 { 1130 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_); 1131 } 1132 1133 static noinline int __sched 1134 __mutex_lock_killable_slowpath(struct mutex *lock) 1135 { 1136 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_); 1137 } 1138 1139 static noinline int __sched 1140 __mutex_lock_interruptible_slowpath(struct mutex *lock) 1141 { 1142 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_); 1143 } 1144 1145 static noinline int __sched 1146 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1147 { 1148 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0, NULL, 1149 _RET_IP_, ctx); 1150 } 1151 1152 static noinline int __sched 1153 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock, 1154 struct ww_acquire_ctx *ctx) 1155 { 1156 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0, NULL, 1157 _RET_IP_, ctx); 1158 } 1159 1160 #endif 1161 1162 /** 1163 * mutex_trylock - try to acquire the mutex, without waiting 1164 * @lock: the mutex to be acquired 1165 * 1166 * Try to acquire the mutex atomically. Returns 1 if the mutex 1167 * has been acquired successfully, and 0 on contention. 1168 * 1169 * NOTE: this function follows the spin_trylock() convention, so 1170 * it is negated from the down_trylock() return values! Be careful 1171 * about this when converting semaphore users to mutexes. 1172 * 1173 * This function must not be used in interrupt context. The 1174 * mutex must be released by the same task that acquired it. 1175 */ 1176 int __sched mutex_trylock(struct mutex *lock) 1177 { 1178 bool locked = __mutex_trylock(lock); 1179 1180 if (locked) 1181 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); 1182 1183 return locked; 1184 } 1185 EXPORT_SYMBOL(mutex_trylock); 1186 1187 #ifndef CONFIG_DEBUG_LOCK_ALLOC 1188 int __sched 1189 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1190 { 1191 might_sleep(); 1192 1193 if (__mutex_trylock_fast(&lock->base)) { 1194 if (ctx) 1195 ww_mutex_set_context_fastpath(lock, ctx); 1196 return 0; 1197 } 1198 1199 return __ww_mutex_lock_slowpath(lock, ctx); 1200 } 1201 EXPORT_SYMBOL(ww_mutex_lock); 1202 1203 int __sched 1204 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx) 1205 { 1206 might_sleep(); 1207 1208 if (__mutex_trylock_fast(&lock->base)) { 1209 if (ctx) 1210 ww_mutex_set_context_fastpath(lock, ctx); 1211 return 0; 1212 } 1213 1214 return __ww_mutex_lock_interruptible_slowpath(lock, ctx); 1215 } 1216 EXPORT_SYMBOL(ww_mutex_lock_interruptible); 1217 1218 #endif 1219 1220 /** 1221 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 1222 * @cnt: the atomic which we are to dec 1223 * @lock: the mutex to return holding if we dec to 0 1224 * 1225 * return true and hold lock if we dec to 0, return false otherwise 1226 */ 1227 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) 1228 { 1229 /* dec if we can't possibly hit 0 */ 1230 if (atomic_add_unless(cnt, -1, 1)) 1231 return 0; 1232 /* we might hit 0, so take the lock */ 1233 mutex_lock(lock); 1234 if (!atomic_dec_and_test(cnt)) { 1235 /* when we actually did the dec, we didn't hit 0 */ 1236 mutex_unlock(lock); 1237 return 0; 1238 } 1239 /* we hit 0, and we hold the lock */ 1240 return 1; 1241 } 1242 EXPORT_SYMBOL(atomic_dec_and_mutex_lock); 1243