xref: /openbmc/linux/kernel/locking/mutex.c (revision 12eb4683)
1 /*
2  * kernel/locking/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/ww_mutex.h>
22 #include <linux/sched.h>
23 #include <linux/sched/rt.h>
24 #include <linux/export.h>
25 #include <linux/spinlock.h>
26 #include <linux/interrupt.h>
27 #include <linux/debug_locks.h>
28 
29 /*
30  * In the DEBUG case we are using the "NULL fastpath" for mutexes,
31  * which forces all calls into the slowpath:
32  */
33 #ifdef CONFIG_DEBUG_MUTEXES
34 # include "mutex-debug.h"
35 # include <asm-generic/mutex-null.h>
36 #else
37 # include "mutex.h"
38 # include <asm/mutex.h>
39 #endif
40 
41 /*
42  * A negative mutex count indicates that waiters are sleeping waiting for the
43  * mutex.
44  */
45 #define	MUTEX_SHOW_NO_WAITER(mutex)	(atomic_read(&(mutex)->count) >= 0)
46 
47 void
48 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
49 {
50 	atomic_set(&lock->count, 1);
51 	spin_lock_init(&lock->wait_lock);
52 	INIT_LIST_HEAD(&lock->wait_list);
53 	mutex_clear_owner(lock);
54 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
55 	lock->spin_mlock = NULL;
56 #endif
57 
58 	debug_mutex_init(lock, name, key);
59 }
60 
61 EXPORT_SYMBOL(__mutex_init);
62 
63 #ifndef CONFIG_DEBUG_LOCK_ALLOC
64 /*
65  * We split the mutex lock/unlock logic into separate fastpath and
66  * slowpath functions, to reduce the register pressure on the fastpath.
67  * We also put the fastpath first in the kernel image, to make sure the
68  * branch is predicted by the CPU as default-untaken.
69  */
70 static __used noinline void __sched
71 __mutex_lock_slowpath(atomic_t *lock_count);
72 
73 /**
74  * mutex_lock - acquire the mutex
75  * @lock: the mutex to be acquired
76  *
77  * Lock the mutex exclusively for this task. If the mutex is not
78  * available right now, it will sleep until it can get it.
79  *
80  * The mutex must later on be released by the same task that
81  * acquired it. Recursive locking is not allowed. The task
82  * may not exit without first unlocking the mutex. Also, kernel
83  * memory where the mutex resides mutex must not be freed with
84  * the mutex still locked. The mutex must first be initialized
85  * (or statically defined) before it can be locked. memset()-ing
86  * the mutex to 0 is not allowed.
87  *
88  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
89  *   checks that will enforce the restrictions and will also do
90  *   deadlock debugging. )
91  *
92  * This function is similar to (but not equivalent to) down().
93  */
94 void __sched mutex_lock(struct mutex *lock)
95 {
96 	might_sleep();
97 	/*
98 	 * The locking fastpath is the 1->0 transition from
99 	 * 'unlocked' into 'locked' state.
100 	 */
101 	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
102 	mutex_set_owner(lock);
103 }
104 
105 EXPORT_SYMBOL(mutex_lock);
106 #endif
107 
108 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
109 /*
110  * In order to avoid a stampede of mutex spinners from acquiring the mutex
111  * more or less simultaneously, the spinners need to acquire a MCS lock
112  * first before spinning on the owner field.
113  *
114  * We don't inline mspin_lock() so that perf can correctly account for the
115  * time spent in this lock function.
116  */
117 struct mspin_node {
118 	struct mspin_node *next ;
119 	int		  locked;	/* 1 if lock acquired */
120 };
121 #define	MLOCK(mutex)	((struct mspin_node **)&((mutex)->spin_mlock))
122 
123 static noinline
124 void mspin_lock(struct mspin_node **lock, struct mspin_node *node)
125 {
126 	struct mspin_node *prev;
127 
128 	/* Init node */
129 	node->locked = 0;
130 	node->next   = NULL;
131 
132 	prev = xchg(lock, node);
133 	if (likely(prev == NULL)) {
134 		/* Lock acquired */
135 		node->locked = 1;
136 		return;
137 	}
138 	ACCESS_ONCE(prev->next) = node;
139 	smp_wmb();
140 	/* Wait until the lock holder passes the lock down */
141 	while (!ACCESS_ONCE(node->locked))
142 		arch_mutex_cpu_relax();
143 }
144 
145 static void mspin_unlock(struct mspin_node **lock, struct mspin_node *node)
146 {
147 	struct mspin_node *next = ACCESS_ONCE(node->next);
148 
149 	if (likely(!next)) {
150 		/*
151 		 * Release the lock by setting it to NULL
152 		 */
153 		if (cmpxchg(lock, node, NULL) == node)
154 			return;
155 		/* Wait until the next pointer is set */
156 		while (!(next = ACCESS_ONCE(node->next)))
157 			arch_mutex_cpu_relax();
158 	}
159 	ACCESS_ONCE(next->locked) = 1;
160 	smp_wmb();
161 }
162 
163 /*
164  * Mutex spinning code migrated from kernel/sched/core.c
165  */
166 
167 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
168 {
169 	if (lock->owner != owner)
170 		return false;
171 
172 	/*
173 	 * Ensure we emit the owner->on_cpu, dereference _after_ checking
174 	 * lock->owner still matches owner, if that fails, owner might
175 	 * point to free()d memory, if it still matches, the rcu_read_lock()
176 	 * ensures the memory stays valid.
177 	 */
178 	barrier();
179 
180 	return owner->on_cpu;
181 }
182 
183 /*
184  * Look out! "owner" is an entirely speculative pointer
185  * access and not reliable.
186  */
187 static noinline
188 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
189 {
190 	rcu_read_lock();
191 	while (owner_running(lock, owner)) {
192 		if (need_resched())
193 			break;
194 
195 		arch_mutex_cpu_relax();
196 	}
197 	rcu_read_unlock();
198 
199 	/*
200 	 * We break out the loop above on need_resched() and when the
201 	 * owner changed, which is a sign for heavy contention. Return
202 	 * success only when lock->owner is NULL.
203 	 */
204 	return lock->owner == NULL;
205 }
206 
207 /*
208  * Initial check for entering the mutex spinning loop
209  */
210 static inline int mutex_can_spin_on_owner(struct mutex *lock)
211 {
212 	struct task_struct *owner;
213 	int retval = 1;
214 
215 	rcu_read_lock();
216 	owner = ACCESS_ONCE(lock->owner);
217 	if (owner)
218 		retval = owner->on_cpu;
219 	rcu_read_unlock();
220 	/*
221 	 * if lock->owner is not set, the mutex owner may have just acquired
222 	 * it and not set the owner yet or the mutex has been released.
223 	 */
224 	return retval;
225 }
226 #endif
227 
228 static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
229 
230 /**
231  * mutex_unlock - release the mutex
232  * @lock: the mutex to be released
233  *
234  * Unlock a mutex that has been locked by this task previously.
235  *
236  * This function must not be used in interrupt context. Unlocking
237  * of a not locked mutex is not allowed.
238  *
239  * This function is similar to (but not equivalent to) up().
240  */
241 void __sched mutex_unlock(struct mutex *lock)
242 {
243 	/*
244 	 * The unlocking fastpath is the 0->1 transition from 'locked'
245 	 * into 'unlocked' state:
246 	 */
247 #ifndef CONFIG_DEBUG_MUTEXES
248 	/*
249 	 * When debugging is enabled we must not clear the owner before time,
250 	 * the slow path will always be taken, and that clears the owner field
251 	 * after verifying that it was indeed current.
252 	 */
253 	mutex_clear_owner(lock);
254 #endif
255 	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
256 }
257 
258 EXPORT_SYMBOL(mutex_unlock);
259 
260 /**
261  * ww_mutex_unlock - release the w/w mutex
262  * @lock: the mutex to be released
263  *
264  * Unlock a mutex that has been locked by this task previously with any of the
265  * ww_mutex_lock* functions (with or without an acquire context). It is
266  * forbidden to release the locks after releasing the acquire context.
267  *
268  * This function must not be used in interrupt context. Unlocking
269  * of a unlocked mutex is not allowed.
270  */
271 void __sched ww_mutex_unlock(struct ww_mutex *lock)
272 {
273 	/*
274 	 * The unlocking fastpath is the 0->1 transition from 'locked'
275 	 * into 'unlocked' state:
276 	 */
277 	if (lock->ctx) {
278 #ifdef CONFIG_DEBUG_MUTEXES
279 		DEBUG_LOCKS_WARN_ON(!lock->ctx->acquired);
280 #endif
281 		if (lock->ctx->acquired > 0)
282 			lock->ctx->acquired--;
283 		lock->ctx = NULL;
284 	}
285 
286 #ifndef CONFIG_DEBUG_MUTEXES
287 	/*
288 	 * When debugging is enabled we must not clear the owner before time,
289 	 * the slow path will always be taken, and that clears the owner field
290 	 * after verifying that it was indeed current.
291 	 */
292 	mutex_clear_owner(&lock->base);
293 #endif
294 	__mutex_fastpath_unlock(&lock->base.count, __mutex_unlock_slowpath);
295 }
296 EXPORT_SYMBOL(ww_mutex_unlock);
297 
298 static inline int __sched
299 __mutex_lock_check_stamp(struct mutex *lock, struct ww_acquire_ctx *ctx)
300 {
301 	struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
302 	struct ww_acquire_ctx *hold_ctx = ACCESS_ONCE(ww->ctx);
303 
304 	if (!hold_ctx)
305 		return 0;
306 
307 	if (unlikely(ctx == hold_ctx))
308 		return -EALREADY;
309 
310 	if (ctx->stamp - hold_ctx->stamp <= LONG_MAX &&
311 	    (ctx->stamp != hold_ctx->stamp || ctx > hold_ctx)) {
312 #ifdef CONFIG_DEBUG_MUTEXES
313 		DEBUG_LOCKS_WARN_ON(ctx->contending_lock);
314 		ctx->contending_lock = ww;
315 #endif
316 		return -EDEADLK;
317 	}
318 
319 	return 0;
320 }
321 
322 static __always_inline void ww_mutex_lock_acquired(struct ww_mutex *ww,
323 						   struct ww_acquire_ctx *ww_ctx)
324 {
325 #ifdef CONFIG_DEBUG_MUTEXES
326 	/*
327 	 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
328 	 * but released with a normal mutex_unlock in this call.
329 	 *
330 	 * This should never happen, always use ww_mutex_unlock.
331 	 */
332 	DEBUG_LOCKS_WARN_ON(ww->ctx);
333 
334 	/*
335 	 * Not quite done after calling ww_acquire_done() ?
336 	 */
337 	DEBUG_LOCKS_WARN_ON(ww_ctx->done_acquire);
338 
339 	if (ww_ctx->contending_lock) {
340 		/*
341 		 * After -EDEADLK you tried to
342 		 * acquire a different ww_mutex? Bad!
343 		 */
344 		DEBUG_LOCKS_WARN_ON(ww_ctx->contending_lock != ww);
345 
346 		/*
347 		 * You called ww_mutex_lock after receiving -EDEADLK,
348 		 * but 'forgot' to unlock everything else first?
349 		 */
350 		DEBUG_LOCKS_WARN_ON(ww_ctx->acquired > 0);
351 		ww_ctx->contending_lock = NULL;
352 	}
353 
354 	/*
355 	 * Naughty, using a different class will lead to undefined behavior!
356 	 */
357 	DEBUG_LOCKS_WARN_ON(ww_ctx->ww_class != ww->ww_class);
358 #endif
359 	ww_ctx->acquired++;
360 }
361 
362 /*
363  * after acquiring lock with fastpath or when we lost out in contested
364  * slowpath, set ctx and wake up any waiters so they can recheck.
365  *
366  * This function is never called when CONFIG_DEBUG_LOCK_ALLOC is set,
367  * as the fastpath and opportunistic spinning are disabled in that case.
368  */
369 static __always_inline void
370 ww_mutex_set_context_fastpath(struct ww_mutex *lock,
371 			       struct ww_acquire_ctx *ctx)
372 {
373 	unsigned long flags;
374 	struct mutex_waiter *cur;
375 
376 	ww_mutex_lock_acquired(lock, ctx);
377 
378 	lock->ctx = ctx;
379 
380 	/*
381 	 * The lock->ctx update should be visible on all cores before
382 	 * the atomic read is done, otherwise contended waiters might be
383 	 * missed. The contended waiters will either see ww_ctx == NULL
384 	 * and keep spinning, or it will acquire wait_lock, add itself
385 	 * to waiter list and sleep.
386 	 */
387 	smp_mb(); /* ^^^ */
388 
389 	/*
390 	 * Check if lock is contended, if not there is nobody to wake up
391 	 */
392 	if (likely(atomic_read(&lock->base.count) == 0))
393 		return;
394 
395 	/*
396 	 * Uh oh, we raced in fastpath, wake up everyone in this case,
397 	 * so they can see the new lock->ctx.
398 	 */
399 	spin_lock_mutex(&lock->base.wait_lock, flags);
400 	list_for_each_entry(cur, &lock->base.wait_list, list) {
401 		debug_mutex_wake_waiter(&lock->base, cur);
402 		wake_up_process(cur->task);
403 	}
404 	spin_unlock_mutex(&lock->base.wait_lock, flags);
405 }
406 
407 /*
408  * Lock a mutex (possibly interruptible), slowpath:
409  */
410 static __always_inline int __sched
411 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
412 		    struct lockdep_map *nest_lock, unsigned long ip,
413 		    struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
414 {
415 	struct task_struct *task = current;
416 	struct mutex_waiter waiter;
417 	unsigned long flags;
418 	int ret;
419 
420 	preempt_disable();
421 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
422 
423 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
424 	/*
425 	 * Optimistic spinning.
426 	 *
427 	 * We try to spin for acquisition when we find that there are no
428 	 * pending waiters and the lock owner is currently running on a
429 	 * (different) CPU.
430 	 *
431 	 * The rationale is that if the lock owner is running, it is likely to
432 	 * release the lock soon.
433 	 *
434 	 * Since this needs the lock owner, and this mutex implementation
435 	 * doesn't track the owner atomically in the lock field, we need to
436 	 * track it non-atomically.
437 	 *
438 	 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
439 	 * to serialize everything.
440 	 *
441 	 * The mutex spinners are queued up using MCS lock so that only one
442 	 * spinner can compete for the mutex. However, if mutex spinning isn't
443 	 * going to happen, there is no point in going through the lock/unlock
444 	 * overhead.
445 	 */
446 	if (!mutex_can_spin_on_owner(lock))
447 		goto slowpath;
448 
449 	for (;;) {
450 		struct task_struct *owner;
451 		struct mspin_node  node;
452 
453 		if (use_ww_ctx && ww_ctx->acquired > 0) {
454 			struct ww_mutex *ww;
455 
456 			ww = container_of(lock, struct ww_mutex, base);
457 			/*
458 			 * If ww->ctx is set the contents are undefined, only
459 			 * by acquiring wait_lock there is a guarantee that
460 			 * they are not invalid when reading.
461 			 *
462 			 * As such, when deadlock detection needs to be
463 			 * performed the optimistic spinning cannot be done.
464 			 */
465 			if (ACCESS_ONCE(ww->ctx))
466 				goto slowpath;
467 		}
468 
469 		/*
470 		 * If there's an owner, wait for it to either
471 		 * release the lock or go to sleep.
472 		 */
473 		mspin_lock(MLOCK(lock), &node);
474 		owner = ACCESS_ONCE(lock->owner);
475 		if (owner && !mutex_spin_on_owner(lock, owner)) {
476 			mspin_unlock(MLOCK(lock), &node);
477 			goto slowpath;
478 		}
479 
480 		if ((atomic_read(&lock->count) == 1) &&
481 		    (atomic_cmpxchg(&lock->count, 1, 0) == 1)) {
482 			lock_acquired(&lock->dep_map, ip);
483 			if (use_ww_ctx) {
484 				struct ww_mutex *ww;
485 				ww = container_of(lock, struct ww_mutex, base);
486 
487 				ww_mutex_set_context_fastpath(ww, ww_ctx);
488 			}
489 
490 			mutex_set_owner(lock);
491 			mspin_unlock(MLOCK(lock), &node);
492 			preempt_enable();
493 			return 0;
494 		}
495 		mspin_unlock(MLOCK(lock), &node);
496 
497 		/*
498 		 * When there's no owner, we might have preempted between the
499 		 * owner acquiring the lock and setting the owner field. If
500 		 * we're an RT task that will live-lock because we won't let
501 		 * the owner complete.
502 		 */
503 		if (!owner && (need_resched() || rt_task(task)))
504 			goto slowpath;
505 
506 		/*
507 		 * The cpu_relax() call is a compiler barrier which forces
508 		 * everything in this loop to be re-loaded. We don't need
509 		 * memory barriers as we'll eventually observe the right
510 		 * values at the cost of a few extra spins.
511 		 */
512 		arch_mutex_cpu_relax();
513 	}
514 slowpath:
515 #endif
516 	spin_lock_mutex(&lock->wait_lock, flags);
517 
518 	/* once more, can we acquire the lock? */
519 	if (MUTEX_SHOW_NO_WAITER(lock) && (atomic_xchg(&lock->count, 0) == 1))
520 		goto skip_wait;
521 
522 	debug_mutex_lock_common(lock, &waiter);
523 	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
524 
525 	/* add waiting tasks to the end of the waitqueue (FIFO): */
526 	list_add_tail(&waiter.list, &lock->wait_list);
527 	waiter.task = task;
528 
529 	lock_contended(&lock->dep_map, ip);
530 
531 	for (;;) {
532 		/*
533 		 * Lets try to take the lock again - this is needed even if
534 		 * we get here for the first time (shortly after failing to
535 		 * acquire the lock), to make sure that we get a wakeup once
536 		 * it's unlocked. Later on, if we sleep, this is the
537 		 * operation that gives us the lock. We xchg it to -1, so
538 		 * that when we release the lock, we properly wake up the
539 		 * other waiters:
540 		 */
541 		if (MUTEX_SHOW_NO_WAITER(lock) &&
542 		    (atomic_xchg(&lock->count, -1) == 1))
543 			break;
544 
545 		/*
546 		 * got a signal? (This code gets eliminated in the
547 		 * TASK_UNINTERRUPTIBLE case.)
548 		 */
549 		if (unlikely(signal_pending_state(state, task))) {
550 			ret = -EINTR;
551 			goto err;
552 		}
553 
554 		if (use_ww_ctx && ww_ctx->acquired > 0) {
555 			ret = __mutex_lock_check_stamp(lock, ww_ctx);
556 			if (ret)
557 				goto err;
558 		}
559 
560 		__set_task_state(task, state);
561 
562 		/* didn't get the lock, go to sleep: */
563 		spin_unlock_mutex(&lock->wait_lock, flags);
564 		schedule_preempt_disabled();
565 		spin_lock_mutex(&lock->wait_lock, flags);
566 	}
567 	mutex_remove_waiter(lock, &waiter, current_thread_info());
568 	/* set it to 0 if there are no waiters left: */
569 	if (likely(list_empty(&lock->wait_list)))
570 		atomic_set(&lock->count, 0);
571 	debug_mutex_free_waiter(&waiter);
572 
573 skip_wait:
574 	/* got the lock - cleanup and rejoice! */
575 	lock_acquired(&lock->dep_map, ip);
576 	mutex_set_owner(lock);
577 
578 	if (use_ww_ctx) {
579 		struct ww_mutex *ww = container_of(lock, struct ww_mutex, base);
580 		struct mutex_waiter *cur;
581 
582 		/*
583 		 * This branch gets optimized out for the common case,
584 		 * and is only important for ww_mutex_lock.
585 		 */
586 		ww_mutex_lock_acquired(ww, ww_ctx);
587 		ww->ctx = ww_ctx;
588 
589 		/*
590 		 * Give any possible sleeping processes the chance to wake up,
591 		 * so they can recheck if they have to back off.
592 		 */
593 		list_for_each_entry(cur, &lock->wait_list, list) {
594 			debug_mutex_wake_waiter(lock, cur);
595 			wake_up_process(cur->task);
596 		}
597 	}
598 
599 	spin_unlock_mutex(&lock->wait_lock, flags);
600 	preempt_enable();
601 	return 0;
602 
603 err:
604 	mutex_remove_waiter(lock, &waiter, task_thread_info(task));
605 	spin_unlock_mutex(&lock->wait_lock, flags);
606 	debug_mutex_free_waiter(&waiter);
607 	mutex_release(&lock->dep_map, 1, ip);
608 	preempt_enable();
609 	return ret;
610 }
611 
612 #ifdef CONFIG_DEBUG_LOCK_ALLOC
613 void __sched
614 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
615 {
616 	might_sleep();
617 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
618 			    subclass, NULL, _RET_IP_, NULL, 0);
619 }
620 
621 EXPORT_SYMBOL_GPL(mutex_lock_nested);
622 
623 void __sched
624 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
625 {
626 	might_sleep();
627 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
628 			    0, nest, _RET_IP_, NULL, 0);
629 }
630 
631 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
632 
633 int __sched
634 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
635 {
636 	might_sleep();
637 	return __mutex_lock_common(lock, TASK_KILLABLE,
638 				   subclass, NULL, _RET_IP_, NULL, 0);
639 }
640 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
641 
642 int __sched
643 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
644 {
645 	might_sleep();
646 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
647 				   subclass, NULL, _RET_IP_, NULL, 0);
648 }
649 
650 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
651 
652 static inline int
653 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
654 {
655 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
656 	unsigned tmp;
657 
658 	if (ctx->deadlock_inject_countdown-- == 0) {
659 		tmp = ctx->deadlock_inject_interval;
660 		if (tmp > UINT_MAX/4)
661 			tmp = UINT_MAX;
662 		else
663 			tmp = tmp*2 + tmp + tmp/2;
664 
665 		ctx->deadlock_inject_interval = tmp;
666 		ctx->deadlock_inject_countdown = tmp;
667 		ctx->contending_lock = lock;
668 
669 		ww_mutex_unlock(lock);
670 
671 		return -EDEADLK;
672 	}
673 #endif
674 
675 	return 0;
676 }
677 
678 int __sched
679 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
680 {
681 	int ret;
682 
683 	might_sleep();
684 	ret =  __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE,
685 				   0, &ctx->dep_map, _RET_IP_, ctx, 1);
686 	if (!ret && ctx->acquired > 1)
687 		return ww_mutex_deadlock_injection(lock, ctx);
688 
689 	return ret;
690 }
691 EXPORT_SYMBOL_GPL(__ww_mutex_lock);
692 
693 int __sched
694 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
695 {
696 	int ret;
697 
698 	might_sleep();
699 	ret = __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE,
700 				  0, &ctx->dep_map, _RET_IP_, ctx, 1);
701 
702 	if (!ret && ctx->acquired > 1)
703 		return ww_mutex_deadlock_injection(lock, ctx);
704 
705 	return ret;
706 }
707 EXPORT_SYMBOL_GPL(__ww_mutex_lock_interruptible);
708 
709 #endif
710 
711 /*
712  * Release the lock, slowpath:
713  */
714 static inline void
715 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
716 {
717 	struct mutex *lock = container_of(lock_count, struct mutex, count);
718 	unsigned long flags;
719 
720 	spin_lock_mutex(&lock->wait_lock, flags);
721 	mutex_release(&lock->dep_map, nested, _RET_IP_);
722 	debug_mutex_unlock(lock);
723 
724 	/*
725 	 * some architectures leave the lock unlocked in the fastpath failure
726 	 * case, others need to leave it locked. In the later case we have to
727 	 * unlock it here
728 	 */
729 	if (__mutex_slowpath_needs_to_unlock())
730 		atomic_set(&lock->count, 1);
731 
732 	if (!list_empty(&lock->wait_list)) {
733 		/* get the first entry from the wait-list: */
734 		struct mutex_waiter *waiter =
735 				list_entry(lock->wait_list.next,
736 					   struct mutex_waiter, list);
737 
738 		debug_mutex_wake_waiter(lock, waiter);
739 
740 		wake_up_process(waiter->task);
741 	}
742 
743 	spin_unlock_mutex(&lock->wait_lock, flags);
744 }
745 
746 /*
747  * Release the lock, slowpath:
748  */
749 static __used noinline void
750 __mutex_unlock_slowpath(atomic_t *lock_count)
751 {
752 	__mutex_unlock_common_slowpath(lock_count, 1);
753 }
754 
755 #ifndef CONFIG_DEBUG_LOCK_ALLOC
756 /*
757  * Here come the less common (and hence less performance-critical) APIs:
758  * mutex_lock_interruptible() and mutex_trylock().
759  */
760 static noinline int __sched
761 __mutex_lock_killable_slowpath(struct mutex *lock);
762 
763 static noinline int __sched
764 __mutex_lock_interruptible_slowpath(struct mutex *lock);
765 
766 /**
767  * mutex_lock_interruptible - acquire the mutex, interruptible
768  * @lock: the mutex to be acquired
769  *
770  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
771  * been acquired or sleep until the mutex becomes available. If a
772  * signal arrives while waiting for the lock then this function
773  * returns -EINTR.
774  *
775  * This function is similar to (but not equivalent to) down_interruptible().
776  */
777 int __sched mutex_lock_interruptible(struct mutex *lock)
778 {
779 	int ret;
780 
781 	might_sleep();
782 	ret =  __mutex_fastpath_lock_retval(&lock->count);
783 	if (likely(!ret)) {
784 		mutex_set_owner(lock);
785 		return 0;
786 	} else
787 		return __mutex_lock_interruptible_slowpath(lock);
788 }
789 
790 EXPORT_SYMBOL(mutex_lock_interruptible);
791 
792 int __sched mutex_lock_killable(struct mutex *lock)
793 {
794 	int ret;
795 
796 	might_sleep();
797 	ret = __mutex_fastpath_lock_retval(&lock->count);
798 	if (likely(!ret)) {
799 		mutex_set_owner(lock);
800 		return 0;
801 	} else
802 		return __mutex_lock_killable_slowpath(lock);
803 }
804 EXPORT_SYMBOL(mutex_lock_killable);
805 
806 static __used noinline void __sched
807 __mutex_lock_slowpath(atomic_t *lock_count)
808 {
809 	struct mutex *lock = container_of(lock_count, struct mutex, count);
810 
811 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0,
812 			    NULL, _RET_IP_, NULL, 0);
813 }
814 
815 static noinline int __sched
816 __mutex_lock_killable_slowpath(struct mutex *lock)
817 {
818 	return __mutex_lock_common(lock, TASK_KILLABLE, 0,
819 				   NULL, _RET_IP_, NULL, 0);
820 }
821 
822 static noinline int __sched
823 __mutex_lock_interruptible_slowpath(struct mutex *lock)
824 {
825 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0,
826 				   NULL, _RET_IP_, NULL, 0);
827 }
828 
829 static noinline int __sched
830 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
831 {
832 	return __mutex_lock_common(&lock->base, TASK_UNINTERRUPTIBLE, 0,
833 				   NULL, _RET_IP_, ctx, 1);
834 }
835 
836 static noinline int __sched
837 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
838 					    struct ww_acquire_ctx *ctx)
839 {
840 	return __mutex_lock_common(&lock->base, TASK_INTERRUPTIBLE, 0,
841 				   NULL, _RET_IP_, ctx, 1);
842 }
843 
844 #endif
845 
846 /*
847  * Spinlock based trylock, we take the spinlock and check whether we
848  * can get the lock:
849  */
850 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
851 {
852 	struct mutex *lock = container_of(lock_count, struct mutex, count);
853 	unsigned long flags;
854 	int prev;
855 
856 	spin_lock_mutex(&lock->wait_lock, flags);
857 
858 	prev = atomic_xchg(&lock->count, -1);
859 	if (likely(prev == 1)) {
860 		mutex_set_owner(lock);
861 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
862 	}
863 
864 	/* Set it back to 0 if there are no waiters: */
865 	if (likely(list_empty(&lock->wait_list)))
866 		atomic_set(&lock->count, 0);
867 
868 	spin_unlock_mutex(&lock->wait_lock, flags);
869 
870 	return prev == 1;
871 }
872 
873 /**
874  * mutex_trylock - try to acquire the mutex, without waiting
875  * @lock: the mutex to be acquired
876  *
877  * Try to acquire the mutex atomically. Returns 1 if the mutex
878  * has been acquired successfully, and 0 on contention.
879  *
880  * NOTE: this function follows the spin_trylock() convention, so
881  * it is negated from the down_trylock() return values! Be careful
882  * about this when converting semaphore users to mutexes.
883  *
884  * This function must not be used in interrupt context. The
885  * mutex must be released by the same task that acquired it.
886  */
887 int __sched mutex_trylock(struct mutex *lock)
888 {
889 	int ret;
890 
891 	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
892 	if (ret)
893 		mutex_set_owner(lock);
894 
895 	return ret;
896 }
897 EXPORT_SYMBOL(mutex_trylock);
898 
899 #ifndef CONFIG_DEBUG_LOCK_ALLOC
900 int __sched
901 __ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
902 {
903 	int ret;
904 
905 	might_sleep();
906 
907 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
908 
909 	if (likely(!ret)) {
910 		ww_mutex_set_context_fastpath(lock, ctx);
911 		mutex_set_owner(&lock->base);
912 	} else
913 		ret = __ww_mutex_lock_slowpath(lock, ctx);
914 	return ret;
915 }
916 EXPORT_SYMBOL(__ww_mutex_lock);
917 
918 int __sched
919 __ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
920 {
921 	int ret;
922 
923 	might_sleep();
924 
925 	ret = __mutex_fastpath_lock_retval(&lock->base.count);
926 
927 	if (likely(!ret)) {
928 		ww_mutex_set_context_fastpath(lock, ctx);
929 		mutex_set_owner(&lock->base);
930 	} else
931 		ret = __ww_mutex_lock_interruptible_slowpath(lock, ctx);
932 	return ret;
933 }
934 EXPORT_SYMBOL(__ww_mutex_lock_interruptible);
935 
936 #endif
937 
938 /**
939  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
940  * @cnt: the atomic which we are to dec
941  * @lock: the mutex to return holding if we dec to 0
942  *
943  * return true and hold lock if we dec to 0, return false otherwise
944  */
945 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
946 {
947 	/* dec if we can't possibly hit 0 */
948 	if (atomic_add_unless(cnt, -1, 1))
949 		return 0;
950 	/* we might hit 0, so take the lock */
951 	mutex_lock(lock);
952 	if (!atomic_dec_and_test(cnt)) {
953 		/* when we actually did the dec, we didn't hit 0 */
954 		mutex_unlock(lock);
955 		return 0;
956 	}
957 	/* we hit 0, and we hold the lock */
958 	return 1;
959 }
960 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
961