xref: /openbmc/linux/kernel/locking/locktorture.c (revision 21f9cb44)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Module-based torture test facility for locking
4  *
5  * Copyright (C) IBM Corporation, 2014
6  *
7  * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
8  *          Davidlohr Bueso <dave@stgolabs.net>
9  *	Based on kernel/rcu/torture.c.
10  */
11 
12 #define pr_fmt(fmt) fmt
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/kthread.h>
17 #include <linux/sched/rt.h>
18 #include <linux/spinlock.h>
19 #include <linux/mutex.h>
20 #include <linux/rwsem.h>
21 #include <linux/smp.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <uapi/linux/sched/types.h>
25 #include <linux/rtmutex.h>
26 #include <linux/atomic.h>
27 #include <linux/moduleparam.h>
28 #include <linux/delay.h>
29 #include <linux/slab.h>
30 #include <linux/torture.h>
31 #include <linux/reboot.h>
32 
33 MODULE_LICENSE("GPL");
34 MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
35 
36 torture_param(int, nwriters_stress, -1, "Number of write-locking stress-test threads");
37 torture_param(int, nreaders_stress, -1, "Number of read-locking stress-test threads");
38 torture_param(int, long_hold, 100, "Do occasional long hold of lock (ms), 0=disable");
39 torture_param(int, onoff_holdoff, 0, "Time after boot before CPU hotplugs (s)");
40 torture_param(int, onoff_interval, 0, "Time between CPU hotplugs (s), 0=disable");
41 torture_param(int, shuffle_interval, 3, "Number of jiffies between shuffles, 0=disable");
42 torture_param(int, shutdown_secs, 0, "Shutdown time (j), <= zero to disable.");
43 torture_param(int, stat_interval, 60, "Number of seconds between stats printk()s");
44 torture_param(int, stutter, 5, "Number of jiffies to run/halt test, 0=disable");
45 torture_param(int, rt_boost, 2,
46 		   "Do periodic rt-boost. 0=Disable, 1=Only for rt_mutex, 2=For all lock types.");
47 torture_param(int, rt_boost_factor, 50, "A factor determining how often rt-boost happens.");
48 torture_param(int, writer_fifo, 0, "Run writers at sched_set_fifo() priority");
49 torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
50 torture_param(int, nested_locks, 0, "Number of nested locks (max = 8)");
51 /* Going much higher trips "BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!" errors */
52 #define MAX_NESTED_LOCKS 8
53 
54 static char *torture_type = IS_ENABLED(CONFIG_PREEMPT_RT) ? "raw_spin_lock" : "spin_lock";
55 module_param(torture_type, charp, 0444);
56 MODULE_PARM_DESC(torture_type,
57 		 "Type of lock to torture (spin_lock, spin_lock_irq, mutex_lock, ...)");
58 
59 static struct task_struct *stats_task;
60 static struct task_struct **writer_tasks;
61 static struct task_struct **reader_tasks;
62 
63 static bool lock_is_write_held;
64 static atomic_t lock_is_read_held;
65 static unsigned long last_lock_release;
66 
67 struct lock_stress_stats {
68 	long n_lock_fail;
69 	long n_lock_acquired;
70 };
71 
72 /* Forward reference. */
73 static void lock_torture_cleanup(void);
74 
75 /*
76  * Operations vector for selecting different types of tests.
77  */
78 struct lock_torture_ops {
79 	void (*init)(void);
80 	void (*exit)(void);
81 	int (*nested_lock)(int tid, u32 lockset);
82 	int (*writelock)(int tid);
83 	void (*write_delay)(struct torture_random_state *trsp);
84 	void (*task_boost)(struct torture_random_state *trsp);
85 	void (*writeunlock)(int tid);
86 	void (*nested_unlock)(int tid, u32 lockset);
87 	int (*readlock)(int tid);
88 	void (*read_delay)(struct torture_random_state *trsp);
89 	void (*readunlock)(int tid);
90 
91 	unsigned long flags; /* for irq spinlocks */
92 	const char *name;
93 };
94 
95 struct lock_torture_cxt {
96 	int nrealwriters_stress;
97 	int nrealreaders_stress;
98 	bool debug_lock;
99 	bool init_called;
100 	atomic_t n_lock_torture_errors;
101 	struct lock_torture_ops *cur_ops;
102 	struct lock_stress_stats *lwsa; /* writer statistics */
103 	struct lock_stress_stats *lrsa; /* reader statistics */
104 };
105 static struct lock_torture_cxt cxt = { 0, 0, false, false,
106 				       ATOMIC_INIT(0),
107 				       NULL, NULL};
108 /*
109  * Definitions for lock torture testing.
110  */
111 
112 static int torture_lock_busted_write_lock(int tid __maybe_unused)
113 {
114 	return 0;  /* BUGGY, do not use in real life!!! */
115 }
116 
117 static void torture_lock_busted_write_delay(struct torture_random_state *trsp)
118 {
119 	const unsigned long longdelay_ms = long_hold ? long_hold : ULONG_MAX;
120 
121 	/* We want a long delay occasionally to force massive contention.  */
122 	if (!(torture_random(trsp) %
123 	      (cxt.nrealwriters_stress * 2000 * longdelay_ms)))
124 		mdelay(longdelay_ms);
125 	if (!(torture_random(trsp) % (cxt.nrealwriters_stress * 20000)))
126 		torture_preempt_schedule();  /* Allow test to be preempted. */
127 }
128 
129 static void torture_lock_busted_write_unlock(int tid __maybe_unused)
130 {
131 	  /* BUGGY, do not use in real life!!! */
132 }
133 
134 static void __torture_rt_boost(struct torture_random_state *trsp)
135 {
136 	const unsigned int factor = rt_boost_factor;
137 
138 	if (!rt_task(current)) {
139 		/*
140 		 * Boost priority once every rt_boost_factor operations. When
141 		 * the task tries to take the lock, the rtmutex it will account
142 		 * for the new priority, and do any corresponding pi-dance.
143 		 */
144 		if (trsp && !(torture_random(trsp) %
145 			      (cxt.nrealwriters_stress * factor))) {
146 			sched_set_fifo(current);
147 		} else /* common case, do nothing */
148 			return;
149 	} else {
150 		/*
151 		 * The task will remain boosted for another 10 * rt_boost_factor
152 		 * operations, then restored back to its original prio, and so
153 		 * forth.
154 		 *
155 		 * When @trsp is nil, we want to force-reset the task for
156 		 * stopping the kthread.
157 		 */
158 		if (!trsp || !(torture_random(trsp) %
159 			       (cxt.nrealwriters_stress * factor * 2))) {
160 			sched_set_normal(current, 0);
161 		} else /* common case, do nothing */
162 			return;
163 	}
164 }
165 
166 static void torture_rt_boost(struct torture_random_state *trsp)
167 {
168 	if (rt_boost != 2)
169 		return;
170 
171 	__torture_rt_boost(trsp);
172 }
173 
174 static struct lock_torture_ops lock_busted_ops = {
175 	.writelock	= torture_lock_busted_write_lock,
176 	.write_delay	= torture_lock_busted_write_delay,
177 	.task_boost     = torture_rt_boost,
178 	.writeunlock	= torture_lock_busted_write_unlock,
179 	.readlock       = NULL,
180 	.read_delay     = NULL,
181 	.readunlock     = NULL,
182 	.name		= "lock_busted"
183 };
184 
185 static DEFINE_SPINLOCK(torture_spinlock);
186 
187 static int torture_spin_lock_write_lock(int tid __maybe_unused)
188 __acquires(torture_spinlock)
189 {
190 	spin_lock(&torture_spinlock);
191 	return 0;
192 }
193 
194 static void torture_spin_lock_write_delay(struct torture_random_state *trsp)
195 {
196 	const unsigned long shortdelay_us = 2;
197 	const unsigned long longdelay_ms = long_hold ? long_hold : ULONG_MAX;
198 	unsigned long j;
199 
200 	/* We want a short delay mostly to emulate likely code, and
201 	 * we want a long delay occasionally to force massive contention.
202 	 */
203 	if (!(torture_random(trsp) % (cxt.nrealwriters_stress * 2000 * longdelay_ms))) {
204 		j = jiffies;
205 		mdelay(longdelay_ms);
206 		pr_alert("%s: delay = %lu jiffies.\n", __func__, jiffies - j);
207 	}
208 	if (!(torture_random(trsp) % (cxt.nrealwriters_stress * 200 * shortdelay_us)))
209 		udelay(shortdelay_us);
210 	if (!(torture_random(trsp) % (cxt.nrealwriters_stress * 20000)))
211 		torture_preempt_schedule();  /* Allow test to be preempted. */
212 }
213 
214 static void torture_spin_lock_write_unlock(int tid __maybe_unused)
215 __releases(torture_spinlock)
216 {
217 	spin_unlock(&torture_spinlock);
218 }
219 
220 static struct lock_torture_ops spin_lock_ops = {
221 	.writelock	= torture_spin_lock_write_lock,
222 	.write_delay	= torture_spin_lock_write_delay,
223 	.task_boost     = torture_rt_boost,
224 	.writeunlock	= torture_spin_lock_write_unlock,
225 	.readlock       = NULL,
226 	.read_delay     = NULL,
227 	.readunlock     = NULL,
228 	.name		= "spin_lock"
229 };
230 
231 static int torture_spin_lock_write_lock_irq(int tid __maybe_unused)
232 __acquires(torture_spinlock)
233 {
234 	unsigned long flags;
235 
236 	spin_lock_irqsave(&torture_spinlock, flags);
237 	cxt.cur_ops->flags = flags;
238 	return 0;
239 }
240 
241 static void torture_lock_spin_write_unlock_irq(int tid __maybe_unused)
242 __releases(torture_spinlock)
243 {
244 	spin_unlock_irqrestore(&torture_spinlock, cxt.cur_ops->flags);
245 }
246 
247 static struct lock_torture_ops spin_lock_irq_ops = {
248 	.writelock	= torture_spin_lock_write_lock_irq,
249 	.write_delay	= torture_spin_lock_write_delay,
250 	.task_boost     = torture_rt_boost,
251 	.writeunlock	= torture_lock_spin_write_unlock_irq,
252 	.readlock       = NULL,
253 	.read_delay     = NULL,
254 	.readunlock     = NULL,
255 	.name		= "spin_lock_irq"
256 };
257 
258 static DEFINE_RAW_SPINLOCK(torture_raw_spinlock);
259 
260 static int torture_raw_spin_lock_write_lock(int tid __maybe_unused)
261 __acquires(torture_raw_spinlock)
262 {
263 	raw_spin_lock(&torture_raw_spinlock);
264 	return 0;
265 }
266 
267 static void torture_raw_spin_lock_write_unlock(int tid __maybe_unused)
268 __releases(torture_raw_spinlock)
269 {
270 	raw_spin_unlock(&torture_raw_spinlock);
271 }
272 
273 static struct lock_torture_ops raw_spin_lock_ops = {
274 	.writelock	= torture_raw_spin_lock_write_lock,
275 	.write_delay	= torture_spin_lock_write_delay,
276 	.task_boost	= torture_rt_boost,
277 	.writeunlock	= torture_raw_spin_lock_write_unlock,
278 	.readlock	= NULL,
279 	.read_delay	= NULL,
280 	.readunlock	= NULL,
281 	.name		= "raw_spin_lock"
282 };
283 
284 static int torture_raw_spin_lock_write_lock_irq(int tid __maybe_unused)
285 __acquires(torture_raw_spinlock)
286 {
287 	unsigned long flags;
288 
289 	raw_spin_lock_irqsave(&torture_raw_spinlock, flags);
290 	cxt.cur_ops->flags = flags;
291 	return 0;
292 }
293 
294 static void torture_raw_spin_lock_write_unlock_irq(int tid __maybe_unused)
295 __releases(torture_raw_spinlock)
296 {
297 	raw_spin_unlock_irqrestore(&torture_raw_spinlock, cxt.cur_ops->flags);
298 }
299 
300 static struct lock_torture_ops raw_spin_lock_irq_ops = {
301 	.writelock	= torture_raw_spin_lock_write_lock_irq,
302 	.write_delay	= torture_spin_lock_write_delay,
303 	.task_boost	= torture_rt_boost,
304 	.writeunlock	= torture_raw_spin_lock_write_unlock_irq,
305 	.readlock	= NULL,
306 	.read_delay	= NULL,
307 	.readunlock	= NULL,
308 	.name		= "raw_spin_lock_irq"
309 };
310 
311 static DEFINE_RWLOCK(torture_rwlock);
312 
313 static int torture_rwlock_write_lock(int tid __maybe_unused)
314 __acquires(torture_rwlock)
315 {
316 	write_lock(&torture_rwlock);
317 	return 0;
318 }
319 
320 static void torture_rwlock_write_delay(struct torture_random_state *trsp)
321 {
322 	const unsigned long shortdelay_us = 2;
323 	const unsigned long longdelay_ms = long_hold ? long_hold : ULONG_MAX;
324 
325 	/* We want a short delay mostly to emulate likely code, and
326 	 * we want a long delay occasionally to force massive contention.
327 	 */
328 	if (!(torture_random(trsp) %
329 	      (cxt.nrealwriters_stress * 2000 * longdelay_ms)))
330 		mdelay(longdelay_ms);
331 	else
332 		udelay(shortdelay_us);
333 }
334 
335 static void torture_rwlock_write_unlock(int tid __maybe_unused)
336 __releases(torture_rwlock)
337 {
338 	write_unlock(&torture_rwlock);
339 }
340 
341 static int torture_rwlock_read_lock(int tid __maybe_unused)
342 __acquires(torture_rwlock)
343 {
344 	read_lock(&torture_rwlock);
345 	return 0;
346 }
347 
348 static void torture_rwlock_read_delay(struct torture_random_state *trsp)
349 {
350 	const unsigned long shortdelay_us = 10;
351 	const unsigned long longdelay_ms = 100;
352 
353 	/* We want a short delay mostly to emulate likely code, and
354 	 * we want a long delay occasionally to force massive contention.
355 	 */
356 	if (!(torture_random(trsp) %
357 	      (cxt.nrealreaders_stress * 2000 * longdelay_ms)))
358 		mdelay(longdelay_ms);
359 	else
360 		udelay(shortdelay_us);
361 }
362 
363 static void torture_rwlock_read_unlock(int tid __maybe_unused)
364 __releases(torture_rwlock)
365 {
366 	read_unlock(&torture_rwlock);
367 }
368 
369 static struct lock_torture_ops rw_lock_ops = {
370 	.writelock	= torture_rwlock_write_lock,
371 	.write_delay	= torture_rwlock_write_delay,
372 	.task_boost     = torture_rt_boost,
373 	.writeunlock	= torture_rwlock_write_unlock,
374 	.readlock       = torture_rwlock_read_lock,
375 	.read_delay     = torture_rwlock_read_delay,
376 	.readunlock     = torture_rwlock_read_unlock,
377 	.name		= "rw_lock"
378 };
379 
380 static int torture_rwlock_write_lock_irq(int tid __maybe_unused)
381 __acquires(torture_rwlock)
382 {
383 	unsigned long flags;
384 
385 	write_lock_irqsave(&torture_rwlock, flags);
386 	cxt.cur_ops->flags = flags;
387 	return 0;
388 }
389 
390 static void torture_rwlock_write_unlock_irq(int tid __maybe_unused)
391 __releases(torture_rwlock)
392 {
393 	write_unlock_irqrestore(&torture_rwlock, cxt.cur_ops->flags);
394 }
395 
396 static int torture_rwlock_read_lock_irq(int tid __maybe_unused)
397 __acquires(torture_rwlock)
398 {
399 	unsigned long flags;
400 
401 	read_lock_irqsave(&torture_rwlock, flags);
402 	cxt.cur_ops->flags = flags;
403 	return 0;
404 }
405 
406 static void torture_rwlock_read_unlock_irq(int tid __maybe_unused)
407 __releases(torture_rwlock)
408 {
409 	read_unlock_irqrestore(&torture_rwlock, cxt.cur_ops->flags);
410 }
411 
412 static struct lock_torture_ops rw_lock_irq_ops = {
413 	.writelock	= torture_rwlock_write_lock_irq,
414 	.write_delay	= torture_rwlock_write_delay,
415 	.task_boost     = torture_rt_boost,
416 	.writeunlock	= torture_rwlock_write_unlock_irq,
417 	.readlock       = torture_rwlock_read_lock_irq,
418 	.read_delay     = torture_rwlock_read_delay,
419 	.readunlock     = torture_rwlock_read_unlock_irq,
420 	.name		= "rw_lock_irq"
421 };
422 
423 static DEFINE_MUTEX(torture_mutex);
424 static struct mutex torture_nested_mutexes[MAX_NESTED_LOCKS];
425 static struct lock_class_key nested_mutex_keys[MAX_NESTED_LOCKS];
426 
427 static void torture_mutex_init(void)
428 {
429 	int i;
430 
431 	for (i = 0; i < MAX_NESTED_LOCKS; i++)
432 		__mutex_init(&torture_nested_mutexes[i], __func__,
433 			     &nested_mutex_keys[i]);
434 }
435 
436 static int torture_mutex_nested_lock(int tid __maybe_unused,
437 				     u32 lockset)
438 {
439 	int i;
440 
441 	for (i = 0; i < nested_locks; i++)
442 		if (lockset & (1 << i))
443 			mutex_lock(&torture_nested_mutexes[i]);
444 	return 0;
445 }
446 
447 static int torture_mutex_lock(int tid __maybe_unused)
448 __acquires(torture_mutex)
449 {
450 	mutex_lock(&torture_mutex);
451 	return 0;
452 }
453 
454 static void torture_mutex_delay(struct torture_random_state *trsp)
455 {
456 	const unsigned long longdelay_ms = long_hold ? long_hold : ULONG_MAX;
457 
458 	/* We want a long delay occasionally to force massive contention.  */
459 	if (!(torture_random(trsp) %
460 	      (cxt.nrealwriters_stress * 2000 * longdelay_ms)))
461 		mdelay(longdelay_ms * 5);
462 	if (!(torture_random(trsp) % (cxt.nrealwriters_stress * 20000)))
463 		torture_preempt_schedule();  /* Allow test to be preempted. */
464 }
465 
466 static void torture_mutex_unlock(int tid __maybe_unused)
467 __releases(torture_mutex)
468 {
469 	mutex_unlock(&torture_mutex);
470 }
471 
472 static void torture_mutex_nested_unlock(int tid __maybe_unused,
473 					u32 lockset)
474 {
475 	int i;
476 
477 	for (i = nested_locks - 1; i >= 0; i--)
478 		if (lockset & (1 << i))
479 			mutex_unlock(&torture_nested_mutexes[i]);
480 }
481 
482 static struct lock_torture_ops mutex_lock_ops = {
483 	.init		= torture_mutex_init,
484 	.nested_lock	= torture_mutex_nested_lock,
485 	.writelock	= torture_mutex_lock,
486 	.write_delay	= torture_mutex_delay,
487 	.task_boost     = torture_rt_boost,
488 	.writeunlock	= torture_mutex_unlock,
489 	.nested_unlock	= torture_mutex_nested_unlock,
490 	.readlock       = NULL,
491 	.read_delay     = NULL,
492 	.readunlock     = NULL,
493 	.name		= "mutex_lock"
494 };
495 
496 #include <linux/ww_mutex.h>
497 /*
498  * The torture ww_mutexes should belong to the same lock class as
499  * torture_ww_class to avoid lockdep problem. The ww_mutex_init()
500  * function is called for initialization to ensure that.
501  */
502 static DEFINE_WD_CLASS(torture_ww_class);
503 static struct ww_mutex torture_ww_mutex_0, torture_ww_mutex_1, torture_ww_mutex_2;
504 static struct ww_acquire_ctx *ww_acquire_ctxs;
505 
506 static void torture_ww_mutex_init(void)
507 {
508 	ww_mutex_init(&torture_ww_mutex_0, &torture_ww_class);
509 	ww_mutex_init(&torture_ww_mutex_1, &torture_ww_class);
510 	ww_mutex_init(&torture_ww_mutex_2, &torture_ww_class);
511 
512 	ww_acquire_ctxs = kmalloc_array(cxt.nrealwriters_stress,
513 					sizeof(*ww_acquire_ctxs),
514 					GFP_KERNEL);
515 	if (!ww_acquire_ctxs)
516 		VERBOSE_TOROUT_STRING("ww_acquire_ctx: Out of memory");
517 }
518 
519 static void torture_ww_mutex_exit(void)
520 {
521 	kfree(ww_acquire_ctxs);
522 }
523 
524 static int torture_ww_mutex_lock(int tid)
525 __acquires(torture_ww_mutex_0)
526 __acquires(torture_ww_mutex_1)
527 __acquires(torture_ww_mutex_2)
528 {
529 	LIST_HEAD(list);
530 	struct reorder_lock {
531 		struct list_head link;
532 		struct ww_mutex *lock;
533 	} locks[3], *ll, *ln;
534 	struct ww_acquire_ctx *ctx = &ww_acquire_ctxs[tid];
535 
536 	locks[0].lock = &torture_ww_mutex_0;
537 	list_add(&locks[0].link, &list);
538 
539 	locks[1].lock = &torture_ww_mutex_1;
540 	list_add(&locks[1].link, &list);
541 
542 	locks[2].lock = &torture_ww_mutex_2;
543 	list_add(&locks[2].link, &list);
544 
545 	ww_acquire_init(ctx, &torture_ww_class);
546 
547 	list_for_each_entry(ll, &list, link) {
548 		int err;
549 
550 		err = ww_mutex_lock(ll->lock, ctx);
551 		if (!err)
552 			continue;
553 
554 		ln = ll;
555 		list_for_each_entry_continue_reverse(ln, &list, link)
556 			ww_mutex_unlock(ln->lock);
557 
558 		if (err != -EDEADLK)
559 			return err;
560 
561 		ww_mutex_lock_slow(ll->lock, ctx);
562 		list_move(&ll->link, &list);
563 	}
564 
565 	return 0;
566 }
567 
568 static void torture_ww_mutex_unlock(int tid)
569 __releases(torture_ww_mutex_0)
570 __releases(torture_ww_mutex_1)
571 __releases(torture_ww_mutex_2)
572 {
573 	struct ww_acquire_ctx *ctx = &ww_acquire_ctxs[tid];
574 
575 	ww_mutex_unlock(&torture_ww_mutex_0);
576 	ww_mutex_unlock(&torture_ww_mutex_1);
577 	ww_mutex_unlock(&torture_ww_mutex_2);
578 	ww_acquire_fini(ctx);
579 }
580 
581 static struct lock_torture_ops ww_mutex_lock_ops = {
582 	.init		= torture_ww_mutex_init,
583 	.exit		= torture_ww_mutex_exit,
584 	.writelock	= torture_ww_mutex_lock,
585 	.write_delay	= torture_mutex_delay,
586 	.task_boost     = torture_rt_boost,
587 	.writeunlock	= torture_ww_mutex_unlock,
588 	.readlock       = NULL,
589 	.read_delay     = NULL,
590 	.readunlock     = NULL,
591 	.name		= "ww_mutex_lock"
592 };
593 
594 #ifdef CONFIG_RT_MUTEXES
595 static DEFINE_RT_MUTEX(torture_rtmutex);
596 static struct rt_mutex torture_nested_rtmutexes[MAX_NESTED_LOCKS];
597 static struct lock_class_key nested_rtmutex_keys[MAX_NESTED_LOCKS];
598 
599 static void torture_rtmutex_init(void)
600 {
601 	int i;
602 
603 	for (i = 0; i < MAX_NESTED_LOCKS; i++)
604 		__rt_mutex_init(&torture_nested_rtmutexes[i], __func__,
605 				&nested_rtmutex_keys[i]);
606 }
607 
608 static int torture_rtmutex_nested_lock(int tid __maybe_unused,
609 				       u32 lockset)
610 {
611 	int i;
612 
613 	for (i = 0; i < nested_locks; i++)
614 		if (lockset & (1 << i))
615 			rt_mutex_lock(&torture_nested_rtmutexes[i]);
616 	return 0;
617 }
618 
619 static int torture_rtmutex_lock(int tid __maybe_unused)
620 __acquires(torture_rtmutex)
621 {
622 	rt_mutex_lock(&torture_rtmutex);
623 	return 0;
624 }
625 
626 static void torture_rtmutex_delay(struct torture_random_state *trsp)
627 {
628 	const unsigned long shortdelay_us = 2;
629 	const unsigned long longdelay_ms = long_hold ? long_hold : ULONG_MAX;
630 
631 	/*
632 	 * We want a short delay mostly to emulate likely code, and
633 	 * we want a long delay occasionally to force massive contention.
634 	 */
635 	if (!(torture_random(trsp) %
636 	      (cxt.nrealwriters_stress * 2000 * longdelay_ms)))
637 		mdelay(longdelay_ms);
638 	if (!(torture_random(trsp) %
639 	      (cxt.nrealwriters_stress * 200 * shortdelay_us)))
640 		udelay(shortdelay_us);
641 	if (!(torture_random(trsp) % (cxt.nrealwriters_stress * 20000)))
642 		torture_preempt_schedule();  /* Allow test to be preempted. */
643 }
644 
645 static void torture_rtmutex_unlock(int tid __maybe_unused)
646 __releases(torture_rtmutex)
647 {
648 	rt_mutex_unlock(&torture_rtmutex);
649 }
650 
651 static void torture_rt_boost_rtmutex(struct torture_random_state *trsp)
652 {
653 	if (!rt_boost)
654 		return;
655 
656 	__torture_rt_boost(trsp);
657 }
658 
659 static void torture_rtmutex_nested_unlock(int tid __maybe_unused,
660 					  u32 lockset)
661 {
662 	int i;
663 
664 	for (i = nested_locks - 1; i >= 0; i--)
665 		if (lockset & (1 << i))
666 			rt_mutex_unlock(&torture_nested_rtmutexes[i]);
667 }
668 
669 static struct lock_torture_ops rtmutex_lock_ops = {
670 	.init		= torture_rtmutex_init,
671 	.nested_lock	= torture_rtmutex_nested_lock,
672 	.writelock	= torture_rtmutex_lock,
673 	.write_delay	= torture_rtmutex_delay,
674 	.task_boost     = torture_rt_boost_rtmutex,
675 	.writeunlock	= torture_rtmutex_unlock,
676 	.nested_unlock	= torture_rtmutex_nested_unlock,
677 	.readlock       = NULL,
678 	.read_delay     = NULL,
679 	.readunlock     = NULL,
680 	.name		= "rtmutex_lock"
681 };
682 #endif
683 
684 static DECLARE_RWSEM(torture_rwsem);
685 static int torture_rwsem_down_write(int tid __maybe_unused)
686 __acquires(torture_rwsem)
687 {
688 	down_write(&torture_rwsem);
689 	return 0;
690 }
691 
692 static void torture_rwsem_write_delay(struct torture_random_state *trsp)
693 {
694 	const unsigned long longdelay_ms = long_hold ? long_hold : ULONG_MAX;
695 
696 	/* We want a long delay occasionally to force massive contention.  */
697 	if (!(torture_random(trsp) %
698 	      (cxt.nrealwriters_stress * 2000 * longdelay_ms)))
699 		mdelay(longdelay_ms * 10);
700 	if (!(torture_random(trsp) % (cxt.nrealwriters_stress * 20000)))
701 		torture_preempt_schedule();  /* Allow test to be preempted. */
702 }
703 
704 static void torture_rwsem_up_write(int tid __maybe_unused)
705 __releases(torture_rwsem)
706 {
707 	up_write(&torture_rwsem);
708 }
709 
710 static int torture_rwsem_down_read(int tid __maybe_unused)
711 __acquires(torture_rwsem)
712 {
713 	down_read(&torture_rwsem);
714 	return 0;
715 }
716 
717 static void torture_rwsem_read_delay(struct torture_random_state *trsp)
718 {
719 	const unsigned long longdelay_ms = 100;
720 
721 	/* We want a long delay occasionally to force massive contention.  */
722 	if (!(torture_random(trsp) %
723 	      (cxt.nrealreaders_stress * 2000 * longdelay_ms)))
724 		mdelay(longdelay_ms * 2);
725 	else
726 		mdelay(longdelay_ms / 2);
727 	if (!(torture_random(trsp) % (cxt.nrealreaders_stress * 20000)))
728 		torture_preempt_schedule();  /* Allow test to be preempted. */
729 }
730 
731 static void torture_rwsem_up_read(int tid __maybe_unused)
732 __releases(torture_rwsem)
733 {
734 	up_read(&torture_rwsem);
735 }
736 
737 static struct lock_torture_ops rwsem_lock_ops = {
738 	.writelock	= torture_rwsem_down_write,
739 	.write_delay	= torture_rwsem_write_delay,
740 	.task_boost     = torture_rt_boost,
741 	.writeunlock	= torture_rwsem_up_write,
742 	.readlock       = torture_rwsem_down_read,
743 	.read_delay     = torture_rwsem_read_delay,
744 	.readunlock     = torture_rwsem_up_read,
745 	.name		= "rwsem_lock"
746 };
747 
748 #include <linux/percpu-rwsem.h>
749 static struct percpu_rw_semaphore pcpu_rwsem;
750 
751 static void torture_percpu_rwsem_init(void)
752 {
753 	BUG_ON(percpu_init_rwsem(&pcpu_rwsem));
754 }
755 
756 static void torture_percpu_rwsem_exit(void)
757 {
758 	percpu_free_rwsem(&pcpu_rwsem);
759 }
760 
761 static int torture_percpu_rwsem_down_write(int tid __maybe_unused)
762 __acquires(pcpu_rwsem)
763 {
764 	percpu_down_write(&pcpu_rwsem);
765 	return 0;
766 }
767 
768 static void torture_percpu_rwsem_up_write(int tid __maybe_unused)
769 __releases(pcpu_rwsem)
770 {
771 	percpu_up_write(&pcpu_rwsem);
772 }
773 
774 static int torture_percpu_rwsem_down_read(int tid __maybe_unused)
775 __acquires(pcpu_rwsem)
776 {
777 	percpu_down_read(&pcpu_rwsem);
778 	return 0;
779 }
780 
781 static void torture_percpu_rwsem_up_read(int tid __maybe_unused)
782 __releases(pcpu_rwsem)
783 {
784 	percpu_up_read(&pcpu_rwsem);
785 }
786 
787 static struct lock_torture_ops percpu_rwsem_lock_ops = {
788 	.init		= torture_percpu_rwsem_init,
789 	.exit		= torture_percpu_rwsem_exit,
790 	.writelock	= torture_percpu_rwsem_down_write,
791 	.write_delay	= torture_rwsem_write_delay,
792 	.task_boost     = torture_rt_boost,
793 	.writeunlock	= torture_percpu_rwsem_up_write,
794 	.readlock       = torture_percpu_rwsem_down_read,
795 	.read_delay     = torture_rwsem_read_delay,
796 	.readunlock     = torture_percpu_rwsem_up_read,
797 	.name		= "percpu_rwsem_lock"
798 };
799 
800 /*
801  * Lock torture writer kthread.  Repeatedly acquires and releases
802  * the lock, checking for duplicate acquisitions.
803  */
804 static int lock_torture_writer(void *arg)
805 {
806 	struct lock_stress_stats *lwsp = arg;
807 	int tid = lwsp - cxt.lwsa;
808 	DEFINE_TORTURE_RANDOM(rand);
809 	u32 lockset_mask;
810 	bool skip_main_lock;
811 
812 	VERBOSE_TOROUT_STRING("lock_torture_writer task started");
813 	if (!rt_task(current))
814 		set_user_nice(current, MAX_NICE);
815 
816 	do {
817 		if ((torture_random(&rand) & 0xfffff) == 0)
818 			schedule_timeout_uninterruptible(1);
819 
820 		lockset_mask = torture_random(&rand);
821 		/*
822 		 * When using nested_locks, we want to occasionally
823 		 * skip the main lock so we can avoid always serializing
824 		 * the lock chains on that central lock. By skipping the
825 		 * main lock occasionally, we can create different
826 		 * contention patterns (allowing for multiple disjoint
827 		 * blocked trees)
828 		 */
829 		skip_main_lock = (nested_locks &&
830 				 !(torture_random(&rand) % 100));
831 
832 		cxt.cur_ops->task_boost(&rand);
833 		if (cxt.cur_ops->nested_lock)
834 			cxt.cur_ops->nested_lock(tid, lockset_mask);
835 
836 		if (!skip_main_lock) {
837 			cxt.cur_ops->writelock(tid);
838 			if (WARN_ON_ONCE(lock_is_write_held))
839 				lwsp->n_lock_fail++;
840 			lock_is_write_held = true;
841 			if (WARN_ON_ONCE(atomic_read(&lock_is_read_held)))
842 				lwsp->n_lock_fail++; /* rare, but... */
843 
844 			lwsp->n_lock_acquired++;
845 		}
846 		if (!skip_main_lock) {
847 			cxt.cur_ops->write_delay(&rand);
848 			lock_is_write_held = false;
849 			WRITE_ONCE(last_lock_release, jiffies);
850 			cxt.cur_ops->writeunlock(tid);
851 		}
852 		if (cxt.cur_ops->nested_unlock)
853 			cxt.cur_ops->nested_unlock(tid, lockset_mask);
854 
855 		stutter_wait("lock_torture_writer");
856 	} while (!torture_must_stop());
857 
858 	cxt.cur_ops->task_boost(NULL); /* reset prio */
859 	torture_kthread_stopping("lock_torture_writer");
860 	return 0;
861 }
862 
863 /*
864  * Lock torture reader kthread.  Repeatedly acquires and releases
865  * the reader lock.
866  */
867 static int lock_torture_reader(void *arg)
868 {
869 	struct lock_stress_stats *lrsp = arg;
870 	int tid = lrsp - cxt.lrsa;
871 	DEFINE_TORTURE_RANDOM(rand);
872 
873 	VERBOSE_TOROUT_STRING("lock_torture_reader task started");
874 	set_user_nice(current, MAX_NICE);
875 
876 	do {
877 		if ((torture_random(&rand) & 0xfffff) == 0)
878 			schedule_timeout_uninterruptible(1);
879 
880 		cxt.cur_ops->readlock(tid);
881 		atomic_inc(&lock_is_read_held);
882 		if (WARN_ON_ONCE(lock_is_write_held))
883 			lrsp->n_lock_fail++; /* rare, but... */
884 
885 		lrsp->n_lock_acquired++;
886 		cxt.cur_ops->read_delay(&rand);
887 		atomic_dec(&lock_is_read_held);
888 		cxt.cur_ops->readunlock(tid);
889 
890 		stutter_wait("lock_torture_reader");
891 	} while (!torture_must_stop());
892 	torture_kthread_stopping("lock_torture_reader");
893 	return 0;
894 }
895 
896 /*
897  * Create an lock-torture-statistics message in the specified buffer.
898  */
899 static void __torture_print_stats(char *page,
900 				  struct lock_stress_stats *statp, bool write)
901 {
902 	long cur;
903 	bool fail = false;
904 	int i, n_stress;
905 	long max = 0, min = statp ? data_race(statp[0].n_lock_acquired) : 0;
906 	long long sum = 0;
907 
908 	n_stress = write ? cxt.nrealwriters_stress : cxt.nrealreaders_stress;
909 	for (i = 0; i < n_stress; i++) {
910 		if (data_race(statp[i].n_lock_fail))
911 			fail = true;
912 		cur = data_race(statp[i].n_lock_acquired);
913 		sum += cur;
914 		if (max < cur)
915 			max = cur;
916 		if (min > cur)
917 			min = cur;
918 	}
919 	page += sprintf(page,
920 			"%s:  Total: %lld  Max/Min: %ld/%ld %s  Fail: %d %s\n",
921 			write ? "Writes" : "Reads ",
922 			sum, max, min,
923 			!onoff_interval && max / 2 > min ? "???" : "",
924 			fail, fail ? "!!!" : "");
925 	if (fail)
926 		atomic_inc(&cxt.n_lock_torture_errors);
927 }
928 
929 /*
930  * Print torture statistics.  Caller must ensure that there is only one
931  * call to this function at a given time!!!  This is normally accomplished
932  * by relying on the module system to only have one copy of the module
933  * loaded, and then by giving the lock_torture_stats kthread full control
934  * (or the init/cleanup functions when lock_torture_stats thread is not
935  * running).
936  */
937 static void lock_torture_stats_print(void)
938 {
939 	int size = cxt.nrealwriters_stress * 200 + 8192;
940 	char *buf;
941 
942 	if (cxt.cur_ops->readlock)
943 		size += cxt.nrealreaders_stress * 200 + 8192;
944 
945 	buf = kmalloc(size, GFP_KERNEL);
946 	if (!buf) {
947 		pr_err("lock_torture_stats_print: Out of memory, need: %d",
948 		       size);
949 		return;
950 	}
951 
952 	__torture_print_stats(buf, cxt.lwsa, true);
953 	pr_alert("%s", buf);
954 	kfree(buf);
955 
956 	if (cxt.cur_ops->readlock) {
957 		buf = kmalloc(size, GFP_KERNEL);
958 		if (!buf) {
959 			pr_err("lock_torture_stats_print: Out of memory, need: %d",
960 			       size);
961 			return;
962 		}
963 
964 		__torture_print_stats(buf, cxt.lrsa, false);
965 		pr_alert("%s", buf);
966 		kfree(buf);
967 	}
968 }
969 
970 /*
971  * Periodically prints torture statistics, if periodic statistics printing
972  * was specified via the stat_interval module parameter.
973  *
974  * No need to worry about fullstop here, since this one doesn't reference
975  * volatile state or register callbacks.
976  */
977 static int lock_torture_stats(void *arg)
978 {
979 	VERBOSE_TOROUT_STRING("lock_torture_stats task started");
980 	do {
981 		schedule_timeout_interruptible(stat_interval * HZ);
982 		lock_torture_stats_print();
983 		torture_shutdown_absorb("lock_torture_stats");
984 	} while (!torture_must_stop());
985 	torture_kthread_stopping("lock_torture_stats");
986 	return 0;
987 }
988 
989 static inline void
990 lock_torture_print_module_parms(struct lock_torture_ops *cur_ops,
991 				const char *tag)
992 {
993 	pr_alert("%s" TORTURE_FLAG
994 		 "--- %s%s: nwriters_stress=%d nreaders_stress=%d nested_locks=%d stat_interval=%d verbose=%d shuffle_interval=%d stutter=%d shutdown_secs=%d onoff_interval=%d onoff_holdoff=%d\n",
995 		 torture_type, tag, cxt.debug_lock ? " [debug]": "",
996 		 cxt.nrealwriters_stress, cxt.nrealreaders_stress,
997 		 nested_locks, stat_interval, verbose, shuffle_interval,
998 		 stutter, shutdown_secs, onoff_interval, onoff_holdoff);
999 }
1000 
1001 static void lock_torture_cleanup(void)
1002 {
1003 	int i;
1004 
1005 	if (torture_cleanup_begin())
1006 		return;
1007 
1008 	/*
1009 	 * Indicates early cleanup, meaning that the test has not run,
1010 	 * such as when passing bogus args when loading the module.
1011 	 * However cxt->cur_ops.init() may have been invoked, so beside
1012 	 * perform the underlying torture-specific cleanups, cur_ops.exit()
1013 	 * will be invoked if needed.
1014 	 */
1015 	if (!cxt.lwsa && !cxt.lrsa)
1016 		goto end;
1017 
1018 	if (writer_tasks) {
1019 		for (i = 0; i < cxt.nrealwriters_stress; i++)
1020 			torture_stop_kthread(lock_torture_writer, writer_tasks[i]);
1021 		kfree(writer_tasks);
1022 		writer_tasks = NULL;
1023 	}
1024 
1025 	if (reader_tasks) {
1026 		for (i = 0; i < cxt.nrealreaders_stress; i++)
1027 			torture_stop_kthread(lock_torture_reader,
1028 					     reader_tasks[i]);
1029 		kfree(reader_tasks);
1030 		reader_tasks = NULL;
1031 	}
1032 
1033 	torture_stop_kthread(lock_torture_stats, stats_task);
1034 	lock_torture_stats_print();  /* -After- the stats thread is stopped! */
1035 
1036 	if (atomic_read(&cxt.n_lock_torture_errors))
1037 		lock_torture_print_module_parms(cxt.cur_ops,
1038 						"End of test: FAILURE");
1039 	else if (torture_onoff_failures())
1040 		lock_torture_print_module_parms(cxt.cur_ops,
1041 						"End of test: LOCK_HOTPLUG");
1042 	else
1043 		lock_torture_print_module_parms(cxt.cur_ops,
1044 						"End of test: SUCCESS");
1045 
1046 	kfree(cxt.lwsa);
1047 	cxt.lwsa = NULL;
1048 	kfree(cxt.lrsa);
1049 	cxt.lrsa = NULL;
1050 
1051 end:
1052 	if (cxt.init_called) {
1053 		if (cxt.cur_ops->exit)
1054 			cxt.cur_ops->exit();
1055 		cxt.init_called = false;
1056 	}
1057 	torture_cleanup_end();
1058 }
1059 
1060 static int __init lock_torture_init(void)
1061 {
1062 	int i, j;
1063 	int firsterr = 0;
1064 	static struct lock_torture_ops *torture_ops[] = {
1065 		&lock_busted_ops,
1066 		&spin_lock_ops, &spin_lock_irq_ops,
1067 		&raw_spin_lock_ops, &raw_spin_lock_irq_ops,
1068 		&rw_lock_ops, &rw_lock_irq_ops,
1069 		&mutex_lock_ops,
1070 		&ww_mutex_lock_ops,
1071 #ifdef CONFIG_RT_MUTEXES
1072 		&rtmutex_lock_ops,
1073 #endif
1074 		&rwsem_lock_ops,
1075 		&percpu_rwsem_lock_ops,
1076 	};
1077 
1078 	if (!torture_init_begin(torture_type, verbose))
1079 		return -EBUSY;
1080 
1081 	/* Process args and tell the world that the torturer is on the job. */
1082 	for (i = 0; i < ARRAY_SIZE(torture_ops); i++) {
1083 		cxt.cur_ops = torture_ops[i];
1084 		if (strcmp(torture_type, cxt.cur_ops->name) == 0)
1085 			break;
1086 	}
1087 	if (i == ARRAY_SIZE(torture_ops)) {
1088 		pr_alert("lock-torture: invalid torture type: \"%s\"\n",
1089 			 torture_type);
1090 		pr_alert("lock-torture types:");
1091 		for (i = 0; i < ARRAY_SIZE(torture_ops); i++)
1092 			pr_alert(" %s", torture_ops[i]->name);
1093 		pr_alert("\n");
1094 		firsterr = -EINVAL;
1095 		goto unwind;
1096 	}
1097 
1098 	if (nwriters_stress == 0 &&
1099 	    (!cxt.cur_ops->readlock || nreaders_stress == 0)) {
1100 		pr_alert("lock-torture: must run at least one locking thread\n");
1101 		firsterr = -EINVAL;
1102 		goto unwind;
1103 	}
1104 
1105 	if (nwriters_stress >= 0)
1106 		cxt.nrealwriters_stress = nwriters_stress;
1107 	else
1108 		cxt.nrealwriters_stress = 2 * num_online_cpus();
1109 
1110 	if (cxt.cur_ops->init) {
1111 		cxt.cur_ops->init();
1112 		cxt.init_called = true;
1113 	}
1114 
1115 #ifdef CONFIG_DEBUG_MUTEXES
1116 	if (str_has_prefix(torture_type, "mutex"))
1117 		cxt.debug_lock = true;
1118 #endif
1119 #ifdef CONFIG_DEBUG_RT_MUTEXES
1120 	if (str_has_prefix(torture_type, "rtmutex"))
1121 		cxt.debug_lock = true;
1122 #endif
1123 #ifdef CONFIG_DEBUG_SPINLOCK
1124 	if ((str_has_prefix(torture_type, "spin")) ||
1125 	    (str_has_prefix(torture_type, "rw_lock")))
1126 		cxt.debug_lock = true;
1127 #endif
1128 
1129 	/* Initialize the statistics so that each run gets its own numbers. */
1130 	if (nwriters_stress) {
1131 		lock_is_write_held = false;
1132 		cxt.lwsa = kmalloc_array(cxt.nrealwriters_stress,
1133 					 sizeof(*cxt.lwsa),
1134 					 GFP_KERNEL);
1135 		if (cxt.lwsa == NULL) {
1136 			VERBOSE_TOROUT_STRING("cxt.lwsa: Out of memory");
1137 			firsterr = -ENOMEM;
1138 			goto unwind;
1139 		}
1140 
1141 		for (i = 0; i < cxt.nrealwriters_stress; i++) {
1142 			cxt.lwsa[i].n_lock_fail = 0;
1143 			cxt.lwsa[i].n_lock_acquired = 0;
1144 		}
1145 	}
1146 
1147 	if (cxt.cur_ops->readlock) {
1148 		if (nreaders_stress >= 0)
1149 			cxt.nrealreaders_stress = nreaders_stress;
1150 		else {
1151 			/*
1152 			 * By default distribute evenly the number of
1153 			 * readers and writers. We still run the same number
1154 			 * of threads as the writer-only locks default.
1155 			 */
1156 			if (nwriters_stress < 0) /* user doesn't care */
1157 				cxt.nrealwriters_stress = num_online_cpus();
1158 			cxt.nrealreaders_stress = cxt.nrealwriters_stress;
1159 		}
1160 
1161 		if (nreaders_stress) {
1162 			cxt.lrsa = kmalloc_array(cxt.nrealreaders_stress,
1163 						 sizeof(*cxt.lrsa),
1164 						 GFP_KERNEL);
1165 			if (cxt.lrsa == NULL) {
1166 				VERBOSE_TOROUT_STRING("cxt.lrsa: Out of memory");
1167 				firsterr = -ENOMEM;
1168 				kfree(cxt.lwsa);
1169 				cxt.lwsa = NULL;
1170 				goto unwind;
1171 			}
1172 
1173 			for (i = 0; i < cxt.nrealreaders_stress; i++) {
1174 				cxt.lrsa[i].n_lock_fail = 0;
1175 				cxt.lrsa[i].n_lock_acquired = 0;
1176 			}
1177 		}
1178 	}
1179 
1180 	lock_torture_print_module_parms(cxt.cur_ops, "Start of test");
1181 
1182 	/* Prepare torture context. */
1183 	if (onoff_interval > 0) {
1184 		firsterr = torture_onoff_init(onoff_holdoff * HZ,
1185 					      onoff_interval * HZ, NULL);
1186 		if (torture_init_error(firsterr))
1187 			goto unwind;
1188 	}
1189 	if (shuffle_interval > 0) {
1190 		firsterr = torture_shuffle_init(shuffle_interval);
1191 		if (torture_init_error(firsterr))
1192 			goto unwind;
1193 	}
1194 	if (shutdown_secs > 0) {
1195 		firsterr = torture_shutdown_init(shutdown_secs,
1196 						 lock_torture_cleanup);
1197 		if (torture_init_error(firsterr))
1198 			goto unwind;
1199 	}
1200 	if (stutter > 0) {
1201 		firsterr = torture_stutter_init(stutter, stutter);
1202 		if (torture_init_error(firsterr))
1203 			goto unwind;
1204 	}
1205 
1206 	if (nwriters_stress) {
1207 		writer_tasks = kcalloc(cxt.nrealwriters_stress,
1208 				       sizeof(writer_tasks[0]),
1209 				       GFP_KERNEL);
1210 		if (writer_tasks == NULL) {
1211 			TOROUT_ERRSTRING("writer_tasks: Out of memory");
1212 			firsterr = -ENOMEM;
1213 			goto unwind;
1214 		}
1215 	}
1216 
1217 	/* cap nested_locks to MAX_NESTED_LOCKS */
1218 	if (nested_locks > MAX_NESTED_LOCKS)
1219 		nested_locks = MAX_NESTED_LOCKS;
1220 
1221 	if (cxt.cur_ops->readlock) {
1222 		reader_tasks = kcalloc(cxt.nrealreaders_stress,
1223 				       sizeof(reader_tasks[0]),
1224 				       GFP_KERNEL);
1225 		if (reader_tasks == NULL) {
1226 			TOROUT_ERRSTRING("reader_tasks: Out of memory");
1227 			kfree(writer_tasks);
1228 			writer_tasks = NULL;
1229 			firsterr = -ENOMEM;
1230 			goto unwind;
1231 		}
1232 	}
1233 
1234 	/*
1235 	 * Create the kthreads and start torturing (oh, those poor little locks).
1236 	 *
1237 	 * TODO: Note that we interleave writers with readers, giving writers a
1238 	 * slight advantage, by creating its kthread first. This can be modified
1239 	 * for very specific needs, or even let the user choose the policy, if
1240 	 * ever wanted.
1241 	 */
1242 	for (i = 0, j = 0; i < cxt.nrealwriters_stress ||
1243 		    j < cxt.nrealreaders_stress; i++, j++) {
1244 		if (i >= cxt.nrealwriters_stress)
1245 			goto create_reader;
1246 
1247 		/* Create writer. */
1248 		firsterr = torture_create_kthread_cb(lock_torture_writer, &cxt.lwsa[i],
1249 						     writer_tasks[i],
1250 						     writer_fifo ? sched_set_fifo : NULL);
1251 		if (torture_init_error(firsterr))
1252 			goto unwind;
1253 
1254 	create_reader:
1255 		if (cxt.cur_ops->readlock == NULL || (j >= cxt.nrealreaders_stress))
1256 			continue;
1257 		/* Create reader. */
1258 		firsterr = torture_create_kthread(lock_torture_reader, &cxt.lrsa[j],
1259 						  reader_tasks[j]);
1260 		if (torture_init_error(firsterr))
1261 			goto unwind;
1262 	}
1263 	if (stat_interval > 0) {
1264 		firsterr = torture_create_kthread(lock_torture_stats, NULL,
1265 						  stats_task);
1266 		if (torture_init_error(firsterr))
1267 			goto unwind;
1268 	}
1269 	torture_init_end();
1270 	return 0;
1271 
1272 unwind:
1273 	torture_init_end();
1274 	lock_torture_cleanup();
1275 	if (shutdown_secs) {
1276 		WARN_ON(!IS_MODULE(CONFIG_LOCK_TORTURE_TEST));
1277 		kernel_power_off();
1278 	}
1279 	return firsterr;
1280 }
1281 
1282 module_init(lock_torture_init);
1283 module_exit(lock_torture_cleanup);
1284