xref: /openbmc/linux/kernel/locking/lockdep.c (revision e6d03ac1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 
59 #include <asm/sections.h>
60 
61 #include "lockdep_internals.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65 
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72 
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79 
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82 
83 static __always_inline bool lockdep_enabled(void)
84 {
85 	if (!debug_locks)
86 		return false;
87 
88 	if (this_cpu_read(lockdep_recursion))
89 		return false;
90 
91 	if (current->lockdep_recursion)
92 		return false;
93 
94 	return true;
95 }
96 
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107 
108 static inline void lockdep_lock(void)
109 {
110 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111 
112 	__this_cpu_inc(lockdep_recursion);
113 	arch_spin_lock(&__lock);
114 	__owner = current;
115 }
116 
117 static inline void lockdep_unlock(void)
118 {
119 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120 
121 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122 		return;
123 
124 	__owner = NULL;
125 	arch_spin_unlock(&__lock);
126 	__this_cpu_dec(lockdep_recursion);
127 }
128 
129 static inline bool lockdep_assert_locked(void)
130 {
131 	return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133 
134 static struct task_struct *lockdep_selftest_task_struct;
135 
136 
137 static int graph_lock(void)
138 {
139 	lockdep_lock();
140 	/*
141 	 * Make sure that if another CPU detected a bug while
142 	 * walking the graph we dont change it (while the other
143 	 * CPU is busy printing out stuff with the graph lock
144 	 * dropped already)
145 	 */
146 	if (!debug_locks) {
147 		lockdep_unlock();
148 		return 0;
149 	}
150 	return 1;
151 }
152 
153 static inline void graph_unlock(void)
154 {
155 	lockdep_unlock();
156 }
157 
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164 	int ret = debug_locks_off();
165 
166 	lockdep_unlock();
167 
168 	return ret;
169 }
170 
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174 
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 #ifndef CONFIG_DEBUG_LOCKDEP
187 static
188 #endif
189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
191 
192 static inline struct lock_class *hlock_class(struct held_lock *hlock)
193 {
194 	unsigned int class_idx = hlock->class_idx;
195 
196 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
197 	barrier();
198 
199 	if (!test_bit(class_idx, lock_classes_in_use)) {
200 		/*
201 		 * Someone passed in garbage, we give up.
202 		 */
203 		DEBUG_LOCKS_WARN_ON(1);
204 		return NULL;
205 	}
206 
207 	/*
208 	 * At this point, if the passed hlock->class_idx is still garbage,
209 	 * we just have to live with it
210 	 */
211 	return lock_classes + class_idx;
212 }
213 
214 #ifdef CONFIG_LOCK_STAT
215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
216 
217 static inline u64 lockstat_clock(void)
218 {
219 	return local_clock();
220 }
221 
222 static int lock_point(unsigned long points[], unsigned long ip)
223 {
224 	int i;
225 
226 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
227 		if (points[i] == 0) {
228 			points[i] = ip;
229 			break;
230 		}
231 		if (points[i] == ip)
232 			break;
233 	}
234 
235 	return i;
236 }
237 
238 static void lock_time_inc(struct lock_time *lt, u64 time)
239 {
240 	if (time > lt->max)
241 		lt->max = time;
242 
243 	if (time < lt->min || !lt->nr)
244 		lt->min = time;
245 
246 	lt->total += time;
247 	lt->nr++;
248 }
249 
250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
251 {
252 	if (!src->nr)
253 		return;
254 
255 	if (src->max > dst->max)
256 		dst->max = src->max;
257 
258 	if (src->min < dst->min || !dst->nr)
259 		dst->min = src->min;
260 
261 	dst->total += src->total;
262 	dst->nr += src->nr;
263 }
264 
265 struct lock_class_stats lock_stats(struct lock_class *class)
266 {
267 	struct lock_class_stats stats;
268 	int cpu, i;
269 
270 	memset(&stats, 0, sizeof(struct lock_class_stats));
271 	for_each_possible_cpu(cpu) {
272 		struct lock_class_stats *pcs =
273 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
274 
275 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
276 			stats.contention_point[i] += pcs->contention_point[i];
277 
278 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
279 			stats.contending_point[i] += pcs->contending_point[i];
280 
281 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
282 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
283 
284 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
285 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
286 
287 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
288 			stats.bounces[i] += pcs->bounces[i];
289 	}
290 
291 	return stats;
292 }
293 
294 void clear_lock_stats(struct lock_class *class)
295 {
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		struct lock_class_stats *cpu_stats =
300 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
301 
302 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
303 	}
304 	memset(class->contention_point, 0, sizeof(class->contention_point));
305 	memset(class->contending_point, 0, sizeof(class->contending_point));
306 }
307 
308 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
309 {
310 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
311 }
312 
313 static void lock_release_holdtime(struct held_lock *hlock)
314 {
315 	struct lock_class_stats *stats;
316 	u64 holdtime;
317 
318 	if (!lock_stat)
319 		return;
320 
321 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
322 
323 	stats = get_lock_stats(hlock_class(hlock));
324 	if (hlock->read)
325 		lock_time_inc(&stats->read_holdtime, holdtime);
326 	else
327 		lock_time_inc(&stats->write_holdtime, holdtime);
328 }
329 #else
330 static inline void lock_release_holdtime(struct held_lock *hlock)
331 {
332 }
333 #endif
334 
335 /*
336  * We keep a global list of all lock classes. The list is only accessed with
337  * the lockdep spinlock lock held. free_lock_classes is a list with free
338  * elements. These elements are linked together by the lock_entry member in
339  * struct lock_class.
340  */
341 LIST_HEAD(all_lock_classes);
342 static LIST_HEAD(free_lock_classes);
343 
344 /**
345  * struct pending_free - information about data structures about to be freed
346  * @zapped: Head of a list with struct lock_class elements.
347  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
348  *	are about to be freed.
349  */
350 struct pending_free {
351 	struct list_head zapped;
352 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
353 };
354 
355 /**
356  * struct delayed_free - data structures used for delayed freeing
357  *
358  * A data structure for delayed freeing of data structures that may be
359  * accessed by RCU readers at the time these were freed.
360  *
361  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
362  * @index:     Index of @pf to which freed data structures are added.
363  * @scheduled: Whether or not an RCU callback has been scheduled.
364  * @pf:        Array with information about data structures about to be freed.
365  */
366 static struct delayed_free {
367 	struct rcu_head		rcu_head;
368 	int			index;
369 	int			scheduled;
370 	struct pending_free	pf[2];
371 } delayed_free;
372 
373 /*
374  * The lockdep classes are in a hash-table as well, for fast lookup:
375  */
376 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
377 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
378 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
379 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
380 
381 static struct hlist_head classhash_table[CLASSHASH_SIZE];
382 
383 /*
384  * We put the lock dependency chains into a hash-table as well, to cache
385  * their existence:
386  */
387 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
388 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
389 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
390 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
391 
392 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
393 
394 /*
395  * the id of held_lock
396  */
397 static inline u16 hlock_id(struct held_lock *hlock)
398 {
399 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
400 
401 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
402 }
403 
404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
405 {
406 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
407 }
408 
409 /*
410  * The hash key of the lock dependency chains is a hash itself too:
411  * it's a hash of all locks taken up to that lock, including that lock.
412  * It's a 64-bit hash, because it's important for the keys to be
413  * unique.
414  */
415 static inline u64 iterate_chain_key(u64 key, u32 idx)
416 {
417 	u32 k0 = key, k1 = key >> 32;
418 
419 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
420 
421 	return k0 | (u64)k1 << 32;
422 }
423 
424 void lockdep_init_task(struct task_struct *task)
425 {
426 	task->lockdep_depth = 0; /* no locks held yet */
427 	task->curr_chain_key = INITIAL_CHAIN_KEY;
428 	task->lockdep_recursion = 0;
429 }
430 
431 static __always_inline void lockdep_recursion_inc(void)
432 {
433 	__this_cpu_inc(lockdep_recursion);
434 }
435 
436 static __always_inline void lockdep_recursion_finish(void)
437 {
438 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
439 		__this_cpu_write(lockdep_recursion, 0);
440 }
441 
442 void lockdep_set_selftest_task(struct task_struct *task)
443 {
444 	lockdep_selftest_task_struct = task;
445 }
446 
447 /*
448  * Debugging switches:
449  */
450 
451 #define VERBOSE			0
452 #define VERY_VERBOSE		0
453 
454 #if VERBOSE
455 # define HARDIRQ_VERBOSE	1
456 # define SOFTIRQ_VERBOSE	1
457 #else
458 # define HARDIRQ_VERBOSE	0
459 # define SOFTIRQ_VERBOSE	0
460 #endif
461 
462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
463 /*
464  * Quick filtering for interesting events:
465  */
466 static int class_filter(struct lock_class *class)
467 {
468 #if 0
469 	/* Example */
470 	if (class->name_version == 1 &&
471 			!strcmp(class->name, "lockname"))
472 		return 1;
473 	if (class->name_version == 1 &&
474 			!strcmp(class->name, "&struct->lockfield"))
475 		return 1;
476 #endif
477 	/* Filter everything else. 1 would be to allow everything else */
478 	return 0;
479 }
480 #endif
481 
482 static int verbose(struct lock_class *class)
483 {
484 #if VERBOSE
485 	return class_filter(class);
486 #endif
487 	return 0;
488 }
489 
490 static void print_lockdep_off(const char *bug_msg)
491 {
492 	printk(KERN_DEBUG "%s\n", bug_msg);
493 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
494 #ifdef CONFIG_LOCK_STAT
495 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
496 #endif
497 }
498 
499 unsigned long nr_stack_trace_entries;
500 
501 #ifdef CONFIG_PROVE_LOCKING
502 /**
503  * struct lock_trace - single stack backtrace
504  * @hash_entry:	Entry in a stack_trace_hash[] list.
505  * @hash:	jhash() of @entries.
506  * @nr_entries:	Number of entries in @entries.
507  * @entries:	Actual stack backtrace.
508  */
509 struct lock_trace {
510 	struct hlist_node	hash_entry;
511 	u32			hash;
512 	u32			nr_entries;
513 	unsigned long		entries[] __aligned(sizeof(unsigned long));
514 };
515 #define LOCK_TRACE_SIZE_IN_LONGS				\
516 	(sizeof(struct lock_trace) / sizeof(unsigned long))
517 /*
518  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
519  */
520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
522 
523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
524 {
525 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
526 		memcmp(t1->entries, t2->entries,
527 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
528 }
529 
530 static struct lock_trace *save_trace(void)
531 {
532 	struct lock_trace *trace, *t2;
533 	struct hlist_head *hash_head;
534 	u32 hash;
535 	int max_entries;
536 
537 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
538 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
539 
540 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
541 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
542 		LOCK_TRACE_SIZE_IN_LONGS;
543 
544 	if (max_entries <= 0) {
545 		if (!debug_locks_off_graph_unlock())
546 			return NULL;
547 
548 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
549 		dump_stack();
550 
551 		return NULL;
552 	}
553 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
554 
555 	hash = jhash(trace->entries, trace->nr_entries *
556 		     sizeof(trace->entries[0]), 0);
557 	trace->hash = hash;
558 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
559 	hlist_for_each_entry(t2, hash_head, hash_entry) {
560 		if (traces_identical(trace, t2))
561 			return t2;
562 	}
563 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
564 	hlist_add_head(&trace->hash_entry, hash_head);
565 
566 	return trace;
567 }
568 
569 /* Return the number of stack traces in the stack_trace[] array. */
570 u64 lockdep_stack_trace_count(void)
571 {
572 	struct lock_trace *trace;
573 	u64 c = 0;
574 	int i;
575 
576 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
577 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
578 			c++;
579 		}
580 	}
581 
582 	return c;
583 }
584 
585 /* Return the number of stack hash chains that have at least one stack trace. */
586 u64 lockdep_stack_hash_count(void)
587 {
588 	u64 c = 0;
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
592 		if (!hlist_empty(&stack_trace_hash[i]))
593 			c++;
594 
595 	return c;
596 }
597 #endif
598 
599 unsigned int nr_hardirq_chains;
600 unsigned int nr_softirq_chains;
601 unsigned int nr_process_chains;
602 unsigned int max_lockdep_depth;
603 
604 #ifdef CONFIG_DEBUG_LOCKDEP
605 /*
606  * Various lockdep statistics:
607  */
608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
609 #endif
610 
611 #ifdef CONFIG_PROVE_LOCKING
612 /*
613  * Locking printouts:
614  */
615 
616 #define __USAGE(__STATE)						\
617 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
618 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
619 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
620 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
621 
622 static const char *usage_str[] =
623 {
624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
625 #include "lockdep_states.h"
626 #undef LOCKDEP_STATE
627 	[LOCK_USED] = "INITIAL USE",
628 	[LOCK_USED_READ] = "INITIAL READ USE",
629 	/* abused as string storage for verify_lock_unused() */
630 	[LOCK_USAGE_STATES] = "IN-NMI",
631 };
632 #endif
633 
634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
635 {
636 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
637 }
638 
639 static inline unsigned long lock_flag(enum lock_usage_bit bit)
640 {
641 	return 1UL << bit;
642 }
643 
644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
645 {
646 	/*
647 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
648 	 * irq context), which is the safest usage category.
649 	 */
650 	char c = '.';
651 
652 	/*
653 	 * The order of the following usage checks matters, which will
654 	 * result in the outcome character as follows:
655 	 *
656 	 * - '+': irq is enabled and not in irq context
657 	 * - '-': in irq context and irq is disabled
658 	 * - '?': in irq context and irq is enabled
659 	 */
660 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
661 		c = '+';
662 		if (class->usage_mask & lock_flag(bit))
663 			c = '?';
664 	} else if (class->usage_mask & lock_flag(bit))
665 		c = '-';
666 
667 	return c;
668 }
669 
670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
671 {
672 	int i = 0;
673 
674 #define LOCKDEP_STATE(__STATE) 						\
675 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
676 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
677 #include "lockdep_states.h"
678 #undef LOCKDEP_STATE
679 
680 	usage[i] = '\0';
681 }
682 
683 static void __print_lock_name(struct lock_class *class)
684 {
685 	char str[KSYM_NAME_LEN];
686 	const char *name;
687 
688 	name = class->name;
689 	if (!name) {
690 		name = __get_key_name(class->key, str);
691 		printk(KERN_CONT "%s", name);
692 	} else {
693 		printk(KERN_CONT "%s", name);
694 		if (class->name_version > 1)
695 			printk(KERN_CONT "#%d", class->name_version);
696 		if (class->subclass)
697 			printk(KERN_CONT "/%d", class->subclass);
698 	}
699 }
700 
701 static void print_lock_name(struct lock_class *class)
702 {
703 	char usage[LOCK_USAGE_CHARS];
704 
705 	get_usage_chars(class, usage);
706 
707 	printk(KERN_CONT " (");
708 	__print_lock_name(class);
709 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
710 			class->wait_type_outer ?: class->wait_type_inner,
711 			class->wait_type_inner);
712 }
713 
714 static void print_lockdep_cache(struct lockdep_map *lock)
715 {
716 	const char *name;
717 	char str[KSYM_NAME_LEN];
718 
719 	name = lock->name;
720 	if (!name)
721 		name = __get_key_name(lock->key->subkeys, str);
722 
723 	printk(KERN_CONT "%s", name);
724 }
725 
726 static void print_lock(struct held_lock *hlock)
727 {
728 	/*
729 	 * We can be called locklessly through debug_show_all_locks() so be
730 	 * extra careful, the hlock might have been released and cleared.
731 	 *
732 	 * If this indeed happens, lets pretend it does not hurt to continue
733 	 * to print the lock unless the hlock class_idx does not point to a
734 	 * registered class. The rationale here is: since we don't attempt
735 	 * to distinguish whether we are in this situation, if it just
736 	 * happened we can't count on class_idx to tell either.
737 	 */
738 	struct lock_class *lock = hlock_class(hlock);
739 
740 	if (!lock) {
741 		printk(KERN_CONT "<RELEASED>\n");
742 		return;
743 	}
744 
745 	printk(KERN_CONT "%px", hlock->instance);
746 	print_lock_name(lock);
747 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
748 }
749 
750 static void lockdep_print_held_locks(struct task_struct *p)
751 {
752 	int i, depth = READ_ONCE(p->lockdep_depth);
753 
754 	if (!depth)
755 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
756 	else
757 		printk("%d lock%s held by %s/%d:\n", depth,
758 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
759 	/*
760 	 * It's not reliable to print a task's held locks if it's not sleeping
761 	 * and it's not the current task.
762 	 */
763 	if (p != current && task_is_running(p))
764 		return;
765 	for (i = 0; i < depth; i++) {
766 		printk(" #%d: ", i);
767 		print_lock(p->held_locks + i);
768 	}
769 }
770 
771 static void print_kernel_ident(void)
772 {
773 	printk("%s %.*s %s\n", init_utsname()->release,
774 		(int)strcspn(init_utsname()->version, " "),
775 		init_utsname()->version,
776 		print_tainted());
777 }
778 
779 static int very_verbose(struct lock_class *class)
780 {
781 #if VERY_VERBOSE
782 	return class_filter(class);
783 #endif
784 	return 0;
785 }
786 
787 /*
788  * Is this the address of a static object:
789  */
790 #ifdef __KERNEL__
791 /*
792  * Check if an address is part of freed initmem. After initmem is freed,
793  * memory can be allocated from it, and such allocations would then have
794  * addresses within the range [_stext, _end].
795  */
796 #ifndef arch_is_kernel_initmem_freed
797 static int arch_is_kernel_initmem_freed(unsigned long addr)
798 {
799 	if (system_state < SYSTEM_FREEING_INITMEM)
800 		return 0;
801 
802 	return init_section_contains((void *)addr, 1);
803 }
804 #endif
805 
806 static int static_obj(const void *obj)
807 {
808 	unsigned long start = (unsigned long) &_stext,
809 		      end   = (unsigned long) &_end,
810 		      addr  = (unsigned long) obj;
811 
812 	if (arch_is_kernel_initmem_freed(addr))
813 		return 0;
814 
815 	/*
816 	 * static variable?
817 	 */
818 	if ((addr >= start) && (addr < end))
819 		return 1;
820 
821 	/*
822 	 * in-kernel percpu var?
823 	 */
824 	if (is_kernel_percpu_address(addr))
825 		return 1;
826 
827 	/*
828 	 * module static or percpu var?
829 	 */
830 	return is_module_address(addr) || is_module_percpu_address(addr);
831 }
832 #endif
833 
834 /*
835  * To make lock name printouts unique, we calculate a unique
836  * class->name_version generation counter. The caller must hold the graph
837  * lock.
838  */
839 static int count_matching_names(struct lock_class *new_class)
840 {
841 	struct lock_class *class;
842 	int count = 0;
843 
844 	if (!new_class->name)
845 		return 0;
846 
847 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
848 		if (new_class->key - new_class->subclass == class->key)
849 			return class->name_version;
850 		if (class->name && !strcmp(class->name, new_class->name))
851 			count = max(count, class->name_version);
852 	}
853 
854 	return count + 1;
855 }
856 
857 /* used from NMI context -- must be lockless */
858 static noinstr struct lock_class *
859 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
860 {
861 	struct lockdep_subclass_key *key;
862 	struct hlist_head *hash_head;
863 	struct lock_class *class;
864 
865 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
866 		instrumentation_begin();
867 		debug_locks_off();
868 		printk(KERN_ERR
869 			"BUG: looking up invalid subclass: %u\n", subclass);
870 		printk(KERN_ERR
871 			"turning off the locking correctness validator.\n");
872 		dump_stack();
873 		instrumentation_end();
874 		return NULL;
875 	}
876 
877 	/*
878 	 * If it is not initialised then it has never been locked,
879 	 * so it won't be present in the hash table.
880 	 */
881 	if (unlikely(!lock->key))
882 		return NULL;
883 
884 	/*
885 	 * NOTE: the class-key must be unique. For dynamic locks, a static
886 	 * lock_class_key variable is passed in through the mutex_init()
887 	 * (or spin_lock_init()) call - which acts as the key. For static
888 	 * locks we use the lock object itself as the key.
889 	 */
890 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
891 			sizeof(struct lockdep_map));
892 
893 	key = lock->key->subkeys + subclass;
894 
895 	hash_head = classhashentry(key);
896 
897 	/*
898 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
899 	 */
900 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
901 		return NULL;
902 
903 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
904 		if (class->key == key) {
905 			/*
906 			 * Huh! same key, different name? Did someone trample
907 			 * on some memory? We're most confused.
908 			 */
909 			WARN_ON_ONCE(class->name != lock->name &&
910 				     lock->key != &__lockdep_no_validate__);
911 			return class;
912 		}
913 	}
914 
915 	return NULL;
916 }
917 
918 /*
919  * Static locks do not have their class-keys yet - for them the key is
920  * the lock object itself. If the lock is in the per cpu area, the
921  * canonical address of the lock (per cpu offset removed) is used.
922  */
923 static bool assign_lock_key(struct lockdep_map *lock)
924 {
925 	unsigned long can_addr, addr = (unsigned long)lock;
926 
927 #ifdef __KERNEL__
928 	/*
929 	 * lockdep_free_key_range() assumes that struct lock_class_key
930 	 * objects do not overlap. Since we use the address of lock
931 	 * objects as class key for static objects, check whether the
932 	 * size of lock_class_key objects does not exceed the size of
933 	 * the smallest lock object.
934 	 */
935 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
936 #endif
937 
938 	if (__is_kernel_percpu_address(addr, &can_addr))
939 		lock->key = (void *)can_addr;
940 	else if (__is_module_percpu_address(addr, &can_addr))
941 		lock->key = (void *)can_addr;
942 	else if (static_obj(lock))
943 		lock->key = (void *)lock;
944 	else {
945 		/* Debug-check: all keys must be persistent! */
946 		debug_locks_off();
947 		pr_err("INFO: trying to register non-static key.\n");
948 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
949 		pr_err("you didn't initialize this object before use?\n");
950 		pr_err("turning off the locking correctness validator.\n");
951 		dump_stack();
952 		return false;
953 	}
954 
955 	return true;
956 }
957 
958 #ifdef CONFIG_DEBUG_LOCKDEP
959 
960 /* Check whether element @e occurs in list @h */
961 static bool in_list(struct list_head *e, struct list_head *h)
962 {
963 	struct list_head *f;
964 
965 	list_for_each(f, h) {
966 		if (e == f)
967 			return true;
968 	}
969 
970 	return false;
971 }
972 
973 /*
974  * Check whether entry @e occurs in any of the locks_after or locks_before
975  * lists.
976  */
977 static bool in_any_class_list(struct list_head *e)
978 {
979 	struct lock_class *class;
980 	int i;
981 
982 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
983 		class = &lock_classes[i];
984 		if (in_list(e, &class->locks_after) ||
985 		    in_list(e, &class->locks_before))
986 			return true;
987 	}
988 	return false;
989 }
990 
991 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
992 {
993 	struct lock_list *e;
994 
995 	list_for_each_entry(e, h, entry) {
996 		if (e->links_to != c) {
997 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
998 			       c->name ? : "(?)",
999 			       (unsigned long)(e - list_entries),
1000 			       e->links_to && e->links_to->name ?
1001 			       e->links_to->name : "(?)",
1002 			       e->class && e->class->name ? e->class->name :
1003 			       "(?)");
1004 			return false;
1005 		}
1006 	}
1007 	return true;
1008 }
1009 
1010 #ifdef CONFIG_PROVE_LOCKING
1011 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1012 #endif
1013 
1014 static bool check_lock_chain_key(struct lock_chain *chain)
1015 {
1016 #ifdef CONFIG_PROVE_LOCKING
1017 	u64 chain_key = INITIAL_CHAIN_KEY;
1018 	int i;
1019 
1020 	for (i = chain->base; i < chain->base + chain->depth; i++)
1021 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1022 	/*
1023 	 * The 'unsigned long long' casts avoid that a compiler warning
1024 	 * is reported when building tools/lib/lockdep.
1025 	 */
1026 	if (chain->chain_key != chain_key) {
1027 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1028 		       (unsigned long long)(chain - lock_chains),
1029 		       (unsigned long long)chain->chain_key,
1030 		       (unsigned long long)chain_key);
1031 		return false;
1032 	}
1033 #endif
1034 	return true;
1035 }
1036 
1037 static bool in_any_zapped_class_list(struct lock_class *class)
1038 {
1039 	struct pending_free *pf;
1040 	int i;
1041 
1042 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1043 		if (in_list(&class->lock_entry, &pf->zapped))
1044 			return true;
1045 	}
1046 
1047 	return false;
1048 }
1049 
1050 static bool __check_data_structures(void)
1051 {
1052 	struct lock_class *class;
1053 	struct lock_chain *chain;
1054 	struct hlist_head *head;
1055 	struct lock_list *e;
1056 	int i;
1057 
1058 	/* Check whether all classes occur in a lock list. */
1059 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1060 		class = &lock_classes[i];
1061 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1062 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1063 		    !in_any_zapped_class_list(class)) {
1064 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1065 			       class, class->name ? : "(?)");
1066 			return false;
1067 		}
1068 	}
1069 
1070 	/* Check whether all classes have valid lock lists. */
1071 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1072 		class = &lock_classes[i];
1073 		if (!class_lock_list_valid(class, &class->locks_before))
1074 			return false;
1075 		if (!class_lock_list_valid(class, &class->locks_after))
1076 			return false;
1077 	}
1078 
1079 	/* Check the chain_key of all lock chains. */
1080 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1081 		head = chainhash_table + i;
1082 		hlist_for_each_entry_rcu(chain, head, entry) {
1083 			if (!check_lock_chain_key(chain))
1084 				return false;
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Check whether all list entries that are in use occur in a class
1090 	 * lock list.
1091 	 */
1092 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1093 		e = list_entries + i;
1094 		if (!in_any_class_list(&e->entry)) {
1095 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1096 			       (unsigned int)(e - list_entries),
1097 			       e->class->name ? : "(?)",
1098 			       e->links_to->name ? : "(?)");
1099 			return false;
1100 		}
1101 	}
1102 
1103 	/*
1104 	 * Check whether all list entries that are not in use do not occur in
1105 	 * a class lock list.
1106 	 */
1107 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1108 		e = list_entries + i;
1109 		if (in_any_class_list(&e->entry)) {
1110 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1111 			       (unsigned int)(e - list_entries),
1112 			       e->class && e->class->name ? e->class->name :
1113 			       "(?)",
1114 			       e->links_to && e->links_to->name ?
1115 			       e->links_to->name : "(?)");
1116 			return false;
1117 		}
1118 	}
1119 
1120 	return true;
1121 }
1122 
1123 int check_consistency = 0;
1124 module_param(check_consistency, int, 0644);
1125 
1126 static void check_data_structures(void)
1127 {
1128 	static bool once = false;
1129 
1130 	if (check_consistency && !once) {
1131 		if (!__check_data_structures()) {
1132 			once = true;
1133 			WARN_ON(once);
1134 		}
1135 	}
1136 }
1137 
1138 #else /* CONFIG_DEBUG_LOCKDEP */
1139 
1140 static inline void check_data_structures(void) { }
1141 
1142 #endif /* CONFIG_DEBUG_LOCKDEP */
1143 
1144 static void init_chain_block_buckets(void);
1145 
1146 /*
1147  * Initialize the lock_classes[] array elements, the free_lock_classes list
1148  * and also the delayed_free structure.
1149  */
1150 static void init_data_structures_once(void)
1151 {
1152 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1153 	int i;
1154 
1155 	if (likely(rcu_head_initialized))
1156 		return;
1157 
1158 	if (system_state >= SYSTEM_SCHEDULING) {
1159 		init_rcu_head(&delayed_free.rcu_head);
1160 		rcu_head_initialized = true;
1161 	}
1162 
1163 	if (ds_initialized)
1164 		return;
1165 
1166 	ds_initialized = true;
1167 
1168 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1169 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1170 
1171 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1172 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1173 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1174 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1175 	}
1176 	init_chain_block_buckets();
1177 }
1178 
1179 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1180 {
1181 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1182 
1183 	return lock_keys_hash + hash;
1184 }
1185 
1186 /* Register a dynamically allocated key. */
1187 void lockdep_register_key(struct lock_class_key *key)
1188 {
1189 	struct hlist_head *hash_head;
1190 	struct lock_class_key *k;
1191 	unsigned long flags;
1192 
1193 	if (WARN_ON_ONCE(static_obj(key)))
1194 		return;
1195 	hash_head = keyhashentry(key);
1196 
1197 	raw_local_irq_save(flags);
1198 	if (!graph_lock())
1199 		goto restore_irqs;
1200 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1201 		if (WARN_ON_ONCE(k == key))
1202 			goto out_unlock;
1203 	}
1204 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1205 out_unlock:
1206 	graph_unlock();
1207 restore_irqs:
1208 	raw_local_irq_restore(flags);
1209 }
1210 EXPORT_SYMBOL_GPL(lockdep_register_key);
1211 
1212 /* Check whether a key has been registered as a dynamic key. */
1213 static bool is_dynamic_key(const struct lock_class_key *key)
1214 {
1215 	struct hlist_head *hash_head;
1216 	struct lock_class_key *k;
1217 	bool found = false;
1218 
1219 	if (WARN_ON_ONCE(static_obj(key)))
1220 		return false;
1221 
1222 	/*
1223 	 * If lock debugging is disabled lock_keys_hash[] may contain
1224 	 * pointers to memory that has already been freed. Avoid triggering
1225 	 * a use-after-free in that case by returning early.
1226 	 */
1227 	if (!debug_locks)
1228 		return true;
1229 
1230 	hash_head = keyhashentry(key);
1231 
1232 	rcu_read_lock();
1233 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1234 		if (k == key) {
1235 			found = true;
1236 			break;
1237 		}
1238 	}
1239 	rcu_read_unlock();
1240 
1241 	return found;
1242 }
1243 
1244 /*
1245  * Register a lock's class in the hash-table, if the class is not present
1246  * yet. Otherwise we look it up. We cache the result in the lock object
1247  * itself, so actual lookup of the hash should be once per lock object.
1248  */
1249 static struct lock_class *
1250 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1251 {
1252 	struct lockdep_subclass_key *key;
1253 	struct hlist_head *hash_head;
1254 	struct lock_class *class;
1255 
1256 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1257 
1258 	class = look_up_lock_class(lock, subclass);
1259 	if (likely(class))
1260 		goto out_set_class_cache;
1261 
1262 	if (!lock->key) {
1263 		if (!assign_lock_key(lock))
1264 			return NULL;
1265 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1266 		return NULL;
1267 	}
1268 
1269 	key = lock->key->subkeys + subclass;
1270 	hash_head = classhashentry(key);
1271 
1272 	if (!graph_lock()) {
1273 		return NULL;
1274 	}
1275 	/*
1276 	 * We have to do the hash-walk again, to avoid races
1277 	 * with another CPU:
1278 	 */
1279 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1280 		if (class->key == key)
1281 			goto out_unlock_set;
1282 	}
1283 
1284 	init_data_structures_once();
1285 
1286 	/* Allocate a new lock class and add it to the hash. */
1287 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1288 					 lock_entry);
1289 	if (!class) {
1290 		if (!debug_locks_off_graph_unlock()) {
1291 			return NULL;
1292 		}
1293 
1294 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1295 		dump_stack();
1296 		return NULL;
1297 	}
1298 	nr_lock_classes++;
1299 	__set_bit(class - lock_classes, lock_classes_in_use);
1300 	debug_atomic_inc(nr_unused_locks);
1301 	class->key = key;
1302 	class->name = lock->name;
1303 	class->subclass = subclass;
1304 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1305 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1306 	class->name_version = count_matching_names(class);
1307 	class->wait_type_inner = lock->wait_type_inner;
1308 	class->wait_type_outer = lock->wait_type_outer;
1309 	class->lock_type = lock->lock_type;
1310 	/*
1311 	 * We use RCU's safe list-add method to make
1312 	 * parallel walking of the hash-list safe:
1313 	 */
1314 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1315 	/*
1316 	 * Remove the class from the free list and add it to the global list
1317 	 * of classes.
1318 	 */
1319 	list_move_tail(&class->lock_entry, &all_lock_classes);
1320 
1321 	if (verbose(class)) {
1322 		graph_unlock();
1323 
1324 		printk("\nnew class %px: %s", class->key, class->name);
1325 		if (class->name_version > 1)
1326 			printk(KERN_CONT "#%d", class->name_version);
1327 		printk(KERN_CONT "\n");
1328 		dump_stack();
1329 
1330 		if (!graph_lock()) {
1331 			return NULL;
1332 		}
1333 	}
1334 out_unlock_set:
1335 	graph_unlock();
1336 
1337 out_set_class_cache:
1338 	if (!subclass || force)
1339 		lock->class_cache[0] = class;
1340 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1341 		lock->class_cache[subclass] = class;
1342 
1343 	/*
1344 	 * Hash collision, did we smoke some? We found a class with a matching
1345 	 * hash but the subclass -- which is hashed in -- didn't match.
1346 	 */
1347 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1348 		return NULL;
1349 
1350 	return class;
1351 }
1352 
1353 #ifdef CONFIG_PROVE_LOCKING
1354 /*
1355  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1356  * with NULL on failure)
1357  */
1358 static struct lock_list *alloc_list_entry(void)
1359 {
1360 	int idx = find_first_zero_bit(list_entries_in_use,
1361 				      ARRAY_SIZE(list_entries));
1362 
1363 	if (idx >= ARRAY_SIZE(list_entries)) {
1364 		if (!debug_locks_off_graph_unlock())
1365 			return NULL;
1366 
1367 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1368 		dump_stack();
1369 		return NULL;
1370 	}
1371 	nr_list_entries++;
1372 	__set_bit(idx, list_entries_in_use);
1373 	return list_entries + idx;
1374 }
1375 
1376 /*
1377  * Add a new dependency to the head of the list:
1378  */
1379 static int add_lock_to_list(struct lock_class *this,
1380 			    struct lock_class *links_to, struct list_head *head,
1381 			    unsigned long ip, u16 distance, u8 dep,
1382 			    const struct lock_trace *trace)
1383 {
1384 	struct lock_list *entry;
1385 	/*
1386 	 * Lock not present yet - get a new dependency struct and
1387 	 * add it to the list:
1388 	 */
1389 	entry = alloc_list_entry();
1390 	if (!entry)
1391 		return 0;
1392 
1393 	entry->class = this;
1394 	entry->links_to = links_to;
1395 	entry->dep = dep;
1396 	entry->distance = distance;
1397 	entry->trace = trace;
1398 	/*
1399 	 * Both allocation and removal are done under the graph lock; but
1400 	 * iteration is under RCU-sched; see look_up_lock_class() and
1401 	 * lockdep_free_key_range().
1402 	 */
1403 	list_add_tail_rcu(&entry->entry, head);
1404 
1405 	return 1;
1406 }
1407 
1408 /*
1409  * For good efficiency of modular, we use power of 2
1410  */
1411 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1412 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1413 
1414 /*
1415  * The circular_queue and helpers are used to implement graph
1416  * breadth-first search (BFS) algorithm, by which we can determine
1417  * whether there is a path from a lock to another. In deadlock checks,
1418  * a path from the next lock to be acquired to a previous held lock
1419  * indicates that adding the <prev> -> <next> lock dependency will
1420  * produce a circle in the graph. Breadth-first search instead of
1421  * depth-first search is used in order to find the shortest (circular)
1422  * path.
1423  */
1424 struct circular_queue {
1425 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1426 	unsigned int  front, rear;
1427 };
1428 
1429 static struct circular_queue lock_cq;
1430 
1431 unsigned int max_bfs_queue_depth;
1432 
1433 static unsigned int lockdep_dependency_gen_id;
1434 
1435 static inline void __cq_init(struct circular_queue *cq)
1436 {
1437 	cq->front = cq->rear = 0;
1438 	lockdep_dependency_gen_id++;
1439 }
1440 
1441 static inline int __cq_empty(struct circular_queue *cq)
1442 {
1443 	return (cq->front == cq->rear);
1444 }
1445 
1446 static inline int __cq_full(struct circular_queue *cq)
1447 {
1448 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1449 }
1450 
1451 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1452 {
1453 	if (__cq_full(cq))
1454 		return -1;
1455 
1456 	cq->element[cq->rear] = elem;
1457 	cq->rear = (cq->rear + 1) & CQ_MASK;
1458 	return 0;
1459 }
1460 
1461 /*
1462  * Dequeue an element from the circular_queue, return a lock_list if
1463  * the queue is not empty, or NULL if otherwise.
1464  */
1465 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1466 {
1467 	struct lock_list * lock;
1468 
1469 	if (__cq_empty(cq))
1470 		return NULL;
1471 
1472 	lock = cq->element[cq->front];
1473 	cq->front = (cq->front + 1) & CQ_MASK;
1474 
1475 	return lock;
1476 }
1477 
1478 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1479 {
1480 	return (cq->rear - cq->front) & CQ_MASK;
1481 }
1482 
1483 static inline void mark_lock_accessed(struct lock_list *lock)
1484 {
1485 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1486 }
1487 
1488 static inline void visit_lock_entry(struct lock_list *lock,
1489 				    struct lock_list *parent)
1490 {
1491 	lock->parent = parent;
1492 }
1493 
1494 static inline unsigned long lock_accessed(struct lock_list *lock)
1495 {
1496 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1497 }
1498 
1499 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1500 {
1501 	return child->parent;
1502 }
1503 
1504 static inline int get_lock_depth(struct lock_list *child)
1505 {
1506 	int depth = 0;
1507 	struct lock_list *parent;
1508 
1509 	while ((parent = get_lock_parent(child))) {
1510 		child = parent;
1511 		depth++;
1512 	}
1513 	return depth;
1514 }
1515 
1516 /*
1517  * Return the forward or backward dependency list.
1518  *
1519  * @lock:   the lock_list to get its class's dependency list
1520  * @offset: the offset to struct lock_class to determine whether it is
1521  *          locks_after or locks_before
1522  */
1523 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1524 {
1525 	void *lock_class = lock->class;
1526 
1527 	return lock_class + offset;
1528 }
1529 /*
1530  * Return values of a bfs search:
1531  *
1532  * BFS_E* indicates an error
1533  * BFS_R* indicates a result (match or not)
1534  *
1535  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1536  *
1537  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1538  *
1539  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1540  *             *@target_entry.
1541  *
1542  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1543  *               _unchanged_.
1544  */
1545 enum bfs_result {
1546 	BFS_EINVALIDNODE = -2,
1547 	BFS_EQUEUEFULL = -1,
1548 	BFS_RMATCH = 0,
1549 	BFS_RNOMATCH = 1,
1550 };
1551 
1552 /*
1553  * bfs_result < 0 means error
1554  */
1555 static inline bool bfs_error(enum bfs_result res)
1556 {
1557 	return res < 0;
1558 }
1559 
1560 /*
1561  * DEP_*_BIT in lock_list::dep
1562  *
1563  * For dependency @prev -> @next:
1564  *
1565  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1566  *       (->read == 2)
1567  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1568  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1569  *   EN: @prev is exclusive locker and @next is non-recursive locker
1570  *
1571  * Note that we define the value of DEP_*_BITs so that:
1572  *   bit0 is prev->read == 0
1573  *   bit1 is next->read != 2
1574  */
1575 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1576 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1577 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1578 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1579 
1580 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1581 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1582 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1583 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1584 
1585 static inline unsigned int
1586 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1587 {
1588 	return (prev->read == 0) + ((next->read != 2) << 1);
1589 }
1590 
1591 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1592 {
1593 	return 1U << __calc_dep_bit(prev, next);
1594 }
1595 
1596 /*
1597  * calculate the dep_bit for backwards edges. We care about whether @prev is
1598  * shared and whether @next is recursive.
1599  */
1600 static inline unsigned int
1601 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1602 {
1603 	return (next->read != 2) + ((prev->read == 0) << 1);
1604 }
1605 
1606 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1607 {
1608 	return 1U << __calc_dep_bitb(prev, next);
1609 }
1610 
1611 /*
1612  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1613  * search.
1614  */
1615 static inline void __bfs_init_root(struct lock_list *lock,
1616 				   struct lock_class *class)
1617 {
1618 	lock->class = class;
1619 	lock->parent = NULL;
1620 	lock->only_xr = 0;
1621 }
1622 
1623 /*
1624  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1625  * root for a BFS search.
1626  *
1627  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1628  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1629  * and -(S*)->.
1630  */
1631 static inline void bfs_init_root(struct lock_list *lock,
1632 				 struct held_lock *hlock)
1633 {
1634 	__bfs_init_root(lock, hlock_class(hlock));
1635 	lock->only_xr = (hlock->read == 2);
1636 }
1637 
1638 /*
1639  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1640  *
1641  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1642  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1643  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1644  */
1645 static inline void bfs_init_rootb(struct lock_list *lock,
1646 				  struct held_lock *hlock)
1647 {
1648 	__bfs_init_root(lock, hlock_class(hlock));
1649 	lock->only_xr = (hlock->read != 0);
1650 }
1651 
1652 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1653 {
1654 	if (!lock || !lock->parent)
1655 		return NULL;
1656 
1657 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1658 				     &lock->entry, struct lock_list, entry);
1659 }
1660 
1661 /*
1662  * Breadth-First Search to find a strong path in the dependency graph.
1663  *
1664  * @source_entry: the source of the path we are searching for.
1665  * @data: data used for the second parameter of @match function
1666  * @match: match function for the search
1667  * @target_entry: pointer to the target of a matched path
1668  * @offset: the offset to struct lock_class to determine whether it is
1669  *          locks_after or locks_before
1670  *
1671  * We may have multiple edges (considering different kinds of dependencies,
1672  * e.g. ER and SN) between two nodes in the dependency graph. But
1673  * only the strong dependency path in the graph is relevant to deadlocks. A
1674  * strong dependency path is a dependency path that doesn't have two adjacent
1675  * dependencies as -(*R)-> -(S*)->, please see:
1676  *
1677  *         Documentation/locking/lockdep-design.rst
1678  *
1679  * for more explanation of the definition of strong dependency paths
1680  *
1681  * In __bfs(), we only traverse in the strong dependency path:
1682  *
1683  *     In lock_list::only_xr, we record whether the previous dependency only
1684  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1685  *     filter out any -(S*)-> in the current dependency and after that, the
1686  *     ->only_xr is set according to whether we only have -(*R)-> left.
1687  */
1688 static enum bfs_result __bfs(struct lock_list *source_entry,
1689 			     void *data,
1690 			     bool (*match)(struct lock_list *entry, void *data),
1691 			     bool (*skip)(struct lock_list *entry, void *data),
1692 			     struct lock_list **target_entry,
1693 			     int offset)
1694 {
1695 	struct circular_queue *cq = &lock_cq;
1696 	struct lock_list *lock = NULL;
1697 	struct lock_list *entry;
1698 	struct list_head *head;
1699 	unsigned int cq_depth;
1700 	bool first;
1701 
1702 	lockdep_assert_locked();
1703 
1704 	__cq_init(cq);
1705 	__cq_enqueue(cq, source_entry);
1706 
1707 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1708 		if (!lock->class)
1709 			return BFS_EINVALIDNODE;
1710 
1711 		/*
1712 		 * Step 1: check whether we already finish on this one.
1713 		 *
1714 		 * If we have visited all the dependencies from this @lock to
1715 		 * others (iow, if we have visited all lock_list entries in
1716 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1717 		 * and visit all the dependencies in the list and mark this
1718 		 * list accessed.
1719 		 */
1720 		if (lock_accessed(lock))
1721 			continue;
1722 		else
1723 			mark_lock_accessed(lock);
1724 
1725 		/*
1726 		 * Step 2: check whether prev dependency and this form a strong
1727 		 *         dependency path.
1728 		 */
1729 		if (lock->parent) { /* Parent exists, check prev dependency */
1730 			u8 dep = lock->dep;
1731 			bool prev_only_xr = lock->parent->only_xr;
1732 
1733 			/*
1734 			 * Mask out all -(S*)-> if we only have *R in previous
1735 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1736 			 * dependency.
1737 			 */
1738 			if (prev_only_xr)
1739 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1740 
1741 			/* If nothing left, we skip */
1742 			if (!dep)
1743 				continue;
1744 
1745 			/* If there are only -(*R)-> left, set that for the next step */
1746 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1747 		}
1748 
1749 		/*
1750 		 * Step 3: we haven't visited this and there is a strong
1751 		 *         dependency path to this, so check with @match.
1752 		 *         If @skip is provide and returns true, we skip this
1753 		 *         lock (and any path this lock is in).
1754 		 */
1755 		if (skip && skip(lock, data))
1756 			continue;
1757 
1758 		if (match(lock, data)) {
1759 			*target_entry = lock;
1760 			return BFS_RMATCH;
1761 		}
1762 
1763 		/*
1764 		 * Step 4: if not match, expand the path by adding the
1765 		 *         forward or backwards dependencies in the search
1766 		 *
1767 		 */
1768 		first = true;
1769 		head = get_dep_list(lock, offset);
1770 		list_for_each_entry_rcu(entry, head, entry) {
1771 			visit_lock_entry(entry, lock);
1772 
1773 			/*
1774 			 * Note we only enqueue the first of the list into the
1775 			 * queue, because we can always find a sibling
1776 			 * dependency from one (see __bfs_next()), as a result
1777 			 * the space of queue is saved.
1778 			 */
1779 			if (!first)
1780 				continue;
1781 
1782 			first = false;
1783 
1784 			if (__cq_enqueue(cq, entry))
1785 				return BFS_EQUEUEFULL;
1786 
1787 			cq_depth = __cq_get_elem_count(cq);
1788 			if (max_bfs_queue_depth < cq_depth)
1789 				max_bfs_queue_depth = cq_depth;
1790 		}
1791 	}
1792 
1793 	return BFS_RNOMATCH;
1794 }
1795 
1796 static inline enum bfs_result
1797 __bfs_forwards(struct lock_list *src_entry,
1798 	       void *data,
1799 	       bool (*match)(struct lock_list *entry, void *data),
1800 	       bool (*skip)(struct lock_list *entry, void *data),
1801 	       struct lock_list **target_entry)
1802 {
1803 	return __bfs(src_entry, data, match, skip, target_entry,
1804 		     offsetof(struct lock_class, locks_after));
1805 
1806 }
1807 
1808 static inline enum bfs_result
1809 __bfs_backwards(struct lock_list *src_entry,
1810 		void *data,
1811 		bool (*match)(struct lock_list *entry, void *data),
1812 	       bool (*skip)(struct lock_list *entry, void *data),
1813 		struct lock_list **target_entry)
1814 {
1815 	return __bfs(src_entry, data, match, skip, target_entry,
1816 		     offsetof(struct lock_class, locks_before));
1817 
1818 }
1819 
1820 static void print_lock_trace(const struct lock_trace *trace,
1821 			     unsigned int spaces)
1822 {
1823 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1824 }
1825 
1826 /*
1827  * Print a dependency chain entry (this is only done when a deadlock
1828  * has been detected):
1829  */
1830 static noinline void
1831 print_circular_bug_entry(struct lock_list *target, int depth)
1832 {
1833 	if (debug_locks_silent)
1834 		return;
1835 	printk("\n-> #%u", depth);
1836 	print_lock_name(target->class);
1837 	printk(KERN_CONT ":\n");
1838 	print_lock_trace(target->trace, 6);
1839 }
1840 
1841 static void
1842 print_circular_lock_scenario(struct held_lock *src,
1843 			     struct held_lock *tgt,
1844 			     struct lock_list *prt)
1845 {
1846 	struct lock_class *source = hlock_class(src);
1847 	struct lock_class *target = hlock_class(tgt);
1848 	struct lock_class *parent = prt->class;
1849 
1850 	/*
1851 	 * A direct locking problem where unsafe_class lock is taken
1852 	 * directly by safe_class lock, then all we need to show
1853 	 * is the deadlock scenario, as it is obvious that the
1854 	 * unsafe lock is taken under the safe lock.
1855 	 *
1856 	 * But if there is a chain instead, where the safe lock takes
1857 	 * an intermediate lock (middle_class) where this lock is
1858 	 * not the same as the safe lock, then the lock chain is
1859 	 * used to describe the problem. Otherwise we would need
1860 	 * to show a different CPU case for each link in the chain
1861 	 * from the safe_class lock to the unsafe_class lock.
1862 	 */
1863 	if (parent != source) {
1864 		printk("Chain exists of:\n  ");
1865 		__print_lock_name(source);
1866 		printk(KERN_CONT " --> ");
1867 		__print_lock_name(parent);
1868 		printk(KERN_CONT " --> ");
1869 		__print_lock_name(target);
1870 		printk(KERN_CONT "\n\n");
1871 	}
1872 
1873 	printk(" Possible unsafe locking scenario:\n\n");
1874 	printk("       CPU0                    CPU1\n");
1875 	printk("       ----                    ----\n");
1876 	printk("  lock(");
1877 	__print_lock_name(target);
1878 	printk(KERN_CONT ");\n");
1879 	printk("                               lock(");
1880 	__print_lock_name(parent);
1881 	printk(KERN_CONT ");\n");
1882 	printk("                               lock(");
1883 	__print_lock_name(target);
1884 	printk(KERN_CONT ");\n");
1885 	printk("  lock(");
1886 	__print_lock_name(source);
1887 	printk(KERN_CONT ");\n");
1888 	printk("\n *** DEADLOCK ***\n\n");
1889 }
1890 
1891 /*
1892  * When a circular dependency is detected, print the
1893  * header first:
1894  */
1895 static noinline void
1896 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1897 			struct held_lock *check_src,
1898 			struct held_lock *check_tgt)
1899 {
1900 	struct task_struct *curr = current;
1901 
1902 	if (debug_locks_silent)
1903 		return;
1904 
1905 	pr_warn("\n");
1906 	pr_warn("======================================================\n");
1907 	pr_warn("WARNING: possible circular locking dependency detected\n");
1908 	print_kernel_ident();
1909 	pr_warn("------------------------------------------------------\n");
1910 	pr_warn("%s/%d is trying to acquire lock:\n",
1911 		curr->comm, task_pid_nr(curr));
1912 	print_lock(check_src);
1913 
1914 	pr_warn("\nbut task is already holding lock:\n");
1915 
1916 	print_lock(check_tgt);
1917 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1918 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1919 
1920 	print_circular_bug_entry(entry, depth);
1921 }
1922 
1923 /*
1924  * We are about to add A -> B into the dependency graph, and in __bfs() a
1925  * strong dependency path A -> .. -> B is found: hlock_class equals
1926  * entry->class.
1927  *
1928  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1929  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1930  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1931  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1932  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1933  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1934  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1935  *
1936  * We need to make sure both the start and the end of A -> .. -> B is not
1937  * weaker than A -> B. For the start part, please see the comment in
1938  * check_redundant(). For the end part, we need:
1939  *
1940  * Either
1941  *
1942  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1943  *
1944  * or
1945  *
1946  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1947  *
1948  */
1949 static inline bool hlock_equal(struct lock_list *entry, void *data)
1950 {
1951 	struct held_lock *hlock = (struct held_lock *)data;
1952 
1953 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1954 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1955 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1956 }
1957 
1958 /*
1959  * We are about to add B -> A into the dependency graph, and in __bfs() a
1960  * strong dependency path A -> .. -> B is found: hlock_class equals
1961  * entry->class.
1962  *
1963  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1964  * dependency cycle, that means:
1965  *
1966  * Either
1967  *
1968  *     a) B -> A is -(E*)->
1969  *
1970  * or
1971  *
1972  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1973  *
1974  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1975  */
1976 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1977 {
1978 	struct held_lock *hlock = (struct held_lock *)data;
1979 
1980 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1981 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1982 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1983 }
1984 
1985 static noinline void print_circular_bug(struct lock_list *this,
1986 				struct lock_list *target,
1987 				struct held_lock *check_src,
1988 				struct held_lock *check_tgt)
1989 {
1990 	struct task_struct *curr = current;
1991 	struct lock_list *parent;
1992 	struct lock_list *first_parent;
1993 	int depth;
1994 
1995 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1996 		return;
1997 
1998 	this->trace = save_trace();
1999 	if (!this->trace)
2000 		return;
2001 
2002 	depth = get_lock_depth(target);
2003 
2004 	print_circular_bug_header(target, depth, check_src, check_tgt);
2005 
2006 	parent = get_lock_parent(target);
2007 	first_parent = parent;
2008 
2009 	while (parent) {
2010 		print_circular_bug_entry(parent, --depth);
2011 		parent = get_lock_parent(parent);
2012 	}
2013 
2014 	printk("\nother info that might help us debug this:\n\n");
2015 	print_circular_lock_scenario(check_src, check_tgt,
2016 				     first_parent);
2017 
2018 	lockdep_print_held_locks(curr);
2019 
2020 	printk("\nstack backtrace:\n");
2021 	dump_stack();
2022 }
2023 
2024 static noinline void print_bfs_bug(int ret)
2025 {
2026 	if (!debug_locks_off_graph_unlock())
2027 		return;
2028 
2029 	/*
2030 	 * Breadth-first-search failed, graph got corrupted?
2031 	 */
2032 	WARN(1, "lockdep bfs error:%d\n", ret);
2033 }
2034 
2035 static bool noop_count(struct lock_list *entry, void *data)
2036 {
2037 	(*(unsigned long *)data)++;
2038 	return false;
2039 }
2040 
2041 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2042 {
2043 	unsigned long  count = 0;
2044 	struct lock_list *target_entry;
2045 
2046 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2047 
2048 	return count;
2049 }
2050 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2051 {
2052 	unsigned long ret, flags;
2053 	struct lock_list this;
2054 
2055 	__bfs_init_root(&this, class);
2056 
2057 	raw_local_irq_save(flags);
2058 	lockdep_lock();
2059 	ret = __lockdep_count_forward_deps(&this);
2060 	lockdep_unlock();
2061 	raw_local_irq_restore(flags);
2062 
2063 	return ret;
2064 }
2065 
2066 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2067 {
2068 	unsigned long  count = 0;
2069 	struct lock_list *target_entry;
2070 
2071 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2072 
2073 	return count;
2074 }
2075 
2076 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2077 {
2078 	unsigned long ret, flags;
2079 	struct lock_list this;
2080 
2081 	__bfs_init_root(&this, class);
2082 
2083 	raw_local_irq_save(flags);
2084 	lockdep_lock();
2085 	ret = __lockdep_count_backward_deps(&this);
2086 	lockdep_unlock();
2087 	raw_local_irq_restore(flags);
2088 
2089 	return ret;
2090 }
2091 
2092 /*
2093  * Check that the dependency graph starting at <src> can lead to
2094  * <target> or not.
2095  */
2096 static noinline enum bfs_result
2097 check_path(struct held_lock *target, struct lock_list *src_entry,
2098 	   bool (*match)(struct lock_list *entry, void *data),
2099 	   bool (*skip)(struct lock_list *entry, void *data),
2100 	   struct lock_list **target_entry)
2101 {
2102 	enum bfs_result ret;
2103 
2104 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2105 
2106 	if (unlikely(bfs_error(ret)))
2107 		print_bfs_bug(ret);
2108 
2109 	return ret;
2110 }
2111 
2112 /*
2113  * Prove that the dependency graph starting at <src> can not
2114  * lead to <target>. If it can, there is a circle when adding
2115  * <target> -> <src> dependency.
2116  *
2117  * Print an error and return BFS_RMATCH if it does.
2118  */
2119 static noinline enum bfs_result
2120 check_noncircular(struct held_lock *src, struct held_lock *target,
2121 		  struct lock_trace **const trace)
2122 {
2123 	enum bfs_result ret;
2124 	struct lock_list *target_entry;
2125 	struct lock_list src_entry;
2126 
2127 	bfs_init_root(&src_entry, src);
2128 
2129 	debug_atomic_inc(nr_cyclic_checks);
2130 
2131 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2132 
2133 	if (unlikely(ret == BFS_RMATCH)) {
2134 		if (!*trace) {
2135 			/*
2136 			 * If save_trace fails here, the printing might
2137 			 * trigger a WARN but because of the !nr_entries it
2138 			 * should not do bad things.
2139 			 */
2140 			*trace = save_trace();
2141 		}
2142 
2143 		print_circular_bug(&src_entry, target_entry, src, target);
2144 	}
2145 
2146 	return ret;
2147 }
2148 
2149 #ifdef CONFIG_TRACE_IRQFLAGS
2150 
2151 /*
2152  * Forwards and backwards subgraph searching, for the purposes of
2153  * proving that two subgraphs can be connected by a new dependency
2154  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2155  *
2156  * A irq safe->unsafe deadlock happens with the following conditions:
2157  *
2158  * 1) We have a strong dependency path A -> ... -> B
2159  *
2160  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2161  *    irq can create a new dependency B -> A (consider the case that a holder
2162  *    of B gets interrupted by an irq whose handler will try to acquire A).
2163  *
2164  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2165  *    strong circle:
2166  *
2167  *      For the usage bits of B:
2168  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2169  *           ENABLED_IRQ usage suffices.
2170  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2171  *           ENABLED_IRQ_*_READ usage suffices.
2172  *
2173  *      For the usage bits of A:
2174  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2175  *           USED_IN_IRQ usage suffices.
2176  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2177  *           USED_IN_IRQ_*_READ usage suffices.
2178  */
2179 
2180 /*
2181  * There is a strong dependency path in the dependency graph: A -> B, and now
2182  * we need to decide which usage bit of A should be accumulated to detect
2183  * safe->unsafe bugs.
2184  *
2185  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2186  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2187  *
2188  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2189  * path, any usage of A should be considered. Otherwise, we should only
2190  * consider _READ usage.
2191  */
2192 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2193 {
2194 	if (!entry->only_xr)
2195 		*(unsigned long *)mask |= entry->class->usage_mask;
2196 	else /* Mask out _READ usage bits */
2197 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2198 
2199 	return false;
2200 }
2201 
2202 /*
2203  * There is a strong dependency path in the dependency graph: A -> B, and now
2204  * we need to decide which usage bit of B conflicts with the usage bits of A,
2205  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2206  *
2207  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2208  * path, any usage of B should be considered. Otherwise, we should only
2209  * consider _READ usage.
2210  */
2211 static inline bool usage_match(struct lock_list *entry, void *mask)
2212 {
2213 	if (!entry->only_xr)
2214 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2215 	else /* Mask out _READ usage bits */
2216 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2217 }
2218 
2219 static inline bool usage_skip(struct lock_list *entry, void *mask)
2220 {
2221 	/*
2222 	 * Skip local_lock() for irq inversion detection.
2223 	 *
2224 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2225 	 * dependency.
2226 	 *
2227 	 * For RT, an irq inversion happens when we have lock A and B, and on
2228 	 * some CPU we can have:
2229 	 *
2230 	 *	lock(A);
2231 	 *	<interrupted>
2232 	 *	  lock(B);
2233 	 *
2234 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2235 	 *
2236 	 * Now we prove local_lock() cannot exist in that dependency. First we
2237 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2238 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2239 	 * wait context check will complain. And since B is not a sleep lock,
2240 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2241 	 * local_lock() is 3, which is greater than 2, therefore there is no
2242 	 * way the local_lock() exists in the dependency B -> ... -> A.
2243 	 *
2244 	 * As a result, we will skip local_lock(), when we search for irq
2245 	 * inversion bugs.
2246 	 */
2247 	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2248 		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2249 			return false;
2250 
2251 		return true;
2252 	}
2253 
2254 	return false;
2255 }
2256 
2257 /*
2258  * Find a node in the forwards-direction dependency sub-graph starting
2259  * at @root->class that matches @bit.
2260  *
2261  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2262  * into *@target_entry.
2263  */
2264 static enum bfs_result
2265 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2266 			struct lock_list **target_entry)
2267 {
2268 	enum bfs_result result;
2269 
2270 	debug_atomic_inc(nr_find_usage_forwards_checks);
2271 
2272 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2273 
2274 	return result;
2275 }
2276 
2277 /*
2278  * Find a node in the backwards-direction dependency sub-graph starting
2279  * at @root->class that matches @bit.
2280  */
2281 static enum bfs_result
2282 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2283 			struct lock_list **target_entry)
2284 {
2285 	enum bfs_result result;
2286 
2287 	debug_atomic_inc(nr_find_usage_backwards_checks);
2288 
2289 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2290 
2291 	return result;
2292 }
2293 
2294 static void print_lock_class_header(struct lock_class *class, int depth)
2295 {
2296 	int bit;
2297 
2298 	printk("%*s->", depth, "");
2299 	print_lock_name(class);
2300 #ifdef CONFIG_DEBUG_LOCKDEP
2301 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2302 #endif
2303 	printk(KERN_CONT " {\n");
2304 
2305 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2306 		if (class->usage_mask & (1 << bit)) {
2307 			int len = depth;
2308 
2309 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2310 			len += printk(KERN_CONT " at:\n");
2311 			print_lock_trace(class->usage_traces[bit], len);
2312 		}
2313 	}
2314 	printk("%*s }\n", depth, "");
2315 
2316 	printk("%*s ... key      at: [<%px>] %pS\n",
2317 		depth, "", class->key, class->key);
2318 }
2319 
2320 /*
2321  * Dependency path printing:
2322  *
2323  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2324  * printing out each lock in the dependency path will help on understanding how
2325  * the deadlock could happen. Here are some details about dependency path
2326  * printing:
2327  *
2328  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2329  * 	for a lock dependency A -> B, there are two lock_lists:
2330  *
2331  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2332  * 		->links_to is A. In this case, we can say the lock_list is
2333  * 		"A -> B" (forwards case).
2334  *
2335  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2336  * 		and ->links_to is B. In this case, we can say the lock_list is
2337  * 		"B <- A" (bacwards case).
2338  *
2339  * 	The ->trace of both a) and b) point to the call trace where B was
2340  * 	acquired with A held.
2341  *
2342  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2343  * 	represent a certain lock dependency, it only provides an initial entry
2344  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2345  * 	->class is A, as a result BFS will search all dependencies starting with
2346  * 	A, e.g. A -> B or A -> C.
2347  *
2348  * 	The notation of a forwards helper lock_list is like "-> A", which means
2349  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2350  * 	or A -> C.
2351  *
2352  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2353  * 	we should search the backwards dependencies ending with "B", e.g.
2354  * 	B <- A or B <- C.
2355  */
2356 
2357 /*
2358  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2359  *
2360  * We have a lock dependency path as follow:
2361  *
2362  *    @root                                                                 @leaf
2363  *      |                                                                     |
2364  *      V                                                                     V
2365  *	          ->parent                                   ->parent
2366  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2367  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2368  *
2369  * , so it's natural that we start from @leaf and print every ->class and
2370  * ->trace until we reach the @root.
2371  */
2372 static void __used
2373 print_shortest_lock_dependencies(struct lock_list *leaf,
2374 				 struct lock_list *root)
2375 {
2376 	struct lock_list *entry = leaf;
2377 	int depth;
2378 
2379 	/*compute depth from generated tree by BFS*/
2380 	depth = get_lock_depth(leaf);
2381 
2382 	do {
2383 		print_lock_class_header(entry->class, depth);
2384 		printk("%*s ... acquired at:\n", depth, "");
2385 		print_lock_trace(entry->trace, 2);
2386 		printk("\n");
2387 
2388 		if (depth == 0 && (entry != root)) {
2389 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2390 			break;
2391 		}
2392 
2393 		entry = get_lock_parent(entry);
2394 		depth--;
2395 	} while (entry && (depth >= 0));
2396 }
2397 
2398 /*
2399  * printk the shortest lock dependencies from @leaf to @root.
2400  *
2401  * We have a lock dependency path (from a backwards search) as follow:
2402  *
2403  *    @leaf                                                                 @root
2404  *      |                                                                     |
2405  *      V                                                                     V
2406  *	          ->parent                                   ->parent
2407  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2408  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2409  *
2410  * , so when we iterate from @leaf to @root, we actually print the lock
2411  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2412  *
2413  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2414  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2415  * trace of L1 in the dependency path, which is alright, because most of the
2416  * time we can figure out where L1 is held from the call trace of L2.
2417  */
2418 static void __used
2419 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2420 					   struct lock_list *root)
2421 {
2422 	struct lock_list *entry = leaf;
2423 	const struct lock_trace *trace = NULL;
2424 	int depth;
2425 
2426 	/*compute depth from generated tree by BFS*/
2427 	depth = get_lock_depth(leaf);
2428 
2429 	do {
2430 		print_lock_class_header(entry->class, depth);
2431 		if (trace) {
2432 			printk("%*s ... acquired at:\n", depth, "");
2433 			print_lock_trace(trace, 2);
2434 			printk("\n");
2435 		}
2436 
2437 		/*
2438 		 * Record the pointer to the trace for the next lock_list
2439 		 * entry, see the comments for the function.
2440 		 */
2441 		trace = entry->trace;
2442 
2443 		if (depth == 0 && (entry != root)) {
2444 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2445 			break;
2446 		}
2447 
2448 		entry = get_lock_parent(entry);
2449 		depth--;
2450 	} while (entry && (depth >= 0));
2451 }
2452 
2453 static void
2454 print_irq_lock_scenario(struct lock_list *safe_entry,
2455 			struct lock_list *unsafe_entry,
2456 			struct lock_class *prev_class,
2457 			struct lock_class *next_class)
2458 {
2459 	struct lock_class *safe_class = safe_entry->class;
2460 	struct lock_class *unsafe_class = unsafe_entry->class;
2461 	struct lock_class *middle_class = prev_class;
2462 
2463 	if (middle_class == safe_class)
2464 		middle_class = next_class;
2465 
2466 	/*
2467 	 * A direct locking problem where unsafe_class lock is taken
2468 	 * directly by safe_class lock, then all we need to show
2469 	 * is the deadlock scenario, as it is obvious that the
2470 	 * unsafe lock is taken under the safe lock.
2471 	 *
2472 	 * But if there is a chain instead, where the safe lock takes
2473 	 * an intermediate lock (middle_class) where this lock is
2474 	 * not the same as the safe lock, then the lock chain is
2475 	 * used to describe the problem. Otherwise we would need
2476 	 * to show a different CPU case for each link in the chain
2477 	 * from the safe_class lock to the unsafe_class lock.
2478 	 */
2479 	if (middle_class != unsafe_class) {
2480 		printk("Chain exists of:\n  ");
2481 		__print_lock_name(safe_class);
2482 		printk(KERN_CONT " --> ");
2483 		__print_lock_name(middle_class);
2484 		printk(KERN_CONT " --> ");
2485 		__print_lock_name(unsafe_class);
2486 		printk(KERN_CONT "\n\n");
2487 	}
2488 
2489 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2490 	printk("       CPU0                    CPU1\n");
2491 	printk("       ----                    ----\n");
2492 	printk("  lock(");
2493 	__print_lock_name(unsafe_class);
2494 	printk(KERN_CONT ");\n");
2495 	printk("                               local_irq_disable();\n");
2496 	printk("                               lock(");
2497 	__print_lock_name(safe_class);
2498 	printk(KERN_CONT ");\n");
2499 	printk("                               lock(");
2500 	__print_lock_name(middle_class);
2501 	printk(KERN_CONT ");\n");
2502 	printk("  <Interrupt>\n");
2503 	printk("    lock(");
2504 	__print_lock_name(safe_class);
2505 	printk(KERN_CONT ");\n");
2506 	printk("\n *** DEADLOCK ***\n\n");
2507 }
2508 
2509 static void
2510 print_bad_irq_dependency(struct task_struct *curr,
2511 			 struct lock_list *prev_root,
2512 			 struct lock_list *next_root,
2513 			 struct lock_list *backwards_entry,
2514 			 struct lock_list *forwards_entry,
2515 			 struct held_lock *prev,
2516 			 struct held_lock *next,
2517 			 enum lock_usage_bit bit1,
2518 			 enum lock_usage_bit bit2,
2519 			 const char *irqclass)
2520 {
2521 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2522 		return;
2523 
2524 	pr_warn("\n");
2525 	pr_warn("=====================================================\n");
2526 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2527 		irqclass, irqclass);
2528 	print_kernel_ident();
2529 	pr_warn("-----------------------------------------------------\n");
2530 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2531 		curr->comm, task_pid_nr(curr),
2532 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2533 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2534 		lockdep_hardirqs_enabled(),
2535 		curr->softirqs_enabled);
2536 	print_lock(next);
2537 
2538 	pr_warn("\nand this task is already holding:\n");
2539 	print_lock(prev);
2540 	pr_warn("which would create a new lock dependency:\n");
2541 	print_lock_name(hlock_class(prev));
2542 	pr_cont(" ->");
2543 	print_lock_name(hlock_class(next));
2544 	pr_cont("\n");
2545 
2546 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2547 		irqclass);
2548 	print_lock_name(backwards_entry->class);
2549 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2550 
2551 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2552 
2553 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2554 	print_lock_name(forwards_entry->class);
2555 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2556 	pr_warn("...");
2557 
2558 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2559 
2560 	pr_warn("\nother info that might help us debug this:\n\n");
2561 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2562 				hlock_class(prev), hlock_class(next));
2563 
2564 	lockdep_print_held_locks(curr);
2565 
2566 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2567 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2568 
2569 	pr_warn("\nthe dependencies between the lock to be acquired");
2570 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2571 	next_root->trace = save_trace();
2572 	if (!next_root->trace)
2573 		return;
2574 	print_shortest_lock_dependencies(forwards_entry, next_root);
2575 
2576 	pr_warn("\nstack backtrace:\n");
2577 	dump_stack();
2578 }
2579 
2580 static const char *state_names[] = {
2581 #define LOCKDEP_STATE(__STATE) \
2582 	__stringify(__STATE),
2583 #include "lockdep_states.h"
2584 #undef LOCKDEP_STATE
2585 };
2586 
2587 static const char *state_rnames[] = {
2588 #define LOCKDEP_STATE(__STATE) \
2589 	__stringify(__STATE)"-READ",
2590 #include "lockdep_states.h"
2591 #undef LOCKDEP_STATE
2592 };
2593 
2594 static inline const char *state_name(enum lock_usage_bit bit)
2595 {
2596 	if (bit & LOCK_USAGE_READ_MASK)
2597 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2598 	else
2599 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2600 }
2601 
2602 /*
2603  * The bit number is encoded like:
2604  *
2605  *  bit0: 0 exclusive, 1 read lock
2606  *  bit1: 0 used in irq, 1 irq enabled
2607  *  bit2-n: state
2608  */
2609 static int exclusive_bit(int new_bit)
2610 {
2611 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2612 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2613 
2614 	/*
2615 	 * keep state, bit flip the direction and strip read.
2616 	 */
2617 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2618 }
2619 
2620 /*
2621  * Observe that when given a bitmask where each bitnr is encoded as above, a
2622  * right shift of the mask transforms the individual bitnrs as -1 and
2623  * conversely, a left shift transforms into +1 for the individual bitnrs.
2624  *
2625  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2626  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2627  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2628  *
2629  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2630  *
2631  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2632  * all bits set) and recompose with bitnr1 flipped.
2633  */
2634 static unsigned long invert_dir_mask(unsigned long mask)
2635 {
2636 	unsigned long excl = 0;
2637 
2638 	/* Invert dir */
2639 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2640 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2641 
2642 	return excl;
2643 }
2644 
2645 /*
2646  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2647  * usage may cause deadlock too, for example:
2648  *
2649  * P1				P2
2650  * <irq disabled>
2651  * write_lock(l1);		<irq enabled>
2652  *				read_lock(l2);
2653  * write_lock(l2);
2654  * 				<in irq>
2655  * 				read_lock(l1);
2656  *
2657  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2658  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2659  * deadlock.
2660  *
2661  * In fact, all of the following cases may cause deadlocks:
2662  *
2663  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2664  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2665  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2666  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2667  *
2668  * As a result, to calculate the "exclusive mask", first we invert the
2669  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2670  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2671  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2672  */
2673 static unsigned long exclusive_mask(unsigned long mask)
2674 {
2675 	unsigned long excl = invert_dir_mask(mask);
2676 
2677 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2678 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2679 
2680 	return excl;
2681 }
2682 
2683 /*
2684  * Retrieve the _possible_ original mask to which @mask is
2685  * exclusive. Ie: this is the opposite of exclusive_mask().
2686  * Note that 2 possible original bits can match an exclusive
2687  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2688  * cleared. So both are returned for each exclusive bit.
2689  */
2690 static unsigned long original_mask(unsigned long mask)
2691 {
2692 	unsigned long excl = invert_dir_mask(mask);
2693 
2694 	/* Include read in existing usages */
2695 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2696 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2697 
2698 	return excl;
2699 }
2700 
2701 /*
2702  * Find the first pair of bit match between an original
2703  * usage mask and an exclusive usage mask.
2704  */
2705 static int find_exclusive_match(unsigned long mask,
2706 				unsigned long excl_mask,
2707 				enum lock_usage_bit *bitp,
2708 				enum lock_usage_bit *excl_bitp)
2709 {
2710 	int bit, excl, excl_read;
2711 
2712 	for_each_set_bit(bit, &mask, LOCK_USED) {
2713 		/*
2714 		 * exclusive_bit() strips the read bit, however,
2715 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2716 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2717 		 */
2718 		excl = exclusive_bit(bit);
2719 		excl_read = excl | LOCK_USAGE_READ_MASK;
2720 		if (excl_mask & lock_flag(excl)) {
2721 			*bitp = bit;
2722 			*excl_bitp = excl;
2723 			return 0;
2724 		} else if (excl_mask & lock_flag(excl_read)) {
2725 			*bitp = bit;
2726 			*excl_bitp = excl_read;
2727 			return 0;
2728 		}
2729 	}
2730 	return -1;
2731 }
2732 
2733 /*
2734  * Prove that the new dependency does not connect a hardirq-safe(-read)
2735  * lock with a hardirq-unsafe lock - to achieve this we search
2736  * the backwards-subgraph starting at <prev>, and the
2737  * forwards-subgraph starting at <next>:
2738  */
2739 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2740 			   struct held_lock *next)
2741 {
2742 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2743 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2744 	struct lock_list *target_entry1;
2745 	struct lock_list *target_entry;
2746 	struct lock_list this, that;
2747 	enum bfs_result ret;
2748 
2749 	/*
2750 	 * Step 1: gather all hard/soft IRQs usages backward in an
2751 	 * accumulated usage mask.
2752 	 */
2753 	bfs_init_rootb(&this, prev);
2754 
2755 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2756 	if (bfs_error(ret)) {
2757 		print_bfs_bug(ret);
2758 		return 0;
2759 	}
2760 
2761 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2762 	if (!usage_mask)
2763 		return 1;
2764 
2765 	/*
2766 	 * Step 2: find exclusive uses forward that match the previous
2767 	 * backward accumulated mask.
2768 	 */
2769 	forward_mask = exclusive_mask(usage_mask);
2770 
2771 	bfs_init_root(&that, next);
2772 
2773 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2774 	if (bfs_error(ret)) {
2775 		print_bfs_bug(ret);
2776 		return 0;
2777 	}
2778 	if (ret == BFS_RNOMATCH)
2779 		return 1;
2780 
2781 	/*
2782 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2783 	 * list whose usage mask matches the exclusive usage mask from the
2784 	 * lock found on the forward list.
2785 	 *
2786 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2787 	 * the follow case:
2788 	 *
2789 	 * When trying to add A -> B to the graph, we find that there is a
2790 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2791 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2792 	 * invert bits of M's usage_mask, we will find another lock N that is
2793 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2794 	 * cause a inversion deadlock.
2795 	 */
2796 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2797 
2798 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2799 	if (bfs_error(ret)) {
2800 		print_bfs_bug(ret);
2801 		return 0;
2802 	}
2803 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2804 		return 1;
2805 
2806 	/*
2807 	 * Step 4: narrow down to a pair of incompatible usage bits
2808 	 * and report it.
2809 	 */
2810 	ret = find_exclusive_match(target_entry->class->usage_mask,
2811 				   target_entry1->class->usage_mask,
2812 				   &backward_bit, &forward_bit);
2813 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2814 		return 1;
2815 
2816 	print_bad_irq_dependency(curr, &this, &that,
2817 				 target_entry, target_entry1,
2818 				 prev, next,
2819 				 backward_bit, forward_bit,
2820 				 state_name(backward_bit));
2821 
2822 	return 0;
2823 }
2824 
2825 #else
2826 
2827 static inline int check_irq_usage(struct task_struct *curr,
2828 				  struct held_lock *prev, struct held_lock *next)
2829 {
2830 	return 1;
2831 }
2832 
2833 static inline bool usage_skip(struct lock_list *entry, void *mask)
2834 {
2835 	return false;
2836 }
2837 
2838 #endif /* CONFIG_TRACE_IRQFLAGS */
2839 
2840 #ifdef CONFIG_LOCKDEP_SMALL
2841 /*
2842  * Check that the dependency graph starting at <src> can lead to
2843  * <target> or not. If it can, <src> -> <target> dependency is already
2844  * in the graph.
2845  *
2846  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2847  * any error appears in the bfs search.
2848  */
2849 static noinline enum bfs_result
2850 check_redundant(struct held_lock *src, struct held_lock *target)
2851 {
2852 	enum bfs_result ret;
2853 	struct lock_list *target_entry;
2854 	struct lock_list src_entry;
2855 
2856 	bfs_init_root(&src_entry, src);
2857 	/*
2858 	 * Special setup for check_redundant().
2859 	 *
2860 	 * To report redundant, we need to find a strong dependency path that
2861 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2862 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2863 	 * we achieve this by setting the initial node's ->only_xr to true in
2864 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2865 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2866 	 */
2867 	src_entry.only_xr = src->read == 0;
2868 
2869 	debug_atomic_inc(nr_redundant_checks);
2870 
2871 	/*
2872 	 * Note: we skip local_lock() for redundant check, because as the
2873 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2874 	 * the same.
2875 	 */
2876 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2877 
2878 	if (ret == BFS_RMATCH)
2879 		debug_atomic_inc(nr_redundant);
2880 
2881 	return ret;
2882 }
2883 
2884 #else
2885 
2886 static inline enum bfs_result
2887 check_redundant(struct held_lock *src, struct held_lock *target)
2888 {
2889 	return BFS_RNOMATCH;
2890 }
2891 
2892 #endif
2893 
2894 static void inc_chains(int irq_context)
2895 {
2896 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2897 		nr_hardirq_chains++;
2898 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2899 		nr_softirq_chains++;
2900 	else
2901 		nr_process_chains++;
2902 }
2903 
2904 static void dec_chains(int irq_context)
2905 {
2906 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2907 		nr_hardirq_chains--;
2908 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2909 		nr_softirq_chains--;
2910 	else
2911 		nr_process_chains--;
2912 }
2913 
2914 static void
2915 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2916 {
2917 	struct lock_class *next = hlock_class(nxt);
2918 	struct lock_class *prev = hlock_class(prv);
2919 
2920 	printk(" Possible unsafe locking scenario:\n\n");
2921 	printk("       CPU0\n");
2922 	printk("       ----\n");
2923 	printk("  lock(");
2924 	__print_lock_name(prev);
2925 	printk(KERN_CONT ");\n");
2926 	printk("  lock(");
2927 	__print_lock_name(next);
2928 	printk(KERN_CONT ");\n");
2929 	printk("\n *** DEADLOCK ***\n\n");
2930 	printk(" May be due to missing lock nesting notation\n\n");
2931 }
2932 
2933 static void
2934 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2935 		   struct held_lock *next)
2936 {
2937 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2938 		return;
2939 
2940 	pr_warn("\n");
2941 	pr_warn("============================================\n");
2942 	pr_warn("WARNING: possible recursive locking detected\n");
2943 	print_kernel_ident();
2944 	pr_warn("--------------------------------------------\n");
2945 	pr_warn("%s/%d is trying to acquire lock:\n",
2946 		curr->comm, task_pid_nr(curr));
2947 	print_lock(next);
2948 	pr_warn("\nbut task is already holding lock:\n");
2949 	print_lock(prev);
2950 
2951 	pr_warn("\nother info that might help us debug this:\n");
2952 	print_deadlock_scenario(next, prev);
2953 	lockdep_print_held_locks(curr);
2954 
2955 	pr_warn("\nstack backtrace:\n");
2956 	dump_stack();
2957 }
2958 
2959 /*
2960  * Check whether we are holding such a class already.
2961  *
2962  * (Note that this has to be done separately, because the graph cannot
2963  * detect such classes of deadlocks.)
2964  *
2965  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2966  * lock class is held but nest_lock is also held, i.e. we rely on the
2967  * nest_lock to avoid the deadlock.
2968  */
2969 static int
2970 check_deadlock(struct task_struct *curr, struct held_lock *next)
2971 {
2972 	struct held_lock *prev;
2973 	struct held_lock *nest = NULL;
2974 	int i;
2975 
2976 	for (i = 0; i < curr->lockdep_depth; i++) {
2977 		prev = curr->held_locks + i;
2978 
2979 		if (prev->instance == next->nest_lock)
2980 			nest = prev;
2981 
2982 		if (hlock_class(prev) != hlock_class(next))
2983 			continue;
2984 
2985 		/*
2986 		 * Allow read-after-read recursion of the same
2987 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2988 		 */
2989 		if ((next->read == 2) && prev->read)
2990 			continue;
2991 
2992 		/*
2993 		 * We're holding the nest_lock, which serializes this lock's
2994 		 * nesting behaviour.
2995 		 */
2996 		if (nest)
2997 			return 2;
2998 
2999 		print_deadlock_bug(curr, prev, next);
3000 		return 0;
3001 	}
3002 	return 1;
3003 }
3004 
3005 /*
3006  * There was a chain-cache miss, and we are about to add a new dependency
3007  * to a previous lock. We validate the following rules:
3008  *
3009  *  - would the adding of the <prev> -> <next> dependency create a
3010  *    circular dependency in the graph? [== circular deadlock]
3011  *
3012  *  - does the new prev->next dependency connect any hardirq-safe lock
3013  *    (in the full backwards-subgraph starting at <prev>) with any
3014  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3015  *    <next>)? [== illegal lock inversion with hardirq contexts]
3016  *
3017  *  - does the new prev->next dependency connect any softirq-safe lock
3018  *    (in the full backwards-subgraph starting at <prev>) with any
3019  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3020  *    <next>)? [== illegal lock inversion with softirq contexts]
3021  *
3022  * any of these scenarios could lead to a deadlock.
3023  *
3024  * Then if all the validations pass, we add the forwards and backwards
3025  * dependency.
3026  */
3027 static int
3028 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3029 	       struct held_lock *next, u16 distance,
3030 	       struct lock_trace **const trace)
3031 {
3032 	struct lock_list *entry;
3033 	enum bfs_result ret;
3034 
3035 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3036 		/*
3037 		 * The warning statements below may trigger a use-after-free
3038 		 * of the class name. It is better to trigger a use-after free
3039 		 * and to have the class name most of the time instead of not
3040 		 * having the class name available.
3041 		 */
3042 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3043 			  "Detected use-after-free of lock class %px/%s\n",
3044 			  hlock_class(prev),
3045 			  hlock_class(prev)->name);
3046 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3047 			  "Detected use-after-free of lock class %px/%s\n",
3048 			  hlock_class(next),
3049 			  hlock_class(next)->name);
3050 		return 2;
3051 	}
3052 
3053 	/*
3054 	 * Prove that the new <prev> -> <next> dependency would not
3055 	 * create a circular dependency in the graph. (We do this by
3056 	 * a breadth-first search into the graph starting at <next>,
3057 	 * and check whether we can reach <prev>.)
3058 	 *
3059 	 * The search is limited by the size of the circular queue (i.e.,
3060 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3061 	 * in the graph whose neighbours are to be checked.
3062 	 */
3063 	ret = check_noncircular(next, prev, trace);
3064 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3065 		return 0;
3066 
3067 	if (!check_irq_usage(curr, prev, next))
3068 		return 0;
3069 
3070 	/*
3071 	 * Is the <prev> -> <next> dependency already present?
3072 	 *
3073 	 * (this may occur even though this is a new chain: consider
3074 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3075 	 *  chains - the second one will be new, but L1 already has
3076 	 *  L2 added to its dependency list, due to the first chain.)
3077 	 */
3078 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3079 		if (entry->class == hlock_class(next)) {
3080 			if (distance == 1)
3081 				entry->distance = 1;
3082 			entry->dep |= calc_dep(prev, next);
3083 
3084 			/*
3085 			 * Also, update the reverse dependency in @next's
3086 			 * ->locks_before list.
3087 			 *
3088 			 *  Here we reuse @entry as the cursor, which is fine
3089 			 *  because we won't go to the next iteration of the
3090 			 *  outer loop:
3091 			 *
3092 			 *  For normal cases, we return in the inner loop.
3093 			 *
3094 			 *  If we fail to return, we have inconsistency, i.e.
3095 			 *  <prev>::locks_after contains <next> while
3096 			 *  <next>::locks_before doesn't contain <prev>. In
3097 			 *  that case, we return after the inner and indicate
3098 			 *  something is wrong.
3099 			 */
3100 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3101 				if (entry->class == hlock_class(prev)) {
3102 					if (distance == 1)
3103 						entry->distance = 1;
3104 					entry->dep |= calc_depb(prev, next);
3105 					return 1;
3106 				}
3107 			}
3108 
3109 			/* <prev> is not found in <next>::locks_before */
3110 			return 0;
3111 		}
3112 	}
3113 
3114 	/*
3115 	 * Is the <prev> -> <next> link redundant?
3116 	 */
3117 	ret = check_redundant(prev, next);
3118 	if (bfs_error(ret))
3119 		return 0;
3120 	else if (ret == BFS_RMATCH)
3121 		return 2;
3122 
3123 	if (!*trace) {
3124 		*trace = save_trace();
3125 		if (!*trace)
3126 			return 0;
3127 	}
3128 
3129 	/*
3130 	 * Ok, all validations passed, add the new lock
3131 	 * to the previous lock's dependency list:
3132 	 */
3133 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3134 			       &hlock_class(prev)->locks_after,
3135 			       next->acquire_ip, distance,
3136 			       calc_dep(prev, next),
3137 			       *trace);
3138 
3139 	if (!ret)
3140 		return 0;
3141 
3142 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3143 			       &hlock_class(next)->locks_before,
3144 			       next->acquire_ip, distance,
3145 			       calc_depb(prev, next),
3146 			       *trace);
3147 	if (!ret)
3148 		return 0;
3149 
3150 	return 2;
3151 }
3152 
3153 /*
3154  * Add the dependency to all directly-previous locks that are 'relevant'.
3155  * The ones that are relevant are (in increasing distance from curr):
3156  * all consecutive trylock entries and the final non-trylock entry - or
3157  * the end of this context's lock-chain - whichever comes first.
3158  */
3159 static int
3160 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3161 {
3162 	struct lock_trace *trace = NULL;
3163 	int depth = curr->lockdep_depth;
3164 	struct held_lock *hlock;
3165 
3166 	/*
3167 	 * Debugging checks.
3168 	 *
3169 	 * Depth must not be zero for a non-head lock:
3170 	 */
3171 	if (!depth)
3172 		goto out_bug;
3173 	/*
3174 	 * At least two relevant locks must exist for this
3175 	 * to be a head:
3176 	 */
3177 	if (curr->held_locks[depth].irq_context !=
3178 			curr->held_locks[depth-1].irq_context)
3179 		goto out_bug;
3180 
3181 	for (;;) {
3182 		u16 distance = curr->lockdep_depth - depth + 1;
3183 		hlock = curr->held_locks + depth - 1;
3184 
3185 		if (hlock->check) {
3186 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3187 			if (!ret)
3188 				return 0;
3189 
3190 			/*
3191 			 * Stop after the first non-trylock entry,
3192 			 * as non-trylock entries have added their
3193 			 * own direct dependencies already, so this
3194 			 * lock is connected to them indirectly:
3195 			 */
3196 			if (!hlock->trylock)
3197 				break;
3198 		}
3199 
3200 		depth--;
3201 		/*
3202 		 * End of lock-stack?
3203 		 */
3204 		if (!depth)
3205 			break;
3206 		/*
3207 		 * Stop the search if we cross into another context:
3208 		 */
3209 		if (curr->held_locks[depth].irq_context !=
3210 				curr->held_locks[depth-1].irq_context)
3211 			break;
3212 	}
3213 	return 1;
3214 out_bug:
3215 	if (!debug_locks_off_graph_unlock())
3216 		return 0;
3217 
3218 	/*
3219 	 * Clearly we all shouldn't be here, but since we made it we
3220 	 * can reliable say we messed up our state. See the above two
3221 	 * gotos for reasons why we could possibly end up here.
3222 	 */
3223 	WARN_ON(1);
3224 
3225 	return 0;
3226 }
3227 
3228 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3229 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3230 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3231 unsigned long nr_zapped_lock_chains;
3232 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3233 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3234 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3235 
3236 /*
3237  * The first 2 chain_hlocks entries in the chain block in the bucket
3238  * list contains the following meta data:
3239  *
3240  *   entry[0]:
3241  *     Bit    15 - always set to 1 (it is not a class index)
3242  *     Bits 0-14 - upper 15 bits of the next block index
3243  *   entry[1]    - lower 16 bits of next block index
3244  *
3245  * A next block index of all 1 bits means it is the end of the list.
3246  *
3247  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3248  * the chain block size:
3249  *
3250  *   entry[2] - upper 16 bits of the chain block size
3251  *   entry[3] - lower 16 bits of the chain block size
3252  */
3253 #define MAX_CHAIN_BUCKETS	16
3254 #define CHAIN_BLK_FLAG		(1U << 15)
3255 #define CHAIN_BLK_LIST_END	0xFFFFU
3256 
3257 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3258 
3259 static inline int size_to_bucket(int size)
3260 {
3261 	if (size > MAX_CHAIN_BUCKETS)
3262 		return 0;
3263 
3264 	return size - 1;
3265 }
3266 
3267 /*
3268  * Iterate all the chain blocks in a bucket.
3269  */
3270 #define for_each_chain_block(bucket, prev, curr)		\
3271 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3272 	     (curr) >= 0;					\
3273 	     (prev) = (curr), (curr) = chain_block_next(curr))
3274 
3275 /*
3276  * next block or -1
3277  */
3278 static inline int chain_block_next(int offset)
3279 {
3280 	int next = chain_hlocks[offset];
3281 
3282 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3283 
3284 	if (next == CHAIN_BLK_LIST_END)
3285 		return -1;
3286 
3287 	next &= ~CHAIN_BLK_FLAG;
3288 	next <<= 16;
3289 	next |= chain_hlocks[offset + 1];
3290 
3291 	return next;
3292 }
3293 
3294 /*
3295  * bucket-0 only
3296  */
3297 static inline int chain_block_size(int offset)
3298 {
3299 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3300 }
3301 
3302 static inline void init_chain_block(int offset, int next, int bucket, int size)
3303 {
3304 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3305 	chain_hlocks[offset + 1] = (u16)next;
3306 
3307 	if (size && !bucket) {
3308 		chain_hlocks[offset + 2] = size >> 16;
3309 		chain_hlocks[offset + 3] = (u16)size;
3310 	}
3311 }
3312 
3313 static inline void add_chain_block(int offset, int size)
3314 {
3315 	int bucket = size_to_bucket(size);
3316 	int next = chain_block_buckets[bucket];
3317 	int prev, curr;
3318 
3319 	if (unlikely(size < 2)) {
3320 		/*
3321 		 * We can't store single entries on the freelist. Leak them.
3322 		 *
3323 		 * One possible way out would be to uniquely mark them, other
3324 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3325 		 * the block before it is re-added.
3326 		 */
3327 		if (size)
3328 			nr_lost_chain_hlocks++;
3329 		return;
3330 	}
3331 
3332 	nr_free_chain_hlocks += size;
3333 	if (!bucket) {
3334 		nr_large_chain_blocks++;
3335 
3336 		/*
3337 		 * Variable sized, sort large to small.
3338 		 */
3339 		for_each_chain_block(0, prev, curr) {
3340 			if (size >= chain_block_size(curr))
3341 				break;
3342 		}
3343 		init_chain_block(offset, curr, 0, size);
3344 		if (prev < 0)
3345 			chain_block_buckets[0] = offset;
3346 		else
3347 			init_chain_block(prev, offset, 0, 0);
3348 		return;
3349 	}
3350 	/*
3351 	 * Fixed size, add to head.
3352 	 */
3353 	init_chain_block(offset, next, bucket, size);
3354 	chain_block_buckets[bucket] = offset;
3355 }
3356 
3357 /*
3358  * Only the first block in the list can be deleted.
3359  *
3360  * For the variable size bucket[0], the first block (the largest one) is
3361  * returned, broken up and put back into the pool. So if a chain block of
3362  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3363  * queued up after the primordial chain block and never be used until the
3364  * hlock entries in the primordial chain block is almost used up. That
3365  * causes fragmentation and reduce allocation efficiency. That can be
3366  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3367  */
3368 static inline void del_chain_block(int bucket, int size, int next)
3369 {
3370 	nr_free_chain_hlocks -= size;
3371 	chain_block_buckets[bucket] = next;
3372 
3373 	if (!bucket)
3374 		nr_large_chain_blocks--;
3375 }
3376 
3377 static void init_chain_block_buckets(void)
3378 {
3379 	int i;
3380 
3381 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3382 		chain_block_buckets[i] = -1;
3383 
3384 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3385 }
3386 
3387 /*
3388  * Return offset of a chain block of the right size or -1 if not found.
3389  *
3390  * Fairly simple worst-fit allocator with the addition of a number of size
3391  * specific free lists.
3392  */
3393 static int alloc_chain_hlocks(int req)
3394 {
3395 	int bucket, curr, size;
3396 
3397 	/*
3398 	 * We rely on the MSB to act as an escape bit to denote freelist
3399 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3400 	 */
3401 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3402 
3403 	init_data_structures_once();
3404 
3405 	if (nr_free_chain_hlocks < req)
3406 		return -1;
3407 
3408 	/*
3409 	 * We require a minimum of 2 (u16) entries to encode a freelist
3410 	 * 'pointer'.
3411 	 */
3412 	req = max(req, 2);
3413 	bucket = size_to_bucket(req);
3414 	curr = chain_block_buckets[bucket];
3415 
3416 	if (bucket) {
3417 		if (curr >= 0) {
3418 			del_chain_block(bucket, req, chain_block_next(curr));
3419 			return curr;
3420 		}
3421 		/* Try bucket 0 */
3422 		curr = chain_block_buckets[0];
3423 	}
3424 
3425 	/*
3426 	 * The variable sized freelist is sorted by size; the first entry is
3427 	 * the largest. Use it if it fits.
3428 	 */
3429 	if (curr >= 0) {
3430 		size = chain_block_size(curr);
3431 		if (likely(size >= req)) {
3432 			del_chain_block(0, size, chain_block_next(curr));
3433 			add_chain_block(curr + req, size - req);
3434 			return curr;
3435 		}
3436 	}
3437 
3438 	/*
3439 	 * Last resort, split a block in a larger sized bucket.
3440 	 */
3441 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3442 		bucket = size_to_bucket(size);
3443 		curr = chain_block_buckets[bucket];
3444 		if (curr < 0)
3445 			continue;
3446 
3447 		del_chain_block(bucket, size, chain_block_next(curr));
3448 		add_chain_block(curr + req, size - req);
3449 		return curr;
3450 	}
3451 
3452 	return -1;
3453 }
3454 
3455 static inline void free_chain_hlocks(int base, int size)
3456 {
3457 	add_chain_block(base, max(size, 2));
3458 }
3459 
3460 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3461 {
3462 	u16 chain_hlock = chain_hlocks[chain->base + i];
3463 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3464 
3465 	return lock_classes + class_idx - 1;
3466 }
3467 
3468 /*
3469  * Returns the index of the first held_lock of the current chain
3470  */
3471 static inline int get_first_held_lock(struct task_struct *curr,
3472 					struct held_lock *hlock)
3473 {
3474 	int i;
3475 	struct held_lock *hlock_curr;
3476 
3477 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3478 		hlock_curr = curr->held_locks + i;
3479 		if (hlock_curr->irq_context != hlock->irq_context)
3480 			break;
3481 
3482 	}
3483 
3484 	return ++i;
3485 }
3486 
3487 #ifdef CONFIG_DEBUG_LOCKDEP
3488 /*
3489  * Returns the next chain_key iteration
3490  */
3491 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3492 {
3493 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3494 
3495 	printk(" hlock_id:%d -> chain_key:%016Lx",
3496 		(unsigned int)hlock_id,
3497 		(unsigned long long)new_chain_key);
3498 	return new_chain_key;
3499 }
3500 
3501 static void
3502 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3503 {
3504 	struct held_lock *hlock;
3505 	u64 chain_key = INITIAL_CHAIN_KEY;
3506 	int depth = curr->lockdep_depth;
3507 	int i = get_first_held_lock(curr, hlock_next);
3508 
3509 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3510 		hlock_next->irq_context);
3511 	for (; i < depth; i++) {
3512 		hlock = curr->held_locks + i;
3513 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3514 
3515 		print_lock(hlock);
3516 	}
3517 
3518 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3519 	print_lock(hlock_next);
3520 }
3521 
3522 static void print_chain_keys_chain(struct lock_chain *chain)
3523 {
3524 	int i;
3525 	u64 chain_key = INITIAL_CHAIN_KEY;
3526 	u16 hlock_id;
3527 
3528 	printk("depth: %u\n", chain->depth);
3529 	for (i = 0; i < chain->depth; i++) {
3530 		hlock_id = chain_hlocks[chain->base + i];
3531 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3532 
3533 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3534 		printk("\n");
3535 	}
3536 }
3537 
3538 static void print_collision(struct task_struct *curr,
3539 			struct held_lock *hlock_next,
3540 			struct lock_chain *chain)
3541 {
3542 	pr_warn("\n");
3543 	pr_warn("============================\n");
3544 	pr_warn("WARNING: chain_key collision\n");
3545 	print_kernel_ident();
3546 	pr_warn("----------------------------\n");
3547 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3548 	pr_warn("Hash chain already cached but the contents don't match!\n");
3549 
3550 	pr_warn("Held locks:");
3551 	print_chain_keys_held_locks(curr, hlock_next);
3552 
3553 	pr_warn("Locks in cached chain:");
3554 	print_chain_keys_chain(chain);
3555 
3556 	pr_warn("\nstack backtrace:\n");
3557 	dump_stack();
3558 }
3559 #endif
3560 
3561 /*
3562  * Checks whether the chain and the current held locks are consistent
3563  * in depth and also in content. If they are not it most likely means
3564  * that there was a collision during the calculation of the chain_key.
3565  * Returns: 0 not passed, 1 passed
3566  */
3567 static int check_no_collision(struct task_struct *curr,
3568 			struct held_lock *hlock,
3569 			struct lock_chain *chain)
3570 {
3571 #ifdef CONFIG_DEBUG_LOCKDEP
3572 	int i, j, id;
3573 
3574 	i = get_first_held_lock(curr, hlock);
3575 
3576 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3577 		print_collision(curr, hlock, chain);
3578 		return 0;
3579 	}
3580 
3581 	for (j = 0; j < chain->depth - 1; j++, i++) {
3582 		id = hlock_id(&curr->held_locks[i]);
3583 
3584 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3585 			print_collision(curr, hlock, chain);
3586 			return 0;
3587 		}
3588 	}
3589 #endif
3590 	return 1;
3591 }
3592 
3593 /*
3594  * Given an index that is >= -1, return the index of the next lock chain.
3595  * Return -2 if there is no next lock chain.
3596  */
3597 long lockdep_next_lockchain(long i)
3598 {
3599 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3600 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3601 }
3602 
3603 unsigned long lock_chain_count(void)
3604 {
3605 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3606 }
3607 
3608 /* Must be called with the graph lock held. */
3609 static struct lock_chain *alloc_lock_chain(void)
3610 {
3611 	int idx = find_first_zero_bit(lock_chains_in_use,
3612 				      ARRAY_SIZE(lock_chains));
3613 
3614 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3615 		return NULL;
3616 	__set_bit(idx, lock_chains_in_use);
3617 	return lock_chains + idx;
3618 }
3619 
3620 /*
3621  * Adds a dependency chain into chain hashtable. And must be called with
3622  * graph_lock held.
3623  *
3624  * Return 0 if fail, and graph_lock is released.
3625  * Return 1 if succeed, with graph_lock held.
3626  */
3627 static inline int add_chain_cache(struct task_struct *curr,
3628 				  struct held_lock *hlock,
3629 				  u64 chain_key)
3630 {
3631 	struct hlist_head *hash_head = chainhashentry(chain_key);
3632 	struct lock_chain *chain;
3633 	int i, j;
3634 
3635 	/*
3636 	 * The caller must hold the graph lock, ensure we've got IRQs
3637 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3638 	 * lockdep won't complain about its own locking errors.
3639 	 */
3640 	if (lockdep_assert_locked())
3641 		return 0;
3642 
3643 	chain = alloc_lock_chain();
3644 	if (!chain) {
3645 		if (!debug_locks_off_graph_unlock())
3646 			return 0;
3647 
3648 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3649 		dump_stack();
3650 		return 0;
3651 	}
3652 	chain->chain_key = chain_key;
3653 	chain->irq_context = hlock->irq_context;
3654 	i = get_first_held_lock(curr, hlock);
3655 	chain->depth = curr->lockdep_depth + 1 - i;
3656 
3657 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3658 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3659 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3660 
3661 	j = alloc_chain_hlocks(chain->depth);
3662 	if (j < 0) {
3663 		if (!debug_locks_off_graph_unlock())
3664 			return 0;
3665 
3666 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3667 		dump_stack();
3668 		return 0;
3669 	}
3670 
3671 	chain->base = j;
3672 	for (j = 0; j < chain->depth - 1; j++, i++) {
3673 		int lock_id = hlock_id(curr->held_locks + i);
3674 
3675 		chain_hlocks[chain->base + j] = lock_id;
3676 	}
3677 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3678 	hlist_add_head_rcu(&chain->entry, hash_head);
3679 	debug_atomic_inc(chain_lookup_misses);
3680 	inc_chains(chain->irq_context);
3681 
3682 	return 1;
3683 }
3684 
3685 /*
3686  * Look up a dependency chain. Must be called with either the graph lock or
3687  * the RCU read lock held.
3688  */
3689 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3690 {
3691 	struct hlist_head *hash_head = chainhashentry(chain_key);
3692 	struct lock_chain *chain;
3693 
3694 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3695 		if (READ_ONCE(chain->chain_key) == chain_key) {
3696 			debug_atomic_inc(chain_lookup_hits);
3697 			return chain;
3698 		}
3699 	}
3700 	return NULL;
3701 }
3702 
3703 /*
3704  * If the key is not present yet in dependency chain cache then
3705  * add it and return 1 - in this case the new dependency chain is
3706  * validated. If the key is already hashed, return 0.
3707  * (On return with 1 graph_lock is held.)
3708  */
3709 static inline int lookup_chain_cache_add(struct task_struct *curr,
3710 					 struct held_lock *hlock,
3711 					 u64 chain_key)
3712 {
3713 	struct lock_class *class = hlock_class(hlock);
3714 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3715 
3716 	if (chain) {
3717 cache_hit:
3718 		if (!check_no_collision(curr, hlock, chain))
3719 			return 0;
3720 
3721 		if (very_verbose(class)) {
3722 			printk("\nhash chain already cached, key: "
3723 					"%016Lx tail class: [%px] %s\n",
3724 					(unsigned long long)chain_key,
3725 					class->key, class->name);
3726 		}
3727 
3728 		return 0;
3729 	}
3730 
3731 	if (very_verbose(class)) {
3732 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3733 			(unsigned long long)chain_key, class->key, class->name);
3734 	}
3735 
3736 	if (!graph_lock())
3737 		return 0;
3738 
3739 	/*
3740 	 * We have to walk the chain again locked - to avoid duplicates:
3741 	 */
3742 	chain = lookup_chain_cache(chain_key);
3743 	if (chain) {
3744 		graph_unlock();
3745 		goto cache_hit;
3746 	}
3747 
3748 	if (!add_chain_cache(curr, hlock, chain_key))
3749 		return 0;
3750 
3751 	return 1;
3752 }
3753 
3754 static int validate_chain(struct task_struct *curr,
3755 			  struct held_lock *hlock,
3756 			  int chain_head, u64 chain_key)
3757 {
3758 	/*
3759 	 * Trylock needs to maintain the stack of held locks, but it
3760 	 * does not add new dependencies, because trylock can be done
3761 	 * in any order.
3762 	 *
3763 	 * We look up the chain_key and do the O(N^2) check and update of
3764 	 * the dependencies only if this is a new dependency chain.
3765 	 * (If lookup_chain_cache_add() return with 1 it acquires
3766 	 * graph_lock for us)
3767 	 */
3768 	if (!hlock->trylock && hlock->check &&
3769 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3770 		/*
3771 		 * Check whether last held lock:
3772 		 *
3773 		 * - is irq-safe, if this lock is irq-unsafe
3774 		 * - is softirq-safe, if this lock is hardirq-unsafe
3775 		 *
3776 		 * And check whether the new lock's dependency graph
3777 		 * could lead back to the previous lock:
3778 		 *
3779 		 * - within the current held-lock stack
3780 		 * - across our accumulated lock dependency records
3781 		 *
3782 		 * any of these scenarios could lead to a deadlock.
3783 		 */
3784 		/*
3785 		 * The simple case: does the current hold the same lock
3786 		 * already?
3787 		 */
3788 		int ret = check_deadlock(curr, hlock);
3789 
3790 		if (!ret)
3791 			return 0;
3792 		/*
3793 		 * Add dependency only if this lock is not the head
3794 		 * of the chain, and if the new lock introduces no more
3795 		 * lock dependency (because we already hold a lock with the
3796 		 * same lock class) nor deadlock (because the nest_lock
3797 		 * serializes nesting locks), see the comments for
3798 		 * check_deadlock().
3799 		 */
3800 		if (!chain_head && ret != 2) {
3801 			if (!check_prevs_add(curr, hlock))
3802 				return 0;
3803 		}
3804 
3805 		graph_unlock();
3806 	} else {
3807 		/* after lookup_chain_cache_add(): */
3808 		if (unlikely(!debug_locks))
3809 			return 0;
3810 	}
3811 
3812 	return 1;
3813 }
3814 #else
3815 static inline int validate_chain(struct task_struct *curr,
3816 				 struct held_lock *hlock,
3817 				 int chain_head, u64 chain_key)
3818 {
3819 	return 1;
3820 }
3821 
3822 static void init_chain_block_buckets(void)	{ }
3823 #endif /* CONFIG_PROVE_LOCKING */
3824 
3825 /*
3826  * We are building curr_chain_key incrementally, so double-check
3827  * it from scratch, to make sure that it's done correctly:
3828  */
3829 static void check_chain_key(struct task_struct *curr)
3830 {
3831 #ifdef CONFIG_DEBUG_LOCKDEP
3832 	struct held_lock *hlock, *prev_hlock = NULL;
3833 	unsigned int i;
3834 	u64 chain_key = INITIAL_CHAIN_KEY;
3835 
3836 	for (i = 0; i < curr->lockdep_depth; i++) {
3837 		hlock = curr->held_locks + i;
3838 		if (chain_key != hlock->prev_chain_key) {
3839 			debug_locks_off();
3840 			/*
3841 			 * We got mighty confused, our chain keys don't match
3842 			 * with what we expect, someone trample on our task state?
3843 			 */
3844 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3845 				curr->lockdep_depth, i,
3846 				(unsigned long long)chain_key,
3847 				(unsigned long long)hlock->prev_chain_key);
3848 			return;
3849 		}
3850 
3851 		/*
3852 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3853 		 * it registered lock class index?
3854 		 */
3855 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3856 			return;
3857 
3858 		if (prev_hlock && (prev_hlock->irq_context !=
3859 							hlock->irq_context))
3860 			chain_key = INITIAL_CHAIN_KEY;
3861 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3862 		prev_hlock = hlock;
3863 	}
3864 	if (chain_key != curr->curr_chain_key) {
3865 		debug_locks_off();
3866 		/*
3867 		 * More smoking hash instead of calculating it, damn see these
3868 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3869 		 */
3870 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3871 			curr->lockdep_depth, i,
3872 			(unsigned long long)chain_key,
3873 			(unsigned long long)curr->curr_chain_key);
3874 	}
3875 #endif
3876 }
3877 
3878 #ifdef CONFIG_PROVE_LOCKING
3879 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3880 		     enum lock_usage_bit new_bit);
3881 
3882 static void print_usage_bug_scenario(struct held_lock *lock)
3883 {
3884 	struct lock_class *class = hlock_class(lock);
3885 
3886 	printk(" Possible unsafe locking scenario:\n\n");
3887 	printk("       CPU0\n");
3888 	printk("       ----\n");
3889 	printk("  lock(");
3890 	__print_lock_name(class);
3891 	printk(KERN_CONT ");\n");
3892 	printk("  <Interrupt>\n");
3893 	printk("    lock(");
3894 	__print_lock_name(class);
3895 	printk(KERN_CONT ");\n");
3896 	printk("\n *** DEADLOCK ***\n\n");
3897 }
3898 
3899 static void
3900 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3901 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3902 {
3903 	if (!debug_locks_off() || debug_locks_silent)
3904 		return;
3905 
3906 	pr_warn("\n");
3907 	pr_warn("================================\n");
3908 	pr_warn("WARNING: inconsistent lock state\n");
3909 	print_kernel_ident();
3910 	pr_warn("--------------------------------\n");
3911 
3912 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3913 		usage_str[prev_bit], usage_str[new_bit]);
3914 
3915 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3916 		curr->comm, task_pid_nr(curr),
3917 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3918 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3919 		lockdep_hardirqs_enabled(),
3920 		lockdep_softirqs_enabled(curr));
3921 	print_lock(this);
3922 
3923 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3924 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3925 
3926 	print_irqtrace_events(curr);
3927 	pr_warn("\nother info that might help us debug this:\n");
3928 	print_usage_bug_scenario(this);
3929 
3930 	lockdep_print_held_locks(curr);
3931 
3932 	pr_warn("\nstack backtrace:\n");
3933 	dump_stack();
3934 }
3935 
3936 /*
3937  * Print out an error if an invalid bit is set:
3938  */
3939 static inline int
3940 valid_state(struct task_struct *curr, struct held_lock *this,
3941 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3942 {
3943 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3944 		graph_unlock();
3945 		print_usage_bug(curr, this, bad_bit, new_bit);
3946 		return 0;
3947 	}
3948 	return 1;
3949 }
3950 
3951 
3952 /*
3953  * print irq inversion bug:
3954  */
3955 static void
3956 print_irq_inversion_bug(struct task_struct *curr,
3957 			struct lock_list *root, struct lock_list *other,
3958 			struct held_lock *this, int forwards,
3959 			const char *irqclass)
3960 {
3961 	struct lock_list *entry = other;
3962 	struct lock_list *middle = NULL;
3963 	int depth;
3964 
3965 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3966 		return;
3967 
3968 	pr_warn("\n");
3969 	pr_warn("========================================================\n");
3970 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3971 	print_kernel_ident();
3972 	pr_warn("--------------------------------------------------------\n");
3973 	pr_warn("%s/%d just changed the state of lock:\n",
3974 		curr->comm, task_pid_nr(curr));
3975 	print_lock(this);
3976 	if (forwards)
3977 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3978 	else
3979 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3980 	print_lock_name(other->class);
3981 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3982 
3983 	pr_warn("\nother info that might help us debug this:\n");
3984 
3985 	/* Find a middle lock (if one exists) */
3986 	depth = get_lock_depth(other);
3987 	do {
3988 		if (depth == 0 && (entry != root)) {
3989 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3990 			break;
3991 		}
3992 		middle = entry;
3993 		entry = get_lock_parent(entry);
3994 		depth--;
3995 	} while (entry && entry != root && (depth >= 0));
3996 	if (forwards)
3997 		print_irq_lock_scenario(root, other,
3998 			middle ? middle->class : root->class, other->class);
3999 	else
4000 		print_irq_lock_scenario(other, root,
4001 			middle ? middle->class : other->class, root->class);
4002 
4003 	lockdep_print_held_locks(curr);
4004 
4005 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4006 	root->trace = save_trace();
4007 	if (!root->trace)
4008 		return;
4009 	print_shortest_lock_dependencies(other, root);
4010 
4011 	pr_warn("\nstack backtrace:\n");
4012 	dump_stack();
4013 }
4014 
4015 /*
4016  * Prove that in the forwards-direction subgraph starting at <this>
4017  * there is no lock matching <mask>:
4018  */
4019 static int
4020 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4021 		     enum lock_usage_bit bit)
4022 {
4023 	enum bfs_result ret;
4024 	struct lock_list root;
4025 	struct lock_list *target_entry;
4026 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4027 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4028 
4029 	bfs_init_root(&root, this);
4030 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4031 	if (bfs_error(ret)) {
4032 		print_bfs_bug(ret);
4033 		return 0;
4034 	}
4035 	if (ret == BFS_RNOMATCH)
4036 		return 1;
4037 
4038 	/* Check whether write or read usage is the match */
4039 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4040 		print_irq_inversion_bug(curr, &root, target_entry,
4041 					this, 1, state_name(bit));
4042 	} else {
4043 		print_irq_inversion_bug(curr, &root, target_entry,
4044 					this, 1, state_name(read_bit));
4045 	}
4046 
4047 	return 0;
4048 }
4049 
4050 /*
4051  * Prove that in the backwards-direction subgraph starting at <this>
4052  * there is no lock matching <mask>:
4053  */
4054 static int
4055 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4056 		      enum lock_usage_bit bit)
4057 {
4058 	enum bfs_result ret;
4059 	struct lock_list root;
4060 	struct lock_list *target_entry;
4061 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4062 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4063 
4064 	bfs_init_rootb(&root, this);
4065 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4066 	if (bfs_error(ret)) {
4067 		print_bfs_bug(ret);
4068 		return 0;
4069 	}
4070 	if (ret == BFS_RNOMATCH)
4071 		return 1;
4072 
4073 	/* Check whether write or read usage is the match */
4074 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4075 		print_irq_inversion_bug(curr, &root, target_entry,
4076 					this, 0, state_name(bit));
4077 	} else {
4078 		print_irq_inversion_bug(curr, &root, target_entry,
4079 					this, 0, state_name(read_bit));
4080 	}
4081 
4082 	return 0;
4083 }
4084 
4085 void print_irqtrace_events(struct task_struct *curr)
4086 {
4087 	const struct irqtrace_events *trace = &curr->irqtrace;
4088 
4089 	printk("irq event stamp: %u\n", trace->irq_events);
4090 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4091 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4092 		(void *)trace->hardirq_enable_ip);
4093 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4094 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4095 		(void *)trace->hardirq_disable_ip);
4096 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4097 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4098 		(void *)trace->softirq_enable_ip);
4099 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4100 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4101 		(void *)trace->softirq_disable_ip);
4102 }
4103 
4104 static int HARDIRQ_verbose(struct lock_class *class)
4105 {
4106 #if HARDIRQ_VERBOSE
4107 	return class_filter(class);
4108 #endif
4109 	return 0;
4110 }
4111 
4112 static int SOFTIRQ_verbose(struct lock_class *class)
4113 {
4114 #if SOFTIRQ_VERBOSE
4115 	return class_filter(class);
4116 #endif
4117 	return 0;
4118 }
4119 
4120 static int (*state_verbose_f[])(struct lock_class *class) = {
4121 #define LOCKDEP_STATE(__STATE) \
4122 	__STATE##_verbose,
4123 #include "lockdep_states.h"
4124 #undef LOCKDEP_STATE
4125 };
4126 
4127 static inline int state_verbose(enum lock_usage_bit bit,
4128 				struct lock_class *class)
4129 {
4130 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4131 }
4132 
4133 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4134 			     enum lock_usage_bit bit, const char *name);
4135 
4136 static int
4137 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4138 		enum lock_usage_bit new_bit)
4139 {
4140 	int excl_bit = exclusive_bit(new_bit);
4141 	int read = new_bit & LOCK_USAGE_READ_MASK;
4142 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4143 
4144 	/*
4145 	 * Validate that this particular lock does not have conflicting
4146 	 * usage states.
4147 	 */
4148 	if (!valid_state(curr, this, new_bit, excl_bit))
4149 		return 0;
4150 
4151 	/*
4152 	 * Check for read in write conflicts
4153 	 */
4154 	if (!read && !valid_state(curr, this, new_bit,
4155 				  excl_bit + LOCK_USAGE_READ_MASK))
4156 		return 0;
4157 
4158 
4159 	/*
4160 	 * Validate that the lock dependencies don't have conflicting usage
4161 	 * states.
4162 	 */
4163 	if (dir) {
4164 		/*
4165 		 * mark ENABLED has to look backwards -- to ensure no dependee
4166 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4167 		 */
4168 		if (!check_usage_backwards(curr, this, excl_bit))
4169 			return 0;
4170 	} else {
4171 		/*
4172 		 * mark USED_IN has to look forwards -- to ensure no dependency
4173 		 * has ENABLED state, which would allow recursion deadlocks.
4174 		 */
4175 		if (!check_usage_forwards(curr, this, excl_bit))
4176 			return 0;
4177 	}
4178 
4179 	if (state_verbose(new_bit, hlock_class(this)))
4180 		return 2;
4181 
4182 	return 1;
4183 }
4184 
4185 /*
4186  * Mark all held locks with a usage bit:
4187  */
4188 static int
4189 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4190 {
4191 	struct held_lock *hlock;
4192 	int i;
4193 
4194 	for (i = 0; i < curr->lockdep_depth; i++) {
4195 		enum lock_usage_bit hlock_bit = base_bit;
4196 		hlock = curr->held_locks + i;
4197 
4198 		if (hlock->read)
4199 			hlock_bit += LOCK_USAGE_READ_MASK;
4200 
4201 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4202 
4203 		if (!hlock->check)
4204 			continue;
4205 
4206 		if (!mark_lock(curr, hlock, hlock_bit))
4207 			return 0;
4208 	}
4209 
4210 	return 1;
4211 }
4212 
4213 /*
4214  * Hardirqs will be enabled:
4215  */
4216 static void __trace_hardirqs_on_caller(void)
4217 {
4218 	struct task_struct *curr = current;
4219 
4220 	/*
4221 	 * We are going to turn hardirqs on, so set the
4222 	 * usage bit for all held locks:
4223 	 */
4224 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4225 		return;
4226 	/*
4227 	 * If we have softirqs enabled, then set the usage
4228 	 * bit for all held locks. (disabled hardirqs prevented
4229 	 * this bit from being set before)
4230 	 */
4231 	if (curr->softirqs_enabled)
4232 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4233 }
4234 
4235 /**
4236  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4237  * @ip:		Caller address
4238  *
4239  * Invoked before a possible transition to RCU idle from exit to user or
4240  * guest mode. This ensures that all RCU operations are done before RCU
4241  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4242  * invoked to set the final state.
4243  */
4244 void lockdep_hardirqs_on_prepare(unsigned long ip)
4245 {
4246 	if (unlikely(!debug_locks))
4247 		return;
4248 
4249 	/*
4250 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4251 	 */
4252 	if (unlikely(in_nmi()))
4253 		return;
4254 
4255 	if (unlikely(this_cpu_read(lockdep_recursion)))
4256 		return;
4257 
4258 	if (unlikely(lockdep_hardirqs_enabled())) {
4259 		/*
4260 		 * Neither irq nor preemption are disabled here
4261 		 * so this is racy by nature but losing one hit
4262 		 * in a stat is not a big deal.
4263 		 */
4264 		__debug_atomic_inc(redundant_hardirqs_on);
4265 		return;
4266 	}
4267 
4268 	/*
4269 	 * We're enabling irqs and according to our state above irqs weren't
4270 	 * already enabled, yet we find the hardware thinks they are in fact
4271 	 * enabled.. someone messed up their IRQ state tracing.
4272 	 */
4273 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4274 		return;
4275 
4276 	/*
4277 	 * See the fine text that goes along with this variable definition.
4278 	 */
4279 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4280 		return;
4281 
4282 	/*
4283 	 * Can't allow enabling interrupts while in an interrupt handler,
4284 	 * that's general bad form and such. Recursion, limited stack etc..
4285 	 */
4286 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4287 		return;
4288 
4289 	current->hardirq_chain_key = current->curr_chain_key;
4290 
4291 	lockdep_recursion_inc();
4292 	__trace_hardirqs_on_caller();
4293 	lockdep_recursion_finish();
4294 }
4295 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4296 
4297 void noinstr lockdep_hardirqs_on(unsigned long ip)
4298 {
4299 	struct irqtrace_events *trace = &current->irqtrace;
4300 
4301 	if (unlikely(!debug_locks))
4302 		return;
4303 
4304 	/*
4305 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4306 	 * tracking state and hardware state are out of sync.
4307 	 *
4308 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4309 	 * and not rely on hardware state like normal interrupts.
4310 	 */
4311 	if (unlikely(in_nmi())) {
4312 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4313 			return;
4314 
4315 		/*
4316 		 * Skip:
4317 		 *  - recursion check, because NMI can hit lockdep;
4318 		 *  - hardware state check, because above;
4319 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4320 		 */
4321 		goto skip_checks;
4322 	}
4323 
4324 	if (unlikely(this_cpu_read(lockdep_recursion)))
4325 		return;
4326 
4327 	if (lockdep_hardirqs_enabled()) {
4328 		/*
4329 		 * Neither irq nor preemption are disabled here
4330 		 * so this is racy by nature but losing one hit
4331 		 * in a stat is not a big deal.
4332 		 */
4333 		__debug_atomic_inc(redundant_hardirqs_on);
4334 		return;
4335 	}
4336 
4337 	/*
4338 	 * We're enabling irqs and according to our state above irqs weren't
4339 	 * already enabled, yet we find the hardware thinks they are in fact
4340 	 * enabled.. someone messed up their IRQ state tracing.
4341 	 */
4342 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4343 		return;
4344 
4345 	/*
4346 	 * Ensure the lock stack remained unchanged between
4347 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4348 	 */
4349 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4350 			    current->curr_chain_key);
4351 
4352 skip_checks:
4353 	/* we'll do an OFF -> ON transition: */
4354 	__this_cpu_write(hardirqs_enabled, 1);
4355 	trace->hardirq_enable_ip = ip;
4356 	trace->hardirq_enable_event = ++trace->irq_events;
4357 	debug_atomic_inc(hardirqs_on_events);
4358 }
4359 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4360 
4361 /*
4362  * Hardirqs were disabled:
4363  */
4364 void noinstr lockdep_hardirqs_off(unsigned long ip)
4365 {
4366 	if (unlikely(!debug_locks))
4367 		return;
4368 
4369 	/*
4370 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4371 	 * they will restore the software state. This ensures the software
4372 	 * state is consistent inside NMIs as well.
4373 	 */
4374 	if (in_nmi()) {
4375 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4376 			return;
4377 	} else if (__this_cpu_read(lockdep_recursion))
4378 		return;
4379 
4380 	/*
4381 	 * So we're supposed to get called after you mask local IRQs, but for
4382 	 * some reason the hardware doesn't quite think you did a proper job.
4383 	 */
4384 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4385 		return;
4386 
4387 	if (lockdep_hardirqs_enabled()) {
4388 		struct irqtrace_events *trace = &current->irqtrace;
4389 
4390 		/*
4391 		 * We have done an ON -> OFF transition:
4392 		 */
4393 		__this_cpu_write(hardirqs_enabled, 0);
4394 		trace->hardirq_disable_ip = ip;
4395 		trace->hardirq_disable_event = ++trace->irq_events;
4396 		debug_atomic_inc(hardirqs_off_events);
4397 	} else {
4398 		debug_atomic_inc(redundant_hardirqs_off);
4399 	}
4400 }
4401 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4402 
4403 /*
4404  * Softirqs will be enabled:
4405  */
4406 void lockdep_softirqs_on(unsigned long ip)
4407 {
4408 	struct irqtrace_events *trace = &current->irqtrace;
4409 
4410 	if (unlikely(!lockdep_enabled()))
4411 		return;
4412 
4413 	/*
4414 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4415 	 * funny state and nesting things.
4416 	 */
4417 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4418 		return;
4419 
4420 	if (current->softirqs_enabled) {
4421 		debug_atomic_inc(redundant_softirqs_on);
4422 		return;
4423 	}
4424 
4425 	lockdep_recursion_inc();
4426 	/*
4427 	 * We'll do an OFF -> ON transition:
4428 	 */
4429 	current->softirqs_enabled = 1;
4430 	trace->softirq_enable_ip = ip;
4431 	trace->softirq_enable_event = ++trace->irq_events;
4432 	debug_atomic_inc(softirqs_on_events);
4433 	/*
4434 	 * We are going to turn softirqs on, so set the
4435 	 * usage bit for all held locks, if hardirqs are
4436 	 * enabled too:
4437 	 */
4438 	if (lockdep_hardirqs_enabled())
4439 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4440 	lockdep_recursion_finish();
4441 }
4442 
4443 /*
4444  * Softirqs were disabled:
4445  */
4446 void lockdep_softirqs_off(unsigned long ip)
4447 {
4448 	if (unlikely(!lockdep_enabled()))
4449 		return;
4450 
4451 	/*
4452 	 * We fancy IRQs being disabled here, see softirq.c
4453 	 */
4454 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4455 		return;
4456 
4457 	if (current->softirqs_enabled) {
4458 		struct irqtrace_events *trace = &current->irqtrace;
4459 
4460 		/*
4461 		 * We have done an ON -> OFF transition:
4462 		 */
4463 		current->softirqs_enabled = 0;
4464 		trace->softirq_disable_ip = ip;
4465 		trace->softirq_disable_event = ++trace->irq_events;
4466 		debug_atomic_inc(softirqs_off_events);
4467 		/*
4468 		 * Whoops, we wanted softirqs off, so why aren't they?
4469 		 */
4470 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4471 	} else
4472 		debug_atomic_inc(redundant_softirqs_off);
4473 }
4474 
4475 static int
4476 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4477 {
4478 	if (!check)
4479 		goto lock_used;
4480 
4481 	/*
4482 	 * If non-trylock use in a hardirq or softirq context, then
4483 	 * mark the lock as used in these contexts:
4484 	 */
4485 	if (!hlock->trylock) {
4486 		if (hlock->read) {
4487 			if (lockdep_hardirq_context())
4488 				if (!mark_lock(curr, hlock,
4489 						LOCK_USED_IN_HARDIRQ_READ))
4490 					return 0;
4491 			if (curr->softirq_context)
4492 				if (!mark_lock(curr, hlock,
4493 						LOCK_USED_IN_SOFTIRQ_READ))
4494 					return 0;
4495 		} else {
4496 			if (lockdep_hardirq_context())
4497 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4498 					return 0;
4499 			if (curr->softirq_context)
4500 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4501 					return 0;
4502 		}
4503 	}
4504 	if (!hlock->hardirqs_off) {
4505 		if (hlock->read) {
4506 			if (!mark_lock(curr, hlock,
4507 					LOCK_ENABLED_HARDIRQ_READ))
4508 				return 0;
4509 			if (curr->softirqs_enabled)
4510 				if (!mark_lock(curr, hlock,
4511 						LOCK_ENABLED_SOFTIRQ_READ))
4512 					return 0;
4513 		} else {
4514 			if (!mark_lock(curr, hlock,
4515 					LOCK_ENABLED_HARDIRQ))
4516 				return 0;
4517 			if (curr->softirqs_enabled)
4518 				if (!mark_lock(curr, hlock,
4519 						LOCK_ENABLED_SOFTIRQ))
4520 					return 0;
4521 		}
4522 	}
4523 
4524 lock_used:
4525 	/* mark it as used: */
4526 	if (!mark_lock(curr, hlock, LOCK_USED))
4527 		return 0;
4528 
4529 	return 1;
4530 }
4531 
4532 static inline unsigned int task_irq_context(struct task_struct *task)
4533 {
4534 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4535 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4536 }
4537 
4538 static int separate_irq_context(struct task_struct *curr,
4539 		struct held_lock *hlock)
4540 {
4541 	unsigned int depth = curr->lockdep_depth;
4542 
4543 	/*
4544 	 * Keep track of points where we cross into an interrupt context:
4545 	 */
4546 	if (depth) {
4547 		struct held_lock *prev_hlock;
4548 
4549 		prev_hlock = curr->held_locks + depth-1;
4550 		/*
4551 		 * If we cross into another context, reset the
4552 		 * hash key (this also prevents the checking and the
4553 		 * adding of the dependency to 'prev'):
4554 		 */
4555 		if (prev_hlock->irq_context != hlock->irq_context)
4556 			return 1;
4557 	}
4558 	return 0;
4559 }
4560 
4561 /*
4562  * Mark a lock with a usage bit, and validate the state transition:
4563  */
4564 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4565 			     enum lock_usage_bit new_bit)
4566 {
4567 	unsigned int new_mask, ret = 1;
4568 
4569 	if (new_bit >= LOCK_USAGE_STATES) {
4570 		DEBUG_LOCKS_WARN_ON(1);
4571 		return 0;
4572 	}
4573 
4574 	if (new_bit == LOCK_USED && this->read)
4575 		new_bit = LOCK_USED_READ;
4576 
4577 	new_mask = 1 << new_bit;
4578 
4579 	/*
4580 	 * If already set then do not dirty the cacheline,
4581 	 * nor do any checks:
4582 	 */
4583 	if (likely(hlock_class(this)->usage_mask & new_mask))
4584 		return 1;
4585 
4586 	if (!graph_lock())
4587 		return 0;
4588 	/*
4589 	 * Make sure we didn't race:
4590 	 */
4591 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4592 		goto unlock;
4593 
4594 	if (!hlock_class(this)->usage_mask)
4595 		debug_atomic_dec(nr_unused_locks);
4596 
4597 	hlock_class(this)->usage_mask |= new_mask;
4598 
4599 	if (new_bit < LOCK_TRACE_STATES) {
4600 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4601 			return 0;
4602 	}
4603 
4604 	if (new_bit < LOCK_USED) {
4605 		ret = mark_lock_irq(curr, this, new_bit);
4606 		if (!ret)
4607 			return 0;
4608 	}
4609 
4610 unlock:
4611 	graph_unlock();
4612 
4613 	/*
4614 	 * We must printk outside of the graph_lock:
4615 	 */
4616 	if (ret == 2) {
4617 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4618 		print_lock(this);
4619 		print_irqtrace_events(curr);
4620 		dump_stack();
4621 	}
4622 
4623 	return ret;
4624 }
4625 
4626 static inline short task_wait_context(struct task_struct *curr)
4627 {
4628 	/*
4629 	 * Set appropriate wait type for the context; for IRQs we have to take
4630 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4631 	 */
4632 	if (lockdep_hardirq_context()) {
4633 		/*
4634 		 * Check if force_irqthreads will run us threaded.
4635 		 */
4636 		if (curr->hardirq_threaded || curr->irq_config)
4637 			return LD_WAIT_CONFIG;
4638 
4639 		return LD_WAIT_SPIN;
4640 	} else if (curr->softirq_context) {
4641 		/*
4642 		 * Softirqs are always threaded.
4643 		 */
4644 		return LD_WAIT_CONFIG;
4645 	}
4646 
4647 	return LD_WAIT_MAX;
4648 }
4649 
4650 static int
4651 print_lock_invalid_wait_context(struct task_struct *curr,
4652 				struct held_lock *hlock)
4653 {
4654 	short curr_inner;
4655 
4656 	if (!debug_locks_off())
4657 		return 0;
4658 	if (debug_locks_silent)
4659 		return 0;
4660 
4661 	pr_warn("\n");
4662 	pr_warn("=============================\n");
4663 	pr_warn("[ BUG: Invalid wait context ]\n");
4664 	print_kernel_ident();
4665 	pr_warn("-----------------------------\n");
4666 
4667 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4668 	print_lock(hlock);
4669 
4670 	pr_warn("other info that might help us debug this:\n");
4671 
4672 	curr_inner = task_wait_context(curr);
4673 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4674 
4675 	lockdep_print_held_locks(curr);
4676 
4677 	pr_warn("stack backtrace:\n");
4678 	dump_stack();
4679 
4680 	return 0;
4681 }
4682 
4683 /*
4684  * Verify the wait_type context.
4685  *
4686  * This check validates we take locks in the right wait-type order; that is it
4687  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4688  * acquire spinlocks inside raw_spinlocks and the sort.
4689  *
4690  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4691  * can be taken from (pretty much) any context but also has constraints.
4692  * However when taken in a stricter environment the RCU lock does not loosen
4693  * the constraints.
4694  *
4695  * Therefore we must look for the strictest environment in the lock stack and
4696  * compare that to the lock we're trying to acquire.
4697  */
4698 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4699 {
4700 	u8 next_inner = hlock_class(next)->wait_type_inner;
4701 	u8 next_outer = hlock_class(next)->wait_type_outer;
4702 	u8 curr_inner;
4703 	int depth;
4704 
4705 	if (!next_inner || next->trylock)
4706 		return 0;
4707 
4708 	if (!next_outer)
4709 		next_outer = next_inner;
4710 
4711 	/*
4712 	 * Find start of current irq_context..
4713 	 */
4714 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4715 		struct held_lock *prev = curr->held_locks + depth;
4716 		if (prev->irq_context != next->irq_context)
4717 			break;
4718 	}
4719 	depth++;
4720 
4721 	curr_inner = task_wait_context(curr);
4722 
4723 	for (; depth < curr->lockdep_depth; depth++) {
4724 		struct held_lock *prev = curr->held_locks + depth;
4725 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4726 
4727 		if (prev_inner) {
4728 			/*
4729 			 * We can have a bigger inner than a previous one
4730 			 * when outer is smaller than inner, as with RCU.
4731 			 *
4732 			 * Also due to trylocks.
4733 			 */
4734 			curr_inner = min(curr_inner, prev_inner);
4735 		}
4736 	}
4737 
4738 	if (next_outer > curr_inner)
4739 		return print_lock_invalid_wait_context(curr, next);
4740 
4741 	return 0;
4742 }
4743 
4744 #else /* CONFIG_PROVE_LOCKING */
4745 
4746 static inline int
4747 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4748 {
4749 	return 1;
4750 }
4751 
4752 static inline unsigned int task_irq_context(struct task_struct *task)
4753 {
4754 	return 0;
4755 }
4756 
4757 static inline int separate_irq_context(struct task_struct *curr,
4758 		struct held_lock *hlock)
4759 {
4760 	return 0;
4761 }
4762 
4763 static inline int check_wait_context(struct task_struct *curr,
4764 				     struct held_lock *next)
4765 {
4766 	return 0;
4767 }
4768 
4769 #endif /* CONFIG_PROVE_LOCKING */
4770 
4771 /*
4772  * Initialize a lock instance's lock-class mapping info:
4773  */
4774 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4775 			    struct lock_class_key *key, int subclass,
4776 			    u8 inner, u8 outer, u8 lock_type)
4777 {
4778 	int i;
4779 
4780 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4781 		lock->class_cache[i] = NULL;
4782 
4783 #ifdef CONFIG_LOCK_STAT
4784 	lock->cpu = raw_smp_processor_id();
4785 #endif
4786 
4787 	/*
4788 	 * Can't be having no nameless bastards around this place!
4789 	 */
4790 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4791 		lock->name = "NULL";
4792 		return;
4793 	}
4794 
4795 	lock->name = name;
4796 
4797 	lock->wait_type_outer = outer;
4798 	lock->wait_type_inner = inner;
4799 	lock->lock_type = lock_type;
4800 
4801 	/*
4802 	 * No key, no joy, we need to hash something.
4803 	 */
4804 	if (DEBUG_LOCKS_WARN_ON(!key))
4805 		return;
4806 	/*
4807 	 * Sanity check, the lock-class key must either have been allocated
4808 	 * statically or must have been registered as a dynamic key.
4809 	 */
4810 	if (!static_obj(key) && !is_dynamic_key(key)) {
4811 		if (debug_locks)
4812 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4813 		DEBUG_LOCKS_WARN_ON(1);
4814 		return;
4815 	}
4816 	lock->key = key;
4817 
4818 	if (unlikely(!debug_locks))
4819 		return;
4820 
4821 	if (subclass) {
4822 		unsigned long flags;
4823 
4824 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4825 			return;
4826 
4827 		raw_local_irq_save(flags);
4828 		lockdep_recursion_inc();
4829 		register_lock_class(lock, subclass, 1);
4830 		lockdep_recursion_finish();
4831 		raw_local_irq_restore(flags);
4832 	}
4833 }
4834 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4835 
4836 struct lock_class_key __lockdep_no_validate__;
4837 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4838 
4839 static void
4840 print_lock_nested_lock_not_held(struct task_struct *curr,
4841 				struct held_lock *hlock,
4842 				unsigned long ip)
4843 {
4844 	if (!debug_locks_off())
4845 		return;
4846 	if (debug_locks_silent)
4847 		return;
4848 
4849 	pr_warn("\n");
4850 	pr_warn("==================================\n");
4851 	pr_warn("WARNING: Nested lock was not taken\n");
4852 	print_kernel_ident();
4853 	pr_warn("----------------------------------\n");
4854 
4855 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4856 	print_lock(hlock);
4857 
4858 	pr_warn("\nbut this task is not holding:\n");
4859 	pr_warn("%s\n", hlock->nest_lock->name);
4860 
4861 	pr_warn("\nstack backtrace:\n");
4862 	dump_stack();
4863 
4864 	pr_warn("\nother info that might help us debug this:\n");
4865 	lockdep_print_held_locks(curr);
4866 
4867 	pr_warn("\nstack backtrace:\n");
4868 	dump_stack();
4869 }
4870 
4871 static int __lock_is_held(const struct lockdep_map *lock, int read);
4872 
4873 /*
4874  * This gets called for every mutex_lock*()/spin_lock*() operation.
4875  * We maintain the dependency maps and validate the locking attempt:
4876  *
4877  * The callers must make sure that IRQs are disabled before calling it,
4878  * otherwise we could get an interrupt which would want to take locks,
4879  * which would end up in lockdep again.
4880  */
4881 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4882 			  int trylock, int read, int check, int hardirqs_off,
4883 			  struct lockdep_map *nest_lock, unsigned long ip,
4884 			  int references, int pin_count)
4885 {
4886 	struct task_struct *curr = current;
4887 	struct lock_class *class = NULL;
4888 	struct held_lock *hlock;
4889 	unsigned int depth;
4890 	int chain_head = 0;
4891 	int class_idx;
4892 	u64 chain_key;
4893 
4894 	if (unlikely(!debug_locks))
4895 		return 0;
4896 
4897 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4898 		check = 0;
4899 
4900 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4901 		class = lock->class_cache[subclass];
4902 	/*
4903 	 * Not cached?
4904 	 */
4905 	if (unlikely(!class)) {
4906 		class = register_lock_class(lock, subclass, 0);
4907 		if (!class)
4908 			return 0;
4909 	}
4910 
4911 	debug_class_ops_inc(class);
4912 
4913 	if (very_verbose(class)) {
4914 		printk("\nacquire class [%px] %s", class->key, class->name);
4915 		if (class->name_version > 1)
4916 			printk(KERN_CONT "#%d", class->name_version);
4917 		printk(KERN_CONT "\n");
4918 		dump_stack();
4919 	}
4920 
4921 	/*
4922 	 * Add the lock to the list of currently held locks.
4923 	 * (we dont increase the depth just yet, up until the
4924 	 * dependency checks are done)
4925 	 */
4926 	depth = curr->lockdep_depth;
4927 	/*
4928 	 * Ran out of static storage for our per-task lock stack again have we?
4929 	 */
4930 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4931 		return 0;
4932 
4933 	class_idx = class - lock_classes;
4934 
4935 	if (depth) { /* we're holding locks */
4936 		hlock = curr->held_locks + depth - 1;
4937 		if (hlock->class_idx == class_idx && nest_lock) {
4938 			if (!references)
4939 				references++;
4940 
4941 			if (!hlock->references)
4942 				hlock->references++;
4943 
4944 			hlock->references += references;
4945 
4946 			/* Overflow */
4947 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4948 				return 0;
4949 
4950 			return 2;
4951 		}
4952 	}
4953 
4954 	hlock = curr->held_locks + depth;
4955 	/*
4956 	 * Plain impossible, we just registered it and checked it weren't no
4957 	 * NULL like.. I bet this mushroom I ate was good!
4958 	 */
4959 	if (DEBUG_LOCKS_WARN_ON(!class))
4960 		return 0;
4961 	hlock->class_idx = class_idx;
4962 	hlock->acquire_ip = ip;
4963 	hlock->instance = lock;
4964 	hlock->nest_lock = nest_lock;
4965 	hlock->irq_context = task_irq_context(curr);
4966 	hlock->trylock = trylock;
4967 	hlock->read = read;
4968 	hlock->check = check;
4969 	hlock->hardirqs_off = !!hardirqs_off;
4970 	hlock->references = references;
4971 #ifdef CONFIG_LOCK_STAT
4972 	hlock->waittime_stamp = 0;
4973 	hlock->holdtime_stamp = lockstat_clock();
4974 #endif
4975 	hlock->pin_count = pin_count;
4976 
4977 	if (check_wait_context(curr, hlock))
4978 		return 0;
4979 
4980 	/* Initialize the lock usage bit */
4981 	if (!mark_usage(curr, hlock, check))
4982 		return 0;
4983 
4984 	/*
4985 	 * Calculate the chain hash: it's the combined hash of all the
4986 	 * lock keys along the dependency chain. We save the hash value
4987 	 * at every step so that we can get the current hash easily
4988 	 * after unlock. The chain hash is then used to cache dependency
4989 	 * results.
4990 	 *
4991 	 * The 'key ID' is what is the most compact key value to drive
4992 	 * the hash, not class->key.
4993 	 */
4994 	/*
4995 	 * Whoops, we did it again.. class_idx is invalid.
4996 	 */
4997 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4998 		return 0;
4999 
5000 	chain_key = curr->curr_chain_key;
5001 	if (!depth) {
5002 		/*
5003 		 * How can we have a chain hash when we ain't got no keys?!
5004 		 */
5005 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5006 			return 0;
5007 		chain_head = 1;
5008 	}
5009 
5010 	hlock->prev_chain_key = chain_key;
5011 	if (separate_irq_context(curr, hlock)) {
5012 		chain_key = INITIAL_CHAIN_KEY;
5013 		chain_head = 1;
5014 	}
5015 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5016 
5017 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5018 		print_lock_nested_lock_not_held(curr, hlock, ip);
5019 		return 0;
5020 	}
5021 
5022 	if (!debug_locks_silent) {
5023 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5024 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5025 	}
5026 
5027 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5028 		return 0;
5029 
5030 	curr->curr_chain_key = chain_key;
5031 	curr->lockdep_depth++;
5032 	check_chain_key(curr);
5033 #ifdef CONFIG_DEBUG_LOCKDEP
5034 	if (unlikely(!debug_locks))
5035 		return 0;
5036 #endif
5037 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5038 		debug_locks_off();
5039 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5040 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5041 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5042 
5043 		lockdep_print_held_locks(current);
5044 		debug_show_all_locks();
5045 		dump_stack();
5046 
5047 		return 0;
5048 	}
5049 
5050 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5051 		max_lockdep_depth = curr->lockdep_depth;
5052 
5053 	return 1;
5054 }
5055 
5056 static void print_unlock_imbalance_bug(struct task_struct *curr,
5057 				       struct lockdep_map *lock,
5058 				       unsigned long ip)
5059 {
5060 	if (!debug_locks_off())
5061 		return;
5062 	if (debug_locks_silent)
5063 		return;
5064 
5065 	pr_warn("\n");
5066 	pr_warn("=====================================\n");
5067 	pr_warn("WARNING: bad unlock balance detected!\n");
5068 	print_kernel_ident();
5069 	pr_warn("-------------------------------------\n");
5070 	pr_warn("%s/%d is trying to release lock (",
5071 		curr->comm, task_pid_nr(curr));
5072 	print_lockdep_cache(lock);
5073 	pr_cont(") at:\n");
5074 	print_ip_sym(KERN_WARNING, ip);
5075 	pr_warn("but there are no more locks to release!\n");
5076 	pr_warn("\nother info that might help us debug this:\n");
5077 	lockdep_print_held_locks(curr);
5078 
5079 	pr_warn("\nstack backtrace:\n");
5080 	dump_stack();
5081 }
5082 
5083 static noinstr int match_held_lock(const struct held_lock *hlock,
5084 				   const struct lockdep_map *lock)
5085 {
5086 	if (hlock->instance == lock)
5087 		return 1;
5088 
5089 	if (hlock->references) {
5090 		const struct lock_class *class = lock->class_cache[0];
5091 
5092 		if (!class)
5093 			class = look_up_lock_class(lock, 0);
5094 
5095 		/*
5096 		 * If look_up_lock_class() failed to find a class, we're trying
5097 		 * to test if we hold a lock that has never yet been acquired.
5098 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5099 		 * holding it either, so report failure.
5100 		 */
5101 		if (!class)
5102 			return 0;
5103 
5104 		/*
5105 		 * References, but not a lock we're actually ref-counting?
5106 		 * State got messed up, follow the sites that change ->references
5107 		 * and try to make sense of it.
5108 		 */
5109 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5110 			return 0;
5111 
5112 		if (hlock->class_idx == class - lock_classes)
5113 			return 1;
5114 	}
5115 
5116 	return 0;
5117 }
5118 
5119 /* @depth must not be zero */
5120 static struct held_lock *find_held_lock(struct task_struct *curr,
5121 					struct lockdep_map *lock,
5122 					unsigned int depth, int *idx)
5123 {
5124 	struct held_lock *ret, *hlock, *prev_hlock;
5125 	int i;
5126 
5127 	i = depth - 1;
5128 	hlock = curr->held_locks + i;
5129 	ret = hlock;
5130 	if (match_held_lock(hlock, lock))
5131 		goto out;
5132 
5133 	ret = NULL;
5134 	for (i--, prev_hlock = hlock--;
5135 	     i >= 0;
5136 	     i--, prev_hlock = hlock--) {
5137 		/*
5138 		 * We must not cross into another context:
5139 		 */
5140 		if (prev_hlock->irq_context != hlock->irq_context) {
5141 			ret = NULL;
5142 			break;
5143 		}
5144 		if (match_held_lock(hlock, lock)) {
5145 			ret = hlock;
5146 			break;
5147 		}
5148 	}
5149 
5150 out:
5151 	*idx = i;
5152 	return ret;
5153 }
5154 
5155 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5156 				int idx, unsigned int *merged)
5157 {
5158 	struct held_lock *hlock;
5159 	int first_idx = idx;
5160 
5161 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5162 		return 0;
5163 
5164 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5165 		switch (__lock_acquire(hlock->instance,
5166 				    hlock_class(hlock)->subclass,
5167 				    hlock->trylock,
5168 				    hlock->read, hlock->check,
5169 				    hlock->hardirqs_off,
5170 				    hlock->nest_lock, hlock->acquire_ip,
5171 				    hlock->references, hlock->pin_count)) {
5172 		case 0:
5173 			return 1;
5174 		case 1:
5175 			break;
5176 		case 2:
5177 			*merged += (idx == first_idx);
5178 			break;
5179 		default:
5180 			WARN_ON(1);
5181 			return 0;
5182 		}
5183 	}
5184 	return 0;
5185 }
5186 
5187 static int
5188 __lock_set_class(struct lockdep_map *lock, const char *name,
5189 		 struct lock_class_key *key, unsigned int subclass,
5190 		 unsigned long ip)
5191 {
5192 	struct task_struct *curr = current;
5193 	unsigned int depth, merged = 0;
5194 	struct held_lock *hlock;
5195 	struct lock_class *class;
5196 	int i;
5197 
5198 	if (unlikely(!debug_locks))
5199 		return 0;
5200 
5201 	depth = curr->lockdep_depth;
5202 	/*
5203 	 * This function is about (re)setting the class of a held lock,
5204 	 * yet we're not actually holding any locks. Naughty user!
5205 	 */
5206 	if (DEBUG_LOCKS_WARN_ON(!depth))
5207 		return 0;
5208 
5209 	hlock = find_held_lock(curr, lock, depth, &i);
5210 	if (!hlock) {
5211 		print_unlock_imbalance_bug(curr, lock, ip);
5212 		return 0;
5213 	}
5214 
5215 	lockdep_init_map_waits(lock, name, key, 0,
5216 			       lock->wait_type_inner,
5217 			       lock->wait_type_outer);
5218 	class = register_lock_class(lock, subclass, 0);
5219 	hlock->class_idx = class - lock_classes;
5220 
5221 	curr->lockdep_depth = i;
5222 	curr->curr_chain_key = hlock->prev_chain_key;
5223 
5224 	if (reacquire_held_locks(curr, depth, i, &merged))
5225 		return 0;
5226 
5227 	/*
5228 	 * I took it apart and put it back together again, except now I have
5229 	 * these 'spare' parts.. where shall I put them.
5230 	 */
5231 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5232 		return 0;
5233 	return 1;
5234 }
5235 
5236 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5237 {
5238 	struct task_struct *curr = current;
5239 	unsigned int depth, merged = 0;
5240 	struct held_lock *hlock;
5241 	int i;
5242 
5243 	if (unlikely(!debug_locks))
5244 		return 0;
5245 
5246 	depth = curr->lockdep_depth;
5247 	/*
5248 	 * This function is about (re)setting the class of a held lock,
5249 	 * yet we're not actually holding any locks. Naughty user!
5250 	 */
5251 	if (DEBUG_LOCKS_WARN_ON(!depth))
5252 		return 0;
5253 
5254 	hlock = find_held_lock(curr, lock, depth, &i);
5255 	if (!hlock) {
5256 		print_unlock_imbalance_bug(curr, lock, ip);
5257 		return 0;
5258 	}
5259 
5260 	curr->lockdep_depth = i;
5261 	curr->curr_chain_key = hlock->prev_chain_key;
5262 
5263 	WARN(hlock->read, "downgrading a read lock");
5264 	hlock->read = 1;
5265 	hlock->acquire_ip = ip;
5266 
5267 	if (reacquire_held_locks(curr, depth, i, &merged))
5268 		return 0;
5269 
5270 	/* Merging can't happen with unchanged classes.. */
5271 	if (DEBUG_LOCKS_WARN_ON(merged))
5272 		return 0;
5273 
5274 	/*
5275 	 * I took it apart and put it back together again, except now I have
5276 	 * these 'spare' parts.. where shall I put them.
5277 	 */
5278 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5279 		return 0;
5280 
5281 	return 1;
5282 }
5283 
5284 /*
5285  * Remove the lock from the list of currently held locks - this gets
5286  * called on mutex_unlock()/spin_unlock*() (or on a failed
5287  * mutex_lock_interruptible()).
5288  */
5289 static int
5290 __lock_release(struct lockdep_map *lock, unsigned long ip)
5291 {
5292 	struct task_struct *curr = current;
5293 	unsigned int depth, merged = 1;
5294 	struct held_lock *hlock;
5295 	int i;
5296 
5297 	if (unlikely(!debug_locks))
5298 		return 0;
5299 
5300 	depth = curr->lockdep_depth;
5301 	/*
5302 	 * So we're all set to release this lock.. wait what lock? We don't
5303 	 * own any locks, you've been drinking again?
5304 	 */
5305 	if (depth <= 0) {
5306 		print_unlock_imbalance_bug(curr, lock, ip);
5307 		return 0;
5308 	}
5309 
5310 	/*
5311 	 * Check whether the lock exists in the current stack
5312 	 * of held locks:
5313 	 */
5314 	hlock = find_held_lock(curr, lock, depth, &i);
5315 	if (!hlock) {
5316 		print_unlock_imbalance_bug(curr, lock, ip);
5317 		return 0;
5318 	}
5319 
5320 	if (hlock->instance == lock)
5321 		lock_release_holdtime(hlock);
5322 
5323 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5324 
5325 	if (hlock->references) {
5326 		hlock->references--;
5327 		if (hlock->references) {
5328 			/*
5329 			 * We had, and after removing one, still have
5330 			 * references, the current lock stack is still
5331 			 * valid. We're done!
5332 			 */
5333 			return 1;
5334 		}
5335 	}
5336 
5337 	/*
5338 	 * We have the right lock to unlock, 'hlock' points to it.
5339 	 * Now we remove it from the stack, and add back the other
5340 	 * entries (if any), recalculating the hash along the way:
5341 	 */
5342 
5343 	curr->lockdep_depth = i;
5344 	curr->curr_chain_key = hlock->prev_chain_key;
5345 
5346 	/*
5347 	 * The most likely case is when the unlock is on the innermost
5348 	 * lock. In this case, we are done!
5349 	 */
5350 	if (i == depth-1)
5351 		return 1;
5352 
5353 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5354 		return 0;
5355 
5356 	/*
5357 	 * We had N bottles of beer on the wall, we drank one, but now
5358 	 * there's not N-1 bottles of beer left on the wall...
5359 	 * Pouring two of the bottles together is acceptable.
5360 	 */
5361 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5362 
5363 	/*
5364 	 * Since reacquire_held_locks() would have called check_chain_key()
5365 	 * indirectly via __lock_acquire(), we don't need to do it again
5366 	 * on return.
5367 	 */
5368 	return 0;
5369 }
5370 
5371 static __always_inline
5372 int __lock_is_held(const struct lockdep_map *lock, int read)
5373 {
5374 	struct task_struct *curr = current;
5375 	int i;
5376 
5377 	for (i = 0; i < curr->lockdep_depth; i++) {
5378 		struct held_lock *hlock = curr->held_locks + i;
5379 
5380 		if (match_held_lock(hlock, lock)) {
5381 			if (read == -1 || !!hlock->read == read)
5382 				return LOCK_STATE_HELD;
5383 
5384 			return LOCK_STATE_NOT_HELD;
5385 		}
5386 	}
5387 
5388 	return LOCK_STATE_NOT_HELD;
5389 }
5390 
5391 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5392 {
5393 	struct pin_cookie cookie = NIL_COOKIE;
5394 	struct task_struct *curr = current;
5395 	int i;
5396 
5397 	if (unlikely(!debug_locks))
5398 		return cookie;
5399 
5400 	for (i = 0; i < curr->lockdep_depth; i++) {
5401 		struct held_lock *hlock = curr->held_locks + i;
5402 
5403 		if (match_held_lock(hlock, lock)) {
5404 			/*
5405 			 * Grab 16bits of randomness; this is sufficient to not
5406 			 * be guessable and still allows some pin nesting in
5407 			 * our u32 pin_count.
5408 			 */
5409 			cookie.val = 1 + (prandom_u32() >> 16);
5410 			hlock->pin_count += cookie.val;
5411 			return cookie;
5412 		}
5413 	}
5414 
5415 	WARN(1, "pinning an unheld lock\n");
5416 	return cookie;
5417 }
5418 
5419 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5420 {
5421 	struct task_struct *curr = current;
5422 	int i;
5423 
5424 	if (unlikely(!debug_locks))
5425 		return;
5426 
5427 	for (i = 0; i < curr->lockdep_depth; i++) {
5428 		struct held_lock *hlock = curr->held_locks + i;
5429 
5430 		if (match_held_lock(hlock, lock)) {
5431 			hlock->pin_count += cookie.val;
5432 			return;
5433 		}
5434 	}
5435 
5436 	WARN(1, "pinning an unheld lock\n");
5437 }
5438 
5439 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5440 {
5441 	struct task_struct *curr = current;
5442 	int i;
5443 
5444 	if (unlikely(!debug_locks))
5445 		return;
5446 
5447 	for (i = 0; i < curr->lockdep_depth; i++) {
5448 		struct held_lock *hlock = curr->held_locks + i;
5449 
5450 		if (match_held_lock(hlock, lock)) {
5451 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5452 				return;
5453 
5454 			hlock->pin_count -= cookie.val;
5455 
5456 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5457 				hlock->pin_count = 0;
5458 
5459 			return;
5460 		}
5461 	}
5462 
5463 	WARN(1, "unpinning an unheld lock\n");
5464 }
5465 
5466 /*
5467  * Check whether we follow the irq-flags state precisely:
5468  */
5469 static noinstr void check_flags(unsigned long flags)
5470 {
5471 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5472 	if (!debug_locks)
5473 		return;
5474 
5475 	/* Get the warning out..  */
5476 	instrumentation_begin();
5477 
5478 	if (irqs_disabled_flags(flags)) {
5479 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5480 			printk("possible reason: unannotated irqs-off.\n");
5481 		}
5482 	} else {
5483 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5484 			printk("possible reason: unannotated irqs-on.\n");
5485 		}
5486 	}
5487 
5488 #ifndef CONFIG_PREEMPT_RT
5489 	/*
5490 	 * We dont accurately track softirq state in e.g.
5491 	 * hardirq contexts (such as on 4KSTACKS), so only
5492 	 * check if not in hardirq contexts:
5493 	 */
5494 	if (!hardirq_count()) {
5495 		if (softirq_count()) {
5496 			/* like the above, but with softirqs */
5497 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5498 		} else {
5499 			/* lick the above, does it taste good? */
5500 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5501 		}
5502 	}
5503 #endif
5504 
5505 	if (!debug_locks)
5506 		print_irqtrace_events(current);
5507 
5508 	instrumentation_end();
5509 #endif
5510 }
5511 
5512 void lock_set_class(struct lockdep_map *lock, const char *name,
5513 		    struct lock_class_key *key, unsigned int subclass,
5514 		    unsigned long ip)
5515 {
5516 	unsigned long flags;
5517 
5518 	if (unlikely(!lockdep_enabled()))
5519 		return;
5520 
5521 	raw_local_irq_save(flags);
5522 	lockdep_recursion_inc();
5523 	check_flags(flags);
5524 	if (__lock_set_class(lock, name, key, subclass, ip))
5525 		check_chain_key(current);
5526 	lockdep_recursion_finish();
5527 	raw_local_irq_restore(flags);
5528 }
5529 EXPORT_SYMBOL_GPL(lock_set_class);
5530 
5531 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5532 {
5533 	unsigned long flags;
5534 
5535 	if (unlikely(!lockdep_enabled()))
5536 		return;
5537 
5538 	raw_local_irq_save(flags);
5539 	lockdep_recursion_inc();
5540 	check_flags(flags);
5541 	if (__lock_downgrade(lock, ip))
5542 		check_chain_key(current);
5543 	lockdep_recursion_finish();
5544 	raw_local_irq_restore(flags);
5545 }
5546 EXPORT_SYMBOL_GPL(lock_downgrade);
5547 
5548 /* NMI context !!! */
5549 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5550 {
5551 #ifdef CONFIG_PROVE_LOCKING
5552 	struct lock_class *class = look_up_lock_class(lock, subclass);
5553 	unsigned long mask = LOCKF_USED;
5554 
5555 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5556 	if (!class)
5557 		return;
5558 
5559 	/*
5560 	 * READ locks only conflict with USED, such that if we only ever use
5561 	 * READ locks, there is no deadlock possible -- RCU.
5562 	 */
5563 	if (!hlock->read)
5564 		mask |= LOCKF_USED_READ;
5565 
5566 	if (!(class->usage_mask & mask))
5567 		return;
5568 
5569 	hlock->class_idx = class - lock_classes;
5570 
5571 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5572 #endif
5573 }
5574 
5575 static bool lockdep_nmi(void)
5576 {
5577 	if (raw_cpu_read(lockdep_recursion))
5578 		return false;
5579 
5580 	if (!in_nmi())
5581 		return false;
5582 
5583 	return true;
5584 }
5585 
5586 /*
5587  * read_lock() is recursive if:
5588  * 1. We force lockdep think this way in selftests or
5589  * 2. The implementation is not queued read/write lock or
5590  * 3. The locker is at an in_interrupt() context.
5591  */
5592 bool read_lock_is_recursive(void)
5593 {
5594 	return force_read_lock_recursive ||
5595 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5596 	       in_interrupt();
5597 }
5598 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5599 
5600 /*
5601  * We are not always called with irqs disabled - do that here,
5602  * and also avoid lockdep recursion:
5603  */
5604 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5605 			  int trylock, int read, int check,
5606 			  struct lockdep_map *nest_lock, unsigned long ip)
5607 {
5608 	unsigned long flags;
5609 
5610 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5611 
5612 	if (!debug_locks)
5613 		return;
5614 
5615 	if (unlikely(!lockdep_enabled())) {
5616 		/* XXX allow trylock from NMI ?!? */
5617 		if (lockdep_nmi() && !trylock) {
5618 			struct held_lock hlock;
5619 
5620 			hlock.acquire_ip = ip;
5621 			hlock.instance = lock;
5622 			hlock.nest_lock = nest_lock;
5623 			hlock.irq_context = 2; // XXX
5624 			hlock.trylock = trylock;
5625 			hlock.read = read;
5626 			hlock.check = check;
5627 			hlock.hardirqs_off = true;
5628 			hlock.references = 0;
5629 
5630 			verify_lock_unused(lock, &hlock, subclass);
5631 		}
5632 		return;
5633 	}
5634 
5635 	raw_local_irq_save(flags);
5636 	check_flags(flags);
5637 
5638 	lockdep_recursion_inc();
5639 	__lock_acquire(lock, subclass, trylock, read, check,
5640 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5641 	lockdep_recursion_finish();
5642 	raw_local_irq_restore(flags);
5643 }
5644 EXPORT_SYMBOL_GPL(lock_acquire);
5645 
5646 void lock_release(struct lockdep_map *lock, unsigned long ip)
5647 {
5648 	unsigned long flags;
5649 
5650 	trace_lock_release(lock, ip);
5651 
5652 	if (unlikely(!lockdep_enabled()))
5653 		return;
5654 
5655 	raw_local_irq_save(flags);
5656 	check_flags(flags);
5657 
5658 	lockdep_recursion_inc();
5659 	if (__lock_release(lock, ip))
5660 		check_chain_key(current);
5661 	lockdep_recursion_finish();
5662 	raw_local_irq_restore(flags);
5663 }
5664 EXPORT_SYMBOL_GPL(lock_release);
5665 
5666 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5667 {
5668 	unsigned long flags;
5669 	int ret = LOCK_STATE_NOT_HELD;
5670 
5671 	/*
5672 	 * Avoid false negative lockdep_assert_held() and
5673 	 * lockdep_assert_not_held().
5674 	 */
5675 	if (unlikely(!lockdep_enabled()))
5676 		return LOCK_STATE_UNKNOWN;
5677 
5678 	raw_local_irq_save(flags);
5679 	check_flags(flags);
5680 
5681 	lockdep_recursion_inc();
5682 	ret = __lock_is_held(lock, read);
5683 	lockdep_recursion_finish();
5684 	raw_local_irq_restore(flags);
5685 
5686 	return ret;
5687 }
5688 EXPORT_SYMBOL_GPL(lock_is_held_type);
5689 NOKPROBE_SYMBOL(lock_is_held_type);
5690 
5691 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5692 {
5693 	struct pin_cookie cookie = NIL_COOKIE;
5694 	unsigned long flags;
5695 
5696 	if (unlikely(!lockdep_enabled()))
5697 		return cookie;
5698 
5699 	raw_local_irq_save(flags);
5700 	check_flags(flags);
5701 
5702 	lockdep_recursion_inc();
5703 	cookie = __lock_pin_lock(lock);
5704 	lockdep_recursion_finish();
5705 	raw_local_irq_restore(flags);
5706 
5707 	return cookie;
5708 }
5709 EXPORT_SYMBOL_GPL(lock_pin_lock);
5710 
5711 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5712 {
5713 	unsigned long flags;
5714 
5715 	if (unlikely(!lockdep_enabled()))
5716 		return;
5717 
5718 	raw_local_irq_save(flags);
5719 	check_flags(flags);
5720 
5721 	lockdep_recursion_inc();
5722 	__lock_repin_lock(lock, cookie);
5723 	lockdep_recursion_finish();
5724 	raw_local_irq_restore(flags);
5725 }
5726 EXPORT_SYMBOL_GPL(lock_repin_lock);
5727 
5728 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5729 {
5730 	unsigned long flags;
5731 
5732 	if (unlikely(!lockdep_enabled()))
5733 		return;
5734 
5735 	raw_local_irq_save(flags);
5736 	check_flags(flags);
5737 
5738 	lockdep_recursion_inc();
5739 	__lock_unpin_lock(lock, cookie);
5740 	lockdep_recursion_finish();
5741 	raw_local_irq_restore(flags);
5742 }
5743 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5744 
5745 #ifdef CONFIG_LOCK_STAT
5746 static void print_lock_contention_bug(struct task_struct *curr,
5747 				      struct lockdep_map *lock,
5748 				      unsigned long ip)
5749 {
5750 	if (!debug_locks_off())
5751 		return;
5752 	if (debug_locks_silent)
5753 		return;
5754 
5755 	pr_warn("\n");
5756 	pr_warn("=================================\n");
5757 	pr_warn("WARNING: bad contention detected!\n");
5758 	print_kernel_ident();
5759 	pr_warn("---------------------------------\n");
5760 	pr_warn("%s/%d is trying to contend lock (",
5761 		curr->comm, task_pid_nr(curr));
5762 	print_lockdep_cache(lock);
5763 	pr_cont(") at:\n");
5764 	print_ip_sym(KERN_WARNING, ip);
5765 	pr_warn("but there are no locks held!\n");
5766 	pr_warn("\nother info that might help us debug this:\n");
5767 	lockdep_print_held_locks(curr);
5768 
5769 	pr_warn("\nstack backtrace:\n");
5770 	dump_stack();
5771 }
5772 
5773 static void
5774 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5775 {
5776 	struct task_struct *curr = current;
5777 	struct held_lock *hlock;
5778 	struct lock_class_stats *stats;
5779 	unsigned int depth;
5780 	int i, contention_point, contending_point;
5781 
5782 	depth = curr->lockdep_depth;
5783 	/*
5784 	 * Whee, we contended on this lock, except it seems we're not
5785 	 * actually trying to acquire anything much at all..
5786 	 */
5787 	if (DEBUG_LOCKS_WARN_ON(!depth))
5788 		return;
5789 
5790 	hlock = find_held_lock(curr, lock, depth, &i);
5791 	if (!hlock) {
5792 		print_lock_contention_bug(curr, lock, ip);
5793 		return;
5794 	}
5795 
5796 	if (hlock->instance != lock)
5797 		return;
5798 
5799 	hlock->waittime_stamp = lockstat_clock();
5800 
5801 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5802 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5803 				      lock->ip);
5804 
5805 	stats = get_lock_stats(hlock_class(hlock));
5806 	if (contention_point < LOCKSTAT_POINTS)
5807 		stats->contention_point[contention_point]++;
5808 	if (contending_point < LOCKSTAT_POINTS)
5809 		stats->contending_point[contending_point]++;
5810 	if (lock->cpu != smp_processor_id())
5811 		stats->bounces[bounce_contended + !!hlock->read]++;
5812 }
5813 
5814 static void
5815 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5816 {
5817 	struct task_struct *curr = current;
5818 	struct held_lock *hlock;
5819 	struct lock_class_stats *stats;
5820 	unsigned int depth;
5821 	u64 now, waittime = 0;
5822 	int i, cpu;
5823 
5824 	depth = curr->lockdep_depth;
5825 	/*
5826 	 * Yay, we acquired ownership of this lock we didn't try to
5827 	 * acquire, how the heck did that happen?
5828 	 */
5829 	if (DEBUG_LOCKS_WARN_ON(!depth))
5830 		return;
5831 
5832 	hlock = find_held_lock(curr, lock, depth, &i);
5833 	if (!hlock) {
5834 		print_lock_contention_bug(curr, lock, _RET_IP_);
5835 		return;
5836 	}
5837 
5838 	if (hlock->instance != lock)
5839 		return;
5840 
5841 	cpu = smp_processor_id();
5842 	if (hlock->waittime_stamp) {
5843 		now = lockstat_clock();
5844 		waittime = now - hlock->waittime_stamp;
5845 		hlock->holdtime_stamp = now;
5846 	}
5847 
5848 	stats = get_lock_stats(hlock_class(hlock));
5849 	if (waittime) {
5850 		if (hlock->read)
5851 			lock_time_inc(&stats->read_waittime, waittime);
5852 		else
5853 			lock_time_inc(&stats->write_waittime, waittime);
5854 	}
5855 	if (lock->cpu != cpu)
5856 		stats->bounces[bounce_acquired + !!hlock->read]++;
5857 
5858 	lock->cpu = cpu;
5859 	lock->ip = ip;
5860 }
5861 
5862 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5863 {
5864 	unsigned long flags;
5865 
5866 	trace_lock_contended(lock, ip);
5867 
5868 	if (unlikely(!lock_stat || !lockdep_enabled()))
5869 		return;
5870 
5871 	raw_local_irq_save(flags);
5872 	check_flags(flags);
5873 	lockdep_recursion_inc();
5874 	__lock_contended(lock, ip);
5875 	lockdep_recursion_finish();
5876 	raw_local_irq_restore(flags);
5877 }
5878 EXPORT_SYMBOL_GPL(lock_contended);
5879 
5880 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5881 {
5882 	unsigned long flags;
5883 
5884 	trace_lock_acquired(lock, ip);
5885 
5886 	if (unlikely(!lock_stat || !lockdep_enabled()))
5887 		return;
5888 
5889 	raw_local_irq_save(flags);
5890 	check_flags(flags);
5891 	lockdep_recursion_inc();
5892 	__lock_acquired(lock, ip);
5893 	lockdep_recursion_finish();
5894 	raw_local_irq_restore(flags);
5895 }
5896 EXPORT_SYMBOL_GPL(lock_acquired);
5897 #endif
5898 
5899 /*
5900  * Used by the testsuite, sanitize the validator state
5901  * after a simulated failure:
5902  */
5903 
5904 void lockdep_reset(void)
5905 {
5906 	unsigned long flags;
5907 	int i;
5908 
5909 	raw_local_irq_save(flags);
5910 	lockdep_init_task(current);
5911 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5912 	nr_hardirq_chains = 0;
5913 	nr_softirq_chains = 0;
5914 	nr_process_chains = 0;
5915 	debug_locks = 1;
5916 	for (i = 0; i < CHAINHASH_SIZE; i++)
5917 		INIT_HLIST_HEAD(chainhash_table + i);
5918 	raw_local_irq_restore(flags);
5919 }
5920 
5921 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5922 static void remove_class_from_lock_chain(struct pending_free *pf,
5923 					 struct lock_chain *chain,
5924 					 struct lock_class *class)
5925 {
5926 #ifdef CONFIG_PROVE_LOCKING
5927 	int i;
5928 
5929 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5930 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5931 			continue;
5932 		/*
5933 		 * Each lock class occurs at most once in a lock chain so once
5934 		 * we found a match we can break out of this loop.
5935 		 */
5936 		goto free_lock_chain;
5937 	}
5938 	/* Since the chain has not been modified, return. */
5939 	return;
5940 
5941 free_lock_chain:
5942 	free_chain_hlocks(chain->base, chain->depth);
5943 	/* Overwrite the chain key for concurrent RCU readers. */
5944 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5945 	dec_chains(chain->irq_context);
5946 
5947 	/*
5948 	 * Note: calling hlist_del_rcu() from inside a
5949 	 * hlist_for_each_entry_rcu() loop is safe.
5950 	 */
5951 	hlist_del_rcu(&chain->entry);
5952 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5953 	nr_zapped_lock_chains++;
5954 #endif
5955 }
5956 
5957 /* Must be called with the graph lock held. */
5958 static void remove_class_from_lock_chains(struct pending_free *pf,
5959 					  struct lock_class *class)
5960 {
5961 	struct lock_chain *chain;
5962 	struct hlist_head *head;
5963 	int i;
5964 
5965 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5966 		head = chainhash_table + i;
5967 		hlist_for_each_entry_rcu(chain, head, entry) {
5968 			remove_class_from_lock_chain(pf, chain, class);
5969 		}
5970 	}
5971 }
5972 
5973 /*
5974  * Remove all references to a lock class. The caller must hold the graph lock.
5975  */
5976 static void zap_class(struct pending_free *pf, struct lock_class *class)
5977 {
5978 	struct lock_list *entry;
5979 	int i;
5980 
5981 	WARN_ON_ONCE(!class->key);
5982 
5983 	/*
5984 	 * Remove all dependencies this lock is
5985 	 * involved in:
5986 	 */
5987 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5988 		entry = list_entries + i;
5989 		if (entry->class != class && entry->links_to != class)
5990 			continue;
5991 		__clear_bit(i, list_entries_in_use);
5992 		nr_list_entries--;
5993 		list_del_rcu(&entry->entry);
5994 	}
5995 	if (list_empty(&class->locks_after) &&
5996 	    list_empty(&class->locks_before)) {
5997 		list_move_tail(&class->lock_entry, &pf->zapped);
5998 		hlist_del_rcu(&class->hash_entry);
5999 		WRITE_ONCE(class->key, NULL);
6000 		WRITE_ONCE(class->name, NULL);
6001 		nr_lock_classes--;
6002 		__clear_bit(class - lock_classes, lock_classes_in_use);
6003 	} else {
6004 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6005 			  class->name);
6006 	}
6007 
6008 	remove_class_from_lock_chains(pf, class);
6009 	nr_zapped_classes++;
6010 }
6011 
6012 static void reinit_class(struct lock_class *class)
6013 {
6014 	void *const p = class;
6015 	const unsigned int offset = offsetof(struct lock_class, key);
6016 
6017 	WARN_ON_ONCE(!class->lock_entry.next);
6018 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6019 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6020 	memset(p + offset, 0, sizeof(*class) - offset);
6021 	WARN_ON_ONCE(!class->lock_entry.next);
6022 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6023 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6024 }
6025 
6026 static inline int within(const void *addr, void *start, unsigned long size)
6027 {
6028 	return addr >= start && addr < start + size;
6029 }
6030 
6031 static bool inside_selftest(void)
6032 {
6033 	return current == lockdep_selftest_task_struct;
6034 }
6035 
6036 /* The caller must hold the graph lock. */
6037 static struct pending_free *get_pending_free(void)
6038 {
6039 	return delayed_free.pf + delayed_free.index;
6040 }
6041 
6042 static void free_zapped_rcu(struct rcu_head *cb);
6043 
6044 /*
6045  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6046  * the graph lock held.
6047  */
6048 static void call_rcu_zapped(struct pending_free *pf)
6049 {
6050 	WARN_ON_ONCE(inside_selftest());
6051 
6052 	if (list_empty(&pf->zapped))
6053 		return;
6054 
6055 	if (delayed_free.scheduled)
6056 		return;
6057 
6058 	delayed_free.scheduled = true;
6059 
6060 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6061 	delayed_free.index ^= 1;
6062 
6063 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6064 }
6065 
6066 /* The caller must hold the graph lock. May be called from RCU context. */
6067 static void __free_zapped_classes(struct pending_free *pf)
6068 {
6069 	struct lock_class *class;
6070 
6071 	check_data_structures();
6072 
6073 	list_for_each_entry(class, &pf->zapped, lock_entry)
6074 		reinit_class(class);
6075 
6076 	list_splice_init(&pf->zapped, &free_lock_classes);
6077 
6078 #ifdef CONFIG_PROVE_LOCKING
6079 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6080 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6081 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6082 #endif
6083 }
6084 
6085 static void free_zapped_rcu(struct rcu_head *ch)
6086 {
6087 	struct pending_free *pf;
6088 	unsigned long flags;
6089 
6090 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6091 		return;
6092 
6093 	raw_local_irq_save(flags);
6094 	lockdep_lock();
6095 
6096 	/* closed head */
6097 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6098 	__free_zapped_classes(pf);
6099 	delayed_free.scheduled = false;
6100 
6101 	/*
6102 	 * If there's anything on the open list, close and start a new callback.
6103 	 */
6104 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6105 
6106 	lockdep_unlock();
6107 	raw_local_irq_restore(flags);
6108 }
6109 
6110 /*
6111  * Remove all lock classes from the class hash table and from the
6112  * all_lock_classes list whose key or name is in the address range [start,
6113  * start + size). Move these lock classes to the zapped_classes list. Must
6114  * be called with the graph lock held.
6115  */
6116 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6117 				     unsigned long size)
6118 {
6119 	struct lock_class *class;
6120 	struct hlist_head *head;
6121 	int i;
6122 
6123 	/* Unhash all classes that were created by a module. */
6124 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6125 		head = classhash_table + i;
6126 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6127 			if (!within(class->key, start, size) &&
6128 			    !within(class->name, start, size))
6129 				continue;
6130 			zap_class(pf, class);
6131 		}
6132 	}
6133 }
6134 
6135 /*
6136  * Used in module.c to remove lock classes from memory that is going to be
6137  * freed; and possibly re-used by other modules.
6138  *
6139  * We will have had one synchronize_rcu() before getting here, so we're
6140  * guaranteed nobody will look up these exact classes -- they're properly dead
6141  * but still allocated.
6142  */
6143 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6144 {
6145 	struct pending_free *pf;
6146 	unsigned long flags;
6147 
6148 	init_data_structures_once();
6149 
6150 	raw_local_irq_save(flags);
6151 	lockdep_lock();
6152 	pf = get_pending_free();
6153 	__lockdep_free_key_range(pf, start, size);
6154 	call_rcu_zapped(pf);
6155 	lockdep_unlock();
6156 	raw_local_irq_restore(flags);
6157 
6158 	/*
6159 	 * Wait for any possible iterators from look_up_lock_class() to pass
6160 	 * before continuing to free the memory they refer to.
6161 	 */
6162 	synchronize_rcu();
6163 }
6164 
6165 /*
6166  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6167  * Ignores debug_locks. Must only be used by the lockdep selftests.
6168  */
6169 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6170 {
6171 	struct pending_free *pf = delayed_free.pf;
6172 	unsigned long flags;
6173 
6174 	init_data_structures_once();
6175 
6176 	raw_local_irq_save(flags);
6177 	lockdep_lock();
6178 	__lockdep_free_key_range(pf, start, size);
6179 	__free_zapped_classes(pf);
6180 	lockdep_unlock();
6181 	raw_local_irq_restore(flags);
6182 }
6183 
6184 void lockdep_free_key_range(void *start, unsigned long size)
6185 {
6186 	init_data_structures_once();
6187 
6188 	if (inside_selftest())
6189 		lockdep_free_key_range_imm(start, size);
6190 	else
6191 		lockdep_free_key_range_reg(start, size);
6192 }
6193 
6194 /*
6195  * Check whether any element of the @lock->class_cache[] array refers to a
6196  * registered lock class. The caller must hold either the graph lock or the
6197  * RCU read lock.
6198  */
6199 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6200 {
6201 	struct lock_class *class;
6202 	struct hlist_head *head;
6203 	int i, j;
6204 
6205 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6206 		head = classhash_table + i;
6207 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6208 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6209 				if (lock->class_cache[j] == class)
6210 					return true;
6211 		}
6212 	}
6213 	return false;
6214 }
6215 
6216 /* The caller must hold the graph lock. Does not sleep. */
6217 static void __lockdep_reset_lock(struct pending_free *pf,
6218 				 struct lockdep_map *lock)
6219 {
6220 	struct lock_class *class;
6221 	int j;
6222 
6223 	/*
6224 	 * Remove all classes this lock might have:
6225 	 */
6226 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6227 		/*
6228 		 * If the class exists we look it up and zap it:
6229 		 */
6230 		class = look_up_lock_class(lock, j);
6231 		if (class)
6232 			zap_class(pf, class);
6233 	}
6234 	/*
6235 	 * Debug check: in the end all mapped classes should
6236 	 * be gone.
6237 	 */
6238 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6239 		debug_locks_off();
6240 }
6241 
6242 /*
6243  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6244  * released data structures from RCU context.
6245  */
6246 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6247 {
6248 	struct pending_free *pf;
6249 	unsigned long flags;
6250 	int locked;
6251 
6252 	raw_local_irq_save(flags);
6253 	locked = graph_lock();
6254 	if (!locked)
6255 		goto out_irq;
6256 
6257 	pf = get_pending_free();
6258 	__lockdep_reset_lock(pf, lock);
6259 	call_rcu_zapped(pf);
6260 
6261 	graph_unlock();
6262 out_irq:
6263 	raw_local_irq_restore(flags);
6264 }
6265 
6266 /*
6267  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6268  * lockdep selftests.
6269  */
6270 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6271 {
6272 	struct pending_free *pf = delayed_free.pf;
6273 	unsigned long flags;
6274 
6275 	raw_local_irq_save(flags);
6276 	lockdep_lock();
6277 	__lockdep_reset_lock(pf, lock);
6278 	__free_zapped_classes(pf);
6279 	lockdep_unlock();
6280 	raw_local_irq_restore(flags);
6281 }
6282 
6283 void lockdep_reset_lock(struct lockdep_map *lock)
6284 {
6285 	init_data_structures_once();
6286 
6287 	if (inside_selftest())
6288 		lockdep_reset_lock_imm(lock);
6289 	else
6290 		lockdep_reset_lock_reg(lock);
6291 }
6292 
6293 /* Unregister a dynamically allocated key. */
6294 void lockdep_unregister_key(struct lock_class_key *key)
6295 {
6296 	struct hlist_head *hash_head = keyhashentry(key);
6297 	struct lock_class_key *k;
6298 	struct pending_free *pf;
6299 	unsigned long flags;
6300 	bool found = false;
6301 
6302 	might_sleep();
6303 
6304 	if (WARN_ON_ONCE(static_obj(key)))
6305 		return;
6306 
6307 	raw_local_irq_save(flags);
6308 	if (!graph_lock())
6309 		goto out_irq;
6310 
6311 	pf = get_pending_free();
6312 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6313 		if (k == key) {
6314 			hlist_del_rcu(&k->hash_entry);
6315 			found = true;
6316 			break;
6317 		}
6318 	}
6319 	WARN_ON_ONCE(!found);
6320 	__lockdep_free_key_range(pf, key, 1);
6321 	call_rcu_zapped(pf);
6322 	graph_unlock();
6323 out_irq:
6324 	raw_local_irq_restore(flags);
6325 
6326 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6327 	synchronize_rcu();
6328 }
6329 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6330 
6331 void __init lockdep_init(void)
6332 {
6333 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6334 
6335 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6336 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6337 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6338 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6339 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6340 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6341 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6342 
6343 	printk(" memory used by lock dependency info: %zu kB\n",
6344 	       (sizeof(lock_classes) +
6345 		sizeof(lock_classes_in_use) +
6346 		sizeof(classhash_table) +
6347 		sizeof(list_entries) +
6348 		sizeof(list_entries_in_use) +
6349 		sizeof(chainhash_table) +
6350 		sizeof(delayed_free)
6351 #ifdef CONFIG_PROVE_LOCKING
6352 		+ sizeof(lock_cq)
6353 		+ sizeof(lock_chains)
6354 		+ sizeof(lock_chains_in_use)
6355 		+ sizeof(chain_hlocks)
6356 #endif
6357 		) / 1024
6358 		);
6359 
6360 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6361 	printk(" memory used for stack traces: %zu kB\n",
6362 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6363 	       );
6364 #endif
6365 
6366 	printk(" per task-struct memory footprint: %zu bytes\n",
6367 	       sizeof(((struct task_struct *)NULL)->held_locks));
6368 }
6369 
6370 static void
6371 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6372 		     const void *mem_to, struct held_lock *hlock)
6373 {
6374 	if (!debug_locks_off())
6375 		return;
6376 	if (debug_locks_silent)
6377 		return;
6378 
6379 	pr_warn("\n");
6380 	pr_warn("=========================\n");
6381 	pr_warn("WARNING: held lock freed!\n");
6382 	print_kernel_ident();
6383 	pr_warn("-------------------------\n");
6384 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6385 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6386 	print_lock(hlock);
6387 	lockdep_print_held_locks(curr);
6388 
6389 	pr_warn("\nstack backtrace:\n");
6390 	dump_stack();
6391 }
6392 
6393 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6394 				const void* lock_from, unsigned long lock_len)
6395 {
6396 	return lock_from + lock_len <= mem_from ||
6397 		mem_from + mem_len <= lock_from;
6398 }
6399 
6400 /*
6401  * Called when kernel memory is freed (or unmapped), or if a lock
6402  * is destroyed or reinitialized - this code checks whether there is
6403  * any held lock in the memory range of <from> to <to>:
6404  */
6405 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6406 {
6407 	struct task_struct *curr = current;
6408 	struct held_lock *hlock;
6409 	unsigned long flags;
6410 	int i;
6411 
6412 	if (unlikely(!debug_locks))
6413 		return;
6414 
6415 	raw_local_irq_save(flags);
6416 	for (i = 0; i < curr->lockdep_depth; i++) {
6417 		hlock = curr->held_locks + i;
6418 
6419 		if (not_in_range(mem_from, mem_len, hlock->instance,
6420 					sizeof(*hlock->instance)))
6421 			continue;
6422 
6423 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6424 		break;
6425 	}
6426 	raw_local_irq_restore(flags);
6427 }
6428 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6429 
6430 static void print_held_locks_bug(void)
6431 {
6432 	if (!debug_locks_off())
6433 		return;
6434 	if (debug_locks_silent)
6435 		return;
6436 
6437 	pr_warn("\n");
6438 	pr_warn("====================================\n");
6439 	pr_warn("WARNING: %s/%d still has locks held!\n",
6440 	       current->comm, task_pid_nr(current));
6441 	print_kernel_ident();
6442 	pr_warn("------------------------------------\n");
6443 	lockdep_print_held_locks(current);
6444 	pr_warn("\nstack backtrace:\n");
6445 	dump_stack();
6446 }
6447 
6448 void debug_check_no_locks_held(void)
6449 {
6450 	if (unlikely(current->lockdep_depth > 0))
6451 		print_held_locks_bug();
6452 }
6453 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6454 
6455 #ifdef __KERNEL__
6456 void debug_show_all_locks(void)
6457 {
6458 	struct task_struct *g, *p;
6459 
6460 	if (unlikely(!debug_locks)) {
6461 		pr_warn("INFO: lockdep is turned off.\n");
6462 		return;
6463 	}
6464 	pr_warn("\nShowing all locks held in the system:\n");
6465 
6466 	rcu_read_lock();
6467 	for_each_process_thread(g, p) {
6468 		if (!p->lockdep_depth)
6469 			continue;
6470 		lockdep_print_held_locks(p);
6471 		touch_nmi_watchdog();
6472 		touch_all_softlockup_watchdogs();
6473 	}
6474 	rcu_read_unlock();
6475 
6476 	pr_warn("\n");
6477 	pr_warn("=============================================\n\n");
6478 }
6479 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6480 #endif
6481 
6482 /*
6483  * Careful: only use this function if you are sure that
6484  * the task cannot run in parallel!
6485  */
6486 void debug_show_held_locks(struct task_struct *task)
6487 {
6488 	if (unlikely(!debug_locks)) {
6489 		printk("INFO: lockdep is turned off.\n");
6490 		return;
6491 	}
6492 	lockdep_print_held_locks(task);
6493 }
6494 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6495 
6496 asmlinkage __visible void lockdep_sys_exit(void)
6497 {
6498 	struct task_struct *curr = current;
6499 
6500 	if (unlikely(curr->lockdep_depth)) {
6501 		if (!debug_locks_off())
6502 			return;
6503 		pr_warn("\n");
6504 		pr_warn("================================================\n");
6505 		pr_warn("WARNING: lock held when returning to user space!\n");
6506 		print_kernel_ident();
6507 		pr_warn("------------------------------------------------\n");
6508 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6509 				curr->comm, curr->pid);
6510 		lockdep_print_held_locks(curr);
6511 	}
6512 
6513 	/*
6514 	 * The lock history for each syscall should be independent. So wipe the
6515 	 * slate clean on return to userspace.
6516 	 */
6517 	lockdep_invariant_state(false);
6518 }
6519 
6520 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6521 {
6522 	struct task_struct *curr = current;
6523 	int dl = READ_ONCE(debug_locks);
6524 
6525 	/* Note: the following can be executed concurrently, so be careful. */
6526 	pr_warn("\n");
6527 	pr_warn("=============================\n");
6528 	pr_warn("WARNING: suspicious RCU usage\n");
6529 	print_kernel_ident();
6530 	pr_warn("-----------------------------\n");
6531 	pr_warn("%s:%d %s!\n", file, line, s);
6532 	pr_warn("\nother info that might help us debug this:\n\n");
6533 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6534 	       !rcu_lockdep_current_cpu_online()
6535 			? "RCU used illegally from offline CPU!\n"
6536 			: "",
6537 	       rcu_scheduler_active, dl,
6538 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6539 
6540 	/*
6541 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6542 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6543 	 * considers that CPU to be in an "extended quiescent state",
6544 	 * which means that RCU will be completely ignoring that CPU.
6545 	 * Therefore, rcu_read_lock() and friends have absolutely no
6546 	 * effect on a CPU running in that state. In other words, even if
6547 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6548 	 * delete data structures out from under it.  RCU really has no
6549 	 * choice here: we need to keep an RCU-free window in idle where
6550 	 * the CPU may possibly enter into low power mode. This way we can
6551 	 * notice an extended quiescent state to other CPUs that started a grace
6552 	 * period. Otherwise we would delay any grace period as long as we run
6553 	 * in the idle task.
6554 	 *
6555 	 * So complain bitterly if someone does call rcu_read_lock(),
6556 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6557 	 */
6558 	if (!rcu_is_watching())
6559 		pr_warn("RCU used illegally from extended quiescent state!\n");
6560 
6561 	lockdep_print_held_locks(curr);
6562 	pr_warn("\nstack backtrace:\n");
6563 	dump_stack();
6564 }
6565 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6566