1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 58 #include <asm/sections.h> 59 60 #include "lockdep_internals.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/lock.h> 64 65 #ifdef CONFIG_PROVE_LOCKING 66 int prove_locking = 1; 67 module_param(prove_locking, int, 0644); 68 #else 69 #define prove_locking 0 70 #endif 71 72 #ifdef CONFIG_LOCK_STAT 73 int lock_stat = 1; 74 module_param(lock_stat, int, 0644); 75 #else 76 #define lock_stat 0 77 #endif 78 79 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 81 82 static inline bool lockdep_enabled(void) 83 { 84 if (!debug_locks) 85 return false; 86 87 if (this_cpu_read(lockdep_recursion)) 88 return false; 89 90 if (current->lockdep_recursion) 91 return false; 92 93 return true; 94 } 95 96 /* 97 * lockdep_lock: protects the lockdep graph, the hashes and the 98 * class/list/hash allocators. 99 * 100 * This is one of the rare exceptions where it's justified 101 * to use a raw spinlock - we really dont want the spinlock 102 * code to recurse back into the lockdep code... 103 */ 104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 105 static struct task_struct *__owner; 106 107 static inline void lockdep_lock(void) 108 { 109 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 110 111 __this_cpu_inc(lockdep_recursion); 112 arch_spin_lock(&__lock); 113 __owner = current; 114 } 115 116 static inline void lockdep_unlock(void) 117 { 118 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 119 120 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 121 return; 122 123 __owner = NULL; 124 arch_spin_unlock(&__lock); 125 __this_cpu_dec(lockdep_recursion); 126 } 127 128 static inline bool lockdep_assert_locked(void) 129 { 130 return DEBUG_LOCKS_WARN_ON(__owner != current); 131 } 132 133 static struct task_struct *lockdep_selftest_task_struct; 134 135 136 static int graph_lock(void) 137 { 138 lockdep_lock(); 139 /* 140 * Make sure that if another CPU detected a bug while 141 * walking the graph we dont change it (while the other 142 * CPU is busy printing out stuff with the graph lock 143 * dropped already) 144 */ 145 if (!debug_locks) { 146 lockdep_unlock(); 147 return 0; 148 } 149 return 1; 150 } 151 152 static inline void graph_unlock(void) 153 { 154 lockdep_unlock(); 155 } 156 157 /* 158 * Turn lock debugging off and return with 0 if it was off already, 159 * and also release the graph lock: 160 */ 161 static inline int debug_locks_off_graph_unlock(void) 162 { 163 int ret = debug_locks_off(); 164 165 lockdep_unlock(); 166 167 return ret; 168 } 169 170 unsigned long nr_list_entries; 171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 173 174 /* 175 * All data structures here are protected by the global debug_lock. 176 * 177 * nr_lock_classes is the number of elements of lock_classes[] that is 178 * in use. 179 */ 180 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 181 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 183 unsigned long nr_lock_classes; 184 unsigned long nr_zapped_classes; 185 #ifndef CONFIG_DEBUG_LOCKDEP 186 static 187 #endif 188 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 189 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 190 191 static inline struct lock_class *hlock_class(struct held_lock *hlock) 192 { 193 unsigned int class_idx = hlock->class_idx; 194 195 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 196 barrier(); 197 198 if (!test_bit(class_idx, lock_classes_in_use)) { 199 /* 200 * Someone passed in garbage, we give up. 201 */ 202 DEBUG_LOCKS_WARN_ON(1); 203 return NULL; 204 } 205 206 /* 207 * At this point, if the passed hlock->class_idx is still garbage, 208 * we just have to live with it 209 */ 210 return lock_classes + class_idx; 211 } 212 213 #ifdef CONFIG_LOCK_STAT 214 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 215 216 static inline u64 lockstat_clock(void) 217 { 218 return local_clock(); 219 } 220 221 static int lock_point(unsigned long points[], unsigned long ip) 222 { 223 int i; 224 225 for (i = 0; i < LOCKSTAT_POINTS; i++) { 226 if (points[i] == 0) { 227 points[i] = ip; 228 break; 229 } 230 if (points[i] == ip) 231 break; 232 } 233 234 return i; 235 } 236 237 static void lock_time_inc(struct lock_time *lt, u64 time) 238 { 239 if (time > lt->max) 240 lt->max = time; 241 242 if (time < lt->min || !lt->nr) 243 lt->min = time; 244 245 lt->total += time; 246 lt->nr++; 247 } 248 249 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 250 { 251 if (!src->nr) 252 return; 253 254 if (src->max > dst->max) 255 dst->max = src->max; 256 257 if (src->min < dst->min || !dst->nr) 258 dst->min = src->min; 259 260 dst->total += src->total; 261 dst->nr += src->nr; 262 } 263 264 struct lock_class_stats lock_stats(struct lock_class *class) 265 { 266 struct lock_class_stats stats; 267 int cpu, i; 268 269 memset(&stats, 0, sizeof(struct lock_class_stats)); 270 for_each_possible_cpu(cpu) { 271 struct lock_class_stats *pcs = 272 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 273 274 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 275 stats.contention_point[i] += pcs->contention_point[i]; 276 277 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 278 stats.contending_point[i] += pcs->contending_point[i]; 279 280 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 281 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 282 283 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 284 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 285 286 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 287 stats.bounces[i] += pcs->bounces[i]; 288 } 289 290 return stats; 291 } 292 293 void clear_lock_stats(struct lock_class *class) 294 { 295 int cpu; 296 297 for_each_possible_cpu(cpu) { 298 struct lock_class_stats *cpu_stats = 299 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 300 301 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 302 } 303 memset(class->contention_point, 0, sizeof(class->contention_point)); 304 memset(class->contending_point, 0, sizeof(class->contending_point)); 305 } 306 307 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 308 { 309 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 310 } 311 312 static void lock_release_holdtime(struct held_lock *hlock) 313 { 314 struct lock_class_stats *stats; 315 u64 holdtime; 316 317 if (!lock_stat) 318 return; 319 320 holdtime = lockstat_clock() - hlock->holdtime_stamp; 321 322 stats = get_lock_stats(hlock_class(hlock)); 323 if (hlock->read) 324 lock_time_inc(&stats->read_holdtime, holdtime); 325 else 326 lock_time_inc(&stats->write_holdtime, holdtime); 327 } 328 #else 329 static inline void lock_release_holdtime(struct held_lock *hlock) 330 { 331 } 332 #endif 333 334 /* 335 * We keep a global list of all lock classes. The list is only accessed with 336 * the lockdep spinlock lock held. free_lock_classes is a list with free 337 * elements. These elements are linked together by the lock_entry member in 338 * struct lock_class. 339 */ 340 LIST_HEAD(all_lock_classes); 341 static LIST_HEAD(free_lock_classes); 342 343 /** 344 * struct pending_free - information about data structures about to be freed 345 * @zapped: Head of a list with struct lock_class elements. 346 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 347 * are about to be freed. 348 */ 349 struct pending_free { 350 struct list_head zapped; 351 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 352 }; 353 354 /** 355 * struct delayed_free - data structures used for delayed freeing 356 * 357 * A data structure for delayed freeing of data structures that may be 358 * accessed by RCU readers at the time these were freed. 359 * 360 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 361 * @index: Index of @pf to which freed data structures are added. 362 * @scheduled: Whether or not an RCU callback has been scheduled. 363 * @pf: Array with information about data structures about to be freed. 364 */ 365 static struct delayed_free { 366 struct rcu_head rcu_head; 367 int index; 368 int scheduled; 369 struct pending_free pf[2]; 370 } delayed_free; 371 372 /* 373 * The lockdep classes are in a hash-table as well, for fast lookup: 374 */ 375 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 376 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 377 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 378 #define classhashentry(key) (classhash_table + __classhashfn((key))) 379 380 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 381 382 /* 383 * We put the lock dependency chains into a hash-table as well, to cache 384 * their existence: 385 */ 386 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 387 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 388 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 389 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 390 391 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 392 393 /* 394 * the id of held_lock 395 */ 396 static inline u16 hlock_id(struct held_lock *hlock) 397 { 398 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 399 400 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 401 } 402 403 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 404 { 405 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 406 } 407 408 /* 409 * The hash key of the lock dependency chains is a hash itself too: 410 * it's a hash of all locks taken up to that lock, including that lock. 411 * It's a 64-bit hash, because it's important for the keys to be 412 * unique. 413 */ 414 static inline u64 iterate_chain_key(u64 key, u32 idx) 415 { 416 u32 k0 = key, k1 = key >> 32; 417 418 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 419 420 return k0 | (u64)k1 << 32; 421 } 422 423 void lockdep_init_task(struct task_struct *task) 424 { 425 task->lockdep_depth = 0; /* no locks held yet */ 426 task->curr_chain_key = INITIAL_CHAIN_KEY; 427 task->lockdep_recursion = 0; 428 } 429 430 static __always_inline void lockdep_recursion_inc(void) 431 { 432 __this_cpu_inc(lockdep_recursion); 433 } 434 435 static __always_inline void lockdep_recursion_finish(void) 436 { 437 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 438 __this_cpu_write(lockdep_recursion, 0); 439 } 440 441 void lockdep_set_selftest_task(struct task_struct *task) 442 { 443 lockdep_selftest_task_struct = task; 444 } 445 446 /* 447 * Debugging switches: 448 */ 449 450 #define VERBOSE 0 451 #define VERY_VERBOSE 0 452 453 #if VERBOSE 454 # define HARDIRQ_VERBOSE 1 455 # define SOFTIRQ_VERBOSE 1 456 #else 457 # define HARDIRQ_VERBOSE 0 458 # define SOFTIRQ_VERBOSE 0 459 #endif 460 461 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 462 /* 463 * Quick filtering for interesting events: 464 */ 465 static int class_filter(struct lock_class *class) 466 { 467 #if 0 468 /* Example */ 469 if (class->name_version == 1 && 470 !strcmp(class->name, "lockname")) 471 return 1; 472 if (class->name_version == 1 && 473 !strcmp(class->name, "&struct->lockfield")) 474 return 1; 475 #endif 476 /* Filter everything else. 1 would be to allow everything else */ 477 return 0; 478 } 479 #endif 480 481 static int verbose(struct lock_class *class) 482 { 483 #if VERBOSE 484 return class_filter(class); 485 #endif 486 return 0; 487 } 488 489 static void print_lockdep_off(const char *bug_msg) 490 { 491 printk(KERN_DEBUG "%s\n", bug_msg); 492 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 493 #ifdef CONFIG_LOCK_STAT 494 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 495 #endif 496 } 497 498 unsigned long nr_stack_trace_entries; 499 500 #ifdef CONFIG_PROVE_LOCKING 501 /** 502 * struct lock_trace - single stack backtrace 503 * @hash_entry: Entry in a stack_trace_hash[] list. 504 * @hash: jhash() of @entries. 505 * @nr_entries: Number of entries in @entries. 506 * @entries: Actual stack backtrace. 507 */ 508 struct lock_trace { 509 struct hlist_node hash_entry; 510 u32 hash; 511 u32 nr_entries; 512 unsigned long entries[] __aligned(sizeof(unsigned long)); 513 }; 514 #define LOCK_TRACE_SIZE_IN_LONGS \ 515 (sizeof(struct lock_trace) / sizeof(unsigned long)) 516 /* 517 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 518 */ 519 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 520 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 521 522 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 523 { 524 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 525 memcmp(t1->entries, t2->entries, 526 t1->nr_entries * sizeof(t1->entries[0])) == 0; 527 } 528 529 static struct lock_trace *save_trace(void) 530 { 531 struct lock_trace *trace, *t2; 532 struct hlist_head *hash_head; 533 u32 hash; 534 int max_entries; 535 536 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 537 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 538 539 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 540 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 541 LOCK_TRACE_SIZE_IN_LONGS; 542 543 if (max_entries <= 0) { 544 if (!debug_locks_off_graph_unlock()) 545 return NULL; 546 547 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 548 dump_stack(); 549 550 return NULL; 551 } 552 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 553 554 hash = jhash(trace->entries, trace->nr_entries * 555 sizeof(trace->entries[0]), 0); 556 trace->hash = hash; 557 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 558 hlist_for_each_entry(t2, hash_head, hash_entry) { 559 if (traces_identical(trace, t2)) 560 return t2; 561 } 562 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 563 hlist_add_head(&trace->hash_entry, hash_head); 564 565 return trace; 566 } 567 568 /* Return the number of stack traces in the stack_trace[] array. */ 569 u64 lockdep_stack_trace_count(void) 570 { 571 struct lock_trace *trace; 572 u64 c = 0; 573 int i; 574 575 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 576 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 577 c++; 578 } 579 } 580 581 return c; 582 } 583 584 /* Return the number of stack hash chains that have at least one stack trace. */ 585 u64 lockdep_stack_hash_count(void) 586 { 587 u64 c = 0; 588 int i; 589 590 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 591 if (!hlist_empty(&stack_trace_hash[i])) 592 c++; 593 594 return c; 595 } 596 #endif 597 598 unsigned int nr_hardirq_chains; 599 unsigned int nr_softirq_chains; 600 unsigned int nr_process_chains; 601 unsigned int max_lockdep_depth; 602 603 #ifdef CONFIG_DEBUG_LOCKDEP 604 /* 605 * Various lockdep statistics: 606 */ 607 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 608 #endif 609 610 #ifdef CONFIG_PROVE_LOCKING 611 /* 612 * Locking printouts: 613 */ 614 615 #define __USAGE(__STATE) \ 616 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 617 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 618 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 619 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 620 621 static const char *usage_str[] = 622 { 623 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 624 #include "lockdep_states.h" 625 #undef LOCKDEP_STATE 626 [LOCK_USED] = "INITIAL USE", 627 [LOCK_USED_READ] = "INITIAL READ USE", 628 /* abused as string storage for verify_lock_unused() */ 629 [LOCK_USAGE_STATES] = "IN-NMI", 630 }; 631 #endif 632 633 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 634 { 635 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 636 } 637 638 static inline unsigned long lock_flag(enum lock_usage_bit bit) 639 { 640 return 1UL << bit; 641 } 642 643 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 644 { 645 /* 646 * The usage character defaults to '.' (i.e., irqs disabled and not in 647 * irq context), which is the safest usage category. 648 */ 649 char c = '.'; 650 651 /* 652 * The order of the following usage checks matters, which will 653 * result in the outcome character as follows: 654 * 655 * - '+': irq is enabled and not in irq context 656 * - '-': in irq context and irq is disabled 657 * - '?': in irq context and irq is enabled 658 */ 659 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 660 c = '+'; 661 if (class->usage_mask & lock_flag(bit)) 662 c = '?'; 663 } else if (class->usage_mask & lock_flag(bit)) 664 c = '-'; 665 666 return c; 667 } 668 669 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 670 { 671 int i = 0; 672 673 #define LOCKDEP_STATE(__STATE) \ 674 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 675 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 676 #include "lockdep_states.h" 677 #undef LOCKDEP_STATE 678 679 usage[i] = '\0'; 680 } 681 682 static void __print_lock_name(struct lock_class *class) 683 { 684 char str[KSYM_NAME_LEN]; 685 const char *name; 686 687 name = class->name; 688 if (!name) { 689 name = __get_key_name(class->key, str); 690 printk(KERN_CONT "%s", name); 691 } else { 692 printk(KERN_CONT "%s", name); 693 if (class->name_version > 1) 694 printk(KERN_CONT "#%d", class->name_version); 695 if (class->subclass) 696 printk(KERN_CONT "/%d", class->subclass); 697 } 698 } 699 700 static void print_lock_name(struct lock_class *class) 701 { 702 char usage[LOCK_USAGE_CHARS]; 703 704 get_usage_chars(class, usage); 705 706 printk(KERN_CONT " ("); 707 __print_lock_name(class); 708 printk(KERN_CONT "){%s}-{%hd:%hd}", usage, 709 class->wait_type_outer ?: class->wait_type_inner, 710 class->wait_type_inner); 711 } 712 713 static void print_lockdep_cache(struct lockdep_map *lock) 714 { 715 const char *name; 716 char str[KSYM_NAME_LEN]; 717 718 name = lock->name; 719 if (!name) 720 name = __get_key_name(lock->key->subkeys, str); 721 722 printk(KERN_CONT "%s", name); 723 } 724 725 static void print_lock(struct held_lock *hlock) 726 { 727 /* 728 * We can be called locklessly through debug_show_all_locks() so be 729 * extra careful, the hlock might have been released and cleared. 730 * 731 * If this indeed happens, lets pretend it does not hurt to continue 732 * to print the lock unless the hlock class_idx does not point to a 733 * registered class. The rationale here is: since we don't attempt 734 * to distinguish whether we are in this situation, if it just 735 * happened we can't count on class_idx to tell either. 736 */ 737 struct lock_class *lock = hlock_class(hlock); 738 739 if (!lock) { 740 printk(KERN_CONT "<RELEASED>\n"); 741 return; 742 } 743 744 printk(KERN_CONT "%px", hlock->instance); 745 print_lock_name(lock); 746 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 747 } 748 749 static void lockdep_print_held_locks(struct task_struct *p) 750 { 751 int i, depth = READ_ONCE(p->lockdep_depth); 752 753 if (!depth) 754 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 755 else 756 printk("%d lock%s held by %s/%d:\n", depth, 757 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 758 /* 759 * It's not reliable to print a task's held locks if it's not sleeping 760 * and it's not the current task. 761 */ 762 if (p->state == TASK_RUNNING && p != current) 763 return; 764 for (i = 0; i < depth; i++) { 765 printk(" #%d: ", i); 766 print_lock(p->held_locks + i); 767 } 768 } 769 770 static void print_kernel_ident(void) 771 { 772 printk("%s %.*s %s\n", init_utsname()->release, 773 (int)strcspn(init_utsname()->version, " "), 774 init_utsname()->version, 775 print_tainted()); 776 } 777 778 static int very_verbose(struct lock_class *class) 779 { 780 #if VERY_VERBOSE 781 return class_filter(class); 782 #endif 783 return 0; 784 } 785 786 /* 787 * Is this the address of a static object: 788 */ 789 #ifdef __KERNEL__ 790 static int static_obj(const void *obj) 791 { 792 unsigned long start = (unsigned long) &_stext, 793 end = (unsigned long) &_end, 794 addr = (unsigned long) obj; 795 796 if (arch_is_kernel_initmem_freed(addr)) 797 return 0; 798 799 /* 800 * static variable? 801 */ 802 if ((addr >= start) && (addr < end)) 803 return 1; 804 805 if (arch_is_kernel_data(addr)) 806 return 1; 807 808 /* 809 * in-kernel percpu var? 810 */ 811 if (is_kernel_percpu_address(addr)) 812 return 1; 813 814 /* 815 * module static or percpu var? 816 */ 817 return is_module_address(addr) || is_module_percpu_address(addr); 818 } 819 #endif 820 821 /* 822 * To make lock name printouts unique, we calculate a unique 823 * class->name_version generation counter. The caller must hold the graph 824 * lock. 825 */ 826 static int count_matching_names(struct lock_class *new_class) 827 { 828 struct lock_class *class; 829 int count = 0; 830 831 if (!new_class->name) 832 return 0; 833 834 list_for_each_entry(class, &all_lock_classes, lock_entry) { 835 if (new_class->key - new_class->subclass == class->key) 836 return class->name_version; 837 if (class->name && !strcmp(class->name, new_class->name)) 838 count = max(count, class->name_version); 839 } 840 841 return count + 1; 842 } 843 844 /* used from NMI context -- must be lockless */ 845 static __always_inline struct lock_class * 846 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 847 { 848 struct lockdep_subclass_key *key; 849 struct hlist_head *hash_head; 850 struct lock_class *class; 851 852 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 853 debug_locks_off(); 854 printk(KERN_ERR 855 "BUG: looking up invalid subclass: %u\n", subclass); 856 printk(KERN_ERR 857 "turning off the locking correctness validator.\n"); 858 dump_stack(); 859 return NULL; 860 } 861 862 /* 863 * If it is not initialised then it has never been locked, 864 * so it won't be present in the hash table. 865 */ 866 if (unlikely(!lock->key)) 867 return NULL; 868 869 /* 870 * NOTE: the class-key must be unique. For dynamic locks, a static 871 * lock_class_key variable is passed in through the mutex_init() 872 * (or spin_lock_init()) call - which acts as the key. For static 873 * locks we use the lock object itself as the key. 874 */ 875 BUILD_BUG_ON(sizeof(struct lock_class_key) > 876 sizeof(struct lockdep_map)); 877 878 key = lock->key->subkeys + subclass; 879 880 hash_head = classhashentry(key); 881 882 /* 883 * We do an RCU walk of the hash, see lockdep_free_key_range(). 884 */ 885 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 886 return NULL; 887 888 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 889 if (class->key == key) { 890 /* 891 * Huh! same key, different name? Did someone trample 892 * on some memory? We're most confused. 893 */ 894 WARN_ON_ONCE(class->name != lock->name && 895 lock->key != &__lockdep_no_validate__); 896 return class; 897 } 898 } 899 900 return NULL; 901 } 902 903 /* 904 * Static locks do not have their class-keys yet - for them the key is 905 * the lock object itself. If the lock is in the per cpu area, the 906 * canonical address of the lock (per cpu offset removed) is used. 907 */ 908 static bool assign_lock_key(struct lockdep_map *lock) 909 { 910 unsigned long can_addr, addr = (unsigned long)lock; 911 912 #ifdef __KERNEL__ 913 /* 914 * lockdep_free_key_range() assumes that struct lock_class_key 915 * objects do not overlap. Since we use the address of lock 916 * objects as class key for static objects, check whether the 917 * size of lock_class_key objects does not exceed the size of 918 * the smallest lock object. 919 */ 920 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 921 #endif 922 923 if (__is_kernel_percpu_address(addr, &can_addr)) 924 lock->key = (void *)can_addr; 925 else if (__is_module_percpu_address(addr, &can_addr)) 926 lock->key = (void *)can_addr; 927 else if (static_obj(lock)) 928 lock->key = (void *)lock; 929 else { 930 /* Debug-check: all keys must be persistent! */ 931 debug_locks_off(); 932 pr_err("INFO: trying to register non-static key.\n"); 933 pr_err("the code is fine but needs lockdep annotation.\n"); 934 pr_err("turning off the locking correctness validator.\n"); 935 dump_stack(); 936 return false; 937 } 938 939 return true; 940 } 941 942 #ifdef CONFIG_DEBUG_LOCKDEP 943 944 /* Check whether element @e occurs in list @h */ 945 static bool in_list(struct list_head *e, struct list_head *h) 946 { 947 struct list_head *f; 948 949 list_for_each(f, h) { 950 if (e == f) 951 return true; 952 } 953 954 return false; 955 } 956 957 /* 958 * Check whether entry @e occurs in any of the locks_after or locks_before 959 * lists. 960 */ 961 static bool in_any_class_list(struct list_head *e) 962 { 963 struct lock_class *class; 964 int i; 965 966 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 967 class = &lock_classes[i]; 968 if (in_list(e, &class->locks_after) || 969 in_list(e, &class->locks_before)) 970 return true; 971 } 972 return false; 973 } 974 975 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 976 { 977 struct lock_list *e; 978 979 list_for_each_entry(e, h, entry) { 980 if (e->links_to != c) { 981 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 982 c->name ? : "(?)", 983 (unsigned long)(e - list_entries), 984 e->links_to && e->links_to->name ? 985 e->links_to->name : "(?)", 986 e->class && e->class->name ? e->class->name : 987 "(?)"); 988 return false; 989 } 990 } 991 return true; 992 } 993 994 #ifdef CONFIG_PROVE_LOCKING 995 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 996 #endif 997 998 static bool check_lock_chain_key(struct lock_chain *chain) 999 { 1000 #ifdef CONFIG_PROVE_LOCKING 1001 u64 chain_key = INITIAL_CHAIN_KEY; 1002 int i; 1003 1004 for (i = chain->base; i < chain->base + chain->depth; i++) 1005 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1006 /* 1007 * The 'unsigned long long' casts avoid that a compiler warning 1008 * is reported when building tools/lib/lockdep. 1009 */ 1010 if (chain->chain_key != chain_key) { 1011 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1012 (unsigned long long)(chain - lock_chains), 1013 (unsigned long long)chain->chain_key, 1014 (unsigned long long)chain_key); 1015 return false; 1016 } 1017 #endif 1018 return true; 1019 } 1020 1021 static bool in_any_zapped_class_list(struct lock_class *class) 1022 { 1023 struct pending_free *pf; 1024 int i; 1025 1026 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1027 if (in_list(&class->lock_entry, &pf->zapped)) 1028 return true; 1029 } 1030 1031 return false; 1032 } 1033 1034 static bool __check_data_structures(void) 1035 { 1036 struct lock_class *class; 1037 struct lock_chain *chain; 1038 struct hlist_head *head; 1039 struct lock_list *e; 1040 int i; 1041 1042 /* Check whether all classes occur in a lock list. */ 1043 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1044 class = &lock_classes[i]; 1045 if (!in_list(&class->lock_entry, &all_lock_classes) && 1046 !in_list(&class->lock_entry, &free_lock_classes) && 1047 !in_any_zapped_class_list(class)) { 1048 printk(KERN_INFO "class %px/%s is not in any class list\n", 1049 class, class->name ? : "(?)"); 1050 return false; 1051 } 1052 } 1053 1054 /* Check whether all classes have valid lock lists. */ 1055 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1056 class = &lock_classes[i]; 1057 if (!class_lock_list_valid(class, &class->locks_before)) 1058 return false; 1059 if (!class_lock_list_valid(class, &class->locks_after)) 1060 return false; 1061 } 1062 1063 /* Check the chain_key of all lock chains. */ 1064 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1065 head = chainhash_table + i; 1066 hlist_for_each_entry_rcu(chain, head, entry) { 1067 if (!check_lock_chain_key(chain)) 1068 return false; 1069 } 1070 } 1071 1072 /* 1073 * Check whether all list entries that are in use occur in a class 1074 * lock list. 1075 */ 1076 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1077 e = list_entries + i; 1078 if (!in_any_class_list(&e->entry)) { 1079 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1080 (unsigned int)(e - list_entries), 1081 e->class->name ? : "(?)", 1082 e->links_to->name ? : "(?)"); 1083 return false; 1084 } 1085 } 1086 1087 /* 1088 * Check whether all list entries that are not in use do not occur in 1089 * a class lock list. 1090 */ 1091 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1092 e = list_entries + i; 1093 if (in_any_class_list(&e->entry)) { 1094 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1095 (unsigned int)(e - list_entries), 1096 e->class && e->class->name ? e->class->name : 1097 "(?)", 1098 e->links_to && e->links_to->name ? 1099 e->links_to->name : "(?)"); 1100 return false; 1101 } 1102 } 1103 1104 return true; 1105 } 1106 1107 int check_consistency = 0; 1108 module_param(check_consistency, int, 0644); 1109 1110 static void check_data_structures(void) 1111 { 1112 static bool once = false; 1113 1114 if (check_consistency && !once) { 1115 if (!__check_data_structures()) { 1116 once = true; 1117 WARN_ON(once); 1118 } 1119 } 1120 } 1121 1122 #else /* CONFIG_DEBUG_LOCKDEP */ 1123 1124 static inline void check_data_structures(void) { } 1125 1126 #endif /* CONFIG_DEBUG_LOCKDEP */ 1127 1128 static void init_chain_block_buckets(void); 1129 1130 /* 1131 * Initialize the lock_classes[] array elements, the free_lock_classes list 1132 * and also the delayed_free structure. 1133 */ 1134 static void init_data_structures_once(void) 1135 { 1136 static bool __read_mostly ds_initialized, rcu_head_initialized; 1137 int i; 1138 1139 if (likely(rcu_head_initialized)) 1140 return; 1141 1142 if (system_state >= SYSTEM_SCHEDULING) { 1143 init_rcu_head(&delayed_free.rcu_head); 1144 rcu_head_initialized = true; 1145 } 1146 1147 if (ds_initialized) 1148 return; 1149 1150 ds_initialized = true; 1151 1152 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1153 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1154 1155 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1156 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1157 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1158 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1159 } 1160 init_chain_block_buckets(); 1161 } 1162 1163 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1164 { 1165 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1166 1167 return lock_keys_hash + hash; 1168 } 1169 1170 /* Register a dynamically allocated key. */ 1171 void lockdep_register_key(struct lock_class_key *key) 1172 { 1173 struct hlist_head *hash_head; 1174 struct lock_class_key *k; 1175 unsigned long flags; 1176 1177 if (WARN_ON_ONCE(static_obj(key))) 1178 return; 1179 hash_head = keyhashentry(key); 1180 1181 raw_local_irq_save(flags); 1182 if (!graph_lock()) 1183 goto restore_irqs; 1184 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1185 if (WARN_ON_ONCE(k == key)) 1186 goto out_unlock; 1187 } 1188 hlist_add_head_rcu(&key->hash_entry, hash_head); 1189 out_unlock: 1190 graph_unlock(); 1191 restore_irqs: 1192 raw_local_irq_restore(flags); 1193 } 1194 EXPORT_SYMBOL_GPL(lockdep_register_key); 1195 1196 /* Check whether a key has been registered as a dynamic key. */ 1197 static bool is_dynamic_key(const struct lock_class_key *key) 1198 { 1199 struct hlist_head *hash_head; 1200 struct lock_class_key *k; 1201 bool found = false; 1202 1203 if (WARN_ON_ONCE(static_obj(key))) 1204 return false; 1205 1206 /* 1207 * If lock debugging is disabled lock_keys_hash[] may contain 1208 * pointers to memory that has already been freed. Avoid triggering 1209 * a use-after-free in that case by returning early. 1210 */ 1211 if (!debug_locks) 1212 return true; 1213 1214 hash_head = keyhashentry(key); 1215 1216 rcu_read_lock(); 1217 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1218 if (k == key) { 1219 found = true; 1220 break; 1221 } 1222 } 1223 rcu_read_unlock(); 1224 1225 return found; 1226 } 1227 1228 /* 1229 * Register a lock's class in the hash-table, if the class is not present 1230 * yet. Otherwise we look it up. We cache the result in the lock object 1231 * itself, so actual lookup of the hash should be once per lock object. 1232 */ 1233 static struct lock_class * 1234 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1235 { 1236 struct lockdep_subclass_key *key; 1237 struct hlist_head *hash_head; 1238 struct lock_class *class; 1239 1240 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1241 1242 class = look_up_lock_class(lock, subclass); 1243 if (likely(class)) 1244 goto out_set_class_cache; 1245 1246 if (!lock->key) { 1247 if (!assign_lock_key(lock)) 1248 return NULL; 1249 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1250 return NULL; 1251 } 1252 1253 key = lock->key->subkeys + subclass; 1254 hash_head = classhashentry(key); 1255 1256 if (!graph_lock()) { 1257 return NULL; 1258 } 1259 /* 1260 * We have to do the hash-walk again, to avoid races 1261 * with another CPU: 1262 */ 1263 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1264 if (class->key == key) 1265 goto out_unlock_set; 1266 } 1267 1268 init_data_structures_once(); 1269 1270 /* Allocate a new lock class and add it to the hash. */ 1271 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1272 lock_entry); 1273 if (!class) { 1274 if (!debug_locks_off_graph_unlock()) { 1275 return NULL; 1276 } 1277 1278 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1279 dump_stack(); 1280 return NULL; 1281 } 1282 nr_lock_classes++; 1283 __set_bit(class - lock_classes, lock_classes_in_use); 1284 debug_atomic_inc(nr_unused_locks); 1285 class->key = key; 1286 class->name = lock->name; 1287 class->subclass = subclass; 1288 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1289 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1290 class->name_version = count_matching_names(class); 1291 class->wait_type_inner = lock->wait_type_inner; 1292 class->wait_type_outer = lock->wait_type_outer; 1293 /* 1294 * We use RCU's safe list-add method to make 1295 * parallel walking of the hash-list safe: 1296 */ 1297 hlist_add_head_rcu(&class->hash_entry, hash_head); 1298 /* 1299 * Remove the class from the free list and add it to the global list 1300 * of classes. 1301 */ 1302 list_move_tail(&class->lock_entry, &all_lock_classes); 1303 1304 if (verbose(class)) { 1305 graph_unlock(); 1306 1307 printk("\nnew class %px: %s", class->key, class->name); 1308 if (class->name_version > 1) 1309 printk(KERN_CONT "#%d", class->name_version); 1310 printk(KERN_CONT "\n"); 1311 dump_stack(); 1312 1313 if (!graph_lock()) { 1314 return NULL; 1315 } 1316 } 1317 out_unlock_set: 1318 graph_unlock(); 1319 1320 out_set_class_cache: 1321 if (!subclass || force) 1322 lock->class_cache[0] = class; 1323 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1324 lock->class_cache[subclass] = class; 1325 1326 /* 1327 * Hash collision, did we smoke some? We found a class with a matching 1328 * hash but the subclass -- which is hashed in -- didn't match. 1329 */ 1330 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1331 return NULL; 1332 1333 return class; 1334 } 1335 1336 #ifdef CONFIG_PROVE_LOCKING 1337 /* 1338 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1339 * with NULL on failure) 1340 */ 1341 static struct lock_list *alloc_list_entry(void) 1342 { 1343 int idx = find_first_zero_bit(list_entries_in_use, 1344 ARRAY_SIZE(list_entries)); 1345 1346 if (idx >= ARRAY_SIZE(list_entries)) { 1347 if (!debug_locks_off_graph_unlock()) 1348 return NULL; 1349 1350 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1351 dump_stack(); 1352 return NULL; 1353 } 1354 nr_list_entries++; 1355 __set_bit(idx, list_entries_in_use); 1356 return list_entries + idx; 1357 } 1358 1359 /* 1360 * Add a new dependency to the head of the list: 1361 */ 1362 static int add_lock_to_list(struct lock_class *this, 1363 struct lock_class *links_to, struct list_head *head, 1364 unsigned long ip, u16 distance, u8 dep, 1365 const struct lock_trace *trace) 1366 { 1367 struct lock_list *entry; 1368 /* 1369 * Lock not present yet - get a new dependency struct and 1370 * add it to the list: 1371 */ 1372 entry = alloc_list_entry(); 1373 if (!entry) 1374 return 0; 1375 1376 entry->class = this; 1377 entry->links_to = links_to; 1378 entry->dep = dep; 1379 entry->distance = distance; 1380 entry->trace = trace; 1381 /* 1382 * Both allocation and removal are done under the graph lock; but 1383 * iteration is under RCU-sched; see look_up_lock_class() and 1384 * lockdep_free_key_range(). 1385 */ 1386 list_add_tail_rcu(&entry->entry, head); 1387 1388 return 1; 1389 } 1390 1391 /* 1392 * For good efficiency of modular, we use power of 2 1393 */ 1394 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL 1395 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1396 1397 /* 1398 * The circular_queue and helpers are used to implement graph 1399 * breadth-first search (BFS) algorithm, by which we can determine 1400 * whether there is a path from a lock to another. In deadlock checks, 1401 * a path from the next lock to be acquired to a previous held lock 1402 * indicates that adding the <prev> -> <next> lock dependency will 1403 * produce a circle in the graph. Breadth-first search instead of 1404 * depth-first search is used in order to find the shortest (circular) 1405 * path. 1406 */ 1407 struct circular_queue { 1408 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1409 unsigned int front, rear; 1410 }; 1411 1412 static struct circular_queue lock_cq; 1413 1414 unsigned int max_bfs_queue_depth; 1415 1416 static unsigned int lockdep_dependency_gen_id; 1417 1418 static inline void __cq_init(struct circular_queue *cq) 1419 { 1420 cq->front = cq->rear = 0; 1421 lockdep_dependency_gen_id++; 1422 } 1423 1424 static inline int __cq_empty(struct circular_queue *cq) 1425 { 1426 return (cq->front == cq->rear); 1427 } 1428 1429 static inline int __cq_full(struct circular_queue *cq) 1430 { 1431 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1432 } 1433 1434 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1435 { 1436 if (__cq_full(cq)) 1437 return -1; 1438 1439 cq->element[cq->rear] = elem; 1440 cq->rear = (cq->rear + 1) & CQ_MASK; 1441 return 0; 1442 } 1443 1444 /* 1445 * Dequeue an element from the circular_queue, return a lock_list if 1446 * the queue is not empty, or NULL if otherwise. 1447 */ 1448 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1449 { 1450 struct lock_list * lock; 1451 1452 if (__cq_empty(cq)) 1453 return NULL; 1454 1455 lock = cq->element[cq->front]; 1456 cq->front = (cq->front + 1) & CQ_MASK; 1457 1458 return lock; 1459 } 1460 1461 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1462 { 1463 return (cq->rear - cq->front) & CQ_MASK; 1464 } 1465 1466 static inline void mark_lock_accessed(struct lock_list *lock) 1467 { 1468 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1469 } 1470 1471 static inline void visit_lock_entry(struct lock_list *lock, 1472 struct lock_list *parent) 1473 { 1474 lock->parent = parent; 1475 } 1476 1477 static inline unsigned long lock_accessed(struct lock_list *lock) 1478 { 1479 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1480 } 1481 1482 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1483 { 1484 return child->parent; 1485 } 1486 1487 static inline int get_lock_depth(struct lock_list *child) 1488 { 1489 int depth = 0; 1490 struct lock_list *parent; 1491 1492 while ((parent = get_lock_parent(child))) { 1493 child = parent; 1494 depth++; 1495 } 1496 return depth; 1497 } 1498 1499 /* 1500 * Return the forward or backward dependency list. 1501 * 1502 * @lock: the lock_list to get its class's dependency list 1503 * @offset: the offset to struct lock_class to determine whether it is 1504 * locks_after or locks_before 1505 */ 1506 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1507 { 1508 void *lock_class = lock->class; 1509 1510 return lock_class + offset; 1511 } 1512 /* 1513 * Return values of a bfs search: 1514 * 1515 * BFS_E* indicates an error 1516 * BFS_R* indicates a result (match or not) 1517 * 1518 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1519 * 1520 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1521 * 1522 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1523 * *@target_entry. 1524 * 1525 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1526 * _unchanged_. 1527 */ 1528 enum bfs_result { 1529 BFS_EINVALIDNODE = -2, 1530 BFS_EQUEUEFULL = -1, 1531 BFS_RMATCH = 0, 1532 BFS_RNOMATCH = 1, 1533 }; 1534 1535 /* 1536 * bfs_result < 0 means error 1537 */ 1538 static inline bool bfs_error(enum bfs_result res) 1539 { 1540 return res < 0; 1541 } 1542 1543 /* 1544 * DEP_*_BIT in lock_list::dep 1545 * 1546 * For dependency @prev -> @next: 1547 * 1548 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1549 * (->read == 2) 1550 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1551 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1552 * EN: @prev is exclusive locker and @next is non-recursive locker 1553 * 1554 * Note that we define the value of DEP_*_BITs so that: 1555 * bit0 is prev->read == 0 1556 * bit1 is next->read != 2 1557 */ 1558 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1559 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1560 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1561 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1562 1563 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1564 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1565 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1566 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1567 1568 static inline unsigned int 1569 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1570 { 1571 return (prev->read == 0) + ((next->read != 2) << 1); 1572 } 1573 1574 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1575 { 1576 return 1U << __calc_dep_bit(prev, next); 1577 } 1578 1579 /* 1580 * calculate the dep_bit for backwards edges. We care about whether @prev is 1581 * shared and whether @next is recursive. 1582 */ 1583 static inline unsigned int 1584 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1585 { 1586 return (next->read != 2) + ((prev->read == 0) << 1); 1587 } 1588 1589 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1590 { 1591 return 1U << __calc_dep_bitb(prev, next); 1592 } 1593 1594 /* 1595 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1596 * search. 1597 */ 1598 static inline void __bfs_init_root(struct lock_list *lock, 1599 struct lock_class *class) 1600 { 1601 lock->class = class; 1602 lock->parent = NULL; 1603 lock->only_xr = 0; 1604 } 1605 1606 /* 1607 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1608 * root for a BFS search. 1609 * 1610 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1611 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1612 * and -(S*)->. 1613 */ 1614 static inline void bfs_init_root(struct lock_list *lock, 1615 struct held_lock *hlock) 1616 { 1617 __bfs_init_root(lock, hlock_class(hlock)); 1618 lock->only_xr = (hlock->read == 2); 1619 } 1620 1621 /* 1622 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1623 * 1624 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1625 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1626 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1627 */ 1628 static inline void bfs_init_rootb(struct lock_list *lock, 1629 struct held_lock *hlock) 1630 { 1631 __bfs_init_root(lock, hlock_class(hlock)); 1632 lock->only_xr = (hlock->read != 0); 1633 } 1634 1635 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1636 { 1637 if (!lock || !lock->parent) 1638 return NULL; 1639 1640 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1641 &lock->entry, struct lock_list, entry); 1642 } 1643 1644 /* 1645 * Breadth-First Search to find a strong path in the dependency graph. 1646 * 1647 * @source_entry: the source of the path we are searching for. 1648 * @data: data used for the second parameter of @match function 1649 * @match: match function for the search 1650 * @target_entry: pointer to the target of a matched path 1651 * @offset: the offset to struct lock_class to determine whether it is 1652 * locks_after or locks_before 1653 * 1654 * We may have multiple edges (considering different kinds of dependencies, 1655 * e.g. ER and SN) between two nodes in the dependency graph. But 1656 * only the strong dependency path in the graph is relevant to deadlocks. A 1657 * strong dependency path is a dependency path that doesn't have two adjacent 1658 * dependencies as -(*R)-> -(S*)->, please see: 1659 * 1660 * Documentation/locking/lockdep-design.rst 1661 * 1662 * for more explanation of the definition of strong dependency paths 1663 * 1664 * In __bfs(), we only traverse in the strong dependency path: 1665 * 1666 * In lock_list::only_xr, we record whether the previous dependency only 1667 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1668 * filter out any -(S*)-> in the current dependency and after that, the 1669 * ->only_xr is set according to whether we only have -(*R)-> left. 1670 */ 1671 static enum bfs_result __bfs(struct lock_list *source_entry, 1672 void *data, 1673 bool (*match)(struct lock_list *entry, void *data), 1674 struct lock_list **target_entry, 1675 int offset) 1676 { 1677 struct circular_queue *cq = &lock_cq; 1678 struct lock_list *lock = NULL; 1679 struct lock_list *entry; 1680 struct list_head *head; 1681 unsigned int cq_depth; 1682 bool first; 1683 1684 lockdep_assert_locked(); 1685 1686 __cq_init(cq); 1687 __cq_enqueue(cq, source_entry); 1688 1689 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1690 if (!lock->class) 1691 return BFS_EINVALIDNODE; 1692 1693 /* 1694 * Step 1: check whether we already finish on this one. 1695 * 1696 * If we have visited all the dependencies from this @lock to 1697 * others (iow, if we have visited all lock_list entries in 1698 * @lock->class->locks_{after,before}) we skip, otherwise go 1699 * and visit all the dependencies in the list and mark this 1700 * list accessed. 1701 */ 1702 if (lock_accessed(lock)) 1703 continue; 1704 else 1705 mark_lock_accessed(lock); 1706 1707 /* 1708 * Step 2: check whether prev dependency and this form a strong 1709 * dependency path. 1710 */ 1711 if (lock->parent) { /* Parent exists, check prev dependency */ 1712 u8 dep = lock->dep; 1713 bool prev_only_xr = lock->parent->only_xr; 1714 1715 /* 1716 * Mask out all -(S*)-> if we only have *R in previous 1717 * step, because -(*R)-> -(S*)-> don't make up a strong 1718 * dependency. 1719 */ 1720 if (prev_only_xr) 1721 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1722 1723 /* If nothing left, we skip */ 1724 if (!dep) 1725 continue; 1726 1727 /* If there are only -(*R)-> left, set that for the next step */ 1728 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1729 } 1730 1731 /* 1732 * Step 3: we haven't visited this and there is a strong 1733 * dependency path to this, so check with @match. 1734 */ 1735 if (match(lock, data)) { 1736 *target_entry = lock; 1737 return BFS_RMATCH; 1738 } 1739 1740 /* 1741 * Step 4: if not match, expand the path by adding the 1742 * forward or backwards dependencis in the search 1743 * 1744 */ 1745 first = true; 1746 head = get_dep_list(lock, offset); 1747 list_for_each_entry_rcu(entry, head, entry) { 1748 visit_lock_entry(entry, lock); 1749 1750 /* 1751 * Note we only enqueue the first of the list into the 1752 * queue, because we can always find a sibling 1753 * dependency from one (see __bfs_next()), as a result 1754 * the space of queue is saved. 1755 */ 1756 if (!first) 1757 continue; 1758 1759 first = false; 1760 1761 if (__cq_enqueue(cq, entry)) 1762 return BFS_EQUEUEFULL; 1763 1764 cq_depth = __cq_get_elem_count(cq); 1765 if (max_bfs_queue_depth < cq_depth) 1766 max_bfs_queue_depth = cq_depth; 1767 } 1768 } 1769 1770 return BFS_RNOMATCH; 1771 } 1772 1773 static inline enum bfs_result 1774 __bfs_forwards(struct lock_list *src_entry, 1775 void *data, 1776 bool (*match)(struct lock_list *entry, void *data), 1777 struct lock_list **target_entry) 1778 { 1779 return __bfs(src_entry, data, match, target_entry, 1780 offsetof(struct lock_class, locks_after)); 1781 1782 } 1783 1784 static inline enum bfs_result 1785 __bfs_backwards(struct lock_list *src_entry, 1786 void *data, 1787 bool (*match)(struct lock_list *entry, void *data), 1788 struct lock_list **target_entry) 1789 { 1790 return __bfs(src_entry, data, match, target_entry, 1791 offsetof(struct lock_class, locks_before)); 1792 1793 } 1794 1795 static void print_lock_trace(const struct lock_trace *trace, 1796 unsigned int spaces) 1797 { 1798 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1799 } 1800 1801 /* 1802 * Print a dependency chain entry (this is only done when a deadlock 1803 * has been detected): 1804 */ 1805 static noinline void 1806 print_circular_bug_entry(struct lock_list *target, int depth) 1807 { 1808 if (debug_locks_silent) 1809 return; 1810 printk("\n-> #%u", depth); 1811 print_lock_name(target->class); 1812 printk(KERN_CONT ":\n"); 1813 print_lock_trace(target->trace, 6); 1814 } 1815 1816 static void 1817 print_circular_lock_scenario(struct held_lock *src, 1818 struct held_lock *tgt, 1819 struct lock_list *prt) 1820 { 1821 struct lock_class *source = hlock_class(src); 1822 struct lock_class *target = hlock_class(tgt); 1823 struct lock_class *parent = prt->class; 1824 1825 /* 1826 * A direct locking problem where unsafe_class lock is taken 1827 * directly by safe_class lock, then all we need to show 1828 * is the deadlock scenario, as it is obvious that the 1829 * unsafe lock is taken under the safe lock. 1830 * 1831 * But if there is a chain instead, where the safe lock takes 1832 * an intermediate lock (middle_class) where this lock is 1833 * not the same as the safe lock, then the lock chain is 1834 * used to describe the problem. Otherwise we would need 1835 * to show a different CPU case for each link in the chain 1836 * from the safe_class lock to the unsafe_class lock. 1837 */ 1838 if (parent != source) { 1839 printk("Chain exists of:\n "); 1840 __print_lock_name(source); 1841 printk(KERN_CONT " --> "); 1842 __print_lock_name(parent); 1843 printk(KERN_CONT " --> "); 1844 __print_lock_name(target); 1845 printk(KERN_CONT "\n\n"); 1846 } 1847 1848 printk(" Possible unsafe locking scenario:\n\n"); 1849 printk(" CPU0 CPU1\n"); 1850 printk(" ---- ----\n"); 1851 printk(" lock("); 1852 __print_lock_name(target); 1853 printk(KERN_CONT ");\n"); 1854 printk(" lock("); 1855 __print_lock_name(parent); 1856 printk(KERN_CONT ");\n"); 1857 printk(" lock("); 1858 __print_lock_name(target); 1859 printk(KERN_CONT ");\n"); 1860 printk(" lock("); 1861 __print_lock_name(source); 1862 printk(KERN_CONT ");\n"); 1863 printk("\n *** DEADLOCK ***\n\n"); 1864 } 1865 1866 /* 1867 * When a circular dependency is detected, print the 1868 * header first: 1869 */ 1870 static noinline void 1871 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1872 struct held_lock *check_src, 1873 struct held_lock *check_tgt) 1874 { 1875 struct task_struct *curr = current; 1876 1877 if (debug_locks_silent) 1878 return; 1879 1880 pr_warn("\n"); 1881 pr_warn("======================================================\n"); 1882 pr_warn("WARNING: possible circular locking dependency detected\n"); 1883 print_kernel_ident(); 1884 pr_warn("------------------------------------------------------\n"); 1885 pr_warn("%s/%d is trying to acquire lock:\n", 1886 curr->comm, task_pid_nr(curr)); 1887 print_lock(check_src); 1888 1889 pr_warn("\nbut task is already holding lock:\n"); 1890 1891 print_lock(check_tgt); 1892 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1893 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1894 1895 print_circular_bug_entry(entry, depth); 1896 } 1897 1898 /* 1899 * We are about to add A -> B into the dependency graph, and in __bfs() a 1900 * strong dependency path A -> .. -> B is found: hlock_class equals 1901 * entry->class. 1902 * 1903 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1904 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1905 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1906 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1907 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1908 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1909 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant. 1910 * 1911 * We need to make sure both the start and the end of A -> .. -> B is not 1912 * weaker than A -> B. For the start part, please see the comment in 1913 * check_redundant(). For the end part, we need: 1914 * 1915 * Either 1916 * 1917 * a) A -> B is -(*R)-> (everything is not weaker than that) 1918 * 1919 * or 1920 * 1921 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1922 * 1923 */ 1924 static inline bool hlock_equal(struct lock_list *entry, void *data) 1925 { 1926 struct held_lock *hlock = (struct held_lock *)data; 1927 1928 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1929 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1930 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1931 } 1932 1933 /* 1934 * We are about to add B -> A into the dependency graph, and in __bfs() a 1935 * strong dependency path A -> .. -> B is found: hlock_class equals 1936 * entry->class. 1937 * 1938 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1939 * dependency cycle, that means: 1940 * 1941 * Either 1942 * 1943 * a) B -> A is -(E*)-> 1944 * 1945 * or 1946 * 1947 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 1948 * 1949 * as then we don't have -(*R)-> -(S*)-> in the cycle. 1950 */ 1951 static inline bool hlock_conflict(struct lock_list *entry, void *data) 1952 { 1953 struct held_lock *hlock = (struct held_lock *)data; 1954 1955 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1956 (hlock->read == 0 || /* B -> A is -(E*)-> */ 1957 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1958 } 1959 1960 static noinline void print_circular_bug(struct lock_list *this, 1961 struct lock_list *target, 1962 struct held_lock *check_src, 1963 struct held_lock *check_tgt) 1964 { 1965 struct task_struct *curr = current; 1966 struct lock_list *parent; 1967 struct lock_list *first_parent; 1968 int depth; 1969 1970 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1971 return; 1972 1973 this->trace = save_trace(); 1974 if (!this->trace) 1975 return; 1976 1977 depth = get_lock_depth(target); 1978 1979 print_circular_bug_header(target, depth, check_src, check_tgt); 1980 1981 parent = get_lock_parent(target); 1982 first_parent = parent; 1983 1984 while (parent) { 1985 print_circular_bug_entry(parent, --depth); 1986 parent = get_lock_parent(parent); 1987 } 1988 1989 printk("\nother info that might help us debug this:\n\n"); 1990 print_circular_lock_scenario(check_src, check_tgt, 1991 first_parent); 1992 1993 lockdep_print_held_locks(curr); 1994 1995 printk("\nstack backtrace:\n"); 1996 dump_stack(); 1997 } 1998 1999 static noinline void print_bfs_bug(int ret) 2000 { 2001 if (!debug_locks_off_graph_unlock()) 2002 return; 2003 2004 /* 2005 * Breadth-first-search failed, graph got corrupted? 2006 */ 2007 WARN(1, "lockdep bfs error:%d\n", ret); 2008 } 2009 2010 static bool noop_count(struct lock_list *entry, void *data) 2011 { 2012 (*(unsigned long *)data)++; 2013 return false; 2014 } 2015 2016 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2017 { 2018 unsigned long count = 0; 2019 struct lock_list *target_entry; 2020 2021 __bfs_forwards(this, (void *)&count, noop_count, &target_entry); 2022 2023 return count; 2024 } 2025 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2026 { 2027 unsigned long ret, flags; 2028 struct lock_list this; 2029 2030 __bfs_init_root(&this, class); 2031 2032 raw_local_irq_save(flags); 2033 lockdep_lock(); 2034 ret = __lockdep_count_forward_deps(&this); 2035 lockdep_unlock(); 2036 raw_local_irq_restore(flags); 2037 2038 return ret; 2039 } 2040 2041 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2042 { 2043 unsigned long count = 0; 2044 struct lock_list *target_entry; 2045 2046 __bfs_backwards(this, (void *)&count, noop_count, &target_entry); 2047 2048 return count; 2049 } 2050 2051 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2052 { 2053 unsigned long ret, flags; 2054 struct lock_list this; 2055 2056 __bfs_init_root(&this, class); 2057 2058 raw_local_irq_save(flags); 2059 lockdep_lock(); 2060 ret = __lockdep_count_backward_deps(&this); 2061 lockdep_unlock(); 2062 raw_local_irq_restore(flags); 2063 2064 return ret; 2065 } 2066 2067 /* 2068 * Check that the dependency graph starting at <src> can lead to 2069 * <target> or not. 2070 */ 2071 static noinline enum bfs_result 2072 check_path(struct held_lock *target, struct lock_list *src_entry, 2073 bool (*match)(struct lock_list *entry, void *data), 2074 struct lock_list **target_entry) 2075 { 2076 enum bfs_result ret; 2077 2078 ret = __bfs_forwards(src_entry, target, match, target_entry); 2079 2080 if (unlikely(bfs_error(ret))) 2081 print_bfs_bug(ret); 2082 2083 return ret; 2084 } 2085 2086 /* 2087 * Prove that the dependency graph starting at <src> can not 2088 * lead to <target>. If it can, there is a circle when adding 2089 * <target> -> <src> dependency. 2090 * 2091 * Print an error and return BFS_RMATCH if it does. 2092 */ 2093 static noinline enum bfs_result 2094 check_noncircular(struct held_lock *src, struct held_lock *target, 2095 struct lock_trace **const trace) 2096 { 2097 enum bfs_result ret; 2098 struct lock_list *target_entry; 2099 struct lock_list src_entry; 2100 2101 bfs_init_root(&src_entry, src); 2102 2103 debug_atomic_inc(nr_cyclic_checks); 2104 2105 ret = check_path(target, &src_entry, hlock_conflict, &target_entry); 2106 2107 if (unlikely(ret == BFS_RMATCH)) { 2108 if (!*trace) { 2109 /* 2110 * If save_trace fails here, the printing might 2111 * trigger a WARN but because of the !nr_entries it 2112 * should not do bad things. 2113 */ 2114 *trace = save_trace(); 2115 } 2116 2117 print_circular_bug(&src_entry, target_entry, src, target); 2118 } 2119 2120 return ret; 2121 } 2122 2123 #ifdef CONFIG_LOCKDEP_SMALL 2124 /* 2125 * Check that the dependency graph starting at <src> can lead to 2126 * <target> or not. If it can, <src> -> <target> dependency is already 2127 * in the graph. 2128 * 2129 * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if 2130 * any error appears in the bfs search. 2131 */ 2132 static noinline enum bfs_result 2133 check_redundant(struct held_lock *src, struct held_lock *target) 2134 { 2135 enum bfs_result ret; 2136 struct lock_list *target_entry; 2137 struct lock_list src_entry; 2138 2139 bfs_init_root(&src_entry, src); 2140 /* 2141 * Special setup for check_redundant(). 2142 * 2143 * To report redundant, we need to find a strong dependency path that 2144 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2145 * we need to let __bfs() only search for a path starting at a -(E*)->, 2146 * we achieve this by setting the initial node's ->only_xr to true in 2147 * that case. And if <prev> is S, we set initial ->only_xr to false 2148 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2149 */ 2150 src_entry.only_xr = src->read == 0; 2151 2152 debug_atomic_inc(nr_redundant_checks); 2153 2154 ret = check_path(target, &src_entry, hlock_equal, &target_entry); 2155 2156 if (ret == BFS_RMATCH) 2157 debug_atomic_inc(nr_redundant); 2158 2159 return ret; 2160 } 2161 #endif 2162 2163 #ifdef CONFIG_TRACE_IRQFLAGS 2164 2165 /* 2166 * Forwards and backwards subgraph searching, for the purposes of 2167 * proving that two subgraphs can be connected by a new dependency 2168 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2169 * 2170 * A irq safe->unsafe deadlock happens with the following conditions: 2171 * 2172 * 1) We have a strong dependency path A -> ... -> B 2173 * 2174 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2175 * irq can create a new dependency B -> A (consider the case that a holder 2176 * of B gets interrupted by an irq whose handler will try to acquire A). 2177 * 2178 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2179 * strong circle: 2180 * 2181 * For the usage bits of B: 2182 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2183 * ENABLED_IRQ usage suffices. 2184 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2185 * ENABLED_IRQ_*_READ usage suffices. 2186 * 2187 * For the usage bits of A: 2188 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2189 * USED_IN_IRQ usage suffices. 2190 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2191 * USED_IN_IRQ_*_READ usage suffices. 2192 */ 2193 2194 /* 2195 * There is a strong dependency path in the dependency graph: A -> B, and now 2196 * we need to decide which usage bit of A should be accumulated to detect 2197 * safe->unsafe bugs. 2198 * 2199 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2200 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2201 * 2202 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2203 * path, any usage of A should be considered. Otherwise, we should only 2204 * consider _READ usage. 2205 */ 2206 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2207 { 2208 if (!entry->only_xr) 2209 *(unsigned long *)mask |= entry->class->usage_mask; 2210 else /* Mask out _READ usage bits */ 2211 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2212 2213 return false; 2214 } 2215 2216 /* 2217 * There is a strong dependency path in the dependency graph: A -> B, and now 2218 * we need to decide which usage bit of B conflicts with the usage bits of A, 2219 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2220 * 2221 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2222 * path, any usage of B should be considered. Otherwise, we should only 2223 * consider _READ usage. 2224 */ 2225 static inline bool usage_match(struct lock_list *entry, void *mask) 2226 { 2227 if (!entry->only_xr) 2228 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2229 else /* Mask out _READ usage bits */ 2230 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2231 } 2232 2233 /* 2234 * Find a node in the forwards-direction dependency sub-graph starting 2235 * at @root->class that matches @bit. 2236 * 2237 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2238 * into *@target_entry. 2239 */ 2240 static enum bfs_result 2241 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2242 struct lock_list **target_entry) 2243 { 2244 enum bfs_result result; 2245 2246 debug_atomic_inc(nr_find_usage_forwards_checks); 2247 2248 result = __bfs_forwards(root, &usage_mask, usage_match, target_entry); 2249 2250 return result; 2251 } 2252 2253 /* 2254 * Find a node in the backwards-direction dependency sub-graph starting 2255 * at @root->class that matches @bit. 2256 */ 2257 static enum bfs_result 2258 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2259 struct lock_list **target_entry) 2260 { 2261 enum bfs_result result; 2262 2263 debug_atomic_inc(nr_find_usage_backwards_checks); 2264 2265 result = __bfs_backwards(root, &usage_mask, usage_match, target_entry); 2266 2267 return result; 2268 } 2269 2270 static void print_lock_class_header(struct lock_class *class, int depth) 2271 { 2272 int bit; 2273 2274 printk("%*s->", depth, ""); 2275 print_lock_name(class); 2276 #ifdef CONFIG_DEBUG_LOCKDEP 2277 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2278 #endif 2279 printk(KERN_CONT " {\n"); 2280 2281 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2282 if (class->usage_mask & (1 << bit)) { 2283 int len = depth; 2284 2285 len += printk("%*s %s", depth, "", usage_str[bit]); 2286 len += printk(KERN_CONT " at:\n"); 2287 print_lock_trace(class->usage_traces[bit], len); 2288 } 2289 } 2290 printk("%*s }\n", depth, ""); 2291 2292 printk("%*s ... key at: [<%px>] %pS\n", 2293 depth, "", class->key, class->key); 2294 } 2295 2296 /* 2297 * printk the shortest lock dependencies from @start to @end in reverse order: 2298 */ 2299 static void __used 2300 print_shortest_lock_dependencies(struct lock_list *leaf, 2301 struct lock_list *root) 2302 { 2303 struct lock_list *entry = leaf; 2304 int depth; 2305 2306 /*compute depth from generated tree by BFS*/ 2307 depth = get_lock_depth(leaf); 2308 2309 do { 2310 print_lock_class_header(entry->class, depth); 2311 printk("%*s ... acquired at:\n", depth, ""); 2312 print_lock_trace(entry->trace, 2); 2313 printk("\n"); 2314 2315 if (depth == 0 && (entry != root)) { 2316 printk("lockdep:%s bad path found in chain graph\n", __func__); 2317 break; 2318 } 2319 2320 entry = get_lock_parent(entry); 2321 depth--; 2322 } while (entry && (depth >= 0)); 2323 } 2324 2325 static void 2326 print_irq_lock_scenario(struct lock_list *safe_entry, 2327 struct lock_list *unsafe_entry, 2328 struct lock_class *prev_class, 2329 struct lock_class *next_class) 2330 { 2331 struct lock_class *safe_class = safe_entry->class; 2332 struct lock_class *unsafe_class = unsafe_entry->class; 2333 struct lock_class *middle_class = prev_class; 2334 2335 if (middle_class == safe_class) 2336 middle_class = next_class; 2337 2338 /* 2339 * A direct locking problem where unsafe_class lock is taken 2340 * directly by safe_class lock, then all we need to show 2341 * is the deadlock scenario, as it is obvious that the 2342 * unsafe lock is taken under the safe lock. 2343 * 2344 * But if there is a chain instead, where the safe lock takes 2345 * an intermediate lock (middle_class) where this lock is 2346 * not the same as the safe lock, then the lock chain is 2347 * used to describe the problem. Otherwise we would need 2348 * to show a different CPU case for each link in the chain 2349 * from the safe_class lock to the unsafe_class lock. 2350 */ 2351 if (middle_class != unsafe_class) { 2352 printk("Chain exists of:\n "); 2353 __print_lock_name(safe_class); 2354 printk(KERN_CONT " --> "); 2355 __print_lock_name(middle_class); 2356 printk(KERN_CONT " --> "); 2357 __print_lock_name(unsafe_class); 2358 printk(KERN_CONT "\n\n"); 2359 } 2360 2361 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2362 printk(" CPU0 CPU1\n"); 2363 printk(" ---- ----\n"); 2364 printk(" lock("); 2365 __print_lock_name(unsafe_class); 2366 printk(KERN_CONT ");\n"); 2367 printk(" local_irq_disable();\n"); 2368 printk(" lock("); 2369 __print_lock_name(safe_class); 2370 printk(KERN_CONT ");\n"); 2371 printk(" lock("); 2372 __print_lock_name(middle_class); 2373 printk(KERN_CONT ");\n"); 2374 printk(" <Interrupt>\n"); 2375 printk(" lock("); 2376 __print_lock_name(safe_class); 2377 printk(KERN_CONT ");\n"); 2378 printk("\n *** DEADLOCK ***\n\n"); 2379 } 2380 2381 static void 2382 print_bad_irq_dependency(struct task_struct *curr, 2383 struct lock_list *prev_root, 2384 struct lock_list *next_root, 2385 struct lock_list *backwards_entry, 2386 struct lock_list *forwards_entry, 2387 struct held_lock *prev, 2388 struct held_lock *next, 2389 enum lock_usage_bit bit1, 2390 enum lock_usage_bit bit2, 2391 const char *irqclass) 2392 { 2393 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2394 return; 2395 2396 pr_warn("\n"); 2397 pr_warn("=====================================================\n"); 2398 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2399 irqclass, irqclass); 2400 print_kernel_ident(); 2401 pr_warn("-----------------------------------------------------\n"); 2402 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2403 curr->comm, task_pid_nr(curr), 2404 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2405 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2406 lockdep_hardirqs_enabled(), 2407 curr->softirqs_enabled); 2408 print_lock(next); 2409 2410 pr_warn("\nand this task is already holding:\n"); 2411 print_lock(prev); 2412 pr_warn("which would create a new lock dependency:\n"); 2413 print_lock_name(hlock_class(prev)); 2414 pr_cont(" ->"); 2415 print_lock_name(hlock_class(next)); 2416 pr_cont("\n"); 2417 2418 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2419 irqclass); 2420 print_lock_name(backwards_entry->class); 2421 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2422 2423 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2424 2425 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2426 print_lock_name(forwards_entry->class); 2427 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2428 pr_warn("..."); 2429 2430 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2431 2432 pr_warn("\nother info that might help us debug this:\n\n"); 2433 print_irq_lock_scenario(backwards_entry, forwards_entry, 2434 hlock_class(prev), hlock_class(next)); 2435 2436 lockdep_print_held_locks(curr); 2437 2438 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2439 prev_root->trace = save_trace(); 2440 if (!prev_root->trace) 2441 return; 2442 print_shortest_lock_dependencies(backwards_entry, prev_root); 2443 2444 pr_warn("\nthe dependencies between the lock to be acquired"); 2445 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2446 next_root->trace = save_trace(); 2447 if (!next_root->trace) 2448 return; 2449 print_shortest_lock_dependencies(forwards_entry, next_root); 2450 2451 pr_warn("\nstack backtrace:\n"); 2452 dump_stack(); 2453 } 2454 2455 static const char *state_names[] = { 2456 #define LOCKDEP_STATE(__STATE) \ 2457 __stringify(__STATE), 2458 #include "lockdep_states.h" 2459 #undef LOCKDEP_STATE 2460 }; 2461 2462 static const char *state_rnames[] = { 2463 #define LOCKDEP_STATE(__STATE) \ 2464 __stringify(__STATE)"-READ", 2465 #include "lockdep_states.h" 2466 #undef LOCKDEP_STATE 2467 }; 2468 2469 static inline const char *state_name(enum lock_usage_bit bit) 2470 { 2471 if (bit & LOCK_USAGE_READ_MASK) 2472 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2473 else 2474 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2475 } 2476 2477 /* 2478 * The bit number is encoded like: 2479 * 2480 * bit0: 0 exclusive, 1 read lock 2481 * bit1: 0 used in irq, 1 irq enabled 2482 * bit2-n: state 2483 */ 2484 static int exclusive_bit(int new_bit) 2485 { 2486 int state = new_bit & LOCK_USAGE_STATE_MASK; 2487 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2488 2489 /* 2490 * keep state, bit flip the direction and strip read. 2491 */ 2492 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2493 } 2494 2495 /* 2496 * Observe that when given a bitmask where each bitnr is encoded as above, a 2497 * right shift of the mask transforms the individual bitnrs as -1 and 2498 * conversely, a left shift transforms into +1 for the individual bitnrs. 2499 * 2500 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2501 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2502 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2503 * 2504 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2505 * 2506 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2507 * all bits set) and recompose with bitnr1 flipped. 2508 */ 2509 static unsigned long invert_dir_mask(unsigned long mask) 2510 { 2511 unsigned long excl = 0; 2512 2513 /* Invert dir */ 2514 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2515 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2516 2517 return excl; 2518 } 2519 2520 /* 2521 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2522 * usage may cause deadlock too, for example: 2523 * 2524 * P1 P2 2525 * <irq disabled> 2526 * write_lock(l1); <irq enabled> 2527 * read_lock(l2); 2528 * write_lock(l2); 2529 * <in irq> 2530 * read_lock(l1); 2531 * 2532 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2533 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2534 * deadlock. 2535 * 2536 * In fact, all of the following cases may cause deadlocks: 2537 * 2538 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2539 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2540 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2541 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2542 * 2543 * As a result, to calculate the "exclusive mask", first we invert the 2544 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2545 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2546 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2547 */ 2548 static unsigned long exclusive_mask(unsigned long mask) 2549 { 2550 unsigned long excl = invert_dir_mask(mask); 2551 2552 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2553 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2554 2555 return excl; 2556 } 2557 2558 /* 2559 * Retrieve the _possible_ original mask to which @mask is 2560 * exclusive. Ie: this is the opposite of exclusive_mask(). 2561 * Note that 2 possible original bits can match an exclusive 2562 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2563 * cleared. So both are returned for each exclusive bit. 2564 */ 2565 static unsigned long original_mask(unsigned long mask) 2566 { 2567 unsigned long excl = invert_dir_mask(mask); 2568 2569 /* Include read in existing usages */ 2570 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2571 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2572 2573 return excl; 2574 } 2575 2576 /* 2577 * Find the first pair of bit match between an original 2578 * usage mask and an exclusive usage mask. 2579 */ 2580 static int find_exclusive_match(unsigned long mask, 2581 unsigned long excl_mask, 2582 enum lock_usage_bit *bitp, 2583 enum lock_usage_bit *excl_bitp) 2584 { 2585 int bit, excl, excl_read; 2586 2587 for_each_set_bit(bit, &mask, LOCK_USED) { 2588 /* 2589 * exclusive_bit() strips the read bit, however, 2590 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2591 * to search excl | LOCK_USAGE_READ_MASK as well. 2592 */ 2593 excl = exclusive_bit(bit); 2594 excl_read = excl | LOCK_USAGE_READ_MASK; 2595 if (excl_mask & lock_flag(excl)) { 2596 *bitp = bit; 2597 *excl_bitp = excl; 2598 return 0; 2599 } else if (excl_mask & lock_flag(excl_read)) { 2600 *bitp = bit; 2601 *excl_bitp = excl_read; 2602 return 0; 2603 } 2604 } 2605 return -1; 2606 } 2607 2608 /* 2609 * Prove that the new dependency does not connect a hardirq-safe(-read) 2610 * lock with a hardirq-unsafe lock - to achieve this we search 2611 * the backwards-subgraph starting at <prev>, and the 2612 * forwards-subgraph starting at <next>: 2613 */ 2614 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2615 struct held_lock *next) 2616 { 2617 unsigned long usage_mask = 0, forward_mask, backward_mask; 2618 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2619 struct lock_list *target_entry1; 2620 struct lock_list *target_entry; 2621 struct lock_list this, that; 2622 enum bfs_result ret; 2623 2624 /* 2625 * Step 1: gather all hard/soft IRQs usages backward in an 2626 * accumulated usage mask. 2627 */ 2628 bfs_init_rootb(&this, prev); 2629 2630 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL); 2631 if (bfs_error(ret)) { 2632 print_bfs_bug(ret); 2633 return 0; 2634 } 2635 2636 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2637 if (!usage_mask) 2638 return 1; 2639 2640 /* 2641 * Step 2: find exclusive uses forward that match the previous 2642 * backward accumulated mask. 2643 */ 2644 forward_mask = exclusive_mask(usage_mask); 2645 2646 bfs_init_root(&that, next); 2647 2648 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2649 if (bfs_error(ret)) { 2650 print_bfs_bug(ret); 2651 return 0; 2652 } 2653 if (ret == BFS_RNOMATCH) 2654 return 1; 2655 2656 /* 2657 * Step 3: we found a bad match! Now retrieve a lock from the backward 2658 * list whose usage mask matches the exclusive usage mask from the 2659 * lock found on the forward list. 2660 */ 2661 backward_mask = original_mask(target_entry1->class->usage_mask); 2662 2663 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2664 if (bfs_error(ret)) { 2665 print_bfs_bug(ret); 2666 return 0; 2667 } 2668 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2669 return 1; 2670 2671 /* 2672 * Step 4: narrow down to a pair of incompatible usage bits 2673 * and report it. 2674 */ 2675 ret = find_exclusive_match(target_entry->class->usage_mask, 2676 target_entry1->class->usage_mask, 2677 &backward_bit, &forward_bit); 2678 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2679 return 1; 2680 2681 print_bad_irq_dependency(curr, &this, &that, 2682 target_entry, target_entry1, 2683 prev, next, 2684 backward_bit, forward_bit, 2685 state_name(backward_bit)); 2686 2687 return 0; 2688 } 2689 2690 #else 2691 2692 static inline int check_irq_usage(struct task_struct *curr, 2693 struct held_lock *prev, struct held_lock *next) 2694 { 2695 return 1; 2696 } 2697 #endif /* CONFIG_TRACE_IRQFLAGS */ 2698 2699 static void inc_chains(int irq_context) 2700 { 2701 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2702 nr_hardirq_chains++; 2703 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2704 nr_softirq_chains++; 2705 else 2706 nr_process_chains++; 2707 } 2708 2709 static void dec_chains(int irq_context) 2710 { 2711 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2712 nr_hardirq_chains--; 2713 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2714 nr_softirq_chains--; 2715 else 2716 nr_process_chains--; 2717 } 2718 2719 static void 2720 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2721 { 2722 struct lock_class *next = hlock_class(nxt); 2723 struct lock_class *prev = hlock_class(prv); 2724 2725 printk(" Possible unsafe locking scenario:\n\n"); 2726 printk(" CPU0\n"); 2727 printk(" ----\n"); 2728 printk(" lock("); 2729 __print_lock_name(prev); 2730 printk(KERN_CONT ");\n"); 2731 printk(" lock("); 2732 __print_lock_name(next); 2733 printk(KERN_CONT ");\n"); 2734 printk("\n *** DEADLOCK ***\n\n"); 2735 printk(" May be due to missing lock nesting notation\n\n"); 2736 } 2737 2738 static void 2739 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2740 struct held_lock *next) 2741 { 2742 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2743 return; 2744 2745 pr_warn("\n"); 2746 pr_warn("============================================\n"); 2747 pr_warn("WARNING: possible recursive locking detected\n"); 2748 print_kernel_ident(); 2749 pr_warn("--------------------------------------------\n"); 2750 pr_warn("%s/%d is trying to acquire lock:\n", 2751 curr->comm, task_pid_nr(curr)); 2752 print_lock(next); 2753 pr_warn("\nbut task is already holding lock:\n"); 2754 print_lock(prev); 2755 2756 pr_warn("\nother info that might help us debug this:\n"); 2757 print_deadlock_scenario(next, prev); 2758 lockdep_print_held_locks(curr); 2759 2760 pr_warn("\nstack backtrace:\n"); 2761 dump_stack(); 2762 } 2763 2764 /* 2765 * Check whether we are holding such a class already. 2766 * 2767 * (Note that this has to be done separately, because the graph cannot 2768 * detect such classes of deadlocks.) 2769 * 2770 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 2771 * lock class is held but nest_lock is also held, i.e. we rely on the 2772 * nest_lock to avoid the deadlock. 2773 */ 2774 static int 2775 check_deadlock(struct task_struct *curr, struct held_lock *next) 2776 { 2777 struct held_lock *prev; 2778 struct held_lock *nest = NULL; 2779 int i; 2780 2781 for (i = 0; i < curr->lockdep_depth; i++) { 2782 prev = curr->held_locks + i; 2783 2784 if (prev->instance == next->nest_lock) 2785 nest = prev; 2786 2787 if (hlock_class(prev) != hlock_class(next)) 2788 continue; 2789 2790 /* 2791 * Allow read-after-read recursion of the same 2792 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2793 */ 2794 if ((next->read == 2) && prev->read) 2795 continue; 2796 2797 /* 2798 * We're holding the nest_lock, which serializes this lock's 2799 * nesting behaviour. 2800 */ 2801 if (nest) 2802 return 2; 2803 2804 print_deadlock_bug(curr, prev, next); 2805 return 0; 2806 } 2807 return 1; 2808 } 2809 2810 /* 2811 * There was a chain-cache miss, and we are about to add a new dependency 2812 * to a previous lock. We validate the following rules: 2813 * 2814 * - would the adding of the <prev> -> <next> dependency create a 2815 * circular dependency in the graph? [== circular deadlock] 2816 * 2817 * - does the new prev->next dependency connect any hardirq-safe lock 2818 * (in the full backwards-subgraph starting at <prev>) with any 2819 * hardirq-unsafe lock (in the full forwards-subgraph starting at 2820 * <next>)? [== illegal lock inversion with hardirq contexts] 2821 * 2822 * - does the new prev->next dependency connect any softirq-safe lock 2823 * (in the full backwards-subgraph starting at <prev>) with any 2824 * softirq-unsafe lock (in the full forwards-subgraph starting at 2825 * <next>)? [== illegal lock inversion with softirq contexts] 2826 * 2827 * any of these scenarios could lead to a deadlock. 2828 * 2829 * Then if all the validations pass, we add the forwards and backwards 2830 * dependency. 2831 */ 2832 static int 2833 check_prev_add(struct task_struct *curr, struct held_lock *prev, 2834 struct held_lock *next, u16 distance, 2835 struct lock_trace **const trace) 2836 { 2837 struct lock_list *entry; 2838 enum bfs_result ret; 2839 2840 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 2841 /* 2842 * The warning statements below may trigger a use-after-free 2843 * of the class name. It is better to trigger a use-after free 2844 * and to have the class name most of the time instead of not 2845 * having the class name available. 2846 */ 2847 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 2848 "Detected use-after-free of lock class %px/%s\n", 2849 hlock_class(prev), 2850 hlock_class(prev)->name); 2851 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 2852 "Detected use-after-free of lock class %px/%s\n", 2853 hlock_class(next), 2854 hlock_class(next)->name); 2855 return 2; 2856 } 2857 2858 /* 2859 * Prove that the new <prev> -> <next> dependency would not 2860 * create a circular dependency in the graph. (We do this by 2861 * a breadth-first search into the graph starting at <next>, 2862 * and check whether we can reach <prev>.) 2863 * 2864 * The search is limited by the size of the circular queue (i.e., 2865 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 2866 * in the graph whose neighbours are to be checked. 2867 */ 2868 ret = check_noncircular(next, prev, trace); 2869 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 2870 return 0; 2871 2872 if (!check_irq_usage(curr, prev, next)) 2873 return 0; 2874 2875 /* 2876 * Is the <prev> -> <next> dependency already present? 2877 * 2878 * (this may occur even though this is a new chain: consider 2879 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 2880 * chains - the second one will be new, but L1 already has 2881 * L2 added to its dependency list, due to the first chain.) 2882 */ 2883 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 2884 if (entry->class == hlock_class(next)) { 2885 if (distance == 1) 2886 entry->distance = 1; 2887 entry->dep |= calc_dep(prev, next); 2888 2889 /* 2890 * Also, update the reverse dependency in @next's 2891 * ->locks_before list. 2892 * 2893 * Here we reuse @entry as the cursor, which is fine 2894 * because we won't go to the next iteration of the 2895 * outer loop: 2896 * 2897 * For normal cases, we return in the inner loop. 2898 * 2899 * If we fail to return, we have inconsistency, i.e. 2900 * <prev>::locks_after contains <next> while 2901 * <next>::locks_before doesn't contain <prev>. In 2902 * that case, we return after the inner and indicate 2903 * something is wrong. 2904 */ 2905 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 2906 if (entry->class == hlock_class(prev)) { 2907 if (distance == 1) 2908 entry->distance = 1; 2909 entry->dep |= calc_depb(prev, next); 2910 return 1; 2911 } 2912 } 2913 2914 /* <prev> is not found in <next>::locks_before */ 2915 return 0; 2916 } 2917 } 2918 2919 #ifdef CONFIG_LOCKDEP_SMALL 2920 /* 2921 * Is the <prev> -> <next> link redundant? 2922 */ 2923 ret = check_redundant(prev, next); 2924 if (bfs_error(ret)) 2925 return 0; 2926 else if (ret == BFS_RMATCH) 2927 return 2; 2928 #endif 2929 2930 if (!*trace) { 2931 *trace = save_trace(); 2932 if (!*trace) 2933 return 0; 2934 } 2935 2936 /* 2937 * Ok, all validations passed, add the new lock 2938 * to the previous lock's dependency list: 2939 */ 2940 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 2941 &hlock_class(prev)->locks_after, 2942 next->acquire_ip, distance, 2943 calc_dep(prev, next), 2944 *trace); 2945 2946 if (!ret) 2947 return 0; 2948 2949 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 2950 &hlock_class(next)->locks_before, 2951 next->acquire_ip, distance, 2952 calc_depb(prev, next), 2953 *trace); 2954 if (!ret) 2955 return 0; 2956 2957 return 2; 2958 } 2959 2960 /* 2961 * Add the dependency to all directly-previous locks that are 'relevant'. 2962 * The ones that are relevant are (in increasing distance from curr): 2963 * all consecutive trylock entries and the final non-trylock entry - or 2964 * the end of this context's lock-chain - whichever comes first. 2965 */ 2966 static int 2967 check_prevs_add(struct task_struct *curr, struct held_lock *next) 2968 { 2969 struct lock_trace *trace = NULL; 2970 int depth = curr->lockdep_depth; 2971 struct held_lock *hlock; 2972 2973 /* 2974 * Debugging checks. 2975 * 2976 * Depth must not be zero for a non-head lock: 2977 */ 2978 if (!depth) 2979 goto out_bug; 2980 /* 2981 * At least two relevant locks must exist for this 2982 * to be a head: 2983 */ 2984 if (curr->held_locks[depth].irq_context != 2985 curr->held_locks[depth-1].irq_context) 2986 goto out_bug; 2987 2988 for (;;) { 2989 u16 distance = curr->lockdep_depth - depth + 1; 2990 hlock = curr->held_locks + depth - 1; 2991 2992 if (hlock->check) { 2993 int ret = check_prev_add(curr, hlock, next, distance, &trace); 2994 if (!ret) 2995 return 0; 2996 2997 /* 2998 * Stop after the first non-trylock entry, 2999 * as non-trylock entries have added their 3000 * own direct dependencies already, so this 3001 * lock is connected to them indirectly: 3002 */ 3003 if (!hlock->trylock) 3004 break; 3005 } 3006 3007 depth--; 3008 /* 3009 * End of lock-stack? 3010 */ 3011 if (!depth) 3012 break; 3013 /* 3014 * Stop the search if we cross into another context: 3015 */ 3016 if (curr->held_locks[depth].irq_context != 3017 curr->held_locks[depth-1].irq_context) 3018 break; 3019 } 3020 return 1; 3021 out_bug: 3022 if (!debug_locks_off_graph_unlock()) 3023 return 0; 3024 3025 /* 3026 * Clearly we all shouldn't be here, but since we made it we 3027 * can reliable say we messed up our state. See the above two 3028 * gotos for reasons why we could possibly end up here. 3029 */ 3030 WARN_ON(1); 3031 3032 return 0; 3033 } 3034 3035 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3036 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3037 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3038 unsigned long nr_zapped_lock_chains; 3039 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3040 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3041 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3042 3043 /* 3044 * The first 2 chain_hlocks entries in the chain block in the bucket 3045 * list contains the following meta data: 3046 * 3047 * entry[0]: 3048 * Bit 15 - always set to 1 (it is not a class index) 3049 * Bits 0-14 - upper 15 bits of the next block index 3050 * entry[1] - lower 16 bits of next block index 3051 * 3052 * A next block index of all 1 bits means it is the end of the list. 3053 * 3054 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3055 * the chain block size: 3056 * 3057 * entry[2] - upper 16 bits of the chain block size 3058 * entry[3] - lower 16 bits of the chain block size 3059 */ 3060 #define MAX_CHAIN_BUCKETS 16 3061 #define CHAIN_BLK_FLAG (1U << 15) 3062 #define CHAIN_BLK_LIST_END 0xFFFFU 3063 3064 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3065 3066 static inline int size_to_bucket(int size) 3067 { 3068 if (size > MAX_CHAIN_BUCKETS) 3069 return 0; 3070 3071 return size - 1; 3072 } 3073 3074 /* 3075 * Iterate all the chain blocks in a bucket. 3076 */ 3077 #define for_each_chain_block(bucket, prev, curr) \ 3078 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3079 (curr) >= 0; \ 3080 (prev) = (curr), (curr) = chain_block_next(curr)) 3081 3082 /* 3083 * next block or -1 3084 */ 3085 static inline int chain_block_next(int offset) 3086 { 3087 int next = chain_hlocks[offset]; 3088 3089 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3090 3091 if (next == CHAIN_BLK_LIST_END) 3092 return -1; 3093 3094 next &= ~CHAIN_BLK_FLAG; 3095 next <<= 16; 3096 next |= chain_hlocks[offset + 1]; 3097 3098 return next; 3099 } 3100 3101 /* 3102 * bucket-0 only 3103 */ 3104 static inline int chain_block_size(int offset) 3105 { 3106 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3107 } 3108 3109 static inline void init_chain_block(int offset, int next, int bucket, int size) 3110 { 3111 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3112 chain_hlocks[offset + 1] = (u16)next; 3113 3114 if (size && !bucket) { 3115 chain_hlocks[offset + 2] = size >> 16; 3116 chain_hlocks[offset + 3] = (u16)size; 3117 } 3118 } 3119 3120 static inline void add_chain_block(int offset, int size) 3121 { 3122 int bucket = size_to_bucket(size); 3123 int next = chain_block_buckets[bucket]; 3124 int prev, curr; 3125 3126 if (unlikely(size < 2)) { 3127 /* 3128 * We can't store single entries on the freelist. Leak them. 3129 * 3130 * One possible way out would be to uniquely mark them, other 3131 * than with CHAIN_BLK_FLAG, such that we can recover them when 3132 * the block before it is re-added. 3133 */ 3134 if (size) 3135 nr_lost_chain_hlocks++; 3136 return; 3137 } 3138 3139 nr_free_chain_hlocks += size; 3140 if (!bucket) { 3141 nr_large_chain_blocks++; 3142 3143 /* 3144 * Variable sized, sort large to small. 3145 */ 3146 for_each_chain_block(0, prev, curr) { 3147 if (size >= chain_block_size(curr)) 3148 break; 3149 } 3150 init_chain_block(offset, curr, 0, size); 3151 if (prev < 0) 3152 chain_block_buckets[0] = offset; 3153 else 3154 init_chain_block(prev, offset, 0, 0); 3155 return; 3156 } 3157 /* 3158 * Fixed size, add to head. 3159 */ 3160 init_chain_block(offset, next, bucket, size); 3161 chain_block_buckets[bucket] = offset; 3162 } 3163 3164 /* 3165 * Only the first block in the list can be deleted. 3166 * 3167 * For the variable size bucket[0], the first block (the largest one) is 3168 * returned, broken up and put back into the pool. So if a chain block of 3169 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3170 * queued up after the primordial chain block and never be used until the 3171 * hlock entries in the primordial chain block is almost used up. That 3172 * causes fragmentation and reduce allocation efficiency. That can be 3173 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3174 */ 3175 static inline void del_chain_block(int bucket, int size, int next) 3176 { 3177 nr_free_chain_hlocks -= size; 3178 chain_block_buckets[bucket] = next; 3179 3180 if (!bucket) 3181 nr_large_chain_blocks--; 3182 } 3183 3184 static void init_chain_block_buckets(void) 3185 { 3186 int i; 3187 3188 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3189 chain_block_buckets[i] = -1; 3190 3191 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3192 } 3193 3194 /* 3195 * Return offset of a chain block of the right size or -1 if not found. 3196 * 3197 * Fairly simple worst-fit allocator with the addition of a number of size 3198 * specific free lists. 3199 */ 3200 static int alloc_chain_hlocks(int req) 3201 { 3202 int bucket, curr, size; 3203 3204 /* 3205 * We rely on the MSB to act as an escape bit to denote freelist 3206 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3207 */ 3208 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3209 3210 init_data_structures_once(); 3211 3212 if (nr_free_chain_hlocks < req) 3213 return -1; 3214 3215 /* 3216 * We require a minimum of 2 (u16) entries to encode a freelist 3217 * 'pointer'. 3218 */ 3219 req = max(req, 2); 3220 bucket = size_to_bucket(req); 3221 curr = chain_block_buckets[bucket]; 3222 3223 if (bucket) { 3224 if (curr >= 0) { 3225 del_chain_block(bucket, req, chain_block_next(curr)); 3226 return curr; 3227 } 3228 /* Try bucket 0 */ 3229 curr = chain_block_buckets[0]; 3230 } 3231 3232 /* 3233 * The variable sized freelist is sorted by size; the first entry is 3234 * the largest. Use it if it fits. 3235 */ 3236 if (curr >= 0) { 3237 size = chain_block_size(curr); 3238 if (likely(size >= req)) { 3239 del_chain_block(0, size, chain_block_next(curr)); 3240 add_chain_block(curr + req, size - req); 3241 return curr; 3242 } 3243 } 3244 3245 /* 3246 * Last resort, split a block in a larger sized bucket. 3247 */ 3248 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3249 bucket = size_to_bucket(size); 3250 curr = chain_block_buckets[bucket]; 3251 if (curr < 0) 3252 continue; 3253 3254 del_chain_block(bucket, size, chain_block_next(curr)); 3255 add_chain_block(curr + req, size - req); 3256 return curr; 3257 } 3258 3259 return -1; 3260 } 3261 3262 static inline void free_chain_hlocks(int base, int size) 3263 { 3264 add_chain_block(base, max(size, 2)); 3265 } 3266 3267 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3268 { 3269 u16 chain_hlock = chain_hlocks[chain->base + i]; 3270 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3271 3272 return lock_classes + class_idx - 1; 3273 } 3274 3275 /* 3276 * Returns the index of the first held_lock of the current chain 3277 */ 3278 static inline int get_first_held_lock(struct task_struct *curr, 3279 struct held_lock *hlock) 3280 { 3281 int i; 3282 struct held_lock *hlock_curr; 3283 3284 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3285 hlock_curr = curr->held_locks + i; 3286 if (hlock_curr->irq_context != hlock->irq_context) 3287 break; 3288 3289 } 3290 3291 return ++i; 3292 } 3293 3294 #ifdef CONFIG_DEBUG_LOCKDEP 3295 /* 3296 * Returns the next chain_key iteration 3297 */ 3298 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3299 { 3300 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3301 3302 printk(" hlock_id:%d -> chain_key:%016Lx", 3303 (unsigned int)hlock_id, 3304 (unsigned long long)new_chain_key); 3305 return new_chain_key; 3306 } 3307 3308 static void 3309 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3310 { 3311 struct held_lock *hlock; 3312 u64 chain_key = INITIAL_CHAIN_KEY; 3313 int depth = curr->lockdep_depth; 3314 int i = get_first_held_lock(curr, hlock_next); 3315 3316 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3317 hlock_next->irq_context); 3318 for (; i < depth; i++) { 3319 hlock = curr->held_locks + i; 3320 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3321 3322 print_lock(hlock); 3323 } 3324 3325 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3326 print_lock(hlock_next); 3327 } 3328 3329 static void print_chain_keys_chain(struct lock_chain *chain) 3330 { 3331 int i; 3332 u64 chain_key = INITIAL_CHAIN_KEY; 3333 u16 hlock_id; 3334 3335 printk("depth: %u\n", chain->depth); 3336 for (i = 0; i < chain->depth; i++) { 3337 hlock_id = chain_hlocks[chain->base + i]; 3338 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3339 3340 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1); 3341 printk("\n"); 3342 } 3343 } 3344 3345 static void print_collision(struct task_struct *curr, 3346 struct held_lock *hlock_next, 3347 struct lock_chain *chain) 3348 { 3349 pr_warn("\n"); 3350 pr_warn("============================\n"); 3351 pr_warn("WARNING: chain_key collision\n"); 3352 print_kernel_ident(); 3353 pr_warn("----------------------------\n"); 3354 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3355 pr_warn("Hash chain already cached but the contents don't match!\n"); 3356 3357 pr_warn("Held locks:"); 3358 print_chain_keys_held_locks(curr, hlock_next); 3359 3360 pr_warn("Locks in cached chain:"); 3361 print_chain_keys_chain(chain); 3362 3363 pr_warn("\nstack backtrace:\n"); 3364 dump_stack(); 3365 } 3366 #endif 3367 3368 /* 3369 * Checks whether the chain and the current held locks are consistent 3370 * in depth and also in content. If they are not it most likely means 3371 * that there was a collision during the calculation of the chain_key. 3372 * Returns: 0 not passed, 1 passed 3373 */ 3374 static int check_no_collision(struct task_struct *curr, 3375 struct held_lock *hlock, 3376 struct lock_chain *chain) 3377 { 3378 #ifdef CONFIG_DEBUG_LOCKDEP 3379 int i, j, id; 3380 3381 i = get_first_held_lock(curr, hlock); 3382 3383 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3384 print_collision(curr, hlock, chain); 3385 return 0; 3386 } 3387 3388 for (j = 0; j < chain->depth - 1; j++, i++) { 3389 id = hlock_id(&curr->held_locks[i]); 3390 3391 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3392 print_collision(curr, hlock, chain); 3393 return 0; 3394 } 3395 } 3396 #endif 3397 return 1; 3398 } 3399 3400 /* 3401 * Given an index that is >= -1, return the index of the next lock chain. 3402 * Return -2 if there is no next lock chain. 3403 */ 3404 long lockdep_next_lockchain(long i) 3405 { 3406 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3407 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3408 } 3409 3410 unsigned long lock_chain_count(void) 3411 { 3412 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3413 } 3414 3415 /* Must be called with the graph lock held. */ 3416 static struct lock_chain *alloc_lock_chain(void) 3417 { 3418 int idx = find_first_zero_bit(lock_chains_in_use, 3419 ARRAY_SIZE(lock_chains)); 3420 3421 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3422 return NULL; 3423 __set_bit(idx, lock_chains_in_use); 3424 return lock_chains + idx; 3425 } 3426 3427 /* 3428 * Adds a dependency chain into chain hashtable. And must be called with 3429 * graph_lock held. 3430 * 3431 * Return 0 if fail, and graph_lock is released. 3432 * Return 1 if succeed, with graph_lock held. 3433 */ 3434 static inline int add_chain_cache(struct task_struct *curr, 3435 struct held_lock *hlock, 3436 u64 chain_key) 3437 { 3438 struct hlist_head *hash_head = chainhashentry(chain_key); 3439 struct lock_chain *chain; 3440 int i, j; 3441 3442 /* 3443 * The caller must hold the graph lock, ensure we've got IRQs 3444 * disabled to make this an IRQ-safe lock.. for recursion reasons 3445 * lockdep won't complain about its own locking errors. 3446 */ 3447 if (lockdep_assert_locked()) 3448 return 0; 3449 3450 chain = alloc_lock_chain(); 3451 if (!chain) { 3452 if (!debug_locks_off_graph_unlock()) 3453 return 0; 3454 3455 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3456 dump_stack(); 3457 return 0; 3458 } 3459 chain->chain_key = chain_key; 3460 chain->irq_context = hlock->irq_context; 3461 i = get_first_held_lock(curr, hlock); 3462 chain->depth = curr->lockdep_depth + 1 - i; 3463 3464 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3465 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3466 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3467 3468 j = alloc_chain_hlocks(chain->depth); 3469 if (j < 0) { 3470 if (!debug_locks_off_graph_unlock()) 3471 return 0; 3472 3473 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3474 dump_stack(); 3475 return 0; 3476 } 3477 3478 chain->base = j; 3479 for (j = 0; j < chain->depth - 1; j++, i++) { 3480 int lock_id = hlock_id(curr->held_locks + i); 3481 3482 chain_hlocks[chain->base + j] = lock_id; 3483 } 3484 chain_hlocks[chain->base + j] = hlock_id(hlock); 3485 hlist_add_head_rcu(&chain->entry, hash_head); 3486 debug_atomic_inc(chain_lookup_misses); 3487 inc_chains(chain->irq_context); 3488 3489 return 1; 3490 } 3491 3492 /* 3493 * Look up a dependency chain. Must be called with either the graph lock or 3494 * the RCU read lock held. 3495 */ 3496 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3497 { 3498 struct hlist_head *hash_head = chainhashentry(chain_key); 3499 struct lock_chain *chain; 3500 3501 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3502 if (READ_ONCE(chain->chain_key) == chain_key) { 3503 debug_atomic_inc(chain_lookup_hits); 3504 return chain; 3505 } 3506 } 3507 return NULL; 3508 } 3509 3510 /* 3511 * If the key is not present yet in dependency chain cache then 3512 * add it and return 1 - in this case the new dependency chain is 3513 * validated. If the key is already hashed, return 0. 3514 * (On return with 1 graph_lock is held.) 3515 */ 3516 static inline int lookup_chain_cache_add(struct task_struct *curr, 3517 struct held_lock *hlock, 3518 u64 chain_key) 3519 { 3520 struct lock_class *class = hlock_class(hlock); 3521 struct lock_chain *chain = lookup_chain_cache(chain_key); 3522 3523 if (chain) { 3524 cache_hit: 3525 if (!check_no_collision(curr, hlock, chain)) 3526 return 0; 3527 3528 if (very_verbose(class)) { 3529 printk("\nhash chain already cached, key: " 3530 "%016Lx tail class: [%px] %s\n", 3531 (unsigned long long)chain_key, 3532 class->key, class->name); 3533 } 3534 3535 return 0; 3536 } 3537 3538 if (very_verbose(class)) { 3539 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3540 (unsigned long long)chain_key, class->key, class->name); 3541 } 3542 3543 if (!graph_lock()) 3544 return 0; 3545 3546 /* 3547 * We have to walk the chain again locked - to avoid duplicates: 3548 */ 3549 chain = lookup_chain_cache(chain_key); 3550 if (chain) { 3551 graph_unlock(); 3552 goto cache_hit; 3553 } 3554 3555 if (!add_chain_cache(curr, hlock, chain_key)) 3556 return 0; 3557 3558 return 1; 3559 } 3560 3561 static int validate_chain(struct task_struct *curr, 3562 struct held_lock *hlock, 3563 int chain_head, u64 chain_key) 3564 { 3565 /* 3566 * Trylock needs to maintain the stack of held locks, but it 3567 * does not add new dependencies, because trylock can be done 3568 * in any order. 3569 * 3570 * We look up the chain_key and do the O(N^2) check and update of 3571 * the dependencies only if this is a new dependency chain. 3572 * (If lookup_chain_cache_add() return with 1 it acquires 3573 * graph_lock for us) 3574 */ 3575 if (!hlock->trylock && hlock->check && 3576 lookup_chain_cache_add(curr, hlock, chain_key)) { 3577 /* 3578 * Check whether last held lock: 3579 * 3580 * - is irq-safe, if this lock is irq-unsafe 3581 * - is softirq-safe, if this lock is hardirq-unsafe 3582 * 3583 * And check whether the new lock's dependency graph 3584 * could lead back to the previous lock: 3585 * 3586 * - within the current held-lock stack 3587 * - across our accumulated lock dependency records 3588 * 3589 * any of these scenarios could lead to a deadlock. 3590 */ 3591 /* 3592 * The simple case: does the current hold the same lock 3593 * already? 3594 */ 3595 int ret = check_deadlock(curr, hlock); 3596 3597 if (!ret) 3598 return 0; 3599 /* 3600 * Add dependency only if this lock is not the head 3601 * of the chain, and if the new lock introduces no more 3602 * lock dependency (because we already hold a lock with the 3603 * same lock class) nor deadlock (because the nest_lock 3604 * serializes nesting locks), see the comments for 3605 * check_deadlock(). 3606 */ 3607 if (!chain_head && ret != 2) { 3608 if (!check_prevs_add(curr, hlock)) 3609 return 0; 3610 } 3611 3612 graph_unlock(); 3613 } else { 3614 /* after lookup_chain_cache_add(): */ 3615 if (unlikely(!debug_locks)) 3616 return 0; 3617 } 3618 3619 return 1; 3620 } 3621 #else 3622 static inline int validate_chain(struct task_struct *curr, 3623 struct held_lock *hlock, 3624 int chain_head, u64 chain_key) 3625 { 3626 return 1; 3627 } 3628 3629 static void init_chain_block_buckets(void) { } 3630 #endif /* CONFIG_PROVE_LOCKING */ 3631 3632 /* 3633 * We are building curr_chain_key incrementally, so double-check 3634 * it from scratch, to make sure that it's done correctly: 3635 */ 3636 static void check_chain_key(struct task_struct *curr) 3637 { 3638 #ifdef CONFIG_DEBUG_LOCKDEP 3639 struct held_lock *hlock, *prev_hlock = NULL; 3640 unsigned int i; 3641 u64 chain_key = INITIAL_CHAIN_KEY; 3642 3643 for (i = 0; i < curr->lockdep_depth; i++) { 3644 hlock = curr->held_locks + i; 3645 if (chain_key != hlock->prev_chain_key) { 3646 debug_locks_off(); 3647 /* 3648 * We got mighty confused, our chain keys don't match 3649 * with what we expect, someone trample on our task state? 3650 */ 3651 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3652 curr->lockdep_depth, i, 3653 (unsigned long long)chain_key, 3654 (unsigned long long)hlock->prev_chain_key); 3655 return; 3656 } 3657 3658 /* 3659 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3660 * it registered lock class index? 3661 */ 3662 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3663 return; 3664 3665 if (prev_hlock && (prev_hlock->irq_context != 3666 hlock->irq_context)) 3667 chain_key = INITIAL_CHAIN_KEY; 3668 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3669 prev_hlock = hlock; 3670 } 3671 if (chain_key != curr->curr_chain_key) { 3672 debug_locks_off(); 3673 /* 3674 * More smoking hash instead of calculating it, damn see these 3675 * numbers float.. I bet that a pink elephant stepped on my memory. 3676 */ 3677 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3678 curr->lockdep_depth, i, 3679 (unsigned long long)chain_key, 3680 (unsigned long long)curr->curr_chain_key); 3681 } 3682 #endif 3683 } 3684 3685 #ifdef CONFIG_PROVE_LOCKING 3686 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3687 enum lock_usage_bit new_bit); 3688 3689 static void print_usage_bug_scenario(struct held_lock *lock) 3690 { 3691 struct lock_class *class = hlock_class(lock); 3692 3693 printk(" Possible unsafe locking scenario:\n\n"); 3694 printk(" CPU0\n"); 3695 printk(" ----\n"); 3696 printk(" lock("); 3697 __print_lock_name(class); 3698 printk(KERN_CONT ");\n"); 3699 printk(" <Interrupt>\n"); 3700 printk(" lock("); 3701 __print_lock_name(class); 3702 printk(KERN_CONT ");\n"); 3703 printk("\n *** DEADLOCK ***\n\n"); 3704 } 3705 3706 static void 3707 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3708 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3709 { 3710 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3711 return; 3712 3713 pr_warn("\n"); 3714 pr_warn("================================\n"); 3715 pr_warn("WARNING: inconsistent lock state\n"); 3716 print_kernel_ident(); 3717 pr_warn("--------------------------------\n"); 3718 3719 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3720 usage_str[prev_bit], usage_str[new_bit]); 3721 3722 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3723 curr->comm, task_pid_nr(curr), 3724 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3725 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3726 lockdep_hardirqs_enabled(), 3727 lockdep_softirqs_enabled(curr)); 3728 print_lock(this); 3729 3730 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3731 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3732 3733 print_irqtrace_events(curr); 3734 pr_warn("\nother info that might help us debug this:\n"); 3735 print_usage_bug_scenario(this); 3736 3737 lockdep_print_held_locks(curr); 3738 3739 pr_warn("\nstack backtrace:\n"); 3740 dump_stack(); 3741 } 3742 3743 /* 3744 * Print out an error if an invalid bit is set: 3745 */ 3746 static inline int 3747 valid_state(struct task_struct *curr, struct held_lock *this, 3748 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3749 { 3750 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3751 print_usage_bug(curr, this, bad_bit, new_bit); 3752 return 0; 3753 } 3754 return 1; 3755 } 3756 3757 3758 /* 3759 * print irq inversion bug: 3760 */ 3761 static void 3762 print_irq_inversion_bug(struct task_struct *curr, 3763 struct lock_list *root, struct lock_list *other, 3764 struct held_lock *this, int forwards, 3765 const char *irqclass) 3766 { 3767 struct lock_list *entry = other; 3768 struct lock_list *middle = NULL; 3769 int depth; 3770 3771 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3772 return; 3773 3774 pr_warn("\n"); 3775 pr_warn("========================================================\n"); 3776 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3777 print_kernel_ident(); 3778 pr_warn("--------------------------------------------------------\n"); 3779 pr_warn("%s/%d just changed the state of lock:\n", 3780 curr->comm, task_pid_nr(curr)); 3781 print_lock(this); 3782 if (forwards) 3783 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3784 else 3785 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3786 print_lock_name(other->class); 3787 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3788 3789 pr_warn("\nother info that might help us debug this:\n"); 3790 3791 /* Find a middle lock (if one exists) */ 3792 depth = get_lock_depth(other); 3793 do { 3794 if (depth == 0 && (entry != root)) { 3795 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3796 break; 3797 } 3798 middle = entry; 3799 entry = get_lock_parent(entry); 3800 depth--; 3801 } while (entry && entry != root && (depth >= 0)); 3802 if (forwards) 3803 print_irq_lock_scenario(root, other, 3804 middle ? middle->class : root->class, other->class); 3805 else 3806 print_irq_lock_scenario(other, root, 3807 middle ? middle->class : other->class, root->class); 3808 3809 lockdep_print_held_locks(curr); 3810 3811 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 3812 root->trace = save_trace(); 3813 if (!root->trace) 3814 return; 3815 print_shortest_lock_dependencies(other, root); 3816 3817 pr_warn("\nstack backtrace:\n"); 3818 dump_stack(); 3819 } 3820 3821 /* 3822 * Prove that in the forwards-direction subgraph starting at <this> 3823 * there is no lock matching <mask>: 3824 */ 3825 static int 3826 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 3827 enum lock_usage_bit bit) 3828 { 3829 enum bfs_result ret; 3830 struct lock_list root; 3831 struct lock_list *target_entry; 3832 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 3833 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 3834 3835 bfs_init_root(&root, this); 3836 ret = find_usage_forwards(&root, usage_mask, &target_entry); 3837 if (bfs_error(ret)) { 3838 print_bfs_bug(ret); 3839 return 0; 3840 } 3841 if (ret == BFS_RNOMATCH) 3842 return 1; 3843 3844 /* Check whether write or read usage is the match */ 3845 if (target_entry->class->usage_mask & lock_flag(bit)) { 3846 print_irq_inversion_bug(curr, &root, target_entry, 3847 this, 1, state_name(bit)); 3848 } else { 3849 print_irq_inversion_bug(curr, &root, target_entry, 3850 this, 1, state_name(read_bit)); 3851 } 3852 3853 return 0; 3854 } 3855 3856 /* 3857 * Prove that in the backwards-direction subgraph starting at <this> 3858 * there is no lock matching <mask>: 3859 */ 3860 static int 3861 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 3862 enum lock_usage_bit bit) 3863 { 3864 enum bfs_result ret; 3865 struct lock_list root; 3866 struct lock_list *target_entry; 3867 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 3868 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 3869 3870 bfs_init_rootb(&root, this); 3871 ret = find_usage_backwards(&root, usage_mask, &target_entry); 3872 if (bfs_error(ret)) { 3873 print_bfs_bug(ret); 3874 return 0; 3875 } 3876 if (ret == BFS_RNOMATCH) 3877 return 1; 3878 3879 /* Check whether write or read usage is the match */ 3880 if (target_entry->class->usage_mask & lock_flag(bit)) { 3881 print_irq_inversion_bug(curr, &root, target_entry, 3882 this, 0, state_name(bit)); 3883 } else { 3884 print_irq_inversion_bug(curr, &root, target_entry, 3885 this, 0, state_name(read_bit)); 3886 } 3887 3888 return 0; 3889 } 3890 3891 void print_irqtrace_events(struct task_struct *curr) 3892 { 3893 const struct irqtrace_events *trace = &curr->irqtrace; 3894 3895 printk("irq event stamp: %u\n", trace->irq_events); 3896 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 3897 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 3898 (void *)trace->hardirq_enable_ip); 3899 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 3900 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 3901 (void *)trace->hardirq_disable_ip); 3902 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 3903 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 3904 (void *)trace->softirq_enable_ip); 3905 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 3906 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 3907 (void *)trace->softirq_disable_ip); 3908 } 3909 3910 static int HARDIRQ_verbose(struct lock_class *class) 3911 { 3912 #if HARDIRQ_VERBOSE 3913 return class_filter(class); 3914 #endif 3915 return 0; 3916 } 3917 3918 static int SOFTIRQ_verbose(struct lock_class *class) 3919 { 3920 #if SOFTIRQ_VERBOSE 3921 return class_filter(class); 3922 #endif 3923 return 0; 3924 } 3925 3926 static int (*state_verbose_f[])(struct lock_class *class) = { 3927 #define LOCKDEP_STATE(__STATE) \ 3928 __STATE##_verbose, 3929 #include "lockdep_states.h" 3930 #undef LOCKDEP_STATE 3931 }; 3932 3933 static inline int state_verbose(enum lock_usage_bit bit, 3934 struct lock_class *class) 3935 { 3936 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 3937 } 3938 3939 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 3940 enum lock_usage_bit bit, const char *name); 3941 3942 static int 3943 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 3944 enum lock_usage_bit new_bit) 3945 { 3946 int excl_bit = exclusive_bit(new_bit); 3947 int read = new_bit & LOCK_USAGE_READ_MASK; 3948 int dir = new_bit & LOCK_USAGE_DIR_MASK; 3949 3950 /* 3951 * Validate that this particular lock does not have conflicting 3952 * usage states. 3953 */ 3954 if (!valid_state(curr, this, new_bit, excl_bit)) 3955 return 0; 3956 3957 /* 3958 * Check for read in write conflicts 3959 */ 3960 if (!read && !valid_state(curr, this, new_bit, 3961 excl_bit + LOCK_USAGE_READ_MASK)) 3962 return 0; 3963 3964 3965 /* 3966 * Validate that the lock dependencies don't have conflicting usage 3967 * states. 3968 */ 3969 if (dir) { 3970 /* 3971 * mark ENABLED has to look backwards -- to ensure no dependee 3972 * has USED_IN state, which, again, would allow recursion deadlocks. 3973 */ 3974 if (!check_usage_backwards(curr, this, excl_bit)) 3975 return 0; 3976 } else { 3977 /* 3978 * mark USED_IN has to look forwards -- to ensure no dependency 3979 * has ENABLED state, which would allow recursion deadlocks. 3980 */ 3981 if (!check_usage_forwards(curr, this, excl_bit)) 3982 return 0; 3983 } 3984 3985 if (state_verbose(new_bit, hlock_class(this))) 3986 return 2; 3987 3988 return 1; 3989 } 3990 3991 /* 3992 * Mark all held locks with a usage bit: 3993 */ 3994 static int 3995 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 3996 { 3997 struct held_lock *hlock; 3998 int i; 3999 4000 for (i = 0; i < curr->lockdep_depth; i++) { 4001 enum lock_usage_bit hlock_bit = base_bit; 4002 hlock = curr->held_locks + i; 4003 4004 if (hlock->read) 4005 hlock_bit += LOCK_USAGE_READ_MASK; 4006 4007 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4008 4009 if (!hlock->check) 4010 continue; 4011 4012 if (!mark_lock(curr, hlock, hlock_bit)) 4013 return 0; 4014 } 4015 4016 return 1; 4017 } 4018 4019 /* 4020 * Hardirqs will be enabled: 4021 */ 4022 static void __trace_hardirqs_on_caller(void) 4023 { 4024 struct task_struct *curr = current; 4025 4026 /* 4027 * We are going to turn hardirqs on, so set the 4028 * usage bit for all held locks: 4029 */ 4030 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4031 return; 4032 /* 4033 * If we have softirqs enabled, then set the usage 4034 * bit for all held locks. (disabled hardirqs prevented 4035 * this bit from being set before) 4036 */ 4037 if (curr->softirqs_enabled) 4038 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4039 } 4040 4041 /** 4042 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4043 * @ip: Caller address 4044 * 4045 * Invoked before a possible transition to RCU idle from exit to user or 4046 * guest mode. This ensures that all RCU operations are done before RCU 4047 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4048 * invoked to set the final state. 4049 */ 4050 void lockdep_hardirqs_on_prepare(unsigned long ip) 4051 { 4052 if (unlikely(!debug_locks)) 4053 return; 4054 4055 /* 4056 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4057 */ 4058 if (unlikely(in_nmi())) 4059 return; 4060 4061 if (unlikely(this_cpu_read(lockdep_recursion))) 4062 return; 4063 4064 if (unlikely(lockdep_hardirqs_enabled())) { 4065 /* 4066 * Neither irq nor preemption are disabled here 4067 * so this is racy by nature but losing one hit 4068 * in a stat is not a big deal. 4069 */ 4070 __debug_atomic_inc(redundant_hardirqs_on); 4071 return; 4072 } 4073 4074 /* 4075 * We're enabling irqs and according to our state above irqs weren't 4076 * already enabled, yet we find the hardware thinks they are in fact 4077 * enabled.. someone messed up their IRQ state tracing. 4078 */ 4079 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4080 return; 4081 4082 /* 4083 * See the fine text that goes along with this variable definition. 4084 */ 4085 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4086 return; 4087 4088 /* 4089 * Can't allow enabling interrupts while in an interrupt handler, 4090 * that's general bad form and such. Recursion, limited stack etc.. 4091 */ 4092 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4093 return; 4094 4095 current->hardirq_chain_key = current->curr_chain_key; 4096 4097 lockdep_recursion_inc(); 4098 __trace_hardirqs_on_caller(); 4099 lockdep_recursion_finish(); 4100 } 4101 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4102 4103 void noinstr lockdep_hardirqs_on(unsigned long ip) 4104 { 4105 struct irqtrace_events *trace = ¤t->irqtrace; 4106 4107 if (unlikely(!debug_locks)) 4108 return; 4109 4110 /* 4111 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4112 * tracking state and hardware state are out of sync. 4113 * 4114 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4115 * and not rely on hardware state like normal interrupts. 4116 */ 4117 if (unlikely(in_nmi())) { 4118 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4119 return; 4120 4121 /* 4122 * Skip: 4123 * - recursion check, because NMI can hit lockdep; 4124 * - hardware state check, because above; 4125 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4126 */ 4127 goto skip_checks; 4128 } 4129 4130 if (unlikely(this_cpu_read(lockdep_recursion))) 4131 return; 4132 4133 if (lockdep_hardirqs_enabled()) { 4134 /* 4135 * Neither irq nor preemption are disabled here 4136 * so this is racy by nature but losing one hit 4137 * in a stat is not a big deal. 4138 */ 4139 __debug_atomic_inc(redundant_hardirqs_on); 4140 return; 4141 } 4142 4143 /* 4144 * We're enabling irqs and according to our state above irqs weren't 4145 * already enabled, yet we find the hardware thinks they are in fact 4146 * enabled.. someone messed up their IRQ state tracing. 4147 */ 4148 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4149 return; 4150 4151 /* 4152 * Ensure the lock stack remained unchanged between 4153 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4154 */ 4155 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4156 current->curr_chain_key); 4157 4158 skip_checks: 4159 /* we'll do an OFF -> ON transition: */ 4160 __this_cpu_write(hardirqs_enabled, 1); 4161 trace->hardirq_enable_ip = ip; 4162 trace->hardirq_enable_event = ++trace->irq_events; 4163 debug_atomic_inc(hardirqs_on_events); 4164 } 4165 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4166 4167 /* 4168 * Hardirqs were disabled: 4169 */ 4170 void noinstr lockdep_hardirqs_off(unsigned long ip) 4171 { 4172 if (unlikely(!debug_locks)) 4173 return; 4174 4175 /* 4176 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4177 * they will restore the software state. This ensures the software 4178 * state is consistent inside NMIs as well. 4179 */ 4180 if (in_nmi()) { 4181 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4182 return; 4183 } else if (__this_cpu_read(lockdep_recursion)) 4184 return; 4185 4186 /* 4187 * So we're supposed to get called after you mask local IRQs, but for 4188 * some reason the hardware doesn't quite think you did a proper job. 4189 */ 4190 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4191 return; 4192 4193 if (lockdep_hardirqs_enabled()) { 4194 struct irqtrace_events *trace = ¤t->irqtrace; 4195 4196 /* 4197 * We have done an ON -> OFF transition: 4198 */ 4199 __this_cpu_write(hardirqs_enabled, 0); 4200 trace->hardirq_disable_ip = ip; 4201 trace->hardirq_disable_event = ++trace->irq_events; 4202 debug_atomic_inc(hardirqs_off_events); 4203 } else { 4204 debug_atomic_inc(redundant_hardirqs_off); 4205 } 4206 } 4207 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4208 4209 /* 4210 * Softirqs will be enabled: 4211 */ 4212 void lockdep_softirqs_on(unsigned long ip) 4213 { 4214 struct irqtrace_events *trace = ¤t->irqtrace; 4215 4216 if (unlikely(!lockdep_enabled())) 4217 return; 4218 4219 /* 4220 * We fancy IRQs being disabled here, see softirq.c, avoids 4221 * funny state and nesting things. 4222 */ 4223 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4224 return; 4225 4226 if (current->softirqs_enabled) { 4227 debug_atomic_inc(redundant_softirqs_on); 4228 return; 4229 } 4230 4231 lockdep_recursion_inc(); 4232 /* 4233 * We'll do an OFF -> ON transition: 4234 */ 4235 current->softirqs_enabled = 1; 4236 trace->softirq_enable_ip = ip; 4237 trace->softirq_enable_event = ++trace->irq_events; 4238 debug_atomic_inc(softirqs_on_events); 4239 /* 4240 * We are going to turn softirqs on, so set the 4241 * usage bit for all held locks, if hardirqs are 4242 * enabled too: 4243 */ 4244 if (lockdep_hardirqs_enabled()) 4245 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4246 lockdep_recursion_finish(); 4247 } 4248 4249 /* 4250 * Softirqs were disabled: 4251 */ 4252 void lockdep_softirqs_off(unsigned long ip) 4253 { 4254 if (unlikely(!lockdep_enabled())) 4255 return; 4256 4257 /* 4258 * We fancy IRQs being disabled here, see softirq.c 4259 */ 4260 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4261 return; 4262 4263 if (current->softirqs_enabled) { 4264 struct irqtrace_events *trace = ¤t->irqtrace; 4265 4266 /* 4267 * We have done an ON -> OFF transition: 4268 */ 4269 current->softirqs_enabled = 0; 4270 trace->softirq_disable_ip = ip; 4271 trace->softirq_disable_event = ++trace->irq_events; 4272 debug_atomic_inc(softirqs_off_events); 4273 /* 4274 * Whoops, we wanted softirqs off, so why aren't they? 4275 */ 4276 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4277 } else 4278 debug_atomic_inc(redundant_softirqs_off); 4279 } 4280 4281 static int 4282 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4283 { 4284 if (!check) 4285 goto lock_used; 4286 4287 /* 4288 * If non-trylock use in a hardirq or softirq context, then 4289 * mark the lock as used in these contexts: 4290 */ 4291 if (!hlock->trylock) { 4292 if (hlock->read) { 4293 if (lockdep_hardirq_context()) 4294 if (!mark_lock(curr, hlock, 4295 LOCK_USED_IN_HARDIRQ_READ)) 4296 return 0; 4297 if (curr->softirq_context) 4298 if (!mark_lock(curr, hlock, 4299 LOCK_USED_IN_SOFTIRQ_READ)) 4300 return 0; 4301 } else { 4302 if (lockdep_hardirq_context()) 4303 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4304 return 0; 4305 if (curr->softirq_context) 4306 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4307 return 0; 4308 } 4309 } 4310 if (!hlock->hardirqs_off) { 4311 if (hlock->read) { 4312 if (!mark_lock(curr, hlock, 4313 LOCK_ENABLED_HARDIRQ_READ)) 4314 return 0; 4315 if (curr->softirqs_enabled) 4316 if (!mark_lock(curr, hlock, 4317 LOCK_ENABLED_SOFTIRQ_READ)) 4318 return 0; 4319 } else { 4320 if (!mark_lock(curr, hlock, 4321 LOCK_ENABLED_HARDIRQ)) 4322 return 0; 4323 if (curr->softirqs_enabled) 4324 if (!mark_lock(curr, hlock, 4325 LOCK_ENABLED_SOFTIRQ)) 4326 return 0; 4327 } 4328 } 4329 4330 lock_used: 4331 /* mark it as used: */ 4332 if (!mark_lock(curr, hlock, LOCK_USED)) 4333 return 0; 4334 4335 return 1; 4336 } 4337 4338 static inline unsigned int task_irq_context(struct task_struct *task) 4339 { 4340 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4341 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4342 } 4343 4344 static int separate_irq_context(struct task_struct *curr, 4345 struct held_lock *hlock) 4346 { 4347 unsigned int depth = curr->lockdep_depth; 4348 4349 /* 4350 * Keep track of points where we cross into an interrupt context: 4351 */ 4352 if (depth) { 4353 struct held_lock *prev_hlock; 4354 4355 prev_hlock = curr->held_locks + depth-1; 4356 /* 4357 * If we cross into another context, reset the 4358 * hash key (this also prevents the checking and the 4359 * adding of the dependency to 'prev'): 4360 */ 4361 if (prev_hlock->irq_context != hlock->irq_context) 4362 return 1; 4363 } 4364 return 0; 4365 } 4366 4367 /* 4368 * Mark a lock with a usage bit, and validate the state transition: 4369 */ 4370 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4371 enum lock_usage_bit new_bit) 4372 { 4373 unsigned int new_mask, ret = 1; 4374 4375 if (new_bit >= LOCK_USAGE_STATES) { 4376 DEBUG_LOCKS_WARN_ON(1); 4377 return 0; 4378 } 4379 4380 if (new_bit == LOCK_USED && this->read) 4381 new_bit = LOCK_USED_READ; 4382 4383 new_mask = 1 << new_bit; 4384 4385 /* 4386 * If already set then do not dirty the cacheline, 4387 * nor do any checks: 4388 */ 4389 if (likely(hlock_class(this)->usage_mask & new_mask)) 4390 return 1; 4391 4392 if (!graph_lock()) 4393 return 0; 4394 /* 4395 * Make sure we didn't race: 4396 */ 4397 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4398 goto unlock; 4399 4400 if (!hlock_class(this)->usage_mask) 4401 debug_atomic_dec(nr_unused_locks); 4402 4403 hlock_class(this)->usage_mask |= new_mask; 4404 4405 if (new_bit < LOCK_TRACE_STATES) { 4406 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4407 return 0; 4408 } 4409 4410 if (new_bit < LOCK_USED) { 4411 ret = mark_lock_irq(curr, this, new_bit); 4412 if (!ret) 4413 return 0; 4414 } 4415 4416 unlock: 4417 graph_unlock(); 4418 4419 /* 4420 * We must printk outside of the graph_lock: 4421 */ 4422 if (ret == 2) { 4423 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4424 print_lock(this); 4425 print_irqtrace_events(curr); 4426 dump_stack(); 4427 } 4428 4429 return ret; 4430 } 4431 4432 static inline short task_wait_context(struct task_struct *curr) 4433 { 4434 /* 4435 * Set appropriate wait type for the context; for IRQs we have to take 4436 * into account force_irqthread as that is implied by PREEMPT_RT. 4437 */ 4438 if (lockdep_hardirq_context()) { 4439 /* 4440 * Check if force_irqthreads will run us threaded. 4441 */ 4442 if (curr->hardirq_threaded || curr->irq_config) 4443 return LD_WAIT_CONFIG; 4444 4445 return LD_WAIT_SPIN; 4446 } else if (curr->softirq_context) { 4447 /* 4448 * Softirqs are always threaded. 4449 */ 4450 return LD_WAIT_CONFIG; 4451 } 4452 4453 return LD_WAIT_MAX; 4454 } 4455 4456 static int 4457 print_lock_invalid_wait_context(struct task_struct *curr, 4458 struct held_lock *hlock) 4459 { 4460 short curr_inner; 4461 4462 if (!debug_locks_off()) 4463 return 0; 4464 if (debug_locks_silent) 4465 return 0; 4466 4467 pr_warn("\n"); 4468 pr_warn("=============================\n"); 4469 pr_warn("[ BUG: Invalid wait context ]\n"); 4470 print_kernel_ident(); 4471 pr_warn("-----------------------------\n"); 4472 4473 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4474 print_lock(hlock); 4475 4476 pr_warn("other info that might help us debug this:\n"); 4477 4478 curr_inner = task_wait_context(curr); 4479 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4480 4481 lockdep_print_held_locks(curr); 4482 4483 pr_warn("stack backtrace:\n"); 4484 dump_stack(); 4485 4486 return 0; 4487 } 4488 4489 /* 4490 * Verify the wait_type context. 4491 * 4492 * This check validates we takes locks in the right wait-type order; that is it 4493 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4494 * acquire spinlocks inside raw_spinlocks and the sort. 4495 * 4496 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4497 * can be taken from (pretty much) any context but also has constraints. 4498 * However when taken in a stricter environment the RCU lock does not loosen 4499 * the constraints. 4500 * 4501 * Therefore we must look for the strictest environment in the lock stack and 4502 * compare that to the lock we're trying to acquire. 4503 */ 4504 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4505 { 4506 short next_inner = hlock_class(next)->wait_type_inner; 4507 short next_outer = hlock_class(next)->wait_type_outer; 4508 short curr_inner; 4509 int depth; 4510 4511 if (!curr->lockdep_depth || !next_inner || next->trylock) 4512 return 0; 4513 4514 if (!next_outer) 4515 next_outer = next_inner; 4516 4517 /* 4518 * Find start of current irq_context.. 4519 */ 4520 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4521 struct held_lock *prev = curr->held_locks + depth; 4522 if (prev->irq_context != next->irq_context) 4523 break; 4524 } 4525 depth++; 4526 4527 curr_inner = task_wait_context(curr); 4528 4529 for (; depth < curr->lockdep_depth; depth++) { 4530 struct held_lock *prev = curr->held_locks + depth; 4531 short prev_inner = hlock_class(prev)->wait_type_inner; 4532 4533 if (prev_inner) { 4534 /* 4535 * We can have a bigger inner than a previous one 4536 * when outer is smaller than inner, as with RCU. 4537 * 4538 * Also due to trylocks. 4539 */ 4540 curr_inner = min(curr_inner, prev_inner); 4541 } 4542 } 4543 4544 if (next_outer > curr_inner) 4545 return print_lock_invalid_wait_context(curr, next); 4546 4547 return 0; 4548 } 4549 4550 #else /* CONFIG_PROVE_LOCKING */ 4551 4552 static inline int 4553 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4554 { 4555 return 1; 4556 } 4557 4558 static inline unsigned int task_irq_context(struct task_struct *task) 4559 { 4560 return 0; 4561 } 4562 4563 static inline int separate_irq_context(struct task_struct *curr, 4564 struct held_lock *hlock) 4565 { 4566 return 0; 4567 } 4568 4569 static inline int check_wait_context(struct task_struct *curr, 4570 struct held_lock *next) 4571 { 4572 return 0; 4573 } 4574 4575 #endif /* CONFIG_PROVE_LOCKING */ 4576 4577 /* 4578 * Initialize a lock instance's lock-class mapping info: 4579 */ 4580 void lockdep_init_map_waits(struct lockdep_map *lock, const char *name, 4581 struct lock_class_key *key, int subclass, 4582 short inner, short outer) 4583 { 4584 int i; 4585 4586 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4587 lock->class_cache[i] = NULL; 4588 4589 #ifdef CONFIG_LOCK_STAT 4590 lock->cpu = raw_smp_processor_id(); 4591 #endif 4592 4593 /* 4594 * Can't be having no nameless bastards around this place! 4595 */ 4596 if (DEBUG_LOCKS_WARN_ON(!name)) { 4597 lock->name = "NULL"; 4598 return; 4599 } 4600 4601 lock->name = name; 4602 4603 lock->wait_type_outer = outer; 4604 lock->wait_type_inner = inner; 4605 4606 /* 4607 * No key, no joy, we need to hash something. 4608 */ 4609 if (DEBUG_LOCKS_WARN_ON(!key)) 4610 return; 4611 /* 4612 * Sanity check, the lock-class key must either have been allocated 4613 * statically or must have been registered as a dynamic key. 4614 */ 4615 if (!static_obj(key) && !is_dynamic_key(key)) { 4616 if (debug_locks) 4617 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4618 DEBUG_LOCKS_WARN_ON(1); 4619 return; 4620 } 4621 lock->key = key; 4622 4623 if (unlikely(!debug_locks)) 4624 return; 4625 4626 if (subclass) { 4627 unsigned long flags; 4628 4629 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4630 return; 4631 4632 raw_local_irq_save(flags); 4633 lockdep_recursion_inc(); 4634 register_lock_class(lock, subclass, 1); 4635 lockdep_recursion_finish(); 4636 raw_local_irq_restore(flags); 4637 } 4638 } 4639 EXPORT_SYMBOL_GPL(lockdep_init_map_waits); 4640 4641 struct lock_class_key __lockdep_no_validate__; 4642 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4643 4644 static void 4645 print_lock_nested_lock_not_held(struct task_struct *curr, 4646 struct held_lock *hlock, 4647 unsigned long ip) 4648 { 4649 if (!debug_locks_off()) 4650 return; 4651 if (debug_locks_silent) 4652 return; 4653 4654 pr_warn("\n"); 4655 pr_warn("==================================\n"); 4656 pr_warn("WARNING: Nested lock was not taken\n"); 4657 print_kernel_ident(); 4658 pr_warn("----------------------------------\n"); 4659 4660 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4661 print_lock(hlock); 4662 4663 pr_warn("\nbut this task is not holding:\n"); 4664 pr_warn("%s\n", hlock->nest_lock->name); 4665 4666 pr_warn("\nstack backtrace:\n"); 4667 dump_stack(); 4668 4669 pr_warn("\nother info that might help us debug this:\n"); 4670 lockdep_print_held_locks(curr); 4671 4672 pr_warn("\nstack backtrace:\n"); 4673 dump_stack(); 4674 } 4675 4676 static int __lock_is_held(const struct lockdep_map *lock, int read); 4677 4678 /* 4679 * This gets called for every mutex_lock*()/spin_lock*() operation. 4680 * We maintain the dependency maps and validate the locking attempt: 4681 * 4682 * The callers must make sure that IRQs are disabled before calling it, 4683 * otherwise we could get an interrupt which would want to take locks, 4684 * which would end up in lockdep again. 4685 */ 4686 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4687 int trylock, int read, int check, int hardirqs_off, 4688 struct lockdep_map *nest_lock, unsigned long ip, 4689 int references, int pin_count) 4690 { 4691 struct task_struct *curr = current; 4692 struct lock_class *class = NULL; 4693 struct held_lock *hlock; 4694 unsigned int depth; 4695 int chain_head = 0; 4696 int class_idx; 4697 u64 chain_key; 4698 4699 if (unlikely(!debug_locks)) 4700 return 0; 4701 4702 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4703 check = 0; 4704 4705 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4706 class = lock->class_cache[subclass]; 4707 /* 4708 * Not cached? 4709 */ 4710 if (unlikely(!class)) { 4711 class = register_lock_class(lock, subclass, 0); 4712 if (!class) 4713 return 0; 4714 } 4715 4716 debug_class_ops_inc(class); 4717 4718 if (very_verbose(class)) { 4719 printk("\nacquire class [%px] %s", class->key, class->name); 4720 if (class->name_version > 1) 4721 printk(KERN_CONT "#%d", class->name_version); 4722 printk(KERN_CONT "\n"); 4723 dump_stack(); 4724 } 4725 4726 /* 4727 * Add the lock to the list of currently held locks. 4728 * (we dont increase the depth just yet, up until the 4729 * dependency checks are done) 4730 */ 4731 depth = curr->lockdep_depth; 4732 /* 4733 * Ran out of static storage for our per-task lock stack again have we? 4734 */ 4735 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4736 return 0; 4737 4738 class_idx = class - lock_classes; 4739 4740 if (depth) { /* we're holding locks */ 4741 hlock = curr->held_locks + depth - 1; 4742 if (hlock->class_idx == class_idx && nest_lock) { 4743 if (!references) 4744 references++; 4745 4746 if (!hlock->references) 4747 hlock->references++; 4748 4749 hlock->references += references; 4750 4751 /* Overflow */ 4752 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4753 return 0; 4754 4755 return 2; 4756 } 4757 } 4758 4759 hlock = curr->held_locks + depth; 4760 /* 4761 * Plain impossible, we just registered it and checked it weren't no 4762 * NULL like.. I bet this mushroom I ate was good! 4763 */ 4764 if (DEBUG_LOCKS_WARN_ON(!class)) 4765 return 0; 4766 hlock->class_idx = class_idx; 4767 hlock->acquire_ip = ip; 4768 hlock->instance = lock; 4769 hlock->nest_lock = nest_lock; 4770 hlock->irq_context = task_irq_context(curr); 4771 hlock->trylock = trylock; 4772 hlock->read = read; 4773 hlock->check = check; 4774 hlock->hardirqs_off = !!hardirqs_off; 4775 hlock->references = references; 4776 #ifdef CONFIG_LOCK_STAT 4777 hlock->waittime_stamp = 0; 4778 hlock->holdtime_stamp = lockstat_clock(); 4779 #endif 4780 hlock->pin_count = pin_count; 4781 4782 if (check_wait_context(curr, hlock)) 4783 return 0; 4784 4785 /* Initialize the lock usage bit */ 4786 if (!mark_usage(curr, hlock, check)) 4787 return 0; 4788 4789 /* 4790 * Calculate the chain hash: it's the combined hash of all the 4791 * lock keys along the dependency chain. We save the hash value 4792 * at every step so that we can get the current hash easily 4793 * after unlock. The chain hash is then used to cache dependency 4794 * results. 4795 * 4796 * The 'key ID' is what is the most compact key value to drive 4797 * the hash, not class->key. 4798 */ 4799 /* 4800 * Whoops, we did it again.. class_idx is invalid. 4801 */ 4802 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 4803 return 0; 4804 4805 chain_key = curr->curr_chain_key; 4806 if (!depth) { 4807 /* 4808 * How can we have a chain hash when we ain't got no keys?! 4809 */ 4810 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 4811 return 0; 4812 chain_head = 1; 4813 } 4814 4815 hlock->prev_chain_key = chain_key; 4816 if (separate_irq_context(curr, hlock)) { 4817 chain_key = INITIAL_CHAIN_KEY; 4818 chain_head = 1; 4819 } 4820 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 4821 4822 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 4823 print_lock_nested_lock_not_held(curr, hlock, ip); 4824 return 0; 4825 } 4826 4827 if (!debug_locks_silent) { 4828 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 4829 WARN_ON_ONCE(!hlock_class(hlock)->key); 4830 } 4831 4832 if (!validate_chain(curr, hlock, chain_head, chain_key)) 4833 return 0; 4834 4835 curr->curr_chain_key = chain_key; 4836 curr->lockdep_depth++; 4837 check_chain_key(curr); 4838 #ifdef CONFIG_DEBUG_LOCKDEP 4839 if (unlikely(!debug_locks)) 4840 return 0; 4841 #endif 4842 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 4843 debug_locks_off(); 4844 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 4845 printk(KERN_DEBUG "depth: %i max: %lu!\n", 4846 curr->lockdep_depth, MAX_LOCK_DEPTH); 4847 4848 lockdep_print_held_locks(current); 4849 debug_show_all_locks(); 4850 dump_stack(); 4851 4852 return 0; 4853 } 4854 4855 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 4856 max_lockdep_depth = curr->lockdep_depth; 4857 4858 return 1; 4859 } 4860 4861 static void print_unlock_imbalance_bug(struct task_struct *curr, 4862 struct lockdep_map *lock, 4863 unsigned long ip) 4864 { 4865 if (!debug_locks_off()) 4866 return; 4867 if (debug_locks_silent) 4868 return; 4869 4870 pr_warn("\n"); 4871 pr_warn("=====================================\n"); 4872 pr_warn("WARNING: bad unlock balance detected!\n"); 4873 print_kernel_ident(); 4874 pr_warn("-------------------------------------\n"); 4875 pr_warn("%s/%d is trying to release lock (", 4876 curr->comm, task_pid_nr(curr)); 4877 print_lockdep_cache(lock); 4878 pr_cont(") at:\n"); 4879 print_ip_sym(KERN_WARNING, ip); 4880 pr_warn("but there are no more locks to release!\n"); 4881 pr_warn("\nother info that might help us debug this:\n"); 4882 lockdep_print_held_locks(curr); 4883 4884 pr_warn("\nstack backtrace:\n"); 4885 dump_stack(); 4886 } 4887 4888 static noinstr int match_held_lock(const struct held_lock *hlock, 4889 const struct lockdep_map *lock) 4890 { 4891 if (hlock->instance == lock) 4892 return 1; 4893 4894 if (hlock->references) { 4895 const struct lock_class *class = lock->class_cache[0]; 4896 4897 if (!class) 4898 class = look_up_lock_class(lock, 0); 4899 4900 /* 4901 * If look_up_lock_class() failed to find a class, we're trying 4902 * to test if we hold a lock that has never yet been acquired. 4903 * Clearly if the lock hasn't been acquired _ever_, we're not 4904 * holding it either, so report failure. 4905 */ 4906 if (!class) 4907 return 0; 4908 4909 /* 4910 * References, but not a lock we're actually ref-counting? 4911 * State got messed up, follow the sites that change ->references 4912 * and try to make sense of it. 4913 */ 4914 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 4915 return 0; 4916 4917 if (hlock->class_idx == class - lock_classes) 4918 return 1; 4919 } 4920 4921 return 0; 4922 } 4923 4924 /* @depth must not be zero */ 4925 static struct held_lock *find_held_lock(struct task_struct *curr, 4926 struct lockdep_map *lock, 4927 unsigned int depth, int *idx) 4928 { 4929 struct held_lock *ret, *hlock, *prev_hlock; 4930 int i; 4931 4932 i = depth - 1; 4933 hlock = curr->held_locks + i; 4934 ret = hlock; 4935 if (match_held_lock(hlock, lock)) 4936 goto out; 4937 4938 ret = NULL; 4939 for (i--, prev_hlock = hlock--; 4940 i >= 0; 4941 i--, prev_hlock = hlock--) { 4942 /* 4943 * We must not cross into another context: 4944 */ 4945 if (prev_hlock->irq_context != hlock->irq_context) { 4946 ret = NULL; 4947 break; 4948 } 4949 if (match_held_lock(hlock, lock)) { 4950 ret = hlock; 4951 break; 4952 } 4953 } 4954 4955 out: 4956 *idx = i; 4957 return ret; 4958 } 4959 4960 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 4961 int idx, unsigned int *merged) 4962 { 4963 struct held_lock *hlock; 4964 int first_idx = idx; 4965 4966 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4967 return 0; 4968 4969 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 4970 switch (__lock_acquire(hlock->instance, 4971 hlock_class(hlock)->subclass, 4972 hlock->trylock, 4973 hlock->read, hlock->check, 4974 hlock->hardirqs_off, 4975 hlock->nest_lock, hlock->acquire_ip, 4976 hlock->references, hlock->pin_count)) { 4977 case 0: 4978 return 1; 4979 case 1: 4980 break; 4981 case 2: 4982 *merged += (idx == first_idx); 4983 break; 4984 default: 4985 WARN_ON(1); 4986 return 0; 4987 } 4988 } 4989 return 0; 4990 } 4991 4992 static int 4993 __lock_set_class(struct lockdep_map *lock, const char *name, 4994 struct lock_class_key *key, unsigned int subclass, 4995 unsigned long ip) 4996 { 4997 struct task_struct *curr = current; 4998 unsigned int depth, merged = 0; 4999 struct held_lock *hlock; 5000 struct lock_class *class; 5001 int i; 5002 5003 if (unlikely(!debug_locks)) 5004 return 0; 5005 5006 depth = curr->lockdep_depth; 5007 /* 5008 * This function is about (re)setting the class of a held lock, 5009 * yet we're not actually holding any locks. Naughty user! 5010 */ 5011 if (DEBUG_LOCKS_WARN_ON(!depth)) 5012 return 0; 5013 5014 hlock = find_held_lock(curr, lock, depth, &i); 5015 if (!hlock) { 5016 print_unlock_imbalance_bug(curr, lock, ip); 5017 return 0; 5018 } 5019 5020 lockdep_init_map_waits(lock, name, key, 0, 5021 lock->wait_type_inner, 5022 lock->wait_type_outer); 5023 class = register_lock_class(lock, subclass, 0); 5024 hlock->class_idx = class - lock_classes; 5025 5026 curr->lockdep_depth = i; 5027 curr->curr_chain_key = hlock->prev_chain_key; 5028 5029 if (reacquire_held_locks(curr, depth, i, &merged)) 5030 return 0; 5031 5032 /* 5033 * I took it apart and put it back together again, except now I have 5034 * these 'spare' parts.. where shall I put them. 5035 */ 5036 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5037 return 0; 5038 return 1; 5039 } 5040 5041 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5042 { 5043 struct task_struct *curr = current; 5044 unsigned int depth, merged = 0; 5045 struct held_lock *hlock; 5046 int i; 5047 5048 if (unlikely(!debug_locks)) 5049 return 0; 5050 5051 depth = curr->lockdep_depth; 5052 /* 5053 * This function is about (re)setting the class of a held lock, 5054 * yet we're not actually holding any locks. Naughty user! 5055 */ 5056 if (DEBUG_LOCKS_WARN_ON(!depth)) 5057 return 0; 5058 5059 hlock = find_held_lock(curr, lock, depth, &i); 5060 if (!hlock) { 5061 print_unlock_imbalance_bug(curr, lock, ip); 5062 return 0; 5063 } 5064 5065 curr->lockdep_depth = i; 5066 curr->curr_chain_key = hlock->prev_chain_key; 5067 5068 WARN(hlock->read, "downgrading a read lock"); 5069 hlock->read = 1; 5070 hlock->acquire_ip = ip; 5071 5072 if (reacquire_held_locks(curr, depth, i, &merged)) 5073 return 0; 5074 5075 /* Merging can't happen with unchanged classes.. */ 5076 if (DEBUG_LOCKS_WARN_ON(merged)) 5077 return 0; 5078 5079 /* 5080 * I took it apart and put it back together again, except now I have 5081 * these 'spare' parts.. where shall I put them. 5082 */ 5083 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5084 return 0; 5085 5086 return 1; 5087 } 5088 5089 /* 5090 * Remove the lock from the list of currently held locks - this gets 5091 * called on mutex_unlock()/spin_unlock*() (or on a failed 5092 * mutex_lock_interruptible()). 5093 */ 5094 static int 5095 __lock_release(struct lockdep_map *lock, unsigned long ip) 5096 { 5097 struct task_struct *curr = current; 5098 unsigned int depth, merged = 1; 5099 struct held_lock *hlock; 5100 int i; 5101 5102 if (unlikely(!debug_locks)) 5103 return 0; 5104 5105 depth = curr->lockdep_depth; 5106 /* 5107 * So we're all set to release this lock.. wait what lock? We don't 5108 * own any locks, you've been drinking again? 5109 */ 5110 if (depth <= 0) { 5111 print_unlock_imbalance_bug(curr, lock, ip); 5112 return 0; 5113 } 5114 5115 /* 5116 * Check whether the lock exists in the current stack 5117 * of held locks: 5118 */ 5119 hlock = find_held_lock(curr, lock, depth, &i); 5120 if (!hlock) { 5121 print_unlock_imbalance_bug(curr, lock, ip); 5122 return 0; 5123 } 5124 5125 if (hlock->instance == lock) 5126 lock_release_holdtime(hlock); 5127 5128 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5129 5130 if (hlock->references) { 5131 hlock->references--; 5132 if (hlock->references) { 5133 /* 5134 * We had, and after removing one, still have 5135 * references, the current lock stack is still 5136 * valid. We're done! 5137 */ 5138 return 1; 5139 } 5140 } 5141 5142 /* 5143 * We have the right lock to unlock, 'hlock' points to it. 5144 * Now we remove it from the stack, and add back the other 5145 * entries (if any), recalculating the hash along the way: 5146 */ 5147 5148 curr->lockdep_depth = i; 5149 curr->curr_chain_key = hlock->prev_chain_key; 5150 5151 /* 5152 * The most likely case is when the unlock is on the innermost 5153 * lock. In this case, we are done! 5154 */ 5155 if (i == depth-1) 5156 return 1; 5157 5158 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5159 return 0; 5160 5161 /* 5162 * We had N bottles of beer on the wall, we drank one, but now 5163 * there's not N-1 bottles of beer left on the wall... 5164 * Pouring two of the bottles together is acceptable. 5165 */ 5166 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5167 5168 /* 5169 * Since reacquire_held_locks() would have called check_chain_key() 5170 * indirectly via __lock_acquire(), we don't need to do it again 5171 * on return. 5172 */ 5173 return 0; 5174 } 5175 5176 static __always_inline 5177 int __lock_is_held(const struct lockdep_map *lock, int read) 5178 { 5179 struct task_struct *curr = current; 5180 int i; 5181 5182 for (i = 0; i < curr->lockdep_depth; i++) { 5183 struct held_lock *hlock = curr->held_locks + i; 5184 5185 if (match_held_lock(hlock, lock)) { 5186 if (read == -1 || hlock->read == read) 5187 return 1; 5188 5189 return 0; 5190 } 5191 } 5192 5193 return 0; 5194 } 5195 5196 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5197 { 5198 struct pin_cookie cookie = NIL_COOKIE; 5199 struct task_struct *curr = current; 5200 int i; 5201 5202 if (unlikely(!debug_locks)) 5203 return cookie; 5204 5205 for (i = 0; i < curr->lockdep_depth; i++) { 5206 struct held_lock *hlock = curr->held_locks + i; 5207 5208 if (match_held_lock(hlock, lock)) { 5209 /* 5210 * Grab 16bits of randomness; this is sufficient to not 5211 * be guessable and still allows some pin nesting in 5212 * our u32 pin_count. 5213 */ 5214 cookie.val = 1 + (prandom_u32() >> 16); 5215 hlock->pin_count += cookie.val; 5216 return cookie; 5217 } 5218 } 5219 5220 WARN(1, "pinning an unheld lock\n"); 5221 return cookie; 5222 } 5223 5224 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5225 { 5226 struct task_struct *curr = current; 5227 int i; 5228 5229 if (unlikely(!debug_locks)) 5230 return; 5231 5232 for (i = 0; i < curr->lockdep_depth; i++) { 5233 struct held_lock *hlock = curr->held_locks + i; 5234 5235 if (match_held_lock(hlock, lock)) { 5236 hlock->pin_count += cookie.val; 5237 return; 5238 } 5239 } 5240 5241 WARN(1, "pinning an unheld lock\n"); 5242 } 5243 5244 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5245 { 5246 struct task_struct *curr = current; 5247 int i; 5248 5249 if (unlikely(!debug_locks)) 5250 return; 5251 5252 for (i = 0; i < curr->lockdep_depth; i++) { 5253 struct held_lock *hlock = curr->held_locks + i; 5254 5255 if (match_held_lock(hlock, lock)) { 5256 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5257 return; 5258 5259 hlock->pin_count -= cookie.val; 5260 5261 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5262 hlock->pin_count = 0; 5263 5264 return; 5265 } 5266 } 5267 5268 WARN(1, "unpinning an unheld lock\n"); 5269 } 5270 5271 /* 5272 * Check whether we follow the irq-flags state precisely: 5273 */ 5274 static void check_flags(unsigned long flags) 5275 { 5276 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5277 if (!debug_locks) 5278 return; 5279 5280 if (irqs_disabled_flags(flags)) { 5281 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5282 printk("possible reason: unannotated irqs-off.\n"); 5283 } 5284 } else { 5285 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5286 printk("possible reason: unannotated irqs-on.\n"); 5287 } 5288 } 5289 5290 /* 5291 * We dont accurately track softirq state in e.g. 5292 * hardirq contexts (such as on 4KSTACKS), so only 5293 * check if not in hardirq contexts: 5294 */ 5295 if (!hardirq_count()) { 5296 if (softirq_count()) { 5297 /* like the above, but with softirqs */ 5298 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5299 } else { 5300 /* lick the above, does it taste good? */ 5301 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5302 } 5303 } 5304 5305 if (!debug_locks) 5306 print_irqtrace_events(current); 5307 #endif 5308 } 5309 5310 void lock_set_class(struct lockdep_map *lock, const char *name, 5311 struct lock_class_key *key, unsigned int subclass, 5312 unsigned long ip) 5313 { 5314 unsigned long flags; 5315 5316 if (unlikely(!lockdep_enabled())) 5317 return; 5318 5319 raw_local_irq_save(flags); 5320 lockdep_recursion_inc(); 5321 check_flags(flags); 5322 if (__lock_set_class(lock, name, key, subclass, ip)) 5323 check_chain_key(current); 5324 lockdep_recursion_finish(); 5325 raw_local_irq_restore(flags); 5326 } 5327 EXPORT_SYMBOL_GPL(lock_set_class); 5328 5329 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5330 { 5331 unsigned long flags; 5332 5333 if (unlikely(!lockdep_enabled())) 5334 return; 5335 5336 raw_local_irq_save(flags); 5337 lockdep_recursion_inc(); 5338 check_flags(flags); 5339 if (__lock_downgrade(lock, ip)) 5340 check_chain_key(current); 5341 lockdep_recursion_finish(); 5342 raw_local_irq_restore(flags); 5343 } 5344 EXPORT_SYMBOL_GPL(lock_downgrade); 5345 5346 /* NMI context !!! */ 5347 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5348 { 5349 #ifdef CONFIG_PROVE_LOCKING 5350 struct lock_class *class = look_up_lock_class(lock, subclass); 5351 unsigned long mask = LOCKF_USED; 5352 5353 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5354 if (!class) 5355 return; 5356 5357 /* 5358 * READ locks only conflict with USED, such that if we only ever use 5359 * READ locks, there is no deadlock possible -- RCU. 5360 */ 5361 if (!hlock->read) 5362 mask |= LOCKF_USED_READ; 5363 5364 if (!(class->usage_mask & mask)) 5365 return; 5366 5367 hlock->class_idx = class - lock_classes; 5368 5369 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5370 #endif 5371 } 5372 5373 static bool lockdep_nmi(void) 5374 { 5375 if (raw_cpu_read(lockdep_recursion)) 5376 return false; 5377 5378 if (!in_nmi()) 5379 return false; 5380 5381 return true; 5382 } 5383 5384 /* 5385 * read_lock() is recursive if: 5386 * 1. We force lockdep think this way in selftests or 5387 * 2. The implementation is not queued read/write lock or 5388 * 3. The locker is at an in_interrupt() context. 5389 */ 5390 bool read_lock_is_recursive(void) 5391 { 5392 return force_read_lock_recursive || 5393 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5394 in_interrupt(); 5395 } 5396 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5397 5398 /* 5399 * We are not always called with irqs disabled - do that here, 5400 * and also avoid lockdep recursion: 5401 */ 5402 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5403 int trylock, int read, int check, 5404 struct lockdep_map *nest_lock, unsigned long ip) 5405 { 5406 unsigned long flags; 5407 5408 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5409 5410 if (!debug_locks) 5411 return; 5412 5413 if (unlikely(!lockdep_enabled())) { 5414 /* XXX allow trylock from NMI ?!? */ 5415 if (lockdep_nmi() && !trylock) { 5416 struct held_lock hlock; 5417 5418 hlock.acquire_ip = ip; 5419 hlock.instance = lock; 5420 hlock.nest_lock = nest_lock; 5421 hlock.irq_context = 2; // XXX 5422 hlock.trylock = trylock; 5423 hlock.read = read; 5424 hlock.check = check; 5425 hlock.hardirqs_off = true; 5426 hlock.references = 0; 5427 5428 verify_lock_unused(lock, &hlock, subclass); 5429 } 5430 return; 5431 } 5432 5433 raw_local_irq_save(flags); 5434 check_flags(flags); 5435 5436 lockdep_recursion_inc(); 5437 __lock_acquire(lock, subclass, trylock, read, check, 5438 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5439 lockdep_recursion_finish(); 5440 raw_local_irq_restore(flags); 5441 } 5442 EXPORT_SYMBOL_GPL(lock_acquire); 5443 5444 void lock_release(struct lockdep_map *lock, unsigned long ip) 5445 { 5446 unsigned long flags; 5447 5448 trace_lock_release(lock, ip); 5449 5450 if (unlikely(!lockdep_enabled())) 5451 return; 5452 5453 raw_local_irq_save(flags); 5454 check_flags(flags); 5455 5456 lockdep_recursion_inc(); 5457 if (__lock_release(lock, ip)) 5458 check_chain_key(current); 5459 lockdep_recursion_finish(); 5460 raw_local_irq_restore(flags); 5461 } 5462 EXPORT_SYMBOL_GPL(lock_release); 5463 5464 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5465 { 5466 unsigned long flags; 5467 int ret = 0; 5468 5469 if (unlikely(!lockdep_enabled())) 5470 return 1; /* avoid false negative lockdep_assert_held() */ 5471 5472 raw_local_irq_save(flags); 5473 check_flags(flags); 5474 5475 lockdep_recursion_inc(); 5476 ret = __lock_is_held(lock, read); 5477 lockdep_recursion_finish(); 5478 raw_local_irq_restore(flags); 5479 5480 return ret; 5481 } 5482 EXPORT_SYMBOL_GPL(lock_is_held_type); 5483 NOKPROBE_SYMBOL(lock_is_held_type); 5484 5485 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5486 { 5487 struct pin_cookie cookie = NIL_COOKIE; 5488 unsigned long flags; 5489 5490 if (unlikely(!lockdep_enabled())) 5491 return cookie; 5492 5493 raw_local_irq_save(flags); 5494 check_flags(flags); 5495 5496 lockdep_recursion_inc(); 5497 cookie = __lock_pin_lock(lock); 5498 lockdep_recursion_finish(); 5499 raw_local_irq_restore(flags); 5500 5501 return cookie; 5502 } 5503 EXPORT_SYMBOL_GPL(lock_pin_lock); 5504 5505 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5506 { 5507 unsigned long flags; 5508 5509 if (unlikely(!lockdep_enabled())) 5510 return; 5511 5512 raw_local_irq_save(flags); 5513 check_flags(flags); 5514 5515 lockdep_recursion_inc(); 5516 __lock_repin_lock(lock, cookie); 5517 lockdep_recursion_finish(); 5518 raw_local_irq_restore(flags); 5519 } 5520 EXPORT_SYMBOL_GPL(lock_repin_lock); 5521 5522 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5523 { 5524 unsigned long flags; 5525 5526 if (unlikely(!lockdep_enabled())) 5527 return; 5528 5529 raw_local_irq_save(flags); 5530 check_flags(flags); 5531 5532 lockdep_recursion_inc(); 5533 __lock_unpin_lock(lock, cookie); 5534 lockdep_recursion_finish(); 5535 raw_local_irq_restore(flags); 5536 } 5537 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5538 5539 #ifdef CONFIG_LOCK_STAT 5540 static void print_lock_contention_bug(struct task_struct *curr, 5541 struct lockdep_map *lock, 5542 unsigned long ip) 5543 { 5544 if (!debug_locks_off()) 5545 return; 5546 if (debug_locks_silent) 5547 return; 5548 5549 pr_warn("\n"); 5550 pr_warn("=================================\n"); 5551 pr_warn("WARNING: bad contention detected!\n"); 5552 print_kernel_ident(); 5553 pr_warn("---------------------------------\n"); 5554 pr_warn("%s/%d is trying to contend lock (", 5555 curr->comm, task_pid_nr(curr)); 5556 print_lockdep_cache(lock); 5557 pr_cont(") at:\n"); 5558 print_ip_sym(KERN_WARNING, ip); 5559 pr_warn("but there are no locks held!\n"); 5560 pr_warn("\nother info that might help us debug this:\n"); 5561 lockdep_print_held_locks(curr); 5562 5563 pr_warn("\nstack backtrace:\n"); 5564 dump_stack(); 5565 } 5566 5567 static void 5568 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5569 { 5570 struct task_struct *curr = current; 5571 struct held_lock *hlock; 5572 struct lock_class_stats *stats; 5573 unsigned int depth; 5574 int i, contention_point, contending_point; 5575 5576 depth = curr->lockdep_depth; 5577 /* 5578 * Whee, we contended on this lock, except it seems we're not 5579 * actually trying to acquire anything much at all.. 5580 */ 5581 if (DEBUG_LOCKS_WARN_ON(!depth)) 5582 return; 5583 5584 hlock = find_held_lock(curr, lock, depth, &i); 5585 if (!hlock) { 5586 print_lock_contention_bug(curr, lock, ip); 5587 return; 5588 } 5589 5590 if (hlock->instance != lock) 5591 return; 5592 5593 hlock->waittime_stamp = lockstat_clock(); 5594 5595 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5596 contending_point = lock_point(hlock_class(hlock)->contending_point, 5597 lock->ip); 5598 5599 stats = get_lock_stats(hlock_class(hlock)); 5600 if (contention_point < LOCKSTAT_POINTS) 5601 stats->contention_point[contention_point]++; 5602 if (contending_point < LOCKSTAT_POINTS) 5603 stats->contending_point[contending_point]++; 5604 if (lock->cpu != smp_processor_id()) 5605 stats->bounces[bounce_contended + !!hlock->read]++; 5606 } 5607 5608 static void 5609 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5610 { 5611 struct task_struct *curr = current; 5612 struct held_lock *hlock; 5613 struct lock_class_stats *stats; 5614 unsigned int depth; 5615 u64 now, waittime = 0; 5616 int i, cpu; 5617 5618 depth = curr->lockdep_depth; 5619 /* 5620 * Yay, we acquired ownership of this lock we didn't try to 5621 * acquire, how the heck did that happen? 5622 */ 5623 if (DEBUG_LOCKS_WARN_ON(!depth)) 5624 return; 5625 5626 hlock = find_held_lock(curr, lock, depth, &i); 5627 if (!hlock) { 5628 print_lock_contention_bug(curr, lock, _RET_IP_); 5629 return; 5630 } 5631 5632 if (hlock->instance != lock) 5633 return; 5634 5635 cpu = smp_processor_id(); 5636 if (hlock->waittime_stamp) { 5637 now = lockstat_clock(); 5638 waittime = now - hlock->waittime_stamp; 5639 hlock->holdtime_stamp = now; 5640 } 5641 5642 stats = get_lock_stats(hlock_class(hlock)); 5643 if (waittime) { 5644 if (hlock->read) 5645 lock_time_inc(&stats->read_waittime, waittime); 5646 else 5647 lock_time_inc(&stats->write_waittime, waittime); 5648 } 5649 if (lock->cpu != cpu) 5650 stats->bounces[bounce_acquired + !!hlock->read]++; 5651 5652 lock->cpu = cpu; 5653 lock->ip = ip; 5654 } 5655 5656 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5657 { 5658 unsigned long flags; 5659 5660 trace_lock_acquired(lock, ip); 5661 5662 if (unlikely(!lock_stat || !lockdep_enabled())) 5663 return; 5664 5665 raw_local_irq_save(flags); 5666 check_flags(flags); 5667 lockdep_recursion_inc(); 5668 __lock_contended(lock, ip); 5669 lockdep_recursion_finish(); 5670 raw_local_irq_restore(flags); 5671 } 5672 EXPORT_SYMBOL_GPL(lock_contended); 5673 5674 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5675 { 5676 unsigned long flags; 5677 5678 trace_lock_contended(lock, ip); 5679 5680 if (unlikely(!lock_stat || !lockdep_enabled())) 5681 return; 5682 5683 raw_local_irq_save(flags); 5684 check_flags(flags); 5685 lockdep_recursion_inc(); 5686 __lock_acquired(lock, ip); 5687 lockdep_recursion_finish(); 5688 raw_local_irq_restore(flags); 5689 } 5690 EXPORT_SYMBOL_GPL(lock_acquired); 5691 #endif 5692 5693 /* 5694 * Used by the testsuite, sanitize the validator state 5695 * after a simulated failure: 5696 */ 5697 5698 void lockdep_reset(void) 5699 { 5700 unsigned long flags; 5701 int i; 5702 5703 raw_local_irq_save(flags); 5704 lockdep_init_task(current); 5705 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5706 nr_hardirq_chains = 0; 5707 nr_softirq_chains = 0; 5708 nr_process_chains = 0; 5709 debug_locks = 1; 5710 for (i = 0; i < CHAINHASH_SIZE; i++) 5711 INIT_HLIST_HEAD(chainhash_table + i); 5712 raw_local_irq_restore(flags); 5713 } 5714 5715 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5716 static void remove_class_from_lock_chain(struct pending_free *pf, 5717 struct lock_chain *chain, 5718 struct lock_class *class) 5719 { 5720 #ifdef CONFIG_PROVE_LOCKING 5721 int i; 5722 5723 for (i = chain->base; i < chain->base + chain->depth; i++) { 5724 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5725 continue; 5726 /* 5727 * Each lock class occurs at most once in a lock chain so once 5728 * we found a match we can break out of this loop. 5729 */ 5730 goto free_lock_chain; 5731 } 5732 /* Since the chain has not been modified, return. */ 5733 return; 5734 5735 free_lock_chain: 5736 free_chain_hlocks(chain->base, chain->depth); 5737 /* Overwrite the chain key for concurrent RCU readers. */ 5738 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5739 dec_chains(chain->irq_context); 5740 5741 /* 5742 * Note: calling hlist_del_rcu() from inside a 5743 * hlist_for_each_entry_rcu() loop is safe. 5744 */ 5745 hlist_del_rcu(&chain->entry); 5746 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5747 nr_zapped_lock_chains++; 5748 #endif 5749 } 5750 5751 /* Must be called with the graph lock held. */ 5752 static void remove_class_from_lock_chains(struct pending_free *pf, 5753 struct lock_class *class) 5754 { 5755 struct lock_chain *chain; 5756 struct hlist_head *head; 5757 int i; 5758 5759 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5760 head = chainhash_table + i; 5761 hlist_for_each_entry_rcu(chain, head, entry) { 5762 remove_class_from_lock_chain(pf, chain, class); 5763 } 5764 } 5765 } 5766 5767 /* 5768 * Remove all references to a lock class. The caller must hold the graph lock. 5769 */ 5770 static void zap_class(struct pending_free *pf, struct lock_class *class) 5771 { 5772 struct lock_list *entry; 5773 int i; 5774 5775 WARN_ON_ONCE(!class->key); 5776 5777 /* 5778 * Remove all dependencies this lock is 5779 * involved in: 5780 */ 5781 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5782 entry = list_entries + i; 5783 if (entry->class != class && entry->links_to != class) 5784 continue; 5785 __clear_bit(i, list_entries_in_use); 5786 nr_list_entries--; 5787 list_del_rcu(&entry->entry); 5788 } 5789 if (list_empty(&class->locks_after) && 5790 list_empty(&class->locks_before)) { 5791 list_move_tail(&class->lock_entry, &pf->zapped); 5792 hlist_del_rcu(&class->hash_entry); 5793 WRITE_ONCE(class->key, NULL); 5794 WRITE_ONCE(class->name, NULL); 5795 nr_lock_classes--; 5796 __clear_bit(class - lock_classes, lock_classes_in_use); 5797 } else { 5798 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 5799 class->name); 5800 } 5801 5802 remove_class_from_lock_chains(pf, class); 5803 nr_zapped_classes++; 5804 } 5805 5806 static void reinit_class(struct lock_class *class) 5807 { 5808 void *const p = class; 5809 const unsigned int offset = offsetof(struct lock_class, key); 5810 5811 WARN_ON_ONCE(!class->lock_entry.next); 5812 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5813 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5814 memset(p + offset, 0, sizeof(*class) - offset); 5815 WARN_ON_ONCE(!class->lock_entry.next); 5816 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5817 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5818 } 5819 5820 static inline int within(const void *addr, void *start, unsigned long size) 5821 { 5822 return addr >= start && addr < start + size; 5823 } 5824 5825 static bool inside_selftest(void) 5826 { 5827 return current == lockdep_selftest_task_struct; 5828 } 5829 5830 /* The caller must hold the graph lock. */ 5831 static struct pending_free *get_pending_free(void) 5832 { 5833 return delayed_free.pf + delayed_free.index; 5834 } 5835 5836 static void free_zapped_rcu(struct rcu_head *cb); 5837 5838 /* 5839 * Schedule an RCU callback if no RCU callback is pending. Must be called with 5840 * the graph lock held. 5841 */ 5842 static void call_rcu_zapped(struct pending_free *pf) 5843 { 5844 WARN_ON_ONCE(inside_selftest()); 5845 5846 if (list_empty(&pf->zapped)) 5847 return; 5848 5849 if (delayed_free.scheduled) 5850 return; 5851 5852 delayed_free.scheduled = true; 5853 5854 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 5855 delayed_free.index ^= 1; 5856 5857 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 5858 } 5859 5860 /* The caller must hold the graph lock. May be called from RCU context. */ 5861 static void __free_zapped_classes(struct pending_free *pf) 5862 { 5863 struct lock_class *class; 5864 5865 check_data_structures(); 5866 5867 list_for_each_entry(class, &pf->zapped, lock_entry) 5868 reinit_class(class); 5869 5870 list_splice_init(&pf->zapped, &free_lock_classes); 5871 5872 #ifdef CONFIG_PROVE_LOCKING 5873 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 5874 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 5875 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 5876 #endif 5877 } 5878 5879 static void free_zapped_rcu(struct rcu_head *ch) 5880 { 5881 struct pending_free *pf; 5882 unsigned long flags; 5883 5884 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 5885 return; 5886 5887 raw_local_irq_save(flags); 5888 lockdep_lock(); 5889 5890 /* closed head */ 5891 pf = delayed_free.pf + (delayed_free.index ^ 1); 5892 __free_zapped_classes(pf); 5893 delayed_free.scheduled = false; 5894 5895 /* 5896 * If there's anything on the open list, close and start a new callback. 5897 */ 5898 call_rcu_zapped(delayed_free.pf + delayed_free.index); 5899 5900 lockdep_unlock(); 5901 raw_local_irq_restore(flags); 5902 } 5903 5904 /* 5905 * Remove all lock classes from the class hash table and from the 5906 * all_lock_classes list whose key or name is in the address range [start, 5907 * start + size). Move these lock classes to the zapped_classes list. Must 5908 * be called with the graph lock held. 5909 */ 5910 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 5911 unsigned long size) 5912 { 5913 struct lock_class *class; 5914 struct hlist_head *head; 5915 int i; 5916 5917 /* Unhash all classes that were created by a module. */ 5918 for (i = 0; i < CLASSHASH_SIZE; i++) { 5919 head = classhash_table + i; 5920 hlist_for_each_entry_rcu(class, head, hash_entry) { 5921 if (!within(class->key, start, size) && 5922 !within(class->name, start, size)) 5923 continue; 5924 zap_class(pf, class); 5925 } 5926 } 5927 } 5928 5929 /* 5930 * Used in module.c to remove lock classes from memory that is going to be 5931 * freed; and possibly re-used by other modules. 5932 * 5933 * We will have had one synchronize_rcu() before getting here, so we're 5934 * guaranteed nobody will look up these exact classes -- they're properly dead 5935 * but still allocated. 5936 */ 5937 static void lockdep_free_key_range_reg(void *start, unsigned long size) 5938 { 5939 struct pending_free *pf; 5940 unsigned long flags; 5941 5942 init_data_structures_once(); 5943 5944 raw_local_irq_save(flags); 5945 lockdep_lock(); 5946 pf = get_pending_free(); 5947 __lockdep_free_key_range(pf, start, size); 5948 call_rcu_zapped(pf); 5949 lockdep_unlock(); 5950 raw_local_irq_restore(flags); 5951 5952 /* 5953 * Wait for any possible iterators from look_up_lock_class() to pass 5954 * before continuing to free the memory they refer to. 5955 */ 5956 synchronize_rcu(); 5957 } 5958 5959 /* 5960 * Free all lockdep keys in the range [start, start+size). Does not sleep. 5961 * Ignores debug_locks. Must only be used by the lockdep selftests. 5962 */ 5963 static void lockdep_free_key_range_imm(void *start, unsigned long size) 5964 { 5965 struct pending_free *pf = delayed_free.pf; 5966 unsigned long flags; 5967 5968 init_data_structures_once(); 5969 5970 raw_local_irq_save(flags); 5971 lockdep_lock(); 5972 __lockdep_free_key_range(pf, start, size); 5973 __free_zapped_classes(pf); 5974 lockdep_unlock(); 5975 raw_local_irq_restore(flags); 5976 } 5977 5978 void lockdep_free_key_range(void *start, unsigned long size) 5979 { 5980 init_data_structures_once(); 5981 5982 if (inside_selftest()) 5983 lockdep_free_key_range_imm(start, size); 5984 else 5985 lockdep_free_key_range_reg(start, size); 5986 } 5987 5988 /* 5989 * Check whether any element of the @lock->class_cache[] array refers to a 5990 * registered lock class. The caller must hold either the graph lock or the 5991 * RCU read lock. 5992 */ 5993 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 5994 { 5995 struct lock_class *class; 5996 struct hlist_head *head; 5997 int i, j; 5998 5999 for (i = 0; i < CLASSHASH_SIZE; i++) { 6000 head = classhash_table + i; 6001 hlist_for_each_entry_rcu(class, head, hash_entry) { 6002 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6003 if (lock->class_cache[j] == class) 6004 return true; 6005 } 6006 } 6007 return false; 6008 } 6009 6010 /* The caller must hold the graph lock. Does not sleep. */ 6011 static void __lockdep_reset_lock(struct pending_free *pf, 6012 struct lockdep_map *lock) 6013 { 6014 struct lock_class *class; 6015 int j; 6016 6017 /* 6018 * Remove all classes this lock might have: 6019 */ 6020 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6021 /* 6022 * If the class exists we look it up and zap it: 6023 */ 6024 class = look_up_lock_class(lock, j); 6025 if (class) 6026 zap_class(pf, class); 6027 } 6028 /* 6029 * Debug check: in the end all mapped classes should 6030 * be gone. 6031 */ 6032 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6033 debug_locks_off(); 6034 } 6035 6036 /* 6037 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6038 * released data structures from RCU context. 6039 */ 6040 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6041 { 6042 struct pending_free *pf; 6043 unsigned long flags; 6044 int locked; 6045 6046 raw_local_irq_save(flags); 6047 locked = graph_lock(); 6048 if (!locked) 6049 goto out_irq; 6050 6051 pf = get_pending_free(); 6052 __lockdep_reset_lock(pf, lock); 6053 call_rcu_zapped(pf); 6054 6055 graph_unlock(); 6056 out_irq: 6057 raw_local_irq_restore(flags); 6058 } 6059 6060 /* 6061 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6062 * lockdep selftests. 6063 */ 6064 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6065 { 6066 struct pending_free *pf = delayed_free.pf; 6067 unsigned long flags; 6068 6069 raw_local_irq_save(flags); 6070 lockdep_lock(); 6071 __lockdep_reset_lock(pf, lock); 6072 __free_zapped_classes(pf); 6073 lockdep_unlock(); 6074 raw_local_irq_restore(flags); 6075 } 6076 6077 void lockdep_reset_lock(struct lockdep_map *lock) 6078 { 6079 init_data_structures_once(); 6080 6081 if (inside_selftest()) 6082 lockdep_reset_lock_imm(lock); 6083 else 6084 lockdep_reset_lock_reg(lock); 6085 } 6086 6087 /* Unregister a dynamically allocated key. */ 6088 void lockdep_unregister_key(struct lock_class_key *key) 6089 { 6090 struct hlist_head *hash_head = keyhashentry(key); 6091 struct lock_class_key *k; 6092 struct pending_free *pf; 6093 unsigned long flags; 6094 bool found = false; 6095 6096 might_sleep(); 6097 6098 if (WARN_ON_ONCE(static_obj(key))) 6099 return; 6100 6101 raw_local_irq_save(flags); 6102 if (!graph_lock()) 6103 goto out_irq; 6104 6105 pf = get_pending_free(); 6106 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6107 if (k == key) { 6108 hlist_del_rcu(&k->hash_entry); 6109 found = true; 6110 break; 6111 } 6112 } 6113 WARN_ON_ONCE(!found); 6114 __lockdep_free_key_range(pf, key, 1); 6115 call_rcu_zapped(pf); 6116 graph_unlock(); 6117 out_irq: 6118 raw_local_irq_restore(flags); 6119 6120 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6121 synchronize_rcu(); 6122 } 6123 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6124 6125 void __init lockdep_init(void) 6126 { 6127 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6128 6129 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6130 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6131 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6132 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6133 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6134 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6135 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6136 6137 printk(" memory used by lock dependency info: %zu kB\n", 6138 (sizeof(lock_classes) + 6139 sizeof(lock_classes_in_use) + 6140 sizeof(classhash_table) + 6141 sizeof(list_entries) + 6142 sizeof(list_entries_in_use) + 6143 sizeof(chainhash_table) + 6144 sizeof(delayed_free) 6145 #ifdef CONFIG_PROVE_LOCKING 6146 + sizeof(lock_cq) 6147 + sizeof(lock_chains) 6148 + sizeof(lock_chains_in_use) 6149 + sizeof(chain_hlocks) 6150 #endif 6151 ) / 1024 6152 ); 6153 6154 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6155 printk(" memory used for stack traces: %zu kB\n", 6156 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6157 ); 6158 #endif 6159 6160 printk(" per task-struct memory footprint: %zu bytes\n", 6161 sizeof(((struct task_struct *)NULL)->held_locks)); 6162 } 6163 6164 static void 6165 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6166 const void *mem_to, struct held_lock *hlock) 6167 { 6168 if (!debug_locks_off()) 6169 return; 6170 if (debug_locks_silent) 6171 return; 6172 6173 pr_warn("\n"); 6174 pr_warn("=========================\n"); 6175 pr_warn("WARNING: held lock freed!\n"); 6176 print_kernel_ident(); 6177 pr_warn("-------------------------\n"); 6178 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6179 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6180 print_lock(hlock); 6181 lockdep_print_held_locks(curr); 6182 6183 pr_warn("\nstack backtrace:\n"); 6184 dump_stack(); 6185 } 6186 6187 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6188 const void* lock_from, unsigned long lock_len) 6189 { 6190 return lock_from + lock_len <= mem_from || 6191 mem_from + mem_len <= lock_from; 6192 } 6193 6194 /* 6195 * Called when kernel memory is freed (or unmapped), or if a lock 6196 * is destroyed or reinitialized - this code checks whether there is 6197 * any held lock in the memory range of <from> to <to>: 6198 */ 6199 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6200 { 6201 struct task_struct *curr = current; 6202 struct held_lock *hlock; 6203 unsigned long flags; 6204 int i; 6205 6206 if (unlikely(!debug_locks)) 6207 return; 6208 6209 raw_local_irq_save(flags); 6210 for (i = 0; i < curr->lockdep_depth; i++) { 6211 hlock = curr->held_locks + i; 6212 6213 if (not_in_range(mem_from, mem_len, hlock->instance, 6214 sizeof(*hlock->instance))) 6215 continue; 6216 6217 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6218 break; 6219 } 6220 raw_local_irq_restore(flags); 6221 } 6222 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6223 6224 static void print_held_locks_bug(void) 6225 { 6226 if (!debug_locks_off()) 6227 return; 6228 if (debug_locks_silent) 6229 return; 6230 6231 pr_warn("\n"); 6232 pr_warn("====================================\n"); 6233 pr_warn("WARNING: %s/%d still has locks held!\n", 6234 current->comm, task_pid_nr(current)); 6235 print_kernel_ident(); 6236 pr_warn("------------------------------------\n"); 6237 lockdep_print_held_locks(current); 6238 pr_warn("\nstack backtrace:\n"); 6239 dump_stack(); 6240 } 6241 6242 void debug_check_no_locks_held(void) 6243 { 6244 if (unlikely(current->lockdep_depth > 0)) 6245 print_held_locks_bug(); 6246 } 6247 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6248 6249 #ifdef __KERNEL__ 6250 void debug_show_all_locks(void) 6251 { 6252 struct task_struct *g, *p; 6253 6254 if (unlikely(!debug_locks)) { 6255 pr_warn("INFO: lockdep is turned off.\n"); 6256 return; 6257 } 6258 pr_warn("\nShowing all locks held in the system:\n"); 6259 6260 rcu_read_lock(); 6261 for_each_process_thread(g, p) { 6262 if (!p->lockdep_depth) 6263 continue; 6264 lockdep_print_held_locks(p); 6265 touch_nmi_watchdog(); 6266 touch_all_softlockup_watchdogs(); 6267 } 6268 rcu_read_unlock(); 6269 6270 pr_warn("\n"); 6271 pr_warn("=============================================\n\n"); 6272 } 6273 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6274 #endif 6275 6276 /* 6277 * Careful: only use this function if you are sure that 6278 * the task cannot run in parallel! 6279 */ 6280 void debug_show_held_locks(struct task_struct *task) 6281 { 6282 if (unlikely(!debug_locks)) { 6283 printk("INFO: lockdep is turned off.\n"); 6284 return; 6285 } 6286 lockdep_print_held_locks(task); 6287 } 6288 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6289 6290 asmlinkage __visible void lockdep_sys_exit(void) 6291 { 6292 struct task_struct *curr = current; 6293 6294 if (unlikely(curr->lockdep_depth)) { 6295 if (!debug_locks_off()) 6296 return; 6297 pr_warn("\n"); 6298 pr_warn("================================================\n"); 6299 pr_warn("WARNING: lock held when returning to user space!\n"); 6300 print_kernel_ident(); 6301 pr_warn("------------------------------------------------\n"); 6302 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6303 curr->comm, curr->pid); 6304 lockdep_print_held_locks(curr); 6305 } 6306 6307 /* 6308 * The lock history for each syscall should be independent. So wipe the 6309 * slate clean on return to userspace. 6310 */ 6311 lockdep_invariant_state(false); 6312 } 6313 6314 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6315 { 6316 struct task_struct *curr = current; 6317 6318 /* Note: the following can be executed concurrently, so be careful. */ 6319 pr_warn("\n"); 6320 pr_warn("=============================\n"); 6321 pr_warn("WARNING: suspicious RCU usage\n"); 6322 print_kernel_ident(); 6323 pr_warn("-----------------------------\n"); 6324 pr_warn("%s:%d %s!\n", file, line, s); 6325 pr_warn("\nother info that might help us debug this:\n\n"); 6326 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 6327 !rcu_lockdep_current_cpu_online() 6328 ? "RCU used illegally from offline CPU!\n" 6329 : "", 6330 rcu_scheduler_active, debug_locks); 6331 6332 /* 6333 * If a CPU is in the RCU-free window in idle (ie: in the section 6334 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 6335 * considers that CPU to be in an "extended quiescent state", 6336 * which means that RCU will be completely ignoring that CPU. 6337 * Therefore, rcu_read_lock() and friends have absolutely no 6338 * effect on a CPU running in that state. In other words, even if 6339 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6340 * delete data structures out from under it. RCU really has no 6341 * choice here: we need to keep an RCU-free window in idle where 6342 * the CPU may possibly enter into low power mode. This way we can 6343 * notice an extended quiescent state to other CPUs that started a grace 6344 * period. Otherwise we would delay any grace period as long as we run 6345 * in the idle task. 6346 * 6347 * So complain bitterly if someone does call rcu_read_lock(), 6348 * rcu_read_lock_bh() and so on from extended quiescent states. 6349 */ 6350 if (!rcu_is_watching()) 6351 pr_warn("RCU used illegally from extended quiescent state!\n"); 6352 6353 lockdep_print_held_locks(curr); 6354 pr_warn("\nstack backtrace:\n"); 6355 dump_stack(); 6356 } 6357 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6358