xref: /openbmc/linux/kernel/locking/lockdep.c (revision dfe94d40)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 
58 #include <asm/sections.h>
59 
60 #include "lockdep_internals.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81 
82 static inline bool lockdep_enabled(void)
83 {
84 	if (!debug_locks)
85 		return false;
86 
87 	if (this_cpu_read(lockdep_recursion))
88 		return false;
89 
90 	if (current->lockdep_recursion)
91 		return false;
92 
93 	return true;
94 }
95 
96 /*
97  * lockdep_lock: protects the lockdep graph, the hashes and the
98  *               class/list/hash allocators.
99  *
100  * This is one of the rare exceptions where it's justified
101  * to use a raw spinlock - we really dont want the spinlock
102  * code to recurse back into the lockdep code...
103  */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106 
107 static inline void lockdep_lock(void)
108 {
109 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110 
111 	__this_cpu_inc(lockdep_recursion);
112 	arch_spin_lock(&__lock);
113 	__owner = current;
114 }
115 
116 static inline void lockdep_unlock(void)
117 {
118 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
119 
120 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
121 		return;
122 
123 	__owner = NULL;
124 	arch_spin_unlock(&__lock);
125 	__this_cpu_dec(lockdep_recursion);
126 }
127 
128 static inline bool lockdep_assert_locked(void)
129 {
130 	return DEBUG_LOCKS_WARN_ON(__owner != current);
131 }
132 
133 static struct task_struct *lockdep_selftest_task_struct;
134 
135 
136 static int graph_lock(void)
137 {
138 	lockdep_lock();
139 	/*
140 	 * Make sure that if another CPU detected a bug while
141 	 * walking the graph we dont change it (while the other
142 	 * CPU is busy printing out stuff with the graph lock
143 	 * dropped already)
144 	 */
145 	if (!debug_locks) {
146 		lockdep_unlock();
147 		return 0;
148 	}
149 	return 1;
150 }
151 
152 static inline void graph_unlock(void)
153 {
154 	lockdep_unlock();
155 }
156 
157 /*
158  * Turn lock debugging off and return with 0 if it was off already,
159  * and also release the graph lock:
160  */
161 static inline int debug_locks_off_graph_unlock(void)
162 {
163 	int ret = debug_locks_off();
164 
165 	lockdep_unlock();
166 
167 	return ret;
168 }
169 
170 unsigned long nr_list_entries;
171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
173 
174 /*
175  * All data structures here are protected by the global debug_lock.
176  *
177  * nr_lock_classes is the number of elements of lock_classes[] that is
178  * in use.
179  */
180 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
181 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
183 unsigned long nr_lock_classes;
184 unsigned long nr_zapped_classes;
185 #ifndef CONFIG_DEBUG_LOCKDEP
186 static
187 #endif
188 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
189 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
190 
191 static inline struct lock_class *hlock_class(struct held_lock *hlock)
192 {
193 	unsigned int class_idx = hlock->class_idx;
194 
195 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
196 	barrier();
197 
198 	if (!test_bit(class_idx, lock_classes_in_use)) {
199 		/*
200 		 * Someone passed in garbage, we give up.
201 		 */
202 		DEBUG_LOCKS_WARN_ON(1);
203 		return NULL;
204 	}
205 
206 	/*
207 	 * At this point, if the passed hlock->class_idx is still garbage,
208 	 * we just have to live with it
209 	 */
210 	return lock_classes + class_idx;
211 }
212 
213 #ifdef CONFIG_LOCK_STAT
214 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
215 
216 static inline u64 lockstat_clock(void)
217 {
218 	return local_clock();
219 }
220 
221 static int lock_point(unsigned long points[], unsigned long ip)
222 {
223 	int i;
224 
225 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
226 		if (points[i] == 0) {
227 			points[i] = ip;
228 			break;
229 		}
230 		if (points[i] == ip)
231 			break;
232 	}
233 
234 	return i;
235 }
236 
237 static void lock_time_inc(struct lock_time *lt, u64 time)
238 {
239 	if (time > lt->max)
240 		lt->max = time;
241 
242 	if (time < lt->min || !lt->nr)
243 		lt->min = time;
244 
245 	lt->total += time;
246 	lt->nr++;
247 }
248 
249 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
250 {
251 	if (!src->nr)
252 		return;
253 
254 	if (src->max > dst->max)
255 		dst->max = src->max;
256 
257 	if (src->min < dst->min || !dst->nr)
258 		dst->min = src->min;
259 
260 	dst->total += src->total;
261 	dst->nr += src->nr;
262 }
263 
264 struct lock_class_stats lock_stats(struct lock_class *class)
265 {
266 	struct lock_class_stats stats;
267 	int cpu, i;
268 
269 	memset(&stats, 0, sizeof(struct lock_class_stats));
270 	for_each_possible_cpu(cpu) {
271 		struct lock_class_stats *pcs =
272 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
273 
274 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
275 			stats.contention_point[i] += pcs->contention_point[i];
276 
277 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
278 			stats.contending_point[i] += pcs->contending_point[i];
279 
280 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
281 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
282 
283 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
284 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
285 
286 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
287 			stats.bounces[i] += pcs->bounces[i];
288 	}
289 
290 	return stats;
291 }
292 
293 void clear_lock_stats(struct lock_class *class)
294 {
295 	int cpu;
296 
297 	for_each_possible_cpu(cpu) {
298 		struct lock_class_stats *cpu_stats =
299 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
300 
301 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
302 	}
303 	memset(class->contention_point, 0, sizeof(class->contention_point));
304 	memset(class->contending_point, 0, sizeof(class->contending_point));
305 }
306 
307 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
308 {
309 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
310 }
311 
312 static void lock_release_holdtime(struct held_lock *hlock)
313 {
314 	struct lock_class_stats *stats;
315 	u64 holdtime;
316 
317 	if (!lock_stat)
318 		return;
319 
320 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
321 
322 	stats = get_lock_stats(hlock_class(hlock));
323 	if (hlock->read)
324 		lock_time_inc(&stats->read_holdtime, holdtime);
325 	else
326 		lock_time_inc(&stats->write_holdtime, holdtime);
327 }
328 #else
329 static inline void lock_release_holdtime(struct held_lock *hlock)
330 {
331 }
332 #endif
333 
334 /*
335  * We keep a global list of all lock classes. The list is only accessed with
336  * the lockdep spinlock lock held. free_lock_classes is a list with free
337  * elements. These elements are linked together by the lock_entry member in
338  * struct lock_class.
339  */
340 LIST_HEAD(all_lock_classes);
341 static LIST_HEAD(free_lock_classes);
342 
343 /**
344  * struct pending_free - information about data structures about to be freed
345  * @zapped: Head of a list with struct lock_class elements.
346  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
347  *	are about to be freed.
348  */
349 struct pending_free {
350 	struct list_head zapped;
351 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
352 };
353 
354 /**
355  * struct delayed_free - data structures used for delayed freeing
356  *
357  * A data structure for delayed freeing of data structures that may be
358  * accessed by RCU readers at the time these were freed.
359  *
360  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
361  * @index:     Index of @pf to which freed data structures are added.
362  * @scheduled: Whether or not an RCU callback has been scheduled.
363  * @pf:        Array with information about data structures about to be freed.
364  */
365 static struct delayed_free {
366 	struct rcu_head		rcu_head;
367 	int			index;
368 	int			scheduled;
369 	struct pending_free	pf[2];
370 } delayed_free;
371 
372 /*
373  * The lockdep classes are in a hash-table as well, for fast lookup:
374  */
375 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
376 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
377 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
378 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
379 
380 static struct hlist_head classhash_table[CLASSHASH_SIZE];
381 
382 /*
383  * We put the lock dependency chains into a hash-table as well, to cache
384  * their existence:
385  */
386 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
387 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
388 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
389 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
390 
391 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
392 
393 /*
394  * the id of held_lock
395  */
396 static inline u16 hlock_id(struct held_lock *hlock)
397 {
398 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
399 
400 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
401 }
402 
403 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
404 {
405 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
406 }
407 
408 /*
409  * The hash key of the lock dependency chains is a hash itself too:
410  * it's a hash of all locks taken up to that lock, including that lock.
411  * It's a 64-bit hash, because it's important for the keys to be
412  * unique.
413  */
414 static inline u64 iterate_chain_key(u64 key, u32 idx)
415 {
416 	u32 k0 = key, k1 = key >> 32;
417 
418 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
419 
420 	return k0 | (u64)k1 << 32;
421 }
422 
423 void lockdep_init_task(struct task_struct *task)
424 {
425 	task->lockdep_depth = 0; /* no locks held yet */
426 	task->curr_chain_key = INITIAL_CHAIN_KEY;
427 	task->lockdep_recursion = 0;
428 }
429 
430 static __always_inline void lockdep_recursion_inc(void)
431 {
432 	__this_cpu_inc(lockdep_recursion);
433 }
434 
435 static __always_inline void lockdep_recursion_finish(void)
436 {
437 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
438 		__this_cpu_write(lockdep_recursion, 0);
439 }
440 
441 void lockdep_set_selftest_task(struct task_struct *task)
442 {
443 	lockdep_selftest_task_struct = task;
444 }
445 
446 /*
447  * Debugging switches:
448  */
449 
450 #define VERBOSE			0
451 #define VERY_VERBOSE		0
452 
453 #if VERBOSE
454 # define HARDIRQ_VERBOSE	1
455 # define SOFTIRQ_VERBOSE	1
456 #else
457 # define HARDIRQ_VERBOSE	0
458 # define SOFTIRQ_VERBOSE	0
459 #endif
460 
461 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
462 /*
463  * Quick filtering for interesting events:
464  */
465 static int class_filter(struct lock_class *class)
466 {
467 #if 0
468 	/* Example */
469 	if (class->name_version == 1 &&
470 			!strcmp(class->name, "lockname"))
471 		return 1;
472 	if (class->name_version == 1 &&
473 			!strcmp(class->name, "&struct->lockfield"))
474 		return 1;
475 #endif
476 	/* Filter everything else. 1 would be to allow everything else */
477 	return 0;
478 }
479 #endif
480 
481 static int verbose(struct lock_class *class)
482 {
483 #if VERBOSE
484 	return class_filter(class);
485 #endif
486 	return 0;
487 }
488 
489 static void print_lockdep_off(const char *bug_msg)
490 {
491 	printk(KERN_DEBUG "%s\n", bug_msg);
492 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
493 #ifdef CONFIG_LOCK_STAT
494 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
495 #endif
496 }
497 
498 unsigned long nr_stack_trace_entries;
499 
500 #ifdef CONFIG_PROVE_LOCKING
501 /**
502  * struct lock_trace - single stack backtrace
503  * @hash_entry:	Entry in a stack_trace_hash[] list.
504  * @hash:	jhash() of @entries.
505  * @nr_entries:	Number of entries in @entries.
506  * @entries:	Actual stack backtrace.
507  */
508 struct lock_trace {
509 	struct hlist_node	hash_entry;
510 	u32			hash;
511 	u32			nr_entries;
512 	unsigned long		entries[] __aligned(sizeof(unsigned long));
513 };
514 #define LOCK_TRACE_SIZE_IN_LONGS				\
515 	(sizeof(struct lock_trace) / sizeof(unsigned long))
516 /*
517  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
518  */
519 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
520 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
521 
522 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
523 {
524 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
525 		memcmp(t1->entries, t2->entries,
526 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
527 }
528 
529 static struct lock_trace *save_trace(void)
530 {
531 	struct lock_trace *trace, *t2;
532 	struct hlist_head *hash_head;
533 	u32 hash;
534 	int max_entries;
535 
536 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
537 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
538 
539 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
540 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
541 		LOCK_TRACE_SIZE_IN_LONGS;
542 
543 	if (max_entries <= 0) {
544 		if (!debug_locks_off_graph_unlock())
545 			return NULL;
546 
547 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
548 		dump_stack();
549 
550 		return NULL;
551 	}
552 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
553 
554 	hash = jhash(trace->entries, trace->nr_entries *
555 		     sizeof(trace->entries[0]), 0);
556 	trace->hash = hash;
557 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
558 	hlist_for_each_entry(t2, hash_head, hash_entry) {
559 		if (traces_identical(trace, t2))
560 			return t2;
561 	}
562 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
563 	hlist_add_head(&trace->hash_entry, hash_head);
564 
565 	return trace;
566 }
567 
568 /* Return the number of stack traces in the stack_trace[] array. */
569 u64 lockdep_stack_trace_count(void)
570 {
571 	struct lock_trace *trace;
572 	u64 c = 0;
573 	int i;
574 
575 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
576 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
577 			c++;
578 		}
579 	}
580 
581 	return c;
582 }
583 
584 /* Return the number of stack hash chains that have at least one stack trace. */
585 u64 lockdep_stack_hash_count(void)
586 {
587 	u64 c = 0;
588 	int i;
589 
590 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
591 		if (!hlist_empty(&stack_trace_hash[i]))
592 			c++;
593 
594 	return c;
595 }
596 #endif
597 
598 unsigned int nr_hardirq_chains;
599 unsigned int nr_softirq_chains;
600 unsigned int nr_process_chains;
601 unsigned int max_lockdep_depth;
602 
603 #ifdef CONFIG_DEBUG_LOCKDEP
604 /*
605  * Various lockdep statistics:
606  */
607 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
608 #endif
609 
610 #ifdef CONFIG_PROVE_LOCKING
611 /*
612  * Locking printouts:
613  */
614 
615 #define __USAGE(__STATE)						\
616 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
617 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
618 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
619 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
620 
621 static const char *usage_str[] =
622 {
623 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
624 #include "lockdep_states.h"
625 #undef LOCKDEP_STATE
626 	[LOCK_USED] = "INITIAL USE",
627 	[LOCK_USED_READ] = "INITIAL READ USE",
628 	/* abused as string storage for verify_lock_unused() */
629 	[LOCK_USAGE_STATES] = "IN-NMI",
630 };
631 #endif
632 
633 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
634 {
635 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
636 }
637 
638 static inline unsigned long lock_flag(enum lock_usage_bit bit)
639 {
640 	return 1UL << bit;
641 }
642 
643 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
644 {
645 	/*
646 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
647 	 * irq context), which is the safest usage category.
648 	 */
649 	char c = '.';
650 
651 	/*
652 	 * The order of the following usage checks matters, which will
653 	 * result in the outcome character as follows:
654 	 *
655 	 * - '+': irq is enabled and not in irq context
656 	 * - '-': in irq context and irq is disabled
657 	 * - '?': in irq context and irq is enabled
658 	 */
659 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
660 		c = '+';
661 		if (class->usage_mask & lock_flag(bit))
662 			c = '?';
663 	} else if (class->usage_mask & lock_flag(bit))
664 		c = '-';
665 
666 	return c;
667 }
668 
669 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
670 {
671 	int i = 0;
672 
673 #define LOCKDEP_STATE(__STATE) 						\
674 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
675 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
676 #include "lockdep_states.h"
677 #undef LOCKDEP_STATE
678 
679 	usage[i] = '\0';
680 }
681 
682 static void __print_lock_name(struct lock_class *class)
683 {
684 	char str[KSYM_NAME_LEN];
685 	const char *name;
686 
687 	name = class->name;
688 	if (!name) {
689 		name = __get_key_name(class->key, str);
690 		printk(KERN_CONT "%s", name);
691 	} else {
692 		printk(KERN_CONT "%s", name);
693 		if (class->name_version > 1)
694 			printk(KERN_CONT "#%d", class->name_version);
695 		if (class->subclass)
696 			printk(KERN_CONT "/%d", class->subclass);
697 	}
698 }
699 
700 static void print_lock_name(struct lock_class *class)
701 {
702 	char usage[LOCK_USAGE_CHARS];
703 
704 	get_usage_chars(class, usage);
705 
706 	printk(KERN_CONT " (");
707 	__print_lock_name(class);
708 	printk(KERN_CONT "){%s}-{%hd:%hd}", usage,
709 			class->wait_type_outer ?: class->wait_type_inner,
710 			class->wait_type_inner);
711 }
712 
713 static void print_lockdep_cache(struct lockdep_map *lock)
714 {
715 	const char *name;
716 	char str[KSYM_NAME_LEN];
717 
718 	name = lock->name;
719 	if (!name)
720 		name = __get_key_name(lock->key->subkeys, str);
721 
722 	printk(KERN_CONT "%s", name);
723 }
724 
725 static void print_lock(struct held_lock *hlock)
726 {
727 	/*
728 	 * We can be called locklessly through debug_show_all_locks() so be
729 	 * extra careful, the hlock might have been released and cleared.
730 	 *
731 	 * If this indeed happens, lets pretend it does not hurt to continue
732 	 * to print the lock unless the hlock class_idx does not point to a
733 	 * registered class. The rationale here is: since we don't attempt
734 	 * to distinguish whether we are in this situation, if it just
735 	 * happened we can't count on class_idx to tell either.
736 	 */
737 	struct lock_class *lock = hlock_class(hlock);
738 
739 	if (!lock) {
740 		printk(KERN_CONT "<RELEASED>\n");
741 		return;
742 	}
743 
744 	printk(KERN_CONT "%px", hlock->instance);
745 	print_lock_name(lock);
746 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
747 }
748 
749 static void lockdep_print_held_locks(struct task_struct *p)
750 {
751 	int i, depth = READ_ONCE(p->lockdep_depth);
752 
753 	if (!depth)
754 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
755 	else
756 		printk("%d lock%s held by %s/%d:\n", depth,
757 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
758 	/*
759 	 * It's not reliable to print a task's held locks if it's not sleeping
760 	 * and it's not the current task.
761 	 */
762 	if (p->state == TASK_RUNNING && p != current)
763 		return;
764 	for (i = 0; i < depth; i++) {
765 		printk(" #%d: ", i);
766 		print_lock(p->held_locks + i);
767 	}
768 }
769 
770 static void print_kernel_ident(void)
771 {
772 	printk("%s %.*s %s\n", init_utsname()->release,
773 		(int)strcspn(init_utsname()->version, " "),
774 		init_utsname()->version,
775 		print_tainted());
776 }
777 
778 static int very_verbose(struct lock_class *class)
779 {
780 #if VERY_VERBOSE
781 	return class_filter(class);
782 #endif
783 	return 0;
784 }
785 
786 /*
787  * Is this the address of a static object:
788  */
789 #ifdef __KERNEL__
790 static int static_obj(const void *obj)
791 {
792 	unsigned long start = (unsigned long) &_stext,
793 		      end   = (unsigned long) &_end,
794 		      addr  = (unsigned long) obj;
795 
796 	if (arch_is_kernel_initmem_freed(addr))
797 		return 0;
798 
799 	/*
800 	 * static variable?
801 	 */
802 	if ((addr >= start) && (addr < end))
803 		return 1;
804 
805 	if (arch_is_kernel_data(addr))
806 		return 1;
807 
808 	/*
809 	 * in-kernel percpu var?
810 	 */
811 	if (is_kernel_percpu_address(addr))
812 		return 1;
813 
814 	/*
815 	 * module static or percpu var?
816 	 */
817 	return is_module_address(addr) || is_module_percpu_address(addr);
818 }
819 #endif
820 
821 /*
822  * To make lock name printouts unique, we calculate a unique
823  * class->name_version generation counter. The caller must hold the graph
824  * lock.
825  */
826 static int count_matching_names(struct lock_class *new_class)
827 {
828 	struct lock_class *class;
829 	int count = 0;
830 
831 	if (!new_class->name)
832 		return 0;
833 
834 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
835 		if (new_class->key - new_class->subclass == class->key)
836 			return class->name_version;
837 		if (class->name && !strcmp(class->name, new_class->name))
838 			count = max(count, class->name_version);
839 	}
840 
841 	return count + 1;
842 }
843 
844 /* used from NMI context -- must be lockless */
845 static __always_inline struct lock_class *
846 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
847 {
848 	struct lockdep_subclass_key *key;
849 	struct hlist_head *hash_head;
850 	struct lock_class *class;
851 
852 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
853 		debug_locks_off();
854 		printk(KERN_ERR
855 			"BUG: looking up invalid subclass: %u\n", subclass);
856 		printk(KERN_ERR
857 			"turning off the locking correctness validator.\n");
858 		dump_stack();
859 		return NULL;
860 	}
861 
862 	/*
863 	 * If it is not initialised then it has never been locked,
864 	 * so it won't be present in the hash table.
865 	 */
866 	if (unlikely(!lock->key))
867 		return NULL;
868 
869 	/*
870 	 * NOTE: the class-key must be unique. For dynamic locks, a static
871 	 * lock_class_key variable is passed in through the mutex_init()
872 	 * (or spin_lock_init()) call - which acts as the key. For static
873 	 * locks we use the lock object itself as the key.
874 	 */
875 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
876 			sizeof(struct lockdep_map));
877 
878 	key = lock->key->subkeys + subclass;
879 
880 	hash_head = classhashentry(key);
881 
882 	/*
883 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
884 	 */
885 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
886 		return NULL;
887 
888 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
889 		if (class->key == key) {
890 			/*
891 			 * Huh! same key, different name? Did someone trample
892 			 * on some memory? We're most confused.
893 			 */
894 			WARN_ON_ONCE(class->name != lock->name &&
895 				     lock->key != &__lockdep_no_validate__);
896 			return class;
897 		}
898 	}
899 
900 	return NULL;
901 }
902 
903 /*
904  * Static locks do not have their class-keys yet - for them the key is
905  * the lock object itself. If the lock is in the per cpu area, the
906  * canonical address of the lock (per cpu offset removed) is used.
907  */
908 static bool assign_lock_key(struct lockdep_map *lock)
909 {
910 	unsigned long can_addr, addr = (unsigned long)lock;
911 
912 #ifdef __KERNEL__
913 	/*
914 	 * lockdep_free_key_range() assumes that struct lock_class_key
915 	 * objects do not overlap. Since we use the address of lock
916 	 * objects as class key for static objects, check whether the
917 	 * size of lock_class_key objects does not exceed the size of
918 	 * the smallest lock object.
919 	 */
920 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
921 #endif
922 
923 	if (__is_kernel_percpu_address(addr, &can_addr))
924 		lock->key = (void *)can_addr;
925 	else if (__is_module_percpu_address(addr, &can_addr))
926 		lock->key = (void *)can_addr;
927 	else if (static_obj(lock))
928 		lock->key = (void *)lock;
929 	else {
930 		/* Debug-check: all keys must be persistent! */
931 		debug_locks_off();
932 		pr_err("INFO: trying to register non-static key.\n");
933 		pr_err("the code is fine but needs lockdep annotation.\n");
934 		pr_err("turning off the locking correctness validator.\n");
935 		dump_stack();
936 		return false;
937 	}
938 
939 	return true;
940 }
941 
942 #ifdef CONFIG_DEBUG_LOCKDEP
943 
944 /* Check whether element @e occurs in list @h */
945 static bool in_list(struct list_head *e, struct list_head *h)
946 {
947 	struct list_head *f;
948 
949 	list_for_each(f, h) {
950 		if (e == f)
951 			return true;
952 	}
953 
954 	return false;
955 }
956 
957 /*
958  * Check whether entry @e occurs in any of the locks_after or locks_before
959  * lists.
960  */
961 static bool in_any_class_list(struct list_head *e)
962 {
963 	struct lock_class *class;
964 	int i;
965 
966 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
967 		class = &lock_classes[i];
968 		if (in_list(e, &class->locks_after) ||
969 		    in_list(e, &class->locks_before))
970 			return true;
971 	}
972 	return false;
973 }
974 
975 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
976 {
977 	struct lock_list *e;
978 
979 	list_for_each_entry(e, h, entry) {
980 		if (e->links_to != c) {
981 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
982 			       c->name ? : "(?)",
983 			       (unsigned long)(e - list_entries),
984 			       e->links_to && e->links_to->name ?
985 			       e->links_to->name : "(?)",
986 			       e->class && e->class->name ? e->class->name :
987 			       "(?)");
988 			return false;
989 		}
990 	}
991 	return true;
992 }
993 
994 #ifdef CONFIG_PROVE_LOCKING
995 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
996 #endif
997 
998 static bool check_lock_chain_key(struct lock_chain *chain)
999 {
1000 #ifdef CONFIG_PROVE_LOCKING
1001 	u64 chain_key = INITIAL_CHAIN_KEY;
1002 	int i;
1003 
1004 	for (i = chain->base; i < chain->base + chain->depth; i++)
1005 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1006 	/*
1007 	 * The 'unsigned long long' casts avoid that a compiler warning
1008 	 * is reported when building tools/lib/lockdep.
1009 	 */
1010 	if (chain->chain_key != chain_key) {
1011 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1012 		       (unsigned long long)(chain - lock_chains),
1013 		       (unsigned long long)chain->chain_key,
1014 		       (unsigned long long)chain_key);
1015 		return false;
1016 	}
1017 #endif
1018 	return true;
1019 }
1020 
1021 static bool in_any_zapped_class_list(struct lock_class *class)
1022 {
1023 	struct pending_free *pf;
1024 	int i;
1025 
1026 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1027 		if (in_list(&class->lock_entry, &pf->zapped))
1028 			return true;
1029 	}
1030 
1031 	return false;
1032 }
1033 
1034 static bool __check_data_structures(void)
1035 {
1036 	struct lock_class *class;
1037 	struct lock_chain *chain;
1038 	struct hlist_head *head;
1039 	struct lock_list *e;
1040 	int i;
1041 
1042 	/* Check whether all classes occur in a lock list. */
1043 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1044 		class = &lock_classes[i];
1045 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1046 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1047 		    !in_any_zapped_class_list(class)) {
1048 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1049 			       class, class->name ? : "(?)");
1050 			return false;
1051 		}
1052 	}
1053 
1054 	/* Check whether all classes have valid lock lists. */
1055 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1056 		class = &lock_classes[i];
1057 		if (!class_lock_list_valid(class, &class->locks_before))
1058 			return false;
1059 		if (!class_lock_list_valid(class, &class->locks_after))
1060 			return false;
1061 	}
1062 
1063 	/* Check the chain_key of all lock chains. */
1064 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1065 		head = chainhash_table + i;
1066 		hlist_for_each_entry_rcu(chain, head, entry) {
1067 			if (!check_lock_chain_key(chain))
1068 				return false;
1069 		}
1070 	}
1071 
1072 	/*
1073 	 * Check whether all list entries that are in use occur in a class
1074 	 * lock list.
1075 	 */
1076 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1077 		e = list_entries + i;
1078 		if (!in_any_class_list(&e->entry)) {
1079 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1080 			       (unsigned int)(e - list_entries),
1081 			       e->class->name ? : "(?)",
1082 			       e->links_to->name ? : "(?)");
1083 			return false;
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * Check whether all list entries that are not in use do not occur in
1089 	 * a class lock list.
1090 	 */
1091 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1092 		e = list_entries + i;
1093 		if (in_any_class_list(&e->entry)) {
1094 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1095 			       (unsigned int)(e - list_entries),
1096 			       e->class && e->class->name ? e->class->name :
1097 			       "(?)",
1098 			       e->links_to && e->links_to->name ?
1099 			       e->links_to->name : "(?)");
1100 			return false;
1101 		}
1102 	}
1103 
1104 	return true;
1105 }
1106 
1107 int check_consistency = 0;
1108 module_param(check_consistency, int, 0644);
1109 
1110 static void check_data_structures(void)
1111 {
1112 	static bool once = false;
1113 
1114 	if (check_consistency && !once) {
1115 		if (!__check_data_structures()) {
1116 			once = true;
1117 			WARN_ON(once);
1118 		}
1119 	}
1120 }
1121 
1122 #else /* CONFIG_DEBUG_LOCKDEP */
1123 
1124 static inline void check_data_structures(void) { }
1125 
1126 #endif /* CONFIG_DEBUG_LOCKDEP */
1127 
1128 static void init_chain_block_buckets(void);
1129 
1130 /*
1131  * Initialize the lock_classes[] array elements, the free_lock_classes list
1132  * and also the delayed_free structure.
1133  */
1134 static void init_data_structures_once(void)
1135 {
1136 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1137 	int i;
1138 
1139 	if (likely(rcu_head_initialized))
1140 		return;
1141 
1142 	if (system_state >= SYSTEM_SCHEDULING) {
1143 		init_rcu_head(&delayed_free.rcu_head);
1144 		rcu_head_initialized = true;
1145 	}
1146 
1147 	if (ds_initialized)
1148 		return;
1149 
1150 	ds_initialized = true;
1151 
1152 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1153 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1154 
1155 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1156 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1157 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1158 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1159 	}
1160 	init_chain_block_buckets();
1161 }
1162 
1163 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1164 {
1165 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1166 
1167 	return lock_keys_hash + hash;
1168 }
1169 
1170 /* Register a dynamically allocated key. */
1171 void lockdep_register_key(struct lock_class_key *key)
1172 {
1173 	struct hlist_head *hash_head;
1174 	struct lock_class_key *k;
1175 	unsigned long flags;
1176 
1177 	if (WARN_ON_ONCE(static_obj(key)))
1178 		return;
1179 	hash_head = keyhashentry(key);
1180 
1181 	raw_local_irq_save(flags);
1182 	if (!graph_lock())
1183 		goto restore_irqs;
1184 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1185 		if (WARN_ON_ONCE(k == key))
1186 			goto out_unlock;
1187 	}
1188 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1189 out_unlock:
1190 	graph_unlock();
1191 restore_irqs:
1192 	raw_local_irq_restore(flags);
1193 }
1194 EXPORT_SYMBOL_GPL(lockdep_register_key);
1195 
1196 /* Check whether a key has been registered as a dynamic key. */
1197 static bool is_dynamic_key(const struct lock_class_key *key)
1198 {
1199 	struct hlist_head *hash_head;
1200 	struct lock_class_key *k;
1201 	bool found = false;
1202 
1203 	if (WARN_ON_ONCE(static_obj(key)))
1204 		return false;
1205 
1206 	/*
1207 	 * If lock debugging is disabled lock_keys_hash[] may contain
1208 	 * pointers to memory that has already been freed. Avoid triggering
1209 	 * a use-after-free in that case by returning early.
1210 	 */
1211 	if (!debug_locks)
1212 		return true;
1213 
1214 	hash_head = keyhashentry(key);
1215 
1216 	rcu_read_lock();
1217 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1218 		if (k == key) {
1219 			found = true;
1220 			break;
1221 		}
1222 	}
1223 	rcu_read_unlock();
1224 
1225 	return found;
1226 }
1227 
1228 /*
1229  * Register a lock's class in the hash-table, if the class is not present
1230  * yet. Otherwise we look it up. We cache the result in the lock object
1231  * itself, so actual lookup of the hash should be once per lock object.
1232  */
1233 static struct lock_class *
1234 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1235 {
1236 	struct lockdep_subclass_key *key;
1237 	struct hlist_head *hash_head;
1238 	struct lock_class *class;
1239 
1240 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1241 
1242 	class = look_up_lock_class(lock, subclass);
1243 	if (likely(class))
1244 		goto out_set_class_cache;
1245 
1246 	if (!lock->key) {
1247 		if (!assign_lock_key(lock))
1248 			return NULL;
1249 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1250 		return NULL;
1251 	}
1252 
1253 	key = lock->key->subkeys + subclass;
1254 	hash_head = classhashentry(key);
1255 
1256 	if (!graph_lock()) {
1257 		return NULL;
1258 	}
1259 	/*
1260 	 * We have to do the hash-walk again, to avoid races
1261 	 * with another CPU:
1262 	 */
1263 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1264 		if (class->key == key)
1265 			goto out_unlock_set;
1266 	}
1267 
1268 	init_data_structures_once();
1269 
1270 	/* Allocate a new lock class and add it to the hash. */
1271 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1272 					 lock_entry);
1273 	if (!class) {
1274 		if (!debug_locks_off_graph_unlock()) {
1275 			return NULL;
1276 		}
1277 
1278 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1279 		dump_stack();
1280 		return NULL;
1281 	}
1282 	nr_lock_classes++;
1283 	__set_bit(class - lock_classes, lock_classes_in_use);
1284 	debug_atomic_inc(nr_unused_locks);
1285 	class->key = key;
1286 	class->name = lock->name;
1287 	class->subclass = subclass;
1288 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1289 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1290 	class->name_version = count_matching_names(class);
1291 	class->wait_type_inner = lock->wait_type_inner;
1292 	class->wait_type_outer = lock->wait_type_outer;
1293 	/*
1294 	 * We use RCU's safe list-add method to make
1295 	 * parallel walking of the hash-list safe:
1296 	 */
1297 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1298 	/*
1299 	 * Remove the class from the free list and add it to the global list
1300 	 * of classes.
1301 	 */
1302 	list_move_tail(&class->lock_entry, &all_lock_classes);
1303 
1304 	if (verbose(class)) {
1305 		graph_unlock();
1306 
1307 		printk("\nnew class %px: %s", class->key, class->name);
1308 		if (class->name_version > 1)
1309 			printk(KERN_CONT "#%d", class->name_version);
1310 		printk(KERN_CONT "\n");
1311 		dump_stack();
1312 
1313 		if (!graph_lock()) {
1314 			return NULL;
1315 		}
1316 	}
1317 out_unlock_set:
1318 	graph_unlock();
1319 
1320 out_set_class_cache:
1321 	if (!subclass || force)
1322 		lock->class_cache[0] = class;
1323 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1324 		lock->class_cache[subclass] = class;
1325 
1326 	/*
1327 	 * Hash collision, did we smoke some? We found a class with a matching
1328 	 * hash but the subclass -- which is hashed in -- didn't match.
1329 	 */
1330 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1331 		return NULL;
1332 
1333 	return class;
1334 }
1335 
1336 #ifdef CONFIG_PROVE_LOCKING
1337 /*
1338  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1339  * with NULL on failure)
1340  */
1341 static struct lock_list *alloc_list_entry(void)
1342 {
1343 	int idx = find_first_zero_bit(list_entries_in_use,
1344 				      ARRAY_SIZE(list_entries));
1345 
1346 	if (idx >= ARRAY_SIZE(list_entries)) {
1347 		if (!debug_locks_off_graph_unlock())
1348 			return NULL;
1349 
1350 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1351 		dump_stack();
1352 		return NULL;
1353 	}
1354 	nr_list_entries++;
1355 	__set_bit(idx, list_entries_in_use);
1356 	return list_entries + idx;
1357 }
1358 
1359 /*
1360  * Add a new dependency to the head of the list:
1361  */
1362 static int add_lock_to_list(struct lock_class *this,
1363 			    struct lock_class *links_to, struct list_head *head,
1364 			    unsigned long ip, u16 distance, u8 dep,
1365 			    const struct lock_trace *trace)
1366 {
1367 	struct lock_list *entry;
1368 	/*
1369 	 * Lock not present yet - get a new dependency struct and
1370 	 * add it to the list:
1371 	 */
1372 	entry = alloc_list_entry();
1373 	if (!entry)
1374 		return 0;
1375 
1376 	entry->class = this;
1377 	entry->links_to = links_to;
1378 	entry->dep = dep;
1379 	entry->distance = distance;
1380 	entry->trace = trace;
1381 	/*
1382 	 * Both allocation and removal are done under the graph lock; but
1383 	 * iteration is under RCU-sched; see look_up_lock_class() and
1384 	 * lockdep_free_key_range().
1385 	 */
1386 	list_add_tail_rcu(&entry->entry, head);
1387 
1388 	return 1;
1389 }
1390 
1391 /*
1392  * For good efficiency of modular, we use power of 2
1393  */
1394 #define MAX_CIRCULAR_QUEUE_SIZE		4096UL
1395 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1396 
1397 /*
1398  * The circular_queue and helpers are used to implement graph
1399  * breadth-first search (BFS) algorithm, by which we can determine
1400  * whether there is a path from a lock to another. In deadlock checks,
1401  * a path from the next lock to be acquired to a previous held lock
1402  * indicates that adding the <prev> -> <next> lock dependency will
1403  * produce a circle in the graph. Breadth-first search instead of
1404  * depth-first search is used in order to find the shortest (circular)
1405  * path.
1406  */
1407 struct circular_queue {
1408 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1409 	unsigned int  front, rear;
1410 };
1411 
1412 static struct circular_queue lock_cq;
1413 
1414 unsigned int max_bfs_queue_depth;
1415 
1416 static unsigned int lockdep_dependency_gen_id;
1417 
1418 static inline void __cq_init(struct circular_queue *cq)
1419 {
1420 	cq->front = cq->rear = 0;
1421 	lockdep_dependency_gen_id++;
1422 }
1423 
1424 static inline int __cq_empty(struct circular_queue *cq)
1425 {
1426 	return (cq->front == cq->rear);
1427 }
1428 
1429 static inline int __cq_full(struct circular_queue *cq)
1430 {
1431 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1432 }
1433 
1434 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1435 {
1436 	if (__cq_full(cq))
1437 		return -1;
1438 
1439 	cq->element[cq->rear] = elem;
1440 	cq->rear = (cq->rear + 1) & CQ_MASK;
1441 	return 0;
1442 }
1443 
1444 /*
1445  * Dequeue an element from the circular_queue, return a lock_list if
1446  * the queue is not empty, or NULL if otherwise.
1447  */
1448 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1449 {
1450 	struct lock_list * lock;
1451 
1452 	if (__cq_empty(cq))
1453 		return NULL;
1454 
1455 	lock = cq->element[cq->front];
1456 	cq->front = (cq->front + 1) & CQ_MASK;
1457 
1458 	return lock;
1459 }
1460 
1461 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1462 {
1463 	return (cq->rear - cq->front) & CQ_MASK;
1464 }
1465 
1466 static inline void mark_lock_accessed(struct lock_list *lock)
1467 {
1468 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1469 }
1470 
1471 static inline void visit_lock_entry(struct lock_list *lock,
1472 				    struct lock_list *parent)
1473 {
1474 	lock->parent = parent;
1475 }
1476 
1477 static inline unsigned long lock_accessed(struct lock_list *lock)
1478 {
1479 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1480 }
1481 
1482 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1483 {
1484 	return child->parent;
1485 }
1486 
1487 static inline int get_lock_depth(struct lock_list *child)
1488 {
1489 	int depth = 0;
1490 	struct lock_list *parent;
1491 
1492 	while ((parent = get_lock_parent(child))) {
1493 		child = parent;
1494 		depth++;
1495 	}
1496 	return depth;
1497 }
1498 
1499 /*
1500  * Return the forward or backward dependency list.
1501  *
1502  * @lock:   the lock_list to get its class's dependency list
1503  * @offset: the offset to struct lock_class to determine whether it is
1504  *          locks_after or locks_before
1505  */
1506 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1507 {
1508 	void *lock_class = lock->class;
1509 
1510 	return lock_class + offset;
1511 }
1512 /*
1513  * Return values of a bfs search:
1514  *
1515  * BFS_E* indicates an error
1516  * BFS_R* indicates a result (match or not)
1517  *
1518  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1519  *
1520  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1521  *
1522  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1523  *             *@target_entry.
1524  *
1525  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1526  *               _unchanged_.
1527  */
1528 enum bfs_result {
1529 	BFS_EINVALIDNODE = -2,
1530 	BFS_EQUEUEFULL = -1,
1531 	BFS_RMATCH = 0,
1532 	BFS_RNOMATCH = 1,
1533 };
1534 
1535 /*
1536  * bfs_result < 0 means error
1537  */
1538 static inline bool bfs_error(enum bfs_result res)
1539 {
1540 	return res < 0;
1541 }
1542 
1543 /*
1544  * DEP_*_BIT in lock_list::dep
1545  *
1546  * For dependency @prev -> @next:
1547  *
1548  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1549  *       (->read == 2)
1550  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1551  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1552  *   EN: @prev is exclusive locker and @next is non-recursive locker
1553  *
1554  * Note that we define the value of DEP_*_BITs so that:
1555  *   bit0 is prev->read == 0
1556  *   bit1 is next->read != 2
1557  */
1558 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1559 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1560 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1561 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1562 
1563 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1564 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1565 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1566 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1567 
1568 static inline unsigned int
1569 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1570 {
1571 	return (prev->read == 0) + ((next->read != 2) << 1);
1572 }
1573 
1574 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1575 {
1576 	return 1U << __calc_dep_bit(prev, next);
1577 }
1578 
1579 /*
1580  * calculate the dep_bit for backwards edges. We care about whether @prev is
1581  * shared and whether @next is recursive.
1582  */
1583 static inline unsigned int
1584 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1585 {
1586 	return (next->read != 2) + ((prev->read == 0) << 1);
1587 }
1588 
1589 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1590 {
1591 	return 1U << __calc_dep_bitb(prev, next);
1592 }
1593 
1594 /*
1595  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1596  * search.
1597  */
1598 static inline void __bfs_init_root(struct lock_list *lock,
1599 				   struct lock_class *class)
1600 {
1601 	lock->class = class;
1602 	lock->parent = NULL;
1603 	lock->only_xr = 0;
1604 }
1605 
1606 /*
1607  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1608  * root for a BFS search.
1609  *
1610  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1611  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1612  * and -(S*)->.
1613  */
1614 static inline void bfs_init_root(struct lock_list *lock,
1615 				 struct held_lock *hlock)
1616 {
1617 	__bfs_init_root(lock, hlock_class(hlock));
1618 	lock->only_xr = (hlock->read == 2);
1619 }
1620 
1621 /*
1622  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1623  *
1624  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1625  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1626  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1627  */
1628 static inline void bfs_init_rootb(struct lock_list *lock,
1629 				  struct held_lock *hlock)
1630 {
1631 	__bfs_init_root(lock, hlock_class(hlock));
1632 	lock->only_xr = (hlock->read != 0);
1633 }
1634 
1635 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1636 {
1637 	if (!lock || !lock->parent)
1638 		return NULL;
1639 
1640 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1641 				     &lock->entry, struct lock_list, entry);
1642 }
1643 
1644 /*
1645  * Breadth-First Search to find a strong path in the dependency graph.
1646  *
1647  * @source_entry: the source of the path we are searching for.
1648  * @data: data used for the second parameter of @match function
1649  * @match: match function for the search
1650  * @target_entry: pointer to the target of a matched path
1651  * @offset: the offset to struct lock_class to determine whether it is
1652  *          locks_after or locks_before
1653  *
1654  * We may have multiple edges (considering different kinds of dependencies,
1655  * e.g. ER and SN) between two nodes in the dependency graph. But
1656  * only the strong dependency path in the graph is relevant to deadlocks. A
1657  * strong dependency path is a dependency path that doesn't have two adjacent
1658  * dependencies as -(*R)-> -(S*)->, please see:
1659  *
1660  *         Documentation/locking/lockdep-design.rst
1661  *
1662  * for more explanation of the definition of strong dependency paths
1663  *
1664  * In __bfs(), we only traverse in the strong dependency path:
1665  *
1666  *     In lock_list::only_xr, we record whether the previous dependency only
1667  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1668  *     filter out any -(S*)-> in the current dependency and after that, the
1669  *     ->only_xr is set according to whether we only have -(*R)-> left.
1670  */
1671 static enum bfs_result __bfs(struct lock_list *source_entry,
1672 			     void *data,
1673 			     bool (*match)(struct lock_list *entry, void *data),
1674 			     struct lock_list **target_entry,
1675 			     int offset)
1676 {
1677 	struct circular_queue *cq = &lock_cq;
1678 	struct lock_list *lock = NULL;
1679 	struct lock_list *entry;
1680 	struct list_head *head;
1681 	unsigned int cq_depth;
1682 	bool first;
1683 
1684 	lockdep_assert_locked();
1685 
1686 	__cq_init(cq);
1687 	__cq_enqueue(cq, source_entry);
1688 
1689 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1690 		if (!lock->class)
1691 			return BFS_EINVALIDNODE;
1692 
1693 		/*
1694 		 * Step 1: check whether we already finish on this one.
1695 		 *
1696 		 * If we have visited all the dependencies from this @lock to
1697 		 * others (iow, if we have visited all lock_list entries in
1698 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1699 		 * and visit all the dependencies in the list and mark this
1700 		 * list accessed.
1701 		 */
1702 		if (lock_accessed(lock))
1703 			continue;
1704 		else
1705 			mark_lock_accessed(lock);
1706 
1707 		/*
1708 		 * Step 2: check whether prev dependency and this form a strong
1709 		 *         dependency path.
1710 		 */
1711 		if (lock->parent) { /* Parent exists, check prev dependency */
1712 			u8 dep = lock->dep;
1713 			bool prev_only_xr = lock->parent->only_xr;
1714 
1715 			/*
1716 			 * Mask out all -(S*)-> if we only have *R in previous
1717 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1718 			 * dependency.
1719 			 */
1720 			if (prev_only_xr)
1721 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1722 
1723 			/* If nothing left, we skip */
1724 			if (!dep)
1725 				continue;
1726 
1727 			/* If there are only -(*R)-> left, set that for the next step */
1728 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1729 		}
1730 
1731 		/*
1732 		 * Step 3: we haven't visited this and there is a strong
1733 		 *         dependency path to this, so check with @match.
1734 		 */
1735 		if (match(lock, data)) {
1736 			*target_entry = lock;
1737 			return BFS_RMATCH;
1738 		}
1739 
1740 		/*
1741 		 * Step 4: if not match, expand the path by adding the
1742 		 *         forward or backwards dependencis in the search
1743 		 *
1744 		 */
1745 		first = true;
1746 		head = get_dep_list(lock, offset);
1747 		list_for_each_entry_rcu(entry, head, entry) {
1748 			visit_lock_entry(entry, lock);
1749 
1750 			/*
1751 			 * Note we only enqueue the first of the list into the
1752 			 * queue, because we can always find a sibling
1753 			 * dependency from one (see __bfs_next()), as a result
1754 			 * the space of queue is saved.
1755 			 */
1756 			if (!first)
1757 				continue;
1758 
1759 			first = false;
1760 
1761 			if (__cq_enqueue(cq, entry))
1762 				return BFS_EQUEUEFULL;
1763 
1764 			cq_depth = __cq_get_elem_count(cq);
1765 			if (max_bfs_queue_depth < cq_depth)
1766 				max_bfs_queue_depth = cq_depth;
1767 		}
1768 	}
1769 
1770 	return BFS_RNOMATCH;
1771 }
1772 
1773 static inline enum bfs_result
1774 __bfs_forwards(struct lock_list *src_entry,
1775 	       void *data,
1776 	       bool (*match)(struct lock_list *entry, void *data),
1777 	       struct lock_list **target_entry)
1778 {
1779 	return __bfs(src_entry, data, match, target_entry,
1780 		     offsetof(struct lock_class, locks_after));
1781 
1782 }
1783 
1784 static inline enum bfs_result
1785 __bfs_backwards(struct lock_list *src_entry,
1786 		void *data,
1787 		bool (*match)(struct lock_list *entry, void *data),
1788 		struct lock_list **target_entry)
1789 {
1790 	return __bfs(src_entry, data, match, target_entry,
1791 		     offsetof(struct lock_class, locks_before));
1792 
1793 }
1794 
1795 static void print_lock_trace(const struct lock_trace *trace,
1796 			     unsigned int spaces)
1797 {
1798 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1799 }
1800 
1801 /*
1802  * Print a dependency chain entry (this is only done when a deadlock
1803  * has been detected):
1804  */
1805 static noinline void
1806 print_circular_bug_entry(struct lock_list *target, int depth)
1807 {
1808 	if (debug_locks_silent)
1809 		return;
1810 	printk("\n-> #%u", depth);
1811 	print_lock_name(target->class);
1812 	printk(KERN_CONT ":\n");
1813 	print_lock_trace(target->trace, 6);
1814 }
1815 
1816 static void
1817 print_circular_lock_scenario(struct held_lock *src,
1818 			     struct held_lock *tgt,
1819 			     struct lock_list *prt)
1820 {
1821 	struct lock_class *source = hlock_class(src);
1822 	struct lock_class *target = hlock_class(tgt);
1823 	struct lock_class *parent = prt->class;
1824 
1825 	/*
1826 	 * A direct locking problem where unsafe_class lock is taken
1827 	 * directly by safe_class lock, then all we need to show
1828 	 * is the deadlock scenario, as it is obvious that the
1829 	 * unsafe lock is taken under the safe lock.
1830 	 *
1831 	 * But if there is a chain instead, where the safe lock takes
1832 	 * an intermediate lock (middle_class) where this lock is
1833 	 * not the same as the safe lock, then the lock chain is
1834 	 * used to describe the problem. Otherwise we would need
1835 	 * to show a different CPU case for each link in the chain
1836 	 * from the safe_class lock to the unsafe_class lock.
1837 	 */
1838 	if (parent != source) {
1839 		printk("Chain exists of:\n  ");
1840 		__print_lock_name(source);
1841 		printk(KERN_CONT " --> ");
1842 		__print_lock_name(parent);
1843 		printk(KERN_CONT " --> ");
1844 		__print_lock_name(target);
1845 		printk(KERN_CONT "\n\n");
1846 	}
1847 
1848 	printk(" Possible unsafe locking scenario:\n\n");
1849 	printk("       CPU0                    CPU1\n");
1850 	printk("       ----                    ----\n");
1851 	printk("  lock(");
1852 	__print_lock_name(target);
1853 	printk(KERN_CONT ");\n");
1854 	printk("                               lock(");
1855 	__print_lock_name(parent);
1856 	printk(KERN_CONT ");\n");
1857 	printk("                               lock(");
1858 	__print_lock_name(target);
1859 	printk(KERN_CONT ");\n");
1860 	printk("  lock(");
1861 	__print_lock_name(source);
1862 	printk(KERN_CONT ");\n");
1863 	printk("\n *** DEADLOCK ***\n\n");
1864 }
1865 
1866 /*
1867  * When a circular dependency is detected, print the
1868  * header first:
1869  */
1870 static noinline void
1871 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1872 			struct held_lock *check_src,
1873 			struct held_lock *check_tgt)
1874 {
1875 	struct task_struct *curr = current;
1876 
1877 	if (debug_locks_silent)
1878 		return;
1879 
1880 	pr_warn("\n");
1881 	pr_warn("======================================================\n");
1882 	pr_warn("WARNING: possible circular locking dependency detected\n");
1883 	print_kernel_ident();
1884 	pr_warn("------------------------------------------------------\n");
1885 	pr_warn("%s/%d is trying to acquire lock:\n",
1886 		curr->comm, task_pid_nr(curr));
1887 	print_lock(check_src);
1888 
1889 	pr_warn("\nbut task is already holding lock:\n");
1890 
1891 	print_lock(check_tgt);
1892 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1893 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1894 
1895 	print_circular_bug_entry(entry, depth);
1896 }
1897 
1898 /*
1899  * We are about to add A -> B into the dependency graph, and in __bfs() a
1900  * strong dependency path A -> .. -> B is found: hlock_class equals
1901  * entry->class.
1902  *
1903  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1904  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1905  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1906  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1907  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1908  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1909  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1910  *
1911  * We need to make sure both the start and the end of A -> .. -> B is not
1912  * weaker than A -> B. For the start part, please see the comment in
1913  * check_redundant(). For the end part, we need:
1914  *
1915  * Either
1916  *
1917  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1918  *
1919  * or
1920  *
1921  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1922  *
1923  */
1924 static inline bool hlock_equal(struct lock_list *entry, void *data)
1925 {
1926 	struct held_lock *hlock = (struct held_lock *)data;
1927 
1928 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1929 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1930 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1931 }
1932 
1933 /*
1934  * We are about to add B -> A into the dependency graph, and in __bfs() a
1935  * strong dependency path A -> .. -> B is found: hlock_class equals
1936  * entry->class.
1937  *
1938  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1939  * dependency cycle, that means:
1940  *
1941  * Either
1942  *
1943  *     a) B -> A is -(E*)->
1944  *
1945  * or
1946  *
1947  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1948  *
1949  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1950  */
1951 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1952 {
1953 	struct held_lock *hlock = (struct held_lock *)data;
1954 
1955 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1956 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1957 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1958 }
1959 
1960 static noinline void print_circular_bug(struct lock_list *this,
1961 				struct lock_list *target,
1962 				struct held_lock *check_src,
1963 				struct held_lock *check_tgt)
1964 {
1965 	struct task_struct *curr = current;
1966 	struct lock_list *parent;
1967 	struct lock_list *first_parent;
1968 	int depth;
1969 
1970 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1971 		return;
1972 
1973 	this->trace = save_trace();
1974 	if (!this->trace)
1975 		return;
1976 
1977 	depth = get_lock_depth(target);
1978 
1979 	print_circular_bug_header(target, depth, check_src, check_tgt);
1980 
1981 	parent = get_lock_parent(target);
1982 	first_parent = parent;
1983 
1984 	while (parent) {
1985 		print_circular_bug_entry(parent, --depth);
1986 		parent = get_lock_parent(parent);
1987 	}
1988 
1989 	printk("\nother info that might help us debug this:\n\n");
1990 	print_circular_lock_scenario(check_src, check_tgt,
1991 				     first_parent);
1992 
1993 	lockdep_print_held_locks(curr);
1994 
1995 	printk("\nstack backtrace:\n");
1996 	dump_stack();
1997 }
1998 
1999 static noinline void print_bfs_bug(int ret)
2000 {
2001 	if (!debug_locks_off_graph_unlock())
2002 		return;
2003 
2004 	/*
2005 	 * Breadth-first-search failed, graph got corrupted?
2006 	 */
2007 	WARN(1, "lockdep bfs error:%d\n", ret);
2008 }
2009 
2010 static bool noop_count(struct lock_list *entry, void *data)
2011 {
2012 	(*(unsigned long *)data)++;
2013 	return false;
2014 }
2015 
2016 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2017 {
2018 	unsigned long  count = 0;
2019 	struct lock_list *target_entry;
2020 
2021 	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
2022 
2023 	return count;
2024 }
2025 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2026 {
2027 	unsigned long ret, flags;
2028 	struct lock_list this;
2029 
2030 	__bfs_init_root(&this, class);
2031 
2032 	raw_local_irq_save(flags);
2033 	lockdep_lock();
2034 	ret = __lockdep_count_forward_deps(&this);
2035 	lockdep_unlock();
2036 	raw_local_irq_restore(flags);
2037 
2038 	return ret;
2039 }
2040 
2041 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2042 {
2043 	unsigned long  count = 0;
2044 	struct lock_list *target_entry;
2045 
2046 	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
2047 
2048 	return count;
2049 }
2050 
2051 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2052 {
2053 	unsigned long ret, flags;
2054 	struct lock_list this;
2055 
2056 	__bfs_init_root(&this, class);
2057 
2058 	raw_local_irq_save(flags);
2059 	lockdep_lock();
2060 	ret = __lockdep_count_backward_deps(&this);
2061 	lockdep_unlock();
2062 	raw_local_irq_restore(flags);
2063 
2064 	return ret;
2065 }
2066 
2067 /*
2068  * Check that the dependency graph starting at <src> can lead to
2069  * <target> or not.
2070  */
2071 static noinline enum bfs_result
2072 check_path(struct held_lock *target, struct lock_list *src_entry,
2073 	   bool (*match)(struct lock_list *entry, void *data),
2074 	   struct lock_list **target_entry)
2075 {
2076 	enum bfs_result ret;
2077 
2078 	ret = __bfs_forwards(src_entry, target, match, target_entry);
2079 
2080 	if (unlikely(bfs_error(ret)))
2081 		print_bfs_bug(ret);
2082 
2083 	return ret;
2084 }
2085 
2086 /*
2087  * Prove that the dependency graph starting at <src> can not
2088  * lead to <target>. If it can, there is a circle when adding
2089  * <target> -> <src> dependency.
2090  *
2091  * Print an error and return BFS_RMATCH if it does.
2092  */
2093 static noinline enum bfs_result
2094 check_noncircular(struct held_lock *src, struct held_lock *target,
2095 		  struct lock_trace **const trace)
2096 {
2097 	enum bfs_result ret;
2098 	struct lock_list *target_entry;
2099 	struct lock_list src_entry;
2100 
2101 	bfs_init_root(&src_entry, src);
2102 
2103 	debug_atomic_inc(nr_cyclic_checks);
2104 
2105 	ret = check_path(target, &src_entry, hlock_conflict, &target_entry);
2106 
2107 	if (unlikely(ret == BFS_RMATCH)) {
2108 		if (!*trace) {
2109 			/*
2110 			 * If save_trace fails here, the printing might
2111 			 * trigger a WARN but because of the !nr_entries it
2112 			 * should not do bad things.
2113 			 */
2114 			*trace = save_trace();
2115 		}
2116 
2117 		print_circular_bug(&src_entry, target_entry, src, target);
2118 	}
2119 
2120 	return ret;
2121 }
2122 
2123 #ifdef CONFIG_LOCKDEP_SMALL
2124 /*
2125  * Check that the dependency graph starting at <src> can lead to
2126  * <target> or not. If it can, <src> -> <target> dependency is already
2127  * in the graph.
2128  *
2129  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2130  * any error appears in the bfs search.
2131  */
2132 static noinline enum bfs_result
2133 check_redundant(struct held_lock *src, struct held_lock *target)
2134 {
2135 	enum bfs_result ret;
2136 	struct lock_list *target_entry;
2137 	struct lock_list src_entry;
2138 
2139 	bfs_init_root(&src_entry, src);
2140 	/*
2141 	 * Special setup for check_redundant().
2142 	 *
2143 	 * To report redundant, we need to find a strong dependency path that
2144 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2145 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2146 	 * we achieve this by setting the initial node's ->only_xr to true in
2147 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2148 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2149 	 */
2150 	src_entry.only_xr = src->read == 0;
2151 
2152 	debug_atomic_inc(nr_redundant_checks);
2153 
2154 	ret = check_path(target, &src_entry, hlock_equal, &target_entry);
2155 
2156 	if (ret == BFS_RMATCH)
2157 		debug_atomic_inc(nr_redundant);
2158 
2159 	return ret;
2160 }
2161 #endif
2162 
2163 #ifdef CONFIG_TRACE_IRQFLAGS
2164 
2165 /*
2166  * Forwards and backwards subgraph searching, for the purposes of
2167  * proving that two subgraphs can be connected by a new dependency
2168  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2169  *
2170  * A irq safe->unsafe deadlock happens with the following conditions:
2171  *
2172  * 1) We have a strong dependency path A -> ... -> B
2173  *
2174  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2175  *    irq can create a new dependency B -> A (consider the case that a holder
2176  *    of B gets interrupted by an irq whose handler will try to acquire A).
2177  *
2178  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2179  *    strong circle:
2180  *
2181  *      For the usage bits of B:
2182  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2183  *           ENABLED_IRQ usage suffices.
2184  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2185  *           ENABLED_IRQ_*_READ usage suffices.
2186  *
2187  *      For the usage bits of A:
2188  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2189  *           USED_IN_IRQ usage suffices.
2190  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2191  *           USED_IN_IRQ_*_READ usage suffices.
2192  */
2193 
2194 /*
2195  * There is a strong dependency path in the dependency graph: A -> B, and now
2196  * we need to decide which usage bit of A should be accumulated to detect
2197  * safe->unsafe bugs.
2198  *
2199  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2200  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2201  *
2202  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2203  * path, any usage of A should be considered. Otherwise, we should only
2204  * consider _READ usage.
2205  */
2206 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2207 {
2208 	if (!entry->only_xr)
2209 		*(unsigned long *)mask |= entry->class->usage_mask;
2210 	else /* Mask out _READ usage bits */
2211 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2212 
2213 	return false;
2214 }
2215 
2216 /*
2217  * There is a strong dependency path in the dependency graph: A -> B, and now
2218  * we need to decide which usage bit of B conflicts with the usage bits of A,
2219  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2220  *
2221  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2222  * path, any usage of B should be considered. Otherwise, we should only
2223  * consider _READ usage.
2224  */
2225 static inline bool usage_match(struct lock_list *entry, void *mask)
2226 {
2227 	if (!entry->only_xr)
2228 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2229 	else /* Mask out _READ usage bits */
2230 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2231 }
2232 
2233 /*
2234  * Find a node in the forwards-direction dependency sub-graph starting
2235  * at @root->class that matches @bit.
2236  *
2237  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2238  * into *@target_entry.
2239  */
2240 static enum bfs_result
2241 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2242 			struct lock_list **target_entry)
2243 {
2244 	enum bfs_result result;
2245 
2246 	debug_atomic_inc(nr_find_usage_forwards_checks);
2247 
2248 	result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
2249 
2250 	return result;
2251 }
2252 
2253 /*
2254  * Find a node in the backwards-direction dependency sub-graph starting
2255  * at @root->class that matches @bit.
2256  */
2257 static enum bfs_result
2258 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2259 			struct lock_list **target_entry)
2260 {
2261 	enum bfs_result result;
2262 
2263 	debug_atomic_inc(nr_find_usage_backwards_checks);
2264 
2265 	result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
2266 
2267 	return result;
2268 }
2269 
2270 static void print_lock_class_header(struct lock_class *class, int depth)
2271 {
2272 	int bit;
2273 
2274 	printk("%*s->", depth, "");
2275 	print_lock_name(class);
2276 #ifdef CONFIG_DEBUG_LOCKDEP
2277 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2278 #endif
2279 	printk(KERN_CONT " {\n");
2280 
2281 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2282 		if (class->usage_mask & (1 << bit)) {
2283 			int len = depth;
2284 
2285 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2286 			len += printk(KERN_CONT " at:\n");
2287 			print_lock_trace(class->usage_traces[bit], len);
2288 		}
2289 	}
2290 	printk("%*s }\n", depth, "");
2291 
2292 	printk("%*s ... key      at: [<%px>] %pS\n",
2293 		depth, "", class->key, class->key);
2294 }
2295 
2296 /*
2297  * printk the shortest lock dependencies from @start to @end in reverse order:
2298  */
2299 static void __used
2300 print_shortest_lock_dependencies(struct lock_list *leaf,
2301 				 struct lock_list *root)
2302 {
2303 	struct lock_list *entry = leaf;
2304 	int depth;
2305 
2306 	/*compute depth from generated tree by BFS*/
2307 	depth = get_lock_depth(leaf);
2308 
2309 	do {
2310 		print_lock_class_header(entry->class, depth);
2311 		printk("%*s ... acquired at:\n", depth, "");
2312 		print_lock_trace(entry->trace, 2);
2313 		printk("\n");
2314 
2315 		if (depth == 0 && (entry != root)) {
2316 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2317 			break;
2318 		}
2319 
2320 		entry = get_lock_parent(entry);
2321 		depth--;
2322 	} while (entry && (depth >= 0));
2323 }
2324 
2325 static void
2326 print_irq_lock_scenario(struct lock_list *safe_entry,
2327 			struct lock_list *unsafe_entry,
2328 			struct lock_class *prev_class,
2329 			struct lock_class *next_class)
2330 {
2331 	struct lock_class *safe_class = safe_entry->class;
2332 	struct lock_class *unsafe_class = unsafe_entry->class;
2333 	struct lock_class *middle_class = prev_class;
2334 
2335 	if (middle_class == safe_class)
2336 		middle_class = next_class;
2337 
2338 	/*
2339 	 * A direct locking problem where unsafe_class lock is taken
2340 	 * directly by safe_class lock, then all we need to show
2341 	 * is the deadlock scenario, as it is obvious that the
2342 	 * unsafe lock is taken under the safe lock.
2343 	 *
2344 	 * But if there is a chain instead, where the safe lock takes
2345 	 * an intermediate lock (middle_class) where this lock is
2346 	 * not the same as the safe lock, then the lock chain is
2347 	 * used to describe the problem. Otherwise we would need
2348 	 * to show a different CPU case for each link in the chain
2349 	 * from the safe_class lock to the unsafe_class lock.
2350 	 */
2351 	if (middle_class != unsafe_class) {
2352 		printk("Chain exists of:\n  ");
2353 		__print_lock_name(safe_class);
2354 		printk(KERN_CONT " --> ");
2355 		__print_lock_name(middle_class);
2356 		printk(KERN_CONT " --> ");
2357 		__print_lock_name(unsafe_class);
2358 		printk(KERN_CONT "\n\n");
2359 	}
2360 
2361 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2362 	printk("       CPU0                    CPU1\n");
2363 	printk("       ----                    ----\n");
2364 	printk("  lock(");
2365 	__print_lock_name(unsafe_class);
2366 	printk(KERN_CONT ");\n");
2367 	printk("                               local_irq_disable();\n");
2368 	printk("                               lock(");
2369 	__print_lock_name(safe_class);
2370 	printk(KERN_CONT ");\n");
2371 	printk("                               lock(");
2372 	__print_lock_name(middle_class);
2373 	printk(KERN_CONT ");\n");
2374 	printk("  <Interrupt>\n");
2375 	printk("    lock(");
2376 	__print_lock_name(safe_class);
2377 	printk(KERN_CONT ");\n");
2378 	printk("\n *** DEADLOCK ***\n\n");
2379 }
2380 
2381 static void
2382 print_bad_irq_dependency(struct task_struct *curr,
2383 			 struct lock_list *prev_root,
2384 			 struct lock_list *next_root,
2385 			 struct lock_list *backwards_entry,
2386 			 struct lock_list *forwards_entry,
2387 			 struct held_lock *prev,
2388 			 struct held_lock *next,
2389 			 enum lock_usage_bit bit1,
2390 			 enum lock_usage_bit bit2,
2391 			 const char *irqclass)
2392 {
2393 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2394 		return;
2395 
2396 	pr_warn("\n");
2397 	pr_warn("=====================================================\n");
2398 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2399 		irqclass, irqclass);
2400 	print_kernel_ident();
2401 	pr_warn("-----------------------------------------------------\n");
2402 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2403 		curr->comm, task_pid_nr(curr),
2404 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2405 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2406 		lockdep_hardirqs_enabled(),
2407 		curr->softirqs_enabled);
2408 	print_lock(next);
2409 
2410 	pr_warn("\nand this task is already holding:\n");
2411 	print_lock(prev);
2412 	pr_warn("which would create a new lock dependency:\n");
2413 	print_lock_name(hlock_class(prev));
2414 	pr_cont(" ->");
2415 	print_lock_name(hlock_class(next));
2416 	pr_cont("\n");
2417 
2418 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2419 		irqclass);
2420 	print_lock_name(backwards_entry->class);
2421 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2422 
2423 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2424 
2425 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2426 	print_lock_name(forwards_entry->class);
2427 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2428 	pr_warn("...");
2429 
2430 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2431 
2432 	pr_warn("\nother info that might help us debug this:\n\n");
2433 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2434 				hlock_class(prev), hlock_class(next));
2435 
2436 	lockdep_print_held_locks(curr);
2437 
2438 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2439 	prev_root->trace = save_trace();
2440 	if (!prev_root->trace)
2441 		return;
2442 	print_shortest_lock_dependencies(backwards_entry, prev_root);
2443 
2444 	pr_warn("\nthe dependencies between the lock to be acquired");
2445 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2446 	next_root->trace = save_trace();
2447 	if (!next_root->trace)
2448 		return;
2449 	print_shortest_lock_dependencies(forwards_entry, next_root);
2450 
2451 	pr_warn("\nstack backtrace:\n");
2452 	dump_stack();
2453 }
2454 
2455 static const char *state_names[] = {
2456 #define LOCKDEP_STATE(__STATE) \
2457 	__stringify(__STATE),
2458 #include "lockdep_states.h"
2459 #undef LOCKDEP_STATE
2460 };
2461 
2462 static const char *state_rnames[] = {
2463 #define LOCKDEP_STATE(__STATE) \
2464 	__stringify(__STATE)"-READ",
2465 #include "lockdep_states.h"
2466 #undef LOCKDEP_STATE
2467 };
2468 
2469 static inline const char *state_name(enum lock_usage_bit bit)
2470 {
2471 	if (bit & LOCK_USAGE_READ_MASK)
2472 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2473 	else
2474 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2475 }
2476 
2477 /*
2478  * The bit number is encoded like:
2479  *
2480  *  bit0: 0 exclusive, 1 read lock
2481  *  bit1: 0 used in irq, 1 irq enabled
2482  *  bit2-n: state
2483  */
2484 static int exclusive_bit(int new_bit)
2485 {
2486 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2487 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2488 
2489 	/*
2490 	 * keep state, bit flip the direction and strip read.
2491 	 */
2492 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2493 }
2494 
2495 /*
2496  * Observe that when given a bitmask where each bitnr is encoded as above, a
2497  * right shift of the mask transforms the individual bitnrs as -1 and
2498  * conversely, a left shift transforms into +1 for the individual bitnrs.
2499  *
2500  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2501  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2502  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2503  *
2504  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2505  *
2506  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2507  * all bits set) and recompose with bitnr1 flipped.
2508  */
2509 static unsigned long invert_dir_mask(unsigned long mask)
2510 {
2511 	unsigned long excl = 0;
2512 
2513 	/* Invert dir */
2514 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2515 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2516 
2517 	return excl;
2518 }
2519 
2520 /*
2521  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2522  * usage may cause deadlock too, for example:
2523  *
2524  * P1				P2
2525  * <irq disabled>
2526  * write_lock(l1);		<irq enabled>
2527  *				read_lock(l2);
2528  * write_lock(l2);
2529  * 				<in irq>
2530  * 				read_lock(l1);
2531  *
2532  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2533  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2534  * deadlock.
2535  *
2536  * In fact, all of the following cases may cause deadlocks:
2537  *
2538  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2539  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2540  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2541  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2542  *
2543  * As a result, to calculate the "exclusive mask", first we invert the
2544  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2545  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2546  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2547  */
2548 static unsigned long exclusive_mask(unsigned long mask)
2549 {
2550 	unsigned long excl = invert_dir_mask(mask);
2551 
2552 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2553 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2554 
2555 	return excl;
2556 }
2557 
2558 /*
2559  * Retrieve the _possible_ original mask to which @mask is
2560  * exclusive. Ie: this is the opposite of exclusive_mask().
2561  * Note that 2 possible original bits can match an exclusive
2562  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2563  * cleared. So both are returned for each exclusive bit.
2564  */
2565 static unsigned long original_mask(unsigned long mask)
2566 {
2567 	unsigned long excl = invert_dir_mask(mask);
2568 
2569 	/* Include read in existing usages */
2570 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2571 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2572 
2573 	return excl;
2574 }
2575 
2576 /*
2577  * Find the first pair of bit match between an original
2578  * usage mask and an exclusive usage mask.
2579  */
2580 static int find_exclusive_match(unsigned long mask,
2581 				unsigned long excl_mask,
2582 				enum lock_usage_bit *bitp,
2583 				enum lock_usage_bit *excl_bitp)
2584 {
2585 	int bit, excl, excl_read;
2586 
2587 	for_each_set_bit(bit, &mask, LOCK_USED) {
2588 		/*
2589 		 * exclusive_bit() strips the read bit, however,
2590 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2591 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2592 		 */
2593 		excl = exclusive_bit(bit);
2594 		excl_read = excl | LOCK_USAGE_READ_MASK;
2595 		if (excl_mask & lock_flag(excl)) {
2596 			*bitp = bit;
2597 			*excl_bitp = excl;
2598 			return 0;
2599 		} else if (excl_mask & lock_flag(excl_read)) {
2600 			*bitp = bit;
2601 			*excl_bitp = excl_read;
2602 			return 0;
2603 		}
2604 	}
2605 	return -1;
2606 }
2607 
2608 /*
2609  * Prove that the new dependency does not connect a hardirq-safe(-read)
2610  * lock with a hardirq-unsafe lock - to achieve this we search
2611  * the backwards-subgraph starting at <prev>, and the
2612  * forwards-subgraph starting at <next>:
2613  */
2614 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2615 			   struct held_lock *next)
2616 {
2617 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2618 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2619 	struct lock_list *target_entry1;
2620 	struct lock_list *target_entry;
2621 	struct lock_list this, that;
2622 	enum bfs_result ret;
2623 
2624 	/*
2625 	 * Step 1: gather all hard/soft IRQs usages backward in an
2626 	 * accumulated usage mask.
2627 	 */
2628 	bfs_init_rootb(&this, prev);
2629 
2630 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2631 	if (bfs_error(ret)) {
2632 		print_bfs_bug(ret);
2633 		return 0;
2634 	}
2635 
2636 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2637 	if (!usage_mask)
2638 		return 1;
2639 
2640 	/*
2641 	 * Step 2: find exclusive uses forward that match the previous
2642 	 * backward accumulated mask.
2643 	 */
2644 	forward_mask = exclusive_mask(usage_mask);
2645 
2646 	bfs_init_root(&that, next);
2647 
2648 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2649 	if (bfs_error(ret)) {
2650 		print_bfs_bug(ret);
2651 		return 0;
2652 	}
2653 	if (ret == BFS_RNOMATCH)
2654 		return 1;
2655 
2656 	/*
2657 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2658 	 * list whose usage mask matches the exclusive usage mask from the
2659 	 * lock found on the forward list.
2660 	 */
2661 	backward_mask = original_mask(target_entry1->class->usage_mask);
2662 
2663 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2664 	if (bfs_error(ret)) {
2665 		print_bfs_bug(ret);
2666 		return 0;
2667 	}
2668 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2669 		return 1;
2670 
2671 	/*
2672 	 * Step 4: narrow down to a pair of incompatible usage bits
2673 	 * and report it.
2674 	 */
2675 	ret = find_exclusive_match(target_entry->class->usage_mask,
2676 				   target_entry1->class->usage_mask,
2677 				   &backward_bit, &forward_bit);
2678 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2679 		return 1;
2680 
2681 	print_bad_irq_dependency(curr, &this, &that,
2682 				 target_entry, target_entry1,
2683 				 prev, next,
2684 				 backward_bit, forward_bit,
2685 				 state_name(backward_bit));
2686 
2687 	return 0;
2688 }
2689 
2690 #else
2691 
2692 static inline int check_irq_usage(struct task_struct *curr,
2693 				  struct held_lock *prev, struct held_lock *next)
2694 {
2695 	return 1;
2696 }
2697 #endif /* CONFIG_TRACE_IRQFLAGS */
2698 
2699 static void inc_chains(int irq_context)
2700 {
2701 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2702 		nr_hardirq_chains++;
2703 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2704 		nr_softirq_chains++;
2705 	else
2706 		nr_process_chains++;
2707 }
2708 
2709 static void dec_chains(int irq_context)
2710 {
2711 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2712 		nr_hardirq_chains--;
2713 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2714 		nr_softirq_chains--;
2715 	else
2716 		nr_process_chains--;
2717 }
2718 
2719 static void
2720 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2721 {
2722 	struct lock_class *next = hlock_class(nxt);
2723 	struct lock_class *prev = hlock_class(prv);
2724 
2725 	printk(" Possible unsafe locking scenario:\n\n");
2726 	printk("       CPU0\n");
2727 	printk("       ----\n");
2728 	printk("  lock(");
2729 	__print_lock_name(prev);
2730 	printk(KERN_CONT ");\n");
2731 	printk("  lock(");
2732 	__print_lock_name(next);
2733 	printk(KERN_CONT ");\n");
2734 	printk("\n *** DEADLOCK ***\n\n");
2735 	printk(" May be due to missing lock nesting notation\n\n");
2736 }
2737 
2738 static void
2739 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2740 		   struct held_lock *next)
2741 {
2742 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2743 		return;
2744 
2745 	pr_warn("\n");
2746 	pr_warn("============================================\n");
2747 	pr_warn("WARNING: possible recursive locking detected\n");
2748 	print_kernel_ident();
2749 	pr_warn("--------------------------------------------\n");
2750 	pr_warn("%s/%d is trying to acquire lock:\n",
2751 		curr->comm, task_pid_nr(curr));
2752 	print_lock(next);
2753 	pr_warn("\nbut task is already holding lock:\n");
2754 	print_lock(prev);
2755 
2756 	pr_warn("\nother info that might help us debug this:\n");
2757 	print_deadlock_scenario(next, prev);
2758 	lockdep_print_held_locks(curr);
2759 
2760 	pr_warn("\nstack backtrace:\n");
2761 	dump_stack();
2762 }
2763 
2764 /*
2765  * Check whether we are holding such a class already.
2766  *
2767  * (Note that this has to be done separately, because the graph cannot
2768  * detect such classes of deadlocks.)
2769  *
2770  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2771  * lock class is held but nest_lock is also held, i.e. we rely on the
2772  * nest_lock to avoid the deadlock.
2773  */
2774 static int
2775 check_deadlock(struct task_struct *curr, struct held_lock *next)
2776 {
2777 	struct held_lock *prev;
2778 	struct held_lock *nest = NULL;
2779 	int i;
2780 
2781 	for (i = 0; i < curr->lockdep_depth; i++) {
2782 		prev = curr->held_locks + i;
2783 
2784 		if (prev->instance == next->nest_lock)
2785 			nest = prev;
2786 
2787 		if (hlock_class(prev) != hlock_class(next))
2788 			continue;
2789 
2790 		/*
2791 		 * Allow read-after-read recursion of the same
2792 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2793 		 */
2794 		if ((next->read == 2) && prev->read)
2795 			continue;
2796 
2797 		/*
2798 		 * We're holding the nest_lock, which serializes this lock's
2799 		 * nesting behaviour.
2800 		 */
2801 		if (nest)
2802 			return 2;
2803 
2804 		print_deadlock_bug(curr, prev, next);
2805 		return 0;
2806 	}
2807 	return 1;
2808 }
2809 
2810 /*
2811  * There was a chain-cache miss, and we are about to add a new dependency
2812  * to a previous lock. We validate the following rules:
2813  *
2814  *  - would the adding of the <prev> -> <next> dependency create a
2815  *    circular dependency in the graph? [== circular deadlock]
2816  *
2817  *  - does the new prev->next dependency connect any hardirq-safe lock
2818  *    (in the full backwards-subgraph starting at <prev>) with any
2819  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2820  *    <next>)? [== illegal lock inversion with hardirq contexts]
2821  *
2822  *  - does the new prev->next dependency connect any softirq-safe lock
2823  *    (in the full backwards-subgraph starting at <prev>) with any
2824  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2825  *    <next>)? [== illegal lock inversion with softirq contexts]
2826  *
2827  * any of these scenarios could lead to a deadlock.
2828  *
2829  * Then if all the validations pass, we add the forwards and backwards
2830  * dependency.
2831  */
2832 static int
2833 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2834 	       struct held_lock *next, u16 distance,
2835 	       struct lock_trace **const trace)
2836 {
2837 	struct lock_list *entry;
2838 	enum bfs_result ret;
2839 
2840 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2841 		/*
2842 		 * The warning statements below may trigger a use-after-free
2843 		 * of the class name. It is better to trigger a use-after free
2844 		 * and to have the class name most of the time instead of not
2845 		 * having the class name available.
2846 		 */
2847 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2848 			  "Detected use-after-free of lock class %px/%s\n",
2849 			  hlock_class(prev),
2850 			  hlock_class(prev)->name);
2851 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2852 			  "Detected use-after-free of lock class %px/%s\n",
2853 			  hlock_class(next),
2854 			  hlock_class(next)->name);
2855 		return 2;
2856 	}
2857 
2858 	/*
2859 	 * Prove that the new <prev> -> <next> dependency would not
2860 	 * create a circular dependency in the graph. (We do this by
2861 	 * a breadth-first search into the graph starting at <next>,
2862 	 * and check whether we can reach <prev>.)
2863 	 *
2864 	 * The search is limited by the size of the circular queue (i.e.,
2865 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2866 	 * in the graph whose neighbours are to be checked.
2867 	 */
2868 	ret = check_noncircular(next, prev, trace);
2869 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2870 		return 0;
2871 
2872 	if (!check_irq_usage(curr, prev, next))
2873 		return 0;
2874 
2875 	/*
2876 	 * Is the <prev> -> <next> dependency already present?
2877 	 *
2878 	 * (this may occur even though this is a new chain: consider
2879 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2880 	 *  chains - the second one will be new, but L1 already has
2881 	 *  L2 added to its dependency list, due to the first chain.)
2882 	 */
2883 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2884 		if (entry->class == hlock_class(next)) {
2885 			if (distance == 1)
2886 				entry->distance = 1;
2887 			entry->dep |= calc_dep(prev, next);
2888 
2889 			/*
2890 			 * Also, update the reverse dependency in @next's
2891 			 * ->locks_before list.
2892 			 *
2893 			 *  Here we reuse @entry as the cursor, which is fine
2894 			 *  because we won't go to the next iteration of the
2895 			 *  outer loop:
2896 			 *
2897 			 *  For normal cases, we return in the inner loop.
2898 			 *
2899 			 *  If we fail to return, we have inconsistency, i.e.
2900 			 *  <prev>::locks_after contains <next> while
2901 			 *  <next>::locks_before doesn't contain <prev>. In
2902 			 *  that case, we return after the inner and indicate
2903 			 *  something is wrong.
2904 			 */
2905 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2906 				if (entry->class == hlock_class(prev)) {
2907 					if (distance == 1)
2908 						entry->distance = 1;
2909 					entry->dep |= calc_depb(prev, next);
2910 					return 1;
2911 				}
2912 			}
2913 
2914 			/* <prev> is not found in <next>::locks_before */
2915 			return 0;
2916 		}
2917 	}
2918 
2919 #ifdef CONFIG_LOCKDEP_SMALL
2920 	/*
2921 	 * Is the <prev> -> <next> link redundant?
2922 	 */
2923 	ret = check_redundant(prev, next);
2924 	if (bfs_error(ret))
2925 		return 0;
2926 	else if (ret == BFS_RMATCH)
2927 		return 2;
2928 #endif
2929 
2930 	if (!*trace) {
2931 		*trace = save_trace();
2932 		if (!*trace)
2933 			return 0;
2934 	}
2935 
2936 	/*
2937 	 * Ok, all validations passed, add the new lock
2938 	 * to the previous lock's dependency list:
2939 	 */
2940 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2941 			       &hlock_class(prev)->locks_after,
2942 			       next->acquire_ip, distance,
2943 			       calc_dep(prev, next),
2944 			       *trace);
2945 
2946 	if (!ret)
2947 		return 0;
2948 
2949 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2950 			       &hlock_class(next)->locks_before,
2951 			       next->acquire_ip, distance,
2952 			       calc_depb(prev, next),
2953 			       *trace);
2954 	if (!ret)
2955 		return 0;
2956 
2957 	return 2;
2958 }
2959 
2960 /*
2961  * Add the dependency to all directly-previous locks that are 'relevant'.
2962  * The ones that are relevant are (in increasing distance from curr):
2963  * all consecutive trylock entries and the final non-trylock entry - or
2964  * the end of this context's lock-chain - whichever comes first.
2965  */
2966 static int
2967 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2968 {
2969 	struct lock_trace *trace = NULL;
2970 	int depth = curr->lockdep_depth;
2971 	struct held_lock *hlock;
2972 
2973 	/*
2974 	 * Debugging checks.
2975 	 *
2976 	 * Depth must not be zero for a non-head lock:
2977 	 */
2978 	if (!depth)
2979 		goto out_bug;
2980 	/*
2981 	 * At least two relevant locks must exist for this
2982 	 * to be a head:
2983 	 */
2984 	if (curr->held_locks[depth].irq_context !=
2985 			curr->held_locks[depth-1].irq_context)
2986 		goto out_bug;
2987 
2988 	for (;;) {
2989 		u16 distance = curr->lockdep_depth - depth + 1;
2990 		hlock = curr->held_locks + depth - 1;
2991 
2992 		if (hlock->check) {
2993 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
2994 			if (!ret)
2995 				return 0;
2996 
2997 			/*
2998 			 * Stop after the first non-trylock entry,
2999 			 * as non-trylock entries have added their
3000 			 * own direct dependencies already, so this
3001 			 * lock is connected to them indirectly:
3002 			 */
3003 			if (!hlock->trylock)
3004 				break;
3005 		}
3006 
3007 		depth--;
3008 		/*
3009 		 * End of lock-stack?
3010 		 */
3011 		if (!depth)
3012 			break;
3013 		/*
3014 		 * Stop the search if we cross into another context:
3015 		 */
3016 		if (curr->held_locks[depth].irq_context !=
3017 				curr->held_locks[depth-1].irq_context)
3018 			break;
3019 	}
3020 	return 1;
3021 out_bug:
3022 	if (!debug_locks_off_graph_unlock())
3023 		return 0;
3024 
3025 	/*
3026 	 * Clearly we all shouldn't be here, but since we made it we
3027 	 * can reliable say we messed up our state. See the above two
3028 	 * gotos for reasons why we could possibly end up here.
3029 	 */
3030 	WARN_ON(1);
3031 
3032 	return 0;
3033 }
3034 
3035 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3036 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3037 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3038 unsigned long nr_zapped_lock_chains;
3039 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3040 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3041 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3042 
3043 /*
3044  * The first 2 chain_hlocks entries in the chain block in the bucket
3045  * list contains the following meta data:
3046  *
3047  *   entry[0]:
3048  *     Bit    15 - always set to 1 (it is not a class index)
3049  *     Bits 0-14 - upper 15 bits of the next block index
3050  *   entry[1]    - lower 16 bits of next block index
3051  *
3052  * A next block index of all 1 bits means it is the end of the list.
3053  *
3054  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3055  * the chain block size:
3056  *
3057  *   entry[2] - upper 16 bits of the chain block size
3058  *   entry[3] - lower 16 bits of the chain block size
3059  */
3060 #define MAX_CHAIN_BUCKETS	16
3061 #define CHAIN_BLK_FLAG		(1U << 15)
3062 #define CHAIN_BLK_LIST_END	0xFFFFU
3063 
3064 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3065 
3066 static inline int size_to_bucket(int size)
3067 {
3068 	if (size > MAX_CHAIN_BUCKETS)
3069 		return 0;
3070 
3071 	return size - 1;
3072 }
3073 
3074 /*
3075  * Iterate all the chain blocks in a bucket.
3076  */
3077 #define for_each_chain_block(bucket, prev, curr)		\
3078 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3079 	     (curr) >= 0;					\
3080 	     (prev) = (curr), (curr) = chain_block_next(curr))
3081 
3082 /*
3083  * next block or -1
3084  */
3085 static inline int chain_block_next(int offset)
3086 {
3087 	int next = chain_hlocks[offset];
3088 
3089 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3090 
3091 	if (next == CHAIN_BLK_LIST_END)
3092 		return -1;
3093 
3094 	next &= ~CHAIN_BLK_FLAG;
3095 	next <<= 16;
3096 	next |= chain_hlocks[offset + 1];
3097 
3098 	return next;
3099 }
3100 
3101 /*
3102  * bucket-0 only
3103  */
3104 static inline int chain_block_size(int offset)
3105 {
3106 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3107 }
3108 
3109 static inline void init_chain_block(int offset, int next, int bucket, int size)
3110 {
3111 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3112 	chain_hlocks[offset + 1] = (u16)next;
3113 
3114 	if (size && !bucket) {
3115 		chain_hlocks[offset + 2] = size >> 16;
3116 		chain_hlocks[offset + 3] = (u16)size;
3117 	}
3118 }
3119 
3120 static inline void add_chain_block(int offset, int size)
3121 {
3122 	int bucket = size_to_bucket(size);
3123 	int next = chain_block_buckets[bucket];
3124 	int prev, curr;
3125 
3126 	if (unlikely(size < 2)) {
3127 		/*
3128 		 * We can't store single entries on the freelist. Leak them.
3129 		 *
3130 		 * One possible way out would be to uniquely mark them, other
3131 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3132 		 * the block before it is re-added.
3133 		 */
3134 		if (size)
3135 			nr_lost_chain_hlocks++;
3136 		return;
3137 	}
3138 
3139 	nr_free_chain_hlocks += size;
3140 	if (!bucket) {
3141 		nr_large_chain_blocks++;
3142 
3143 		/*
3144 		 * Variable sized, sort large to small.
3145 		 */
3146 		for_each_chain_block(0, prev, curr) {
3147 			if (size >= chain_block_size(curr))
3148 				break;
3149 		}
3150 		init_chain_block(offset, curr, 0, size);
3151 		if (prev < 0)
3152 			chain_block_buckets[0] = offset;
3153 		else
3154 			init_chain_block(prev, offset, 0, 0);
3155 		return;
3156 	}
3157 	/*
3158 	 * Fixed size, add to head.
3159 	 */
3160 	init_chain_block(offset, next, bucket, size);
3161 	chain_block_buckets[bucket] = offset;
3162 }
3163 
3164 /*
3165  * Only the first block in the list can be deleted.
3166  *
3167  * For the variable size bucket[0], the first block (the largest one) is
3168  * returned, broken up and put back into the pool. So if a chain block of
3169  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3170  * queued up after the primordial chain block and never be used until the
3171  * hlock entries in the primordial chain block is almost used up. That
3172  * causes fragmentation and reduce allocation efficiency. That can be
3173  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3174  */
3175 static inline void del_chain_block(int bucket, int size, int next)
3176 {
3177 	nr_free_chain_hlocks -= size;
3178 	chain_block_buckets[bucket] = next;
3179 
3180 	if (!bucket)
3181 		nr_large_chain_blocks--;
3182 }
3183 
3184 static void init_chain_block_buckets(void)
3185 {
3186 	int i;
3187 
3188 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3189 		chain_block_buckets[i] = -1;
3190 
3191 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3192 }
3193 
3194 /*
3195  * Return offset of a chain block of the right size or -1 if not found.
3196  *
3197  * Fairly simple worst-fit allocator with the addition of a number of size
3198  * specific free lists.
3199  */
3200 static int alloc_chain_hlocks(int req)
3201 {
3202 	int bucket, curr, size;
3203 
3204 	/*
3205 	 * We rely on the MSB to act as an escape bit to denote freelist
3206 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3207 	 */
3208 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3209 
3210 	init_data_structures_once();
3211 
3212 	if (nr_free_chain_hlocks < req)
3213 		return -1;
3214 
3215 	/*
3216 	 * We require a minimum of 2 (u16) entries to encode a freelist
3217 	 * 'pointer'.
3218 	 */
3219 	req = max(req, 2);
3220 	bucket = size_to_bucket(req);
3221 	curr = chain_block_buckets[bucket];
3222 
3223 	if (bucket) {
3224 		if (curr >= 0) {
3225 			del_chain_block(bucket, req, chain_block_next(curr));
3226 			return curr;
3227 		}
3228 		/* Try bucket 0 */
3229 		curr = chain_block_buckets[0];
3230 	}
3231 
3232 	/*
3233 	 * The variable sized freelist is sorted by size; the first entry is
3234 	 * the largest. Use it if it fits.
3235 	 */
3236 	if (curr >= 0) {
3237 		size = chain_block_size(curr);
3238 		if (likely(size >= req)) {
3239 			del_chain_block(0, size, chain_block_next(curr));
3240 			add_chain_block(curr + req, size - req);
3241 			return curr;
3242 		}
3243 	}
3244 
3245 	/*
3246 	 * Last resort, split a block in a larger sized bucket.
3247 	 */
3248 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3249 		bucket = size_to_bucket(size);
3250 		curr = chain_block_buckets[bucket];
3251 		if (curr < 0)
3252 			continue;
3253 
3254 		del_chain_block(bucket, size, chain_block_next(curr));
3255 		add_chain_block(curr + req, size - req);
3256 		return curr;
3257 	}
3258 
3259 	return -1;
3260 }
3261 
3262 static inline void free_chain_hlocks(int base, int size)
3263 {
3264 	add_chain_block(base, max(size, 2));
3265 }
3266 
3267 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3268 {
3269 	u16 chain_hlock = chain_hlocks[chain->base + i];
3270 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3271 
3272 	return lock_classes + class_idx - 1;
3273 }
3274 
3275 /*
3276  * Returns the index of the first held_lock of the current chain
3277  */
3278 static inline int get_first_held_lock(struct task_struct *curr,
3279 					struct held_lock *hlock)
3280 {
3281 	int i;
3282 	struct held_lock *hlock_curr;
3283 
3284 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3285 		hlock_curr = curr->held_locks + i;
3286 		if (hlock_curr->irq_context != hlock->irq_context)
3287 			break;
3288 
3289 	}
3290 
3291 	return ++i;
3292 }
3293 
3294 #ifdef CONFIG_DEBUG_LOCKDEP
3295 /*
3296  * Returns the next chain_key iteration
3297  */
3298 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3299 {
3300 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3301 
3302 	printk(" hlock_id:%d -> chain_key:%016Lx",
3303 		(unsigned int)hlock_id,
3304 		(unsigned long long)new_chain_key);
3305 	return new_chain_key;
3306 }
3307 
3308 static void
3309 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3310 {
3311 	struct held_lock *hlock;
3312 	u64 chain_key = INITIAL_CHAIN_KEY;
3313 	int depth = curr->lockdep_depth;
3314 	int i = get_first_held_lock(curr, hlock_next);
3315 
3316 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3317 		hlock_next->irq_context);
3318 	for (; i < depth; i++) {
3319 		hlock = curr->held_locks + i;
3320 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3321 
3322 		print_lock(hlock);
3323 	}
3324 
3325 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3326 	print_lock(hlock_next);
3327 }
3328 
3329 static void print_chain_keys_chain(struct lock_chain *chain)
3330 {
3331 	int i;
3332 	u64 chain_key = INITIAL_CHAIN_KEY;
3333 	u16 hlock_id;
3334 
3335 	printk("depth: %u\n", chain->depth);
3336 	for (i = 0; i < chain->depth; i++) {
3337 		hlock_id = chain_hlocks[chain->base + i];
3338 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3339 
3340 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3341 		printk("\n");
3342 	}
3343 }
3344 
3345 static void print_collision(struct task_struct *curr,
3346 			struct held_lock *hlock_next,
3347 			struct lock_chain *chain)
3348 {
3349 	pr_warn("\n");
3350 	pr_warn("============================\n");
3351 	pr_warn("WARNING: chain_key collision\n");
3352 	print_kernel_ident();
3353 	pr_warn("----------------------------\n");
3354 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3355 	pr_warn("Hash chain already cached but the contents don't match!\n");
3356 
3357 	pr_warn("Held locks:");
3358 	print_chain_keys_held_locks(curr, hlock_next);
3359 
3360 	pr_warn("Locks in cached chain:");
3361 	print_chain_keys_chain(chain);
3362 
3363 	pr_warn("\nstack backtrace:\n");
3364 	dump_stack();
3365 }
3366 #endif
3367 
3368 /*
3369  * Checks whether the chain and the current held locks are consistent
3370  * in depth and also in content. If they are not it most likely means
3371  * that there was a collision during the calculation of the chain_key.
3372  * Returns: 0 not passed, 1 passed
3373  */
3374 static int check_no_collision(struct task_struct *curr,
3375 			struct held_lock *hlock,
3376 			struct lock_chain *chain)
3377 {
3378 #ifdef CONFIG_DEBUG_LOCKDEP
3379 	int i, j, id;
3380 
3381 	i = get_first_held_lock(curr, hlock);
3382 
3383 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3384 		print_collision(curr, hlock, chain);
3385 		return 0;
3386 	}
3387 
3388 	for (j = 0; j < chain->depth - 1; j++, i++) {
3389 		id = hlock_id(&curr->held_locks[i]);
3390 
3391 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3392 			print_collision(curr, hlock, chain);
3393 			return 0;
3394 		}
3395 	}
3396 #endif
3397 	return 1;
3398 }
3399 
3400 /*
3401  * Given an index that is >= -1, return the index of the next lock chain.
3402  * Return -2 if there is no next lock chain.
3403  */
3404 long lockdep_next_lockchain(long i)
3405 {
3406 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3407 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3408 }
3409 
3410 unsigned long lock_chain_count(void)
3411 {
3412 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3413 }
3414 
3415 /* Must be called with the graph lock held. */
3416 static struct lock_chain *alloc_lock_chain(void)
3417 {
3418 	int idx = find_first_zero_bit(lock_chains_in_use,
3419 				      ARRAY_SIZE(lock_chains));
3420 
3421 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3422 		return NULL;
3423 	__set_bit(idx, lock_chains_in_use);
3424 	return lock_chains + idx;
3425 }
3426 
3427 /*
3428  * Adds a dependency chain into chain hashtable. And must be called with
3429  * graph_lock held.
3430  *
3431  * Return 0 if fail, and graph_lock is released.
3432  * Return 1 if succeed, with graph_lock held.
3433  */
3434 static inline int add_chain_cache(struct task_struct *curr,
3435 				  struct held_lock *hlock,
3436 				  u64 chain_key)
3437 {
3438 	struct hlist_head *hash_head = chainhashentry(chain_key);
3439 	struct lock_chain *chain;
3440 	int i, j;
3441 
3442 	/*
3443 	 * The caller must hold the graph lock, ensure we've got IRQs
3444 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3445 	 * lockdep won't complain about its own locking errors.
3446 	 */
3447 	if (lockdep_assert_locked())
3448 		return 0;
3449 
3450 	chain = alloc_lock_chain();
3451 	if (!chain) {
3452 		if (!debug_locks_off_graph_unlock())
3453 			return 0;
3454 
3455 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3456 		dump_stack();
3457 		return 0;
3458 	}
3459 	chain->chain_key = chain_key;
3460 	chain->irq_context = hlock->irq_context;
3461 	i = get_first_held_lock(curr, hlock);
3462 	chain->depth = curr->lockdep_depth + 1 - i;
3463 
3464 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3465 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3466 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3467 
3468 	j = alloc_chain_hlocks(chain->depth);
3469 	if (j < 0) {
3470 		if (!debug_locks_off_graph_unlock())
3471 			return 0;
3472 
3473 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3474 		dump_stack();
3475 		return 0;
3476 	}
3477 
3478 	chain->base = j;
3479 	for (j = 0; j < chain->depth - 1; j++, i++) {
3480 		int lock_id = hlock_id(curr->held_locks + i);
3481 
3482 		chain_hlocks[chain->base + j] = lock_id;
3483 	}
3484 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3485 	hlist_add_head_rcu(&chain->entry, hash_head);
3486 	debug_atomic_inc(chain_lookup_misses);
3487 	inc_chains(chain->irq_context);
3488 
3489 	return 1;
3490 }
3491 
3492 /*
3493  * Look up a dependency chain. Must be called with either the graph lock or
3494  * the RCU read lock held.
3495  */
3496 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3497 {
3498 	struct hlist_head *hash_head = chainhashentry(chain_key);
3499 	struct lock_chain *chain;
3500 
3501 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3502 		if (READ_ONCE(chain->chain_key) == chain_key) {
3503 			debug_atomic_inc(chain_lookup_hits);
3504 			return chain;
3505 		}
3506 	}
3507 	return NULL;
3508 }
3509 
3510 /*
3511  * If the key is not present yet in dependency chain cache then
3512  * add it and return 1 - in this case the new dependency chain is
3513  * validated. If the key is already hashed, return 0.
3514  * (On return with 1 graph_lock is held.)
3515  */
3516 static inline int lookup_chain_cache_add(struct task_struct *curr,
3517 					 struct held_lock *hlock,
3518 					 u64 chain_key)
3519 {
3520 	struct lock_class *class = hlock_class(hlock);
3521 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3522 
3523 	if (chain) {
3524 cache_hit:
3525 		if (!check_no_collision(curr, hlock, chain))
3526 			return 0;
3527 
3528 		if (very_verbose(class)) {
3529 			printk("\nhash chain already cached, key: "
3530 					"%016Lx tail class: [%px] %s\n",
3531 					(unsigned long long)chain_key,
3532 					class->key, class->name);
3533 		}
3534 
3535 		return 0;
3536 	}
3537 
3538 	if (very_verbose(class)) {
3539 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3540 			(unsigned long long)chain_key, class->key, class->name);
3541 	}
3542 
3543 	if (!graph_lock())
3544 		return 0;
3545 
3546 	/*
3547 	 * We have to walk the chain again locked - to avoid duplicates:
3548 	 */
3549 	chain = lookup_chain_cache(chain_key);
3550 	if (chain) {
3551 		graph_unlock();
3552 		goto cache_hit;
3553 	}
3554 
3555 	if (!add_chain_cache(curr, hlock, chain_key))
3556 		return 0;
3557 
3558 	return 1;
3559 }
3560 
3561 static int validate_chain(struct task_struct *curr,
3562 			  struct held_lock *hlock,
3563 			  int chain_head, u64 chain_key)
3564 {
3565 	/*
3566 	 * Trylock needs to maintain the stack of held locks, but it
3567 	 * does not add new dependencies, because trylock can be done
3568 	 * in any order.
3569 	 *
3570 	 * We look up the chain_key and do the O(N^2) check and update of
3571 	 * the dependencies only if this is a new dependency chain.
3572 	 * (If lookup_chain_cache_add() return with 1 it acquires
3573 	 * graph_lock for us)
3574 	 */
3575 	if (!hlock->trylock && hlock->check &&
3576 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3577 		/*
3578 		 * Check whether last held lock:
3579 		 *
3580 		 * - is irq-safe, if this lock is irq-unsafe
3581 		 * - is softirq-safe, if this lock is hardirq-unsafe
3582 		 *
3583 		 * And check whether the new lock's dependency graph
3584 		 * could lead back to the previous lock:
3585 		 *
3586 		 * - within the current held-lock stack
3587 		 * - across our accumulated lock dependency records
3588 		 *
3589 		 * any of these scenarios could lead to a deadlock.
3590 		 */
3591 		/*
3592 		 * The simple case: does the current hold the same lock
3593 		 * already?
3594 		 */
3595 		int ret = check_deadlock(curr, hlock);
3596 
3597 		if (!ret)
3598 			return 0;
3599 		/*
3600 		 * Add dependency only if this lock is not the head
3601 		 * of the chain, and if the new lock introduces no more
3602 		 * lock dependency (because we already hold a lock with the
3603 		 * same lock class) nor deadlock (because the nest_lock
3604 		 * serializes nesting locks), see the comments for
3605 		 * check_deadlock().
3606 		 */
3607 		if (!chain_head && ret != 2) {
3608 			if (!check_prevs_add(curr, hlock))
3609 				return 0;
3610 		}
3611 
3612 		graph_unlock();
3613 	} else {
3614 		/* after lookup_chain_cache_add(): */
3615 		if (unlikely(!debug_locks))
3616 			return 0;
3617 	}
3618 
3619 	return 1;
3620 }
3621 #else
3622 static inline int validate_chain(struct task_struct *curr,
3623 				 struct held_lock *hlock,
3624 				 int chain_head, u64 chain_key)
3625 {
3626 	return 1;
3627 }
3628 
3629 static void init_chain_block_buckets(void)	{ }
3630 #endif /* CONFIG_PROVE_LOCKING */
3631 
3632 /*
3633  * We are building curr_chain_key incrementally, so double-check
3634  * it from scratch, to make sure that it's done correctly:
3635  */
3636 static void check_chain_key(struct task_struct *curr)
3637 {
3638 #ifdef CONFIG_DEBUG_LOCKDEP
3639 	struct held_lock *hlock, *prev_hlock = NULL;
3640 	unsigned int i;
3641 	u64 chain_key = INITIAL_CHAIN_KEY;
3642 
3643 	for (i = 0; i < curr->lockdep_depth; i++) {
3644 		hlock = curr->held_locks + i;
3645 		if (chain_key != hlock->prev_chain_key) {
3646 			debug_locks_off();
3647 			/*
3648 			 * We got mighty confused, our chain keys don't match
3649 			 * with what we expect, someone trample on our task state?
3650 			 */
3651 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3652 				curr->lockdep_depth, i,
3653 				(unsigned long long)chain_key,
3654 				(unsigned long long)hlock->prev_chain_key);
3655 			return;
3656 		}
3657 
3658 		/*
3659 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3660 		 * it registered lock class index?
3661 		 */
3662 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3663 			return;
3664 
3665 		if (prev_hlock && (prev_hlock->irq_context !=
3666 							hlock->irq_context))
3667 			chain_key = INITIAL_CHAIN_KEY;
3668 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3669 		prev_hlock = hlock;
3670 	}
3671 	if (chain_key != curr->curr_chain_key) {
3672 		debug_locks_off();
3673 		/*
3674 		 * More smoking hash instead of calculating it, damn see these
3675 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3676 		 */
3677 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3678 			curr->lockdep_depth, i,
3679 			(unsigned long long)chain_key,
3680 			(unsigned long long)curr->curr_chain_key);
3681 	}
3682 #endif
3683 }
3684 
3685 #ifdef CONFIG_PROVE_LOCKING
3686 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3687 		     enum lock_usage_bit new_bit);
3688 
3689 static void print_usage_bug_scenario(struct held_lock *lock)
3690 {
3691 	struct lock_class *class = hlock_class(lock);
3692 
3693 	printk(" Possible unsafe locking scenario:\n\n");
3694 	printk("       CPU0\n");
3695 	printk("       ----\n");
3696 	printk("  lock(");
3697 	__print_lock_name(class);
3698 	printk(KERN_CONT ");\n");
3699 	printk("  <Interrupt>\n");
3700 	printk("    lock(");
3701 	__print_lock_name(class);
3702 	printk(KERN_CONT ");\n");
3703 	printk("\n *** DEADLOCK ***\n\n");
3704 }
3705 
3706 static void
3707 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3708 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3709 {
3710 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3711 		return;
3712 
3713 	pr_warn("\n");
3714 	pr_warn("================================\n");
3715 	pr_warn("WARNING: inconsistent lock state\n");
3716 	print_kernel_ident();
3717 	pr_warn("--------------------------------\n");
3718 
3719 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3720 		usage_str[prev_bit], usage_str[new_bit]);
3721 
3722 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3723 		curr->comm, task_pid_nr(curr),
3724 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3725 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3726 		lockdep_hardirqs_enabled(),
3727 		lockdep_softirqs_enabled(curr));
3728 	print_lock(this);
3729 
3730 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3731 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3732 
3733 	print_irqtrace_events(curr);
3734 	pr_warn("\nother info that might help us debug this:\n");
3735 	print_usage_bug_scenario(this);
3736 
3737 	lockdep_print_held_locks(curr);
3738 
3739 	pr_warn("\nstack backtrace:\n");
3740 	dump_stack();
3741 }
3742 
3743 /*
3744  * Print out an error if an invalid bit is set:
3745  */
3746 static inline int
3747 valid_state(struct task_struct *curr, struct held_lock *this,
3748 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3749 {
3750 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3751 		print_usage_bug(curr, this, bad_bit, new_bit);
3752 		return 0;
3753 	}
3754 	return 1;
3755 }
3756 
3757 
3758 /*
3759  * print irq inversion bug:
3760  */
3761 static void
3762 print_irq_inversion_bug(struct task_struct *curr,
3763 			struct lock_list *root, struct lock_list *other,
3764 			struct held_lock *this, int forwards,
3765 			const char *irqclass)
3766 {
3767 	struct lock_list *entry = other;
3768 	struct lock_list *middle = NULL;
3769 	int depth;
3770 
3771 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3772 		return;
3773 
3774 	pr_warn("\n");
3775 	pr_warn("========================================================\n");
3776 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3777 	print_kernel_ident();
3778 	pr_warn("--------------------------------------------------------\n");
3779 	pr_warn("%s/%d just changed the state of lock:\n",
3780 		curr->comm, task_pid_nr(curr));
3781 	print_lock(this);
3782 	if (forwards)
3783 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3784 	else
3785 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3786 	print_lock_name(other->class);
3787 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3788 
3789 	pr_warn("\nother info that might help us debug this:\n");
3790 
3791 	/* Find a middle lock (if one exists) */
3792 	depth = get_lock_depth(other);
3793 	do {
3794 		if (depth == 0 && (entry != root)) {
3795 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3796 			break;
3797 		}
3798 		middle = entry;
3799 		entry = get_lock_parent(entry);
3800 		depth--;
3801 	} while (entry && entry != root && (depth >= 0));
3802 	if (forwards)
3803 		print_irq_lock_scenario(root, other,
3804 			middle ? middle->class : root->class, other->class);
3805 	else
3806 		print_irq_lock_scenario(other, root,
3807 			middle ? middle->class : other->class, root->class);
3808 
3809 	lockdep_print_held_locks(curr);
3810 
3811 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3812 	root->trace = save_trace();
3813 	if (!root->trace)
3814 		return;
3815 	print_shortest_lock_dependencies(other, root);
3816 
3817 	pr_warn("\nstack backtrace:\n");
3818 	dump_stack();
3819 }
3820 
3821 /*
3822  * Prove that in the forwards-direction subgraph starting at <this>
3823  * there is no lock matching <mask>:
3824  */
3825 static int
3826 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3827 		     enum lock_usage_bit bit)
3828 {
3829 	enum bfs_result ret;
3830 	struct lock_list root;
3831 	struct lock_list *target_entry;
3832 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3833 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3834 
3835 	bfs_init_root(&root, this);
3836 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
3837 	if (bfs_error(ret)) {
3838 		print_bfs_bug(ret);
3839 		return 0;
3840 	}
3841 	if (ret == BFS_RNOMATCH)
3842 		return 1;
3843 
3844 	/* Check whether write or read usage is the match */
3845 	if (target_entry->class->usage_mask & lock_flag(bit)) {
3846 		print_irq_inversion_bug(curr, &root, target_entry,
3847 					this, 1, state_name(bit));
3848 	} else {
3849 		print_irq_inversion_bug(curr, &root, target_entry,
3850 					this, 1, state_name(read_bit));
3851 	}
3852 
3853 	return 0;
3854 }
3855 
3856 /*
3857  * Prove that in the backwards-direction subgraph starting at <this>
3858  * there is no lock matching <mask>:
3859  */
3860 static int
3861 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3862 		      enum lock_usage_bit bit)
3863 {
3864 	enum bfs_result ret;
3865 	struct lock_list root;
3866 	struct lock_list *target_entry;
3867 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3868 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3869 
3870 	bfs_init_rootb(&root, this);
3871 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
3872 	if (bfs_error(ret)) {
3873 		print_bfs_bug(ret);
3874 		return 0;
3875 	}
3876 	if (ret == BFS_RNOMATCH)
3877 		return 1;
3878 
3879 	/* Check whether write or read usage is the match */
3880 	if (target_entry->class->usage_mask & lock_flag(bit)) {
3881 		print_irq_inversion_bug(curr, &root, target_entry,
3882 					this, 0, state_name(bit));
3883 	} else {
3884 		print_irq_inversion_bug(curr, &root, target_entry,
3885 					this, 0, state_name(read_bit));
3886 	}
3887 
3888 	return 0;
3889 }
3890 
3891 void print_irqtrace_events(struct task_struct *curr)
3892 {
3893 	const struct irqtrace_events *trace = &curr->irqtrace;
3894 
3895 	printk("irq event stamp: %u\n", trace->irq_events);
3896 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3897 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3898 		(void *)trace->hardirq_enable_ip);
3899 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3900 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3901 		(void *)trace->hardirq_disable_ip);
3902 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3903 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3904 		(void *)trace->softirq_enable_ip);
3905 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3906 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3907 		(void *)trace->softirq_disable_ip);
3908 }
3909 
3910 static int HARDIRQ_verbose(struct lock_class *class)
3911 {
3912 #if HARDIRQ_VERBOSE
3913 	return class_filter(class);
3914 #endif
3915 	return 0;
3916 }
3917 
3918 static int SOFTIRQ_verbose(struct lock_class *class)
3919 {
3920 #if SOFTIRQ_VERBOSE
3921 	return class_filter(class);
3922 #endif
3923 	return 0;
3924 }
3925 
3926 static int (*state_verbose_f[])(struct lock_class *class) = {
3927 #define LOCKDEP_STATE(__STATE) \
3928 	__STATE##_verbose,
3929 #include "lockdep_states.h"
3930 #undef LOCKDEP_STATE
3931 };
3932 
3933 static inline int state_verbose(enum lock_usage_bit bit,
3934 				struct lock_class *class)
3935 {
3936 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3937 }
3938 
3939 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3940 			     enum lock_usage_bit bit, const char *name);
3941 
3942 static int
3943 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3944 		enum lock_usage_bit new_bit)
3945 {
3946 	int excl_bit = exclusive_bit(new_bit);
3947 	int read = new_bit & LOCK_USAGE_READ_MASK;
3948 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
3949 
3950 	/*
3951 	 * Validate that this particular lock does not have conflicting
3952 	 * usage states.
3953 	 */
3954 	if (!valid_state(curr, this, new_bit, excl_bit))
3955 		return 0;
3956 
3957 	/*
3958 	 * Check for read in write conflicts
3959 	 */
3960 	if (!read && !valid_state(curr, this, new_bit,
3961 				  excl_bit + LOCK_USAGE_READ_MASK))
3962 		return 0;
3963 
3964 
3965 	/*
3966 	 * Validate that the lock dependencies don't have conflicting usage
3967 	 * states.
3968 	 */
3969 	if (dir) {
3970 		/*
3971 		 * mark ENABLED has to look backwards -- to ensure no dependee
3972 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
3973 		 */
3974 		if (!check_usage_backwards(curr, this, excl_bit))
3975 			return 0;
3976 	} else {
3977 		/*
3978 		 * mark USED_IN has to look forwards -- to ensure no dependency
3979 		 * has ENABLED state, which would allow recursion deadlocks.
3980 		 */
3981 		if (!check_usage_forwards(curr, this, excl_bit))
3982 			return 0;
3983 	}
3984 
3985 	if (state_verbose(new_bit, hlock_class(this)))
3986 		return 2;
3987 
3988 	return 1;
3989 }
3990 
3991 /*
3992  * Mark all held locks with a usage bit:
3993  */
3994 static int
3995 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3996 {
3997 	struct held_lock *hlock;
3998 	int i;
3999 
4000 	for (i = 0; i < curr->lockdep_depth; i++) {
4001 		enum lock_usage_bit hlock_bit = base_bit;
4002 		hlock = curr->held_locks + i;
4003 
4004 		if (hlock->read)
4005 			hlock_bit += LOCK_USAGE_READ_MASK;
4006 
4007 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4008 
4009 		if (!hlock->check)
4010 			continue;
4011 
4012 		if (!mark_lock(curr, hlock, hlock_bit))
4013 			return 0;
4014 	}
4015 
4016 	return 1;
4017 }
4018 
4019 /*
4020  * Hardirqs will be enabled:
4021  */
4022 static void __trace_hardirqs_on_caller(void)
4023 {
4024 	struct task_struct *curr = current;
4025 
4026 	/*
4027 	 * We are going to turn hardirqs on, so set the
4028 	 * usage bit for all held locks:
4029 	 */
4030 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4031 		return;
4032 	/*
4033 	 * If we have softirqs enabled, then set the usage
4034 	 * bit for all held locks. (disabled hardirqs prevented
4035 	 * this bit from being set before)
4036 	 */
4037 	if (curr->softirqs_enabled)
4038 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4039 }
4040 
4041 /**
4042  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4043  * @ip:		Caller address
4044  *
4045  * Invoked before a possible transition to RCU idle from exit to user or
4046  * guest mode. This ensures that all RCU operations are done before RCU
4047  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4048  * invoked to set the final state.
4049  */
4050 void lockdep_hardirqs_on_prepare(unsigned long ip)
4051 {
4052 	if (unlikely(!debug_locks))
4053 		return;
4054 
4055 	/*
4056 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4057 	 */
4058 	if (unlikely(in_nmi()))
4059 		return;
4060 
4061 	if (unlikely(this_cpu_read(lockdep_recursion)))
4062 		return;
4063 
4064 	if (unlikely(lockdep_hardirqs_enabled())) {
4065 		/*
4066 		 * Neither irq nor preemption are disabled here
4067 		 * so this is racy by nature but losing one hit
4068 		 * in a stat is not a big deal.
4069 		 */
4070 		__debug_atomic_inc(redundant_hardirqs_on);
4071 		return;
4072 	}
4073 
4074 	/*
4075 	 * We're enabling irqs and according to our state above irqs weren't
4076 	 * already enabled, yet we find the hardware thinks they are in fact
4077 	 * enabled.. someone messed up their IRQ state tracing.
4078 	 */
4079 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4080 		return;
4081 
4082 	/*
4083 	 * See the fine text that goes along with this variable definition.
4084 	 */
4085 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4086 		return;
4087 
4088 	/*
4089 	 * Can't allow enabling interrupts while in an interrupt handler,
4090 	 * that's general bad form and such. Recursion, limited stack etc..
4091 	 */
4092 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4093 		return;
4094 
4095 	current->hardirq_chain_key = current->curr_chain_key;
4096 
4097 	lockdep_recursion_inc();
4098 	__trace_hardirqs_on_caller();
4099 	lockdep_recursion_finish();
4100 }
4101 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4102 
4103 void noinstr lockdep_hardirqs_on(unsigned long ip)
4104 {
4105 	struct irqtrace_events *trace = &current->irqtrace;
4106 
4107 	if (unlikely(!debug_locks))
4108 		return;
4109 
4110 	/*
4111 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4112 	 * tracking state and hardware state are out of sync.
4113 	 *
4114 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4115 	 * and not rely on hardware state like normal interrupts.
4116 	 */
4117 	if (unlikely(in_nmi())) {
4118 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4119 			return;
4120 
4121 		/*
4122 		 * Skip:
4123 		 *  - recursion check, because NMI can hit lockdep;
4124 		 *  - hardware state check, because above;
4125 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4126 		 */
4127 		goto skip_checks;
4128 	}
4129 
4130 	if (unlikely(this_cpu_read(lockdep_recursion)))
4131 		return;
4132 
4133 	if (lockdep_hardirqs_enabled()) {
4134 		/*
4135 		 * Neither irq nor preemption are disabled here
4136 		 * so this is racy by nature but losing one hit
4137 		 * in a stat is not a big deal.
4138 		 */
4139 		__debug_atomic_inc(redundant_hardirqs_on);
4140 		return;
4141 	}
4142 
4143 	/*
4144 	 * We're enabling irqs and according to our state above irqs weren't
4145 	 * already enabled, yet we find the hardware thinks they are in fact
4146 	 * enabled.. someone messed up their IRQ state tracing.
4147 	 */
4148 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4149 		return;
4150 
4151 	/*
4152 	 * Ensure the lock stack remained unchanged between
4153 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4154 	 */
4155 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4156 			    current->curr_chain_key);
4157 
4158 skip_checks:
4159 	/* we'll do an OFF -> ON transition: */
4160 	__this_cpu_write(hardirqs_enabled, 1);
4161 	trace->hardirq_enable_ip = ip;
4162 	trace->hardirq_enable_event = ++trace->irq_events;
4163 	debug_atomic_inc(hardirqs_on_events);
4164 }
4165 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4166 
4167 /*
4168  * Hardirqs were disabled:
4169  */
4170 void noinstr lockdep_hardirqs_off(unsigned long ip)
4171 {
4172 	if (unlikely(!debug_locks))
4173 		return;
4174 
4175 	/*
4176 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4177 	 * they will restore the software state. This ensures the software
4178 	 * state is consistent inside NMIs as well.
4179 	 */
4180 	if (in_nmi()) {
4181 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4182 			return;
4183 	} else if (__this_cpu_read(lockdep_recursion))
4184 		return;
4185 
4186 	/*
4187 	 * So we're supposed to get called after you mask local IRQs, but for
4188 	 * some reason the hardware doesn't quite think you did a proper job.
4189 	 */
4190 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4191 		return;
4192 
4193 	if (lockdep_hardirqs_enabled()) {
4194 		struct irqtrace_events *trace = &current->irqtrace;
4195 
4196 		/*
4197 		 * We have done an ON -> OFF transition:
4198 		 */
4199 		__this_cpu_write(hardirqs_enabled, 0);
4200 		trace->hardirq_disable_ip = ip;
4201 		trace->hardirq_disable_event = ++trace->irq_events;
4202 		debug_atomic_inc(hardirqs_off_events);
4203 	} else {
4204 		debug_atomic_inc(redundant_hardirqs_off);
4205 	}
4206 }
4207 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4208 
4209 /*
4210  * Softirqs will be enabled:
4211  */
4212 void lockdep_softirqs_on(unsigned long ip)
4213 {
4214 	struct irqtrace_events *trace = &current->irqtrace;
4215 
4216 	if (unlikely(!lockdep_enabled()))
4217 		return;
4218 
4219 	/*
4220 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4221 	 * funny state and nesting things.
4222 	 */
4223 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4224 		return;
4225 
4226 	if (current->softirqs_enabled) {
4227 		debug_atomic_inc(redundant_softirqs_on);
4228 		return;
4229 	}
4230 
4231 	lockdep_recursion_inc();
4232 	/*
4233 	 * We'll do an OFF -> ON transition:
4234 	 */
4235 	current->softirqs_enabled = 1;
4236 	trace->softirq_enable_ip = ip;
4237 	trace->softirq_enable_event = ++trace->irq_events;
4238 	debug_atomic_inc(softirqs_on_events);
4239 	/*
4240 	 * We are going to turn softirqs on, so set the
4241 	 * usage bit for all held locks, if hardirqs are
4242 	 * enabled too:
4243 	 */
4244 	if (lockdep_hardirqs_enabled())
4245 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4246 	lockdep_recursion_finish();
4247 }
4248 
4249 /*
4250  * Softirqs were disabled:
4251  */
4252 void lockdep_softirqs_off(unsigned long ip)
4253 {
4254 	if (unlikely(!lockdep_enabled()))
4255 		return;
4256 
4257 	/*
4258 	 * We fancy IRQs being disabled here, see softirq.c
4259 	 */
4260 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4261 		return;
4262 
4263 	if (current->softirqs_enabled) {
4264 		struct irqtrace_events *trace = &current->irqtrace;
4265 
4266 		/*
4267 		 * We have done an ON -> OFF transition:
4268 		 */
4269 		current->softirqs_enabled = 0;
4270 		trace->softirq_disable_ip = ip;
4271 		trace->softirq_disable_event = ++trace->irq_events;
4272 		debug_atomic_inc(softirqs_off_events);
4273 		/*
4274 		 * Whoops, we wanted softirqs off, so why aren't they?
4275 		 */
4276 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4277 	} else
4278 		debug_atomic_inc(redundant_softirqs_off);
4279 }
4280 
4281 static int
4282 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4283 {
4284 	if (!check)
4285 		goto lock_used;
4286 
4287 	/*
4288 	 * If non-trylock use in a hardirq or softirq context, then
4289 	 * mark the lock as used in these contexts:
4290 	 */
4291 	if (!hlock->trylock) {
4292 		if (hlock->read) {
4293 			if (lockdep_hardirq_context())
4294 				if (!mark_lock(curr, hlock,
4295 						LOCK_USED_IN_HARDIRQ_READ))
4296 					return 0;
4297 			if (curr->softirq_context)
4298 				if (!mark_lock(curr, hlock,
4299 						LOCK_USED_IN_SOFTIRQ_READ))
4300 					return 0;
4301 		} else {
4302 			if (lockdep_hardirq_context())
4303 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4304 					return 0;
4305 			if (curr->softirq_context)
4306 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4307 					return 0;
4308 		}
4309 	}
4310 	if (!hlock->hardirqs_off) {
4311 		if (hlock->read) {
4312 			if (!mark_lock(curr, hlock,
4313 					LOCK_ENABLED_HARDIRQ_READ))
4314 				return 0;
4315 			if (curr->softirqs_enabled)
4316 				if (!mark_lock(curr, hlock,
4317 						LOCK_ENABLED_SOFTIRQ_READ))
4318 					return 0;
4319 		} else {
4320 			if (!mark_lock(curr, hlock,
4321 					LOCK_ENABLED_HARDIRQ))
4322 				return 0;
4323 			if (curr->softirqs_enabled)
4324 				if (!mark_lock(curr, hlock,
4325 						LOCK_ENABLED_SOFTIRQ))
4326 					return 0;
4327 		}
4328 	}
4329 
4330 lock_used:
4331 	/* mark it as used: */
4332 	if (!mark_lock(curr, hlock, LOCK_USED))
4333 		return 0;
4334 
4335 	return 1;
4336 }
4337 
4338 static inline unsigned int task_irq_context(struct task_struct *task)
4339 {
4340 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4341 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4342 }
4343 
4344 static int separate_irq_context(struct task_struct *curr,
4345 		struct held_lock *hlock)
4346 {
4347 	unsigned int depth = curr->lockdep_depth;
4348 
4349 	/*
4350 	 * Keep track of points where we cross into an interrupt context:
4351 	 */
4352 	if (depth) {
4353 		struct held_lock *prev_hlock;
4354 
4355 		prev_hlock = curr->held_locks + depth-1;
4356 		/*
4357 		 * If we cross into another context, reset the
4358 		 * hash key (this also prevents the checking and the
4359 		 * adding of the dependency to 'prev'):
4360 		 */
4361 		if (prev_hlock->irq_context != hlock->irq_context)
4362 			return 1;
4363 	}
4364 	return 0;
4365 }
4366 
4367 /*
4368  * Mark a lock with a usage bit, and validate the state transition:
4369  */
4370 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4371 			     enum lock_usage_bit new_bit)
4372 {
4373 	unsigned int new_mask, ret = 1;
4374 
4375 	if (new_bit >= LOCK_USAGE_STATES) {
4376 		DEBUG_LOCKS_WARN_ON(1);
4377 		return 0;
4378 	}
4379 
4380 	if (new_bit == LOCK_USED && this->read)
4381 		new_bit = LOCK_USED_READ;
4382 
4383 	new_mask = 1 << new_bit;
4384 
4385 	/*
4386 	 * If already set then do not dirty the cacheline,
4387 	 * nor do any checks:
4388 	 */
4389 	if (likely(hlock_class(this)->usage_mask & new_mask))
4390 		return 1;
4391 
4392 	if (!graph_lock())
4393 		return 0;
4394 	/*
4395 	 * Make sure we didn't race:
4396 	 */
4397 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4398 		goto unlock;
4399 
4400 	if (!hlock_class(this)->usage_mask)
4401 		debug_atomic_dec(nr_unused_locks);
4402 
4403 	hlock_class(this)->usage_mask |= new_mask;
4404 
4405 	if (new_bit < LOCK_TRACE_STATES) {
4406 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4407 			return 0;
4408 	}
4409 
4410 	if (new_bit < LOCK_USED) {
4411 		ret = mark_lock_irq(curr, this, new_bit);
4412 		if (!ret)
4413 			return 0;
4414 	}
4415 
4416 unlock:
4417 	graph_unlock();
4418 
4419 	/*
4420 	 * We must printk outside of the graph_lock:
4421 	 */
4422 	if (ret == 2) {
4423 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4424 		print_lock(this);
4425 		print_irqtrace_events(curr);
4426 		dump_stack();
4427 	}
4428 
4429 	return ret;
4430 }
4431 
4432 static inline short task_wait_context(struct task_struct *curr)
4433 {
4434 	/*
4435 	 * Set appropriate wait type for the context; for IRQs we have to take
4436 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4437 	 */
4438 	if (lockdep_hardirq_context()) {
4439 		/*
4440 		 * Check if force_irqthreads will run us threaded.
4441 		 */
4442 		if (curr->hardirq_threaded || curr->irq_config)
4443 			return LD_WAIT_CONFIG;
4444 
4445 		return LD_WAIT_SPIN;
4446 	} else if (curr->softirq_context) {
4447 		/*
4448 		 * Softirqs are always threaded.
4449 		 */
4450 		return LD_WAIT_CONFIG;
4451 	}
4452 
4453 	return LD_WAIT_MAX;
4454 }
4455 
4456 static int
4457 print_lock_invalid_wait_context(struct task_struct *curr,
4458 				struct held_lock *hlock)
4459 {
4460 	short curr_inner;
4461 
4462 	if (!debug_locks_off())
4463 		return 0;
4464 	if (debug_locks_silent)
4465 		return 0;
4466 
4467 	pr_warn("\n");
4468 	pr_warn("=============================\n");
4469 	pr_warn("[ BUG: Invalid wait context ]\n");
4470 	print_kernel_ident();
4471 	pr_warn("-----------------------------\n");
4472 
4473 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4474 	print_lock(hlock);
4475 
4476 	pr_warn("other info that might help us debug this:\n");
4477 
4478 	curr_inner = task_wait_context(curr);
4479 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4480 
4481 	lockdep_print_held_locks(curr);
4482 
4483 	pr_warn("stack backtrace:\n");
4484 	dump_stack();
4485 
4486 	return 0;
4487 }
4488 
4489 /*
4490  * Verify the wait_type context.
4491  *
4492  * This check validates we takes locks in the right wait-type order; that is it
4493  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4494  * acquire spinlocks inside raw_spinlocks and the sort.
4495  *
4496  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4497  * can be taken from (pretty much) any context but also has constraints.
4498  * However when taken in a stricter environment the RCU lock does not loosen
4499  * the constraints.
4500  *
4501  * Therefore we must look for the strictest environment in the lock stack and
4502  * compare that to the lock we're trying to acquire.
4503  */
4504 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4505 {
4506 	short next_inner = hlock_class(next)->wait_type_inner;
4507 	short next_outer = hlock_class(next)->wait_type_outer;
4508 	short curr_inner;
4509 	int depth;
4510 
4511 	if (!curr->lockdep_depth || !next_inner || next->trylock)
4512 		return 0;
4513 
4514 	if (!next_outer)
4515 		next_outer = next_inner;
4516 
4517 	/*
4518 	 * Find start of current irq_context..
4519 	 */
4520 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4521 		struct held_lock *prev = curr->held_locks + depth;
4522 		if (prev->irq_context != next->irq_context)
4523 			break;
4524 	}
4525 	depth++;
4526 
4527 	curr_inner = task_wait_context(curr);
4528 
4529 	for (; depth < curr->lockdep_depth; depth++) {
4530 		struct held_lock *prev = curr->held_locks + depth;
4531 		short prev_inner = hlock_class(prev)->wait_type_inner;
4532 
4533 		if (prev_inner) {
4534 			/*
4535 			 * We can have a bigger inner than a previous one
4536 			 * when outer is smaller than inner, as with RCU.
4537 			 *
4538 			 * Also due to trylocks.
4539 			 */
4540 			curr_inner = min(curr_inner, prev_inner);
4541 		}
4542 	}
4543 
4544 	if (next_outer > curr_inner)
4545 		return print_lock_invalid_wait_context(curr, next);
4546 
4547 	return 0;
4548 }
4549 
4550 #else /* CONFIG_PROVE_LOCKING */
4551 
4552 static inline int
4553 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4554 {
4555 	return 1;
4556 }
4557 
4558 static inline unsigned int task_irq_context(struct task_struct *task)
4559 {
4560 	return 0;
4561 }
4562 
4563 static inline int separate_irq_context(struct task_struct *curr,
4564 		struct held_lock *hlock)
4565 {
4566 	return 0;
4567 }
4568 
4569 static inline int check_wait_context(struct task_struct *curr,
4570 				     struct held_lock *next)
4571 {
4572 	return 0;
4573 }
4574 
4575 #endif /* CONFIG_PROVE_LOCKING */
4576 
4577 /*
4578  * Initialize a lock instance's lock-class mapping info:
4579  */
4580 void lockdep_init_map_waits(struct lockdep_map *lock, const char *name,
4581 			    struct lock_class_key *key, int subclass,
4582 			    short inner, short outer)
4583 {
4584 	int i;
4585 
4586 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4587 		lock->class_cache[i] = NULL;
4588 
4589 #ifdef CONFIG_LOCK_STAT
4590 	lock->cpu = raw_smp_processor_id();
4591 #endif
4592 
4593 	/*
4594 	 * Can't be having no nameless bastards around this place!
4595 	 */
4596 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4597 		lock->name = "NULL";
4598 		return;
4599 	}
4600 
4601 	lock->name = name;
4602 
4603 	lock->wait_type_outer = outer;
4604 	lock->wait_type_inner = inner;
4605 
4606 	/*
4607 	 * No key, no joy, we need to hash something.
4608 	 */
4609 	if (DEBUG_LOCKS_WARN_ON(!key))
4610 		return;
4611 	/*
4612 	 * Sanity check, the lock-class key must either have been allocated
4613 	 * statically or must have been registered as a dynamic key.
4614 	 */
4615 	if (!static_obj(key) && !is_dynamic_key(key)) {
4616 		if (debug_locks)
4617 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4618 		DEBUG_LOCKS_WARN_ON(1);
4619 		return;
4620 	}
4621 	lock->key = key;
4622 
4623 	if (unlikely(!debug_locks))
4624 		return;
4625 
4626 	if (subclass) {
4627 		unsigned long flags;
4628 
4629 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4630 			return;
4631 
4632 		raw_local_irq_save(flags);
4633 		lockdep_recursion_inc();
4634 		register_lock_class(lock, subclass, 1);
4635 		lockdep_recursion_finish();
4636 		raw_local_irq_restore(flags);
4637 	}
4638 }
4639 EXPORT_SYMBOL_GPL(lockdep_init_map_waits);
4640 
4641 struct lock_class_key __lockdep_no_validate__;
4642 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4643 
4644 static void
4645 print_lock_nested_lock_not_held(struct task_struct *curr,
4646 				struct held_lock *hlock,
4647 				unsigned long ip)
4648 {
4649 	if (!debug_locks_off())
4650 		return;
4651 	if (debug_locks_silent)
4652 		return;
4653 
4654 	pr_warn("\n");
4655 	pr_warn("==================================\n");
4656 	pr_warn("WARNING: Nested lock was not taken\n");
4657 	print_kernel_ident();
4658 	pr_warn("----------------------------------\n");
4659 
4660 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4661 	print_lock(hlock);
4662 
4663 	pr_warn("\nbut this task is not holding:\n");
4664 	pr_warn("%s\n", hlock->nest_lock->name);
4665 
4666 	pr_warn("\nstack backtrace:\n");
4667 	dump_stack();
4668 
4669 	pr_warn("\nother info that might help us debug this:\n");
4670 	lockdep_print_held_locks(curr);
4671 
4672 	pr_warn("\nstack backtrace:\n");
4673 	dump_stack();
4674 }
4675 
4676 static int __lock_is_held(const struct lockdep_map *lock, int read);
4677 
4678 /*
4679  * This gets called for every mutex_lock*()/spin_lock*() operation.
4680  * We maintain the dependency maps and validate the locking attempt:
4681  *
4682  * The callers must make sure that IRQs are disabled before calling it,
4683  * otherwise we could get an interrupt which would want to take locks,
4684  * which would end up in lockdep again.
4685  */
4686 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4687 			  int trylock, int read, int check, int hardirqs_off,
4688 			  struct lockdep_map *nest_lock, unsigned long ip,
4689 			  int references, int pin_count)
4690 {
4691 	struct task_struct *curr = current;
4692 	struct lock_class *class = NULL;
4693 	struct held_lock *hlock;
4694 	unsigned int depth;
4695 	int chain_head = 0;
4696 	int class_idx;
4697 	u64 chain_key;
4698 
4699 	if (unlikely(!debug_locks))
4700 		return 0;
4701 
4702 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4703 		check = 0;
4704 
4705 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4706 		class = lock->class_cache[subclass];
4707 	/*
4708 	 * Not cached?
4709 	 */
4710 	if (unlikely(!class)) {
4711 		class = register_lock_class(lock, subclass, 0);
4712 		if (!class)
4713 			return 0;
4714 	}
4715 
4716 	debug_class_ops_inc(class);
4717 
4718 	if (very_verbose(class)) {
4719 		printk("\nacquire class [%px] %s", class->key, class->name);
4720 		if (class->name_version > 1)
4721 			printk(KERN_CONT "#%d", class->name_version);
4722 		printk(KERN_CONT "\n");
4723 		dump_stack();
4724 	}
4725 
4726 	/*
4727 	 * Add the lock to the list of currently held locks.
4728 	 * (we dont increase the depth just yet, up until the
4729 	 * dependency checks are done)
4730 	 */
4731 	depth = curr->lockdep_depth;
4732 	/*
4733 	 * Ran out of static storage for our per-task lock stack again have we?
4734 	 */
4735 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4736 		return 0;
4737 
4738 	class_idx = class - lock_classes;
4739 
4740 	if (depth) { /* we're holding locks */
4741 		hlock = curr->held_locks + depth - 1;
4742 		if (hlock->class_idx == class_idx && nest_lock) {
4743 			if (!references)
4744 				references++;
4745 
4746 			if (!hlock->references)
4747 				hlock->references++;
4748 
4749 			hlock->references += references;
4750 
4751 			/* Overflow */
4752 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4753 				return 0;
4754 
4755 			return 2;
4756 		}
4757 	}
4758 
4759 	hlock = curr->held_locks + depth;
4760 	/*
4761 	 * Plain impossible, we just registered it and checked it weren't no
4762 	 * NULL like.. I bet this mushroom I ate was good!
4763 	 */
4764 	if (DEBUG_LOCKS_WARN_ON(!class))
4765 		return 0;
4766 	hlock->class_idx = class_idx;
4767 	hlock->acquire_ip = ip;
4768 	hlock->instance = lock;
4769 	hlock->nest_lock = nest_lock;
4770 	hlock->irq_context = task_irq_context(curr);
4771 	hlock->trylock = trylock;
4772 	hlock->read = read;
4773 	hlock->check = check;
4774 	hlock->hardirqs_off = !!hardirqs_off;
4775 	hlock->references = references;
4776 #ifdef CONFIG_LOCK_STAT
4777 	hlock->waittime_stamp = 0;
4778 	hlock->holdtime_stamp = lockstat_clock();
4779 #endif
4780 	hlock->pin_count = pin_count;
4781 
4782 	if (check_wait_context(curr, hlock))
4783 		return 0;
4784 
4785 	/* Initialize the lock usage bit */
4786 	if (!mark_usage(curr, hlock, check))
4787 		return 0;
4788 
4789 	/*
4790 	 * Calculate the chain hash: it's the combined hash of all the
4791 	 * lock keys along the dependency chain. We save the hash value
4792 	 * at every step so that we can get the current hash easily
4793 	 * after unlock. The chain hash is then used to cache dependency
4794 	 * results.
4795 	 *
4796 	 * The 'key ID' is what is the most compact key value to drive
4797 	 * the hash, not class->key.
4798 	 */
4799 	/*
4800 	 * Whoops, we did it again.. class_idx is invalid.
4801 	 */
4802 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4803 		return 0;
4804 
4805 	chain_key = curr->curr_chain_key;
4806 	if (!depth) {
4807 		/*
4808 		 * How can we have a chain hash when we ain't got no keys?!
4809 		 */
4810 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4811 			return 0;
4812 		chain_head = 1;
4813 	}
4814 
4815 	hlock->prev_chain_key = chain_key;
4816 	if (separate_irq_context(curr, hlock)) {
4817 		chain_key = INITIAL_CHAIN_KEY;
4818 		chain_head = 1;
4819 	}
4820 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4821 
4822 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4823 		print_lock_nested_lock_not_held(curr, hlock, ip);
4824 		return 0;
4825 	}
4826 
4827 	if (!debug_locks_silent) {
4828 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4829 		WARN_ON_ONCE(!hlock_class(hlock)->key);
4830 	}
4831 
4832 	if (!validate_chain(curr, hlock, chain_head, chain_key))
4833 		return 0;
4834 
4835 	curr->curr_chain_key = chain_key;
4836 	curr->lockdep_depth++;
4837 	check_chain_key(curr);
4838 #ifdef CONFIG_DEBUG_LOCKDEP
4839 	if (unlikely(!debug_locks))
4840 		return 0;
4841 #endif
4842 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4843 		debug_locks_off();
4844 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4845 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4846 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
4847 
4848 		lockdep_print_held_locks(current);
4849 		debug_show_all_locks();
4850 		dump_stack();
4851 
4852 		return 0;
4853 	}
4854 
4855 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4856 		max_lockdep_depth = curr->lockdep_depth;
4857 
4858 	return 1;
4859 }
4860 
4861 static void print_unlock_imbalance_bug(struct task_struct *curr,
4862 				       struct lockdep_map *lock,
4863 				       unsigned long ip)
4864 {
4865 	if (!debug_locks_off())
4866 		return;
4867 	if (debug_locks_silent)
4868 		return;
4869 
4870 	pr_warn("\n");
4871 	pr_warn("=====================================\n");
4872 	pr_warn("WARNING: bad unlock balance detected!\n");
4873 	print_kernel_ident();
4874 	pr_warn("-------------------------------------\n");
4875 	pr_warn("%s/%d is trying to release lock (",
4876 		curr->comm, task_pid_nr(curr));
4877 	print_lockdep_cache(lock);
4878 	pr_cont(") at:\n");
4879 	print_ip_sym(KERN_WARNING, ip);
4880 	pr_warn("but there are no more locks to release!\n");
4881 	pr_warn("\nother info that might help us debug this:\n");
4882 	lockdep_print_held_locks(curr);
4883 
4884 	pr_warn("\nstack backtrace:\n");
4885 	dump_stack();
4886 }
4887 
4888 static noinstr int match_held_lock(const struct held_lock *hlock,
4889 				   const struct lockdep_map *lock)
4890 {
4891 	if (hlock->instance == lock)
4892 		return 1;
4893 
4894 	if (hlock->references) {
4895 		const struct lock_class *class = lock->class_cache[0];
4896 
4897 		if (!class)
4898 			class = look_up_lock_class(lock, 0);
4899 
4900 		/*
4901 		 * If look_up_lock_class() failed to find a class, we're trying
4902 		 * to test if we hold a lock that has never yet been acquired.
4903 		 * Clearly if the lock hasn't been acquired _ever_, we're not
4904 		 * holding it either, so report failure.
4905 		 */
4906 		if (!class)
4907 			return 0;
4908 
4909 		/*
4910 		 * References, but not a lock we're actually ref-counting?
4911 		 * State got messed up, follow the sites that change ->references
4912 		 * and try to make sense of it.
4913 		 */
4914 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4915 			return 0;
4916 
4917 		if (hlock->class_idx == class - lock_classes)
4918 			return 1;
4919 	}
4920 
4921 	return 0;
4922 }
4923 
4924 /* @depth must not be zero */
4925 static struct held_lock *find_held_lock(struct task_struct *curr,
4926 					struct lockdep_map *lock,
4927 					unsigned int depth, int *idx)
4928 {
4929 	struct held_lock *ret, *hlock, *prev_hlock;
4930 	int i;
4931 
4932 	i = depth - 1;
4933 	hlock = curr->held_locks + i;
4934 	ret = hlock;
4935 	if (match_held_lock(hlock, lock))
4936 		goto out;
4937 
4938 	ret = NULL;
4939 	for (i--, prev_hlock = hlock--;
4940 	     i >= 0;
4941 	     i--, prev_hlock = hlock--) {
4942 		/*
4943 		 * We must not cross into another context:
4944 		 */
4945 		if (prev_hlock->irq_context != hlock->irq_context) {
4946 			ret = NULL;
4947 			break;
4948 		}
4949 		if (match_held_lock(hlock, lock)) {
4950 			ret = hlock;
4951 			break;
4952 		}
4953 	}
4954 
4955 out:
4956 	*idx = i;
4957 	return ret;
4958 }
4959 
4960 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4961 				int idx, unsigned int *merged)
4962 {
4963 	struct held_lock *hlock;
4964 	int first_idx = idx;
4965 
4966 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4967 		return 0;
4968 
4969 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4970 		switch (__lock_acquire(hlock->instance,
4971 				    hlock_class(hlock)->subclass,
4972 				    hlock->trylock,
4973 				    hlock->read, hlock->check,
4974 				    hlock->hardirqs_off,
4975 				    hlock->nest_lock, hlock->acquire_ip,
4976 				    hlock->references, hlock->pin_count)) {
4977 		case 0:
4978 			return 1;
4979 		case 1:
4980 			break;
4981 		case 2:
4982 			*merged += (idx == first_idx);
4983 			break;
4984 		default:
4985 			WARN_ON(1);
4986 			return 0;
4987 		}
4988 	}
4989 	return 0;
4990 }
4991 
4992 static int
4993 __lock_set_class(struct lockdep_map *lock, const char *name,
4994 		 struct lock_class_key *key, unsigned int subclass,
4995 		 unsigned long ip)
4996 {
4997 	struct task_struct *curr = current;
4998 	unsigned int depth, merged = 0;
4999 	struct held_lock *hlock;
5000 	struct lock_class *class;
5001 	int i;
5002 
5003 	if (unlikely(!debug_locks))
5004 		return 0;
5005 
5006 	depth = curr->lockdep_depth;
5007 	/*
5008 	 * This function is about (re)setting the class of a held lock,
5009 	 * yet we're not actually holding any locks. Naughty user!
5010 	 */
5011 	if (DEBUG_LOCKS_WARN_ON(!depth))
5012 		return 0;
5013 
5014 	hlock = find_held_lock(curr, lock, depth, &i);
5015 	if (!hlock) {
5016 		print_unlock_imbalance_bug(curr, lock, ip);
5017 		return 0;
5018 	}
5019 
5020 	lockdep_init_map_waits(lock, name, key, 0,
5021 			       lock->wait_type_inner,
5022 			       lock->wait_type_outer);
5023 	class = register_lock_class(lock, subclass, 0);
5024 	hlock->class_idx = class - lock_classes;
5025 
5026 	curr->lockdep_depth = i;
5027 	curr->curr_chain_key = hlock->prev_chain_key;
5028 
5029 	if (reacquire_held_locks(curr, depth, i, &merged))
5030 		return 0;
5031 
5032 	/*
5033 	 * I took it apart and put it back together again, except now I have
5034 	 * these 'spare' parts.. where shall I put them.
5035 	 */
5036 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5037 		return 0;
5038 	return 1;
5039 }
5040 
5041 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5042 {
5043 	struct task_struct *curr = current;
5044 	unsigned int depth, merged = 0;
5045 	struct held_lock *hlock;
5046 	int i;
5047 
5048 	if (unlikely(!debug_locks))
5049 		return 0;
5050 
5051 	depth = curr->lockdep_depth;
5052 	/*
5053 	 * This function is about (re)setting the class of a held lock,
5054 	 * yet we're not actually holding any locks. Naughty user!
5055 	 */
5056 	if (DEBUG_LOCKS_WARN_ON(!depth))
5057 		return 0;
5058 
5059 	hlock = find_held_lock(curr, lock, depth, &i);
5060 	if (!hlock) {
5061 		print_unlock_imbalance_bug(curr, lock, ip);
5062 		return 0;
5063 	}
5064 
5065 	curr->lockdep_depth = i;
5066 	curr->curr_chain_key = hlock->prev_chain_key;
5067 
5068 	WARN(hlock->read, "downgrading a read lock");
5069 	hlock->read = 1;
5070 	hlock->acquire_ip = ip;
5071 
5072 	if (reacquire_held_locks(curr, depth, i, &merged))
5073 		return 0;
5074 
5075 	/* Merging can't happen with unchanged classes.. */
5076 	if (DEBUG_LOCKS_WARN_ON(merged))
5077 		return 0;
5078 
5079 	/*
5080 	 * I took it apart and put it back together again, except now I have
5081 	 * these 'spare' parts.. where shall I put them.
5082 	 */
5083 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5084 		return 0;
5085 
5086 	return 1;
5087 }
5088 
5089 /*
5090  * Remove the lock from the list of currently held locks - this gets
5091  * called on mutex_unlock()/spin_unlock*() (or on a failed
5092  * mutex_lock_interruptible()).
5093  */
5094 static int
5095 __lock_release(struct lockdep_map *lock, unsigned long ip)
5096 {
5097 	struct task_struct *curr = current;
5098 	unsigned int depth, merged = 1;
5099 	struct held_lock *hlock;
5100 	int i;
5101 
5102 	if (unlikely(!debug_locks))
5103 		return 0;
5104 
5105 	depth = curr->lockdep_depth;
5106 	/*
5107 	 * So we're all set to release this lock.. wait what lock? We don't
5108 	 * own any locks, you've been drinking again?
5109 	 */
5110 	if (depth <= 0) {
5111 		print_unlock_imbalance_bug(curr, lock, ip);
5112 		return 0;
5113 	}
5114 
5115 	/*
5116 	 * Check whether the lock exists in the current stack
5117 	 * of held locks:
5118 	 */
5119 	hlock = find_held_lock(curr, lock, depth, &i);
5120 	if (!hlock) {
5121 		print_unlock_imbalance_bug(curr, lock, ip);
5122 		return 0;
5123 	}
5124 
5125 	if (hlock->instance == lock)
5126 		lock_release_holdtime(hlock);
5127 
5128 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5129 
5130 	if (hlock->references) {
5131 		hlock->references--;
5132 		if (hlock->references) {
5133 			/*
5134 			 * We had, and after removing one, still have
5135 			 * references, the current lock stack is still
5136 			 * valid. We're done!
5137 			 */
5138 			return 1;
5139 		}
5140 	}
5141 
5142 	/*
5143 	 * We have the right lock to unlock, 'hlock' points to it.
5144 	 * Now we remove it from the stack, and add back the other
5145 	 * entries (if any), recalculating the hash along the way:
5146 	 */
5147 
5148 	curr->lockdep_depth = i;
5149 	curr->curr_chain_key = hlock->prev_chain_key;
5150 
5151 	/*
5152 	 * The most likely case is when the unlock is on the innermost
5153 	 * lock. In this case, we are done!
5154 	 */
5155 	if (i == depth-1)
5156 		return 1;
5157 
5158 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5159 		return 0;
5160 
5161 	/*
5162 	 * We had N bottles of beer on the wall, we drank one, but now
5163 	 * there's not N-1 bottles of beer left on the wall...
5164 	 * Pouring two of the bottles together is acceptable.
5165 	 */
5166 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5167 
5168 	/*
5169 	 * Since reacquire_held_locks() would have called check_chain_key()
5170 	 * indirectly via __lock_acquire(), we don't need to do it again
5171 	 * on return.
5172 	 */
5173 	return 0;
5174 }
5175 
5176 static __always_inline
5177 int __lock_is_held(const struct lockdep_map *lock, int read)
5178 {
5179 	struct task_struct *curr = current;
5180 	int i;
5181 
5182 	for (i = 0; i < curr->lockdep_depth; i++) {
5183 		struct held_lock *hlock = curr->held_locks + i;
5184 
5185 		if (match_held_lock(hlock, lock)) {
5186 			if (read == -1 || hlock->read == read)
5187 				return 1;
5188 
5189 			return 0;
5190 		}
5191 	}
5192 
5193 	return 0;
5194 }
5195 
5196 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5197 {
5198 	struct pin_cookie cookie = NIL_COOKIE;
5199 	struct task_struct *curr = current;
5200 	int i;
5201 
5202 	if (unlikely(!debug_locks))
5203 		return cookie;
5204 
5205 	for (i = 0; i < curr->lockdep_depth; i++) {
5206 		struct held_lock *hlock = curr->held_locks + i;
5207 
5208 		if (match_held_lock(hlock, lock)) {
5209 			/*
5210 			 * Grab 16bits of randomness; this is sufficient to not
5211 			 * be guessable and still allows some pin nesting in
5212 			 * our u32 pin_count.
5213 			 */
5214 			cookie.val = 1 + (prandom_u32() >> 16);
5215 			hlock->pin_count += cookie.val;
5216 			return cookie;
5217 		}
5218 	}
5219 
5220 	WARN(1, "pinning an unheld lock\n");
5221 	return cookie;
5222 }
5223 
5224 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5225 {
5226 	struct task_struct *curr = current;
5227 	int i;
5228 
5229 	if (unlikely(!debug_locks))
5230 		return;
5231 
5232 	for (i = 0; i < curr->lockdep_depth; i++) {
5233 		struct held_lock *hlock = curr->held_locks + i;
5234 
5235 		if (match_held_lock(hlock, lock)) {
5236 			hlock->pin_count += cookie.val;
5237 			return;
5238 		}
5239 	}
5240 
5241 	WARN(1, "pinning an unheld lock\n");
5242 }
5243 
5244 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5245 {
5246 	struct task_struct *curr = current;
5247 	int i;
5248 
5249 	if (unlikely(!debug_locks))
5250 		return;
5251 
5252 	for (i = 0; i < curr->lockdep_depth; i++) {
5253 		struct held_lock *hlock = curr->held_locks + i;
5254 
5255 		if (match_held_lock(hlock, lock)) {
5256 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5257 				return;
5258 
5259 			hlock->pin_count -= cookie.val;
5260 
5261 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5262 				hlock->pin_count = 0;
5263 
5264 			return;
5265 		}
5266 	}
5267 
5268 	WARN(1, "unpinning an unheld lock\n");
5269 }
5270 
5271 /*
5272  * Check whether we follow the irq-flags state precisely:
5273  */
5274 static void check_flags(unsigned long flags)
5275 {
5276 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5277 	if (!debug_locks)
5278 		return;
5279 
5280 	if (irqs_disabled_flags(flags)) {
5281 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5282 			printk("possible reason: unannotated irqs-off.\n");
5283 		}
5284 	} else {
5285 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5286 			printk("possible reason: unannotated irqs-on.\n");
5287 		}
5288 	}
5289 
5290 	/*
5291 	 * We dont accurately track softirq state in e.g.
5292 	 * hardirq contexts (such as on 4KSTACKS), so only
5293 	 * check if not in hardirq contexts:
5294 	 */
5295 	if (!hardirq_count()) {
5296 		if (softirq_count()) {
5297 			/* like the above, but with softirqs */
5298 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5299 		} else {
5300 			/* lick the above, does it taste good? */
5301 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5302 		}
5303 	}
5304 
5305 	if (!debug_locks)
5306 		print_irqtrace_events(current);
5307 #endif
5308 }
5309 
5310 void lock_set_class(struct lockdep_map *lock, const char *name,
5311 		    struct lock_class_key *key, unsigned int subclass,
5312 		    unsigned long ip)
5313 {
5314 	unsigned long flags;
5315 
5316 	if (unlikely(!lockdep_enabled()))
5317 		return;
5318 
5319 	raw_local_irq_save(flags);
5320 	lockdep_recursion_inc();
5321 	check_flags(flags);
5322 	if (__lock_set_class(lock, name, key, subclass, ip))
5323 		check_chain_key(current);
5324 	lockdep_recursion_finish();
5325 	raw_local_irq_restore(flags);
5326 }
5327 EXPORT_SYMBOL_GPL(lock_set_class);
5328 
5329 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5330 {
5331 	unsigned long flags;
5332 
5333 	if (unlikely(!lockdep_enabled()))
5334 		return;
5335 
5336 	raw_local_irq_save(flags);
5337 	lockdep_recursion_inc();
5338 	check_flags(flags);
5339 	if (__lock_downgrade(lock, ip))
5340 		check_chain_key(current);
5341 	lockdep_recursion_finish();
5342 	raw_local_irq_restore(flags);
5343 }
5344 EXPORT_SYMBOL_GPL(lock_downgrade);
5345 
5346 /* NMI context !!! */
5347 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5348 {
5349 #ifdef CONFIG_PROVE_LOCKING
5350 	struct lock_class *class = look_up_lock_class(lock, subclass);
5351 	unsigned long mask = LOCKF_USED;
5352 
5353 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5354 	if (!class)
5355 		return;
5356 
5357 	/*
5358 	 * READ locks only conflict with USED, such that if we only ever use
5359 	 * READ locks, there is no deadlock possible -- RCU.
5360 	 */
5361 	if (!hlock->read)
5362 		mask |= LOCKF_USED_READ;
5363 
5364 	if (!(class->usage_mask & mask))
5365 		return;
5366 
5367 	hlock->class_idx = class - lock_classes;
5368 
5369 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5370 #endif
5371 }
5372 
5373 static bool lockdep_nmi(void)
5374 {
5375 	if (raw_cpu_read(lockdep_recursion))
5376 		return false;
5377 
5378 	if (!in_nmi())
5379 		return false;
5380 
5381 	return true;
5382 }
5383 
5384 /*
5385  * read_lock() is recursive if:
5386  * 1. We force lockdep think this way in selftests or
5387  * 2. The implementation is not queued read/write lock or
5388  * 3. The locker is at an in_interrupt() context.
5389  */
5390 bool read_lock_is_recursive(void)
5391 {
5392 	return force_read_lock_recursive ||
5393 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5394 	       in_interrupt();
5395 }
5396 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5397 
5398 /*
5399  * We are not always called with irqs disabled - do that here,
5400  * and also avoid lockdep recursion:
5401  */
5402 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5403 			  int trylock, int read, int check,
5404 			  struct lockdep_map *nest_lock, unsigned long ip)
5405 {
5406 	unsigned long flags;
5407 
5408 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5409 
5410 	if (!debug_locks)
5411 		return;
5412 
5413 	if (unlikely(!lockdep_enabled())) {
5414 		/* XXX allow trylock from NMI ?!? */
5415 		if (lockdep_nmi() && !trylock) {
5416 			struct held_lock hlock;
5417 
5418 			hlock.acquire_ip = ip;
5419 			hlock.instance = lock;
5420 			hlock.nest_lock = nest_lock;
5421 			hlock.irq_context = 2; // XXX
5422 			hlock.trylock = trylock;
5423 			hlock.read = read;
5424 			hlock.check = check;
5425 			hlock.hardirqs_off = true;
5426 			hlock.references = 0;
5427 
5428 			verify_lock_unused(lock, &hlock, subclass);
5429 		}
5430 		return;
5431 	}
5432 
5433 	raw_local_irq_save(flags);
5434 	check_flags(flags);
5435 
5436 	lockdep_recursion_inc();
5437 	__lock_acquire(lock, subclass, trylock, read, check,
5438 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5439 	lockdep_recursion_finish();
5440 	raw_local_irq_restore(flags);
5441 }
5442 EXPORT_SYMBOL_GPL(lock_acquire);
5443 
5444 void lock_release(struct lockdep_map *lock, unsigned long ip)
5445 {
5446 	unsigned long flags;
5447 
5448 	trace_lock_release(lock, ip);
5449 
5450 	if (unlikely(!lockdep_enabled()))
5451 		return;
5452 
5453 	raw_local_irq_save(flags);
5454 	check_flags(flags);
5455 
5456 	lockdep_recursion_inc();
5457 	if (__lock_release(lock, ip))
5458 		check_chain_key(current);
5459 	lockdep_recursion_finish();
5460 	raw_local_irq_restore(flags);
5461 }
5462 EXPORT_SYMBOL_GPL(lock_release);
5463 
5464 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5465 {
5466 	unsigned long flags;
5467 	int ret = 0;
5468 
5469 	if (unlikely(!lockdep_enabled()))
5470 		return 1; /* avoid false negative lockdep_assert_held() */
5471 
5472 	raw_local_irq_save(flags);
5473 	check_flags(flags);
5474 
5475 	lockdep_recursion_inc();
5476 	ret = __lock_is_held(lock, read);
5477 	lockdep_recursion_finish();
5478 	raw_local_irq_restore(flags);
5479 
5480 	return ret;
5481 }
5482 EXPORT_SYMBOL_GPL(lock_is_held_type);
5483 NOKPROBE_SYMBOL(lock_is_held_type);
5484 
5485 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5486 {
5487 	struct pin_cookie cookie = NIL_COOKIE;
5488 	unsigned long flags;
5489 
5490 	if (unlikely(!lockdep_enabled()))
5491 		return cookie;
5492 
5493 	raw_local_irq_save(flags);
5494 	check_flags(flags);
5495 
5496 	lockdep_recursion_inc();
5497 	cookie = __lock_pin_lock(lock);
5498 	lockdep_recursion_finish();
5499 	raw_local_irq_restore(flags);
5500 
5501 	return cookie;
5502 }
5503 EXPORT_SYMBOL_GPL(lock_pin_lock);
5504 
5505 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5506 {
5507 	unsigned long flags;
5508 
5509 	if (unlikely(!lockdep_enabled()))
5510 		return;
5511 
5512 	raw_local_irq_save(flags);
5513 	check_flags(flags);
5514 
5515 	lockdep_recursion_inc();
5516 	__lock_repin_lock(lock, cookie);
5517 	lockdep_recursion_finish();
5518 	raw_local_irq_restore(flags);
5519 }
5520 EXPORT_SYMBOL_GPL(lock_repin_lock);
5521 
5522 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5523 {
5524 	unsigned long flags;
5525 
5526 	if (unlikely(!lockdep_enabled()))
5527 		return;
5528 
5529 	raw_local_irq_save(flags);
5530 	check_flags(flags);
5531 
5532 	lockdep_recursion_inc();
5533 	__lock_unpin_lock(lock, cookie);
5534 	lockdep_recursion_finish();
5535 	raw_local_irq_restore(flags);
5536 }
5537 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5538 
5539 #ifdef CONFIG_LOCK_STAT
5540 static void print_lock_contention_bug(struct task_struct *curr,
5541 				      struct lockdep_map *lock,
5542 				      unsigned long ip)
5543 {
5544 	if (!debug_locks_off())
5545 		return;
5546 	if (debug_locks_silent)
5547 		return;
5548 
5549 	pr_warn("\n");
5550 	pr_warn("=================================\n");
5551 	pr_warn("WARNING: bad contention detected!\n");
5552 	print_kernel_ident();
5553 	pr_warn("---------------------------------\n");
5554 	pr_warn("%s/%d is trying to contend lock (",
5555 		curr->comm, task_pid_nr(curr));
5556 	print_lockdep_cache(lock);
5557 	pr_cont(") at:\n");
5558 	print_ip_sym(KERN_WARNING, ip);
5559 	pr_warn("but there are no locks held!\n");
5560 	pr_warn("\nother info that might help us debug this:\n");
5561 	lockdep_print_held_locks(curr);
5562 
5563 	pr_warn("\nstack backtrace:\n");
5564 	dump_stack();
5565 }
5566 
5567 static void
5568 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5569 {
5570 	struct task_struct *curr = current;
5571 	struct held_lock *hlock;
5572 	struct lock_class_stats *stats;
5573 	unsigned int depth;
5574 	int i, contention_point, contending_point;
5575 
5576 	depth = curr->lockdep_depth;
5577 	/*
5578 	 * Whee, we contended on this lock, except it seems we're not
5579 	 * actually trying to acquire anything much at all..
5580 	 */
5581 	if (DEBUG_LOCKS_WARN_ON(!depth))
5582 		return;
5583 
5584 	hlock = find_held_lock(curr, lock, depth, &i);
5585 	if (!hlock) {
5586 		print_lock_contention_bug(curr, lock, ip);
5587 		return;
5588 	}
5589 
5590 	if (hlock->instance != lock)
5591 		return;
5592 
5593 	hlock->waittime_stamp = lockstat_clock();
5594 
5595 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5596 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5597 				      lock->ip);
5598 
5599 	stats = get_lock_stats(hlock_class(hlock));
5600 	if (contention_point < LOCKSTAT_POINTS)
5601 		stats->contention_point[contention_point]++;
5602 	if (contending_point < LOCKSTAT_POINTS)
5603 		stats->contending_point[contending_point]++;
5604 	if (lock->cpu != smp_processor_id())
5605 		stats->bounces[bounce_contended + !!hlock->read]++;
5606 }
5607 
5608 static void
5609 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5610 {
5611 	struct task_struct *curr = current;
5612 	struct held_lock *hlock;
5613 	struct lock_class_stats *stats;
5614 	unsigned int depth;
5615 	u64 now, waittime = 0;
5616 	int i, cpu;
5617 
5618 	depth = curr->lockdep_depth;
5619 	/*
5620 	 * Yay, we acquired ownership of this lock we didn't try to
5621 	 * acquire, how the heck did that happen?
5622 	 */
5623 	if (DEBUG_LOCKS_WARN_ON(!depth))
5624 		return;
5625 
5626 	hlock = find_held_lock(curr, lock, depth, &i);
5627 	if (!hlock) {
5628 		print_lock_contention_bug(curr, lock, _RET_IP_);
5629 		return;
5630 	}
5631 
5632 	if (hlock->instance != lock)
5633 		return;
5634 
5635 	cpu = smp_processor_id();
5636 	if (hlock->waittime_stamp) {
5637 		now = lockstat_clock();
5638 		waittime = now - hlock->waittime_stamp;
5639 		hlock->holdtime_stamp = now;
5640 	}
5641 
5642 	stats = get_lock_stats(hlock_class(hlock));
5643 	if (waittime) {
5644 		if (hlock->read)
5645 			lock_time_inc(&stats->read_waittime, waittime);
5646 		else
5647 			lock_time_inc(&stats->write_waittime, waittime);
5648 	}
5649 	if (lock->cpu != cpu)
5650 		stats->bounces[bounce_acquired + !!hlock->read]++;
5651 
5652 	lock->cpu = cpu;
5653 	lock->ip = ip;
5654 }
5655 
5656 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5657 {
5658 	unsigned long flags;
5659 
5660 	trace_lock_acquired(lock, ip);
5661 
5662 	if (unlikely(!lock_stat || !lockdep_enabled()))
5663 		return;
5664 
5665 	raw_local_irq_save(flags);
5666 	check_flags(flags);
5667 	lockdep_recursion_inc();
5668 	__lock_contended(lock, ip);
5669 	lockdep_recursion_finish();
5670 	raw_local_irq_restore(flags);
5671 }
5672 EXPORT_SYMBOL_GPL(lock_contended);
5673 
5674 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5675 {
5676 	unsigned long flags;
5677 
5678 	trace_lock_contended(lock, ip);
5679 
5680 	if (unlikely(!lock_stat || !lockdep_enabled()))
5681 		return;
5682 
5683 	raw_local_irq_save(flags);
5684 	check_flags(flags);
5685 	lockdep_recursion_inc();
5686 	__lock_acquired(lock, ip);
5687 	lockdep_recursion_finish();
5688 	raw_local_irq_restore(flags);
5689 }
5690 EXPORT_SYMBOL_GPL(lock_acquired);
5691 #endif
5692 
5693 /*
5694  * Used by the testsuite, sanitize the validator state
5695  * after a simulated failure:
5696  */
5697 
5698 void lockdep_reset(void)
5699 {
5700 	unsigned long flags;
5701 	int i;
5702 
5703 	raw_local_irq_save(flags);
5704 	lockdep_init_task(current);
5705 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5706 	nr_hardirq_chains = 0;
5707 	nr_softirq_chains = 0;
5708 	nr_process_chains = 0;
5709 	debug_locks = 1;
5710 	for (i = 0; i < CHAINHASH_SIZE; i++)
5711 		INIT_HLIST_HEAD(chainhash_table + i);
5712 	raw_local_irq_restore(flags);
5713 }
5714 
5715 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5716 static void remove_class_from_lock_chain(struct pending_free *pf,
5717 					 struct lock_chain *chain,
5718 					 struct lock_class *class)
5719 {
5720 #ifdef CONFIG_PROVE_LOCKING
5721 	int i;
5722 
5723 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5724 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5725 			continue;
5726 		/*
5727 		 * Each lock class occurs at most once in a lock chain so once
5728 		 * we found a match we can break out of this loop.
5729 		 */
5730 		goto free_lock_chain;
5731 	}
5732 	/* Since the chain has not been modified, return. */
5733 	return;
5734 
5735 free_lock_chain:
5736 	free_chain_hlocks(chain->base, chain->depth);
5737 	/* Overwrite the chain key for concurrent RCU readers. */
5738 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5739 	dec_chains(chain->irq_context);
5740 
5741 	/*
5742 	 * Note: calling hlist_del_rcu() from inside a
5743 	 * hlist_for_each_entry_rcu() loop is safe.
5744 	 */
5745 	hlist_del_rcu(&chain->entry);
5746 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5747 	nr_zapped_lock_chains++;
5748 #endif
5749 }
5750 
5751 /* Must be called with the graph lock held. */
5752 static void remove_class_from_lock_chains(struct pending_free *pf,
5753 					  struct lock_class *class)
5754 {
5755 	struct lock_chain *chain;
5756 	struct hlist_head *head;
5757 	int i;
5758 
5759 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5760 		head = chainhash_table + i;
5761 		hlist_for_each_entry_rcu(chain, head, entry) {
5762 			remove_class_from_lock_chain(pf, chain, class);
5763 		}
5764 	}
5765 }
5766 
5767 /*
5768  * Remove all references to a lock class. The caller must hold the graph lock.
5769  */
5770 static void zap_class(struct pending_free *pf, struct lock_class *class)
5771 {
5772 	struct lock_list *entry;
5773 	int i;
5774 
5775 	WARN_ON_ONCE(!class->key);
5776 
5777 	/*
5778 	 * Remove all dependencies this lock is
5779 	 * involved in:
5780 	 */
5781 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5782 		entry = list_entries + i;
5783 		if (entry->class != class && entry->links_to != class)
5784 			continue;
5785 		__clear_bit(i, list_entries_in_use);
5786 		nr_list_entries--;
5787 		list_del_rcu(&entry->entry);
5788 	}
5789 	if (list_empty(&class->locks_after) &&
5790 	    list_empty(&class->locks_before)) {
5791 		list_move_tail(&class->lock_entry, &pf->zapped);
5792 		hlist_del_rcu(&class->hash_entry);
5793 		WRITE_ONCE(class->key, NULL);
5794 		WRITE_ONCE(class->name, NULL);
5795 		nr_lock_classes--;
5796 		__clear_bit(class - lock_classes, lock_classes_in_use);
5797 	} else {
5798 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5799 			  class->name);
5800 	}
5801 
5802 	remove_class_from_lock_chains(pf, class);
5803 	nr_zapped_classes++;
5804 }
5805 
5806 static void reinit_class(struct lock_class *class)
5807 {
5808 	void *const p = class;
5809 	const unsigned int offset = offsetof(struct lock_class, key);
5810 
5811 	WARN_ON_ONCE(!class->lock_entry.next);
5812 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5813 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5814 	memset(p + offset, 0, sizeof(*class) - offset);
5815 	WARN_ON_ONCE(!class->lock_entry.next);
5816 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5817 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5818 }
5819 
5820 static inline int within(const void *addr, void *start, unsigned long size)
5821 {
5822 	return addr >= start && addr < start + size;
5823 }
5824 
5825 static bool inside_selftest(void)
5826 {
5827 	return current == lockdep_selftest_task_struct;
5828 }
5829 
5830 /* The caller must hold the graph lock. */
5831 static struct pending_free *get_pending_free(void)
5832 {
5833 	return delayed_free.pf + delayed_free.index;
5834 }
5835 
5836 static void free_zapped_rcu(struct rcu_head *cb);
5837 
5838 /*
5839  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5840  * the graph lock held.
5841  */
5842 static void call_rcu_zapped(struct pending_free *pf)
5843 {
5844 	WARN_ON_ONCE(inside_selftest());
5845 
5846 	if (list_empty(&pf->zapped))
5847 		return;
5848 
5849 	if (delayed_free.scheduled)
5850 		return;
5851 
5852 	delayed_free.scheduled = true;
5853 
5854 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5855 	delayed_free.index ^= 1;
5856 
5857 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5858 }
5859 
5860 /* The caller must hold the graph lock. May be called from RCU context. */
5861 static void __free_zapped_classes(struct pending_free *pf)
5862 {
5863 	struct lock_class *class;
5864 
5865 	check_data_structures();
5866 
5867 	list_for_each_entry(class, &pf->zapped, lock_entry)
5868 		reinit_class(class);
5869 
5870 	list_splice_init(&pf->zapped, &free_lock_classes);
5871 
5872 #ifdef CONFIG_PROVE_LOCKING
5873 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5874 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5875 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5876 #endif
5877 }
5878 
5879 static void free_zapped_rcu(struct rcu_head *ch)
5880 {
5881 	struct pending_free *pf;
5882 	unsigned long flags;
5883 
5884 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5885 		return;
5886 
5887 	raw_local_irq_save(flags);
5888 	lockdep_lock();
5889 
5890 	/* closed head */
5891 	pf = delayed_free.pf + (delayed_free.index ^ 1);
5892 	__free_zapped_classes(pf);
5893 	delayed_free.scheduled = false;
5894 
5895 	/*
5896 	 * If there's anything on the open list, close and start a new callback.
5897 	 */
5898 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
5899 
5900 	lockdep_unlock();
5901 	raw_local_irq_restore(flags);
5902 }
5903 
5904 /*
5905  * Remove all lock classes from the class hash table and from the
5906  * all_lock_classes list whose key or name is in the address range [start,
5907  * start + size). Move these lock classes to the zapped_classes list. Must
5908  * be called with the graph lock held.
5909  */
5910 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5911 				     unsigned long size)
5912 {
5913 	struct lock_class *class;
5914 	struct hlist_head *head;
5915 	int i;
5916 
5917 	/* Unhash all classes that were created by a module. */
5918 	for (i = 0; i < CLASSHASH_SIZE; i++) {
5919 		head = classhash_table + i;
5920 		hlist_for_each_entry_rcu(class, head, hash_entry) {
5921 			if (!within(class->key, start, size) &&
5922 			    !within(class->name, start, size))
5923 				continue;
5924 			zap_class(pf, class);
5925 		}
5926 	}
5927 }
5928 
5929 /*
5930  * Used in module.c to remove lock classes from memory that is going to be
5931  * freed; and possibly re-used by other modules.
5932  *
5933  * We will have had one synchronize_rcu() before getting here, so we're
5934  * guaranteed nobody will look up these exact classes -- they're properly dead
5935  * but still allocated.
5936  */
5937 static void lockdep_free_key_range_reg(void *start, unsigned long size)
5938 {
5939 	struct pending_free *pf;
5940 	unsigned long flags;
5941 
5942 	init_data_structures_once();
5943 
5944 	raw_local_irq_save(flags);
5945 	lockdep_lock();
5946 	pf = get_pending_free();
5947 	__lockdep_free_key_range(pf, start, size);
5948 	call_rcu_zapped(pf);
5949 	lockdep_unlock();
5950 	raw_local_irq_restore(flags);
5951 
5952 	/*
5953 	 * Wait for any possible iterators from look_up_lock_class() to pass
5954 	 * before continuing to free the memory they refer to.
5955 	 */
5956 	synchronize_rcu();
5957 }
5958 
5959 /*
5960  * Free all lockdep keys in the range [start, start+size). Does not sleep.
5961  * Ignores debug_locks. Must only be used by the lockdep selftests.
5962  */
5963 static void lockdep_free_key_range_imm(void *start, unsigned long size)
5964 {
5965 	struct pending_free *pf = delayed_free.pf;
5966 	unsigned long flags;
5967 
5968 	init_data_structures_once();
5969 
5970 	raw_local_irq_save(flags);
5971 	lockdep_lock();
5972 	__lockdep_free_key_range(pf, start, size);
5973 	__free_zapped_classes(pf);
5974 	lockdep_unlock();
5975 	raw_local_irq_restore(flags);
5976 }
5977 
5978 void lockdep_free_key_range(void *start, unsigned long size)
5979 {
5980 	init_data_structures_once();
5981 
5982 	if (inside_selftest())
5983 		lockdep_free_key_range_imm(start, size);
5984 	else
5985 		lockdep_free_key_range_reg(start, size);
5986 }
5987 
5988 /*
5989  * Check whether any element of the @lock->class_cache[] array refers to a
5990  * registered lock class. The caller must hold either the graph lock or the
5991  * RCU read lock.
5992  */
5993 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5994 {
5995 	struct lock_class *class;
5996 	struct hlist_head *head;
5997 	int i, j;
5998 
5999 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6000 		head = classhash_table + i;
6001 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6002 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6003 				if (lock->class_cache[j] == class)
6004 					return true;
6005 		}
6006 	}
6007 	return false;
6008 }
6009 
6010 /* The caller must hold the graph lock. Does not sleep. */
6011 static void __lockdep_reset_lock(struct pending_free *pf,
6012 				 struct lockdep_map *lock)
6013 {
6014 	struct lock_class *class;
6015 	int j;
6016 
6017 	/*
6018 	 * Remove all classes this lock might have:
6019 	 */
6020 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6021 		/*
6022 		 * If the class exists we look it up and zap it:
6023 		 */
6024 		class = look_up_lock_class(lock, j);
6025 		if (class)
6026 			zap_class(pf, class);
6027 	}
6028 	/*
6029 	 * Debug check: in the end all mapped classes should
6030 	 * be gone.
6031 	 */
6032 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6033 		debug_locks_off();
6034 }
6035 
6036 /*
6037  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6038  * released data structures from RCU context.
6039  */
6040 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6041 {
6042 	struct pending_free *pf;
6043 	unsigned long flags;
6044 	int locked;
6045 
6046 	raw_local_irq_save(flags);
6047 	locked = graph_lock();
6048 	if (!locked)
6049 		goto out_irq;
6050 
6051 	pf = get_pending_free();
6052 	__lockdep_reset_lock(pf, lock);
6053 	call_rcu_zapped(pf);
6054 
6055 	graph_unlock();
6056 out_irq:
6057 	raw_local_irq_restore(flags);
6058 }
6059 
6060 /*
6061  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6062  * lockdep selftests.
6063  */
6064 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6065 {
6066 	struct pending_free *pf = delayed_free.pf;
6067 	unsigned long flags;
6068 
6069 	raw_local_irq_save(flags);
6070 	lockdep_lock();
6071 	__lockdep_reset_lock(pf, lock);
6072 	__free_zapped_classes(pf);
6073 	lockdep_unlock();
6074 	raw_local_irq_restore(flags);
6075 }
6076 
6077 void lockdep_reset_lock(struct lockdep_map *lock)
6078 {
6079 	init_data_structures_once();
6080 
6081 	if (inside_selftest())
6082 		lockdep_reset_lock_imm(lock);
6083 	else
6084 		lockdep_reset_lock_reg(lock);
6085 }
6086 
6087 /* Unregister a dynamically allocated key. */
6088 void lockdep_unregister_key(struct lock_class_key *key)
6089 {
6090 	struct hlist_head *hash_head = keyhashentry(key);
6091 	struct lock_class_key *k;
6092 	struct pending_free *pf;
6093 	unsigned long flags;
6094 	bool found = false;
6095 
6096 	might_sleep();
6097 
6098 	if (WARN_ON_ONCE(static_obj(key)))
6099 		return;
6100 
6101 	raw_local_irq_save(flags);
6102 	if (!graph_lock())
6103 		goto out_irq;
6104 
6105 	pf = get_pending_free();
6106 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6107 		if (k == key) {
6108 			hlist_del_rcu(&k->hash_entry);
6109 			found = true;
6110 			break;
6111 		}
6112 	}
6113 	WARN_ON_ONCE(!found);
6114 	__lockdep_free_key_range(pf, key, 1);
6115 	call_rcu_zapped(pf);
6116 	graph_unlock();
6117 out_irq:
6118 	raw_local_irq_restore(flags);
6119 
6120 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6121 	synchronize_rcu();
6122 }
6123 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6124 
6125 void __init lockdep_init(void)
6126 {
6127 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6128 
6129 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6130 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6131 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6132 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6133 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6134 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6135 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6136 
6137 	printk(" memory used by lock dependency info: %zu kB\n",
6138 	       (sizeof(lock_classes) +
6139 		sizeof(lock_classes_in_use) +
6140 		sizeof(classhash_table) +
6141 		sizeof(list_entries) +
6142 		sizeof(list_entries_in_use) +
6143 		sizeof(chainhash_table) +
6144 		sizeof(delayed_free)
6145 #ifdef CONFIG_PROVE_LOCKING
6146 		+ sizeof(lock_cq)
6147 		+ sizeof(lock_chains)
6148 		+ sizeof(lock_chains_in_use)
6149 		+ sizeof(chain_hlocks)
6150 #endif
6151 		) / 1024
6152 		);
6153 
6154 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6155 	printk(" memory used for stack traces: %zu kB\n",
6156 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6157 	       );
6158 #endif
6159 
6160 	printk(" per task-struct memory footprint: %zu bytes\n",
6161 	       sizeof(((struct task_struct *)NULL)->held_locks));
6162 }
6163 
6164 static void
6165 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6166 		     const void *mem_to, struct held_lock *hlock)
6167 {
6168 	if (!debug_locks_off())
6169 		return;
6170 	if (debug_locks_silent)
6171 		return;
6172 
6173 	pr_warn("\n");
6174 	pr_warn("=========================\n");
6175 	pr_warn("WARNING: held lock freed!\n");
6176 	print_kernel_ident();
6177 	pr_warn("-------------------------\n");
6178 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6179 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6180 	print_lock(hlock);
6181 	lockdep_print_held_locks(curr);
6182 
6183 	pr_warn("\nstack backtrace:\n");
6184 	dump_stack();
6185 }
6186 
6187 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6188 				const void* lock_from, unsigned long lock_len)
6189 {
6190 	return lock_from + lock_len <= mem_from ||
6191 		mem_from + mem_len <= lock_from;
6192 }
6193 
6194 /*
6195  * Called when kernel memory is freed (or unmapped), or if a lock
6196  * is destroyed or reinitialized - this code checks whether there is
6197  * any held lock in the memory range of <from> to <to>:
6198  */
6199 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6200 {
6201 	struct task_struct *curr = current;
6202 	struct held_lock *hlock;
6203 	unsigned long flags;
6204 	int i;
6205 
6206 	if (unlikely(!debug_locks))
6207 		return;
6208 
6209 	raw_local_irq_save(flags);
6210 	for (i = 0; i < curr->lockdep_depth; i++) {
6211 		hlock = curr->held_locks + i;
6212 
6213 		if (not_in_range(mem_from, mem_len, hlock->instance,
6214 					sizeof(*hlock->instance)))
6215 			continue;
6216 
6217 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6218 		break;
6219 	}
6220 	raw_local_irq_restore(flags);
6221 }
6222 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6223 
6224 static void print_held_locks_bug(void)
6225 {
6226 	if (!debug_locks_off())
6227 		return;
6228 	if (debug_locks_silent)
6229 		return;
6230 
6231 	pr_warn("\n");
6232 	pr_warn("====================================\n");
6233 	pr_warn("WARNING: %s/%d still has locks held!\n",
6234 	       current->comm, task_pid_nr(current));
6235 	print_kernel_ident();
6236 	pr_warn("------------------------------------\n");
6237 	lockdep_print_held_locks(current);
6238 	pr_warn("\nstack backtrace:\n");
6239 	dump_stack();
6240 }
6241 
6242 void debug_check_no_locks_held(void)
6243 {
6244 	if (unlikely(current->lockdep_depth > 0))
6245 		print_held_locks_bug();
6246 }
6247 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6248 
6249 #ifdef __KERNEL__
6250 void debug_show_all_locks(void)
6251 {
6252 	struct task_struct *g, *p;
6253 
6254 	if (unlikely(!debug_locks)) {
6255 		pr_warn("INFO: lockdep is turned off.\n");
6256 		return;
6257 	}
6258 	pr_warn("\nShowing all locks held in the system:\n");
6259 
6260 	rcu_read_lock();
6261 	for_each_process_thread(g, p) {
6262 		if (!p->lockdep_depth)
6263 			continue;
6264 		lockdep_print_held_locks(p);
6265 		touch_nmi_watchdog();
6266 		touch_all_softlockup_watchdogs();
6267 	}
6268 	rcu_read_unlock();
6269 
6270 	pr_warn("\n");
6271 	pr_warn("=============================================\n\n");
6272 }
6273 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6274 #endif
6275 
6276 /*
6277  * Careful: only use this function if you are sure that
6278  * the task cannot run in parallel!
6279  */
6280 void debug_show_held_locks(struct task_struct *task)
6281 {
6282 	if (unlikely(!debug_locks)) {
6283 		printk("INFO: lockdep is turned off.\n");
6284 		return;
6285 	}
6286 	lockdep_print_held_locks(task);
6287 }
6288 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6289 
6290 asmlinkage __visible void lockdep_sys_exit(void)
6291 {
6292 	struct task_struct *curr = current;
6293 
6294 	if (unlikely(curr->lockdep_depth)) {
6295 		if (!debug_locks_off())
6296 			return;
6297 		pr_warn("\n");
6298 		pr_warn("================================================\n");
6299 		pr_warn("WARNING: lock held when returning to user space!\n");
6300 		print_kernel_ident();
6301 		pr_warn("------------------------------------------------\n");
6302 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6303 				curr->comm, curr->pid);
6304 		lockdep_print_held_locks(curr);
6305 	}
6306 
6307 	/*
6308 	 * The lock history for each syscall should be independent. So wipe the
6309 	 * slate clean on return to userspace.
6310 	 */
6311 	lockdep_invariant_state(false);
6312 }
6313 
6314 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6315 {
6316 	struct task_struct *curr = current;
6317 
6318 	/* Note: the following can be executed concurrently, so be careful. */
6319 	pr_warn("\n");
6320 	pr_warn("=============================\n");
6321 	pr_warn("WARNING: suspicious RCU usage\n");
6322 	print_kernel_ident();
6323 	pr_warn("-----------------------------\n");
6324 	pr_warn("%s:%d %s!\n", file, line, s);
6325 	pr_warn("\nother info that might help us debug this:\n\n");
6326 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6327 	       !rcu_lockdep_current_cpu_online()
6328 			? "RCU used illegally from offline CPU!\n"
6329 			: "",
6330 	       rcu_scheduler_active, debug_locks);
6331 
6332 	/*
6333 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6334 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6335 	 * considers that CPU to be in an "extended quiescent state",
6336 	 * which means that RCU will be completely ignoring that CPU.
6337 	 * Therefore, rcu_read_lock() and friends have absolutely no
6338 	 * effect on a CPU running in that state. In other words, even if
6339 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6340 	 * delete data structures out from under it.  RCU really has no
6341 	 * choice here: we need to keep an RCU-free window in idle where
6342 	 * the CPU may possibly enter into low power mode. This way we can
6343 	 * notice an extended quiescent state to other CPUs that started a grace
6344 	 * period. Otherwise we would delay any grace period as long as we run
6345 	 * in the idle task.
6346 	 *
6347 	 * So complain bitterly if someone does call rcu_read_lock(),
6348 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6349 	 */
6350 	if (!rcu_is_watching())
6351 		pr_warn("RCU used illegally from extended quiescent state!\n");
6352 
6353 	lockdep_print_held_locks(curr);
6354 	pr_warn("\nstack backtrace:\n");
6355 	dump_stack();
6356 }
6357 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6358