1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 59 #include <asm/sections.h> 60 61 #include "lockdep_internals.h" 62 63 #include <trace/events/lock.h> 64 65 #ifdef CONFIG_PROVE_LOCKING 66 int prove_locking = 1; 67 module_param(prove_locking, int, 0644); 68 #else 69 #define prove_locking 0 70 #endif 71 72 #ifdef CONFIG_LOCK_STAT 73 int lock_stat = 1; 74 module_param(lock_stat, int, 0644); 75 #else 76 #define lock_stat 0 77 #endif 78 79 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 81 82 static __always_inline bool lockdep_enabled(void) 83 { 84 if (!debug_locks) 85 return false; 86 87 if (this_cpu_read(lockdep_recursion)) 88 return false; 89 90 if (current->lockdep_recursion) 91 return false; 92 93 return true; 94 } 95 96 /* 97 * lockdep_lock: protects the lockdep graph, the hashes and the 98 * class/list/hash allocators. 99 * 100 * This is one of the rare exceptions where it's justified 101 * to use a raw spinlock - we really dont want the spinlock 102 * code to recurse back into the lockdep code... 103 */ 104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 105 static struct task_struct *__owner; 106 107 static inline void lockdep_lock(void) 108 { 109 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 110 111 __this_cpu_inc(lockdep_recursion); 112 arch_spin_lock(&__lock); 113 __owner = current; 114 } 115 116 static inline void lockdep_unlock(void) 117 { 118 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 119 120 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 121 return; 122 123 __owner = NULL; 124 arch_spin_unlock(&__lock); 125 __this_cpu_dec(lockdep_recursion); 126 } 127 128 static inline bool lockdep_assert_locked(void) 129 { 130 return DEBUG_LOCKS_WARN_ON(__owner != current); 131 } 132 133 static struct task_struct *lockdep_selftest_task_struct; 134 135 136 static int graph_lock(void) 137 { 138 lockdep_lock(); 139 /* 140 * Make sure that if another CPU detected a bug while 141 * walking the graph we dont change it (while the other 142 * CPU is busy printing out stuff with the graph lock 143 * dropped already) 144 */ 145 if (!debug_locks) { 146 lockdep_unlock(); 147 return 0; 148 } 149 return 1; 150 } 151 152 static inline void graph_unlock(void) 153 { 154 lockdep_unlock(); 155 } 156 157 /* 158 * Turn lock debugging off and return with 0 if it was off already, 159 * and also release the graph lock: 160 */ 161 static inline int debug_locks_off_graph_unlock(void) 162 { 163 int ret = debug_locks_off(); 164 165 lockdep_unlock(); 166 167 return ret; 168 } 169 170 unsigned long nr_list_entries; 171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 173 174 /* 175 * All data structures here are protected by the global debug_lock. 176 * 177 * nr_lock_classes is the number of elements of lock_classes[] that is 178 * in use. 179 */ 180 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 181 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 183 unsigned long nr_lock_classes; 184 unsigned long nr_zapped_classes; 185 unsigned long max_lock_class_idx; 186 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 187 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 188 189 static inline struct lock_class *hlock_class(struct held_lock *hlock) 190 { 191 unsigned int class_idx = hlock->class_idx; 192 193 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 194 barrier(); 195 196 if (!test_bit(class_idx, lock_classes_in_use)) { 197 /* 198 * Someone passed in garbage, we give up. 199 */ 200 DEBUG_LOCKS_WARN_ON(1); 201 return NULL; 202 } 203 204 /* 205 * At this point, if the passed hlock->class_idx is still garbage, 206 * we just have to live with it 207 */ 208 return lock_classes + class_idx; 209 } 210 211 #ifdef CONFIG_LOCK_STAT 212 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 213 214 static inline u64 lockstat_clock(void) 215 { 216 return local_clock(); 217 } 218 219 static int lock_point(unsigned long points[], unsigned long ip) 220 { 221 int i; 222 223 for (i = 0; i < LOCKSTAT_POINTS; i++) { 224 if (points[i] == 0) { 225 points[i] = ip; 226 break; 227 } 228 if (points[i] == ip) 229 break; 230 } 231 232 return i; 233 } 234 235 static void lock_time_inc(struct lock_time *lt, u64 time) 236 { 237 if (time > lt->max) 238 lt->max = time; 239 240 if (time < lt->min || !lt->nr) 241 lt->min = time; 242 243 lt->total += time; 244 lt->nr++; 245 } 246 247 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 248 { 249 if (!src->nr) 250 return; 251 252 if (src->max > dst->max) 253 dst->max = src->max; 254 255 if (src->min < dst->min || !dst->nr) 256 dst->min = src->min; 257 258 dst->total += src->total; 259 dst->nr += src->nr; 260 } 261 262 struct lock_class_stats lock_stats(struct lock_class *class) 263 { 264 struct lock_class_stats stats; 265 int cpu, i; 266 267 memset(&stats, 0, sizeof(struct lock_class_stats)); 268 for_each_possible_cpu(cpu) { 269 struct lock_class_stats *pcs = 270 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 271 272 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 273 stats.contention_point[i] += pcs->contention_point[i]; 274 275 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 276 stats.contending_point[i] += pcs->contending_point[i]; 277 278 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 279 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 280 281 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 282 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 283 284 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 285 stats.bounces[i] += pcs->bounces[i]; 286 } 287 288 return stats; 289 } 290 291 void clear_lock_stats(struct lock_class *class) 292 { 293 int cpu; 294 295 for_each_possible_cpu(cpu) { 296 struct lock_class_stats *cpu_stats = 297 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 298 299 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 300 } 301 memset(class->contention_point, 0, sizeof(class->contention_point)); 302 memset(class->contending_point, 0, sizeof(class->contending_point)); 303 } 304 305 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 306 { 307 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 308 } 309 310 static void lock_release_holdtime(struct held_lock *hlock) 311 { 312 struct lock_class_stats *stats; 313 u64 holdtime; 314 315 if (!lock_stat) 316 return; 317 318 holdtime = lockstat_clock() - hlock->holdtime_stamp; 319 320 stats = get_lock_stats(hlock_class(hlock)); 321 if (hlock->read) 322 lock_time_inc(&stats->read_holdtime, holdtime); 323 else 324 lock_time_inc(&stats->write_holdtime, holdtime); 325 } 326 #else 327 static inline void lock_release_holdtime(struct held_lock *hlock) 328 { 329 } 330 #endif 331 332 /* 333 * We keep a global list of all lock classes. The list is only accessed with 334 * the lockdep spinlock lock held. free_lock_classes is a list with free 335 * elements. These elements are linked together by the lock_entry member in 336 * struct lock_class. 337 */ 338 static LIST_HEAD(all_lock_classes); 339 static LIST_HEAD(free_lock_classes); 340 341 /** 342 * struct pending_free - information about data structures about to be freed 343 * @zapped: Head of a list with struct lock_class elements. 344 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 345 * are about to be freed. 346 */ 347 struct pending_free { 348 struct list_head zapped; 349 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 350 }; 351 352 /** 353 * struct delayed_free - data structures used for delayed freeing 354 * 355 * A data structure for delayed freeing of data structures that may be 356 * accessed by RCU readers at the time these were freed. 357 * 358 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 359 * @index: Index of @pf to which freed data structures are added. 360 * @scheduled: Whether or not an RCU callback has been scheduled. 361 * @pf: Array with information about data structures about to be freed. 362 */ 363 static struct delayed_free { 364 struct rcu_head rcu_head; 365 int index; 366 int scheduled; 367 struct pending_free pf[2]; 368 } delayed_free; 369 370 /* 371 * The lockdep classes are in a hash-table as well, for fast lookup: 372 */ 373 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 374 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 375 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 376 #define classhashentry(key) (classhash_table + __classhashfn((key))) 377 378 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 379 380 /* 381 * We put the lock dependency chains into a hash-table as well, to cache 382 * their existence: 383 */ 384 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 385 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 386 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 387 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 388 389 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 390 391 /* 392 * the id of held_lock 393 */ 394 static inline u16 hlock_id(struct held_lock *hlock) 395 { 396 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 397 398 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 399 } 400 401 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 402 { 403 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 404 } 405 406 /* 407 * The hash key of the lock dependency chains is a hash itself too: 408 * it's a hash of all locks taken up to that lock, including that lock. 409 * It's a 64-bit hash, because it's important for the keys to be 410 * unique. 411 */ 412 static inline u64 iterate_chain_key(u64 key, u32 idx) 413 { 414 u32 k0 = key, k1 = key >> 32; 415 416 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 417 418 return k0 | (u64)k1 << 32; 419 } 420 421 void lockdep_init_task(struct task_struct *task) 422 { 423 task->lockdep_depth = 0; /* no locks held yet */ 424 task->curr_chain_key = INITIAL_CHAIN_KEY; 425 task->lockdep_recursion = 0; 426 } 427 428 static __always_inline void lockdep_recursion_inc(void) 429 { 430 __this_cpu_inc(lockdep_recursion); 431 } 432 433 static __always_inline void lockdep_recursion_finish(void) 434 { 435 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 436 __this_cpu_write(lockdep_recursion, 0); 437 } 438 439 void lockdep_set_selftest_task(struct task_struct *task) 440 { 441 lockdep_selftest_task_struct = task; 442 } 443 444 /* 445 * Debugging switches: 446 */ 447 448 #define VERBOSE 0 449 #define VERY_VERBOSE 0 450 451 #if VERBOSE 452 # define HARDIRQ_VERBOSE 1 453 # define SOFTIRQ_VERBOSE 1 454 #else 455 # define HARDIRQ_VERBOSE 0 456 # define SOFTIRQ_VERBOSE 0 457 #endif 458 459 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 460 /* 461 * Quick filtering for interesting events: 462 */ 463 static int class_filter(struct lock_class *class) 464 { 465 #if 0 466 /* Example */ 467 if (class->name_version == 1 && 468 !strcmp(class->name, "lockname")) 469 return 1; 470 if (class->name_version == 1 && 471 !strcmp(class->name, "&struct->lockfield")) 472 return 1; 473 #endif 474 /* Filter everything else. 1 would be to allow everything else */ 475 return 0; 476 } 477 #endif 478 479 static int verbose(struct lock_class *class) 480 { 481 #if VERBOSE 482 return class_filter(class); 483 #endif 484 return 0; 485 } 486 487 static void print_lockdep_off(const char *bug_msg) 488 { 489 printk(KERN_DEBUG "%s\n", bug_msg); 490 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 491 #ifdef CONFIG_LOCK_STAT 492 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 493 #endif 494 } 495 496 unsigned long nr_stack_trace_entries; 497 498 #ifdef CONFIG_PROVE_LOCKING 499 /** 500 * struct lock_trace - single stack backtrace 501 * @hash_entry: Entry in a stack_trace_hash[] list. 502 * @hash: jhash() of @entries. 503 * @nr_entries: Number of entries in @entries. 504 * @entries: Actual stack backtrace. 505 */ 506 struct lock_trace { 507 struct hlist_node hash_entry; 508 u32 hash; 509 u32 nr_entries; 510 unsigned long entries[] __aligned(sizeof(unsigned long)); 511 }; 512 #define LOCK_TRACE_SIZE_IN_LONGS \ 513 (sizeof(struct lock_trace) / sizeof(unsigned long)) 514 /* 515 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 516 */ 517 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 518 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 519 520 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 521 { 522 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 523 memcmp(t1->entries, t2->entries, 524 t1->nr_entries * sizeof(t1->entries[0])) == 0; 525 } 526 527 static struct lock_trace *save_trace(void) 528 { 529 struct lock_trace *trace, *t2; 530 struct hlist_head *hash_head; 531 u32 hash; 532 int max_entries; 533 534 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 535 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 536 537 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 538 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 539 LOCK_TRACE_SIZE_IN_LONGS; 540 541 if (max_entries <= 0) { 542 if (!debug_locks_off_graph_unlock()) 543 return NULL; 544 545 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 546 dump_stack(); 547 548 return NULL; 549 } 550 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 551 552 hash = jhash(trace->entries, trace->nr_entries * 553 sizeof(trace->entries[0]), 0); 554 trace->hash = hash; 555 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 556 hlist_for_each_entry(t2, hash_head, hash_entry) { 557 if (traces_identical(trace, t2)) 558 return t2; 559 } 560 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 561 hlist_add_head(&trace->hash_entry, hash_head); 562 563 return trace; 564 } 565 566 /* Return the number of stack traces in the stack_trace[] array. */ 567 u64 lockdep_stack_trace_count(void) 568 { 569 struct lock_trace *trace; 570 u64 c = 0; 571 int i; 572 573 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 574 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 575 c++; 576 } 577 } 578 579 return c; 580 } 581 582 /* Return the number of stack hash chains that have at least one stack trace. */ 583 u64 lockdep_stack_hash_count(void) 584 { 585 u64 c = 0; 586 int i; 587 588 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 589 if (!hlist_empty(&stack_trace_hash[i])) 590 c++; 591 592 return c; 593 } 594 #endif 595 596 unsigned int nr_hardirq_chains; 597 unsigned int nr_softirq_chains; 598 unsigned int nr_process_chains; 599 unsigned int max_lockdep_depth; 600 601 #ifdef CONFIG_DEBUG_LOCKDEP 602 /* 603 * Various lockdep statistics: 604 */ 605 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 606 #endif 607 608 #ifdef CONFIG_PROVE_LOCKING 609 /* 610 * Locking printouts: 611 */ 612 613 #define __USAGE(__STATE) \ 614 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 615 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 616 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 617 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 618 619 static const char *usage_str[] = 620 { 621 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 622 #include "lockdep_states.h" 623 #undef LOCKDEP_STATE 624 [LOCK_USED] = "INITIAL USE", 625 [LOCK_USED_READ] = "INITIAL READ USE", 626 /* abused as string storage for verify_lock_unused() */ 627 [LOCK_USAGE_STATES] = "IN-NMI", 628 }; 629 #endif 630 631 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 632 { 633 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 634 } 635 636 static inline unsigned long lock_flag(enum lock_usage_bit bit) 637 { 638 return 1UL << bit; 639 } 640 641 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 642 { 643 /* 644 * The usage character defaults to '.' (i.e., irqs disabled and not in 645 * irq context), which is the safest usage category. 646 */ 647 char c = '.'; 648 649 /* 650 * The order of the following usage checks matters, which will 651 * result in the outcome character as follows: 652 * 653 * - '+': irq is enabled and not in irq context 654 * - '-': in irq context and irq is disabled 655 * - '?': in irq context and irq is enabled 656 */ 657 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 658 c = '+'; 659 if (class->usage_mask & lock_flag(bit)) 660 c = '?'; 661 } else if (class->usage_mask & lock_flag(bit)) 662 c = '-'; 663 664 return c; 665 } 666 667 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 668 { 669 int i = 0; 670 671 #define LOCKDEP_STATE(__STATE) \ 672 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 673 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 674 #include "lockdep_states.h" 675 #undef LOCKDEP_STATE 676 677 usage[i] = '\0'; 678 } 679 680 static void __print_lock_name(struct lock_class *class) 681 { 682 char str[KSYM_NAME_LEN]; 683 const char *name; 684 685 name = class->name; 686 if (!name) { 687 name = __get_key_name(class->key, str); 688 printk(KERN_CONT "%s", name); 689 } else { 690 printk(KERN_CONT "%s", name); 691 if (class->name_version > 1) 692 printk(KERN_CONT "#%d", class->name_version); 693 if (class->subclass) 694 printk(KERN_CONT "/%d", class->subclass); 695 } 696 } 697 698 static void print_lock_name(struct lock_class *class) 699 { 700 char usage[LOCK_USAGE_CHARS]; 701 702 get_usage_chars(class, usage); 703 704 printk(KERN_CONT " ("); 705 __print_lock_name(class); 706 printk(KERN_CONT "){%s}-{%d:%d}", usage, 707 class->wait_type_outer ?: class->wait_type_inner, 708 class->wait_type_inner); 709 } 710 711 static void print_lockdep_cache(struct lockdep_map *lock) 712 { 713 const char *name; 714 char str[KSYM_NAME_LEN]; 715 716 name = lock->name; 717 if (!name) 718 name = __get_key_name(lock->key->subkeys, str); 719 720 printk(KERN_CONT "%s", name); 721 } 722 723 static void print_lock(struct held_lock *hlock) 724 { 725 /* 726 * We can be called locklessly through debug_show_all_locks() so be 727 * extra careful, the hlock might have been released and cleared. 728 * 729 * If this indeed happens, lets pretend it does not hurt to continue 730 * to print the lock unless the hlock class_idx does not point to a 731 * registered class. The rationale here is: since we don't attempt 732 * to distinguish whether we are in this situation, if it just 733 * happened we can't count on class_idx to tell either. 734 */ 735 struct lock_class *lock = hlock_class(hlock); 736 737 if (!lock) { 738 printk(KERN_CONT "<RELEASED>\n"); 739 return; 740 } 741 742 printk(KERN_CONT "%px", hlock->instance); 743 print_lock_name(lock); 744 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 745 } 746 747 static void lockdep_print_held_locks(struct task_struct *p) 748 { 749 int i, depth = READ_ONCE(p->lockdep_depth); 750 751 if (!depth) 752 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 753 else 754 printk("%d lock%s held by %s/%d:\n", depth, 755 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 756 /* 757 * It's not reliable to print a task's held locks if it's not sleeping 758 * and it's not the current task. 759 */ 760 if (p != current && task_is_running(p)) 761 return; 762 for (i = 0; i < depth; i++) { 763 printk(" #%d: ", i); 764 print_lock(p->held_locks + i); 765 } 766 } 767 768 static void print_kernel_ident(void) 769 { 770 printk("%s %.*s %s\n", init_utsname()->release, 771 (int)strcspn(init_utsname()->version, " "), 772 init_utsname()->version, 773 print_tainted()); 774 } 775 776 static int very_verbose(struct lock_class *class) 777 { 778 #if VERY_VERBOSE 779 return class_filter(class); 780 #endif 781 return 0; 782 } 783 784 /* 785 * Is this the address of a static object: 786 */ 787 #ifdef __KERNEL__ 788 /* 789 * Check if an address is part of freed initmem. After initmem is freed, 790 * memory can be allocated from it, and such allocations would then have 791 * addresses within the range [_stext, _end]. 792 */ 793 #ifndef arch_is_kernel_initmem_freed 794 static int arch_is_kernel_initmem_freed(unsigned long addr) 795 { 796 if (system_state < SYSTEM_FREEING_INITMEM) 797 return 0; 798 799 return init_section_contains((void *)addr, 1); 800 } 801 #endif 802 803 static int static_obj(const void *obj) 804 { 805 unsigned long start = (unsigned long) &_stext, 806 end = (unsigned long) &_end, 807 addr = (unsigned long) obj; 808 809 if (arch_is_kernel_initmem_freed(addr)) 810 return 0; 811 812 /* 813 * static variable? 814 */ 815 if ((addr >= start) && (addr < end)) 816 return 1; 817 818 /* 819 * in-kernel percpu var? 820 */ 821 if (is_kernel_percpu_address(addr)) 822 return 1; 823 824 /* 825 * module static or percpu var? 826 */ 827 return is_module_address(addr) || is_module_percpu_address(addr); 828 } 829 #endif 830 831 /* 832 * To make lock name printouts unique, we calculate a unique 833 * class->name_version generation counter. The caller must hold the graph 834 * lock. 835 */ 836 static int count_matching_names(struct lock_class *new_class) 837 { 838 struct lock_class *class; 839 int count = 0; 840 841 if (!new_class->name) 842 return 0; 843 844 list_for_each_entry(class, &all_lock_classes, lock_entry) { 845 if (new_class->key - new_class->subclass == class->key) 846 return class->name_version; 847 if (class->name && !strcmp(class->name, new_class->name)) 848 count = max(count, class->name_version); 849 } 850 851 return count + 1; 852 } 853 854 /* used from NMI context -- must be lockless */ 855 static noinstr struct lock_class * 856 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 857 { 858 struct lockdep_subclass_key *key; 859 struct hlist_head *hash_head; 860 struct lock_class *class; 861 862 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 863 instrumentation_begin(); 864 debug_locks_off(); 865 printk(KERN_ERR 866 "BUG: looking up invalid subclass: %u\n", subclass); 867 printk(KERN_ERR 868 "turning off the locking correctness validator.\n"); 869 dump_stack(); 870 instrumentation_end(); 871 return NULL; 872 } 873 874 /* 875 * If it is not initialised then it has never been locked, 876 * so it won't be present in the hash table. 877 */ 878 if (unlikely(!lock->key)) 879 return NULL; 880 881 /* 882 * NOTE: the class-key must be unique. For dynamic locks, a static 883 * lock_class_key variable is passed in through the mutex_init() 884 * (or spin_lock_init()) call - which acts as the key. For static 885 * locks we use the lock object itself as the key. 886 */ 887 BUILD_BUG_ON(sizeof(struct lock_class_key) > 888 sizeof(struct lockdep_map)); 889 890 key = lock->key->subkeys + subclass; 891 892 hash_head = classhashentry(key); 893 894 /* 895 * We do an RCU walk of the hash, see lockdep_free_key_range(). 896 */ 897 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 898 return NULL; 899 900 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 901 if (class->key == key) { 902 /* 903 * Huh! same key, different name? Did someone trample 904 * on some memory? We're most confused. 905 */ 906 WARN_ON_ONCE(class->name != lock->name && 907 lock->key != &__lockdep_no_validate__); 908 return class; 909 } 910 } 911 912 return NULL; 913 } 914 915 /* 916 * Static locks do not have their class-keys yet - for them the key is 917 * the lock object itself. If the lock is in the per cpu area, the 918 * canonical address of the lock (per cpu offset removed) is used. 919 */ 920 static bool assign_lock_key(struct lockdep_map *lock) 921 { 922 unsigned long can_addr, addr = (unsigned long)lock; 923 924 #ifdef __KERNEL__ 925 /* 926 * lockdep_free_key_range() assumes that struct lock_class_key 927 * objects do not overlap. Since we use the address of lock 928 * objects as class key for static objects, check whether the 929 * size of lock_class_key objects does not exceed the size of 930 * the smallest lock object. 931 */ 932 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 933 #endif 934 935 if (__is_kernel_percpu_address(addr, &can_addr)) 936 lock->key = (void *)can_addr; 937 else if (__is_module_percpu_address(addr, &can_addr)) 938 lock->key = (void *)can_addr; 939 else if (static_obj(lock)) 940 lock->key = (void *)lock; 941 else { 942 /* Debug-check: all keys must be persistent! */ 943 debug_locks_off(); 944 pr_err("INFO: trying to register non-static key.\n"); 945 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 946 pr_err("you didn't initialize this object before use?\n"); 947 pr_err("turning off the locking correctness validator.\n"); 948 dump_stack(); 949 return false; 950 } 951 952 return true; 953 } 954 955 #ifdef CONFIG_DEBUG_LOCKDEP 956 957 /* Check whether element @e occurs in list @h */ 958 static bool in_list(struct list_head *e, struct list_head *h) 959 { 960 struct list_head *f; 961 962 list_for_each(f, h) { 963 if (e == f) 964 return true; 965 } 966 967 return false; 968 } 969 970 /* 971 * Check whether entry @e occurs in any of the locks_after or locks_before 972 * lists. 973 */ 974 static bool in_any_class_list(struct list_head *e) 975 { 976 struct lock_class *class; 977 int i; 978 979 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 980 class = &lock_classes[i]; 981 if (in_list(e, &class->locks_after) || 982 in_list(e, &class->locks_before)) 983 return true; 984 } 985 return false; 986 } 987 988 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 989 { 990 struct lock_list *e; 991 992 list_for_each_entry(e, h, entry) { 993 if (e->links_to != c) { 994 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 995 c->name ? : "(?)", 996 (unsigned long)(e - list_entries), 997 e->links_to && e->links_to->name ? 998 e->links_to->name : "(?)", 999 e->class && e->class->name ? e->class->name : 1000 "(?)"); 1001 return false; 1002 } 1003 } 1004 return true; 1005 } 1006 1007 #ifdef CONFIG_PROVE_LOCKING 1008 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1009 #endif 1010 1011 static bool check_lock_chain_key(struct lock_chain *chain) 1012 { 1013 #ifdef CONFIG_PROVE_LOCKING 1014 u64 chain_key = INITIAL_CHAIN_KEY; 1015 int i; 1016 1017 for (i = chain->base; i < chain->base + chain->depth; i++) 1018 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1019 /* 1020 * The 'unsigned long long' casts avoid that a compiler warning 1021 * is reported when building tools/lib/lockdep. 1022 */ 1023 if (chain->chain_key != chain_key) { 1024 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1025 (unsigned long long)(chain - lock_chains), 1026 (unsigned long long)chain->chain_key, 1027 (unsigned long long)chain_key); 1028 return false; 1029 } 1030 #endif 1031 return true; 1032 } 1033 1034 static bool in_any_zapped_class_list(struct lock_class *class) 1035 { 1036 struct pending_free *pf; 1037 int i; 1038 1039 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1040 if (in_list(&class->lock_entry, &pf->zapped)) 1041 return true; 1042 } 1043 1044 return false; 1045 } 1046 1047 static bool __check_data_structures(void) 1048 { 1049 struct lock_class *class; 1050 struct lock_chain *chain; 1051 struct hlist_head *head; 1052 struct lock_list *e; 1053 int i; 1054 1055 /* Check whether all classes occur in a lock list. */ 1056 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1057 class = &lock_classes[i]; 1058 if (!in_list(&class->lock_entry, &all_lock_classes) && 1059 !in_list(&class->lock_entry, &free_lock_classes) && 1060 !in_any_zapped_class_list(class)) { 1061 printk(KERN_INFO "class %px/%s is not in any class list\n", 1062 class, class->name ? : "(?)"); 1063 return false; 1064 } 1065 } 1066 1067 /* Check whether all classes have valid lock lists. */ 1068 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1069 class = &lock_classes[i]; 1070 if (!class_lock_list_valid(class, &class->locks_before)) 1071 return false; 1072 if (!class_lock_list_valid(class, &class->locks_after)) 1073 return false; 1074 } 1075 1076 /* Check the chain_key of all lock chains. */ 1077 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1078 head = chainhash_table + i; 1079 hlist_for_each_entry_rcu(chain, head, entry) { 1080 if (!check_lock_chain_key(chain)) 1081 return false; 1082 } 1083 } 1084 1085 /* 1086 * Check whether all list entries that are in use occur in a class 1087 * lock list. 1088 */ 1089 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1090 e = list_entries + i; 1091 if (!in_any_class_list(&e->entry)) { 1092 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1093 (unsigned int)(e - list_entries), 1094 e->class->name ? : "(?)", 1095 e->links_to->name ? : "(?)"); 1096 return false; 1097 } 1098 } 1099 1100 /* 1101 * Check whether all list entries that are not in use do not occur in 1102 * a class lock list. 1103 */ 1104 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1105 e = list_entries + i; 1106 if (in_any_class_list(&e->entry)) { 1107 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1108 (unsigned int)(e - list_entries), 1109 e->class && e->class->name ? e->class->name : 1110 "(?)", 1111 e->links_to && e->links_to->name ? 1112 e->links_to->name : "(?)"); 1113 return false; 1114 } 1115 } 1116 1117 return true; 1118 } 1119 1120 int check_consistency = 0; 1121 module_param(check_consistency, int, 0644); 1122 1123 static void check_data_structures(void) 1124 { 1125 static bool once = false; 1126 1127 if (check_consistency && !once) { 1128 if (!__check_data_structures()) { 1129 once = true; 1130 WARN_ON(once); 1131 } 1132 } 1133 } 1134 1135 #else /* CONFIG_DEBUG_LOCKDEP */ 1136 1137 static inline void check_data_structures(void) { } 1138 1139 #endif /* CONFIG_DEBUG_LOCKDEP */ 1140 1141 static void init_chain_block_buckets(void); 1142 1143 /* 1144 * Initialize the lock_classes[] array elements, the free_lock_classes list 1145 * and also the delayed_free structure. 1146 */ 1147 static void init_data_structures_once(void) 1148 { 1149 static bool __read_mostly ds_initialized, rcu_head_initialized; 1150 int i; 1151 1152 if (likely(rcu_head_initialized)) 1153 return; 1154 1155 if (system_state >= SYSTEM_SCHEDULING) { 1156 init_rcu_head(&delayed_free.rcu_head); 1157 rcu_head_initialized = true; 1158 } 1159 1160 if (ds_initialized) 1161 return; 1162 1163 ds_initialized = true; 1164 1165 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1166 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1167 1168 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1169 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1170 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1171 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1172 } 1173 init_chain_block_buckets(); 1174 } 1175 1176 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1177 { 1178 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1179 1180 return lock_keys_hash + hash; 1181 } 1182 1183 /* Register a dynamically allocated key. */ 1184 void lockdep_register_key(struct lock_class_key *key) 1185 { 1186 struct hlist_head *hash_head; 1187 struct lock_class_key *k; 1188 unsigned long flags; 1189 1190 if (WARN_ON_ONCE(static_obj(key))) 1191 return; 1192 hash_head = keyhashentry(key); 1193 1194 raw_local_irq_save(flags); 1195 if (!graph_lock()) 1196 goto restore_irqs; 1197 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1198 if (WARN_ON_ONCE(k == key)) 1199 goto out_unlock; 1200 } 1201 hlist_add_head_rcu(&key->hash_entry, hash_head); 1202 out_unlock: 1203 graph_unlock(); 1204 restore_irqs: 1205 raw_local_irq_restore(flags); 1206 } 1207 EXPORT_SYMBOL_GPL(lockdep_register_key); 1208 1209 /* Check whether a key has been registered as a dynamic key. */ 1210 static bool is_dynamic_key(const struct lock_class_key *key) 1211 { 1212 struct hlist_head *hash_head; 1213 struct lock_class_key *k; 1214 bool found = false; 1215 1216 if (WARN_ON_ONCE(static_obj(key))) 1217 return false; 1218 1219 /* 1220 * If lock debugging is disabled lock_keys_hash[] may contain 1221 * pointers to memory that has already been freed. Avoid triggering 1222 * a use-after-free in that case by returning early. 1223 */ 1224 if (!debug_locks) 1225 return true; 1226 1227 hash_head = keyhashentry(key); 1228 1229 rcu_read_lock(); 1230 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1231 if (k == key) { 1232 found = true; 1233 break; 1234 } 1235 } 1236 rcu_read_unlock(); 1237 1238 return found; 1239 } 1240 1241 /* 1242 * Register a lock's class in the hash-table, if the class is not present 1243 * yet. Otherwise we look it up. We cache the result in the lock object 1244 * itself, so actual lookup of the hash should be once per lock object. 1245 */ 1246 static struct lock_class * 1247 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1248 { 1249 struct lockdep_subclass_key *key; 1250 struct hlist_head *hash_head; 1251 struct lock_class *class; 1252 int idx; 1253 1254 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1255 1256 class = look_up_lock_class(lock, subclass); 1257 if (likely(class)) 1258 goto out_set_class_cache; 1259 1260 if (!lock->key) { 1261 if (!assign_lock_key(lock)) 1262 return NULL; 1263 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1264 return NULL; 1265 } 1266 1267 key = lock->key->subkeys + subclass; 1268 hash_head = classhashentry(key); 1269 1270 if (!graph_lock()) { 1271 return NULL; 1272 } 1273 /* 1274 * We have to do the hash-walk again, to avoid races 1275 * with another CPU: 1276 */ 1277 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1278 if (class->key == key) 1279 goto out_unlock_set; 1280 } 1281 1282 init_data_structures_once(); 1283 1284 /* Allocate a new lock class and add it to the hash. */ 1285 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1286 lock_entry); 1287 if (!class) { 1288 if (!debug_locks_off_graph_unlock()) { 1289 return NULL; 1290 } 1291 1292 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1293 dump_stack(); 1294 return NULL; 1295 } 1296 nr_lock_classes++; 1297 __set_bit(class - lock_classes, lock_classes_in_use); 1298 debug_atomic_inc(nr_unused_locks); 1299 class->key = key; 1300 class->name = lock->name; 1301 class->subclass = subclass; 1302 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1303 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1304 class->name_version = count_matching_names(class); 1305 class->wait_type_inner = lock->wait_type_inner; 1306 class->wait_type_outer = lock->wait_type_outer; 1307 class->lock_type = lock->lock_type; 1308 /* 1309 * We use RCU's safe list-add method to make 1310 * parallel walking of the hash-list safe: 1311 */ 1312 hlist_add_head_rcu(&class->hash_entry, hash_head); 1313 /* 1314 * Remove the class from the free list and add it to the global list 1315 * of classes. 1316 */ 1317 list_move_tail(&class->lock_entry, &all_lock_classes); 1318 idx = class - lock_classes; 1319 if (idx > max_lock_class_idx) 1320 max_lock_class_idx = idx; 1321 1322 if (verbose(class)) { 1323 graph_unlock(); 1324 1325 printk("\nnew class %px: %s", class->key, class->name); 1326 if (class->name_version > 1) 1327 printk(KERN_CONT "#%d", class->name_version); 1328 printk(KERN_CONT "\n"); 1329 dump_stack(); 1330 1331 if (!graph_lock()) { 1332 return NULL; 1333 } 1334 } 1335 out_unlock_set: 1336 graph_unlock(); 1337 1338 out_set_class_cache: 1339 if (!subclass || force) 1340 lock->class_cache[0] = class; 1341 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1342 lock->class_cache[subclass] = class; 1343 1344 /* 1345 * Hash collision, did we smoke some? We found a class with a matching 1346 * hash but the subclass -- which is hashed in -- didn't match. 1347 */ 1348 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1349 return NULL; 1350 1351 return class; 1352 } 1353 1354 #ifdef CONFIG_PROVE_LOCKING 1355 /* 1356 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1357 * with NULL on failure) 1358 */ 1359 static struct lock_list *alloc_list_entry(void) 1360 { 1361 int idx = find_first_zero_bit(list_entries_in_use, 1362 ARRAY_SIZE(list_entries)); 1363 1364 if (idx >= ARRAY_SIZE(list_entries)) { 1365 if (!debug_locks_off_graph_unlock()) 1366 return NULL; 1367 1368 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1369 dump_stack(); 1370 return NULL; 1371 } 1372 nr_list_entries++; 1373 __set_bit(idx, list_entries_in_use); 1374 return list_entries + idx; 1375 } 1376 1377 /* 1378 * Add a new dependency to the head of the list: 1379 */ 1380 static int add_lock_to_list(struct lock_class *this, 1381 struct lock_class *links_to, struct list_head *head, 1382 u16 distance, u8 dep, 1383 const struct lock_trace *trace) 1384 { 1385 struct lock_list *entry; 1386 /* 1387 * Lock not present yet - get a new dependency struct and 1388 * add it to the list: 1389 */ 1390 entry = alloc_list_entry(); 1391 if (!entry) 1392 return 0; 1393 1394 entry->class = this; 1395 entry->links_to = links_to; 1396 entry->dep = dep; 1397 entry->distance = distance; 1398 entry->trace = trace; 1399 /* 1400 * Both allocation and removal are done under the graph lock; but 1401 * iteration is under RCU-sched; see look_up_lock_class() and 1402 * lockdep_free_key_range(). 1403 */ 1404 list_add_tail_rcu(&entry->entry, head); 1405 1406 return 1; 1407 } 1408 1409 /* 1410 * For good efficiency of modular, we use power of 2 1411 */ 1412 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1413 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1414 1415 /* 1416 * The circular_queue and helpers are used to implement graph 1417 * breadth-first search (BFS) algorithm, by which we can determine 1418 * whether there is a path from a lock to another. In deadlock checks, 1419 * a path from the next lock to be acquired to a previous held lock 1420 * indicates that adding the <prev> -> <next> lock dependency will 1421 * produce a circle in the graph. Breadth-first search instead of 1422 * depth-first search is used in order to find the shortest (circular) 1423 * path. 1424 */ 1425 struct circular_queue { 1426 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1427 unsigned int front, rear; 1428 }; 1429 1430 static struct circular_queue lock_cq; 1431 1432 unsigned int max_bfs_queue_depth; 1433 1434 static unsigned int lockdep_dependency_gen_id; 1435 1436 static inline void __cq_init(struct circular_queue *cq) 1437 { 1438 cq->front = cq->rear = 0; 1439 lockdep_dependency_gen_id++; 1440 } 1441 1442 static inline int __cq_empty(struct circular_queue *cq) 1443 { 1444 return (cq->front == cq->rear); 1445 } 1446 1447 static inline int __cq_full(struct circular_queue *cq) 1448 { 1449 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1450 } 1451 1452 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1453 { 1454 if (__cq_full(cq)) 1455 return -1; 1456 1457 cq->element[cq->rear] = elem; 1458 cq->rear = (cq->rear + 1) & CQ_MASK; 1459 return 0; 1460 } 1461 1462 /* 1463 * Dequeue an element from the circular_queue, return a lock_list if 1464 * the queue is not empty, or NULL if otherwise. 1465 */ 1466 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1467 { 1468 struct lock_list * lock; 1469 1470 if (__cq_empty(cq)) 1471 return NULL; 1472 1473 lock = cq->element[cq->front]; 1474 cq->front = (cq->front + 1) & CQ_MASK; 1475 1476 return lock; 1477 } 1478 1479 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1480 { 1481 return (cq->rear - cq->front) & CQ_MASK; 1482 } 1483 1484 static inline void mark_lock_accessed(struct lock_list *lock) 1485 { 1486 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1487 } 1488 1489 static inline void visit_lock_entry(struct lock_list *lock, 1490 struct lock_list *parent) 1491 { 1492 lock->parent = parent; 1493 } 1494 1495 static inline unsigned long lock_accessed(struct lock_list *lock) 1496 { 1497 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1498 } 1499 1500 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1501 { 1502 return child->parent; 1503 } 1504 1505 static inline int get_lock_depth(struct lock_list *child) 1506 { 1507 int depth = 0; 1508 struct lock_list *parent; 1509 1510 while ((parent = get_lock_parent(child))) { 1511 child = parent; 1512 depth++; 1513 } 1514 return depth; 1515 } 1516 1517 /* 1518 * Return the forward or backward dependency list. 1519 * 1520 * @lock: the lock_list to get its class's dependency list 1521 * @offset: the offset to struct lock_class to determine whether it is 1522 * locks_after or locks_before 1523 */ 1524 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1525 { 1526 void *lock_class = lock->class; 1527 1528 return lock_class + offset; 1529 } 1530 /* 1531 * Return values of a bfs search: 1532 * 1533 * BFS_E* indicates an error 1534 * BFS_R* indicates a result (match or not) 1535 * 1536 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1537 * 1538 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1539 * 1540 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1541 * *@target_entry. 1542 * 1543 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1544 * _unchanged_. 1545 */ 1546 enum bfs_result { 1547 BFS_EINVALIDNODE = -2, 1548 BFS_EQUEUEFULL = -1, 1549 BFS_RMATCH = 0, 1550 BFS_RNOMATCH = 1, 1551 }; 1552 1553 /* 1554 * bfs_result < 0 means error 1555 */ 1556 static inline bool bfs_error(enum bfs_result res) 1557 { 1558 return res < 0; 1559 } 1560 1561 /* 1562 * DEP_*_BIT in lock_list::dep 1563 * 1564 * For dependency @prev -> @next: 1565 * 1566 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1567 * (->read == 2) 1568 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1569 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1570 * EN: @prev is exclusive locker and @next is non-recursive locker 1571 * 1572 * Note that we define the value of DEP_*_BITs so that: 1573 * bit0 is prev->read == 0 1574 * bit1 is next->read != 2 1575 */ 1576 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1577 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1578 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1579 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1580 1581 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1582 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1583 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1584 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1585 1586 static inline unsigned int 1587 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1588 { 1589 return (prev->read == 0) + ((next->read != 2) << 1); 1590 } 1591 1592 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1593 { 1594 return 1U << __calc_dep_bit(prev, next); 1595 } 1596 1597 /* 1598 * calculate the dep_bit for backwards edges. We care about whether @prev is 1599 * shared and whether @next is recursive. 1600 */ 1601 static inline unsigned int 1602 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1603 { 1604 return (next->read != 2) + ((prev->read == 0) << 1); 1605 } 1606 1607 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1608 { 1609 return 1U << __calc_dep_bitb(prev, next); 1610 } 1611 1612 /* 1613 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1614 * search. 1615 */ 1616 static inline void __bfs_init_root(struct lock_list *lock, 1617 struct lock_class *class) 1618 { 1619 lock->class = class; 1620 lock->parent = NULL; 1621 lock->only_xr = 0; 1622 } 1623 1624 /* 1625 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1626 * root for a BFS search. 1627 * 1628 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1629 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1630 * and -(S*)->. 1631 */ 1632 static inline void bfs_init_root(struct lock_list *lock, 1633 struct held_lock *hlock) 1634 { 1635 __bfs_init_root(lock, hlock_class(hlock)); 1636 lock->only_xr = (hlock->read == 2); 1637 } 1638 1639 /* 1640 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1641 * 1642 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1643 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1644 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1645 */ 1646 static inline void bfs_init_rootb(struct lock_list *lock, 1647 struct held_lock *hlock) 1648 { 1649 __bfs_init_root(lock, hlock_class(hlock)); 1650 lock->only_xr = (hlock->read != 0); 1651 } 1652 1653 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1654 { 1655 if (!lock || !lock->parent) 1656 return NULL; 1657 1658 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1659 &lock->entry, struct lock_list, entry); 1660 } 1661 1662 /* 1663 * Breadth-First Search to find a strong path in the dependency graph. 1664 * 1665 * @source_entry: the source of the path we are searching for. 1666 * @data: data used for the second parameter of @match function 1667 * @match: match function for the search 1668 * @target_entry: pointer to the target of a matched path 1669 * @offset: the offset to struct lock_class to determine whether it is 1670 * locks_after or locks_before 1671 * 1672 * We may have multiple edges (considering different kinds of dependencies, 1673 * e.g. ER and SN) between two nodes in the dependency graph. But 1674 * only the strong dependency path in the graph is relevant to deadlocks. A 1675 * strong dependency path is a dependency path that doesn't have two adjacent 1676 * dependencies as -(*R)-> -(S*)->, please see: 1677 * 1678 * Documentation/locking/lockdep-design.rst 1679 * 1680 * for more explanation of the definition of strong dependency paths 1681 * 1682 * In __bfs(), we only traverse in the strong dependency path: 1683 * 1684 * In lock_list::only_xr, we record whether the previous dependency only 1685 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1686 * filter out any -(S*)-> in the current dependency and after that, the 1687 * ->only_xr is set according to whether we only have -(*R)-> left. 1688 */ 1689 static enum bfs_result __bfs(struct lock_list *source_entry, 1690 void *data, 1691 bool (*match)(struct lock_list *entry, void *data), 1692 bool (*skip)(struct lock_list *entry, void *data), 1693 struct lock_list **target_entry, 1694 int offset) 1695 { 1696 struct circular_queue *cq = &lock_cq; 1697 struct lock_list *lock = NULL; 1698 struct lock_list *entry; 1699 struct list_head *head; 1700 unsigned int cq_depth; 1701 bool first; 1702 1703 lockdep_assert_locked(); 1704 1705 __cq_init(cq); 1706 __cq_enqueue(cq, source_entry); 1707 1708 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1709 if (!lock->class) 1710 return BFS_EINVALIDNODE; 1711 1712 /* 1713 * Step 1: check whether we already finish on this one. 1714 * 1715 * If we have visited all the dependencies from this @lock to 1716 * others (iow, if we have visited all lock_list entries in 1717 * @lock->class->locks_{after,before}) we skip, otherwise go 1718 * and visit all the dependencies in the list and mark this 1719 * list accessed. 1720 */ 1721 if (lock_accessed(lock)) 1722 continue; 1723 else 1724 mark_lock_accessed(lock); 1725 1726 /* 1727 * Step 2: check whether prev dependency and this form a strong 1728 * dependency path. 1729 */ 1730 if (lock->parent) { /* Parent exists, check prev dependency */ 1731 u8 dep = lock->dep; 1732 bool prev_only_xr = lock->parent->only_xr; 1733 1734 /* 1735 * Mask out all -(S*)-> if we only have *R in previous 1736 * step, because -(*R)-> -(S*)-> don't make up a strong 1737 * dependency. 1738 */ 1739 if (prev_only_xr) 1740 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1741 1742 /* If nothing left, we skip */ 1743 if (!dep) 1744 continue; 1745 1746 /* If there are only -(*R)-> left, set that for the next step */ 1747 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1748 } 1749 1750 /* 1751 * Step 3: we haven't visited this and there is a strong 1752 * dependency path to this, so check with @match. 1753 * If @skip is provide and returns true, we skip this 1754 * lock (and any path this lock is in). 1755 */ 1756 if (skip && skip(lock, data)) 1757 continue; 1758 1759 if (match(lock, data)) { 1760 *target_entry = lock; 1761 return BFS_RMATCH; 1762 } 1763 1764 /* 1765 * Step 4: if not match, expand the path by adding the 1766 * forward or backwards dependencies in the search 1767 * 1768 */ 1769 first = true; 1770 head = get_dep_list(lock, offset); 1771 list_for_each_entry_rcu(entry, head, entry) { 1772 visit_lock_entry(entry, lock); 1773 1774 /* 1775 * Note we only enqueue the first of the list into the 1776 * queue, because we can always find a sibling 1777 * dependency from one (see __bfs_next()), as a result 1778 * the space of queue is saved. 1779 */ 1780 if (!first) 1781 continue; 1782 1783 first = false; 1784 1785 if (__cq_enqueue(cq, entry)) 1786 return BFS_EQUEUEFULL; 1787 1788 cq_depth = __cq_get_elem_count(cq); 1789 if (max_bfs_queue_depth < cq_depth) 1790 max_bfs_queue_depth = cq_depth; 1791 } 1792 } 1793 1794 return BFS_RNOMATCH; 1795 } 1796 1797 static inline enum bfs_result 1798 __bfs_forwards(struct lock_list *src_entry, 1799 void *data, 1800 bool (*match)(struct lock_list *entry, void *data), 1801 bool (*skip)(struct lock_list *entry, void *data), 1802 struct lock_list **target_entry) 1803 { 1804 return __bfs(src_entry, data, match, skip, target_entry, 1805 offsetof(struct lock_class, locks_after)); 1806 1807 } 1808 1809 static inline enum bfs_result 1810 __bfs_backwards(struct lock_list *src_entry, 1811 void *data, 1812 bool (*match)(struct lock_list *entry, void *data), 1813 bool (*skip)(struct lock_list *entry, void *data), 1814 struct lock_list **target_entry) 1815 { 1816 return __bfs(src_entry, data, match, skip, target_entry, 1817 offsetof(struct lock_class, locks_before)); 1818 1819 } 1820 1821 static void print_lock_trace(const struct lock_trace *trace, 1822 unsigned int spaces) 1823 { 1824 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1825 } 1826 1827 /* 1828 * Print a dependency chain entry (this is only done when a deadlock 1829 * has been detected): 1830 */ 1831 static noinline void 1832 print_circular_bug_entry(struct lock_list *target, int depth) 1833 { 1834 if (debug_locks_silent) 1835 return; 1836 printk("\n-> #%u", depth); 1837 print_lock_name(target->class); 1838 printk(KERN_CONT ":\n"); 1839 print_lock_trace(target->trace, 6); 1840 } 1841 1842 static void 1843 print_circular_lock_scenario(struct held_lock *src, 1844 struct held_lock *tgt, 1845 struct lock_list *prt) 1846 { 1847 struct lock_class *source = hlock_class(src); 1848 struct lock_class *target = hlock_class(tgt); 1849 struct lock_class *parent = prt->class; 1850 1851 /* 1852 * A direct locking problem where unsafe_class lock is taken 1853 * directly by safe_class lock, then all we need to show 1854 * is the deadlock scenario, as it is obvious that the 1855 * unsafe lock is taken under the safe lock. 1856 * 1857 * But if there is a chain instead, where the safe lock takes 1858 * an intermediate lock (middle_class) where this lock is 1859 * not the same as the safe lock, then the lock chain is 1860 * used to describe the problem. Otherwise we would need 1861 * to show a different CPU case for each link in the chain 1862 * from the safe_class lock to the unsafe_class lock. 1863 */ 1864 if (parent != source) { 1865 printk("Chain exists of:\n "); 1866 __print_lock_name(source); 1867 printk(KERN_CONT " --> "); 1868 __print_lock_name(parent); 1869 printk(KERN_CONT " --> "); 1870 __print_lock_name(target); 1871 printk(KERN_CONT "\n\n"); 1872 } 1873 1874 printk(" Possible unsafe locking scenario:\n\n"); 1875 printk(" CPU0 CPU1\n"); 1876 printk(" ---- ----\n"); 1877 printk(" lock("); 1878 __print_lock_name(target); 1879 printk(KERN_CONT ");\n"); 1880 printk(" lock("); 1881 __print_lock_name(parent); 1882 printk(KERN_CONT ");\n"); 1883 printk(" lock("); 1884 __print_lock_name(target); 1885 printk(KERN_CONT ");\n"); 1886 printk(" lock("); 1887 __print_lock_name(source); 1888 printk(KERN_CONT ");\n"); 1889 printk("\n *** DEADLOCK ***\n\n"); 1890 } 1891 1892 /* 1893 * When a circular dependency is detected, print the 1894 * header first: 1895 */ 1896 static noinline void 1897 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1898 struct held_lock *check_src, 1899 struct held_lock *check_tgt) 1900 { 1901 struct task_struct *curr = current; 1902 1903 if (debug_locks_silent) 1904 return; 1905 1906 pr_warn("\n"); 1907 pr_warn("======================================================\n"); 1908 pr_warn("WARNING: possible circular locking dependency detected\n"); 1909 print_kernel_ident(); 1910 pr_warn("------------------------------------------------------\n"); 1911 pr_warn("%s/%d is trying to acquire lock:\n", 1912 curr->comm, task_pid_nr(curr)); 1913 print_lock(check_src); 1914 1915 pr_warn("\nbut task is already holding lock:\n"); 1916 1917 print_lock(check_tgt); 1918 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1919 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1920 1921 print_circular_bug_entry(entry, depth); 1922 } 1923 1924 /* 1925 * We are about to add A -> B into the dependency graph, and in __bfs() a 1926 * strong dependency path A -> .. -> B is found: hlock_class equals 1927 * entry->class. 1928 * 1929 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1930 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1931 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1932 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1933 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1934 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1935 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1936 * 1937 * We need to make sure both the start and the end of A -> .. -> B is not 1938 * weaker than A -> B. For the start part, please see the comment in 1939 * check_redundant(). For the end part, we need: 1940 * 1941 * Either 1942 * 1943 * a) A -> B is -(*R)-> (everything is not weaker than that) 1944 * 1945 * or 1946 * 1947 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1948 * 1949 */ 1950 static inline bool hlock_equal(struct lock_list *entry, void *data) 1951 { 1952 struct held_lock *hlock = (struct held_lock *)data; 1953 1954 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1955 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1956 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1957 } 1958 1959 /* 1960 * We are about to add B -> A into the dependency graph, and in __bfs() a 1961 * strong dependency path A -> .. -> B is found: hlock_class equals 1962 * entry->class. 1963 * 1964 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1965 * dependency cycle, that means: 1966 * 1967 * Either 1968 * 1969 * a) B -> A is -(E*)-> 1970 * 1971 * or 1972 * 1973 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 1974 * 1975 * as then we don't have -(*R)-> -(S*)-> in the cycle. 1976 */ 1977 static inline bool hlock_conflict(struct lock_list *entry, void *data) 1978 { 1979 struct held_lock *hlock = (struct held_lock *)data; 1980 1981 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1982 (hlock->read == 0 || /* B -> A is -(E*)-> */ 1983 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1984 } 1985 1986 static noinline void print_circular_bug(struct lock_list *this, 1987 struct lock_list *target, 1988 struct held_lock *check_src, 1989 struct held_lock *check_tgt) 1990 { 1991 struct task_struct *curr = current; 1992 struct lock_list *parent; 1993 struct lock_list *first_parent; 1994 int depth; 1995 1996 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1997 return; 1998 1999 this->trace = save_trace(); 2000 if (!this->trace) 2001 return; 2002 2003 depth = get_lock_depth(target); 2004 2005 print_circular_bug_header(target, depth, check_src, check_tgt); 2006 2007 parent = get_lock_parent(target); 2008 first_parent = parent; 2009 2010 while (parent) { 2011 print_circular_bug_entry(parent, --depth); 2012 parent = get_lock_parent(parent); 2013 } 2014 2015 printk("\nother info that might help us debug this:\n\n"); 2016 print_circular_lock_scenario(check_src, check_tgt, 2017 first_parent); 2018 2019 lockdep_print_held_locks(curr); 2020 2021 printk("\nstack backtrace:\n"); 2022 dump_stack(); 2023 } 2024 2025 static noinline void print_bfs_bug(int ret) 2026 { 2027 if (!debug_locks_off_graph_unlock()) 2028 return; 2029 2030 /* 2031 * Breadth-first-search failed, graph got corrupted? 2032 */ 2033 WARN(1, "lockdep bfs error:%d\n", ret); 2034 } 2035 2036 static bool noop_count(struct lock_list *entry, void *data) 2037 { 2038 (*(unsigned long *)data)++; 2039 return false; 2040 } 2041 2042 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2043 { 2044 unsigned long count = 0; 2045 struct lock_list *target_entry; 2046 2047 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2048 2049 return count; 2050 } 2051 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2052 { 2053 unsigned long ret, flags; 2054 struct lock_list this; 2055 2056 __bfs_init_root(&this, class); 2057 2058 raw_local_irq_save(flags); 2059 lockdep_lock(); 2060 ret = __lockdep_count_forward_deps(&this); 2061 lockdep_unlock(); 2062 raw_local_irq_restore(flags); 2063 2064 return ret; 2065 } 2066 2067 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2068 { 2069 unsigned long count = 0; 2070 struct lock_list *target_entry; 2071 2072 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2073 2074 return count; 2075 } 2076 2077 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2078 { 2079 unsigned long ret, flags; 2080 struct lock_list this; 2081 2082 __bfs_init_root(&this, class); 2083 2084 raw_local_irq_save(flags); 2085 lockdep_lock(); 2086 ret = __lockdep_count_backward_deps(&this); 2087 lockdep_unlock(); 2088 raw_local_irq_restore(flags); 2089 2090 return ret; 2091 } 2092 2093 /* 2094 * Check that the dependency graph starting at <src> can lead to 2095 * <target> or not. 2096 */ 2097 static noinline enum bfs_result 2098 check_path(struct held_lock *target, struct lock_list *src_entry, 2099 bool (*match)(struct lock_list *entry, void *data), 2100 bool (*skip)(struct lock_list *entry, void *data), 2101 struct lock_list **target_entry) 2102 { 2103 enum bfs_result ret; 2104 2105 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2106 2107 if (unlikely(bfs_error(ret))) 2108 print_bfs_bug(ret); 2109 2110 return ret; 2111 } 2112 2113 /* 2114 * Prove that the dependency graph starting at <src> can not 2115 * lead to <target>. If it can, there is a circle when adding 2116 * <target> -> <src> dependency. 2117 * 2118 * Print an error and return BFS_RMATCH if it does. 2119 */ 2120 static noinline enum bfs_result 2121 check_noncircular(struct held_lock *src, struct held_lock *target, 2122 struct lock_trace **const trace) 2123 { 2124 enum bfs_result ret; 2125 struct lock_list *target_entry; 2126 struct lock_list src_entry; 2127 2128 bfs_init_root(&src_entry, src); 2129 2130 debug_atomic_inc(nr_cyclic_checks); 2131 2132 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2133 2134 if (unlikely(ret == BFS_RMATCH)) { 2135 if (!*trace) { 2136 /* 2137 * If save_trace fails here, the printing might 2138 * trigger a WARN but because of the !nr_entries it 2139 * should not do bad things. 2140 */ 2141 *trace = save_trace(); 2142 } 2143 2144 print_circular_bug(&src_entry, target_entry, src, target); 2145 } 2146 2147 return ret; 2148 } 2149 2150 #ifdef CONFIG_TRACE_IRQFLAGS 2151 2152 /* 2153 * Forwards and backwards subgraph searching, for the purposes of 2154 * proving that two subgraphs can be connected by a new dependency 2155 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2156 * 2157 * A irq safe->unsafe deadlock happens with the following conditions: 2158 * 2159 * 1) We have a strong dependency path A -> ... -> B 2160 * 2161 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2162 * irq can create a new dependency B -> A (consider the case that a holder 2163 * of B gets interrupted by an irq whose handler will try to acquire A). 2164 * 2165 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2166 * strong circle: 2167 * 2168 * For the usage bits of B: 2169 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2170 * ENABLED_IRQ usage suffices. 2171 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2172 * ENABLED_IRQ_*_READ usage suffices. 2173 * 2174 * For the usage bits of A: 2175 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2176 * USED_IN_IRQ usage suffices. 2177 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2178 * USED_IN_IRQ_*_READ usage suffices. 2179 */ 2180 2181 /* 2182 * There is a strong dependency path in the dependency graph: A -> B, and now 2183 * we need to decide which usage bit of A should be accumulated to detect 2184 * safe->unsafe bugs. 2185 * 2186 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2187 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2188 * 2189 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2190 * path, any usage of A should be considered. Otherwise, we should only 2191 * consider _READ usage. 2192 */ 2193 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2194 { 2195 if (!entry->only_xr) 2196 *(unsigned long *)mask |= entry->class->usage_mask; 2197 else /* Mask out _READ usage bits */ 2198 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2199 2200 return false; 2201 } 2202 2203 /* 2204 * There is a strong dependency path in the dependency graph: A -> B, and now 2205 * we need to decide which usage bit of B conflicts with the usage bits of A, 2206 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2207 * 2208 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2209 * path, any usage of B should be considered. Otherwise, we should only 2210 * consider _READ usage. 2211 */ 2212 static inline bool usage_match(struct lock_list *entry, void *mask) 2213 { 2214 if (!entry->only_xr) 2215 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2216 else /* Mask out _READ usage bits */ 2217 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2218 } 2219 2220 static inline bool usage_skip(struct lock_list *entry, void *mask) 2221 { 2222 /* 2223 * Skip local_lock() for irq inversion detection. 2224 * 2225 * For !RT, local_lock() is not a real lock, so it won't carry any 2226 * dependency. 2227 * 2228 * For RT, an irq inversion happens when we have lock A and B, and on 2229 * some CPU we can have: 2230 * 2231 * lock(A); 2232 * <interrupted> 2233 * lock(B); 2234 * 2235 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2236 * 2237 * Now we prove local_lock() cannot exist in that dependency. First we 2238 * have the observation for any lock chain L1 -> ... -> Ln, for any 2239 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2240 * wait context check will complain. And since B is not a sleep lock, 2241 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2242 * local_lock() is 3, which is greater than 2, therefore there is no 2243 * way the local_lock() exists in the dependency B -> ... -> A. 2244 * 2245 * As a result, we will skip local_lock(), when we search for irq 2246 * inversion bugs. 2247 */ 2248 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2249 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2250 return false; 2251 2252 return true; 2253 } 2254 2255 return false; 2256 } 2257 2258 /* 2259 * Find a node in the forwards-direction dependency sub-graph starting 2260 * at @root->class that matches @bit. 2261 * 2262 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2263 * into *@target_entry. 2264 */ 2265 static enum bfs_result 2266 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2267 struct lock_list **target_entry) 2268 { 2269 enum bfs_result result; 2270 2271 debug_atomic_inc(nr_find_usage_forwards_checks); 2272 2273 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2274 2275 return result; 2276 } 2277 2278 /* 2279 * Find a node in the backwards-direction dependency sub-graph starting 2280 * at @root->class that matches @bit. 2281 */ 2282 static enum bfs_result 2283 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2284 struct lock_list **target_entry) 2285 { 2286 enum bfs_result result; 2287 2288 debug_atomic_inc(nr_find_usage_backwards_checks); 2289 2290 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2291 2292 return result; 2293 } 2294 2295 static void print_lock_class_header(struct lock_class *class, int depth) 2296 { 2297 int bit; 2298 2299 printk("%*s->", depth, ""); 2300 print_lock_name(class); 2301 #ifdef CONFIG_DEBUG_LOCKDEP 2302 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2303 #endif 2304 printk(KERN_CONT " {\n"); 2305 2306 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2307 if (class->usage_mask & (1 << bit)) { 2308 int len = depth; 2309 2310 len += printk("%*s %s", depth, "", usage_str[bit]); 2311 len += printk(KERN_CONT " at:\n"); 2312 print_lock_trace(class->usage_traces[bit], len); 2313 } 2314 } 2315 printk("%*s }\n", depth, ""); 2316 2317 printk("%*s ... key at: [<%px>] %pS\n", 2318 depth, "", class->key, class->key); 2319 } 2320 2321 /* 2322 * Dependency path printing: 2323 * 2324 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2325 * printing out each lock in the dependency path will help on understanding how 2326 * the deadlock could happen. Here are some details about dependency path 2327 * printing: 2328 * 2329 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2330 * for a lock dependency A -> B, there are two lock_lists: 2331 * 2332 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2333 * ->links_to is A. In this case, we can say the lock_list is 2334 * "A -> B" (forwards case). 2335 * 2336 * b) lock_list in the ->locks_before list of B, whose ->class is A 2337 * and ->links_to is B. In this case, we can say the lock_list is 2338 * "B <- A" (bacwards case). 2339 * 2340 * The ->trace of both a) and b) point to the call trace where B was 2341 * acquired with A held. 2342 * 2343 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2344 * represent a certain lock dependency, it only provides an initial entry 2345 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2346 * ->class is A, as a result BFS will search all dependencies starting with 2347 * A, e.g. A -> B or A -> C. 2348 * 2349 * The notation of a forwards helper lock_list is like "-> A", which means 2350 * we should search the forwards dependencies starting with "A", e.g A -> B 2351 * or A -> C. 2352 * 2353 * The notation of a bacwards helper lock_list is like "<- B", which means 2354 * we should search the backwards dependencies ending with "B", e.g. 2355 * B <- A or B <- C. 2356 */ 2357 2358 /* 2359 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2360 * 2361 * We have a lock dependency path as follow: 2362 * 2363 * @root @leaf 2364 * | | 2365 * V V 2366 * ->parent ->parent 2367 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2368 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2369 * 2370 * , so it's natural that we start from @leaf and print every ->class and 2371 * ->trace until we reach the @root. 2372 */ 2373 static void __used 2374 print_shortest_lock_dependencies(struct lock_list *leaf, 2375 struct lock_list *root) 2376 { 2377 struct lock_list *entry = leaf; 2378 int depth; 2379 2380 /*compute depth from generated tree by BFS*/ 2381 depth = get_lock_depth(leaf); 2382 2383 do { 2384 print_lock_class_header(entry->class, depth); 2385 printk("%*s ... acquired at:\n", depth, ""); 2386 print_lock_trace(entry->trace, 2); 2387 printk("\n"); 2388 2389 if (depth == 0 && (entry != root)) { 2390 printk("lockdep:%s bad path found in chain graph\n", __func__); 2391 break; 2392 } 2393 2394 entry = get_lock_parent(entry); 2395 depth--; 2396 } while (entry && (depth >= 0)); 2397 } 2398 2399 /* 2400 * printk the shortest lock dependencies from @leaf to @root. 2401 * 2402 * We have a lock dependency path (from a backwards search) as follow: 2403 * 2404 * @leaf @root 2405 * | | 2406 * V V 2407 * ->parent ->parent 2408 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2409 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2410 * 2411 * , so when we iterate from @leaf to @root, we actually print the lock 2412 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2413 * 2414 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2415 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2416 * trace of L1 in the dependency path, which is alright, because most of the 2417 * time we can figure out where L1 is held from the call trace of L2. 2418 */ 2419 static void __used 2420 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2421 struct lock_list *root) 2422 { 2423 struct lock_list *entry = leaf; 2424 const struct lock_trace *trace = NULL; 2425 int depth; 2426 2427 /*compute depth from generated tree by BFS*/ 2428 depth = get_lock_depth(leaf); 2429 2430 do { 2431 print_lock_class_header(entry->class, depth); 2432 if (trace) { 2433 printk("%*s ... acquired at:\n", depth, ""); 2434 print_lock_trace(trace, 2); 2435 printk("\n"); 2436 } 2437 2438 /* 2439 * Record the pointer to the trace for the next lock_list 2440 * entry, see the comments for the function. 2441 */ 2442 trace = entry->trace; 2443 2444 if (depth == 0 && (entry != root)) { 2445 printk("lockdep:%s bad path found in chain graph\n", __func__); 2446 break; 2447 } 2448 2449 entry = get_lock_parent(entry); 2450 depth--; 2451 } while (entry && (depth >= 0)); 2452 } 2453 2454 static void 2455 print_irq_lock_scenario(struct lock_list *safe_entry, 2456 struct lock_list *unsafe_entry, 2457 struct lock_class *prev_class, 2458 struct lock_class *next_class) 2459 { 2460 struct lock_class *safe_class = safe_entry->class; 2461 struct lock_class *unsafe_class = unsafe_entry->class; 2462 struct lock_class *middle_class = prev_class; 2463 2464 if (middle_class == safe_class) 2465 middle_class = next_class; 2466 2467 /* 2468 * A direct locking problem where unsafe_class lock is taken 2469 * directly by safe_class lock, then all we need to show 2470 * is the deadlock scenario, as it is obvious that the 2471 * unsafe lock is taken under the safe lock. 2472 * 2473 * But if there is a chain instead, where the safe lock takes 2474 * an intermediate lock (middle_class) where this lock is 2475 * not the same as the safe lock, then the lock chain is 2476 * used to describe the problem. Otherwise we would need 2477 * to show a different CPU case for each link in the chain 2478 * from the safe_class lock to the unsafe_class lock. 2479 */ 2480 if (middle_class != unsafe_class) { 2481 printk("Chain exists of:\n "); 2482 __print_lock_name(safe_class); 2483 printk(KERN_CONT " --> "); 2484 __print_lock_name(middle_class); 2485 printk(KERN_CONT " --> "); 2486 __print_lock_name(unsafe_class); 2487 printk(KERN_CONT "\n\n"); 2488 } 2489 2490 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2491 printk(" CPU0 CPU1\n"); 2492 printk(" ---- ----\n"); 2493 printk(" lock("); 2494 __print_lock_name(unsafe_class); 2495 printk(KERN_CONT ");\n"); 2496 printk(" local_irq_disable();\n"); 2497 printk(" lock("); 2498 __print_lock_name(safe_class); 2499 printk(KERN_CONT ");\n"); 2500 printk(" lock("); 2501 __print_lock_name(middle_class); 2502 printk(KERN_CONT ");\n"); 2503 printk(" <Interrupt>\n"); 2504 printk(" lock("); 2505 __print_lock_name(safe_class); 2506 printk(KERN_CONT ");\n"); 2507 printk("\n *** DEADLOCK ***\n\n"); 2508 } 2509 2510 static void 2511 print_bad_irq_dependency(struct task_struct *curr, 2512 struct lock_list *prev_root, 2513 struct lock_list *next_root, 2514 struct lock_list *backwards_entry, 2515 struct lock_list *forwards_entry, 2516 struct held_lock *prev, 2517 struct held_lock *next, 2518 enum lock_usage_bit bit1, 2519 enum lock_usage_bit bit2, 2520 const char *irqclass) 2521 { 2522 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2523 return; 2524 2525 pr_warn("\n"); 2526 pr_warn("=====================================================\n"); 2527 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2528 irqclass, irqclass); 2529 print_kernel_ident(); 2530 pr_warn("-----------------------------------------------------\n"); 2531 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2532 curr->comm, task_pid_nr(curr), 2533 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2534 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2535 lockdep_hardirqs_enabled(), 2536 curr->softirqs_enabled); 2537 print_lock(next); 2538 2539 pr_warn("\nand this task is already holding:\n"); 2540 print_lock(prev); 2541 pr_warn("which would create a new lock dependency:\n"); 2542 print_lock_name(hlock_class(prev)); 2543 pr_cont(" ->"); 2544 print_lock_name(hlock_class(next)); 2545 pr_cont("\n"); 2546 2547 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2548 irqclass); 2549 print_lock_name(backwards_entry->class); 2550 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2551 2552 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2553 2554 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2555 print_lock_name(forwards_entry->class); 2556 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2557 pr_warn("..."); 2558 2559 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2560 2561 pr_warn("\nother info that might help us debug this:\n\n"); 2562 print_irq_lock_scenario(backwards_entry, forwards_entry, 2563 hlock_class(prev), hlock_class(next)); 2564 2565 lockdep_print_held_locks(curr); 2566 2567 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2568 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2569 2570 pr_warn("\nthe dependencies between the lock to be acquired"); 2571 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2572 next_root->trace = save_trace(); 2573 if (!next_root->trace) 2574 return; 2575 print_shortest_lock_dependencies(forwards_entry, next_root); 2576 2577 pr_warn("\nstack backtrace:\n"); 2578 dump_stack(); 2579 } 2580 2581 static const char *state_names[] = { 2582 #define LOCKDEP_STATE(__STATE) \ 2583 __stringify(__STATE), 2584 #include "lockdep_states.h" 2585 #undef LOCKDEP_STATE 2586 }; 2587 2588 static const char *state_rnames[] = { 2589 #define LOCKDEP_STATE(__STATE) \ 2590 __stringify(__STATE)"-READ", 2591 #include "lockdep_states.h" 2592 #undef LOCKDEP_STATE 2593 }; 2594 2595 static inline const char *state_name(enum lock_usage_bit bit) 2596 { 2597 if (bit & LOCK_USAGE_READ_MASK) 2598 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2599 else 2600 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2601 } 2602 2603 /* 2604 * The bit number is encoded like: 2605 * 2606 * bit0: 0 exclusive, 1 read lock 2607 * bit1: 0 used in irq, 1 irq enabled 2608 * bit2-n: state 2609 */ 2610 static int exclusive_bit(int new_bit) 2611 { 2612 int state = new_bit & LOCK_USAGE_STATE_MASK; 2613 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2614 2615 /* 2616 * keep state, bit flip the direction and strip read. 2617 */ 2618 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2619 } 2620 2621 /* 2622 * Observe that when given a bitmask where each bitnr is encoded as above, a 2623 * right shift of the mask transforms the individual bitnrs as -1 and 2624 * conversely, a left shift transforms into +1 for the individual bitnrs. 2625 * 2626 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2627 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2628 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2629 * 2630 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2631 * 2632 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2633 * all bits set) and recompose with bitnr1 flipped. 2634 */ 2635 static unsigned long invert_dir_mask(unsigned long mask) 2636 { 2637 unsigned long excl = 0; 2638 2639 /* Invert dir */ 2640 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2641 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2642 2643 return excl; 2644 } 2645 2646 /* 2647 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2648 * usage may cause deadlock too, for example: 2649 * 2650 * P1 P2 2651 * <irq disabled> 2652 * write_lock(l1); <irq enabled> 2653 * read_lock(l2); 2654 * write_lock(l2); 2655 * <in irq> 2656 * read_lock(l1); 2657 * 2658 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2659 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2660 * deadlock. 2661 * 2662 * In fact, all of the following cases may cause deadlocks: 2663 * 2664 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2665 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2666 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2667 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2668 * 2669 * As a result, to calculate the "exclusive mask", first we invert the 2670 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2671 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2672 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2673 */ 2674 static unsigned long exclusive_mask(unsigned long mask) 2675 { 2676 unsigned long excl = invert_dir_mask(mask); 2677 2678 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2679 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2680 2681 return excl; 2682 } 2683 2684 /* 2685 * Retrieve the _possible_ original mask to which @mask is 2686 * exclusive. Ie: this is the opposite of exclusive_mask(). 2687 * Note that 2 possible original bits can match an exclusive 2688 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2689 * cleared. So both are returned for each exclusive bit. 2690 */ 2691 static unsigned long original_mask(unsigned long mask) 2692 { 2693 unsigned long excl = invert_dir_mask(mask); 2694 2695 /* Include read in existing usages */ 2696 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2697 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2698 2699 return excl; 2700 } 2701 2702 /* 2703 * Find the first pair of bit match between an original 2704 * usage mask and an exclusive usage mask. 2705 */ 2706 static int find_exclusive_match(unsigned long mask, 2707 unsigned long excl_mask, 2708 enum lock_usage_bit *bitp, 2709 enum lock_usage_bit *excl_bitp) 2710 { 2711 int bit, excl, excl_read; 2712 2713 for_each_set_bit(bit, &mask, LOCK_USED) { 2714 /* 2715 * exclusive_bit() strips the read bit, however, 2716 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2717 * to search excl | LOCK_USAGE_READ_MASK as well. 2718 */ 2719 excl = exclusive_bit(bit); 2720 excl_read = excl | LOCK_USAGE_READ_MASK; 2721 if (excl_mask & lock_flag(excl)) { 2722 *bitp = bit; 2723 *excl_bitp = excl; 2724 return 0; 2725 } else if (excl_mask & lock_flag(excl_read)) { 2726 *bitp = bit; 2727 *excl_bitp = excl_read; 2728 return 0; 2729 } 2730 } 2731 return -1; 2732 } 2733 2734 /* 2735 * Prove that the new dependency does not connect a hardirq-safe(-read) 2736 * lock with a hardirq-unsafe lock - to achieve this we search 2737 * the backwards-subgraph starting at <prev>, and the 2738 * forwards-subgraph starting at <next>: 2739 */ 2740 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2741 struct held_lock *next) 2742 { 2743 unsigned long usage_mask = 0, forward_mask, backward_mask; 2744 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2745 struct lock_list *target_entry1; 2746 struct lock_list *target_entry; 2747 struct lock_list this, that; 2748 enum bfs_result ret; 2749 2750 /* 2751 * Step 1: gather all hard/soft IRQs usages backward in an 2752 * accumulated usage mask. 2753 */ 2754 bfs_init_rootb(&this, prev); 2755 2756 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2757 if (bfs_error(ret)) { 2758 print_bfs_bug(ret); 2759 return 0; 2760 } 2761 2762 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2763 if (!usage_mask) 2764 return 1; 2765 2766 /* 2767 * Step 2: find exclusive uses forward that match the previous 2768 * backward accumulated mask. 2769 */ 2770 forward_mask = exclusive_mask(usage_mask); 2771 2772 bfs_init_root(&that, next); 2773 2774 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2775 if (bfs_error(ret)) { 2776 print_bfs_bug(ret); 2777 return 0; 2778 } 2779 if (ret == BFS_RNOMATCH) 2780 return 1; 2781 2782 /* 2783 * Step 3: we found a bad match! Now retrieve a lock from the backward 2784 * list whose usage mask matches the exclusive usage mask from the 2785 * lock found on the forward list. 2786 * 2787 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2788 * the follow case: 2789 * 2790 * When trying to add A -> B to the graph, we find that there is a 2791 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2792 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2793 * invert bits of M's usage_mask, we will find another lock N that is 2794 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2795 * cause a inversion deadlock. 2796 */ 2797 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2798 2799 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2800 if (bfs_error(ret)) { 2801 print_bfs_bug(ret); 2802 return 0; 2803 } 2804 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2805 return 1; 2806 2807 /* 2808 * Step 4: narrow down to a pair of incompatible usage bits 2809 * and report it. 2810 */ 2811 ret = find_exclusive_match(target_entry->class->usage_mask, 2812 target_entry1->class->usage_mask, 2813 &backward_bit, &forward_bit); 2814 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2815 return 1; 2816 2817 print_bad_irq_dependency(curr, &this, &that, 2818 target_entry, target_entry1, 2819 prev, next, 2820 backward_bit, forward_bit, 2821 state_name(backward_bit)); 2822 2823 return 0; 2824 } 2825 2826 #else 2827 2828 static inline int check_irq_usage(struct task_struct *curr, 2829 struct held_lock *prev, struct held_lock *next) 2830 { 2831 return 1; 2832 } 2833 2834 static inline bool usage_skip(struct lock_list *entry, void *mask) 2835 { 2836 return false; 2837 } 2838 2839 #endif /* CONFIG_TRACE_IRQFLAGS */ 2840 2841 #ifdef CONFIG_LOCKDEP_SMALL 2842 /* 2843 * Check that the dependency graph starting at <src> can lead to 2844 * <target> or not. If it can, <src> -> <target> dependency is already 2845 * in the graph. 2846 * 2847 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2848 * any error appears in the bfs search. 2849 */ 2850 static noinline enum bfs_result 2851 check_redundant(struct held_lock *src, struct held_lock *target) 2852 { 2853 enum bfs_result ret; 2854 struct lock_list *target_entry; 2855 struct lock_list src_entry; 2856 2857 bfs_init_root(&src_entry, src); 2858 /* 2859 * Special setup for check_redundant(). 2860 * 2861 * To report redundant, we need to find a strong dependency path that 2862 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2863 * we need to let __bfs() only search for a path starting at a -(E*)->, 2864 * we achieve this by setting the initial node's ->only_xr to true in 2865 * that case. And if <prev> is S, we set initial ->only_xr to false 2866 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2867 */ 2868 src_entry.only_xr = src->read == 0; 2869 2870 debug_atomic_inc(nr_redundant_checks); 2871 2872 /* 2873 * Note: we skip local_lock() for redundant check, because as the 2874 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2875 * the same. 2876 */ 2877 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2878 2879 if (ret == BFS_RMATCH) 2880 debug_atomic_inc(nr_redundant); 2881 2882 return ret; 2883 } 2884 2885 #else 2886 2887 static inline enum bfs_result 2888 check_redundant(struct held_lock *src, struct held_lock *target) 2889 { 2890 return BFS_RNOMATCH; 2891 } 2892 2893 #endif 2894 2895 static void inc_chains(int irq_context) 2896 { 2897 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2898 nr_hardirq_chains++; 2899 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2900 nr_softirq_chains++; 2901 else 2902 nr_process_chains++; 2903 } 2904 2905 static void dec_chains(int irq_context) 2906 { 2907 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2908 nr_hardirq_chains--; 2909 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2910 nr_softirq_chains--; 2911 else 2912 nr_process_chains--; 2913 } 2914 2915 static void 2916 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2917 { 2918 struct lock_class *next = hlock_class(nxt); 2919 struct lock_class *prev = hlock_class(prv); 2920 2921 printk(" Possible unsafe locking scenario:\n\n"); 2922 printk(" CPU0\n"); 2923 printk(" ----\n"); 2924 printk(" lock("); 2925 __print_lock_name(prev); 2926 printk(KERN_CONT ");\n"); 2927 printk(" lock("); 2928 __print_lock_name(next); 2929 printk(KERN_CONT ");\n"); 2930 printk("\n *** DEADLOCK ***\n\n"); 2931 printk(" May be due to missing lock nesting notation\n\n"); 2932 } 2933 2934 static void 2935 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2936 struct held_lock *next) 2937 { 2938 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2939 return; 2940 2941 pr_warn("\n"); 2942 pr_warn("============================================\n"); 2943 pr_warn("WARNING: possible recursive locking detected\n"); 2944 print_kernel_ident(); 2945 pr_warn("--------------------------------------------\n"); 2946 pr_warn("%s/%d is trying to acquire lock:\n", 2947 curr->comm, task_pid_nr(curr)); 2948 print_lock(next); 2949 pr_warn("\nbut task is already holding lock:\n"); 2950 print_lock(prev); 2951 2952 pr_warn("\nother info that might help us debug this:\n"); 2953 print_deadlock_scenario(next, prev); 2954 lockdep_print_held_locks(curr); 2955 2956 pr_warn("\nstack backtrace:\n"); 2957 dump_stack(); 2958 } 2959 2960 /* 2961 * Check whether we are holding such a class already. 2962 * 2963 * (Note that this has to be done separately, because the graph cannot 2964 * detect such classes of deadlocks.) 2965 * 2966 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 2967 * lock class is held but nest_lock is also held, i.e. we rely on the 2968 * nest_lock to avoid the deadlock. 2969 */ 2970 static int 2971 check_deadlock(struct task_struct *curr, struct held_lock *next) 2972 { 2973 struct held_lock *prev; 2974 struct held_lock *nest = NULL; 2975 int i; 2976 2977 for (i = 0; i < curr->lockdep_depth; i++) { 2978 prev = curr->held_locks + i; 2979 2980 if (prev->instance == next->nest_lock) 2981 nest = prev; 2982 2983 if (hlock_class(prev) != hlock_class(next)) 2984 continue; 2985 2986 /* 2987 * Allow read-after-read recursion of the same 2988 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2989 */ 2990 if ((next->read == 2) && prev->read) 2991 continue; 2992 2993 /* 2994 * We're holding the nest_lock, which serializes this lock's 2995 * nesting behaviour. 2996 */ 2997 if (nest) 2998 return 2; 2999 3000 print_deadlock_bug(curr, prev, next); 3001 return 0; 3002 } 3003 return 1; 3004 } 3005 3006 /* 3007 * There was a chain-cache miss, and we are about to add a new dependency 3008 * to a previous lock. We validate the following rules: 3009 * 3010 * - would the adding of the <prev> -> <next> dependency create a 3011 * circular dependency in the graph? [== circular deadlock] 3012 * 3013 * - does the new prev->next dependency connect any hardirq-safe lock 3014 * (in the full backwards-subgraph starting at <prev>) with any 3015 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3016 * <next>)? [== illegal lock inversion with hardirq contexts] 3017 * 3018 * - does the new prev->next dependency connect any softirq-safe lock 3019 * (in the full backwards-subgraph starting at <prev>) with any 3020 * softirq-unsafe lock (in the full forwards-subgraph starting at 3021 * <next>)? [== illegal lock inversion with softirq contexts] 3022 * 3023 * any of these scenarios could lead to a deadlock. 3024 * 3025 * Then if all the validations pass, we add the forwards and backwards 3026 * dependency. 3027 */ 3028 static int 3029 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3030 struct held_lock *next, u16 distance, 3031 struct lock_trace **const trace) 3032 { 3033 struct lock_list *entry; 3034 enum bfs_result ret; 3035 3036 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3037 /* 3038 * The warning statements below may trigger a use-after-free 3039 * of the class name. It is better to trigger a use-after free 3040 * and to have the class name most of the time instead of not 3041 * having the class name available. 3042 */ 3043 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3044 "Detected use-after-free of lock class %px/%s\n", 3045 hlock_class(prev), 3046 hlock_class(prev)->name); 3047 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3048 "Detected use-after-free of lock class %px/%s\n", 3049 hlock_class(next), 3050 hlock_class(next)->name); 3051 return 2; 3052 } 3053 3054 /* 3055 * Prove that the new <prev> -> <next> dependency would not 3056 * create a circular dependency in the graph. (We do this by 3057 * a breadth-first search into the graph starting at <next>, 3058 * and check whether we can reach <prev>.) 3059 * 3060 * The search is limited by the size of the circular queue (i.e., 3061 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3062 * in the graph whose neighbours are to be checked. 3063 */ 3064 ret = check_noncircular(next, prev, trace); 3065 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3066 return 0; 3067 3068 if (!check_irq_usage(curr, prev, next)) 3069 return 0; 3070 3071 /* 3072 * Is the <prev> -> <next> dependency already present? 3073 * 3074 * (this may occur even though this is a new chain: consider 3075 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3076 * chains - the second one will be new, but L1 already has 3077 * L2 added to its dependency list, due to the first chain.) 3078 */ 3079 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3080 if (entry->class == hlock_class(next)) { 3081 if (distance == 1) 3082 entry->distance = 1; 3083 entry->dep |= calc_dep(prev, next); 3084 3085 /* 3086 * Also, update the reverse dependency in @next's 3087 * ->locks_before list. 3088 * 3089 * Here we reuse @entry as the cursor, which is fine 3090 * because we won't go to the next iteration of the 3091 * outer loop: 3092 * 3093 * For normal cases, we return in the inner loop. 3094 * 3095 * If we fail to return, we have inconsistency, i.e. 3096 * <prev>::locks_after contains <next> while 3097 * <next>::locks_before doesn't contain <prev>. In 3098 * that case, we return after the inner and indicate 3099 * something is wrong. 3100 */ 3101 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3102 if (entry->class == hlock_class(prev)) { 3103 if (distance == 1) 3104 entry->distance = 1; 3105 entry->dep |= calc_depb(prev, next); 3106 return 1; 3107 } 3108 } 3109 3110 /* <prev> is not found in <next>::locks_before */ 3111 return 0; 3112 } 3113 } 3114 3115 /* 3116 * Is the <prev> -> <next> link redundant? 3117 */ 3118 ret = check_redundant(prev, next); 3119 if (bfs_error(ret)) 3120 return 0; 3121 else if (ret == BFS_RMATCH) 3122 return 2; 3123 3124 if (!*trace) { 3125 *trace = save_trace(); 3126 if (!*trace) 3127 return 0; 3128 } 3129 3130 /* 3131 * Ok, all validations passed, add the new lock 3132 * to the previous lock's dependency list: 3133 */ 3134 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3135 &hlock_class(prev)->locks_after, distance, 3136 calc_dep(prev, next), *trace); 3137 3138 if (!ret) 3139 return 0; 3140 3141 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3142 &hlock_class(next)->locks_before, distance, 3143 calc_depb(prev, next), *trace); 3144 if (!ret) 3145 return 0; 3146 3147 return 2; 3148 } 3149 3150 /* 3151 * Add the dependency to all directly-previous locks that are 'relevant'. 3152 * The ones that are relevant are (in increasing distance from curr): 3153 * all consecutive trylock entries and the final non-trylock entry - or 3154 * the end of this context's lock-chain - whichever comes first. 3155 */ 3156 static int 3157 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3158 { 3159 struct lock_trace *trace = NULL; 3160 int depth = curr->lockdep_depth; 3161 struct held_lock *hlock; 3162 3163 /* 3164 * Debugging checks. 3165 * 3166 * Depth must not be zero for a non-head lock: 3167 */ 3168 if (!depth) 3169 goto out_bug; 3170 /* 3171 * At least two relevant locks must exist for this 3172 * to be a head: 3173 */ 3174 if (curr->held_locks[depth].irq_context != 3175 curr->held_locks[depth-1].irq_context) 3176 goto out_bug; 3177 3178 for (;;) { 3179 u16 distance = curr->lockdep_depth - depth + 1; 3180 hlock = curr->held_locks + depth - 1; 3181 3182 if (hlock->check) { 3183 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3184 if (!ret) 3185 return 0; 3186 3187 /* 3188 * Stop after the first non-trylock entry, 3189 * as non-trylock entries have added their 3190 * own direct dependencies already, so this 3191 * lock is connected to them indirectly: 3192 */ 3193 if (!hlock->trylock) 3194 break; 3195 } 3196 3197 depth--; 3198 /* 3199 * End of lock-stack? 3200 */ 3201 if (!depth) 3202 break; 3203 /* 3204 * Stop the search if we cross into another context: 3205 */ 3206 if (curr->held_locks[depth].irq_context != 3207 curr->held_locks[depth-1].irq_context) 3208 break; 3209 } 3210 return 1; 3211 out_bug: 3212 if (!debug_locks_off_graph_unlock()) 3213 return 0; 3214 3215 /* 3216 * Clearly we all shouldn't be here, but since we made it we 3217 * can reliable say we messed up our state. See the above two 3218 * gotos for reasons why we could possibly end up here. 3219 */ 3220 WARN_ON(1); 3221 3222 return 0; 3223 } 3224 3225 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3226 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3227 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3228 unsigned long nr_zapped_lock_chains; 3229 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3230 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3231 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3232 3233 /* 3234 * The first 2 chain_hlocks entries in the chain block in the bucket 3235 * list contains the following meta data: 3236 * 3237 * entry[0]: 3238 * Bit 15 - always set to 1 (it is not a class index) 3239 * Bits 0-14 - upper 15 bits of the next block index 3240 * entry[1] - lower 16 bits of next block index 3241 * 3242 * A next block index of all 1 bits means it is the end of the list. 3243 * 3244 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3245 * the chain block size: 3246 * 3247 * entry[2] - upper 16 bits of the chain block size 3248 * entry[3] - lower 16 bits of the chain block size 3249 */ 3250 #define MAX_CHAIN_BUCKETS 16 3251 #define CHAIN_BLK_FLAG (1U << 15) 3252 #define CHAIN_BLK_LIST_END 0xFFFFU 3253 3254 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3255 3256 static inline int size_to_bucket(int size) 3257 { 3258 if (size > MAX_CHAIN_BUCKETS) 3259 return 0; 3260 3261 return size - 1; 3262 } 3263 3264 /* 3265 * Iterate all the chain blocks in a bucket. 3266 */ 3267 #define for_each_chain_block(bucket, prev, curr) \ 3268 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3269 (curr) >= 0; \ 3270 (prev) = (curr), (curr) = chain_block_next(curr)) 3271 3272 /* 3273 * next block or -1 3274 */ 3275 static inline int chain_block_next(int offset) 3276 { 3277 int next = chain_hlocks[offset]; 3278 3279 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3280 3281 if (next == CHAIN_BLK_LIST_END) 3282 return -1; 3283 3284 next &= ~CHAIN_BLK_FLAG; 3285 next <<= 16; 3286 next |= chain_hlocks[offset + 1]; 3287 3288 return next; 3289 } 3290 3291 /* 3292 * bucket-0 only 3293 */ 3294 static inline int chain_block_size(int offset) 3295 { 3296 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3297 } 3298 3299 static inline void init_chain_block(int offset, int next, int bucket, int size) 3300 { 3301 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3302 chain_hlocks[offset + 1] = (u16)next; 3303 3304 if (size && !bucket) { 3305 chain_hlocks[offset + 2] = size >> 16; 3306 chain_hlocks[offset + 3] = (u16)size; 3307 } 3308 } 3309 3310 static inline void add_chain_block(int offset, int size) 3311 { 3312 int bucket = size_to_bucket(size); 3313 int next = chain_block_buckets[bucket]; 3314 int prev, curr; 3315 3316 if (unlikely(size < 2)) { 3317 /* 3318 * We can't store single entries on the freelist. Leak them. 3319 * 3320 * One possible way out would be to uniquely mark them, other 3321 * than with CHAIN_BLK_FLAG, such that we can recover them when 3322 * the block before it is re-added. 3323 */ 3324 if (size) 3325 nr_lost_chain_hlocks++; 3326 return; 3327 } 3328 3329 nr_free_chain_hlocks += size; 3330 if (!bucket) { 3331 nr_large_chain_blocks++; 3332 3333 /* 3334 * Variable sized, sort large to small. 3335 */ 3336 for_each_chain_block(0, prev, curr) { 3337 if (size >= chain_block_size(curr)) 3338 break; 3339 } 3340 init_chain_block(offset, curr, 0, size); 3341 if (prev < 0) 3342 chain_block_buckets[0] = offset; 3343 else 3344 init_chain_block(prev, offset, 0, 0); 3345 return; 3346 } 3347 /* 3348 * Fixed size, add to head. 3349 */ 3350 init_chain_block(offset, next, bucket, size); 3351 chain_block_buckets[bucket] = offset; 3352 } 3353 3354 /* 3355 * Only the first block in the list can be deleted. 3356 * 3357 * For the variable size bucket[0], the first block (the largest one) is 3358 * returned, broken up and put back into the pool. So if a chain block of 3359 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3360 * queued up after the primordial chain block and never be used until the 3361 * hlock entries in the primordial chain block is almost used up. That 3362 * causes fragmentation and reduce allocation efficiency. That can be 3363 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3364 */ 3365 static inline void del_chain_block(int bucket, int size, int next) 3366 { 3367 nr_free_chain_hlocks -= size; 3368 chain_block_buckets[bucket] = next; 3369 3370 if (!bucket) 3371 nr_large_chain_blocks--; 3372 } 3373 3374 static void init_chain_block_buckets(void) 3375 { 3376 int i; 3377 3378 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3379 chain_block_buckets[i] = -1; 3380 3381 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3382 } 3383 3384 /* 3385 * Return offset of a chain block of the right size or -1 if not found. 3386 * 3387 * Fairly simple worst-fit allocator with the addition of a number of size 3388 * specific free lists. 3389 */ 3390 static int alloc_chain_hlocks(int req) 3391 { 3392 int bucket, curr, size; 3393 3394 /* 3395 * We rely on the MSB to act as an escape bit to denote freelist 3396 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3397 */ 3398 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3399 3400 init_data_structures_once(); 3401 3402 if (nr_free_chain_hlocks < req) 3403 return -1; 3404 3405 /* 3406 * We require a minimum of 2 (u16) entries to encode a freelist 3407 * 'pointer'. 3408 */ 3409 req = max(req, 2); 3410 bucket = size_to_bucket(req); 3411 curr = chain_block_buckets[bucket]; 3412 3413 if (bucket) { 3414 if (curr >= 0) { 3415 del_chain_block(bucket, req, chain_block_next(curr)); 3416 return curr; 3417 } 3418 /* Try bucket 0 */ 3419 curr = chain_block_buckets[0]; 3420 } 3421 3422 /* 3423 * The variable sized freelist is sorted by size; the first entry is 3424 * the largest. Use it if it fits. 3425 */ 3426 if (curr >= 0) { 3427 size = chain_block_size(curr); 3428 if (likely(size >= req)) { 3429 del_chain_block(0, size, chain_block_next(curr)); 3430 add_chain_block(curr + req, size - req); 3431 return curr; 3432 } 3433 } 3434 3435 /* 3436 * Last resort, split a block in a larger sized bucket. 3437 */ 3438 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3439 bucket = size_to_bucket(size); 3440 curr = chain_block_buckets[bucket]; 3441 if (curr < 0) 3442 continue; 3443 3444 del_chain_block(bucket, size, chain_block_next(curr)); 3445 add_chain_block(curr + req, size - req); 3446 return curr; 3447 } 3448 3449 return -1; 3450 } 3451 3452 static inline void free_chain_hlocks(int base, int size) 3453 { 3454 add_chain_block(base, max(size, 2)); 3455 } 3456 3457 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3458 { 3459 u16 chain_hlock = chain_hlocks[chain->base + i]; 3460 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3461 3462 return lock_classes + class_idx; 3463 } 3464 3465 /* 3466 * Returns the index of the first held_lock of the current chain 3467 */ 3468 static inline int get_first_held_lock(struct task_struct *curr, 3469 struct held_lock *hlock) 3470 { 3471 int i; 3472 struct held_lock *hlock_curr; 3473 3474 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3475 hlock_curr = curr->held_locks + i; 3476 if (hlock_curr->irq_context != hlock->irq_context) 3477 break; 3478 3479 } 3480 3481 return ++i; 3482 } 3483 3484 #ifdef CONFIG_DEBUG_LOCKDEP 3485 /* 3486 * Returns the next chain_key iteration 3487 */ 3488 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3489 { 3490 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3491 3492 printk(" hlock_id:%d -> chain_key:%016Lx", 3493 (unsigned int)hlock_id, 3494 (unsigned long long)new_chain_key); 3495 return new_chain_key; 3496 } 3497 3498 static void 3499 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3500 { 3501 struct held_lock *hlock; 3502 u64 chain_key = INITIAL_CHAIN_KEY; 3503 int depth = curr->lockdep_depth; 3504 int i = get_first_held_lock(curr, hlock_next); 3505 3506 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3507 hlock_next->irq_context); 3508 for (; i < depth; i++) { 3509 hlock = curr->held_locks + i; 3510 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3511 3512 print_lock(hlock); 3513 } 3514 3515 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3516 print_lock(hlock_next); 3517 } 3518 3519 static void print_chain_keys_chain(struct lock_chain *chain) 3520 { 3521 int i; 3522 u64 chain_key = INITIAL_CHAIN_KEY; 3523 u16 hlock_id; 3524 3525 printk("depth: %u\n", chain->depth); 3526 for (i = 0; i < chain->depth; i++) { 3527 hlock_id = chain_hlocks[chain->base + i]; 3528 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3529 3530 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id)); 3531 printk("\n"); 3532 } 3533 } 3534 3535 static void print_collision(struct task_struct *curr, 3536 struct held_lock *hlock_next, 3537 struct lock_chain *chain) 3538 { 3539 pr_warn("\n"); 3540 pr_warn("============================\n"); 3541 pr_warn("WARNING: chain_key collision\n"); 3542 print_kernel_ident(); 3543 pr_warn("----------------------------\n"); 3544 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3545 pr_warn("Hash chain already cached but the contents don't match!\n"); 3546 3547 pr_warn("Held locks:"); 3548 print_chain_keys_held_locks(curr, hlock_next); 3549 3550 pr_warn("Locks in cached chain:"); 3551 print_chain_keys_chain(chain); 3552 3553 pr_warn("\nstack backtrace:\n"); 3554 dump_stack(); 3555 } 3556 #endif 3557 3558 /* 3559 * Checks whether the chain and the current held locks are consistent 3560 * in depth and also in content. If they are not it most likely means 3561 * that there was a collision during the calculation of the chain_key. 3562 * Returns: 0 not passed, 1 passed 3563 */ 3564 static int check_no_collision(struct task_struct *curr, 3565 struct held_lock *hlock, 3566 struct lock_chain *chain) 3567 { 3568 #ifdef CONFIG_DEBUG_LOCKDEP 3569 int i, j, id; 3570 3571 i = get_first_held_lock(curr, hlock); 3572 3573 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3574 print_collision(curr, hlock, chain); 3575 return 0; 3576 } 3577 3578 for (j = 0; j < chain->depth - 1; j++, i++) { 3579 id = hlock_id(&curr->held_locks[i]); 3580 3581 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3582 print_collision(curr, hlock, chain); 3583 return 0; 3584 } 3585 } 3586 #endif 3587 return 1; 3588 } 3589 3590 /* 3591 * Given an index that is >= -1, return the index of the next lock chain. 3592 * Return -2 if there is no next lock chain. 3593 */ 3594 long lockdep_next_lockchain(long i) 3595 { 3596 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3597 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3598 } 3599 3600 unsigned long lock_chain_count(void) 3601 { 3602 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3603 } 3604 3605 /* Must be called with the graph lock held. */ 3606 static struct lock_chain *alloc_lock_chain(void) 3607 { 3608 int idx = find_first_zero_bit(lock_chains_in_use, 3609 ARRAY_SIZE(lock_chains)); 3610 3611 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3612 return NULL; 3613 __set_bit(idx, lock_chains_in_use); 3614 return lock_chains + idx; 3615 } 3616 3617 /* 3618 * Adds a dependency chain into chain hashtable. And must be called with 3619 * graph_lock held. 3620 * 3621 * Return 0 if fail, and graph_lock is released. 3622 * Return 1 if succeed, with graph_lock held. 3623 */ 3624 static inline int add_chain_cache(struct task_struct *curr, 3625 struct held_lock *hlock, 3626 u64 chain_key) 3627 { 3628 struct hlist_head *hash_head = chainhashentry(chain_key); 3629 struct lock_chain *chain; 3630 int i, j; 3631 3632 /* 3633 * The caller must hold the graph lock, ensure we've got IRQs 3634 * disabled to make this an IRQ-safe lock.. for recursion reasons 3635 * lockdep won't complain about its own locking errors. 3636 */ 3637 if (lockdep_assert_locked()) 3638 return 0; 3639 3640 chain = alloc_lock_chain(); 3641 if (!chain) { 3642 if (!debug_locks_off_graph_unlock()) 3643 return 0; 3644 3645 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3646 dump_stack(); 3647 return 0; 3648 } 3649 chain->chain_key = chain_key; 3650 chain->irq_context = hlock->irq_context; 3651 i = get_first_held_lock(curr, hlock); 3652 chain->depth = curr->lockdep_depth + 1 - i; 3653 3654 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3655 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3656 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3657 3658 j = alloc_chain_hlocks(chain->depth); 3659 if (j < 0) { 3660 if (!debug_locks_off_graph_unlock()) 3661 return 0; 3662 3663 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3664 dump_stack(); 3665 return 0; 3666 } 3667 3668 chain->base = j; 3669 for (j = 0; j < chain->depth - 1; j++, i++) { 3670 int lock_id = hlock_id(curr->held_locks + i); 3671 3672 chain_hlocks[chain->base + j] = lock_id; 3673 } 3674 chain_hlocks[chain->base + j] = hlock_id(hlock); 3675 hlist_add_head_rcu(&chain->entry, hash_head); 3676 debug_atomic_inc(chain_lookup_misses); 3677 inc_chains(chain->irq_context); 3678 3679 return 1; 3680 } 3681 3682 /* 3683 * Look up a dependency chain. Must be called with either the graph lock or 3684 * the RCU read lock held. 3685 */ 3686 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3687 { 3688 struct hlist_head *hash_head = chainhashentry(chain_key); 3689 struct lock_chain *chain; 3690 3691 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3692 if (READ_ONCE(chain->chain_key) == chain_key) { 3693 debug_atomic_inc(chain_lookup_hits); 3694 return chain; 3695 } 3696 } 3697 return NULL; 3698 } 3699 3700 /* 3701 * If the key is not present yet in dependency chain cache then 3702 * add it and return 1 - in this case the new dependency chain is 3703 * validated. If the key is already hashed, return 0. 3704 * (On return with 1 graph_lock is held.) 3705 */ 3706 static inline int lookup_chain_cache_add(struct task_struct *curr, 3707 struct held_lock *hlock, 3708 u64 chain_key) 3709 { 3710 struct lock_class *class = hlock_class(hlock); 3711 struct lock_chain *chain = lookup_chain_cache(chain_key); 3712 3713 if (chain) { 3714 cache_hit: 3715 if (!check_no_collision(curr, hlock, chain)) 3716 return 0; 3717 3718 if (very_verbose(class)) { 3719 printk("\nhash chain already cached, key: " 3720 "%016Lx tail class: [%px] %s\n", 3721 (unsigned long long)chain_key, 3722 class->key, class->name); 3723 } 3724 3725 return 0; 3726 } 3727 3728 if (very_verbose(class)) { 3729 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3730 (unsigned long long)chain_key, class->key, class->name); 3731 } 3732 3733 if (!graph_lock()) 3734 return 0; 3735 3736 /* 3737 * We have to walk the chain again locked - to avoid duplicates: 3738 */ 3739 chain = lookup_chain_cache(chain_key); 3740 if (chain) { 3741 graph_unlock(); 3742 goto cache_hit; 3743 } 3744 3745 if (!add_chain_cache(curr, hlock, chain_key)) 3746 return 0; 3747 3748 return 1; 3749 } 3750 3751 static int validate_chain(struct task_struct *curr, 3752 struct held_lock *hlock, 3753 int chain_head, u64 chain_key) 3754 { 3755 /* 3756 * Trylock needs to maintain the stack of held locks, but it 3757 * does not add new dependencies, because trylock can be done 3758 * in any order. 3759 * 3760 * We look up the chain_key and do the O(N^2) check and update of 3761 * the dependencies only if this is a new dependency chain. 3762 * (If lookup_chain_cache_add() return with 1 it acquires 3763 * graph_lock for us) 3764 */ 3765 if (!hlock->trylock && hlock->check && 3766 lookup_chain_cache_add(curr, hlock, chain_key)) { 3767 /* 3768 * Check whether last held lock: 3769 * 3770 * - is irq-safe, if this lock is irq-unsafe 3771 * - is softirq-safe, if this lock is hardirq-unsafe 3772 * 3773 * And check whether the new lock's dependency graph 3774 * could lead back to the previous lock: 3775 * 3776 * - within the current held-lock stack 3777 * - across our accumulated lock dependency records 3778 * 3779 * any of these scenarios could lead to a deadlock. 3780 */ 3781 /* 3782 * The simple case: does the current hold the same lock 3783 * already? 3784 */ 3785 int ret = check_deadlock(curr, hlock); 3786 3787 if (!ret) 3788 return 0; 3789 /* 3790 * Add dependency only if this lock is not the head 3791 * of the chain, and if the new lock introduces no more 3792 * lock dependency (because we already hold a lock with the 3793 * same lock class) nor deadlock (because the nest_lock 3794 * serializes nesting locks), see the comments for 3795 * check_deadlock(). 3796 */ 3797 if (!chain_head && ret != 2) { 3798 if (!check_prevs_add(curr, hlock)) 3799 return 0; 3800 } 3801 3802 graph_unlock(); 3803 } else { 3804 /* after lookup_chain_cache_add(): */ 3805 if (unlikely(!debug_locks)) 3806 return 0; 3807 } 3808 3809 return 1; 3810 } 3811 #else 3812 static inline int validate_chain(struct task_struct *curr, 3813 struct held_lock *hlock, 3814 int chain_head, u64 chain_key) 3815 { 3816 return 1; 3817 } 3818 3819 static void init_chain_block_buckets(void) { } 3820 #endif /* CONFIG_PROVE_LOCKING */ 3821 3822 /* 3823 * We are building curr_chain_key incrementally, so double-check 3824 * it from scratch, to make sure that it's done correctly: 3825 */ 3826 static void check_chain_key(struct task_struct *curr) 3827 { 3828 #ifdef CONFIG_DEBUG_LOCKDEP 3829 struct held_lock *hlock, *prev_hlock = NULL; 3830 unsigned int i; 3831 u64 chain_key = INITIAL_CHAIN_KEY; 3832 3833 for (i = 0; i < curr->lockdep_depth; i++) { 3834 hlock = curr->held_locks + i; 3835 if (chain_key != hlock->prev_chain_key) { 3836 debug_locks_off(); 3837 /* 3838 * We got mighty confused, our chain keys don't match 3839 * with what we expect, someone trample on our task state? 3840 */ 3841 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3842 curr->lockdep_depth, i, 3843 (unsigned long long)chain_key, 3844 (unsigned long long)hlock->prev_chain_key); 3845 return; 3846 } 3847 3848 /* 3849 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3850 * it registered lock class index? 3851 */ 3852 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3853 return; 3854 3855 if (prev_hlock && (prev_hlock->irq_context != 3856 hlock->irq_context)) 3857 chain_key = INITIAL_CHAIN_KEY; 3858 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3859 prev_hlock = hlock; 3860 } 3861 if (chain_key != curr->curr_chain_key) { 3862 debug_locks_off(); 3863 /* 3864 * More smoking hash instead of calculating it, damn see these 3865 * numbers float.. I bet that a pink elephant stepped on my memory. 3866 */ 3867 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3868 curr->lockdep_depth, i, 3869 (unsigned long long)chain_key, 3870 (unsigned long long)curr->curr_chain_key); 3871 } 3872 #endif 3873 } 3874 3875 #ifdef CONFIG_PROVE_LOCKING 3876 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3877 enum lock_usage_bit new_bit); 3878 3879 static void print_usage_bug_scenario(struct held_lock *lock) 3880 { 3881 struct lock_class *class = hlock_class(lock); 3882 3883 printk(" Possible unsafe locking scenario:\n\n"); 3884 printk(" CPU0\n"); 3885 printk(" ----\n"); 3886 printk(" lock("); 3887 __print_lock_name(class); 3888 printk(KERN_CONT ");\n"); 3889 printk(" <Interrupt>\n"); 3890 printk(" lock("); 3891 __print_lock_name(class); 3892 printk(KERN_CONT ");\n"); 3893 printk("\n *** DEADLOCK ***\n\n"); 3894 } 3895 3896 static void 3897 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3898 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3899 { 3900 if (!debug_locks_off() || debug_locks_silent) 3901 return; 3902 3903 pr_warn("\n"); 3904 pr_warn("================================\n"); 3905 pr_warn("WARNING: inconsistent lock state\n"); 3906 print_kernel_ident(); 3907 pr_warn("--------------------------------\n"); 3908 3909 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3910 usage_str[prev_bit], usage_str[new_bit]); 3911 3912 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3913 curr->comm, task_pid_nr(curr), 3914 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3915 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3916 lockdep_hardirqs_enabled(), 3917 lockdep_softirqs_enabled(curr)); 3918 print_lock(this); 3919 3920 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3921 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3922 3923 print_irqtrace_events(curr); 3924 pr_warn("\nother info that might help us debug this:\n"); 3925 print_usage_bug_scenario(this); 3926 3927 lockdep_print_held_locks(curr); 3928 3929 pr_warn("\nstack backtrace:\n"); 3930 dump_stack(); 3931 } 3932 3933 /* 3934 * Print out an error if an invalid bit is set: 3935 */ 3936 static inline int 3937 valid_state(struct task_struct *curr, struct held_lock *this, 3938 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3939 { 3940 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3941 graph_unlock(); 3942 print_usage_bug(curr, this, bad_bit, new_bit); 3943 return 0; 3944 } 3945 return 1; 3946 } 3947 3948 3949 /* 3950 * print irq inversion bug: 3951 */ 3952 static void 3953 print_irq_inversion_bug(struct task_struct *curr, 3954 struct lock_list *root, struct lock_list *other, 3955 struct held_lock *this, int forwards, 3956 const char *irqclass) 3957 { 3958 struct lock_list *entry = other; 3959 struct lock_list *middle = NULL; 3960 int depth; 3961 3962 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3963 return; 3964 3965 pr_warn("\n"); 3966 pr_warn("========================================================\n"); 3967 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3968 print_kernel_ident(); 3969 pr_warn("--------------------------------------------------------\n"); 3970 pr_warn("%s/%d just changed the state of lock:\n", 3971 curr->comm, task_pid_nr(curr)); 3972 print_lock(this); 3973 if (forwards) 3974 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3975 else 3976 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3977 print_lock_name(other->class); 3978 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3979 3980 pr_warn("\nother info that might help us debug this:\n"); 3981 3982 /* Find a middle lock (if one exists) */ 3983 depth = get_lock_depth(other); 3984 do { 3985 if (depth == 0 && (entry != root)) { 3986 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3987 break; 3988 } 3989 middle = entry; 3990 entry = get_lock_parent(entry); 3991 depth--; 3992 } while (entry && entry != root && (depth >= 0)); 3993 if (forwards) 3994 print_irq_lock_scenario(root, other, 3995 middle ? middle->class : root->class, other->class); 3996 else 3997 print_irq_lock_scenario(other, root, 3998 middle ? middle->class : other->class, root->class); 3999 4000 lockdep_print_held_locks(curr); 4001 4002 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4003 root->trace = save_trace(); 4004 if (!root->trace) 4005 return; 4006 print_shortest_lock_dependencies(other, root); 4007 4008 pr_warn("\nstack backtrace:\n"); 4009 dump_stack(); 4010 } 4011 4012 /* 4013 * Prove that in the forwards-direction subgraph starting at <this> 4014 * there is no lock matching <mask>: 4015 */ 4016 static int 4017 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4018 enum lock_usage_bit bit) 4019 { 4020 enum bfs_result ret; 4021 struct lock_list root; 4022 struct lock_list *target_entry; 4023 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4024 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4025 4026 bfs_init_root(&root, this); 4027 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4028 if (bfs_error(ret)) { 4029 print_bfs_bug(ret); 4030 return 0; 4031 } 4032 if (ret == BFS_RNOMATCH) 4033 return 1; 4034 4035 /* Check whether write or read usage is the match */ 4036 if (target_entry->class->usage_mask & lock_flag(bit)) { 4037 print_irq_inversion_bug(curr, &root, target_entry, 4038 this, 1, state_name(bit)); 4039 } else { 4040 print_irq_inversion_bug(curr, &root, target_entry, 4041 this, 1, state_name(read_bit)); 4042 } 4043 4044 return 0; 4045 } 4046 4047 /* 4048 * Prove that in the backwards-direction subgraph starting at <this> 4049 * there is no lock matching <mask>: 4050 */ 4051 static int 4052 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4053 enum lock_usage_bit bit) 4054 { 4055 enum bfs_result ret; 4056 struct lock_list root; 4057 struct lock_list *target_entry; 4058 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4059 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4060 4061 bfs_init_rootb(&root, this); 4062 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4063 if (bfs_error(ret)) { 4064 print_bfs_bug(ret); 4065 return 0; 4066 } 4067 if (ret == BFS_RNOMATCH) 4068 return 1; 4069 4070 /* Check whether write or read usage is the match */ 4071 if (target_entry->class->usage_mask & lock_flag(bit)) { 4072 print_irq_inversion_bug(curr, &root, target_entry, 4073 this, 0, state_name(bit)); 4074 } else { 4075 print_irq_inversion_bug(curr, &root, target_entry, 4076 this, 0, state_name(read_bit)); 4077 } 4078 4079 return 0; 4080 } 4081 4082 void print_irqtrace_events(struct task_struct *curr) 4083 { 4084 const struct irqtrace_events *trace = &curr->irqtrace; 4085 4086 printk("irq event stamp: %u\n", trace->irq_events); 4087 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4088 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4089 (void *)trace->hardirq_enable_ip); 4090 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4091 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4092 (void *)trace->hardirq_disable_ip); 4093 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4094 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4095 (void *)trace->softirq_enable_ip); 4096 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4097 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4098 (void *)trace->softirq_disable_ip); 4099 } 4100 4101 static int HARDIRQ_verbose(struct lock_class *class) 4102 { 4103 #if HARDIRQ_VERBOSE 4104 return class_filter(class); 4105 #endif 4106 return 0; 4107 } 4108 4109 static int SOFTIRQ_verbose(struct lock_class *class) 4110 { 4111 #if SOFTIRQ_VERBOSE 4112 return class_filter(class); 4113 #endif 4114 return 0; 4115 } 4116 4117 static int (*state_verbose_f[])(struct lock_class *class) = { 4118 #define LOCKDEP_STATE(__STATE) \ 4119 __STATE##_verbose, 4120 #include "lockdep_states.h" 4121 #undef LOCKDEP_STATE 4122 }; 4123 4124 static inline int state_verbose(enum lock_usage_bit bit, 4125 struct lock_class *class) 4126 { 4127 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4128 } 4129 4130 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4131 enum lock_usage_bit bit, const char *name); 4132 4133 static int 4134 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4135 enum lock_usage_bit new_bit) 4136 { 4137 int excl_bit = exclusive_bit(new_bit); 4138 int read = new_bit & LOCK_USAGE_READ_MASK; 4139 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4140 4141 /* 4142 * Validate that this particular lock does not have conflicting 4143 * usage states. 4144 */ 4145 if (!valid_state(curr, this, new_bit, excl_bit)) 4146 return 0; 4147 4148 /* 4149 * Check for read in write conflicts 4150 */ 4151 if (!read && !valid_state(curr, this, new_bit, 4152 excl_bit + LOCK_USAGE_READ_MASK)) 4153 return 0; 4154 4155 4156 /* 4157 * Validate that the lock dependencies don't have conflicting usage 4158 * states. 4159 */ 4160 if (dir) { 4161 /* 4162 * mark ENABLED has to look backwards -- to ensure no dependee 4163 * has USED_IN state, which, again, would allow recursion deadlocks. 4164 */ 4165 if (!check_usage_backwards(curr, this, excl_bit)) 4166 return 0; 4167 } else { 4168 /* 4169 * mark USED_IN has to look forwards -- to ensure no dependency 4170 * has ENABLED state, which would allow recursion deadlocks. 4171 */ 4172 if (!check_usage_forwards(curr, this, excl_bit)) 4173 return 0; 4174 } 4175 4176 if (state_verbose(new_bit, hlock_class(this))) 4177 return 2; 4178 4179 return 1; 4180 } 4181 4182 /* 4183 * Mark all held locks with a usage bit: 4184 */ 4185 static int 4186 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4187 { 4188 struct held_lock *hlock; 4189 int i; 4190 4191 for (i = 0; i < curr->lockdep_depth; i++) { 4192 enum lock_usage_bit hlock_bit = base_bit; 4193 hlock = curr->held_locks + i; 4194 4195 if (hlock->read) 4196 hlock_bit += LOCK_USAGE_READ_MASK; 4197 4198 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4199 4200 if (!hlock->check) 4201 continue; 4202 4203 if (!mark_lock(curr, hlock, hlock_bit)) 4204 return 0; 4205 } 4206 4207 return 1; 4208 } 4209 4210 /* 4211 * Hardirqs will be enabled: 4212 */ 4213 static void __trace_hardirqs_on_caller(void) 4214 { 4215 struct task_struct *curr = current; 4216 4217 /* 4218 * We are going to turn hardirqs on, so set the 4219 * usage bit for all held locks: 4220 */ 4221 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4222 return; 4223 /* 4224 * If we have softirqs enabled, then set the usage 4225 * bit for all held locks. (disabled hardirqs prevented 4226 * this bit from being set before) 4227 */ 4228 if (curr->softirqs_enabled) 4229 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4230 } 4231 4232 /** 4233 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4234 * 4235 * Invoked before a possible transition to RCU idle from exit to user or 4236 * guest mode. This ensures that all RCU operations are done before RCU 4237 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4238 * invoked to set the final state. 4239 */ 4240 void lockdep_hardirqs_on_prepare(void) 4241 { 4242 if (unlikely(!debug_locks)) 4243 return; 4244 4245 /* 4246 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4247 */ 4248 if (unlikely(in_nmi())) 4249 return; 4250 4251 if (unlikely(this_cpu_read(lockdep_recursion))) 4252 return; 4253 4254 if (unlikely(lockdep_hardirqs_enabled())) { 4255 /* 4256 * Neither irq nor preemption are disabled here 4257 * so this is racy by nature but losing one hit 4258 * in a stat is not a big deal. 4259 */ 4260 __debug_atomic_inc(redundant_hardirqs_on); 4261 return; 4262 } 4263 4264 /* 4265 * We're enabling irqs and according to our state above irqs weren't 4266 * already enabled, yet we find the hardware thinks they are in fact 4267 * enabled.. someone messed up their IRQ state tracing. 4268 */ 4269 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4270 return; 4271 4272 /* 4273 * See the fine text that goes along with this variable definition. 4274 */ 4275 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4276 return; 4277 4278 /* 4279 * Can't allow enabling interrupts while in an interrupt handler, 4280 * that's general bad form and such. Recursion, limited stack etc.. 4281 */ 4282 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4283 return; 4284 4285 current->hardirq_chain_key = current->curr_chain_key; 4286 4287 lockdep_recursion_inc(); 4288 __trace_hardirqs_on_caller(); 4289 lockdep_recursion_finish(); 4290 } 4291 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4292 4293 void noinstr lockdep_hardirqs_on(unsigned long ip) 4294 { 4295 struct irqtrace_events *trace = ¤t->irqtrace; 4296 4297 if (unlikely(!debug_locks)) 4298 return; 4299 4300 /* 4301 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4302 * tracking state and hardware state are out of sync. 4303 * 4304 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4305 * and not rely on hardware state like normal interrupts. 4306 */ 4307 if (unlikely(in_nmi())) { 4308 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4309 return; 4310 4311 /* 4312 * Skip: 4313 * - recursion check, because NMI can hit lockdep; 4314 * - hardware state check, because above; 4315 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4316 */ 4317 goto skip_checks; 4318 } 4319 4320 if (unlikely(this_cpu_read(lockdep_recursion))) 4321 return; 4322 4323 if (lockdep_hardirqs_enabled()) { 4324 /* 4325 * Neither irq nor preemption are disabled here 4326 * so this is racy by nature but losing one hit 4327 * in a stat is not a big deal. 4328 */ 4329 __debug_atomic_inc(redundant_hardirqs_on); 4330 return; 4331 } 4332 4333 /* 4334 * We're enabling irqs and according to our state above irqs weren't 4335 * already enabled, yet we find the hardware thinks they are in fact 4336 * enabled.. someone messed up their IRQ state tracing. 4337 */ 4338 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4339 return; 4340 4341 /* 4342 * Ensure the lock stack remained unchanged between 4343 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4344 */ 4345 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4346 current->curr_chain_key); 4347 4348 skip_checks: 4349 /* we'll do an OFF -> ON transition: */ 4350 __this_cpu_write(hardirqs_enabled, 1); 4351 trace->hardirq_enable_ip = ip; 4352 trace->hardirq_enable_event = ++trace->irq_events; 4353 debug_atomic_inc(hardirqs_on_events); 4354 } 4355 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4356 4357 /* 4358 * Hardirqs were disabled: 4359 */ 4360 void noinstr lockdep_hardirqs_off(unsigned long ip) 4361 { 4362 if (unlikely(!debug_locks)) 4363 return; 4364 4365 /* 4366 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4367 * they will restore the software state. This ensures the software 4368 * state is consistent inside NMIs as well. 4369 */ 4370 if (in_nmi()) { 4371 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4372 return; 4373 } else if (__this_cpu_read(lockdep_recursion)) 4374 return; 4375 4376 /* 4377 * So we're supposed to get called after you mask local IRQs, but for 4378 * some reason the hardware doesn't quite think you did a proper job. 4379 */ 4380 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4381 return; 4382 4383 if (lockdep_hardirqs_enabled()) { 4384 struct irqtrace_events *trace = ¤t->irqtrace; 4385 4386 /* 4387 * We have done an ON -> OFF transition: 4388 */ 4389 __this_cpu_write(hardirqs_enabled, 0); 4390 trace->hardirq_disable_ip = ip; 4391 trace->hardirq_disable_event = ++trace->irq_events; 4392 debug_atomic_inc(hardirqs_off_events); 4393 } else { 4394 debug_atomic_inc(redundant_hardirqs_off); 4395 } 4396 } 4397 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4398 4399 /* 4400 * Softirqs will be enabled: 4401 */ 4402 void lockdep_softirqs_on(unsigned long ip) 4403 { 4404 struct irqtrace_events *trace = ¤t->irqtrace; 4405 4406 if (unlikely(!lockdep_enabled())) 4407 return; 4408 4409 /* 4410 * We fancy IRQs being disabled here, see softirq.c, avoids 4411 * funny state and nesting things. 4412 */ 4413 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4414 return; 4415 4416 if (current->softirqs_enabled) { 4417 debug_atomic_inc(redundant_softirqs_on); 4418 return; 4419 } 4420 4421 lockdep_recursion_inc(); 4422 /* 4423 * We'll do an OFF -> ON transition: 4424 */ 4425 current->softirqs_enabled = 1; 4426 trace->softirq_enable_ip = ip; 4427 trace->softirq_enable_event = ++trace->irq_events; 4428 debug_atomic_inc(softirqs_on_events); 4429 /* 4430 * We are going to turn softirqs on, so set the 4431 * usage bit for all held locks, if hardirqs are 4432 * enabled too: 4433 */ 4434 if (lockdep_hardirqs_enabled()) 4435 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4436 lockdep_recursion_finish(); 4437 } 4438 4439 /* 4440 * Softirqs were disabled: 4441 */ 4442 void lockdep_softirqs_off(unsigned long ip) 4443 { 4444 if (unlikely(!lockdep_enabled())) 4445 return; 4446 4447 /* 4448 * We fancy IRQs being disabled here, see softirq.c 4449 */ 4450 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4451 return; 4452 4453 if (current->softirqs_enabled) { 4454 struct irqtrace_events *trace = ¤t->irqtrace; 4455 4456 /* 4457 * We have done an ON -> OFF transition: 4458 */ 4459 current->softirqs_enabled = 0; 4460 trace->softirq_disable_ip = ip; 4461 trace->softirq_disable_event = ++trace->irq_events; 4462 debug_atomic_inc(softirqs_off_events); 4463 /* 4464 * Whoops, we wanted softirqs off, so why aren't they? 4465 */ 4466 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4467 } else 4468 debug_atomic_inc(redundant_softirqs_off); 4469 } 4470 4471 static int 4472 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4473 { 4474 if (!check) 4475 goto lock_used; 4476 4477 /* 4478 * If non-trylock use in a hardirq or softirq context, then 4479 * mark the lock as used in these contexts: 4480 */ 4481 if (!hlock->trylock) { 4482 if (hlock->read) { 4483 if (lockdep_hardirq_context()) 4484 if (!mark_lock(curr, hlock, 4485 LOCK_USED_IN_HARDIRQ_READ)) 4486 return 0; 4487 if (curr->softirq_context) 4488 if (!mark_lock(curr, hlock, 4489 LOCK_USED_IN_SOFTIRQ_READ)) 4490 return 0; 4491 } else { 4492 if (lockdep_hardirq_context()) 4493 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4494 return 0; 4495 if (curr->softirq_context) 4496 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4497 return 0; 4498 } 4499 } 4500 if (!hlock->hardirqs_off) { 4501 if (hlock->read) { 4502 if (!mark_lock(curr, hlock, 4503 LOCK_ENABLED_HARDIRQ_READ)) 4504 return 0; 4505 if (curr->softirqs_enabled) 4506 if (!mark_lock(curr, hlock, 4507 LOCK_ENABLED_SOFTIRQ_READ)) 4508 return 0; 4509 } else { 4510 if (!mark_lock(curr, hlock, 4511 LOCK_ENABLED_HARDIRQ)) 4512 return 0; 4513 if (curr->softirqs_enabled) 4514 if (!mark_lock(curr, hlock, 4515 LOCK_ENABLED_SOFTIRQ)) 4516 return 0; 4517 } 4518 } 4519 4520 lock_used: 4521 /* mark it as used: */ 4522 if (!mark_lock(curr, hlock, LOCK_USED)) 4523 return 0; 4524 4525 return 1; 4526 } 4527 4528 static inline unsigned int task_irq_context(struct task_struct *task) 4529 { 4530 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4531 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4532 } 4533 4534 static int separate_irq_context(struct task_struct *curr, 4535 struct held_lock *hlock) 4536 { 4537 unsigned int depth = curr->lockdep_depth; 4538 4539 /* 4540 * Keep track of points where we cross into an interrupt context: 4541 */ 4542 if (depth) { 4543 struct held_lock *prev_hlock; 4544 4545 prev_hlock = curr->held_locks + depth-1; 4546 /* 4547 * If we cross into another context, reset the 4548 * hash key (this also prevents the checking and the 4549 * adding of the dependency to 'prev'): 4550 */ 4551 if (prev_hlock->irq_context != hlock->irq_context) 4552 return 1; 4553 } 4554 return 0; 4555 } 4556 4557 /* 4558 * Mark a lock with a usage bit, and validate the state transition: 4559 */ 4560 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4561 enum lock_usage_bit new_bit) 4562 { 4563 unsigned int new_mask, ret = 1; 4564 4565 if (new_bit >= LOCK_USAGE_STATES) { 4566 DEBUG_LOCKS_WARN_ON(1); 4567 return 0; 4568 } 4569 4570 if (new_bit == LOCK_USED && this->read) 4571 new_bit = LOCK_USED_READ; 4572 4573 new_mask = 1 << new_bit; 4574 4575 /* 4576 * If already set then do not dirty the cacheline, 4577 * nor do any checks: 4578 */ 4579 if (likely(hlock_class(this)->usage_mask & new_mask)) 4580 return 1; 4581 4582 if (!graph_lock()) 4583 return 0; 4584 /* 4585 * Make sure we didn't race: 4586 */ 4587 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4588 goto unlock; 4589 4590 if (!hlock_class(this)->usage_mask) 4591 debug_atomic_dec(nr_unused_locks); 4592 4593 hlock_class(this)->usage_mask |= new_mask; 4594 4595 if (new_bit < LOCK_TRACE_STATES) { 4596 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4597 return 0; 4598 } 4599 4600 if (new_bit < LOCK_USED) { 4601 ret = mark_lock_irq(curr, this, new_bit); 4602 if (!ret) 4603 return 0; 4604 } 4605 4606 unlock: 4607 graph_unlock(); 4608 4609 /* 4610 * We must printk outside of the graph_lock: 4611 */ 4612 if (ret == 2) { 4613 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4614 print_lock(this); 4615 print_irqtrace_events(curr); 4616 dump_stack(); 4617 } 4618 4619 return ret; 4620 } 4621 4622 static inline short task_wait_context(struct task_struct *curr) 4623 { 4624 /* 4625 * Set appropriate wait type for the context; for IRQs we have to take 4626 * into account force_irqthread as that is implied by PREEMPT_RT. 4627 */ 4628 if (lockdep_hardirq_context()) { 4629 /* 4630 * Check if force_irqthreads will run us threaded. 4631 */ 4632 if (curr->hardirq_threaded || curr->irq_config) 4633 return LD_WAIT_CONFIG; 4634 4635 return LD_WAIT_SPIN; 4636 } else if (curr->softirq_context) { 4637 /* 4638 * Softirqs are always threaded. 4639 */ 4640 return LD_WAIT_CONFIG; 4641 } 4642 4643 return LD_WAIT_MAX; 4644 } 4645 4646 static int 4647 print_lock_invalid_wait_context(struct task_struct *curr, 4648 struct held_lock *hlock) 4649 { 4650 short curr_inner; 4651 4652 if (!debug_locks_off()) 4653 return 0; 4654 if (debug_locks_silent) 4655 return 0; 4656 4657 pr_warn("\n"); 4658 pr_warn("=============================\n"); 4659 pr_warn("[ BUG: Invalid wait context ]\n"); 4660 print_kernel_ident(); 4661 pr_warn("-----------------------------\n"); 4662 4663 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4664 print_lock(hlock); 4665 4666 pr_warn("other info that might help us debug this:\n"); 4667 4668 curr_inner = task_wait_context(curr); 4669 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4670 4671 lockdep_print_held_locks(curr); 4672 4673 pr_warn("stack backtrace:\n"); 4674 dump_stack(); 4675 4676 return 0; 4677 } 4678 4679 /* 4680 * Verify the wait_type context. 4681 * 4682 * This check validates we take locks in the right wait-type order; that is it 4683 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4684 * acquire spinlocks inside raw_spinlocks and the sort. 4685 * 4686 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4687 * can be taken from (pretty much) any context but also has constraints. 4688 * However when taken in a stricter environment the RCU lock does not loosen 4689 * the constraints. 4690 * 4691 * Therefore we must look for the strictest environment in the lock stack and 4692 * compare that to the lock we're trying to acquire. 4693 */ 4694 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4695 { 4696 u8 next_inner = hlock_class(next)->wait_type_inner; 4697 u8 next_outer = hlock_class(next)->wait_type_outer; 4698 u8 curr_inner; 4699 int depth; 4700 4701 if (!next_inner || next->trylock) 4702 return 0; 4703 4704 if (!next_outer) 4705 next_outer = next_inner; 4706 4707 /* 4708 * Find start of current irq_context.. 4709 */ 4710 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4711 struct held_lock *prev = curr->held_locks + depth; 4712 if (prev->irq_context != next->irq_context) 4713 break; 4714 } 4715 depth++; 4716 4717 curr_inner = task_wait_context(curr); 4718 4719 for (; depth < curr->lockdep_depth; depth++) { 4720 struct held_lock *prev = curr->held_locks + depth; 4721 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4722 4723 if (prev_inner) { 4724 /* 4725 * We can have a bigger inner than a previous one 4726 * when outer is smaller than inner, as with RCU. 4727 * 4728 * Also due to trylocks. 4729 */ 4730 curr_inner = min(curr_inner, prev_inner); 4731 } 4732 } 4733 4734 if (next_outer > curr_inner) 4735 return print_lock_invalid_wait_context(curr, next); 4736 4737 return 0; 4738 } 4739 4740 #else /* CONFIG_PROVE_LOCKING */ 4741 4742 static inline int 4743 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4744 { 4745 return 1; 4746 } 4747 4748 static inline unsigned int task_irq_context(struct task_struct *task) 4749 { 4750 return 0; 4751 } 4752 4753 static inline int separate_irq_context(struct task_struct *curr, 4754 struct held_lock *hlock) 4755 { 4756 return 0; 4757 } 4758 4759 static inline int check_wait_context(struct task_struct *curr, 4760 struct held_lock *next) 4761 { 4762 return 0; 4763 } 4764 4765 #endif /* CONFIG_PROVE_LOCKING */ 4766 4767 /* 4768 * Initialize a lock instance's lock-class mapping info: 4769 */ 4770 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4771 struct lock_class_key *key, int subclass, 4772 u8 inner, u8 outer, u8 lock_type) 4773 { 4774 int i; 4775 4776 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4777 lock->class_cache[i] = NULL; 4778 4779 #ifdef CONFIG_LOCK_STAT 4780 lock->cpu = raw_smp_processor_id(); 4781 #endif 4782 4783 /* 4784 * Can't be having no nameless bastards around this place! 4785 */ 4786 if (DEBUG_LOCKS_WARN_ON(!name)) { 4787 lock->name = "NULL"; 4788 return; 4789 } 4790 4791 lock->name = name; 4792 4793 lock->wait_type_outer = outer; 4794 lock->wait_type_inner = inner; 4795 lock->lock_type = lock_type; 4796 4797 /* 4798 * No key, no joy, we need to hash something. 4799 */ 4800 if (DEBUG_LOCKS_WARN_ON(!key)) 4801 return; 4802 /* 4803 * Sanity check, the lock-class key must either have been allocated 4804 * statically or must have been registered as a dynamic key. 4805 */ 4806 if (!static_obj(key) && !is_dynamic_key(key)) { 4807 if (debug_locks) 4808 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4809 DEBUG_LOCKS_WARN_ON(1); 4810 return; 4811 } 4812 lock->key = key; 4813 4814 if (unlikely(!debug_locks)) 4815 return; 4816 4817 if (subclass) { 4818 unsigned long flags; 4819 4820 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4821 return; 4822 4823 raw_local_irq_save(flags); 4824 lockdep_recursion_inc(); 4825 register_lock_class(lock, subclass, 1); 4826 lockdep_recursion_finish(); 4827 raw_local_irq_restore(flags); 4828 } 4829 } 4830 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4831 4832 struct lock_class_key __lockdep_no_validate__; 4833 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4834 4835 static void 4836 print_lock_nested_lock_not_held(struct task_struct *curr, 4837 struct held_lock *hlock) 4838 { 4839 if (!debug_locks_off()) 4840 return; 4841 if (debug_locks_silent) 4842 return; 4843 4844 pr_warn("\n"); 4845 pr_warn("==================================\n"); 4846 pr_warn("WARNING: Nested lock was not taken\n"); 4847 print_kernel_ident(); 4848 pr_warn("----------------------------------\n"); 4849 4850 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4851 print_lock(hlock); 4852 4853 pr_warn("\nbut this task is not holding:\n"); 4854 pr_warn("%s\n", hlock->nest_lock->name); 4855 4856 pr_warn("\nstack backtrace:\n"); 4857 dump_stack(); 4858 4859 pr_warn("\nother info that might help us debug this:\n"); 4860 lockdep_print_held_locks(curr); 4861 4862 pr_warn("\nstack backtrace:\n"); 4863 dump_stack(); 4864 } 4865 4866 static int __lock_is_held(const struct lockdep_map *lock, int read); 4867 4868 /* 4869 * This gets called for every mutex_lock*()/spin_lock*() operation. 4870 * We maintain the dependency maps and validate the locking attempt: 4871 * 4872 * The callers must make sure that IRQs are disabled before calling it, 4873 * otherwise we could get an interrupt which would want to take locks, 4874 * which would end up in lockdep again. 4875 */ 4876 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4877 int trylock, int read, int check, int hardirqs_off, 4878 struct lockdep_map *nest_lock, unsigned long ip, 4879 int references, int pin_count) 4880 { 4881 struct task_struct *curr = current; 4882 struct lock_class *class = NULL; 4883 struct held_lock *hlock; 4884 unsigned int depth; 4885 int chain_head = 0; 4886 int class_idx; 4887 u64 chain_key; 4888 4889 if (unlikely(!debug_locks)) 4890 return 0; 4891 4892 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4893 check = 0; 4894 4895 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4896 class = lock->class_cache[subclass]; 4897 /* 4898 * Not cached? 4899 */ 4900 if (unlikely(!class)) { 4901 class = register_lock_class(lock, subclass, 0); 4902 if (!class) 4903 return 0; 4904 } 4905 4906 debug_class_ops_inc(class); 4907 4908 if (very_verbose(class)) { 4909 printk("\nacquire class [%px] %s", class->key, class->name); 4910 if (class->name_version > 1) 4911 printk(KERN_CONT "#%d", class->name_version); 4912 printk(KERN_CONT "\n"); 4913 dump_stack(); 4914 } 4915 4916 /* 4917 * Add the lock to the list of currently held locks. 4918 * (we dont increase the depth just yet, up until the 4919 * dependency checks are done) 4920 */ 4921 depth = curr->lockdep_depth; 4922 /* 4923 * Ran out of static storage for our per-task lock stack again have we? 4924 */ 4925 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4926 return 0; 4927 4928 class_idx = class - lock_classes; 4929 4930 if (depth) { /* we're holding locks */ 4931 hlock = curr->held_locks + depth - 1; 4932 if (hlock->class_idx == class_idx && nest_lock) { 4933 if (!references) 4934 references++; 4935 4936 if (!hlock->references) 4937 hlock->references++; 4938 4939 hlock->references += references; 4940 4941 /* Overflow */ 4942 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4943 return 0; 4944 4945 return 2; 4946 } 4947 } 4948 4949 hlock = curr->held_locks + depth; 4950 /* 4951 * Plain impossible, we just registered it and checked it weren't no 4952 * NULL like.. I bet this mushroom I ate was good! 4953 */ 4954 if (DEBUG_LOCKS_WARN_ON(!class)) 4955 return 0; 4956 hlock->class_idx = class_idx; 4957 hlock->acquire_ip = ip; 4958 hlock->instance = lock; 4959 hlock->nest_lock = nest_lock; 4960 hlock->irq_context = task_irq_context(curr); 4961 hlock->trylock = trylock; 4962 hlock->read = read; 4963 hlock->check = check; 4964 hlock->hardirqs_off = !!hardirqs_off; 4965 hlock->references = references; 4966 #ifdef CONFIG_LOCK_STAT 4967 hlock->waittime_stamp = 0; 4968 hlock->holdtime_stamp = lockstat_clock(); 4969 #endif 4970 hlock->pin_count = pin_count; 4971 4972 if (check_wait_context(curr, hlock)) 4973 return 0; 4974 4975 /* Initialize the lock usage bit */ 4976 if (!mark_usage(curr, hlock, check)) 4977 return 0; 4978 4979 /* 4980 * Calculate the chain hash: it's the combined hash of all the 4981 * lock keys along the dependency chain. We save the hash value 4982 * at every step so that we can get the current hash easily 4983 * after unlock. The chain hash is then used to cache dependency 4984 * results. 4985 * 4986 * The 'key ID' is what is the most compact key value to drive 4987 * the hash, not class->key. 4988 */ 4989 /* 4990 * Whoops, we did it again.. class_idx is invalid. 4991 */ 4992 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 4993 return 0; 4994 4995 chain_key = curr->curr_chain_key; 4996 if (!depth) { 4997 /* 4998 * How can we have a chain hash when we ain't got no keys?! 4999 */ 5000 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5001 return 0; 5002 chain_head = 1; 5003 } 5004 5005 hlock->prev_chain_key = chain_key; 5006 if (separate_irq_context(curr, hlock)) { 5007 chain_key = INITIAL_CHAIN_KEY; 5008 chain_head = 1; 5009 } 5010 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5011 5012 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5013 print_lock_nested_lock_not_held(curr, hlock); 5014 return 0; 5015 } 5016 5017 if (!debug_locks_silent) { 5018 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5019 WARN_ON_ONCE(!hlock_class(hlock)->key); 5020 } 5021 5022 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5023 return 0; 5024 5025 curr->curr_chain_key = chain_key; 5026 curr->lockdep_depth++; 5027 check_chain_key(curr); 5028 #ifdef CONFIG_DEBUG_LOCKDEP 5029 if (unlikely(!debug_locks)) 5030 return 0; 5031 #endif 5032 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5033 debug_locks_off(); 5034 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5035 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5036 curr->lockdep_depth, MAX_LOCK_DEPTH); 5037 5038 lockdep_print_held_locks(current); 5039 debug_show_all_locks(); 5040 dump_stack(); 5041 5042 return 0; 5043 } 5044 5045 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5046 max_lockdep_depth = curr->lockdep_depth; 5047 5048 return 1; 5049 } 5050 5051 static void print_unlock_imbalance_bug(struct task_struct *curr, 5052 struct lockdep_map *lock, 5053 unsigned long ip) 5054 { 5055 if (!debug_locks_off()) 5056 return; 5057 if (debug_locks_silent) 5058 return; 5059 5060 pr_warn("\n"); 5061 pr_warn("=====================================\n"); 5062 pr_warn("WARNING: bad unlock balance detected!\n"); 5063 print_kernel_ident(); 5064 pr_warn("-------------------------------------\n"); 5065 pr_warn("%s/%d is trying to release lock (", 5066 curr->comm, task_pid_nr(curr)); 5067 print_lockdep_cache(lock); 5068 pr_cont(") at:\n"); 5069 print_ip_sym(KERN_WARNING, ip); 5070 pr_warn("but there are no more locks to release!\n"); 5071 pr_warn("\nother info that might help us debug this:\n"); 5072 lockdep_print_held_locks(curr); 5073 5074 pr_warn("\nstack backtrace:\n"); 5075 dump_stack(); 5076 } 5077 5078 static noinstr int match_held_lock(const struct held_lock *hlock, 5079 const struct lockdep_map *lock) 5080 { 5081 if (hlock->instance == lock) 5082 return 1; 5083 5084 if (hlock->references) { 5085 const struct lock_class *class = lock->class_cache[0]; 5086 5087 if (!class) 5088 class = look_up_lock_class(lock, 0); 5089 5090 /* 5091 * If look_up_lock_class() failed to find a class, we're trying 5092 * to test if we hold a lock that has never yet been acquired. 5093 * Clearly if the lock hasn't been acquired _ever_, we're not 5094 * holding it either, so report failure. 5095 */ 5096 if (!class) 5097 return 0; 5098 5099 /* 5100 * References, but not a lock we're actually ref-counting? 5101 * State got messed up, follow the sites that change ->references 5102 * and try to make sense of it. 5103 */ 5104 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5105 return 0; 5106 5107 if (hlock->class_idx == class - lock_classes) 5108 return 1; 5109 } 5110 5111 return 0; 5112 } 5113 5114 /* @depth must not be zero */ 5115 static struct held_lock *find_held_lock(struct task_struct *curr, 5116 struct lockdep_map *lock, 5117 unsigned int depth, int *idx) 5118 { 5119 struct held_lock *ret, *hlock, *prev_hlock; 5120 int i; 5121 5122 i = depth - 1; 5123 hlock = curr->held_locks + i; 5124 ret = hlock; 5125 if (match_held_lock(hlock, lock)) 5126 goto out; 5127 5128 ret = NULL; 5129 for (i--, prev_hlock = hlock--; 5130 i >= 0; 5131 i--, prev_hlock = hlock--) { 5132 /* 5133 * We must not cross into another context: 5134 */ 5135 if (prev_hlock->irq_context != hlock->irq_context) { 5136 ret = NULL; 5137 break; 5138 } 5139 if (match_held_lock(hlock, lock)) { 5140 ret = hlock; 5141 break; 5142 } 5143 } 5144 5145 out: 5146 *idx = i; 5147 return ret; 5148 } 5149 5150 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5151 int idx, unsigned int *merged) 5152 { 5153 struct held_lock *hlock; 5154 int first_idx = idx; 5155 5156 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5157 return 0; 5158 5159 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5160 switch (__lock_acquire(hlock->instance, 5161 hlock_class(hlock)->subclass, 5162 hlock->trylock, 5163 hlock->read, hlock->check, 5164 hlock->hardirqs_off, 5165 hlock->nest_lock, hlock->acquire_ip, 5166 hlock->references, hlock->pin_count)) { 5167 case 0: 5168 return 1; 5169 case 1: 5170 break; 5171 case 2: 5172 *merged += (idx == first_idx); 5173 break; 5174 default: 5175 WARN_ON(1); 5176 return 0; 5177 } 5178 } 5179 return 0; 5180 } 5181 5182 static int 5183 __lock_set_class(struct lockdep_map *lock, const char *name, 5184 struct lock_class_key *key, unsigned int subclass, 5185 unsigned long ip) 5186 { 5187 struct task_struct *curr = current; 5188 unsigned int depth, merged = 0; 5189 struct held_lock *hlock; 5190 struct lock_class *class; 5191 int i; 5192 5193 if (unlikely(!debug_locks)) 5194 return 0; 5195 5196 depth = curr->lockdep_depth; 5197 /* 5198 * This function is about (re)setting the class of a held lock, 5199 * yet we're not actually holding any locks. Naughty user! 5200 */ 5201 if (DEBUG_LOCKS_WARN_ON(!depth)) 5202 return 0; 5203 5204 hlock = find_held_lock(curr, lock, depth, &i); 5205 if (!hlock) { 5206 print_unlock_imbalance_bug(curr, lock, ip); 5207 return 0; 5208 } 5209 5210 lockdep_init_map_waits(lock, name, key, 0, 5211 lock->wait_type_inner, 5212 lock->wait_type_outer); 5213 class = register_lock_class(lock, subclass, 0); 5214 hlock->class_idx = class - lock_classes; 5215 5216 curr->lockdep_depth = i; 5217 curr->curr_chain_key = hlock->prev_chain_key; 5218 5219 if (reacquire_held_locks(curr, depth, i, &merged)) 5220 return 0; 5221 5222 /* 5223 * I took it apart and put it back together again, except now I have 5224 * these 'spare' parts.. where shall I put them. 5225 */ 5226 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5227 return 0; 5228 return 1; 5229 } 5230 5231 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5232 { 5233 struct task_struct *curr = current; 5234 unsigned int depth, merged = 0; 5235 struct held_lock *hlock; 5236 int i; 5237 5238 if (unlikely(!debug_locks)) 5239 return 0; 5240 5241 depth = curr->lockdep_depth; 5242 /* 5243 * This function is about (re)setting the class of a held lock, 5244 * yet we're not actually holding any locks. Naughty user! 5245 */ 5246 if (DEBUG_LOCKS_WARN_ON(!depth)) 5247 return 0; 5248 5249 hlock = find_held_lock(curr, lock, depth, &i); 5250 if (!hlock) { 5251 print_unlock_imbalance_bug(curr, lock, ip); 5252 return 0; 5253 } 5254 5255 curr->lockdep_depth = i; 5256 curr->curr_chain_key = hlock->prev_chain_key; 5257 5258 WARN(hlock->read, "downgrading a read lock"); 5259 hlock->read = 1; 5260 hlock->acquire_ip = ip; 5261 5262 if (reacquire_held_locks(curr, depth, i, &merged)) 5263 return 0; 5264 5265 /* Merging can't happen with unchanged classes.. */ 5266 if (DEBUG_LOCKS_WARN_ON(merged)) 5267 return 0; 5268 5269 /* 5270 * I took it apart and put it back together again, except now I have 5271 * these 'spare' parts.. where shall I put them. 5272 */ 5273 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5274 return 0; 5275 5276 return 1; 5277 } 5278 5279 /* 5280 * Remove the lock from the list of currently held locks - this gets 5281 * called on mutex_unlock()/spin_unlock*() (or on a failed 5282 * mutex_lock_interruptible()). 5283 */ 5284 static int 5285 __lock_release(struct lockdep_map *lock, unsigned long ip) 5286 { 5287 struct task_struct *curr = current; 5288 unsigned int depth, merged = 1; 5289 struct held_lock *hlock; 5290 int i; 5291 5292 if (unlikely(!debug_locks)) 5293 return 0; 5294 5295 depth = curr->lockdep_depth; 5296 /* 5297 * So we're all set to release this lock.. wait what lock? We don't 5298 * own any locks, you've been drinking again? 5299 */ 5300 if (depth <= 0) { 5301 print_unlock_imbalance_bug(curr, lock, ip); 5302 return 0; 5303 } 5304 5305 /* 5306 * Check whether the lock exists in the current stack 5307 * of held locks: 5308 */ 5309 hlock = find_held_lock(curr, lock, depth, &i); 5310 if (!hlock) { 5311 print_unlock_imbalance_bug(curr, lock, ip); 5312 return 0; 5313 } 5314 5315 if (hlock->instance == lock) 5316 lock_release_holdtime(hlock); 5317 5318 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5319 5320 if (hlock->references) { 5321 hlock->references--; 5322 if (hlock->references) { 5323 /* 5324 * We had, and after removing one, still have 5325 * references, the current lock stack is still 5326 * valid. We're done! 5327 */ 5328 return 1; 5329 } 5330 } 5331 5332 /* 5333 * We have the right lock to unlock, 'hlock' points to it. 5334 * Now we remove it from the stack, and add back the other 5335 * entries (if any), recalculating the hash along the way: 5336 */ 5337 5338 curr->lockdep_depth = i; 5339 curr->curr_chain_key = hlock->prev_chain_key; 5340 5341 /* 5342 * The most likely case is when the unlock is on the innermost 5343 * lock. In this case, we are done! 5344 */ 5345 if (i == depth-1) 5346 return 1; 5347 5348 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5349 return 0; 5350 5351 /* 5352 * We had N bottles of beer on the wall, we drank one, but now 5353 * there's not N-1 bottles of beer left on the wall... 5354 * Pouring two of the bottles together is acceptable. 5355 */ 5356 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5357 5358 /* 5359 * Since reacquire_held_locks() would have called check_chain_key() 5360 * indirectly via __lock_acquire(), we don't need to do it again 5361 * on return. 5362 */ 5363 return 0; 5364 } 5365 5366 static __always_inline 5367 int __lock_is_held(const struct lockdep_map *lock, int read) 5368 { 5369 struct task_struct *curr = current; 5370 int i; 5371 5372 for (i = 0; i < curr->lockdep_depth; i++) { 5373 struct held_lock *hlock = curr->held_locks + i; 5374 5375 if (match_held_lock(hlock, lock)) { 5376 if (read == -1 || !!hlock->read == read) 5377 return LOCK_STATE_HELD; 5378 5379 return LOCK_STATE_NOT_HELD; 5380 } 5381 } 5382 5383 return LOCK_STATE_NOT_HELD; 5384 } 5385 5386 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5387 { 5388 struct pin_cookie cookie = NIL_COOKIE; 5389 struct task_struct *curr = current; 5390 int i; 5391 5392 if (unlikely(!debug_locks)) 5393 return cookie; 5394 5395 for (i = 0; i < curr->lockdep_depth; i++) { 5396 struct held_lock *hlock = curr->held_locks + i; 5397 5398 if (match_held_lock(hlock, lock)) { 5399 /* 5400 * Grab 16bits of randomness; this is sufficient to not 5401 * be guessable and still allows some pin nesting in 5402 * our u32 pin_count. 5403 */ 5404 cookie.val = 1 + (prandom_u32() >> 16); 5405 hlock->pin_count += cookie.val; 5406 return cookie; 5407 } 5408 } 5409 5410 WARN(1, "pinning an unheld lock\n"); 5411 return cookie; 5412 } 5413 5414 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5415 { 5416 struct task_struct *curr = current; 5417 int i; 5418 5419 if (unlikely(!debug_locks)) 5420 return; 5421 5422 for (i = 0; i < curr->lockdep_depth; i++) { 5423 struct held_lock *hlock = curr->held_locks + i; 5424 5425 if (match_held_lock(hlock, lock)) { 5426 hlock->pin_count += cookie.val; 5427 return; 5428 } 5429 } 5430 5431 WARN(1, "pinning an unheld lock\n"); 5432 } 5433 5434 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5435 { 5436 struct task_struct *curr = current; 5437 int i; 5438 5439 if (unlikely(!debug_locks)) 5440 return; 5441 5442 for (i = 0; i < curr->lockdep_depth; i++) { 5443 struct held_lock *hlock = curr->held_locks + i; 5444 5445 if (match_held_lock(hlock, lock)) { 5446 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5447 return; 5448 5449 hlock->pin_count -= cookie.val; 5450 5451 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5452 hlock->pin_count = 0; 5453 5454 return; 5455 } 5456 } 5457 5458 WARN(1, "unpinning an unheld lock\n"); 5459 } 5460 5461 /* 5462 * Check whether we follow the irq-flags state precisely: 5463 */ 5464 static noinstr void check_flags(unsigned long flags) 5465 { 5466 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5467 if (!debug_locks) 5468 return; 5469 5470 /* Get the warning out.. */ 5471 instrumentation_begin(); 5472 5473 if (irqs_disabled_flags(flags)) { 5474 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5475 printk("possible reason: unannotated irqs-off.\n"); 5476 } 5477 } else { 5478 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5479 printk("possible reason: unannotated irqs-on.\n"); 5480 } 5481 } 5482 5483 #ifndef CONFIG_PREEMPT_RT 5484 /* 5485 * We dont accurately track softirq state in e.g. 5486 * hardirq contexts (such as on 4KSTACKS), so only 5487 * check if not in hardirq contexts: 5488 */ 5489 if (!hardirq_count()) { 5490 if (softirq_count()) { 5491 /* like the above, but with softirqs */ 5492 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5493 } else { 5494 /* lick the above, does it taste good? */ 5495 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5496 } 5497 } 5498 #endif 5499 5500 if (!debug_locks) 5501 print_irqtrace_events(current); 5502 5503 instrumentation_end(); 5504 #endif 5505 } 5506 5507 void lock_set_class(struct lockdep_map *lock, const char *name, 5508 struct lock_class_key *key, unsigned int subclass, 5509 unsigned long ip) 5510 { 5511 unsigned long flags; 5512 5513 if (unlikely(!lockdep_enabled())) 5514 return; 5515 5516 raw_local_irq_save(flags); 5517 lockdep_recursion_inc(); 5518 check_flags(flags); 5519 if (__lock_set_class(lock, name, key, subclass, ip)) 5520 check_chain_key(current); 5521 lockdep_recursion_finish(); 5522 raw_local_irq_restore(flags); 5523 } 5524 EXPORT_SYMBOL_GPL(lock_set_class); 5525 5526 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5527 { 5528 unsigned long flags; 5529 5530 if (unlikely(!lockdep_enabled())) 5531 return; 5532 5533 raw_local_irq_save(flags); 5534 lockdep_recursion_inc(); 5535 check_flags(flags); 5536 if (__lock_downgrade(lock, ip)) 5537 check_chain_key(current); 5538 lockdep_recursion_finish(); 5539 raw_local_irq_restore(flags); 5540 } 5541 EXPORT_SYMBOL_GPL(lock_downgrade); 5542 5543 /* NMI context !!! */ 5544 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5545 { 5546 #ifdef CONFIG_PROVE_LOCKING 5547 struct lock_class *class = look_up_lock_class(lock, subclass); 5548 unsigned long mask = LOCKF_USED; 5549 5550 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5551 if (!class) 5552 return; 5553 5554 /* 5555 * READ locks only conflict with USED, such that if we only ever use 5556 * READ locks, there is no deadlock possible -- RCU. 5557 */ 5558 if (!hlock->read) 5559 mask |= LOCKF_USED_READ; 5560 5561 if (!(class->usage_mask & mask)) 5562 return; 5563 5564 hlock->class_idx = class - lock_classes; 5565 5566 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5567 #endif 5568 } 5569 5570 static bool lockdep_nmi(void) 5571 { 5572 if (raw_cpu_read(lockdep_recursion)) 5573 return false; 5574 5575 if (!in_nmi()) 5576 return false; 5577 5578 return true; 5579 } 5580 5581 /* 5582 * read_lock() is recursive if: 5583 * 1. We force lockdep think this way in selftests or 5584 * 2. The implementation is not queued read/write lock or 5585 * 3. The locker is at an in_interrupt() context. 5586 */ 5587 bool read_lock_is_recursive(void) 5588 { 5589 return force_read_lock_recursive || 5590 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5591 in_interrupt(); 5592 } 5593 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5594 5595 /* 5596 * We are not always called with irqs disabled - do that here, 5597 * and also avoid lockdep recursion: 5598 */ 5599 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5600 int trylock, int read, int check, 5601 struct lockdep_map *nest_lock, unsigned long ip) 5602 { 5603 unsigned long flags; 5604 5605 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5606 5607 if (!debug_locks) 5608 return; 5609 5610 if (unlikely(!lockdep_enabled())) { 5611 /* XXX allow trylock from NMI ?!? */ 5612 if (lockdep_nmi() && !trylock) { 5613 struct held_lock hlock; 5614 5615 hlock.acquire_ip = ip; 5616 hlock.instance = lock; 5617 hlock.nest_lock = nest_lock; 5618 hlock.irq_context = 2; // XXX 5619 hlock.trylock = trylock; 5620 hlock.read = read; 5621 hlock.check = check; 5622 hlock.hardirqs_off = true; 5623 hlock.references = 0; 5624 5625 verify_lock_unused(lock, &hlock, subclass); 5626 } 5627 return; 5628 } 5629 5630 raw_local_irq_save(flags); 5631 check_flags(flags); 5632 5633 lockdep_recursion_inc(); 5634 __lock_acquire(lock, subclass, trylock, read, check, 5635 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5636 lockdep_recursion_finish(); 5637 raw_local_irq_restore(flags); 5638 } 5639 EXPORT_SYMBOL_GPL(lock_acquire); 5640 5641 void lock_release(struct lockdep_map *lock, unsigned long ip) 5642 { 5643 unsigned long flags; 5644 5645 trace_lock_release(lock, ip); 5646 5647 if (unlikely(!lockdep_enabled())) 5648 return; 5649 5650 raw_local_irq_save(flags); 5651 check_flags(flags); 5652 5653 lockdep_recursion_inc(); 5654 if (__lock_release(lock, ip)) 5655 check_chain_key(current); 5656 lockdep_recursion_finish(); 5657 raw_local_irq_restore(flags); 5658 } 5659 EXPORT_SYMBOL_GPL(lock_release); 5660 5661 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5662 { 5663 unsigned long flags; 5664 int ret = LOCK_STATE_NOT_HELD; 5665 5666 /* 5667 * Avoid false negative lockdep_assert_held() and 5668 * lockdep_assert_not_held(). 5669 */ 5670 if (unlikely(!lockdep_enabled())) 5671 return LOCK_STATE_UNKNOWN; 5672 5673 raw_local_irq_save(flags); 5674 check_flags(flags); 5675 5676 lockdep_recursion_inc(); 5677 ret = __lock_is_held(lock, read); 5678 lockdep_recursion_finish(); 5679 raw_local_irq_restore(flags); 5680 5681 return ret; 5682 } 5683 EXPORT_SYMBOL_GPL(lock_is_held_type); 5684 NOKPROBE_SYMBOL(lock_is_held_type); 5685 5686 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5687 { 5688 struct pin_cookie cookie = NIL_COOKIE; 5689 unsigned long flags; 5690 5691 if (unlikely(!lockdep_enabled())) 5692 return cookie; 5693 5694 raw_local_irq_save(flags); 5695 check_flags(flags); 5696 5697 lockdep_recursion_inc(); 5698 cookie = __lock_pin_lock(lock); 5699 lockdep_recursion_finish(); 5700 raw_local_irq_restore(flags); 5701 5702 return cookie; 5703 } 5704 EXPORT_SYMBOL_GPL(lock_pin_lock); 5705 5706 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5707 { 5708 unsigned long flags; 5709 5710 if (unlikely(!lockdep_enabled())) 5711 return; 5712 5713 raw_local_irq_save(flags); 5714 check_flags(flags); 5715 5716 lockdep_recursion_inc(); 5717 __lock_repin_lock(lock, cookie); 5718 lockdep_recursion_finish(); 5719 raw_local_irq_restore(flags); 5720 } 5721 EXPORT_SYMBOL_GPL(lock_repin_lock); 5722 5723 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5724 { 5725 unsigned long flags; 5726 5727 if (unlikely(!lockdep_enabled())) 5728 return; 5729 5730 raw_local_irq_save(flags); 5731 check_flags(flags); 5732 5733 lockdep_recursion_inc(); 5734 __lock_unpin_lock(lock, cookie); 5735 lockdep_recursion_finish(); 5736 raw_local_irq_restore(flags); 5737 } 5738 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5739 5740 #ifdef CONFIG_LOCK_STAT 5741 static void print_lock_contention_bug(struct task_struct *curr, 5742 struct lockdep_map *lock, 5743 unsigned long ip) 5744 { 5745 if (!debug_locks_off()) 5746 return; 5747 if (debug_locks_silent) 5748 return; 5749 5750 pr_warn("\n"); 5751 pr_warn("=================================\n"); 5752 pr_warn("WARNING: bad contention detected!\n"); 5753 print_kernel_ident(); 5754 pr_warn("---------------------------------\n"); 5755 pr_warn("%s/%d is trying to contend lock (", 5756 curr->comm, task_pid_nr(curr)); 5757 print_lockdep_cache(lock); 5758 pr_cont(") at:\n"); 5759 print_ip_sym(KERN_WARNING, ip); 5760 pr_warn("but there are no locks held!\n"); 5761 pr_warn("\nother info that might help us debug this:\n"); 5762 lockdep_print_held_locks(curr); 5763 5764 pr_warn("\nstack backtrace:\n"); 5765 dump_stack(); 5766 } 5767 5768 static void 5769 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5770 { 5771 struct task_struct *curr = current; 5772 struct held_lock *hlock; 5773 struct lock_class_stats *stats; 5774 unsigned int depth; 5775 int i, contention_point, contending_point; 5776 5777 depth = curr->lockdep_depth; 5778 /* 5779 * Whee, we contended on this lock, except it seems we're not 5780 * actually trying to acquire anything much at all.. 5781 */ 5782 if (DEBUG_LOCKS_WARN_ON(!depth)) 5783 return; 5784 5785 hlock = find_held_lock(curr, lock, depth, &i); 5786 if (!hlock) { 5787 print_lock_contention_bug(curr, lock, ip); 5788 return; 5789 } 5790 5791 if (hlock->instance != lock) 5792 return; 5793 5794 hlock->waittime_stamp = lockstat_clock(); 5795 5796 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5797 contending_point = lock_point(hlock_class(hlock)->contending_point, 5798 lock->ip); 5799 5800 stats = get_lock_stats(hlock_class(hlock)); 5801 if (contention_point < LOCKSTAT_POINTS) 5802 stats->contention_point[contention_point]++; 5803 if (contending_point < LOCKSTAT_POINTS) 5804 stats->contending_point[contending_point]++; 5805 if (lock->cpu != smp_processor_id()) 5806 stats->bounces[bounce_contended + !!hlock->read]++; 5807 } 5808 5809 static void 5810 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5811 { 5812 struct task_struct *curr = current; 5813 struct held_lock *hlock; 5814 struct lock_class_stats *stats; 5815 unsigned int depth; 5816 u64 now, waittime = 0; 5817 int i, cpu; 5818 5819 depth = curr->lockdep_depth; 5820 /* 5821 * Yay, we acquired ownership of this lock we didn't try to 5822 * acquire, how the heck did that happen? 5823 */ 5824 if (DEBUG_LOCKS_WARN_ON(!depth)) 5825 return; 5826 5827 hlock = find_held_lock(curr, lock, depth, &i); 5828 if (!hlock) { 5829 print_lock_contention_bug(curr, lock, _RET_IP_); 5830 return; 5831 } 5832 5833 if (hlock->instance != lock) 5834 return; 5835 5836 cpu = smp_processor_id(); 5837 if (hlock->waittime_stamp) { 5838 now = lockstat_clock(); 5839 waittime = now - hlock->waittime_stamp; 5840 hlock->holdtime_stamp = now; 5841 } 5842 5843 stats = get_lock_stats(hlock_class(hlock)); 5844 if (waittime) { 5845 if (hlock->read) 5846 lock_time_inc(&stats->read_waittime, waittime); 5847 else 5848 lock_time_inc(&stats->write_waittime, waittime); 5849 } 5850 if (lock->cpu != cpu) 5851 stats->bounces[bounce_acquired + !!hlock->read]++; 5852 5853 lock->cpu = cpu; 5854 lock->ip = ip; 5855 } 5856 5857 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5858 { 5859 unsigned long flags; 5860 5861 trace_lock_contended(lock, ip); 5862 5863 if (unlikely(!lock_stat || !lockdep_enabled())) 5864 return; 5865 5866 raw_local_irq_save(flags); 5867 check_flags(flags); 5868 lockdep_recursion_inc(); 5869 __lock_contended(lock, ip); 5870 lockdep_recursion_finish(); 5871 raw_local_irq_restore(flags); 5872 } 5873 EXPORT_SYMBOL_GPL(lock_contended); 5874 5875 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5876 { 5877 unsigned long flags; 5878 5879 trace_lock_acquired(lock, ip); 5880 5881 if (unlikely(!lock_stat || !lockdep_enabled())) 5882 return; 5883 5884 raw_local_irq_save(flags); 5885 check_flags(flags); 5886 lockdep_recursion_inc(); 5887 __lock_acquired(lock, ip); 5888 lockdep_recursion_finish(); 5889 raw_local_irq_restore(flags); 5890 } 5891 EXPORT_SYMBOL_GPL(lock_acquired); 5892 #endif 5893 5894 /* 5895 * Used by the testsuite, sanitize the validator state 5896 * after a simulated failure: 5897 */ 5898 5899 void lockdep_reset(void) 5900 { 5901 unsigned long flags; 5902 int i; 5903 5904 raw_local_irq_save(flags); 5905 lockdep_init_task(current); 5906 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5907 nr_hardirq_chains = 0; 5908 nr_softirq_chains = 0; 5909 nr_process_chains = 0; 5910 debug_locks = 1; 5911 for (i = 0; i < CHAINHASH_SIZE; i++) 5912 INIT_HLIST_HEAD(chainhash_table + i); 5913 raw_local_irq_restore(flags); 5914 } 5915 5916 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5917 static void remove_class_from_lock_chain(struct pending_free *pf, 5918 struct lock_chain *chain, 5919 struct lock_class *class) 5920 { 5921 #ifdef CONFIG_PROVE_LOCKING 5922 int i; 5923 5924 for (i = chain->base; i < chain->base + chain->depth; i++) { 5925 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5926 continue; 5927 /* 5928 * Each lock class occurs at most once in a lock chain so once 5929 * we found a match we can break out of this loop. 5930 */ 5931 goto free_lock_chain; 5932 } 5933 /* Since the chain has not been modified, return. */ 5934 return; 5935 5936 free_lock_chain: 5937 free_chain_hlocks(chain->base, chain->depth); 5938 /* Overwrite the chain key for concurrent RCU readers. */ 5939 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5940 dec_chains(chain->irq_context); 5941 5942 /* 5943 * Note: calling hlist_del_rcu() from inside a 5944 * hlist_for_each_entry_rcu() loop is safe. 5945 */ 5946 hlist_del_rcu(&chain->entry); 5947 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5948 nr_zapped_lock_chains++; 5949 #endif 5950 } 5951 5952 /* Must be called with the graph lock held. */ 5953 static void remove_class_from_lock_chains(struct pending_free *pf, 5954 struct lock_class *class) 5955 { 5956 struct lock_chain *chain; 5957 struct hlist_head *head; 5958 int i; 5959 5960 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5961 head = chainhash_table + i; 5962 hlist_for_each_entry_rcu(chain, head, entry) { 5963 remove_class_from_lock_chain(pf, chain, class); 5964 } 5965 } 5966 } 5967 5968 /* 5969 * Remove all references to a lock class. The caller must hold the graph lock. 5970 */ 5971 static void zap_class(struct pending_free *pf, struct lock_class *class) 5972 { 5973 struct lock_list *entry; 5974 int i; 5975 5976 WARN_ON_ONCE(!class->key); 5977 5978 /* 5979 * Remove all dependencies this lock is 5980 * involved in: 5981 */ 5982 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5983 entry = list_entries + i; 5984 if (entry->class != class && entry->links_to != class) 5985 continue; 5986 __clear_bit(i, list_entries_in_use); 5987 nr_list_entries--; 5988 list_del_rcu(&entry->entry); 5989 } 5990 if (list_empty(&class->locks_after) && 5991 list_empty(&class->locks_before)) { 5992 list_move_tail(&class->lock_entry, &pf->zapped); 5993 hlist_del_rcu(&class->hash_entry); 5994 WRITE_ONCE(class->key, NULL); 5995 WRITE_ONCE(class->name, NULL); 5996 nr_lock_classes--; 5997 __clear_bit(class - lock_classes, lock_classes_in_use); 5998 if (class - lock_classes == max_lock_class_idx) 5999 max_lock_class_idx--; 6000 } else { 6001 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6002 class->name); 6003 } 6004 6005 remove_class_from_lock_chains(pf, class); 6006 nr_zapped_classes++; 6007 } 6008 6009 static void reinit_class(struct lock_class *class) 6010 { 6011 WARN_ON_ONCE(!class->lock_entry.next); 6012 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6013 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6014 memset_startat(class, 0, key); 6015 WARN_ON_ONCE(!class->lock_entry.next); 6016 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6017 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6018 } 6019 6020 static inline int within(const void *addr, void *start, unsigned long size) 6021 { 6022 return addr >= start && addr < start + size; 6023 } 6024 6025 static bool inside_selftest(void) 6026 { 6027 return current == lockdep_selftest_task_struct; 6028 } 6029 6030 /* The caller must hold the graph lock. */ 6031 static struct pending_free *get_pending_free(void) 6032 { 6033 return delayed_free.pf + delayed_free.index; 6034 } 6035 6036 static void free_zapped_rcu(struct rcu_head *cb); 6037 6038 /* 6039 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6040 * the graph lock held. 6041 */ 6042 static void call_rcu_zapped(struct pending_free *pf) 6043 { 6044 WARN_ON_ONCE(inside_selftest()); 6045 6046 if (list_empty(&pf->zapped)) 6047 return; 6048 6049 if (delayed_free.scheduled) 6050 return; 6051 6052 delayed_free.scheduled = true; 6053 6054 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6055 delayed_free.index ^= 1; 6056 6057 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6058 } 6059 6060 /* The caller must hold the graph lock. May be called from RCU context. */ 6061 static void __free_zapped_classes(struct pending_free *pf) 6062 { 6063 struct lock_class *class; 6064 6065 check_data_structures(); 6066 6067 list_for_each_entry(class, &pf->zapped, lock_entry) 6068 reinit_class(class); 6069 6070 list_splice_init(&pf->zapped, &free_lock_classes); 6071 6072 #ifdef CONFIG_PROVE_LOCKING 6073 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6074 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6075 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6076 #endif 6077 } 6078 6079 static void free_zapped_rcu(struct rcu_head *ch) 6080 { 6081 struct pending_free *pf; 6082 unsigned long flags; 6083 6084 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6085 return; 6086 6087 raw_local_irq_save(flags); 6088 lockdep_lock(); 6089 6090 /* closed head */ 6091 pf = delayed_free.pf + (delayed_free.index ^ 1); 6092 __free_zapped_classes(pf); 6093 delayed_free.scheduled = false; 6094 6095 /* 6096 * If there's anything on the open list, close and start a new callback. 6097 */ 6098 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6099 6100 lockdep_unlock(); 6101 raw_local_irq_restore(flags); 6102 } 6103 6104 /* 6105 * Remove all lock classes from the class hash table and from the 6106 * all_lock_classes list whose key or name is in the address range [start, 6107 * start + size). Move these lock classes to the zapped_classes list. Must 6108 * be called with the graph lock held. 6109 */ 6110 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6111 unsigned long size) 6112 { 6113 struct lock_class *class; 6114 struct hlist_head *head; 6115 int i; 6116 6117 /* Unhash all classes that were created by a module. */ 6118 for (i = 0; i < CLASSHASH_SIZE; i++) { 6119 head = classhash_table + i; 6120 hlist_for_each_entry_rcu(class, head, hash_entry) { 6121 if (!within(class->key, start, size) && 6122 !within(class->name, start, size)) 6123 continue; 6124 zap_class(pf, class); 6125 } 6126 } 6127 } 6128 6129 /* 6130 * Used in module.c to remove lock classes from memory that is going to be 6131 * freed; and possibly re-used by other modules. 6132 * 6133 * We will have had one synchronize_rcu() before getting here, so we're 6134 * guaranteed nobody will look up these exact classes -- they're properly dead 6135 * but still allocated. 6136 */ 6137 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6138 { 6139 struct pending_free *pf; 6140 unsigned long flags; 6141 6142 init_data_structures_once(); 6143 6144 raw_local_irq_save(flags); 6145 lockdep_lock(); 6146 pf = get_pending_free(); 6147 __lockdep_free_key_range(pf, start, size); 6148 call_rcu_zapped(pf); 6149 lockdep_unlock(); 6150 raw_local_irq_restore(flags); 6151 6152 /* 6153 * Wait for any possible iterators from look_up_lock_class() to pass 6154 * before continuing to free the memory they refer to. 6155 */ 6156 synchronize_rcu(); 6157 } 6158 6159 /* 6160 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6161 * Ignores debug_locks. Must only be used by the lockdep selftests. 6162 */ 6163 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6164 { 6165 struct pending_free *pf = delayed_free.pf; 6166 unsigned long flags; 6167 6168 init_data_structures_once(); 6169 6170 raw_local_irq_save(flags); 6171 lockdep_lock(); 6172 __lockdep_free_key_range(pf, start, size); 6173 __free_zapped_classes(pf); 6174 lockdep_unlock(); 6175 raw_local_irq_restore(flags); 6176 } 6177 6178 void lockdep_free_key_range(void *start, unsigned long size) 6179 { 6180 init_data_structures_once(); 6181 6182 if (inside_selftest()) 6183 lockdep_free_key_range_imm(start, size); 6184 else 6185 lockdep_free_key_range_reg(start, size); 6186 } 6187 6188 /* 6189 * Check whether any element of the @lock->class_cache[] array refers to a 6190 * registered lock class. The caller must hold either the graph lock or the 6191 * RCU read lock. 6192 */ 6193 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6194 { 6195 struct lock_class *class; 6196 struct hlist_head *head; 6197 int i, j; 6198 6199 for (i = 0; i < CLASSHASH_SIZE; i++) { 6200 head = classhash_table + i; 6201 hlist_for_each_entry_rcu(class, head, hash_entry) { 6202 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6203 if (lock->class_cache[j] == class) 6204 return true; 6205 } 6206 } 6207 return false; 6208 } 6209 6210 /* The caller must hold the graph lock. Does not sleep. */ 6211 static void __lockdep_reset_lock(struct pending_free *pf, 6212 struct lockdep_map *lock) 6213 { 6214 struct lock_class *class; 6215 int j; 6216 6217 /* 6218 * Remove all classes this lock might have: 6219 */ 6220 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6221 /* 6222 * If the class exists we look it up and zap it: 6223 */ 6224 class = look_up_lock_class(lock, j); 6225 if (class) 6226 zap_class(pf, class); 6227 } 6228 /* 6229 * Debug check: in the end all mapped classes should 6230 * be gone. 6231 */ 6232 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6233 debug_locks_off(); 6234 } 6235 6236 /* 6237 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6238 * released data structures from RCU context. 6239 */ 6240 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6241 { 6242 struct pending_free *pf; 6243 unsigned long flags; 6244 int locked; 6245 6246 raw_local_irq_save(flags); 6247 locked = graph_lock(); 6248 if (!locked) 6249 goto out_irq; 6250 6251 pf = get_pending_free(); 6252 __lockdep_reset_lock(pf, lock); 6253 call_rcu_zapped(pf); 6254 6255 graph_unlock(); 6256 out_irq: 6257 raw_local_irq_restore(flags); 6258 } 6259 6260 /* 6261 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6262 * lockdep selftests. 6263 */ 6264 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6265 { 6266 struct pending_free *pf = delayed_free.pf; 6267 unsigned long flags; 6268 6269 raw_local_irq_save(flags); 6270 lockdep_lock(); 6271 __lockdep_reset_lock(pf, lock); 6272 __free_zapped_classes(pf); 6273 lockdep_unlock(); 6274 raw_local_irq_restore(flags); 6275 } 6276 6277 void lockdep_reset_lock(struct lockdep_map *lock) 6278 { 6279 init_data_structures_once(); 6280 6281 if (inside_selftest()) 6282 lockdep_reset_lock_imm(lock); 6283 else 6284 lockdep_reset_lock_reg(lock); 6285 } 6286 6287 /* 6288 * Unregister a dynamically allocated key. 6289 * 6290 * Unlike lockdep_register_key(), a search is always done to find a matching 6291 * key irrespective of debug_locks to avoid potential invalid access to freed 6292 * memory in lock_class entry. 6293 */ 6294 void lockdep_unregister_key(struct lock_class_key *key) 6295 { 6296 struct hlist_head *hash_head = keyhashentry(key); 6297 struct lock_class_key *k; 6298 struct pending_free *pf; 6299 unsigned long flags; 6300 bool found = false; 6301 6302 might_sleep(); 6303 6304 if (WARN_ON_ONCE(static_obj(key))) 6305 return; 6306 6307 raw_local_irq_save(flags); 6308 lockdep_lock(); 6309 6310 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6311 if (k == key) { 6312 hlist_del_rcu(&k->hash_entry); 6313 found = true; 6314 break; 6315 } 6316 } 6317 WARN_ON_ONCE(!found && debug_locks); 6318 if (found) { 6319 pf = get_pending_free(); 6320 __lockdep_free_key_range(pf, key, 1); 6321 call_rcu_zapped(pf); 6322 } 6323 lockdep_unlock(); 6324 raw_local_irq_restore(flags); 6325 6326 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6327 synchronize_rcu(); 6328 } 6329 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6330 6331 void __init lockdep_init(void) 6332 { 6333 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6334 6335 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6336 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6337 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6338 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6339 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6340 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6341 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6342 6343 printk(" memory used by lock dependency info: %zu kB\n", 6344 (sizeof(lock_classes) + 6345 sizeof(lock_classes_in_use) + 6346 sizeof(classhash_table) + 6347 sizeof(list_entries) + 6348 sizeof(list_entries_in_use) + 6349 sizeof(chainhash_table) + 6350 sizeof(delayed_free) 6351 #ifdef CONFIG_PROVE_LOCKING 6352 + sizeof(lock_cq) 6353 + sizeof(lock_chains) 6354 + sizeof(lock_chains_in_use) 6355 + sizeof(chain_hlocks) 6356 #endif 6357 ) / 1024 6358 ); 6359 6360 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6361 printk(" memory used for stack traces: %zu kB\n", 6362 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6363 ); 6364 #endif 6365 6366 printk(" per task-struct memory footprint: %zu bytes\n", 6367 sizeof(((struct task_struct *)NULL)->held_locks)); 6368 } 6369 6370 static void 6371 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6372 const void *mem_to, struct held_lock *hlock) 6373 { 6374 if (!debug_locks_off()) 6375 return; 6376 if (debug_locks_silent) 6377 return; 6378 6379 pr_warn("\n"); 6380 pr_warn("=========================\n"); 6381 pr_warn("WARNING: held lock freed!\n"); 6382 print_kernel_ident(); 6383 pr_warn("-------------------------\n"); 6384 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6385 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6386 print_lock(hlock); 6387 lockdep_print_held_locks(curr); 6388 6389 pr_warn("\nstack backtrace:\n"); 6390 dump_stack(); 6391 } 6392 6393 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6394 const void* lock_from, unsigned long lock_len) 6395 { 6396 return lock_from + lock_len <= mem_from || 6397 mem_from + mem_len <= lock_from; 6398 } 6399 6400 /* 6401 * Called when kernel memory is freed (or unmapped), or if a lock 6402 * is destroyed or reinitialized - this code checks whether there is 6403 * any held lock in the memory range of <from> to <to>: 6404 */ 6405 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6406 { 6407 struct task_struct *curr = current; 6408 struct held_lock *hlock; 6409 unsigned long flags; 6410 int i; 6411 6412 if (unlikely(!debug_locks)) 6413 return; 6414 6415 raw_local_irq_save(flags); 6416 for (i = 0; i < curr->lockdep_depth; i++) { 6417 hlock = curr->held_locks + i; 6418 6419 if (not_in_range(mem_from, mem_len, hlock->instance, 6420 sizeof(*hlock->instance))) 6421 continue; 6422 6423 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6424 break; 6425 } 6426 raw_local_irq_restore(flags); 6427 } 6428 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6429 6430 static void print_held_locks_bug(void) 6431 { 6432 if (!debug_locks_off()) 6433 return; 6434 if (debug_locks_silent) 6435 return; 6436 6437 pr_warn("\n"); 6438 pr_warn("====================================\n"); 6439 pr_warn("WARNING: %s/%d still has locks held!\n", 6440 current->comm, task_pid_nr(current)); 6441 print_kernel_ident(); 6442 pr_warn("------------------------------------\n"); 6443 lockdep_print_held_locks(current); 6444 pr_warn("\nstack backtrace:\n"); 6445 dump_stack(); 6446 } 6447 6448 void debug_check_no_locks_held(void) 6449 { 6450 if (unlikely(current->lockdep_depth > 0)) 6451 print_held_locks_bug(); 6452 } 6453 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6454 6455 #ifdef __KERNEL__ 6456 void debug_show_all_locks(void) 6457 { 6458 struct task_struct *g, *p; 6459 6460 if (unlikely(!debug_locks)) { 6461 pr_warn("INFO: lockdep is turned off.\n"); 6462 return; 6463 } 6464 pr_warn("\nShowing all locks held in the system:\n"); 6465 6466 rcu_read_lock(); 6467 for_each_process_thread(g, p) { 6468 if (!p->lockdep_depth) 6469 continue; 6470 lockdep_print_held_locks(p); 6471 touch_nmi_watchdog(); 6472 touch_all_softlockup_watchdogs(); 6473 } 6474 rcu_read_unlock(); 6475 6476 pr_warn("\n"); 6477 pr_warn("=============================================\n\n"); 6478 } 6479 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6480 #endif 6481 6482 /* 6483 * Careful: only use this function if you are sure that 6484 * the task cannot run in parallel! 6485 */ 6486 void debug_show_held_locks(struct task_struct *task) 6487 { 6488 if (unlikely(!debug_locks)) { 6489 printk("INFO: lockdep is turned off.\n"); 6490 return; 6491 } 6492 lockdep_print_held_locks(task); 6493 } 6494 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6495 6496 asmlinkage __visible void lockdep_sys_exit(void) 6497 { 6498 struct task_struct *curr = current; 6499 6500 if (unlikely(curr->lockdep_depth)) { 6501 if (!debug_locks_off()) 6502 return; 6503 pr_warn("\n"); 6504 pr_warn("================================================\n"); 6505 pr_warn("WARNING: lock held when returning to user space!\n"); 6506 print_kernel_ident(); 6507 pr_warn("------------------------------------------------\n"); 6508 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6509 curr->comm, curr->pid); 6510 lockdep_print_held_locks(curr); 6511 } 6512 6513 /* 6514 * The lock history for each syscall should be independent. So wipe the 6515 * slate clean on return to userspace. 6516 */ 6517 lockdep_invariant_state(false); 6518 } 6519 6520 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6521 { 6522 struct task_struct *curr = current; 6523 int dl = READ_ONCE(debug_locks); 6524 6525 /* Note: the following can be executed concurrently, so be careful. */ 6526 pr_warn("\n"); 6527 pr_warn("=============================\n"); 6528 pr_warn("WARNING: suspicious RCU usage\n"); 6529 print_kernel_ident(); 6530 pr_warn("-----------------------------\n"); 6531 pr_warn("%s:%d %s!\n", file, line, s); 6532 pr_warn("\nother info that might help us debug this:\n\n"); 6533 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6534 !rcu_lockdep_current_cpu_online() 6535 ? "RCU used illegally from offline CPU!\n" 6536 : "", 6537 rcu_scheduler_active, dl, 6538 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6539 6540 /* 6541 * If a CPU is in the RCU-free window in idle (ie: in the section 6542 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 6543 * considers that CPU to be in an "extended quiescent state", 6544 * which means that RCU will be completely ignoring that CPU. 6545 * Therefore, rcu_read_lock() and friends have absolutely no 6546 * effect on a CPU running in that state. In other words, even if 6547 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6548 * delete data structures out from under it. RCU really has no 6549 * choice here: we need to keep an RCU-free window in idle where 6550 * the CPU may possibly enter into low power mode. This way we can 6551 * notice an extended quiescent state to other CPUs that started a grace 6552 * period. Otherwise we would delay any grace period as long as we run 6553 * in the idle task. 6554 * 6555 * So complain bitterly if someone does call rcu_read_lock(), 6556 * rcu_read_lock_bh() and so on from extended quiescent states. 6557 */ 6558 if (!rcu_is_watching()) 6559 pr_warn("RCU used illegally from extended quiescent state!\n"); 6560 6561 lockdep_print_held_locks(curr); 6562 pr_warn("\nstack backtrace:\n"); 6563 dump_stack(); 6564 } 6565 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6566