1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 59 #include <asm/sections.h> 60 61 #include "lockdep_internals.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 82 83 static __always_inline bool lockdep_enabled(void) 84 { 85 if (!debug_locks) 86 return false; 87 88 if (this_cpu_read(lockdep_recursion)) 89 return false; 90 91 if (current->lockdep_recursion) 92 return false; 93 94 return true; 95 } 96 97 /* 98 * lockdep_lock: protects the lockdep graph, the hashes and the 99 * class/list/hash allocators. 100 * 101 * This is one of the rare exceptions where it's justified 102 * to use a raw spinlock - we really dont want the spinlock 103 * code to recurse back into the lockdep code... 104 */ 105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 106 static struct task_struct *__owner; 107 108 static inline void lockdep_lock(void) 109 { 110 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 111 112 __this_cpu_inc(lockdep_recursion); 113 arch_spin_lock(&__lock); 114 __owner = current; 115 } 116 117 static inline void lockdep_unlock(void) 118 { 119 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 120 121 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 122 return; 123 124 __owner = NULL; 125 arch_spin_unlock(&__lock); 126 __this_cpu_dec(lockdep_recursion); 127 } 128 129 static inline bool lockdep_assert_locked(void) 130 { 131 return DEBUG_LOCKS_WARN_ON(__owner != current); 132 } 133 134 static struct task_struct *lockdep_selftest_task_struct; 135 136 137 static int graph_lock(void) 138 { 139 lockdep_lock(); 140 /* 141 * Make sure that if another CPU detected a bug while 142 * walking the graph we dont change it (while the other 143 * CPU is busy printing out stuff with the graph lock 144 * dropped already) 145 */ 146 if (!debug_locks) { 147 lockdep_unlock(); 148 return 0; 149 } 150 return 1; 151 } 152 153 static inline void graph_unlock(void) 154 { 155 lockdep_unlock(); 156 } 157 158 /* 159 * Turn lock debugging off and return with 0 if it was off already, 160 * and also release the graph lock: 161 */ 162 static inline int debug_locks_off_graph_unlock(void) 163 { 164 int ret = debug_locks_off(); 165 166 lockdep_unlock(); 167 168 return ret; 169 } 170 171 unsigned long nr_list_entries; 172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 174 175 /* 176 * All data structures here are protected by the global debug_lock. 177 * 178 * nr_lock_classes is the number of elements of lock_classes[] that is 179 * in use. 180 */ 181 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 182 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 184 unsigned long nr_lock_classes; 185 unsigned long nr_zapped_classes; 186 #ifndef CONFIG_DEBUG_LOCKDEP 187 static 188 #endif 189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 191 192 static inline struct lock_class *hlock_class(struct held_lock *hlock) 193 { 194 unsigned int class_idx = hlock->class_idx; 195 196 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 197 barrier(); 198 199 if (!test_bit(class_idx, lock_classes_in_use)) { 200 /* 201 * Someone passed in garbage, we give up. 202 */ 203 DEBUG_LOCKS_WARN_ON(1); 204 return NULL; 205 } 206 207 /* 208 * At this point, if the passed hlock->class_idx is still garbage, 209 * we just have to live with it 210 */ 211 return lock_classes + class_idx; 212 } 213 214 #ifdef CONFIG_LOCK_STAT 215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 216 217 static inline u64 lockstat_clock(void) 218 { 219 return local_clock(); 220 } 221 222 static int lock_point(unsigned long points[], unsigned long ip) 223 { 224 int i; 225 226 for (i = 0; i < LOCKSTAT_POINTS; i++) { 227 if (points[i] == 0) { 228 points[i] = ip; 229 break; 230 } 231 if (points[i] == ip) 232 break; 233 } 234 235 return i; 236 } 237 238 static void lock_time_inc(struct lock_time *lt, u64 time) 239 { 240 if (time > lt->max) 241 lt->max = time; 242 243 if (time < lt->min || !lt->nr) 244 lt->min = time; 245 246 lt->total += time; 247 lt->nr++; 248 } 249 250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 251 { 252 if (!src->nr) 253 return; 254 255 if (src->max > dst->max) 256 dst->max = src->max; 257 258 if (src->min < dst->min || !dst->nr) 259 dst->min = src->min; 260 261 dst->total += src->total; 262 dst->nr += src->nr; 263 } 264 265 struct lock_class_stats lock_stats(struct lock_class *class) 266 { 267 struct lock_class_stats stats; 268 int cpu, i; 269 270 memset(&stats, 0, sizeof(struct lock_class_stats)); 271 for_each_possible_cpu(cpu) { 272 struct lock_class_stats *pcs = 273 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 274 275 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 276 stats.contention_point[i] += pcs->contention_point[i]; 277 278 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 279 stats.contending_point[i] += pcs->contending_point[i]; 280 281 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 282 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 283 284 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 285 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 286 287 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 288 stats.bounces[i] += pcs->bounces[i]; 289 } 290 291 return stats; 292 } 293 294 void clear_lock_stats(struct lock_class *class) 295 { 296 int cpu; 297 298 for_each_possible_cpu(cpu) { 299 struct lock_class_stats *cpu_stats = 300 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 301 302 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 303 } 304 memset(class->contention_point, 0, sizeof(class->contention_point)); 305 memset(class->contending_point, 0, sizeof(class->contending_point)); 306 } 307 308 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 309 { 310 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 311 } 312 313 static void lock_release_holdtime(struct held_lock *hlock) 314 { 315 struct lock_class_stats *stats; 316 u64 holdtime; 317 318 if (!lock_stat) 319 return; 320 321 holdtime = lockstat_clock() - hlock->holdtime_stamp; 322 323 stats = get_lock_stats(hlock_class(hlock)); 324 if (hlock->read) 325 lock_time_inc(&stats->read_holdtime, holdtime); 326 else 327 lock_time_inc(&stats->write_holdtime, holdtime); 328 } 329 #else 330 static inline void lock_release_holdtime(struct held_lock *hlock) 331 { 332 } 333 #endif 334 335 /* 336 * We keep a global list of all lock classes. The list is only accessed with 337 * the lockdep spinlock lock held. free_lock_classes is a list with free 338 * elements. These elements are linked together by the lock_entry member in 339 * struct lock_class. 340 */ 341 LIST_HEAD(all_lock_classes); 342 static LIST_HEAD(free_lock_classes); 343 344 /** 345 * struct pending_free - information about data structures about to be freed 346 * @zapped: Head of a list with struct lock_class elements. 347 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 348 * are about to be freed. 349 */ 350 struct pending_free { 351 struct list_head zapped; 352 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 353 }; 354 355 /** 356 * struct delayed_free - data structures used for delayed freeing 357 * 358 * A data structure for delayed freeing of data structures that may be 359 * accessed by RCU readers at the time these were freed. 360 * 361 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 362 * @index: Index of @pf to which freed data structures are added. 363 * @scheduled: Whether or not an RCU callback has been scheduled. 364 * @pf: Array with information about data structures about to be freed. 365 */ 366 static struct delayed_free { 367 struct rcu_head rcu_head; 368 int index; 369 int scheduled; 370 struct pending_free pf[2]; 371 } delayed_free; 372 373 /* 374 * The lockdep classes are in a hash-table as well, for fast lookup: 375 */ 376 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 377 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 378 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 379 #define classhashentry(key) (classhash_table + __classhashfn((key))) 380 381 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 382 383 /* 384 * We put the lock dependency chains into a hash-table as well, to cache 385 * their existence: 386 */ 387 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 388 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 389 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 390 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 391 392 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 393 394 /* 395 * the id of held_lock 396 */ 397 static inline u16 hlock_id(struct held_lock *hlock) 398 { 399 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 400 401 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 402 } 403 404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 405 { 406 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 407 } 408 409 /* 410 * The hash key of the lock dependency chains is a hash itself too: 411 * it's a hash of all locks taken up to that lock, including that lock. 412 * It's a 64-bit hash, because it's important for the keys to be 413 * unique. 414 */ 415 static inline u64 iterate_chain_key(u64 key, u32 idx) 416 { 417 u32 k0 = key, k1 = key >> 32; 418 419 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 420 421 return k0 | (u64)k1 << 32; 422 } 423 424 void lockdep_init_task(struct task_struct *task) 425 { 426 task->lockdep_depth = 0; /* no locks held yet */ 427 task->curr_chain_key = INITIAL_CHAIN_KEY; 428 task->lockdep_recursion = 0; 429 } 430 431 static __always_inline void lockdep_recursion_inc(void) 432 { 433 __this_cpu_inc(lockdep_recursion); 434 } 435 436 static __always_inline void lockdep_recursion_finish(void) 437 { 438 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 439 __this_cpu_write(lockdep_recursion, 0); 440 } 441 442 void lockdep_set_selftest_task(struct task_struct *task) 443 { 444 lockdep_selftest_task_struct = task; 445 } 446 447 /* 448 * Debugging switches: 449 */ 450 451 #define VERBOSE 0 452 #define VERY_VERBOSE 0 453 454 #if VERBOSE 455 # define HARDIRQ_VERBOSE 1 456 # define SOFTIRQ_VERBOSE 1 457 #else 458 # define HARDIRQ_VERBOSE 0 459 # define SOFTIRQ_VERBOSE 0 460 #endif 461 462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 463 /* 464 * Quick filtering for interesting events: 465 */ 466 static int class_filter(struct lock_class *class) 467 { 468 #if 0 469 /* Example */ 470 if (class->name_version == 1 && 471 !strcmp(class->name, "lockname")) 472 return 1; 473 if (class->name_version == 1 && 474 !strcmp(class->name, "&struct->lockfield")) 475 return 1; 476 #endif 477 /* Filter everything else. 1 would be to allow everything else */ 478 return 0; 479 } 480 #endif 481 482 static int verbose(struct lock_class *class) 483 { 484 #if VERBOSE 485 return class_filter(class); 486 #endif 487 return 0; 488 } 489 490 static void print_lockdep_off(const char *bug_msg) 491 { 492 printk(KERN_DEBUG "%s\n", bug_msg); 493 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 494 #ifdef CONFIG_LOCK_STAT 495 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 496 #endif 497 } 498 499 unsigned long nr_stack_trace_entries; 500 501 #ifdef CONFIG_PROVE_LOCKING 502 /** 503 * struct lock_trace - single stack backtrace 504 * @hash_entry: Entry in a stack_trace_hash[] list. 505 * @hash: jhash() of @entries. 506 * @nr_entries: Number of entries in @entries. 507 * @entries: Actual stack backtrace. 508 */ 509 struct lock_trace { 510 struct hlist_node hash_entry; 511 u32 hash; 512 u32 nr_entries; 513 unsigned long entries[] __aligned(sizeof(unsigned long)); 514 }; 515 #define LOCK_TRACE_SIZE_IN_LONGS \ 516 (sizeof(struct lock_trace) / sizeof(unsigned long)) 517 /* 518 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 519 */ 520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 522 523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 524 { 525 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 526 memcmp(t1->entries, t2->entries, 527 t1->nr_entries * sizeof(t1->entries[0])) == 0; 528 } 529 530 static struct lock_trace *save_trace(void) 531 { 532 struct lock_trace *trace, *t2; 533 struct hlist_head *hash_head; 534 u32 hash; 535 int max_entries; 536 537 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 538 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 539 540 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 541 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 542 LOCK_TRACE_SIZE_IN_LONGS; 543 544 if (max_entries <= 0) { 545 if (!debug_locks_off_graph_unlock()) 546 return NULL; 547 548 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 549 dump_stack(); 550 551 return NULL; 552 } 553 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 554 555 hash = jhash(trace->entries, trace->nr_entries * 556 sizeof(trace->entries[0]), 0); 557 trace->hash = hash; 558 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 559 hlist_for_each_entry(t2, hash_head, hash_entry) { 560 if (traces_identical(trace, t2)) 561 return t2; 562 } 563 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 564 hlist_add_head(&trace->hash_entry, hash_head); 565 566 return trace; 567 } 568 569 /* Return the number of stack traces in the stack_trace[] array. */ 570 u64 lockdep_stack_trace_count(void) 571 { 572 struct lock_trace *trace; 573 u64 c = 0; 574 int i; 575 576 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 577 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 578 c++; 579 } 580 } 581 582 return c; 583 } 584 585 /* Return the number of stack hash chains that have at least one stack trace. */ 586 u64 lockdep_stack_hash_count(void) 587 { 588 u64 c = 0; 589 int i; 590 591 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 592 if (!hlist_empty(&stack_trace_hash[i])) 593 c++; 594 595 return c; 596 } 597 #endif 598 599 unsigned int nr_hardirq_chains; 600 unsigned int nr_softirq_chains; 601 unsigned int nr_process_chains; 602 unsigned int max_lockdep_depth; 603 604 #ifdef CONFIG_DEBUG_LOCKDEP 605 /* 606 * Various lockdep statistics: 607 */ 608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 609 #endif 610 611 #ifdef CONFIG_PROVE_LOCKING 612 /* 613 * Locking printouts: 614 */ 615 616 #define __USAGE(__STATE) \ 617 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 618 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 619 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 620 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 621 622 static const char *usage_str[] = 623 { 624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 625 #include "lockdep_states.h" 626 #undef LOCKDEP_STATE 627 [LOCK_USED] = "INITIAL USE", 628 [LOCK_USED_READ] = "INITIAL READ USE", 629 /* abused as string storage for verify_lock_unused() */ 630 [LOCK_USAGE_STATES] = "IN-NMI", 631 }; 632 #endif 633 634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 635 { 636 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 637 } 638 639 static inline unsigned long lock_flag(enum lock_usage_bit bit) 640 { 641 return 1UL << bit; 642 } 643 644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 645 { 646 /* 647 * The usage character defaults to '.' (i.e., irqs disabled and not in 648 * irq context), which is the safest usage category. 649 */ 650 char c = '.'; 651 652 /* 653 * The order of the following usage checks matters, which will 654 * result in the outcome character as follows: 655 * 656 * - '+': irq is enabled and not in irq context 657 * - '-': in irq context and irq is disabled 658 * - '?': in irq context and irq is enabled 659 */ 660 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 661 c = '+'; 662 if (class->usage_mask & lock_flag(bit)) 663 c = '?'; 664 } else if (class->usage_mask & lock_flag(bit)) 665 c = '-'; 666 667 return c; 668 } 669 670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 671 { 672 int i = 0; 673 674 #define LOCKDEP_STATE(__STATE) \ 675 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 676 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 677 #include "lockdep_states.h" 678 #undef LOCKDEP_STATE 679 680 usage[i] = '\0'; 681 } 682 683 static void __print_lock_name(struct lock_class *class) 684 { 685 char str[KSYM_NAME_LEN]; 686 const char *name; 687 688 name = class->name; 689 if (!name) { 690 name = __get_key_name(class->key, str); 691 printk(KERN_CONT "%s", name); 692 } else { 693 printk(KERN_CONT "%s", name); 694 if (class->name_version > 1) 695 printk(KERN_CONT "#%d", class->name_version); 696 if (class->subclass) 697 printk(KERN_CONT "/%d", class->subclass); 698 } 699 } 700 701 static void print_lock_name(struct lock_class *class) 702 { 703 char usage[LOCK_USAGE_CHARS]; 704 705 get_usage_chars(class, usage); 706 707 printk(KERN_CONT " ("); 708 __print_lock_name(class); 709 printk(KERN_CONT "){%s}-{%d:%d}", usage, 710 class->wait_type_outer ?: class->wait_type_inner, 711 class->wait_type_inner); 712 } 713 714 static void print_lockdep_cache(struct lockdep_map *lock) 715 { 716 const char *name; 717 char str[KSYM_NAME_LEN]; 718 719 name = lock->name; 720 if (!name) 721 name = __get_key_name(lock->key->subkeys, str); 722 723 printk(KERN_CONT "%s", name); 724 } 725 726 static void print_lock(struct held_lock *hlock) 727 { 728 /* 729 * We can be called locklessly through debug_show_all_locks() so be 730 * extra careful, the hlock might have been released and cleared. 731 * 732 * If this indeed happens, lets pretend it does not hurt to continue 733 * to print the lock unless the hlock class_idx does not point to a 734 * registered class. The rationale here is: since we don't attempt 735 * to distinguish whether we are in this situation, if it just 736 * happened we can't count on class_idx to tell either. 737 */ 738 struct lock_class *lock = hlock_class(hlock); 739 740 if (!lock) { 741 printk(KERN_CONT "<RELEASED>\n"); 742 return; 743 } 744 745 printk(KERN_CONT "%px", hlock->instance); 746 print_lock_name(lock); 747 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 748 } 749 750 static void lockdep_print_held_locks(struct task_struct *p) 751 { 752 int i, depth = READ_ONCE(p->lockdep_depth); 753 754 if (!depth) 755 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 756 else 757 printk("%d lock%s held by %s/%d:\n", depth, 758 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 759 /* 760 * It's not reliable to print a task's held locks if it's not sleeping 761 * and it's not the current task. 762 */ 763 if (p != current && task_is_running(p)) 764 return; 765 for (i = 0; i < depth; i++) { 766 printk(" #%d: ", i); 767 print_lock(p->held_locks + i); 768 } 769 } 770 771 static void print_kernel_ident(void) 772 { 773 printk("%s %.*s %s\n", init_utsname()->release, 774 (int)strcspn(init_utsname()->version, " "), 775 init_utsname()->version, 776 print_tainted()); 777 } 778 779 static int very_verbose(struct lock_class *class) 780 { 781 #if VERY_VERBOSE 782 return class_filter(class); 783 #endif 784 return 0; 785 } 786 787 /* 788 * Is this the address of a static object: 789 */ 790 #ifdef __KERNEL__ 791 /* 792 * Check if an address is part of freed initmem. After initmem is freed, 793 * memory can be allocated from it, and such allocations would then have 794 * addresses within the range [_stext, _end]. 795 */ 796 #ifndef arch_is_kernel_initmem_freed 797 static int arch_is_kernel_initmem_freed(unsigned long addr) 798 { 799 if (system_state < SYSTEM_FREEING_INITMEM) 800 return 0; 801 802 return init_section_contains((void *)addr, 1); 803 } 804 #endif 805 806 static int static_obj(const void *obj) 807 { 808 unsigned long start = (unsigned long) &_stext, 809 end = (unsigned long) &_end, 810 addr = (unsigned long) obj; 811 812 if (arch_is_kernel_initmem_freed(addr)) 813 return 0; 814 815 /* 816 * static variable? 817 */ 818 if ((addr >= start) && (addr < end)) 819 return 1; 820 821 /* 822 * in-kernel percpu var? 823 */ 824 if (is_kernel_percpu_address(addr)) 825 return 1; 826 827 /* 828 * module static or percpu var? 829 */ 830 return is_module_address(addr) || is_module_percpu_address(addr); 831 } 832 #endif 833 834 /* 835 * To make lock name printouts unique, we calculate a unique 836 * class->name_version generation counter. The caller must hold the graph 837 * lock. 838 */ 839 static int count_matching_names(struct lock_class *new_class) 840 { 841 struct lock_class *class; 842 int count = 0; 843 844 if (!new_class->name) 845 return 0; 846 847 list_for_each_entry(class, &all_lock_classes, lock_entry) { 848 if (new_class->key - new_class->subclass == class->key) 849 return class->name_version; 850 if (class->name && !strcmp(class->name, new_class->name)) 851 count = max(count, class->name_version); 852 } 853 854 return count + 1; 855 } 856 857 /* used from NMI context -- must be lockless */ 858 static noinstr struct lock_class * 859 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 860 { 861 struct lockdep_subclass_key *key; 862 struct hlist_head *hash_head; 863 struct lock_class *class; 864 865 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 866 instrumentation_begin(); 867 debug_locks_off(); 868 printk(KERN_ERR 869 "BUG: looking up invalid subclass: %u\n", subclass); 870 printk(KERN_ERR 871 "turning off the locking correctness validator.\n"); 872 dump_stack(); 873 instrumentation_end(); 874 return NULL; 875 } 876 877 /* 878 * If it is not initialised then it has never been locked, 879 * so it won't be present in the hash table. 880 */ 881 if (unlikely(!lock->key)) 882 return NULL; 883 884 /* 885 * NOTE: the class-key must be unique. For dynamic locks, a static 886 * lock_class_key variable is passed in through the mutex_init() 887 * (or spin_lock_init()) call - which acts as the key. For static 888 * locks we use the lock object itself as the key. 889 */ 890 BUILD_BUG_ON(sizeof(struct lock_class_key) > 891 sizeof(struct lockdep_map)); 892 893 key = lock->key->subkeys + subclass; 894 895 hash_head = classhashentry(key); 896 897 /* 898 * We do an RCU walk of the hash, see lockdep_free_key_range(). 899 */ 900 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 901 return NULL; 902 903 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 904 if (class->key == key) { 905 /* 906 * Huh! same key, different name? Did someone trample 907 * on some memory? We're most confused. 908 */ 909 WARN_ON_ONCE(class->name != lock->name && 910 lock->key != &__lockdep_no_validate__); 911 return class; 912 } 913 } 914 915 return NULL; 916 } 917 918 /* 919 * Static locks do not have their class-keys yet - for them the key is 920 * the lock object itself. If the lock is in the per cpu area, the 921 * canonical address of the lock (per cpu offset removed) is used. 922 */ 923 static bool assign_lock_key(struct lockdep_map *lock) 924 { 925 unsigned long can_addr, addr = (unsigned long)lock; 926 927 #ifdef __KERNEL__ 928 /* 929 * lockdep_free_key_range() assumes that struct lock_class_key 930 * objects do not overlap. Since we use the address of lock 931 * objects as class key for static objects, check whether the 932 * size of lock_class_key objects does not exceed the size of 933 * the smallest lock object. 934 */ 935 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 936 #endif 937 938 if (__is_kernel_percpu_address(addr, &can_addr)) 939 lock->key = (void *)can_addr; 940 else if (__is_module_percpu_address(addr, &can_addr)) 941 lock->key = (void *)can_addr; 942 else if (static_obj(lock)) 943 lock->key = (void *)lock; 944 else { 945 /* Debug-check: all keys must be persistent! */ 946 debug_locks_off(); 947 pr_err("INFO: trying to register non-static key.\n"); 948 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 949 pr_err("you didn't initialize this object before use?\n"); 950 pr_err("turning off the locking correctness validator.\n"); 951 dump_stack(); 952 return false; 953 } 954 955 return true; 956 } 957 958 #ifdef CONFIG_DEBUG_LOCKDEP 959 960 /* Check whether element @e occurs in list @h */ 961 static bool in_list(struct list_head *e, struct list_head *h) 962 { 963 struct list_head *f; 964 965 list_for_each(f, h) { 966 if (e == f) 967 return true; 968 } 969 970 return false; 971 } 972 973 /* 974 * Check whether entry @e occurs in any of the locks_after or locks_before 975 * lists. 976 */ 977 static bool in_any_class_list(struct list_head *e) 978 { 979 struct lock_class *class; 980 int i; 981 982 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 983 class = &lock_classes[i]; 984 if (in_list(e, &class->locks_after) || 985 in_list(e, &class->locks_before)) 986 return true; 987 } 988 return false; 989 } 990 991 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 992 { 993 struct lock_list *e; 994 995 list_for_each_entry(e, h, entry) { 996 if (e->links_to != c) { 997 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 998 c->name ? : "(?)", 999 (unsigned long)(e - list_entries), 1000 e->links_to && e->links_to->name ? 1001 e->links_to->name : "(?)", 1002 e->class && e->class->name ? e->class->name : 1003 "(?)"); 1004 return false; 1005 } 1006 } 1007 return true; 1008 } 1009 1010 #ifdef CONFIG_PROVE_LOCKING 1011 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1012 #endif 1013 1014 static bool check_lock_chain_key(struct lock_chain *chain) 1015 { 1016 #ifdef CONFIG_PROVE_LOCKING 1017 u64 chain_key = INITIAL_CHAIN_KEY; 1018 int i; 1019 1020 for (i = chain->base; i < chain->base + chain->depth; i++) 1021 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1022 /* 1023 * The 'unsigned long long' casts avoid that a compiler warning 1024 * is reported when building tools/lib/lockdep. 1025 */ 1026 if (chain->chain_key != chain_key) { 1027 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1028 (unsigned long long)(chain - lock_chains), 1029 (unsigned long long)chain->chain_key, 1030 (unsigned long long)chain_key); 1031 return false; 1032 } 1033 #endif 1034 return true; 1035 } 1036 1037 static bool in_any_zapped_class_list(struct lock_class *class) 1038 { 1039 struct pending_free *pf; 1040 int i; 1041 1042 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1043 if (in_list(&class->lock_entry, &pf->zapped)) 1044 return true; 1045 } 1046 1047 return false; 1048 } 1049 1050 static bool __check_data_structures(void) 1051 { 1052 struct lock_class *class; 1053 struct lock_chain *chain; 1054 struct hlist_head *head; 1055 struct lock_list *e; 1056 int i; 1057 1058 /* Check whether all classes occur in a lock list. */ 1059 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1060 class = &lock_classes[i]; 1061 if (!in_list(&class->lock_entry, &all_lock_classes) && 1062 !in_list(&class->lock_entry, &free_lock_classes) && 1063 !in_any_zapped_class_list(class)) { 1064 printk(KERN_INFO "class %px/%s is not in any class list\n", 1065 class, class->name ? : "(?)"); 1066 return false; 1067 } 1068 } 1069 1070 /* Check whether all classes have valid lock lists. */ 1071 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1072 class = &lock_classes[i]; 1073 if (!class_lock_list_valid(class, &class->locks_before)) 1074 return false; 1075 if (!class_lock_list_valid(class, &class->locks_after)) 1076 return false; 1077 } 1078 1079 /* Check the chain_key of all lock chains. */ 1080 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1081 head = chainhash_table + i; 1082 hlist_for_each_entry_rcu(chain, head, entry) { 1083 if (!check_lock_chain_key(chain)) 1084 return false; 1085 } 1086 } 1087 1088 /* 1089 * Check whether all list entries that are in use occur in a class 1090 * lock list. 1091 */ 1092 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1093 e = list_entries + i; 1094 if (!in_any_class_list(&e->entry)) { 1095 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1096 (unsigned int)(e - list_entries), 1097 e->class->name ? : "(?)", 1098 e->links_to->name ? : "(?)"); 1099 return false; 1100 } 1101 } 1102 1103 /* 1104 * Check whether all list entries that are not in use do not occur in 1105 * a class lock list. 1106 */ 1107 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1108 e = list_entries + i; 1109 if (in_any_class_list(&e->entry)) { 1110 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1111 (unsigned int)(e - list_entries), 1112 e->class && e->class->name ? e->class->name : 1113 "(?)", 1114 e->links_to && e->links_to->name ? 1115 e->links_to->name : "(?)"); 1116 return false; 1117 } 1118 } 1119 1120 return true; 1121 } 1122 1123 int check_consistency = 0; 1124 module_param(check_consistency, int, 0644); 1125 1126 static void check_data_structures(void) 1127 { 1128 static bool once = false; 1129 1130 if (check_consistency && !once) { 1131 if (!__check_data_structures()) { 1132 once = true; 1133 WARN_ON(once); 1134 } 1135 } 1136 } 1137 1138 #else /* CONFIG_DEBUG_LOCKDEP */ 1139 1140 static inline void check_data_structures(void) { } 1141 1142 #endif /* CONFIG_DEBUG_LOCKDEP */ 1143 1144 static void init_chain_block_buckets(void); 1145 1146 /* 1147 * Initialize the lock_classes[] array elements, the free_lock_classes list 1148 * and also the delayed_free structure. 1149 */ 1150 static void init_data_structures_once(void) 1151 { 1152 static bool __read_mostly ds_initialized, rcu_head_initialized; 1153 int i; 1154 1155 if (likely(rcu_head_initialized)) 1156 return; 1157 1158 if (system_state >= SYSTEM_SCHEDULING) { 1159 init_rcu_head(&delayed_free.rcu_head); 1160 rcu_head_initialized = true; 1161 } 1162 1163 if (ds_initialized) 1164 return; 1165 1166 ds_initialized = true; 1167 1168 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1169 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1170 1171 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1172 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1173 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1174 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1175 } 1176 init_chain_block_buckets(); 1177 } 1178 1179 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1180 { 1181 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1182 1183 return lock_keys_hash + hash; 1184 } 1185 1186 /* Register a dynamically allocated key. */ 1187 void lockdep_register_key(struct lock_class_key *key) 1188 { 1189 struct hlist_head *hash_head; 1190 struct lock_class_key *k; 1191 unsigned long flags; 1192 1193 if (WARN_ON_ONCE(static_obj(key))) 1194 return; 1195 hash_head = keyhashentry(key); 1196 1197 raw_local_irq_save(flags); 1198 if (!graph_lock()) 1199 goto restore_irqs; 1200 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1201 if (WARN_ON_ONCE(k == key)) 1202 goto out_unlock; 1203 } 1204 hlist_add_head_rcu(&key->hash_entry, hash_head); 1205 out_unlock: 1206 graph_unlock(); 1207 restore_irqs: 1208 raw_local_irq_restore(flags); 1209 } 1210 EXPORT_SYMBOL_GPL(lockdep_register_key); 1211 1212 /* Check whether a key has been registered as a dynamic key. */ 1213 static bool is_dynamic_key(const struct lock_class_key *key) 1214 { 1215 struct hlist_head *hash_head; 1216 struct lock_class_key *k; 1217 bool found = false; 1218 1219 if (WARN_ON_ONCE(static_obj(key))) 1220 return false; 1221 1222 /* 1223 * If lock debugging is disabled lock_keys_hash[] may contain 1224 * pointers to memory that has already been freed. Avoid triggering 1225 * a use-after-free in that case by returning early. 1226 */ 1227 if (!debug_locks) 1228 return true; 1229 1230 hash_head = keyhashentry(key); 1231 1232 rcu_read_lock(); 1233 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1234 if (k == key) { 1235 found = true; 1236 break; 1237 } 1238 } 1239 rcu_read_unlock(); 1240 1241 return found; 1242 } 1243 1244 /* 1245 * Register a lock's class in the hash-table, if the class is not present 1246 * yet. Otherwise we look it up. We cache the result in the lock object 1247 * itself, so actual lookup of the hash should be once per lock object. 1248 */ 1249 static struct lock_class * 1250 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1251 { 1252 struct lockdep_subclass_key *key; 1253 struct hlist_head *hash_head; 1254 struct lock_class *class; 1255 1256 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1257 1258 class = look_up_lock_class(lock, subclass); 1259 if (likely(class)) 1260 goto out_set_class_cache; 1261 1262 if (!lock->key) { 1263 if (!assign_lock_key(lock)) 1264 return NULL; 1265 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1266 return NULL; 1267 } 1268 1269 key = lock->key->subkeys + subclass; 1270 hash_head = classhashentry(key); 1271 1272 if (!graph_lock()) { 1273 return NULL; 1274 } 1275 /* 1276 * We have to do the hash-walk again, to avoid races 1277 * with another CPU: 1278 */ 1279 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1280 if (class->key == key) 1281 goto out_unlock_set; 1282 } 1283 1284 init_data_structures_once(); 1285 1286 /* Allocate a new lock class and add it to the hash. */ 1287 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1288 lock_entry); 1289 if (!class) { 1290 if (!debug_locks_off_graph_unlock()) { 1291 return NULL; 1292 } 1293 1294 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1295 dump_stack(); 1296 return NULL; 1297 } 1298 nr_lock_classes++; 1299 __set_bit(class - lock_classes, lock_classes_in_use); 1300 debug_atomic_inc(nr_unused_locks); 1301 class->key = key; 1302 class->name = lock->name; 1303 class->subclass = subclass; 1304 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1305 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1306 class->name_version = count_matching_names(class); 1307 class->wait_type_inner = lock->wait_type_inner; 1308 class->wait_type_outer = lock->wait_type_outer; 1309 class->lock_type = lock->lock_type; 1310 /* 1311 * We use RCU's safe list-add method to make 1312 * parallel walking of the hash-list safe: 1313 */ 1314 hlist_add_head_rcu(&class->hash_entry, hash_head); 1315 /* 1316 * Remove the class from the free list and add it to the global list 1317 * of classes. 1318 */ 1319 list_move_tail(&class->lock_entry, &all_lock_classes); 1320 1321 if (verbose(class)) { 1322 graph_unlock(); 1323 1324 printk("\nnew class %px: %s", class->key, class->name); 1325 if (class->name_version > 1) 1326 printk(KERN_CONT "#%d", class->name_version); 1327 printk(KERN_CONT "\n"); 1328 dump_stack(); 1329 1330 if (!graph_lock()) { 1331 return NULL; 1332 } 1333 } 1334 out_unlock_set: 1335 graph_unlock(); 1336 1337 out_set_class_cache: 1338 if (!subclass || force) 1339 lock->class_cache[0] = class; 1340 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1341 lock->class_cache[subclass] = class; 1342 1343 /* 1344 * Hash collision, did we smoke some? We found a class with a matching 1345 * hash but the subclass -- which is hashed in -- didn't match. 1346 */ 1347 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1348 return NULL; 1349 1350 return class; 1351 } 1352 1353 #ifdef CONFIG_PROVE_LOCKING 1354 /* 1355 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1356 * with NULL on failure) 1357 */ 1358 static struct lock_list *alloc_list_entry(void) 1359 { 1360 int idx = find_first_zero_bit(list_entries_in_use, 1361 ARRAY_SIZE(list_entries)); 1362 1363 if (idx >= ARRAY_SIZE(list_entries)) { 1364 if (!debug_locks_off_graph_unlock()) 1365 return NULL; 1366 1367 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1368 dump_stack(); 1369 return NULL; 1370 } 1371 nr_list_entries++; 1372 __set_bit(idx, list_entries_in_use); 1373 return list_entries + idx; 1374 } 1375 1376 /* 1377 * Add a new dependency to the head of the list: 1378 */ 1379 static int add_lock_to_list(struct lock_class *this, 1380 struct lock_class *links_to, struct list_head *head, 1381 unsigned long ip, u16 distance, u8 dep, 1382 const struct lock_trace *trace) 1383 { 1384 struct lock_list *entry; 1385 /* 1386 * Lock not present yet - get a new dependency struct and 1387 * add it to the list: 1388 */ 1389 entry = alloc_list_entry(); 1390 if (!entry) 1391 return 0; 1392 1393 entry->class = this; 1394 entry->links_to = links_to; 1395 entry->dep = dep; 1396 entry->distance = distance; 1397 entry->trace = trace; 1398 /* 1399 * Both allocation and removal are done under the graph lock; but 1400 * iteration is under RCU-sched; see look_up_lock_class() and 1401 * lockdep_free_key_range(). 1402 */ 1403 list_add_tail_rcu(&entry->entry, head); 1404 1405 return 1; 1406 } 1407 1408 /* 1409 * For good efficiency of modular, we use power of 2 1410 */ 1411 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1412 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1413 1414 /* 1415 * The circular_queue and helpers are used to implement graph 1416 * breadth-first search (BFS) algorithm, by which we can determine 1417 * whether there is a path from a lock to another. In deadlock checks, 1418 * a path from the next lock to be acquired to a previous held lock 1419 * indicates that adding the <prev> -> <next> lock dependency will 1420 * produce a circle in the graph. Breadth-first search instead of 1421 * depth-first search is used in order to find the shortest (circular) 1422 * path. 1423 */ 1424 struct circular_queue { 1425 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1426 unsigned int front, rear; 1427 }; 1428 1429 static struct circular_queue lock_cq; 1430 1431 unsigned int max_bfs_queue_depth; 1432 1433 static unsigned int lockdep_dependency_gen_id; 1434 1435 static inline void __cq_init(struct circular_queue *cq) 1436 { 1437 cq->front = cq->rear = 0; 1438 lockdep_dependency_gen_id++; 1439 } 1440 1441 static inline int __cq_empty(struct circular_queue *cq) 1442 { 1443 return (cq->front == cq->rear); 1444 } 1445 1446 static inline int __cq_full(struct circular_queue *cq) 1447 { 1448 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1449 } 1450 1451 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1452 { 1453 if (__cq_full(cq)) 1454 return -1; 1455 1456 cq->element[cq->rear] = elem; 1457 cq->rear = (cq->rear + 1) & CQ_MASK; 1458 return 0; 1459 } 1460 1461 /* 1462 * Dequeue an element from the circular_queue, return a lock_list if 1463 * the queue is not empty, or NULL if otherwise. 1464 */ 1465 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1466 { 1467 struct lock_list * lock; 1468 1469 if (__cq_empty(cq)) 1470 return NULL; 1471 1472 lock = cq->element[cq->front]; 1473 cq->front = (cq->front + 1) & CQ_MASK; 1474 1475 return lock; 1476 } 1477 1478 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1479 { 1480 return (cq->rear - cq->front) & CQ_MASK; 1481 } 1482 1483 static inline void mark_lock_accessed(struct lock_list *lock) 1484 { 1485 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1486 } 1487 1488 static inline void visit_lock_entry(struct lock_list *lock, 1489 struct lock_list *parent) 1490 { 1491 lock->parent = parent; 1492 } 1493 1494 static inline unsigned long lock_accessed(struct lock_list *lock) 1495 { 1496 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1497 } 1498 1499 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1500 { 1501 return child->parent; 1502 } 1503 1504 static inline int get_lock_depth(struct lock_list *child) 1505 { 1506 int depth = 0; 1507 struct lock_list *parent; 1508 1509 while ((parent = get_lock_parent(child))) { 1510 child = parent; 1511 depth++; 1512 } 1513 return depth; 1514 } 1515 1516 /* 1517 * Return the forward or backward dependency list. 1518 * 1519 * @lock: the lock_list to get its class's dependency list 1520 * @offset: the offset to struct lock_class to determine whether it is 1521 * locks_after or locks_before 1522 */ 1523 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1524 { 1525 void *lock_class = lock->class; 1526 1527 return lock_class + offset; 1528 } 1529 /* 1530 * Return values of a bfs search: 1531 * 1532 * BFS_E* indicates an error 1533 * BFS_R* indicates a result (match or not) 1534 * 1535 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1536 * 1537 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1538 * 1539 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1540 * *@target_entry. 1541 * 1542 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1543 * _unchanged_. 1544 */ 1545 enum bfs_result { 1546 BFS_EINVALIDNODE = -2, 1547 BFS_EQUEUEFULL = -1, 1548 BFS_RMATCH = 0, 1549 BFS_RNOMATCH = 1, 1550 }; 1551 1552 /* 1553 * bfs_result < 0 means error 1554 */ 1555 static inline bool bfs_error(enum bfs_result res) 1556 { 1557 return res < 0; 1558 } 1559 1560 /* 1561 * DEP_*_BIT in lock_list::dep 1562 * 1563 * For dependency @prev -> @next: 1564 * 1565 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1566 * (->read == 2) 1567 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1568 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1569 * EN: @prev is exclusive locker and @next is non-recursive locker 1570 * 1571 * Note that we define the value of DEP_*_BITs so that: 1572 * bit0 is prev->read == 0 1573 * bit1 is next->read != 2 1574 */ 1575 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1576 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1577 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1578 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1579 1580 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1581 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1582 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1583 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1584 1585 static inline unsigned int 1586 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1587 { 1588 return (prev->read == 0) + ((next->read != 2) << 1); 1589 } 1590 1591 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1592 { 1593 return 1U << __calc_dep_bit(prev, next); 1594 } 1595 1596 /* 1597 * calculate the dep_bit for backwards edges. We care about whether @prev is 1598 * shared and whether @next is recursive. 1599 */ 1600 static inline unsigned int 1601 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1602 { 1603 return (next->read != 2) + ((prev->read == 0) << 1); 1604 } 1605 1606 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1607 { 1608 return 1U << __calc_dep_bitb(prev, next); 1609 } 1610 1611 /* 1612 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1613 * search. 1614 */ 1615 static inline void __bfs_init_root(struct lock_list *lock, 1616 struct lock_class *class) 1617 { 1618 lock->class = class; 1619 lock->parent = NULL; 1620 lock->only_xr = 0; 1621 } 1622 1623 /* 1624 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1625 * root for a BFS search. 1626 * 1627 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1628 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1629 * and -(S*)->. 1630 */ 1631 static inline void bfs_init_root(struct lock_list *lock, 1632 struct held_lock *hlock) 1633 { 1634 __bfs_init_root(lock, hlock_class(hlock)); 1635 lock->only_xr = (hlock->read == 2); 1636 } 1637 1638 /* 1639 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1640 * 1641 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1642 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1643 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1644 */ 1645 static inline void bfs_init_rootb(struct lock_list *lock, 1646 struct held_lock *hlock) 1647 { 1648 __bfs_init_root(lock, hlock_class(hlock)); 1649 lock->only_xr = (hlock->read != 0); 1650 } 1651 1652 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1653 { 1654 if (!lock || !lock->parent) 1655 return NULL; 1656 1657 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1658 &lock->entry, struct lock_list, entry); 1659 } 1660 1661 /* 1662 * Breadth-First Search to find a strong path in the dependency graph. 1663 * 1664 * @source_entry: the source of the path we are searching for. 1665 * @data: data used for the second parameter of @match function 1666 * @match: match function for the search 1667 * @target_entry: pointer to the target of a matched path 1668 * @offset: the offset to struct lock_class to determine whether it is 1669 * locks_after or locks_before 1670 * 1671 * We may have multiple edges (considering different kinds of dependencies, 1672 * e.g. ER and SN) between two nodes in the dependency graph. But 1673 * only the strong dependency path in the graph is relevant to deadlocks. A 1674 * strong dependency path is a dependency path that doesn't have two adjacent 1675 * dependencies as -(*R)-> -(S*)->, please see: 1676 * 1677 * Documentation/locking/lockdep-design.rst 1678 * 1679 * for more explanation of the definition of strong dependency paths 1680 * 1681 * In __bfs(), we only traverse in the strong dependency path: 1682 * 1683 * In lock_list::only_xr, we record whether the previous dependency only 1684 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1685 * filter out any -(S*)-> in the current dependency and after that, the 1686 * ->only_xr is set according to whether we only have -(*R)-> left. 1687 */ 1688 static enum bfs_result __bfs(struct lock_list *source_entry, 1689 void *data, 1690 bool (*match)(struct lock_list *entry, void *data), 1691 bool (*skip)(struct lock_list *entry, void *data), 1692 struct lock_list **target_entry, 1693 int offset) 1694 { 1695 struct circular_queue *cq = &lock_cq; 1696 struct lock_list *lock = NULL; 1697 struct lock_list *entry; 1698 struct list_head *head; 1699 unsigned int cq_depth; 1700 bool first; 1701 1702 lockdep_assert_locked(); 1703 1704 __cq_init(cq); 1705 __cq_enqueue(cq, source_entry); 1706 1707 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1708 if (!lock->class) 1709 return BFS_EINVALIDNODE; 1710 1711 /* 1712 * Step 1: check whether we already finish on this one. 1713 * 1714 * If we have visited all the dependencies from this @lock to 1715 * others (iow, if we have visited all lock_list entries in 1716 * @lock->class->locks_{after,before}) we skip, otherwise go 1717 * and visit all the dependencies in the list and mark this 1718 * list accessed. 1719 */ 1720 if (lock_accessed(lock)) 1721 continue; 1722 else 1723 mark_lock_accessed(lock); 1724 1725 /* 1726 * Step 2: check whether prev dependency and this form a strong 1727 * dependency path. 1728 */ 1729 if (lock->parent) { /* Parent exists, check prev dependency */ 1730 u8 dep = lock->dep; 1731 bool prev_only_xr = lock->parent->only_xr; 1732 1733 /* 1734 * Mask out all -(S*)-> if we only have *R in previous 1735 * step, because -(*R)-> -(S*)-> don't make up a strong 1736 * dependency. 1737 */ 1738 if (prev_only_xr) 1739 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1740 1741 /* If nothing left, we skip */ 1742 if (!dep) 1743 continue; 1744 1745 /* If there are only -(*R)-> left, set that for the next step */ 1746 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1747 } 1748 1749 /* 1750 * Step 3: we haven't visited this and there is a strong 1751 * dependency path to this, so check with @match. 1752 * If @skip is provide and returns true, we skip this 1753 * lock (and any path this lock is in). 1754 */ 1755 if (skip && skip(lock, data)) 1756 continue; 1757 1758 if (match(lock, data)) { 1759 *target_entry = lock; 1760 return BFS_RMATCH; 1761 } 1762 1763 /* 1764 * Step 4: if not match, expand the path by adding the 1765 * forward or backwards dependencies in the search 1766 * 1767 */ 1768 first = true; 1769 head = get_dep_list(lock, offset); 1770 list_for_each_entry_rcu(entry, head, entry) { 1771 visit_lock_entry(entry, lock); 1772 1773 /* 1774 * Note we only enqueue the first of the list into the 1775 * queue, because we can always find a sibling 1776 * dependency from one (see __bfs_next()), as a result 1777 * the space of queue is saved. 1778 */ 1779 if (!first) 1780 continue; 1781 1782 first = false; 1783 1784 if (__cq_enqueue(cq, entry)) 1785 return BFS_EQUEUEFULL; 1786 1787 cq_depth = __cq_get_elem_count(cq); 1788 if (max_bfs_queue_depth < cq_depth) 1789 max_bfs_queue_depth = cq_depth; 1790 } 1791 } 1792 1793 return BFS_RNOMATCH; 1794 } 1795 1796 static inline enum bfs_result 1797 __bfs_forwards(struct lock_list *src_entry, 1798 void *data, 1799 bool (*match)(struct lock_list *entry, void *data), 1800 bool (*skip)(struct lock_list *entry, void *data), 1801 struct lock_list **target_entry) 1802 { 1803 return __bfs(src_entry, data, match, skip, target_entry, 1804 offsetof(struct lock_class, locks_after)); 1805 1806 } 1807 1808 static inline enum bfs_result 1809 __bfs_backwards(struct lock_list *src_entry, 1810 void *data, 1811 bool (*match)(struct lock_list *entry, void *data), 1812 bool (*skip)(struct lock_list *entry, void *data), 1813 struct lock_list **target_entry) 1814 { 1815 return __bfs(src_entry, data, match, skip, target_entry, 1816 offsetof(struct lock_class, locks_before)); 1817 1818 } 1819 1820 static void print_lock_trace(const struct lock_trace *trace, 1821 unsigned int spaces) 1822 { 1823 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1824 } 1825 1826 /* 1827 * Print a dependency chain entry (this is only done when a deadlock 1828 * has been detected): 1829 */ 1830 static noinline void 1831 print_circular_bug_entry(struct lock_list *target, int depth) 1832 { 1833 if (debug_locks_silent) 1834 return; 1835 printk("\n-> #%u", depth); 1836 print_lock_name(target->class); 1837 printk(KERN_CONT ":\n"); 1838 print_lock_trace(target->trace, 6); 1839 } 1840 1841 static void 1842 print_circular_lock_scenario(struct held_lock *src, 1843 struct held_lock *tgt, 1844 struct lock_list *prt) 1845 { 1846 struct lock_class *source = hlock_class(src); 1847 struct lock_class *target = hlock_class(tgt); 1848 struct lock_class *parent = prt->class; 1849 1850 /* 1851 * A direct locking problem where unsafe_class lock is taken 1852 * directly by safe_class lock, then all we need to show 1853 * is the deadlock scenario, as it is obvious that the 1854 * unsafe lock is taken under the safe lock. 1855 * 1856 * But if there is a chain instead, where the safe lock takes 1857 * an intermediate lock (middle_class) where this lock is 1858 * not the same as the safe lock, then the lock chain is 1859 * used to describe the problem. Otherwise we would need 1860 * to show a different CPU case for each link in the chain 1861 * from the safe_class lock to the unsafe_class lock. 1862 */ 1863 if (parent != source) { 1864 printk("Chain exists of:\n "); 1865 __print_lock_name(source); 1866 printk(KERN_CONT " --> "); 1867 __print_lock_name(parent); 1868 printk(KERN_CONT " --> "); 1869 __print_lock_name(target); 1870 printk(KERN_CONT "\n\n"); 1871 } 1872 1873 printk(" Possible unsafe locking scenario:\n\n"); 1874 printk(" CPU0 CPU1\n"); 1875 printk(" ---- ----\n"); 1876 printk(" lock("); 1877 __print_lock_name(target); 1878 printk(KERN_CONT ");\n"); 1879 printk(" lock("); 1880 __print_lock_name(parent); 1881 printk(KERN_CONT ");\n"); 1882 printk(" lock("); 1883 __print_lock_name(target); 1884 printk(KERN_CONT ");\n"); 1885 printk(" lock("); 1886 __print_lock_name(source); 1887 printk(KERN_CONT ");\n"); 1888 printk("\n *** DEADLOCK ***\n\n"); 1889 } 1890 1891 /* 1892 * When a circular dependency is detected, print the 1893 * header first: 1894 */ 1895 static noinline void 1896 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1897 struct held_lock *check_src, 1898 struct held_lock *check_tgt) 1899 { 1900 struct task_struct *curr = current; 1901 1902 if (debug_locks_silent) 1903 return; 1904 1905 pr_warn("\n"); 1906 pr_warn("======================================================\n"); 1907 pr_warn("WARNING: possible circular locking dependency detected\n"); 1908 print_kernel_ident(); 1909 pr_warn("------------------------------------------------------\n"); 1910 pr_warn("%s/%d is trying to acquire lock:\n", 1911 curr->comm, task_pid_nr(curr)); 1912 print_lock(check_src); 1913 1914 pr_warn("\nbut task is already holding lock:\n"); 1915 1916 print_lock(check_tgt); 1917 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1918 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1919 1920 print_circular_bug_entry(entry, depth); 1921 } 1922 1923 /* 1924 * We are about to add A -> B into the dependency graph, and in __bfs() a 1925 * strong dependency path A -> .. -> B is found: hlock_class equals 1926 * entry->class. 1927 * 1928 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1929 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1930 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1931 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1932 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1933 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1934 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1935 * 1936 * We need to make sure both the start and the end of A -> .. -> B is not 1937 * weaker than A -> B. For the start part, please see the comment in 1938 * check_redundant(). For the end part, we need: 1939 * 1940 * Either 1941 * 1942 * a) A -> B is -(*R)-> (everything is not weaker than that) 1943 * 1944 * or 1945 * 1946 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1947 * 1948 */ 1949 static inline bool hlock_equal(struct lock_list *entry, void *data) 1950 { 1951 struct held_lock *hlock = (struct held_lock *)data; 1952 1953 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1954 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1955 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1956 } 1957 1958 /* 1959 * We are about to add B -> A into the dependency graph, and in __bfs() a 1960 * strong dependency path A -> .. -> B is found: hlock_class equals 1961 * entry->class. 1962 * 1963 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1964 * dependency cycle, that means: 1965 * 1966 * Either 1967 * 1968 * a) B -> A is -(E*)-> 1969 * 1970 * or 1971 * 1972 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 1973 * 1974 * as then we don't have -(*R)-> -(S*)-> in the cycle. 1975 */ 1976 static inline bool hlock_conflict(struct lock_list *entry, void *data) 1977 { 1978 struct held_lock *hlock = (struct held_lock *)data; 1979 1980 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1981 (hlock->read == 0 || /* B -> A is -(E*)-> */ 1982 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1983 } 1984 1985 static noinline void print_circular_bug(struct lock_list *this, 1986 struct lock_list *target, 1987 struct held_lock *check_src, 1988 struct held_lock *check_tgt) 1989 { 1990 struct task_struct *curr = current; 1991 struct lock_list *parent; 1992 struct lock_list *first_parent; 1993 int depth; 1994 1995 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1996 return; 1997 1998 this->trace = save_trace(); 1999 if (!this->trace) 2000 return; 2001 2002 depth = get_lock_depth(target); 2003 2004 print_circular_bug_header(target, depth, check_src, check_tgt); 2005 2006 parent = get_lock_parent(target); 2007 first_parent = parent; 2008 2009 while (parent) { 2010 print_circular_bug_entry(parent, --depth); 2011 parent = get_lock_parent(parent); 2012 } 2013 2014 printk("\nother info that might help us debug this:\n\n"); 2015 print_circular_lock_scenario(check_src, check_tgt, 2016 first_parent); 2017 2018 lockdep_print_held_locks(curr); 2019 2020 printk("\nstack backtrace:\n"); 2021 dump_stack(); 2022 } 2023 2024 static noinline void print_bfs_bug(int ret) 2025 { 2026 if (!debug_locks_off_graph_unlock()) 2027 return; 2028 2029 /* 2030 * Breadth-first-search failed, graph got corrupted? 2031 */ 2032 WARN(1, "lockdep bfs error:%d\n", ret); 2033 } 2034 2035 static bool noop_count(struct lock_list *entry, void *data) 2036 { 2037 (*(unsigned long *)data)++; 2038 return false; 2039 } 2040 2041 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2042 { 2043 unsigned long count = 0; 2044 struct lock_list *target_entry; 2045 2046 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2047 2048 return count; 2049 } 2050 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2051 { 2052 unsigned long ret, flags; 2053 struct lock_list this; 2054 2055 __bfs_init_root(&this, class); 2056 2057 raw_local_irq_save(flags); 2058 lockdep_lock(); 2059 ret = __lockdep_count_forward_deps(&this); 2060 lockdep_unlock(); 2061 raw_local_irq_restore(flags); 2062 2063 return ret; 2064 } 2065 2066 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2067 { 2068 unsigned long count = 0; 2069 struct lock_list *target_entry; 2070 2071 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2072 2073 return count; 2074 } 2075 2076 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2077 { 2078 unsigned long ret, flags; 2079 struct lock_list this; 2080 2081 __bfs_init_root(&this, class); 2082 2083 raw_local_irq_save(flags); 2084 lockdep_lock(); 2085 ret = __lockdep_count_backward_deps(&this); 2086 lockdep_unlock(); 2087 raw_local_irq_restore(flags); 2088 2089 return ret; 2090 } 2091 2092 /* 2093 * Check that the dependency graph starting at <src> can lead to 2094 * <target> or not. 2095 */ 2096 static noinline enum bfs_result 2097 check_path(struct held_lock *target, struct lock_list *src_entry, 2098 bool (*match)(struct lock_list *entry, void *data), 2099 bool (*skip)(struct lock_list *entry, void *data), 2100 struct lock_list **target_entry) 2101 { 2102 enum bfs_result ret; 2103 2104 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2105 2106 if (unlikely(bfs_error(ret))) 2107 print_bfs_bug(ret); 2108 2109 return ret; 2110 } 2111 2112 /* 2113 * Prove that the dependency graph starting at <src> can not 2114 * lead to <target>. If it can, there is a circle when adding 2115 * <target> -> <src> dependency. 2116 * 2117 * Print an error and return BFS_RMATCH if it does. 2118 */ 2119 static noinline enum bfs_result 2120 check_noncircular(struct held_lock *src, struct held_lock *target, 2121 struct lock_trace **const trace) 2122 { 2123 enum bfs_result ret; 2124 struct lock_list *target_entry; 2125 struct lock_list src_entry; 2126 2127 bfs_init_root(&src_entry, src); 2128 2129 debug_atomic_inc(nr_cyclic_checks); 2130 2131 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2132 2133 if (unlikely(ret == BFS_RMATCH)) { 2134 if (!*trace) { 2135 /* 2136 * If save_trace fails here, the printing might 2137 * trigger a WARN but because of the !nr_entries it 2138 * should not do bad things. 2139 */ 2140 *trace = save_trace(); 2141 } 2142 2143 print_circular_bug(&src_entry, target_entry, src, target); 2144 } 2145 2146 return ret; 2147 } 2148 2149 #ifdef CONFIG_TRACE_IRQFLAGS 2150 2151 /* 2152 * Forwards and backwards subgraph searching, for the purposes of 2153 * proving that two subgraphs can be connected by a new dependency 2154 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2155 * 2156 * A irq safe->unsafe deadlock happens with the following conditions: 2157 * 2158 * 1) We have a strong dependency path A -> ... -> B 2159 * 2160 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2161 * irq can create a new dependency B -> A (consider the case that a holder 2162 * of B gets interrupted by an irq whose handler will try to acquire A). 2163 * 2164 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2165 * strong circle: 2166 * 2167 * For the usage bits of B: 2168 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2169 * ENABLED_IRQ usage suffices. 2170 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2171 * ENABLED_IRQ_*_READ usage suffices. 2172 * 2173 * For the usage bits of A: 2174 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2175 * USED_IN_IRQ usage suffices. 2176 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2177 * USED_IN_IRQ_*_READ usage suffices. 2178 */ 2179 2180 /* 2181 * There is a strong dependency path in the dependency graph: A -> B, and now 2182 * we need to decide which usage bit of A should be accumulated to detect 2183 * safe->unsafe bugs. 2184 * 2185 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2186 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2187 * 2188 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2189 * path, any usage of A should be considered. Otherwise, we should only 2190 * consider _READ usage. 2191 */ 2192 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2193 { 2194 if (!entry->only_xr) 2195 *(unsigned long *)mask |= entry->class->usage_mask; 2196 else /* Mask out _READ usage bits */ 2197 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2198 2199 return false; 2200 } 2201 2202 /* 2203 * There is a strong dependency path in the dependency graph: A -> B, and now 2204 * we need to decide which usage bit of B conflicts with the usage bits of A, 2205 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2206 * 2207 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2208 * path, any usage of B should be considered. Otherwise, we should only 2209 * consider _READ usage. 2210 */ 2211 static inline bool usage_match(struct lock_list *entry, void *mask) 2212 { 2213 if (!entry->only_xr) 2214 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2215 else /* Mask out _READ usage bits */ 2216 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2217 } 2218 2219 static inline bool usage_skip(struct lock_list *entry, void *mask) 2220 { 2221 /* 2222 * Skip local_lock() for irq inversion detection. 2223 * 2224 * For !RT, local_lock() is not a real lock, so it won't carry any 2225 * dependency. 2226 * 2227 * For RT, an irq inversion happens when we have lock A and B, and on 2228 * some CPU we can have: 2229 * 2230 * lock(A); 2231 * <interrupted> 2232 * lock(B); 2233 * 2234 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2235 * 2236 * Now we prove local_lock() cannot exist in that dependency. First we 2237 * have the observation for any lock chain L1 -> ... -> Ln, for any 2238 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2239 * wait context check will complain. And since B is not a sleep lock, 2240 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2241 * local_lock() is 3, which is greater than 2, therefore there is no 2242 * way the local_lock() exists in the dependency B -> ... -> A. 2243 * 2244 * As a result, we will skip local_lock(), when we search for irq 2245 * inversion bugs. 2246 */ 2247 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2248 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2249 return false; 2250 2251 return true; 2252 } 2253 2254 return false; 2255 } 2256 2257 /* 2258 * Find a node in the forwards-direction dependency sub-graph starting 2259 * at @root->class that matches @bit. 2260 * 2261 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2262 * into *@target_entry. 2263 */ 2264 static enum bfs_result 2265 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2266 struct lock_list **target_entry) 2267 { 2268 enum bfs_result result; 2269 2270 debug_atomic_inc(nr_find_usage_forwards_checks); 2271 2272 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2273 2274 return result; 2275 } 2276 2277 /* 2278 * Find a node in the backwards-direction dependency sub-graph starting 2279 * at @root->class that matches @bit. 2280 */ 2281 static enum bfs_result 2282 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2283 struct lock_list **target_entry) 2284 { 2285 enum bfs_result result; 2286 2287 debug_atomic_inc(nr_find_usage_backwards_checks); 2288 2289 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2290 2291 return result; 2292 } 2293 2294 static void print_lock_class_header(struct lock_class *class, int depth) 2295 { 2296 int bit; 2297 2298 printk("%*s->", depth, ""); 2299 print_lock_name(class); 2300 #ifdef CONFIG_DEBUG_LOCKDEP 2301 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2302 #endif 2303 printk(KERN_CONT " {\n"); 2304 2305 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2306 if (class->usage_mask & (1 << bit)) { 2307 int len = depth; 2308 2309 len += printk("%*s %s", depth, "", usage_str[bit]); 2310 len += printk(KERN_CONT " at:\n"); 2311 print_lock_trace(class->usage_traces[bit], len); 2312 } 2313 } 2314 printk("%*s }\n", depth, ""); 2315 2316 printk("%*s ... key at: [<%px>] %pS\n", 2317 depth, "", class->key, class->key); 2318 } 2319 2320 /* 2321 * Dependency path printing: 2322 * 2323 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2324 * printing out each lock in the dependency path will help on understanding how 2325 * the deadlock could happen. Here are some details about dependency path 2326 * printing: 2327 * 2328 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2329 * for a lock dependency A -> B, there are two lock_lists: 2330 * 2331 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2332 * ->links_to is A. In this case, we can say the lock_list is 2333 * "A -> B" (forwards case). 2334 * 2335 * b) lock_list in the ->locks_before list of B, whose ->class is A 2336 * and ->links_to is B. In this case, we can say the lock_list is 2337 * "B <- A" (bacwards case). 2338 * 2339 * The ->trace of both a) and b) point to the call trace where B was 2340 * acquired with A held. 2341 * 2342 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2343 * represent a certain lock dependency, it only provides an initial entry 2344 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2345 * ->class is A, as a result BFS will search all dependencies starting with 2346 * A, e.g. A -> B or A -> C. 2347 * 2348 * The notation of a forwards helper lock_list is like "-> A", which means 2349 * we should search the forwards dependencies starting with "A", e.g A -> B 2350 * or A -> C. 2351 * 2352 * The notation of a bacwards helper lock_list is like "<- B", which means 2353 * we should search the backwards dependencies ending with "B", e.g. 2354 * B <- A or B <- C. 2355 */ 2356 2357 /* 2358 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2359 * 2360 * We have a lock dependency path as follow: 2361 * 2362 * @root @leaf 2363 * | | 2364 * V V 2365 * ->parent ->parent 2366 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2367 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2368 * 2369 * , so it's natural that we start from @leaf and print every ->class and 2370 * ->trace until we reach the @root. 2371 */ 2372 static void __used 2373 print_shortest_lock_dependencies(struct lock_list *leaf, 2374 struct lock_list *root) 2375 { 2376 struct lock_list *entry = leaf; 2377 int depth; 2378 2379 /*compute depth from generated tree by BFS*/ 2380 depth = get_lock_depth(leaf); 2381 2382 do { 2383 print_lock_class_header(entry->class, depth); 2384 printk("%*s ... acquired at:\n", depth, ""); 2385 print_lock_trace(entry->trace, 2); 2386 printk("\n"); 2387 2388 if (depth == 0 && (entry != root)) { 2389 printk("lockdep:%s bad path found in chain graph\n", __func__); 2390 break; 2391 } 2392 2393 entry = get_lock_parent(entry); 2394 depth--; 2395 } while (entry && (depth >= 0)); 2396 } 2397 2398 /* 2399 * printk the shortest lock dependencies from @leaf to @root. 2400 * 2401 * We have a lock dependency path (from a backwards search) as follow: 2402 * 2403 * @leaf @root 2404 * | | 2405 * V V 2406 * ->parent ->parent 2407 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2408 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2409 * 2410 * , so when we iterate from @leaf to @root, we actually print the lock 2411 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2412 * 2413 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2414 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2415 * trace of L1 in the dependency path, which is alright, because most of the 2416 * time we can figure out where L1 is held from the call trace of L2. 2417 */ 2418 static void __used 2419 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2420 struct lock_list *root) 2421 { 2422 struct lock_list *entry = leaf; 2423 const struct lock_trace *trace = NULL; 2424 int depth; 2425 2426 /*compute depth from generated tree by BFS*/ 2427 depth = get_lock_depth(leaf); 2428 2429 do { 2430 print_lock_class_header(entry->class, depth); 2431 if (trace) { 2432 printk("%*s ... acquired at:\n", depth, ""); 2433 print_lock_trace(trace, 2); 2434 printk("\n"); 2435 } 2436 2437 /* 2438 * Record the pointer to the trace for the next lock_list 2439 * entry, see the comments for the function. 2440 */ 2441 trace = entry->trace; 2442 2443 if (depth == 0 && (entry != root)) { 2444 printk("lockdep:%s bad path found in chain graph\n", __func__); 2445 break; 2446 } 2447 2448 entry = get_lock_parent(entry); 2449 depth--; 2450 } while (entry && (depth >= 0)); 2451 } 2452 2453 static void 2454 print_irq_lock_scenario(struct lock_list *safe_entry, 2455 struct lock_list *unsafe_entry, 2456 struct lock_class *prev_class, 2457 struct lock_class *next_class) 2458 { 2459 struct lock_class *safe_class = safe_entry->class; 2460 struct lock_class *unsafe_class = unsafe_entry->class; 2461 struct lock_class *middle_class = prev_class; 2462 2463 if (middle_class == safe_class) 2464 middle_class = next_class; 2465 2466 /* 2467 * A direct locking problem where unsafe_class lock is taken 2468 * directly by safe_class lock, then all we need to show 2469 * is the deadlock scenario, as it is obvious that the 2470 * unsafe lock is taken under the safe lock. 2471 * 2472 * But if there is a chain instead, where the safe lock takes 2473 * an intermediate lock (middle_class) where this lock is 2474 * not the same as the safe lock, then the lock chain is 2475 * used to describe the problem. Otherwise we would need 2476 * to show a different CPU case for each link in the chain 2477 * from the safe_class lock to the unsafe_class lock. 2478 */ 2479 if (middle_class != unsafe_class) { 2480 printk("Chain exists of:\n "); 2481 __print_lock_name(safe_class); 2482 printk(KERN_CONT " --> "); 2483 __print_lock_name(middle_class); 2484 printk(KERN_CONT " --> "); 2485 __print_lock_name(unsafe_class); 2486 printk(KERN_CONT "\n\n"); 2487 } 2488 2489 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2490 printk(" CPU0 CPU1\n"); 2491 printk(" ---- ----\n"); 2492 printk(" lock("); 2493 __print_lock_name(unsafe_class); 2494 printk(KERN_CONT ");\n"); 2495 printk(" local_irq_disable();\n"); 2496 printk(" lock("); 2497 __print_lock_name(safe_class); 2498 printk(KERN_CONT ");\n"); 2499 printk(" lock("); 2500 __print_lock_name(middle_class); 2501 printk(KERN_CONT ");\n"); 2502 printk(" <Interrupt>\n"); 2503 printk(" lock("); 2504 __print_lock_name(safe_class); 2505 printk(KERN_CONT ");\n"); 2506 printk("\n *** DEADLOCK ***\n\n"); 2507 } 2508 2509 static void 2510 print_bad_irq_dependency(struct task_struct *curr, 2511 struct lock_list *prev_root, 2512 struct lock_list *next_root, 2513 struct lock_list *backwards_entry, 2514 struct lock_list *forwards_entry, 2515 struct held_lock *prev, 2516 struct held_lock *next, 2517 enum lock_usage_bit bit1, 2518 enum lock_usage_bit bit2, 2519 const char *irqclass) 2520 { 2521 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2522 return; 2523 2524 pr_warn("\n"); 2525 pr_warn("=====================================================\n"); 2526 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2527 irqclass, irqclass); 2528 print_kernel_ident(); 2529 pr_warn("-----------------------------------------------------\n"); 2530 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2531 curr->comm, task_pid_nr(curr), 2532 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2533 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2534 lockdep_hardirqs_enabled(), 2535 curr->softirqs_enabled); 2536 print_lock(next); 2537 2538 pr_warn("\nand this task is already holding:\n"); 2539 print_lock(prev); 2540 pr_warn("which would create a new lock dependency:\n"); 2541 print_lock_name(hlock_class(prev)); 2542 pr_cont(" ->"); 2543 print_lock_name(hlock_class(next)); 2544 pr_cont("\n"); 2545 2546 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2547 irqclass); 2548 print_lock_name(backwards_entry->class); 2549 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2550 2551 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2552 2553 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2554 print_lock_name(forwards_entry->class); 2555 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2556 pr_warn("..."); 2557 2558 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2559 2560 pr_warn("\nother info that might help us debug this:\n\n"); 2561 print_irq_lock_scenario(backwards_entry, forwards_entry, 2562 hlock_class(prev), hlock_class(next)); 2563 2564 lockdep_print_held_locks(curr); 2565 2566 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2567 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2568 2569 pr_warn("\nthe dependencies between the lock to be acquired"); 2570 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2571 next_root->trace = save_trace(); 2572 if (!next_root->trace) 2573 return; 2574 print_shortest_lock_dependencies(forwards_entry, next_root); 2575 2576 pr_warn("\nstack backtrace:\n"); 2577 dump_stack(); 2578 } 2579 2580 static const char *state_names[] = { 2581 #define LOCKDEP_STATE(__STATE) \ 2582 __stringify(__STATE), 2583 #include "lockdep_states.h" 2584 #undef LOCKDEP_STATE 2585 }; 2586 2587 static const char *state_rnames[] = { 2588 #define LOCKDEP_STATE(__STATE) \ 2589 __stringify(__STATE)"-READ", 2590 #include "lockdep_states.h" 2591 #undef LOCKDEP_STATE 2592 }; 2593 2594 static inline const char *state_name(enum lock_usage_bit bit) 2595 { 2596 if (bit & LOCK_USAGE_READ_MASK) 2597 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2598 else 2599 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2600 } 2601 2602 /* 2603 * The bit number is encoded like: 2604 * 2605 * bit0: 0 exclusive, 1 read lock 2606 * bit1: 0 used in irq, 1 irq enabled 2607 * bit2-n: state 2608 */ 2609 static int exclusive_bit(int new_bit) 2610 { 2611 int state = new_bit & LOCK_USAGE_STATE_MASK; 2612 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2613 2614 /* 2615 * keep state, bit flip the direction and strip read. 2616 */ 2617 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2618 } 2619 2620 /* 2621 * Observe that when given a bitmask where each bitnr is encoded as above, a 2622 * right shift of the mask transforms the individual bitnrs as -1 and 2623 * conversely, a left shift transforms into +1 for the individual bitnrs. 2624 * 2625 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2626 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2627 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2628 * 2629 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2630 * 2631 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2632 * all bits set) and recompose with bitnr1 flipped. 2633 */ 2634 static unsigned long invert_dir_mask(unsigned long mask) 2635 { 2636 unsigned long excl = 0; 2637 2638 /* Invert dir */ 2639 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2640 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2641 2642 return excl; 2643 } 2644 2645 /* 2646 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2647 * usage may cause deadlock too, for example: 2648 * 2649 * P1 P2 2650 * <irq disabled> 2651 * write_lock(l1); <irq enabled> 2652 * read_lock(l2); 2653 * write_lock(l2); 2654 * <in irq> 2655 * read_lock(l1); 2656 * 2657 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2658 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2659 * deadlock. 2660 * 2661 * In fact, all of the following cases may cause deadlocks: 2662 * 2663 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2664 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2665 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2666 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2667 * 2668 * As a result, to calculate the "exclusive mask", first we invert the 2669 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2670 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2671 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2672 */ 2673 static unsigned long exclusive_mask(unsigned long mask) 2674 { 2675 unsigned long excl = invert_dir_mask(mask); 2676 2677 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2678 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2679 2680 return excl; 2681 } 2682 2683 /* 2684 * Retrieve the _possible_ original mask to which @mask is 2685 * exclusive. Ie: this is the opposite of exclusive_mask(). 2686 * Note that 2 possible original bits can match an exclusive 2687 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2688 * cleared. So both are returned for each exclusive bit. 2689 */ 2690 static unsigned long original_mask(unsigned long mask) 2691 { 2692 unsigned long excl = invert_dir_mask(mask); 2693 2694 /* Include read in existing usages */ 2695 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2696 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2697 2698 return excl; 2699 } 2700 2701 /* 2702 * Find the first pair of bit match between an original 2703 * usage mask and an exclusive usage mask. 2704 */ 2705 static int find_exclusive_match(unsigned long mask, 2706 unsigned long excl_mask, 2707 enum lock_usage_bit *bitp, 2708 enum lock_usage_bit *excl_bitp) 2709 { 2710 int bit, excl, excl_read; 2711 2712 for_each_set_bit(bit, &mask, LOCK_USED) { 2713 /* 2714 * exclusive_bit() strips the read bit, however, 2715 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2716 * to search excl | LOCK_USAGE_READ_MASK as well. 2717 */ 2718 excl = exclusive_bit(bit); 2719 excl_read = excl | LOCK_USAGE_READ_MASK; 2720 if (excl_mask & lock_flag(excl)) { 2721 *bitp = bit; 2722 *excl_bitp = excl; 2723 return 0; 2724 } else if (excl_mask & lock_flag(excl_read)) { 2725 *bitp = bit; 2726 *excl_bitp = excl_read; 2727 return 0; 2728 } 2729 } 2730 return -1; 2731 } 2732 2733 /* 2734 * Prove that the new dependency does not connect a hardirq-safe(-read) 2735 * lock with a hardirq-unsafe lock - to achieve this we search 2736 * the backwards-subgraph starting at <prev>, and the 2737 * forwards-subgraph starting at <next>: 2738 */ 2739 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2740 struct held_lock *next) 2741 { 2742 unsigned long usage_mask = 0, forward_mask, backward_mask; 2743 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2744 struct lock_list *target_entry1; 2745 struct lock_list *target_entry; 2746 struct lock_list this, that; 2747 enum bfs_result ret; 2748 2749 /* 2750 * Step 1: gather all hard/soft IRQs usages backward in an 2751 * accumulated usage mask. 2752 */ 2753 bfs_init_rootb(&this, prev); 2754 2755 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2756 if (bfs_error(ret)) { 2757 print_bfs_bug(ret); 2758 return 0; 2759 } 2760 2761 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2762 if (!usage_mask) 2763 return 1; 2764 2765 /* 2766 * Step 2: find exclusive uses forward that match the previous 2767 * backward accumulated mask. 2768 */ 2769 forward_mask = exclusive_mask(usage_mask); 2770 2771 bfs_init_root(&that, next); 2772 2773 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2774 if (bfs_error(ret)) { 2775 print_bfs_bug(ret); 2776 return 0; 2777 } 2778 if (ret == BFS_RNOMATCH) 2779 return 1; 2780 2781 /* 2782 * Step 3: we found a bad match! Now retrieve a lock from the backward 2783 * list whose usage mask matches the exclusive usage mask from the 2784 * lock found on the forward list. 2785 * 2786 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2787 * the follow case: 2788 * 2789 * When trying to add A -> B to the graph, we find that there is a 2790 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2791 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2792 * invert bits of M's usage_mask, we will find another lock N that is 2793 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2794 * cause a inversion deadlock. 2795 */ 2796 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2797 2798 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2799 if (bfs_error(ret)) { 2800 print_bfs_bug(ret); 2801 return 0; 2802 } 2803 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2804 return 1; 2805 2806 /* 2807 * Step 4: narrow down to a pair of incompatible usage bits 2808 * and report it. 2809 */ 2810 ret = find_exclusive_match(target_entry->class->usage_mask, 2811 target_entry1->class->usage_mask, 2812 &backward_bit, &forward_bit); 2813 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2814 return 1; 2815 2816 print_bad_irq_dependency(curr, &this, &that, 2817 target_entry, target_entry1, 2818 prev, next, 2819 backward_bit, forward_bit, 2820 state_name(backward_bit)); 2821 2822 return 0; 2823 } 2824 2825 #else 2826 2827 static inline int check_irq_usage(struct task_struct *curr, 2828 struct held_lock *prev, struct held_lock *next) 2829 { 2830 return 1; 2831 } 2832 2833 static inline bool usage_skip(struct lock_list *entry, void *mask) 2834 { 2835 return false; 2836 } 2837 2838 #endif /* CONFIG_TRACE_IRQFLAGS */ 2839 2840 #ifdef CONFIG_LOCKDEP_SMALL 2841 /* 2842 * Check that the dependency graph starting at <src> can lead to 2843 * <target> or not. If it can, <src> -> <target> dependency is already 2844 * in the graph. 2845 * 2846 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2847 * any error appears in the bfs search. 2848 */ 2849 static noinline enum bfs_result 2850 check_redundant(struct held_lock *src, struct held_lock *target) 2851 { 2852 enum bfs_result ret; 2853 struct lock_list *target_entry; 2854 struct lock_list src_entry; 2855 2856 bfs_init_root(&src_entry, src); 2857 /* 2858 * Special setup for check_redundant(). 2859 * 2860 * To report redundant, we need to find a strong dependency path that 2861 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2862 * we need to let __bfs() only search for a path starting at a -(E*)->, 2863 * we achieve this by setting the initial node's ->only_xr to true in 2864 * that case. And if <prev> is S, we set initial ->only_xr to false 2865 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2866 */ 2867 src_entry.only_xr = src->read == 0; 2868 2869 debug_atomic_inc(nr_redundant_checks); 2870 2871 /* 2872 * Note: we skip local_lock() for redundant check, because as the 2873 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2874 * the same. 2875 */ 2876 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2877 2878 if (ret == BFS_RMATCH) 2879 debug_atomic_inc(nr_redundant); 2880 2881 return ret; 2882 } 2883 2884 #else 2885 2886 static inline enum bfs_result 2887 check_redundant(struct held_lock *src, struct held_lock *target) 2888 { 2889 return BFS_RNOMATCH; 2890 } 2891 2892 #endif 2893 2894 static void inc_chains(int irq_context) 2895 { 2896 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2897 nr_hardirq_chains++; 2898 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2899 nr_softirq_chains++; 2900 else 2901 nr_process_chains++; 2902 } 2903 2904 static void dec_chains(int irq_context) 2905 { 2906 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2907 nr_hardirq_chains--; 2908 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2909 nr_softirq_chains--; 2910 else 2911 nr_process_chains--; 2912 } 2913 2914 static void 2915 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2916 { 2917 struct lock_class *next = hlock_class(nxt); 2918 struct lock_class *prev = hlock_class(prv); 2919 2920 printk(" Possible unsafe locking scenario:\n\n"); 2921 printk(" CPU0\n"); 2922 printk(" ----\n"); 2923 printk(" lock("); 2924 __print_lock_name(prev); 2925 printk(KERN_CONT ");\n"); 2926 printk(" lock("); 2927 __print_lock_name(next); 2928 printk(KERN_CONT ");\n"); 2929 printk("\n *** DEADLOCK ***\n\n"); 2930 printk(" May be due to missing lock nesting notation\n\n"); 2931 } 2932 2933 static void 2934 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2935 struct held_lock *next) 2936 { 2937 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2938 return; 2939 2940 pr_warn("\n"); 2941 pr_warn("============================================\n"); 2942 pr_warn("WARNING: possible recursive locking detected\n"); 2943 print_kernel_ident(); 2944 pr_warn("--------------------------------------------\n"); 2945 pr_warn("%s/%d is trying to acquire lock:\n", 2946 curr->comm, task_pid_nr(curr)); 2947 print_lock(next); 2948 pr_warn("\nbut task is already holding lock:\n"); 2949 print_lock(prev); 2950 2951 pr_warn("\nother info that might help us debug this:\n"); 2952 print_deadlock_scenario(next, prev); 2953 lockdep_print_held_locks(curr); 2954 2955 pr_warn("\nstack backtrace:\n"); 2956 dump_stack(); 2957 } 2958 2959 /* 2960 * Check whether we are holding such a class already. 2961 * 2962 * (Note that this has to be done separately, because the graph cannot 2963 * detect such classes of deadlocks.) 2964 * 2965 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 2966 * lock class is held but nest_lock is also held, i.e. we rely on the 2967 * nest_lock to avoid the deadlock. 2968 */ 2969 static int 2970 check_deadlock(struct task_struct *curr, struct held_lock *next) 2971 { 2972 struct held_lock *prev; 2973 struct held_lock *nest = NULL; 2974 int i; 2975 2976 for (i = 0; i < curr->lockdep_depth; i++) { 2977 prev = curr->held_locks + i; 2978 2979 if (prev->instance == next->nest_lock) 2980 nest = prev; 2981 2982 if (hlock_class(prev) != hlock_class(next)) 2983 continue; 2984 2985 /* 2986 * Allow read-after-read recursion of the same 2987 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2988 */ 2989 if ((next->read == 2) && prev->read) 2990 continue; 2991 2992 /* 2993 * We're holding the nest_lock, which serializes this lock's 2994 * nesting behaviour. 2995 */ 2996 if (nest) 2997 return 2; 2998 2999 print_deadlock_bug(curr, prev, next); 3000 return 0; 3001 } 3002 return 1; 3003 } 3004 3005 /* 3006 * There was a chain-cache miss, and we are about to add a new dependency 3007 * to a previous lock. We validate the following rules: 3008 * 3009 * - would the adding of the <prev> -> <next> dependency create a 3010 * circular dependency in the graph? [== circular deadlock] 3011 * 3012 * - does the new prev->next dependency connect any hardirq-safe lock 3013 * (in the full backwards-subgraph starting at <prev>) with any 3014 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3015 * <next>)? [== illegal lock inversion with hardirq contexts] 3016 * 3017 * - does the new prev->next dependency connect any softirq-safe lock 3018 * (in the full backwards-subgraph starting at <prev>) with any 3019 * softirq-unsafe lock (in the full forwards-subgraph starting at 3020 * <next>)? [== illegal lock inversion with softirq contexts] 3021 * 3022 * any of these scenarios could lead to a deadlock. 3023 * 3024 * Then if all the validations pass, we add the forwards and backwards 3025 * dependency. 3026 */ 3027 static int 3028 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3029 struct held_lock *next, u16 distance, 3030 struct lock_trace **const trace) 3031 { 3032 struct lock_list *entry; 3033 enum bfs_result ret; 3034 3035 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3036 /* 3037 * The warning statements below may trigger a use-after-free 3038 * of the class name. It is better to trigger a use-after free 3039 * and to have the class name most of the time instead of not 3040 * having the class name available. 3041 */ 3042 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3043 "Detected use-after-free of lock class %px/%s\n", 3044 hlock_class(prev), 3045 hlock_class(prev)->name); 3046 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3047 "Detected use-after-free of lock class %px/%s\n", 3048 hlock_class(next), 3049 hlock_class(next)->name); 3050 return 2; 3051 } 3052 3053 /* 3054 * Prove that the new <prev> -> <next> dependency would not 3055 * create a circular dependency in the graph. (We do this by 3056 * a breadth-first search into the graph starting at <next>, 3057 * and check whether we can reach <prev>.) 3058 * 3059 * The search is limited by the size of the circular queue (i.e., 3060 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3061 * in the graph whose neighbours are to be checked. 3062 */ 3063 ret = check_noncircular(next, prev, trace); 3064 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3065 return 0; 3066 3067 if (!check_irq_usage(curr, prev, next)) 3068 return 0; 3069 3070 /* 3071 * Is the <prev> -> <next> dependency already present? 3072 * 3073 * (this may occur even though this is a new chain: consider 3074 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3075 * chains - the second one will be new, but L1 already has 3076 * L2 added to its dependency list, due to the first chain.) 3077 */ 3078 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3079 if (entry->class == hlock_class(next)) { 3080 if (distance == 1) 3081 entry->distance = 1; 3082 entry->dep |= calc_dep(prev, next); 3083 3084 /* 3085 * Also, update the reverse dependency in @next's 3086 * ->locks_before list. 3087 * 3088 * Here we reuse @entry as the cursor, which is fine 3089 * because we won't go to the next iteration of the 3090 * outer loop: 3091 * 3092 * For normal cases, we return in the inner loop. 3093 * 3094 * If we fail to return, we have inconsistency, i.e. 3095 * <prev>::locks_after contains <next> while 3096 * <next>::locks_before doesn't contain <prev>. In 3097 * that case, we return after the inner and indicate 3098 * something is wrong. 3099 */ 3100 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3101 if (entry->class == hlock_class(prev)) { 3102 if (distance == 1) 3103 entry->distance = 1; 3104 entry->dep |= calc_depb(prev, next); 3105 return 1; 3106 } 3107 } 3108 3109 /* <prev> is not found in <next>::locks_before */ 3110 return 0; 3111 } 3112 } 3113 3114 /* 3115 * Is the <prev> -> <next> link redundant? 3116 */ 3117 ret = check_redundant(prev, next); 3118 if (bfs_error(ret)) 3119 return 0; 3120 else if (ret == BFS_RMATCH) 3121 return 2; 3122 3123 if (!*trace) { 3124 *trace = save_trace(); 3125 if (!*trace) 3126 return 0; 3127 } 3128 3129 /* 3130 * Ok, all validations passed, add the new lock 3131 * to the previous lock's dependency list: 3132 */ 3133 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3134 &hlock_class(prev)->locks_after, 3135 next->acquire_ip, distance, 3136 calc_dep(prev, next), 3137 *trace); 3138 3139 if (!ret) 3140 return 0; 3141 3142 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3143 &hlock_class(next)->locks_before, 3144 next->acquire_ip, distance, 3145 calc_depb(prev, next), 3146 *trace); 3147 if (!ret) 3148 return 0; 3149 3150 return 2; 3151 } 3152 3153 /* 3154 * Add the dependency to all directly-previous locks that are 'relevant'. 3155 * The ones that are relevant are (in increasing distance from curr): 3156 * all consecutive trylock entries and the final non-trylock entry - or 3157 * the end of this context's lock-chain - whichever comes first. 3158 */ 3159 static int 3160 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3161 { 3162 struct lock_trace *trace = NULL; 3163 int depth = curr->lockdep_depth; 3164 struct held_lock *hlock; 3165 3166 /* 3167 * Debugging checks. 3168 * 3169 * Depth must not be zero for a non-head lock: 3170 */ 3171 if (!depth) 3172 goto out_bug; 3173 /* 3174 * At least two relevant locks must exist for this 3175 * to be a head: 3176 */ 3177 if (curr->held_locks[depth].irq_context != 3178 curr->held_locks[depth-1].irq_context) 3179 goto out_bug; 3180 3181 for (;;) { 3182 u16 distance = curr->lockdep_depth - depth + 1; 3183 hlock = curr->held_locks + depth - 1; 3184 3185 if (hlock->check) { 3186 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3187 if (!ret) 3188 return 0; 3189 3190 /* 3191 * Stop after the first non-trylock entry, 3192 * as non-trylock entries have added their 3193 * own direct dependencies already, so this 3194 * lock is connected to them indirectly: 3195 */ 3196 if (!hlock->trylock) 3197 break; 3198 } 3199 3200 depth--; 3201 /* 3202 * End of lock-stack? 3203 */ 3204 if (!depth) 3205 break; 3206 /* 3207 * Stop the search if we cross into another context: 3208 */ 3209 if (curr->held_locks[depth].irq_context != 3210 curr->held_locks[depth-1].irq_context) 3211 break; 3212 } 3213 return 1; 3214 out_bug: 3215 if (!debug_locks_off_graph_unlock()) 3216 return 0; 3217 3218 /* 3219 * Clearly we all shouldn't be here, but since we made it we 3220 * can reliable say we messed up our state. See the above two 3221 * gotos for reasons why we could possibly end up here. 3222 */ 3223 WARN_ON(1); 3224 3225 return 0; 3226 } 3227 3228 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3229 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3230 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3231 unsigned long nr_zapped_lock_chains; 3232 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3233 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3234 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3235 3236 /* 3237 * The first 2 chain_hlocks entries in the chain block in the bucket 3238 * list contains the following meta data: 3239 * 3240 * entry[0]: 3241 * Bit 15 - always set to 1 (it is not a class index) 3242 * Bits 0-14 - upper 15 bits of the next block index 3243 * entry[1] - lower 16 bits of next block index 3244 * 3245 * A next block index of all 1 bits means it is the end of the list. 3246 * 3247 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3248 * the chain block size: 3249 * 3250 * entry[2] - upper 16 bits of the chain block size 3251 * entry[3] - lower 16 bits of the chain block size 3252 */ 3253 #define MAX_CHAIN_BUCKETS 16 3254 #define CHAIN_BLK_FLAG (1U << 15) 3255 #define CHAIN_BLK_LIST_END 0xFFFFU 3256 3257 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3258 3259 static inline int size_to_bucket(int size) 3260 { 3261 if (size > MAX_CHAIN_BUCKETS) 3262 return 0; 3263 3264 return size - 1; 3265 } 3266 3267 /* 3268 * Iterate all the chain blocks in a bucket. 3269 */ 3270 #define for_each_chain_block(bucket, prev, curr) \ 3271 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3272 (curr) >= 0; \ 3273 (prev) = (curr), (curr) = chain_block_next(curr)) 3274 3275 /* 3276 * next block or -1 3277 */ 3278 static inline int chain_block_next(int offset) 3279 { 3280 int next = chain_hlocks[offset]; 3281 3282 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3283 3284 if (next == CHAIN_BLK_LIST_END) 3285 return -1; 3286 3287 next &= ~CHAIN_BLK_FLAG; 3288 next <<= 16; 3289 next |= chain_hlocks[offset + 1]; 3290 3291 return next; 3292 } 3293 3294 /* 3295 * bucket-0 only 3296 */ 3297 static inline int chain_block_size(int offset) 3298 { 3299 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3300 } 3301 3302 static inline void init_chain_block(int offset, int next, int bucket, int size) 3303 { 3304 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3305 chain_hlocks[offset + 1] = (u16)next; 3306 3307 if (size && !bucket) { 3308 chain_hlocks[offset + 2] = size >> 16; 3309 chain_hlocks[offset + 3] = (u16)size; 3310 } 3311 } 3312 3313 static inline void add_chain_block(int offset, int size) 3314 { 3315 int bucket = size_to_bucket(size); 3316 int next = chain_block_buckets[bucket]; 3317 int prev, curr; 3318 3319 if (unlikely(size < 2)) { 3320 /* 3321 * We can't store single entries on the freelist. Leak them. 3322 * 3323 * One possible way out would be to uniquely mark them, other 3324 * than with CHAIN_BLK_FLAG, such that we can recover them when 3325 * the block before it is re-added. 3326 */ 3327 if (size) 3328 nr_lost_chain_hlocks++; 3329 return; 3330 } 3331 3332 nr_free_chain_hlocks += size; 3333 if (!bucket) { 3334 nr_large_chain_blocks++; 3335 3336 /* 3337 * Variable sized, sort large to small. 3338 */ 3339 for_each_chain_block(0, prev, curr) { 3340 if (size >= chain_block_size(curr)) 3341 break; 3342 } 3343 init_chain_block(offset, curr, 0, size); 3344 if (prev < 0) 3345 chain_block_buckets[0] = offset; 3346 else 3347 init_chain_block(prev, offset, 0, 0); 3348 return; 3349 } 3350 /* 3351 * Fixed size, add to head. 3352 */ 3353 init_chain_block(offset, next, bucket, size); 3354 chain_block_buckets[bucket] = offset; 3355 } 3356 3357 /* 3358 * Only the first block in the list can be deleted. 3359 * 3360 * For the variable size bucket[0], the first block (the largest one) is 3361 * returned, broken up and put back into the pool. So if a chain block of 3362 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3363 * queued up after the primordial chain block and never be used until the 3364 * hlock entries in the primordial chain block is almost used up. That 3365 * causes fragmentation and reduce allocation efficiency. That can be 3366 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3367 */ 3368 static inline void del_chain_block(int bucket, int size, int next) 3369 { 3370 nr_free_chain_hlocks -= size; 3371 chain_block_buckets[bucket] = next; 3372 3373 if (!bucket) 3374 nr_large_chain_blocks--; 3375 } 3376 3377 static void init_chain_block_buckets(void) 3378 { 3379 int i; 3380 3381 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3382 chain_block_buckets[i] = -1; 3383 3384 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3385 } 3386 3387 /* 3388 * Return offset of a chain block of the right size or -1 if not found. 3389 * 3390 * Fairly simple worst-fit allocator with the addition of a number of size 3391 * specific free lists. 3392 */ 3393 static int alloc_chain_hlocks(int req) 3394 { 3395 int bucket, curr, size; 3396 3397 /* 3398 * We rely on the MSB to act as an escape bit to denote freelist 3399 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3400 */ 3401 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3402 3403 init_data_structures_once(); 3404 3405 if (nr_free_chain_hlocks < req) 3406 return -1; 3407 3408 /* 3409 * We require a minimum of 2 (u16) entries to encode a freelist 3410 * 'pointer'. 3411 */ 3412 req = max(req, 2); 3413 bucket = size_to_bucket(req); 3414 curr = chain_block_buckets[bucket]; 3415 3416 if (bucket) { 3417 if (curr >= 0) { 3418 del_chain_block(bucket, req, chain_block_next(curr)); 3419 return curr; 3420 } 3421 /* Try bucket 0 */ 3422 curr = chain_block_buckets[0]; 3423 } 3424 3425 /* 3426 * The variable sized freelist is sorted by size; the first entry is 3427 * the largest. Use it if it fits. 3428 */ 3429 if (curr >= 0) { 3430 size = chain_block_size(curr); 3431 if (likely(size >= req)) { 3432 del_chain_block(0, size, chain_block_next(curr)); 3433 add_chain_block(curr + req, size - req); 3434 return curr; 3435 } 3436 } 3437 3438 /* 3439 * Last resort, split a block in a larger sized bucket. 3440 */ 3441 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3442 bucket = size_to_bucket(size); 3443 curr = chain_block_buckets[bucket]; 3444 if (curr < 0) 3445 continue; 3446 3447 del_chain_block(bucket, size, chain_block_next(curr)); 3448 add_chain_block(curr + req, size - req); 3449 return curr; 3450 } 3451 3452 return -1; 3453 } 3454 3455 static inline void free_chain_hlocks(int base, int size) 3456 { 3457 add_chain_block(base, max(size, 2)); 3458 } 3459 3460 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3461 { 3462 u16 chain_hlock = chain_hlocks[chain->base + i]; 3463 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3464 3465 return lock_classes + class_idx; 3466 } 3467 3468 /* 3469 * Returns the index of the first held_lock of the current chain 3470 */ 3471 static inline int get_first_held_lock(struct task_struct *curr, 3472 struct held_lock *hlock) 3473 { 3474 int i; 3475 struct held_lock *hlock_curr; 3476 3477 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3478 hlock_curr = curr->held_locks + i; 3479 if (hlock_curr->irq_context != hlock->irq_context) 3480 break; 3481 3482 } 3483 3484 return ++i; 3485 } 3486 3487 #ifdef CONFIG_DEBUG_LOCKDEP 3488 /* 3489 * Returns the next chain_key iteration 3490 */ 3491 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3492 { 3493 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3494 3495 printk(" hlock_id:%d -> chain_key:%016Lx", 3496 (unsigned int)hlock_id, 3497 (unsigned long long)new_chain_key); 3498 return new_chain_key; 3499 } 3500 3501 static void 3502 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3503 { 3504 struct held_lock *hlock; 3505 u64 chain_key = INITIAL_CHAIN_KEY; 3506 int depth = curr->lockdep_depth; 3507 int i = get_first_held_lock(curr, hlock_next); 3508 3509 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3510 hlock_next->irq_context); 3511 for (; i < depth; i++) { 3512 hlock = curr->held_locks + i; 3513 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3514 3515 print_lock(hlock); 3516 } 3517 3518 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3519 print_lock(hlock_next); 3520 } 3521 3522 static void print_chain_keys_chain(struct lock_chain *chain) 3523 { 3524 int i; 3525 u64 chain_key = INITIAL_CHAIN_KEY; 3526 u16 hlock_id; 3527 3528 printk("depth: %u\n", chain->depth); 3529 for (i = 0; i < chain->depth; i++) { 3530 hlock_id = chain_hlocks[chain->base + i]; 3531 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3532 3533 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id)); 3534 printk("\n"); 3535 } 3536 } 3537 3538 static void print_collision(struct task_struct *curr, 3539 struct held_lock *hlock_next, 3540 struct lock_chain *chain) 3541 { 3542 pr_warn("\n"); 3543 pr_warn("============================\n"); 3544 pr_warn("WARNING: chain_key collision\n"); 3545 print_kernel_ident(); 3546 pr_warn("----------------------------\n"); 3547 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3548 pr_warn("Hash chain already cached but the contents don't match!\n"); 3549 3550 pr_warn("Held locks:"); 3551 print_chain_keys_held_locks(curr, hlock_next); 3552 3553 pr_warn("Locks in cached chain:"); 3554 print_chain_keys_chain(chain); 3555 3556 pr_warn("\nstack backtrace:\n"); 3557 dump_stack(); 3558 } 3559 #endif 3560 3561 /* 3562 * Checks whether the chain and the current held locks are consistent 3563 * in depth and also in content. If they are not it most likely means 3564 * that there was a collision during the calculation of the chain_key. 3565 * Returns: 0 not passed, 1 passed 3566 */ 3567 static int check_no_collision(struct task_struct *curr, 3568 struct held_lock *hlock, 3569 struct lock_chain *chain) 3570 { 3571 #ifdef CONFIG_DEBUG_LOCKDEP 3572 int i, j, id; 3573 3574 i = get_first_held_lock(curr, hlock); 3575 3576 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3577 print_collision(curr, hlock, chain); 3578 return 0; 3579 } 3580 3581 for (j = 0; j < chain->depth - 1; j++, i++) { 3582 id = hlock_id(&curr->held_locks[i]); 3583 3584 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3585 print_collision(curr, hlock, chain); 3586 return 0; 3587 } 3588 } 3589 #endif 3590 return 1; 3591 } 3592 3593 /* 3594 * Given an index that is >= -1, return the index of the next lock chain. 3595 * Return -2 if there is no next lock chain. 3596 */ 3597 long lockdep_next_lockchain(long i) 3598 { 3599 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3600 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3601 } 3602 3603 unsigned long lock_chain_count(void) 3604 { 3605 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3606 } 3607 3608 /* Must be called with the graph lock held. */ 3609 static struct lock_chain *alloc_lock_chain(void) 3610 { 3611 int idx = find_first_zero_bit(lock_chains_in_use, 3612 ARRAY_SIZE(lock_chains)); 3613 3614 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3615 return NULL; 3616 __set_bit(idx, lock_chains_in_use); 3617 return lock_chains + idx; 3618 } 3619 3620 /* 3621 * Adds a dependency chain into chain hashtable. And must be called with 3622 * graph_lock held. 3623 * 3624 * Return 0 if fail, and graph_lock is released. 3625 * Return 1 if succeed, with graph_lock held. 3626 */ 3627 static inline int add_chain_cache(struct task_struct *curr, 3628 struct held_lock *hlock, 3629 u64 chain_key) 3630 { 3631 struct hlist_head *hash_head = chainhashentry(chain_key); 3632 struct lock_chain *chain; 3633 int i, j; 3634 3635 /* 3636 * The caller must hold the graph lock, ensure we've got IRQs 3637 * disabled to make this an IRQ-safe lock.. for recursion reasons 3638 * lockdep won't complain about its own locking errors. 3639 */ 3640 if (lockdep_assert_locked()) 3641 return 0; 3642 3643 chain = alloc_lock_chain(); 3644 if (!chain) { 3645 if (!debug_locks_off_graph_unlock()) 3646 return 0; 3647 3648 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3649 dump_stack(); 3650 return 0; 3651 } 3652 chain->chain_key = chain_key; 3653 chain->irq_context = hlock->irq_context; 3654 i = get_first_held_lock(curr, hlock); 3655 chain->depth = curr->lockdep_depth + 1 - i; 3656 3657 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3658 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3659 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3660 3661 j = alloc_chain_hlocks(chain->depth); 3662 if (j < 0) { 3663 if (!debug_locks_off_graph_unlock()) 3664 return 0; 3665 3666 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3667 dump_stack(); 3668 return 0; 3669 } 3670 3671 chain->base = j; 3672 for (j = 0; j < chain->depth - 1; j++, i++) { 3673 int lock_id = hlock_id(curr->held_locks + i); 3674 3675 chain_hlocks[chain->base + j] = lock_id; 3676 } 3677 chain_hlocks[chain->base + j] = hlock_id(hlock); 3678 hlist_add_head_rcu(&chain->entry, hash_head); 3679 debug_atomic_inc(chain_lookup_misses); 3680 inc_chains(chain->irq_context); 3681 3682 return 1; 3683 } 3684 3685 /* 3686 * Look up a dependency chain. Must be called with either the graph lock or 3687 * the RCU read lock held. 3688 */ 3689 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3690 { 3691 struct hlist_head *hash_head = chainhashentry(chain_key); 3692 struct lock_chain *chain; 3693 3694 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3695 if (READ_ONCE(chain->chain_key) == chain_key) { 3696 debug_atomic_inc(chain_lookup_hits); 3697 return chain; 3698 } 3699 } 3700 return NULL; 3701 } 3702 3703 /* 3704 * If the key is not present yet in dependency chain cache then 3705 * add it and return 1 - in this case the new dependency chain is 3706 * validated. If the key is already hashed, return 0. 3707 * (On return with 1 graph_lock is held.) 3708 */ 3709 static inline int lookup_chain_cache_add(struct task_struct *curr, 3710 struct held_lock *hlock, 3711 u64 chain_key) 3712 { 3713 struct lock_class *class = hlock_class(hlock); 3714 struct lock_chain *chain = lookup_chain_cache(chain_key); 3715 3716 if (chain) { 3717 cache_hit: 3718 if (!check_no_collision(curr, hlock, chain)) 3719 return 0; 3720 3721 if (very_verbose(class)) { 3722 printk("\nhash chain already cached, key: " 3723 "%016Lx tail class: [%px] %s\n", 3724 (unsigned long long)chain_key, 3725 class->key, class->name); 3726 } 3727 3728 return 0; 3729 } 3730 3731 if (very_verbose(class)) { 3732 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3733 (unsigned long long)chain_key, class->key, class->name); 3734 } 3735 3736 if (!graph_lock()) 3737 return 0; 3738 3739 /* 3740 * We have to walk the chain again locked - to avoid duplicates: 3741 */ 3742 chain = lookup_chain_cache(chain_key); 3743 if (chain) { 3744 graph_unlock(); 3745 goto cache_hit; 3746 } 3747 3748 if (!add_chain_cache(curr, hlock, chain_key)) 3749 return 0; 3750 3751 return 1; 3752 } 3753 3754 static int validate_chain(struct task_struct *curr, 3755 struct held_lock *hlock, 3756 int chain_head, u64 chain_key) 3757 { 3758 /* 3759 * Trylock needs to maintain the stack of held locks, but it 3760 * does not add new dependencies, because trylock can be done 3761 * in any order. 3762 * 3763 * We look up the chain_key and do the O(N^2) check and update of 3764 * the dependencies only if this is a new dependency chain. 3765 * (If lookup_chain_cache_add() return with 1 it acquires 3766 * graph_lock for us) 3767 */ 3768 if (!hlock->trylock && hlock->check && 3769 lookup_chain_cache_add(curr, hlock, chain_key)) { 3770 /* 3771 * Check whether last held lock: 3772 * 3773 * - is irq-safe, if this lock is irq-unsafe 3774 * - is softirq-safe, if this lock is hardirq-unsafe 3775 * 3776 * And check whether the new lock's dependency graph 3777 * could lead back to the previous lock: 3778 * 3779 * - within the current held-lock stack 3780 * - across our accumulated lock dependency records 3781 * 3782 * any of these scenarios could lead to a deadlock. 3783 */ 3784 /* 3785 * The simple case: does the current hold the same lock 3786 * already? 3787 */ 3788 int ret = check_deadlock(curr, hlock); 3789 3790 if (!ret) 3791 return 0; 3792 /* 3793 * Add dependency only if this lock is not the head 3794 * of the chain, and if the new lock introduces no more 3795 * lock dependency (because we already hold a lock with the 3796 * same lock class) nor deadlock (because the nest_lock 3797 * serializes nesting locks), see the comments for 3798 * check_deadlock(). 3799 */ 3800 if (!chain_head && ret != 2) { 3801 if (!check_prevs_add(curr, hlock)) 3802 return 0; 3803 } 3804 3805 graph_unlock(); 3806 } else { 3807 /* after lookup_chain_cache_add(): */ 3808 if (unlikely(!debug_locks)) 3809 return 0; 3810 } 3811 3812 return 1; 3813 } 3814 #else 3815 static inline int validate_chain(struct task_struct *curr, 3816 struct held_lock *hlock, 3817 int chain_head, u64 chain_key) 3818 { 3819 return 1; 3820 } 3821 3822 static void init_chain_block_buckets(void) { } 3823 #endif /* CONFIG_PROVE_LOCKING */ 3824 3825 /* 3826 * We are building curr_chain_key incrementally, so double-check 3827 * it from scratch, to make sure that it's done correctly: 3828 */ 3829 static void check_chain_key(struct task_struct *curr) 3830 { 3831 #ifdef CONFIG_DEBUG_LOCKDEP 3832 struct held_lock *hlock, *prev_hlock = NULL; 3833 unsigned int i; 3834 u64 chain_key = INITIAL_CHAIN_KEY; 3835 3836 for (i = 0; i < curr->lockdep_depth; i++) { 3837 hlock = curr->held_locks + i; 3838 if (chain_key != hlock->prev_chain_key) { 3839 debug_locks_off(); 3840 /* 3841 * We got mighty confused, our chain keys don't match 3842 * with what we expect, someone trample on our task state? 3843 */ 3844 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3845 curr->lockdep_depth, i, 3846 (unsigned long long)chain_key, 3847 (unsigned long long)hlock->prev_chain_key); 3848 return; 3849 } 3850 3851 /* 3852 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3853 * it registered lock class index? 3854 */ 3855 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3856 return; 3857 3858 if (prev_hlock && (prev_hlock->irq_context != 3859 hlock->irq_context)) 3860 chain_key = INITIAL_CHAIN_KEY; 3861 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3862 prev_hlock = hlock; 3863 } 3864 if (chain_key != curr->curr_chain_key) { 3865 debug_locks_off(); 3866 /* 3867 * More smoking hash instead of calculating it, damn see these 3868 * numbers float.. I bet that a pink elephant stepped on my memory. 3869 */ 3870 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3871 curr->lockdep_depth, i, 3872 (unsigned long long)chain_key, 3873 (unsigned long long)curr->curr_chain_key); 3874 } 3875 #endif 3876 } 3877 3878 #ifdef CONFIG_PROVE_LOCKING 3879 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3880 enum lock_usage_bit new_bit); 3881 3882 static void print_usage_bug_scenario(struct held_lock *lock) 3883 { 3884 struct lock_class *class = hlock_class(lock); 3885 3886 printk(" Possible unsafe locking scenario:\n\n"); 3887 printk(" CPU0\n"); 3888 printk(" ----\n"); 3889 printk(" lock("); 3890 __print_lock_name(class); 3891 printk(KERN_CONT ");\n"); 3892 printk(" <Interrupt>\n"); 3893 printk(" lock("); 3894 __print_lock_name(class); 3895 printk(KERN_CONT ");\n"); 3896 printk("\n *** DEADLOCK ***\n\n"); 3897 } 3898 3899 static void 3900 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3901 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3902 { 3903 if (!debug_locks_off() || debug_locks_silent) 3904 return; 3905 3906 pr_warn("\n"); 3907 pr_warn("================================\n"); 3908 pr_warn("WARNING: inconsistent lock state\n"); 3909 print_kernel_ident(); 3910 pr_warn("--------------------------------\n"); 3911 3912 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3913 usage_str[prev_bit], usage_str[new_bit]); 3914 3915 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3916 curr->comm, task_pid_nr(curr), 3917 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3918 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3919 lockdep_hardirqs_enabled(), 3920 lockdep_softirqs_enabled(curr)); 3921 print_lock(this); 3922 3923 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3924 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3925 3926 print_irqtrace_events(curr); 3927 pr_warn("\nother info that might help us debug this:\n"); 3928 print_usage_bug_scenario(this); 3929 3930 lockdep_print_held_locks(curr); 3931 3932 pr_warn("\nstack backtrace:\n"); 3933 dump_stack(); 3934 } 3935 3936 /* 3937 * Print out an error if an invalid bit is set: 3938 */ 3939 static inline int 3940 valid_state(struct task_struct *curr, struct held_lock *this, 3941 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3942 { 3943 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3944 graph_unlock(); 3945 print_usage_bug(curr, this, bad_bit, new_bit); 3946 return 0; 3947 } 3948 return 1; 3949 } 3950 3951 3952 /* 3953 * print irq inversion bug: 3954 */ 3955 static void 3956 print_irq_inversion_bug(struct task_struct *curr, 3957 struct lock_list *root, struct lock_list *other, 3958 struct held_lock *this, int forwards, 3959 const char *irqclass) 3960 { 3961 struct lock_list *entry = other; 3962 struct lock_list *middle = NULL; 3963 int depth; 3964 3965 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3966 return; 3967 3968 pr_warn("\n"); 3969 pr_warn("========================================================\n"); 3970 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3971 print_kernel_ident(); 3972 pr_warn("--------------------------------------------------------\n"); 3973 pr_warn("%s/%d just changed the state of lock:\n", 3974 curr->comm, task_pid_nr(curr)); 3975 print_lock(this); 3976 if (forwards) 3977 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3978 else 3979 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3980 print_lock_name(other->class); 3981 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3982 3983 pr_warn("\nother info that might help us debug this:\n"); 3984 3985 /* Find a middle lock (if one exists) */ 3986 depth = get_lock_depth(other); 3987 do { 3988 if (depth == 0 && (entry != root)) { 3989 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3990 break; 3991 } 3992 middle = entry; 3993 entry = get_lock_parent(entry); 3994 depth--; 3995 } while (entry && entry != root && (depth >= 0)); 3996 if (forwards) 3997 print_irq_lock_scenario(root, other, 3998 middle ? middle->class : root->class, other->class); 3999 else 4000 print_irq_lock_scenario(other, root, 4001 middle ? middle->class : other->class, root->class); 4002 4003 lockdep_print_held_locks(curr); 4004 4005 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4006 root->trace = save_trace(); 4007 if (!root->trace) 4008 return; 4009 print_shortest_lock_dependencies(other, root); 4010 4011 pr_warn("\nstack backtrace:\n"); 4012 dump_stack(); 4013 } 4014 4015 /* 4016 * Prove that in the forwards-direction subgraph starting at <this> 4017 * there is no lock matching <mask>: 4018 */ 4019 static int 4020 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4021 enum lock_usage_bit bit) 4022 { 4023 enum bfs_result ret; 4024 struct lock_list root; 4025 struct lock_list *target_entry; 4026 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4027 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4028 4029 bfs_init_root(&root, this); 4030 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4031 if (bfs_error(ret)) { 4032 print_bfs_bug(ret); 4033 return 0; 4034 } 4035 if (ret == BFS_RNOMATCH) 4036 return 1; 4037 4038 /* Check whether write or read usage is the match */ 4039 if (target_entry->class->usage_mask & lock_flag(bit)) { 4040 print_irq_inversion_bug(curr, &root, target_entry, 4041 this, 1, state_name(bit)); 4042 } else { 4043 print_irq_inversion_bug(curr, &root, target_entry, 4044 this, 1, state_name(read_bit)); 4045 } 4046 4047 return 0; 4048 } 4049 4050 /* 4051 * Prove that in the backwards-direction subgraph starting at <this> 4052 * there is no lock matching <mask>: 4053 */ 4054 static int 4055 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4056 enum lock_usage_bit bit) 4057 { 4058 enum bfs_result ret; 4059 struct lock_list root; 4060 struct lock_list *target_entry; 4061 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4062 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4063 4064 bfs_init_rootb(&root, this); 4065 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4066 if (bfs_error(ret)) { 4067 print_bfs_bug(ret); 4068 return 0; 4069 } 4070 if (ret == BFS_RNOMATCH) 4071 return 1; 4072 4073 /* Check whether write or read usage is the match */ 4074 if (target_entry->class->usage_mask & lock_flag(bit)) { 4075 print_irq_inversion_bug(curr, &root, target_entry, 4076 this, 0, state_name(bit)); 4077 } else { 4078 print_irq_inversion_bug(curr, &root, target_entry, 4079 this, 0, state_name(read_bit)); 4080 } 4081 4082 return 0; 4083 } 4084 4085 void print_irqtrace_events(struct task_struct *curr) 4086 { 4087 const struct irqtrace_events *trace = &curr->irqtrace; 4088 4089 printk("irq event stamp: %u\n", trace->irq_events); 4090 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4091 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4092 (void *)trace->hardirq_enable_ip); 4093 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4094 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4095 (void *)trace->hardirq_disable_ip); 4096 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4097 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4098 (void *)trace->softirq_enable_ip); 4099 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4100 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4101 (void *)trace->softirq_disable_ip); 4102 } 4103 4104 static int HARDIRQ_verbose(struct lock_class *class) 4105 { 4106 #if HARDIRQ_VERBOSE 4107 return class_filter(class); 4108 #endif 4109 return 0; 4110 } 4111 4112 static int SOFTIRQ_verbose(struct lock_class *class) 4113 { 4114 #if SOFTIRQ_VERBOSE 4115 return class_filter(class); 4116 #endif 4117 return 0; 4118 } 4119 4120 static int (*state_verbose_f[])(struct lock_class *class) = { 4121 #define LOCKDEP_STATE(__STATE) \ 4122 __STATE##_verbose, 4123 #include "lockdep_states.h" 4124 #undef LOCKDEP_STATE 4125 }; 4126 4127 static inline int state_verbose(enum lock_usage_bit bit, 4128 struct lock_class *class) 4129 { 4130 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4131 } 4132 4133 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4134 enum lock_usage_bit bit, const char *name); 4135 4136 static int 4137 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4138 enum lock_usage_bit new_bit) 4139 { 4140 int excl_bit = exclusive_bit(new_bit); 4141 int read = new_bit & LOCK_USAGE_READ_MASK; 4142 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4143 4144 /* 4145 * Validate that this particular lock does not have conflicting 4146 * usage states. 4147 */ 4148 if (!valid_state(curr, this, new_bit, excl_bit)) 4149 return 0; 4150 4151 /* 4152 * Check for read in write conflicts 4153 */ 4154 if (!read && !valid_state(curr, this, new_bit, 4155 excl_bit + LOCK_USAGE_READ_MASK)) 4156 return 0; 4157 4158 4159 /* 4160 * Validate that the lock dependencies don't have conflicting usage 4161 * states. 4162 */ 4163 if (dir) { 4164 /* 4165 * mark ENABLED has to look backwards -- to ensure no dependee 4166 * has USED_IN state, which, again, would allow recursion deadlocks. 4167 */ 4168 if (!check_usage_backwards(curr, this, excl_bit)) 4169 return 0; 4170 } else { 4171 /* 4172 * mark USED_IN has to look forwards -- to ensure no dependency 4173 * has ENABLED state, which would allow recursion deadlocks. 4174 */ 4175 if (!check_usage_forwards(curr, this, excl_bit)) 4176 return 0; 4177 } 4178 4179 if (state_verbose(new_bit, hlock_class(this))) 4180 return 2; 4181 4182 return 1; 4183 } 4184 4185 /* 4186 * Mark all held locks with a usage bit: 4187 */ 4188 static int 4189 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4190 { 4191 struct held_lock *hlock; 4192 int i; 4193 4194 for (i = 0; i < curr->lockdep_depth; i++) { 4195 enum lock_usage_bit hlock_bit = base_bit; 4196 hlock = curr->held_locks + i; 4197 4198 if (hlock->read) 4199 hlock_bit += LOCK_USAGE_READ_MASK; 4200 4201 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4202 4203 if (!hlock->check) 4204 continue; 4205 4206 if (!mark_lock(curr, hlock, hlock_bit)) 4207 return 0; 4208 } 4209 4210 return 1; 4211 } 4212 4213 /* 4214 * Hardirqs will be enabled: 4215 */ 4216 static void __trace_hardirqs_on_caller(void) 4217 { 4218 struct task_struct *curr = current; 4219 4220 /* 4221 * We are going to turn hardirqs on, so set the 4222 * usage bit for all held locks: 4223 */ 4224 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4225 return; 4226 /* 4227 * If we have softirqs enabled, then set the usage 4228 * bit for all held locks. (disabled hardirqs prevented 4229 * this bit from being set before) 4230 */ 4231 if (curr->softirqs_enabled) 4232 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4233 } 4234 4235 /** 4236 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4237 * @ip: Caller address 4238 * 4239 * Invoked before a possible transition to RCU idle from exit to user or 4240 * guest mode. This ensures that all RCU operations are done before RCU 4241 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4242 * invoked to set the final state. 4243 */ 4244 void lockdep_hardirqs_on_prepare(unsigned long ip) 4245 { 4246 if (unlikely(!debug_locks)) 4247 return; 4248 4249 /* 4250 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4251 */ 4252 if (unlikely(in_nmi())) 4253 return; 4254 4255 if (unlikely(this_cpu_read(lockdep_recursion))) 4256 return; 4257 4258 if (unlikely(lockdep_hardirqs_enabled())) { 4259 /* 4260 * Neither irq nor preemption are disabled here 4261 * so this is racy by nature but losing one hit 4262 * in a stat is not a big deal. 4263 */ 4264 __debug_atomic_inc(redundant_hardirqs_on); 4265 return; 4266 } 4267 4268 /* 4269 * We're enabling irqs and according to our state above irqs weren't 4270 * already enabled, yet we find the hardware thinks they are in fact 4271 * enabled.. someone messed up their IRQ state tracing. 4272 */ 4273 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4274 return; 4275 4276 /* 4277 * See the fine text that goes along with this variable definition. 4278 */ 4279 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4280 return; 4281 4282 /* 4283 * Can't allow enabling interrupts while in an interrupt handler, 4284 * that's general bad form and such. Recursion, limited stack etc.. 4285 */ 4286 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4287 return; 4288 4289 current->hardirq_chain_key = current->curr_chain_key; 4290 4291 lockdep_recursion_inc(); 4292 __trace_hardirqs_on_caller(); 4293 lockdep_recursion_finish(); 4294 } 4295 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4296 4297 void noinstr lockdep_hardirqs_on(unsigned long ip) 4298 { 4299 struct irqtrace_events *trace = ¤t->irqtrace; 4300 4301 if (unlikely(!debug_locks)) 4302 return; 4303 4304 /* 4305 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4306 * tracking state and hardware state are out of sync. 4307 * 4308 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4309 * and not rely on hardware state like normal interrupts. 4310 */ 4311 if (unlikely(in_nmi())) { 4312 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4313 return; 4314 4315 /* 4316 * Skip: 4317 * - recursion check, because NMI can hit lockdep; 4318 * - hardware state check, because above; 4319 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4320 */ 4321 goto skip_checks; 4322 } 4323 4324 if (unlikely(this_cpu_read(lockdep_recursion))) 4325 return; 4326 4327 if (lockdep_hardirqs_enabled()) { 4328 /* 4329 * Neither irq nor preemption are disabled here 4330 * so this is racy by nature but losing one hit 4331 * in a stat is not a big deal. 4332 */ 4333 __debug_atomic_inc(redundant_hardirqs_on); 4334 return; 4335 } 4336 4337 /* 4338 * We're enabling irqs and according to our state above irqs weren't 4339 * already enabled, yet we find the hardware thinks they are in fact 4340 * enabled.. someone messed up their IRQ state tracing. 4341 */ 4342 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4343 return; 4344 4345 /* 4346 * Ensure the lock stack remained unchanged between 4347 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4348 */ 4349 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4350 current->curr_chain_key); 4351 4352 skip_checks: 4353 /* we'll do an OFF -> ON transition: */ 4354 __this_cpu_write(hardirqs_enabled, 1); 4355 trace->hardirq_enable_ip = ip; 4356 trace->hardirq_enable_event = ++trace->irq_events; 4357 debug_atomic_inc(hardirqs_on_events); 4358 } 4359 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4360 4361 /* 4362 * Hardirqs were disabled: 4363 */ 4364 void noinstr lockdep_hardirqs_off(unsigned long ip) 4365 { 4366 if (unlikely(!debug_locks)) 4367 return; 4368 4369 /* 4370 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4371 * they will restore the software state. This ensures the software 4372 * state is consistent inside NMIs as well. 4373 */ 4374 if (in_nmi()) { 4375 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4376 return; 4377 } else if (__this_cpu_read(lockdep_recursion)) 4378 return; 4379 4380 /* 4381 * So we're supposed to get called after you mask local IRQs, but for 4382 * some reason the hardware doesn't quite think you did a proper job. 4383 */ 4384 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4385 return; 4386 4387 if (lockdep_hardirqs_enabled()) { 4388 struct irqtrace_events *trace = ¤t->irqtrace; 4389 4390 /* 4391 * We have done an ON -> OFF transition: 4392 */ 4393 __this_cpu_write(hardirqs_enabled, 0); 4394 trace->hardirq_disable_ip = ip; 4395 trace->hardirq_disable_event = ++trace->irq_events; 4396 debug_atomic_inc(hardirqs_off_events); 4397 } else { 4398 debug_atomic_inc(redundant_hardirqs_off); 4399 } 4400 } 4401 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4402 4403 /* 4404 * Softirqs will be enabled: 4405 */ 4406 void lockdep_softirqs_on(unsigned long ip) 4407 { 4408 struct irqtrace_events *trace = ¤t->irqtrace; 4409 4410 if (unlikely(!lockdep_enabled())) 4411 return; 4412 4413 /* 4414 * We fancy IRQs being disabled here, see softirq.c, avoids 4415 * funny state and nesting things. 4416 */ 4417 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4418 return; 4419 4420 if (current->softirqs_enabled) { 4421 debug_atomic_inc(redundant_softirqs_on); 4422 return; 4423 } 4424 4425 lockdep_recursion_inc(); 4426 /* 4427 * We'll do an OFF -> ON transition: 4428 */ 4429 current->softirqs_enabled = 1; 4430 trace->softirq_enable_ip = ip; 4431 trace->softirq_enable_event = ++trace->irq_events; 4432 debug_atomic_inc(softirqs_on_events); 4433 /* 4434 * We are going to turn softirqs on, so set the 4435 * usage bit for all held locks, if hardirqs are 4436 * enabled too: 4437 */ 4438 if (lockdep_hardirqs_enabled()) 4439 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4440 lockdep_recursion_finish(); 4441 } 4442 4443 /* 4444 * Softirqs were disabled: 4445 */ 4446 void lockdep_softirqs_off(unsigned long ip) 4447 { 4448 if (unlikely(!lockdep_enabled())) 4449 return; 4450 4451 /* 4452 * We fancy IRQs being disabled here, see softirq.c 4453 */ 4454 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4455 return; 4456 4457 if (current->softirqs_enabled) { 4458 struct irqtrace_events *trace = ¤t->irqtrace; 4459 4460 /* 4461 * We have done an ON -> OFF transition: 4462 */ 4463 current->softirqs_enabled = 0; 4464 trace->softirq_disable_ip = ip; 4465 trace->softirq_disable_event = ++trace->irq_events; 4466 debug_atomic_inc(softirqs_off_events); 4467 /* 4468 * Whoops, we wanted softirqs off, so why aren't they? 4469 */ 4470 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4471 } else 4472 debug_atomic_inc(redundant_softirqs_off); 4473 } 4474 4475 static int 4476 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4477 { 4478 if (!check) 4479 goto lock_used; 4480 4481 /* 4482 * If non-trylock use in a hardirq or softirq context, then 4483 * mark the lock as used in these contexts: 4484 */ 4485 if (!hlock->trylock) { 4486 if (hlock->read) { 4487 if (lockdep_hardirq_context()) 4488 if (!mark_lock(curr, hlock, 4489 LOCK_USED_IN_HARDIRQ_READ)) 4490 return 0; 4491 if (curr->softirq_context) 4492 if (!mark_lock(curr, hlock, 4493 LOCK_USED_IN_SOFTIRQ_READ)) 4494 return 0; 4495 } else { 4496 if (lockdep_hardirq_context()) 4497 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4498 return 0; 4499 if (curr->softirq_context) 4500 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4501 return 0; 4502 } 4503 } 4504 if (!hlock->hardirqs_off) { 4505 if (hlock->read) { 4506 if (!mark_lock(curr, hlock, 4507 LOCK_ENABLED_HARDIRQ_READ)) 4508 return 0; 4509 if (curr->softirqs_enabled) 4510 if (!mark_lock(curr, hlock, 4511 LOCK_ENABLED_SOFTIRQ_READ)) 4512 return 0; 4513 } else { 4514 if (!mark_lock(curr, hlock, 4515 LOCK_ENABLED_HARDIRQ)) 4516 return 0; 4517 if (curr->softirqs_enabled) 4518 if (!mark_lock(curr, hlock, 4519 LOCK_ENABLED_SOFTIRQ)) 4520 return 0; 4521 } 4522 } 4523 4524 lock_used: 4525 /* mark it as used: */ 4526 if (!mark_lock(curr, hlock, LOCK_USED)) 4527 return 0; 4528 4529 return 1; 4530 } 4531 4532 static inline unsigned int task_irq_context(struct task_struct *task) 4533 { 4534 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4535 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4536 } 4537 4538 static int separate_irq_context(struct task_struct *curr, 4539 struct held_lock *hlock) 4540 { 4541 unsigned int depth = curr->lockdep_depth; 4542 4543 /* 4544 * Keep track of points where we cross into an interrupt context: 4545 */ 4546 if (depth) { 4547 struct held_lock *prev_hlock; 4548 4549 prev_hlock = curr->held_locks + depth-1; 4550 /* 4551 * If we cross into another context, reset the 4552 * hash key (this also prevents the checking and the 4553 * adding of the dependency to 'prev'): 4554 */ 4555 if (prev_hlock->irq_context != hlock->irq_context) 4556 return 1; 4557 } 4558 return 0; 4559 } 4560 4561 /* 4562 * Mark a lock with a usage bit, and validate the state transition: 4563 */ 4564 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4565 enum lock_usage_bit new_bit) 4566 { 4567 unsigned int new_mask, ret = 1; 4568 4569 if (new_bit >= LOCK_USAGE_STATES) { 4570 DEBUG_LOCKS_WARN_ON(1); 4571 return 0; 4572 } 4573 4574 if (new_bit == LOCK_USED && this->read) 4575 new_bit = LOCK_USED_READ; 4576 4577 new_mask = 1 << new_bit; 4578 4579 /* 4580 * If already set then do not dirty the cacheline, 4581 * nor do any checks: 4582 */ 4583 if (likely(hlock_class(this)->usage_mask & new_mask)) 4584 return 1; 4585 4586 if (!graph_lock()) 4587 return 0; 4588 /* 4589 * Make sure we didn't race: 4590 */ 4591 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4592 goto unlock; 4593 4594 if (!hlock_class(this)->usage_mask) 4595 debug_atomic_dec(nr_unused_locks); 4596 4597 hlock_class(this)->usage_mask |= new_mask; 4598 4599 if (new_bit < LOCK_TRACE_STATES) { 4600 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4601 return 0; 4602 } 4603 4604 if (new_bit < LOCK_USED) { 4605 ret = mark_lock_irq(curr, this, new_bit); 4606 if (!ret) 4607 return 0; 4608 } 4609 4610 unlock: 4611 graph_unlock(); 4612 4613 /* 4614 * We must printk outside of the graph_lock: 4615 */ 4616 if (ret == 2) { 4617 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4618 print_lock(this); 4619 print_irqtrace_events(curr); 4620 dump_stack(); 4621 } 4622 4623 return ret; 4624 } 4625 4626 static inline short task_wait_context(struct task_struct *curr) 4627 { 4628 /* 4629 * Set appropriate wait type for the context; for IRQs we have to take 4630 * into account force_irqthread as that is implied by PREEMPT_RT. 4631 */ 4632 if (lockdep_hardirq_context()) { 4633 /* 4634 * Check if force_irqthreads will run us threaded. 4635 */ 4636 if (curr->hardirq_threaded || curr->irq_config) 4637 return LD_WAIT_CONFIG; 4638 4639 return LD_WAIT_SPIN; 4640 } else if (curr->softirq_context) { 4641 /* 4642 * Softirqs are always threaded. 4643 */ 4644 return LD_WAIT_CONFIG; 4645 } 4646 4647 return LD_WAIT_MAX; 4648 } 4649 4650 static int 4651 print_lock_invalid_wait_context(struct task_struct *curr, 4652 struct held_lock *hlock) 4653 { 4654 short curr_inner; 4655 4656 if (!debug_locks_off()) 4657 return 0; 4658 if (debug_locks_silent) 4659 return 0; 4660 4661 pr_warn("\n"); 4662 pr_warn("=============================\n"); 4663 pr_warn("[ BUG: Invalid wait context ]\n"); 4664 print_kernel_ident(); 4665 pr_warn("-----------------------------\n"); 4666 4667 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4668 print_lock(hlock); 4669 4670 pr_warn("other info that might help us debug this:\n"); 4671 4672 curr_inner = task_wait_context(curr); 4673 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4674 4675 lockdep_print_held_locks(curr); 4676 4677 pr_warn("stack backtrace:\n"); 4678 dump_stack(); 4679 4680 return 0; 4681 } 4682 4683 /* 4684 * Verify the wait_type context. 4685 * 4686 * This check validates we take locks in the right wait-type order; that is it 4687 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4688 * acquire spinlocks inside raw_spinlocks and the sort. 4689 * 4690 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4691 * can be taken from (pretty much) any context but also has constraints. 4692 * However when taken in a stricter environment the RCU lock does not loosen 4693 * the constraints. 4694 * 4695 * Therefore we must look for the strictest environment in the lock stack and 4696 * compare that to the lock we're trying to acquire. 4697 */ 4698 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4699 { 4700 u8 next_inner = hlock_class(next)->wait_type_inner; 4701 u8 next_outer = hlock_class(next)->wait_type_outer; 4702 u8 curr_inner; 4703 int depth; 4704 4705 if (!next_inner || next->trylock) 4706 return 0; 4707 4708 if (!next_outer) 4709 next_outer = next_inner; 4710 4711 /* 4712 * Find start of current irq_context.. 4713 */ 4714 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4715 struct held_lock *prev = curr->held_locks + depth; 4716 if (prev->irq_context != next->irq_context) 4717 break; 4718 } 4719 depth++; 4720 4721 curr_inner = task_wait_context(curr); 4722 4723 for (; depth < curr->lockdep_depth; depth++) { 4724 struct held_lock *prev = curr->held_locks + depth; 4725 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4726 4727 if (prev_inner) { 4728 /* 4729 * We can have a bigger inner than a previous one 4730 * when outer is smaller than inner, as with RCU. 4731 * 4732 * Also due to trylocks. 4733 */ 4734 curr_inner = min(curr_inner, prev_inner); 4735 } 4736 } 4737 4738 if (next_outer > curr_inner) 4739 return print_lock_invalid_wait_context(curr, next); 4740 4741 return 0; 4742 } 4743 4744 #else /* CONFIG_PROVE_LOCKING */ 4745 4746 static inline int 4747 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4748 { 4749 return 1; 4750 } 4751 4752 static inline unsigned int task_irq_context(struct task_struct *task) 4753 { 4754 return 0; 4755 } 4756 4757 static inline int separate_irq_context(struct task_struct *curr, 4758 struct held_lock *hlock) 4759 { 4760 return 0; 4761 } 4762 4763 static inline int check_wait_context(struct task_struct *curr, 4764 struct held_lock *next) 4765 { 4766 return 0; 4767 } 4768 4769 #endif /* CONFIG_PROVE_LOCKING */ 4770 4771 /* 4772 * Initialize a lock instance's lock-class mapping info: 4773 */ 4774 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4775 struct lock_class_key *key, int subclass, 4776 u8 inner, u8 outer, u8 lock_type) 4777 { 4778 int i; 4779 4780 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4781 lock->class_cache[i] = NULL; 4782 4783 #ifdef CONFIG_LOCK_STAT 4784 lock->cpu = raw_smp_processor_id(); 4785 #endif 4786 4787 /* 4788 * Can't be having no nameless bastards around this place! 4789 */ 4790 if (DEBUG_LOCKS_WARN_ON(!name)) { 4791 lock->name = "NULL"; 4792 return; 4793 } 4794 4795 lock->name = name; 4796 4797 lock->wait_type_outer = outer; 4798 lock->wait_type_inner = inner; 4799 lock->lock_type = lock_type; 4800 4801 /* 4802 * No key, no joy, we need to hash something. 4803 */ 4804 if (DEBUG_LOCKS_WARN_ON(!key)) 4805 return; 4806 /* 4807 * Sanity check, the lock-class key must either have been allocated 4808 * statically or must have been registered as a dynamic key. 4809 */ 4810 if (!static_obj(key) && !is_dynamic_key(key)) { 4811 if (debug_locks) 4812 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4813 DEBUG_LOCKS_WARN_ON(1); 4814 return; 4815 } 4816 lock->key = key; 4817 4818 if (unlikely(!debug_locks)) 4819 return; 4820 4821 if (subclass) { 4822 unsigned long flags; 4823 4824 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4825 return; 4826 4827 raw_local_irq_save(flags); 4828 lockdep_recursion_inc(); 4829 register_lock_class(lock, subclass, 1); 4830 lockdep_recursion_finish(); 4831 raw_local_irq_restore(flags); 4832 } 4833 } 4834 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4835 4836 struct lock_class_key __lockdep_no_validate__; 4837 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4838 4839 static void 4840 print_lock_nested_lock_not_held(struct task_struct *curr, 4841 struct held_lock *hlock, 4842 unsigned long ip) 4843 { 4844 if (!debug_locks_off()) 4845 return; 4846 if (debug_locks_silent) 4847 return; 4848 4849 pr_warn("\n"); 4850 pr_warn("==================================\n"); 4851 pr_warn("WARNING: Nested lock was not taken\n"); 4852 print_kernel_ident(); 4853 pr_warn("----------------------------------\n"); 4854 4855 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4856 print_lock(hlock); 4857 4858 pr_warn("\nbut this task is not holding:\n"); 4859 pr_warn("%s\n", hlock->nest_lock->name); 4860 4861 pr_warn("\nstack backtrace:\n"); 4862 dump_stack(); 4863 4864 pr_warn("\nother info that might help us debug this:\n"); 4865 lockdep_print_held_locks(curr); 4866 4867 pr_warn("\nstack backtrace:\n"); 4868 dump_stack(); 4869 } 4870 4871 static int __lock_is_held(const struct lockdep_map *lock, int read); 4872 4873 /* 4874 * This gets called for every mutex_lock*()/spin_lock*() operation. 4875 * We maintain the dependency maps and validate the locking attempt: 4876 * 4877 * The callers must make sure that IRQs are disabled before calling it, 4878 * otherwise we could get an interrupt which would want to take locks, 4879 * which would end up in lockdep again. 4880 */ 4881 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4882 int trylock, int read, int check, int hardirqs_off, 4883 struct lockdep_map *nest_lock, unsigned long ip, 4884 int references, int pin_count) 4885 { 4886 struct task_struct *curr = current; 4887 struct lock_class *class = NULL; 4888 struct held_lock *hlock; 4889 unsigned int depth; 4890 int chain_head = 0; 4891 int class_idx; 4892 u64 chain_key; 4893 4894 if (unlikely(!debug_locks)) 4895 return 0; 4896 4897 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4898 check = 0; 4899 4900 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4901 class = lock->class_cache[subclass]; 4902 /* 4903 * Not cached? 4904 */ 4905 if (unlikely(!class)) { 4906 class = register_lock_class(lock, subclass, 0); 4907 if (!class) 4908 return 0; 4909 } 4910 4911 debug_class_ops_inc(class); 4912 4913 if (very_verbose(class)) { 4914 printk("\nacquire class [%px] %s", class->key, class->name); 4915 if (class->name_version > 1) 4916 printk(KERN_CONT "#%d", class->name_version); 4917 printk(KERN_CONT "\n"); 4918 dump_stack(); 4919 } 4920 4921 /* 4922 * Add the lock to the list of currently held locks. 4923 * (we dont increase the depth just yet, up until the 4924 * dependency checks are done) 4925 */ 4926 depth = curr->lockdep_depth; 4927 /* 4928 * Ran out of static storage for our per-task lock stack again have we? 4929 */ 4930 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4931 return 0; 4932 4933 class_idx = class - lock_classes; 4934 4935 if (depth) { /* we're holding locks */ 4936 hlock = curr->held_locks + depth - 1; 4937 if (hlock->class_idx == class_idx && nest_lock) { 4938 if (!references) 4939 references++; 4940 4941 if (!hlock->references) 4942 hlock->references++; 4943 4944 hlock->references += references; 4945 4946 /* Overflow */ 4947 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4948 return 0; 4949 4950 return 2; 4951 } 4952 } 4953 4954 hlock = curr->held_locks + depth; 4955 /* 4956 * Plain impossible, we just registered it and checked it weren't no 4957 * NULL like.. I bet this mushroom I ate was good! 4958 */ 4959 if (DEBUG_LOCKS_WARN_ON(!class)) 4960 return 0; 4961 hlock->class_idx = class_idx; 4962 hlock->acquire_ip = ip; 4963 hlock->instance = lock; 4964 hlock->nest_lock = nest_lock; 4965 hlock->irq_context = task_irq_context(curr); 4966 hlock->trylock = trylock; 4967 hlock->read = read; 4968 hlock->check = check; 4969 hlock->hardirqs_off = !!hardirqs_off; 4970 hlock->references = references; 4971 #ifdef CONFIG_LOCK_STAT 4972 hlock->waittime_stamp = 0; 4973 hlock->holdtime_stamp = lockstat_clock(); 4974 #endif 4975 hlock->pin_count = pin_count; 4976 4977 if (check_wait_context(curr, hlock)) 4978 return 0; 4979 4980 /* Initialize the lock usage bit */ 4981 if (!mark_usage(curr, hlock, check)) 4982 return 0; 4983 4984 /* 4985 * Calculate the chain hash: it's the combined hash of all the 4986 * lock keys along the dependency chain. We save the hash value 4987 * at every step so that we can get the current hash easily 4988 * after unlock. The chain hash is then used to cache dependency 4989 * results. 4990 * 4991 * The 'key ID' is what is the most compact key value to drive 4992 * the hash, not class->key. 4993 */ 4994 /* 4995 * Whoops, we did it again.. class_idx is invalid. 4996 */ 4997 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 4998 return 0; 4999 5000 chain_key = curr->curr_chain_key; 5001 if (!depth) { 5002 /* 5003 * How can we have a chain hash when we ain't got no keys?! 5004 */ 5005 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5006 return 0; 5007 chain_head = 1; 5008 } 5009 5010 hlock->prev_chain_key = chain_key; 5011 if (separate_irq_context(curr, hlock)) { 5012 chain_key = INITIAL_CHAIN_KEY; 5013 chain_head = 1; 5014 } 5015 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5016 5017 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5018 print_lock_nested_lock_not_held(curr, hlock, ip); 5019 return 0; 5020 } 5021 5022 if (!debug_locks_silent) { 5023 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5024 WARN_ON_ONCE(!hlock_class(hlock)->key); 5025 } 5026 5027 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5028 return 0; 5029 5030 curr->curr_chain_key = chain_key; 5031 curr->lockdep_depth++; 5032 check_chain_key(curr); 5033 #ifdef CONFIG_DEBUG_LOCKDEP 5034 if (unlikely(!debug_locks)) 5035 return 0; 5036 #endif 5037 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5038 debug_locks_off(); 5039 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5040 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5041 curr->lockdep_depth, MAX_LOCK_DEPTH); 5042 5043 lockdep_print_held_locks(current); 5044 debug_show_all_locks(); 5045 dump_stack(); 5046 5047 return 0; 5048 } 5049 5050 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5051 max_lockdep_depth = curr->lockdep_depth; 5052 5053 return 1; 5054 } 5055 5056 static void print_unlock_imbalance_bug(struct task_struct *curr, 5057 struct lockdep_map *lock, 5058 unsigned long ip) 5059 { 5060 if (!debug_locks_off()) 5061 return; 5062 if (debug_locks_silent) 5063 return; 5064 5065 pr_warn("\n"); 5066 pr_warn("=====================================\n"); 5067 pr_warn("WARNING: bad unlock balance detected!\n"); 5068 print_kernel_ident(); 5069 pr_warn("-------------------------------------\n"); 5070 pr_warn("%s/%d is trying to release lock (", 5071 curr->comm, task_pid_nr(curr)); 5072 print_lockdep_cache(lock); 5073 pr_cont(") at:\n"); 5074 print_ip_sym(KERN_WARNING, ip); 5075 pr_warn("but there are no more locks to release!\n"); 5076 pr_warn("\nother info that might help us debug this:\n"); 5077 lockdep_print_held_locks(curr); 5078 5079 pr_warn("\nstack backtrace:\n"); 5080 dump_stack(); 5081 } 5082 5083 static noinstr int match_held_lock(const struct held_lock *hlock, 5084 const struct lockdep_map *lock) 5085 { 5086 if (hlock->instance == lock) 5087 return 1; 5088 5089 if (hlock->references) { 5090 const struct lock_class *class = lock->class_cache[0]; 5091 5092 if (!class) 5093 class = look_up_lock_class(lock, 0); 5094 5095 /* 5096 * If look_up_lock_class() failed to find a class, we're trying 5097 * to test if we hold a lock that has never yet been acquired. 5098 * Clearly if the lock hasn't been acquired _ever_, we're not 5099 * holding it either, so report failure. 5100 */ 5101 if (!class) 5102 return 0; 5103 5104 /* 5105 * References, but not a lock we're actually ref-counting? 5106 * State got messed up, follow the sites that change ->references 5107 * and try to make sense of it. 5108 */ 5109 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5110 return 0; 5111 5112 if (hlock->class_idx == class - lock_classes) 5113 return 1; 5114 } 5115 5116 return 0; 5117 } 5118 5119 /* @depth must not be zero */ 5120 static struct held_lock *find_held_lock(struct task_struct *curr, 5121 struct lockdep_map *lock, 5122 unsigned int depth, int *idx) 5123 { 5124 struct held_lock *ret, *hlock, *prev_hlock; 5125 int i; 5126 5127 i = depth - 1; 5128 hlock = curr->held_locks + i; 5129 ret = hlock; 5130 if (match_held_lock(hlock, lock)) 5131 goto out; 5132 5133 ret = NULL; 5134 for (i--, prev_hlock = hlock--; 5135 i >= 0; 5136 i--, prev_hlock = hlock--) { 5137 /* 5138 * We must not cross into another context: 5139 */ 5140 if (prev_hlock->irq_context != hlock->irq_context) { 5141 ret = NULL; 5142 break; 5143 } 5144 if (match_held_lock(hlock, lock)) { 5145 ret = hlock; 5146 break; 5147 } 5148 } 5149 5150 out: 5151 *idx = i; 5152 return ret; 5153 } 5154 5155 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5156 int idx, unsigned int *merged) 5157 { 5158 struct held_lock *hlock; 5159 int first_idx = idx; 5160 5161 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5162 return 0; 5163 5164 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5165 switch (__lock_acquire(hlock->instance, 5166 hlock_class(hlock)->subclass, 5167 hlock->trylock, 5168 hlock->read, hlock->check, 5169 hlock->hardirqs_off, 5170 hlock->nest_lock, hlock->acquire_ip, 5171 hlock->references, hlock->pin_count)) { 5172 case 0: 5173 return 1; 5174 case 1: 5175 break; 5176 case 2: 5177 *merged += (idx == first_idx); 5178 break; 5179 default: 5180 WARN_ON(1); 5181 return 0; 5182 } 5183 } 5184 return 0; 5185 } 5186 5187 static int 5188 __lock_set_class(struct lockdep_map *lock, const char *name, 5189 struct lock_class_key *key, unsigned int subclass, 5190 unsigned long ip) 5191 { 5192 struct task_struct *curr = current; 5193 unsigned int depth, merged = 0; 5194 struct held_lock *hlock; 5195 struct lock_class *class; 5196 int i; 5197 5198 if (unlikely(!debug_locks)) 5199 return 0; 5200 5201 depth = curr->lockdep_depth; 5202 /* 5203 * This function is about (re)setting the class of a held lock, 5204 * yet we're not actually holding any locks. Naughty user! 5205 */ 5206 if (DEBUG_LOCKS_WARN_ON(!depth)) 5207 return 0; 5208 5209 hlock = find_held_lock(curr, lock, depth, &i); 5210 if (!hlock) { 5211 print_unlock_imbalance_bug(curr, lock, ip); 5212 return 0; 5213 } 5214 5215 lockdep_init_map_waits(lock, name, key, 0, 5216 lock->wait_type_inner, 5217 lock->wait_type_outer); 5218 class = register_lock_class(lock, subclass, 0); 5219 hlock->class_idx = class - lock_classes; 5220 5221 curr->lockdep_depth = i; 5222 curr->curr_chain_key = hlock->prev_chain_key; 5223 5224 if (reacquire_held_locks(curr, depth, i, &merged)) 5225 return 0; 5226 5227 /* 5228 * I took it apart and put it back together again, except now I have 5229 * these 'spare' parts.. where shall I put them. 5230 */ 5231 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5232 return 0; 5233 return 1; 5234 } 5235 5236 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5237 { 5238 struct task_struct *curr = current; 5239 unsigned int depth, merged = 0; 5240 struct held_lock *hlock; 5241 int i; 5242 5243 if (unlikely(!debug_locks)) 5244 return 0; 5245 5246 depth = curr->lockdep_depth; 5247 /* 5248 * This function is about (re)setting the class of a held lock, 5249 * yet we're not actually holding any locks. Naughty user! 5250 */ 5251 if (DEBUG_LOCKS_WARN_ON(!depth)) 5252 return 0; 5253 5254 hlock = find_held_lock(curr, lock, depth, &i); 5255 if (!hlock) { 5256 print_unlock_imbalance_bug(curr, lock, ip); 5257 return 0; 5258 } 5259 5260 curr->lockdep_depth = i; 5261 curr->curr_chain_key = hlock->prev_chain_key; 5262 5263 WARN(hlock->read, "downgrading a read lock"); 5264 hlock->read = 1; 5265 hlock->acquire_ip = ip; 5266 5267 if (reacquire_held_locks(curr, depth, i, &merged)) 5268 return 0; 5269 5270 /* Merging can't happen with unchanged classes.. */ 5271 if (DEBUG_LOCKS_WARN_ON(merged)) 5272 return 0; 5273 5274 /* 5275 * I took it apart and put it back together again, except now I have 5276 * these 'spare' parts.. where shall I put them. 5277 */ 5278 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5279 return 0; 5280 5281 return 1; 5282 } 5283 5284 /* 5285 * Remove the lock from the list of currently held locks - this gets 5286 * called on mutex_unlock()/spin_unlock*() (or on a failed 5287 * mutex_lock_interruptible()). 5288 */ 5289 static int 5290 __lock_release(struct lockdep_map *lock, unsigned long ip) 5291 { 5292 struct task_struct *curr = current; 5293 unsigned int depth, merged = 1; 5294 struct held_lock *hlock; 5295 int i; 5296 5297 if (unlikely(!debug_locks)) 5298 return 0; 5299 5300 depth = curr->lockdep_depth; 5301 /* 5302 * So we're all set to release this lock.. wait what lock? We don't 5303 * own any locks, you've been drinking again? 5304 */ 5305 if (depth <= 0) { 5306 print_unlock_imbalance_bug(curr, lock, ip); 5307 return 0; 5308 } 5309 5310 /* 5311 * Check whether the lock exists in the current stack 5312 * of held locks: 5313 */ 5314 hlock = find_held_lock(curr, lock, depth, &i); 5315 if (!hlock) { 5316 print_unlock_imbalance_bug(curr, lock, ip); 5317 return 0; 5318 } 5319 5320 if (hlock->instance == lock) 5321 lock_release_holdtime(hlock); 5322 5323 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5324 5325 if (hlock->references) { 5326 hlock->references--; 5327 if (hlock->references) { 5328 /* 5329 * We had, and after removing one, still have 5330 * references, the current lock stack is still 5331 * valid. We're done! 5332 */ 5333 return 1; 5334 } 5335 } 5336 5337 /* 5338 * We have the right lock to unlock, 'hlock' points to it. 5339 * Now we remove it from the stack, and add back the other 5340 * entries (if any), recalculating the hash along the way: 5341 */ 5342 5343 curr->lockdep_depth = i; 5344 curr->curr_chain_key = hlock->prev_chain_key; 5345 5346 /* 5347 * The most likely case is when the unlock is on the innermost 5348 * lock. In this case, we are done! 5349 */ 5350 if (i == depth-1) 5351 return 1; 5352 5353 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5354 return 0; 5355 5356 /* 5357 * We had N bottles of beer on the wall, we drank one, but now 5358 * there's not N-1 bottles of beer left on the wall... 5359 * Pouring two of the bottles together is acceptable. 5360 */ 5361 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5362 5363 /* 5364 * Since reacquire_held_locks() would have called check_chain_key() 5365 * indirectly via __lock_acquire(), we don't need to do it again 5366 * on return. 5367 */ 5368 return 0; 5369 } 5370 5371 static __always_inline 5372 int __lock_is_held(const struct lockdep_map *lock, int read) 5373 { 5374 struct task_struct *curr = current; 5375 int i; 5376 5377 for (i = 0; i < curr->lockdep_depth; i++) { 5378 struct held_lock *hlock = curr->held_locks + i; 5379 5380 if (match_held_lock(hlock, lock)) { 5381 if (read == -1 || !!hlock->read == read) 5382 return LOCK_STATE_HELD; 5383 5384 return LOCK_STATE_NOT_HELD; 5385 } 5386 } 5387 5388 return LOCK_STATE_NOT_HELD; 5389 } 5390 5391 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5392 { 5393 struct pin_cookie cookie = NIL_COOKIE; 5394 struct task_struct *curr = current; 5395 int i; 5396 5397 if (unlikely(!debug_locks)) 5398 return cookie; 5399 5400 for (i = 0; i < curr->lockdep_depth; i++) { 5401 struct held_lock *hlock = curr->held_locks + i; 5402 5403 if (match_held_lock(hlock, lock)) { 5404 /* 5405 * Grab 16bits of randomness; this is sufficient to not 5406 * be guessable and still allows some pin nesting in 5407 * our u32 pin_count. 5408 */ 5409 cookie.val = 1 + (prandom_u32() >> 16); 5410 hlock->pin_count += cookie.val; 5411 return cookie; 5412 } 5413 } 5414 5415 WARN(1, "pinning an unheld lock\n"); 5416 return cookie; 5417 } 5418 5419 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5420 { 5421 struct task_struct *curr = current; 5422 int i; 5423 5424 if (unlikely(!debug_locks)) 5425 return; 5426 5427 for (i = 0; i < curr->lockdep_depth; i++) { 5428 struct held_lock *hlock = curr->held_locks + i; 5429 5430 if (match_held_lock(hlock, lock)) { 5431 hlock->pin_count += cookie.val; 5432 return; 5433 } 5434 } 5435 5436 WARN(1, "pinning an unheld lock\n"); 5437 } 5438 5439 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5440 { 5441 struct task_struct *curr = current; 5442 int i; 5443 5444 if (unlikely(!debug_locks)) 5445 return; 5446 5447 for (i = 0; i < curr->lockdep_depth; i++) { 5448 struct held_lock *hlock = curr->held_locks + i; 5449 5450 if (match_held_lock(hlock, lock)) { 5451 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5452 return; 5453 5454 hlock->pin_count -= cookie.val; 5455 5456 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5457 hlock->pin_count = 0; 5458 5459 return; 5460 } 5461 } 5462 5463 WARN(1, "unpinning an unheld lock\n"); 5464 } 5465 5466 /* 5467 * Check whether we follow the irq-flags state precisely: 5468 */ 5469 static noinstr void check_flags(unsigned long flags) 5470 { 5471 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5472 if (!debug_locks) 5473 return; 5474 5475 /* Get the warning out.. */ 5476 instrumentation_begin(); 5477 5478 if (irqs_disabled_flags(flags)) { 5479 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5480 printk("possible reason: unannotated irqs-off.\n"); 5481 } 5482 } else { 5483 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5484 printk("possible reason: unannotated irqs-on.\n"); 5485 } 5486 } 5487 5488 #ifndef CONFIG_PREEMPT_RT 5489 /* 5490 * We dont accurately track softirq state in e.g. 5491 * hardirq contexts (such as on 4KSTACKS), so only 5492 * check if not in hardirq contexts: 5493 */ 5494 if (!hardirq_count()) { 5495 if (softirq_count()) { 5496 /* like the above, but with softirqs */ 5497 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5498 } else { 5499 /* lick the above, does it taste good? */ 5500 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5501 } 5502 } 5503 #endif 5504 5505 if (!debug_locks) 5506 print_irqtrace_events(current); 5507 5508 instrumentation_end(); 5509 #endif 5510 } 5511 5512 void lock_set_class(struct lockdep_map *lock, const char *name, 5513 struct lock_class_key *key, unsigned int subclass, 5514 unsigned long ip) 5515 { 5516 unsigned long flags; 5517 5518 if (unlikely(!lockdep_enabled())) 5519 return; 5520 5521 raw_local_irq_save(flags); 5522 lockdep_recursion_inc(); 5523 check_flags(flags); 5524 if (__lock_set_class(lock, name, key, subclass, ip)) 5525 check_chain_key(current); 5526 lockdep_recursion_finish(); 5527 raw_local_irq_restore(flags); 5528 } 5529 EXPORT_SYMBOL_GPL(lock_set_class); 5530 5531 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5532 { 5533 unsigned long flags; 5534 5535 if (unlikely(!lockdep_enabled())) 5536 return; 5537 5538 raw_local_irq_save(flags); 5539 lockdep_recursion_inc(); 5540 check_flags(flags); 5541 if (__lock_downgrade(lock, ip)) 5542 check_chain_key(current); 5543 lockdep_recursion_finish(); 5544 raw_local_irq_restore(flags); 5545 } 5546 EXPORT_SYMBOL_GPL(lock_downgrade); 5547 5548 /* NMI context !!! */ 5549 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5550 { 5551 #ifdef CONFIG_PROVE_LOCKING 5552 struct lock_class *class = look_up_lock_class(lock, subclass); 5553 unsigned long mask = LOCKF_USED; 5554 5555 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5556 if (!class) 5557 return; 5558 5559 /* 5560 * READ locks only conflict with USED, such that if we only ever use 5561 * READ locks, there is no deadlock possible -- RCU. 5562 */ 5563 if (!hlock->read) 5564 mask |= LOCKF_USED_READ; 5565 5566 if (!(class->usage_mask & mask)) 5567 return; 5568 5569 hlock->class_idx = class - lock_classes; 5570 5571 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5572 #endif 5573 } 5574 5575 static bool lockdep_nmi(void) 5576 { 5577 if (raw_cpu_read(lockdep_recursion)) 5578 return false; 5579 5580 if (!in_nmi()) 5581 return false; 5582 5583 return true; 5584 } 5585 5586 /* 5587 * read_lock() is recursive if: 5588 * 1. We force lockdep think this way in selftests or 5589 * 2. The implementation is not queued read/write lock or 5590 * 3. The locker is at an in_interrupt() context. 5591 */ 5592 bool read_lock_is_recursive(void) 5593 { 5594 return force_read_lock_recursive || 5595 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5596 in_interrupt(); 5597 } 5598 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5599 5600 /* 5601 * We are not always called with irqs disabled - do that here, 5602 * and also avoid lockdep recursion: 5603 */ 5604 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5605 int trylock, int read, int check, 5606 struct lockdep_map *nest_lock, unsigned long ip) 5607 { 5608 unsigned long flags; 5609 5610 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5611 5612 if (!debug_locks) 5613 return; 5614 5615 if (unlikely(!lockdep_enabled())) { 5616 /* XXX allow trylock from NMI ?!? */ 5617 if (lockdep_nmi() && !trylock) { 5618 struct held_lock hlock; 5619 5620 hlock.acquire_ip = ip; 5621 hlock.instance = lock; 5622 hlock.nest_lock = nest_lock; 5623 hlock.irq_context = 2; // XXX 5624 hlock.trylock = trylock; 5625 hlock.read = read; 5626 hlock.check = check; 5627 hlock.hardirqs_off = true; 5628 hlock.references = 0; 5629 5630 verify_lock_unused(lock, &hlock, subclass); 5631 } 5632 return; 5633 } 5634 5635 raw_local_irq_save(flags); 5636 check_flags(flags); 5637 5638 lockdep_recursion_inc(); 5639 __lock_acquire(lock, subclass, trylock, read, check, 5640 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5641 lockdep_recursion_finish(); 5642 raw_local_irq_restore(flags); 5643 } 5644 EXPORT_SYMBOL_GPL(lock_acquire); 5645 5646 void lock_release(struct lockdep_map *lock, unsigned long ip) 5647 { 5648 unsigned long flags; 5649 5650 trace_lock_release(lock, ip); 5651 5652 if (unlikely(!lockdep_enabled())) 5653 return; 5654 5655 raw_local_irq_save(flags); 5656 check_flags(flags); 5657 5658 lockdep_recursion_inc(); 5659 if (__lock_release(lock, ip)) 5660 check_chain_key(current); 5661 lockdep_recursion_finish(); 5662 raw_local_irq_restore(flags); 5663 } 5664 EXPORT_SYMBOL_GPL(lock_release); 5665 5666 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5667 { 5668 unsigned long flags; 5669 int ret = LOCK_STATE_NOT_HELD; 5670 5671 /* 5672 * Avoid false negative lockdep_assert_held() and 5673 * lockdep_assert_not_held(). 5674 */ 5675 if (unlikely(!lockdep_enabled())) 5676 return LOCK_STATE_UNKNOWN; 5677 5678 raw_local_irq_save(flags); 5679 check_flags(flags); 5680 5681 lockdep_recursion_inc(); 5682 ret = __lock_is_held(lock, read); 5683 lockdep_recursion_finish(); 5684 raw_local_irq_restore(flags); 5685 5686 return ret; 5687 } 5688 EXPORT_SYMBOL_GPL(lock_is_held_type); 5689 NOKPROBE_SYMBOL(lock_is_held_type); 5690 5691 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5692 { 5693 struct pin_cookie cookie = NIL_COOKIE; 5694 unsigned long flags; 5695 5696 if (unlikely(!lockdep_enabled())) 5697 return cookie; 5698 5699 raw_local_irq_save(flags); 5700 check_flags(flags); 5701 5702 lockdep_recursion_inc(); 5703 cookie = __lock_pin_lock(lock); 5704 lockdep_recursion_finish(); 5705 raw_local_irq_restore(flags); 5706 5707 return cookie; 5708 } 5709 EXPORT_SYMBOL_GPL(lock_pin_lock); 5710 5711 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5712 { 5713 unsigned long flags; 5714 5715 if (unlikely(!lockdep_enabled())) 5716 return; 5717 5718 raw_local_irq_save(flags); 5719 check_flags(flags); 5720 5721 lockdep_recursion_inc(); 5722 __lock_repin_lock(lock, cookie); 5723 lockdep_recursion_finish(); 5724 raw_local_irq_restore(flags); 5725 } 5726 EXPORT_SYMBOL_GPL(lock_repin_lock); 5727 5728 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5729 { 5730 unsigned long flags; 5731 5732 if (unlikely(!lockdep_enabled())) 5733 return; 5734 5735 raw_local_irq_save(flags); 5736 check_flags(flags); 5737 5738 lockdep_recursion_inc(); 5739 __lock_unpin_lock(lock, cookie); 5740 lockdep_recursion_finish(); 5741 raw_local_irq_restore(flags); 5742 } 5743 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5744 5745 #ifdef CONFIG_LOCK_STAT 5746 static void print_lock_contention_bug(struct task_struct *curr, 5747 struct lockdep_map *lock, 5748 unsigned long ip) 5749 { 5750 if (!debug_locks_off()) 5751 return; 5752 if (debug_locks_silent) 5753 return; 5754 5755 pr_warn("\n"); 5756 pr_warn("=================================\n"); 5757 pr_warn("WARNING: bad contention detected!\n"); 5758 print_kernel_ident(); 5759 pr_warn("---------------------------------\n"); 5760 pr_warn("%s/%d is trying to contend lock (", 5761 curr->comm, task_pid_nr(curr)); 5762 print_lockdep_cache(lock); 5763 pr_cont(") at:\n"); 5764 print_ip_sym(KERN_WARNING, ip); 5765 pr_warn("but there are no locks held!\n"); 5766 pr_warn("\nother info that might help us debug this:\n"); 5767 lockdep_print_held_locks(curr); 5768 5769 pr_warn("\nstack backtrace:\n"); 5770 dump_stack(); 5771 } 5772 5773 static void 5774 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5775 { 5776 struct task_struct *curr = current; 5777 struct held_lock *hlock; 5778 struct lock_class_stats *stats; 5779 unsigned int depth; 5780 int i, contention_point, contending_point; 5781 5782 depth = curr->lockdep_depth; 5783 /* 5784 * Whee, we contended on this lock, except it seems we're not 5785 * actually trying to acquire anything much at all.. 5786 */ 5787 if (DEBUG_LOCKS_WARN_ON(!depth)) 5788 return; 5789 5790 hlock = find_held_lock(curr, lock, depth, &i); 5791 if (!hlock) { 5792 print_lock_contention_bug(curr, lock, ip); 5793 return; 5794 } 5795 5796 if (hlock->instance != lock) 5797 return; 5798 5799 hlock->waittime_stamp = lockstat_clock(); 5800 5801 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5802 contending_point = lock_point(hlock_class(hlock)->contending_point, 5803 lock->ip); 5804 5805 stats = get_lock_stats(hlock_class(hlock)); 5806 if (contention_point < LOCKSTAT_POINTS) 5807 stats->contention_point[contention_point]++; 5808 if (contending_point < LOCKSTAT_POINTS) 5809 stats->contending_point[contending_point]++; 5810 if (lock->cpu != smp_processor_id()) 5811 stats->bounces[bounce_contended + !!hlock->read]++; 5812 } 5813 5814 static void 5815 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5816 { 5817 struct task_struct *curr = current; 5818 struct held_lock *hlock; 5819 struct lock_class_stats *stats; 5820 unsigned int depth; 5821 u64 now, waittime = 0; 5822 int i, cpu; 5823 5824 depth = curr->lockdep_depth; 5825 /* 5826 * Yay, we acquired ownership of this lock we didn't try to 5827 * acquire, how the heck did that happen? 5828 */ 5829 if (DEBUG_LOCKS_WARN_ON(!depth)) 5830 return; 5831 5832 hlock = find_held_lock(curr, lock, depth, &i); 5833 if (!hlock) { 5834 print_lock_contention_bug(curr, lock, _RET_IP_); 5835 return; 5836 } 5837 5838 if (hlock->instance != lock) 5839 return; 5840 5841 cpu = smp_processor_id(); 5842 if (hlock->waittime_stamp) { 5843 now = lockstat_clock(); 5844 waittime = now - hlock->waittime_stamp; 5845 hlock->holdtime_stamp = now; 5846 } 5847 5848 stats = get_lock_stats(hlock_class(hlock)); 5849 if (waittime) { 5850 if (hlock->read) 5851 lock_time_inc(&stats->read_waittime, waittime); 5852 else 5853 lock_time_inc(&stats->write_waittime, waittime); 5854 } 5855 if (lock->cpu != cpu) 5856 stats->bounces[bounce_acquired + !!hlock->read]++; 5857 5858 lock->cpu = cpu; 5859 lock->ip = ip; 5860 } 5861 5862 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5863 { 5864 unsigned long flags; 5865 5866 trace_lock_contended(lock, ip); 5867 5868 if (unlikely(!lock_stat || !lockdep_enabled())) 5869 return; 5870 5871 raw_local_irq_save(flags); 5872 check_flags(flags); 5873 lockdep_recursion_inc(); 5874 __lock_contended(lock, ip); 5875 lockdep_recursion_finish(); 5876 raw_local_irq_restore(flags); 5877 } 5878 EXPORT_SYMBOL_GPL(lock_contended); 5879 5880 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5881 { 5882 unsigned long flags; 5883 5884 trace_lock_acquired(lock, ip); 5885 5886 if (unlikely(!lock_stat || !lockdep_enabled())) 5887 return; 5888 5889 raw_local_irq_save(flags); 5890 check_flags(flags); 5891 lockdep_recursion_inc(); 5892 __lock_acquired(lock, ip); 5893 lockdep_recursion_finish(); 5894 raw_local_irq_restore(flags); 5895 } 5896 EXPORT_SYMBOL_GPL(lock_acquired); 5897 #endif 5898 5899 /* 5900 * Used by the testsuite, sanitize the validator state 5901 * after a simulated failure: 5902 */ 5903 5904 void lockdep_reset(void) 5905 { 5906 unsigned long flags; 5907 int i; 5908 5909 raw_local_irq_save(flags); 5910 lockdep_init_task(current); 5911 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5912 nr_hardirq_chains = 0; 5913 nr_softirq_chains = 0; 5914 nr_process_chains = 0; 5915 debug_locks = 1; 5916 for (i = 0; i < CHAINHASH_SIZE; i++) 5917 INIT_HLIST_HEAD(chainhash_table + i); 5918 raw_local_irq_restore(flags); 5919 } 5920 5921 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5922 static void remove_class_from_lock_chain(struct pending_free *pf, 5923 struct lock_chain *chain, 5924 struct lock_class *class) 5925 { 5926 #ifdef CONFIG_PROVE_LOCKING 5927 int i; 5928 5929 for (i = chain->base; i < chain->base + chain->depth; i++) { 5930 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5931 continue; 5932 /* 5933 * Each lock class occurs at most once in a lock chain so once 5934 * we found a match we can break out of this loop. 5935 */ 5936 goto free_lock_chain; 5937 } 5938 /* Since the chain has not been modified, return. */ 5939 return; 5940 5941 free_lock_chain: 5942 free_chain_hlocks(chain->base, chain->depth); 5943 /* Overwrite the chain key for concurrent RCU readers. */ 5944 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5945 dec_chains(chain->irq_context); 5946 5947 /* 5948 * Note: calling hlist_del_rcu() from inside a 5949 * hlist_for_each_entry_rcu() loop is safe. 5950 */ 5951 hlist_del_rcu(&chain->entry); 5952 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5953 nr_zapped_lock_chains++; 5954 #endif 5955 } 5956 5957 /* Must be called with the graph lock held. */ 5958 static void remove_class_from_lock_chains(struct pending_free *pf, 5959 struct lock_class *class) 5960 { 5961 struct lock_chain *chain; 5962 struct hlist_head *head; 5963 int i; 5964 5965 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5966 head = chainhash_table + i; 5967 hlist_for_each_entry_rcu(chain, head, entry) { 5968 remove_class_from_lock_chain(pf, chain, class); 5969 } 5970 } 5971 } 5972 5973 /* 5974 * Remove all references to a lock class. The caller must hold the graph lock. 5975 */ 5976 static void zap_class(struct pending_free *pf, struct lock_class *class) 5977 { 5978 struct lock_list *entry; 5979 int i; 5980 5981 WARN_ON_ONCE(!class->key); 5982 5983 /* 5984 * Remove all dependencies this lock is 5985 * involved in: 5986 */ 5987 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5988 entry = list_entries + i; 5989 if (entry->class != class && entry->links_to != class) 5990 continue; 5991 __clear_bit(i, list_entries_in_use); 5992 nr_list_entries--; 5993 list_del_rcu(&entry->entry); 5994 } 5995 if (list_empty(&class->locks_after) && 5996 list_empty(&class->locks_before)) { 5997 list_move_tail(&class->lock_entry, &pf->zapped); 5998 hlist_del_rcu(&class->hash_entry); 5999 WRITE_ONCE(class->key, NULL); 6000 WRITE_ONCE(class->name, NULL); 6001 nr_lock_classes--; 6002 __clear_bit(class - lock_classes, lock_classes_in_use); 6003 } else { 6004 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6005 class->name); 6006 } 6007 6008 remove_class_from_lock_chains(pf, class); 6009 nr_zapped_classes++; 6010 } 6011 6012 static void reinit_class(struct lock_class *class) 6013 { 6014 void *const p = class; 6015 const unsigned int offset = offsetof(struct lock_class, key); 6016 6017 WARN_ON_ONCE(!class->lock_entry.next); 6018 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6019 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6020 memset(p + offset, 0, sizeof(*class) - offset); 6021 WARN_ON_ONCE(!class->lock_entry.next); 6022 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6023 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6024 } 6025 6026 static inline int within(const void *addr, void *start, unsigned long size) 6027 { 6028 return addr >= start && addr < start + size; 6029 } 6030 6031 static bool inside_selftest(void) 6032 { 6033 return current == lockdep_selftest_task_struct; 6034 } 6035 6036 /* The caller must hold the graph lock. */ 6037 static struct pending_free *get_pending_free(void) 6038 { 6039 return delayed_free.pf + delayed_free.index; 6040 } 6041 6042 static void free_zapped_rcu(struct rcu_head *cb); 6043 6044 /* 6045 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6046 * the graph lock held. 6047 */ 6048 static void call_rcu_zapped(struct pending_free *pf) 6049 { 6050 WARN_ON_ONCE(inside_selftest()); 6051 6052 if (list_empty(&pf->zapped)) 6053 return; 6054 6055 if (delayed_free.scheduled) 6056 return; 6057 6058 delayed_free.scheduled = true; 6059 6060 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6061 delayed_free.index ^= 1; 6062 6063 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6064 } 6065 6066 /* The caller must hold the graph lock. May be called from RCU context. */ 6067 static void __free_zapped_classes(struct pending_free *pf) 6068 { 6069 struct lock_class *class; 6070 6071 check_data_structures(); 6072 6073 list_for_each_entry(class, &pf->zapped, lock_entry) 6074 reinit_class(class); 6075 6076 list_splice_init(&pf->zapped, &free_lock_classes); 6077 6078 #ifdef CONFIG_PROVE_LOCKING 6079 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6080 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6081 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6082 #endif 6083 } 6084 6085 static void free_zapped_rcu(struct rcu_head *ch) 6086 { 6087 struct pending_free *pf; 6088 unsigned long flags; 6089 6090 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6091 return; 6092 6093 raw_local_irq_save(flags); 6094 lockdep_lock(); 6095 6096 /* closed head */ 6097 pf = delayed_free.pf + (delayed_free.index ^ 1); 6098 __free_zapped_classes(pf); 6099 delayed_free.scheduled = false; 6100 6101 /* 6102 * If there's anything on the open list, close and start a new callback. 6103 */ 6104 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6105 6106 lockdep_unlock(); 6107 raw_local_irq_restore(flags); 6108 } 6109 6110 /* 6111 * Remove all lock classes from the class hash table and from the 6112 * all_lock_classes list whose key or name is in the address range [start, 6113 * start + size). Move these lock classes to the zapped_classes list. Must 6114 * be called with the graph lock held. 6115 */ 6116 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6117 unsigned long size) 6118 { 6119 struct lock_class *class; 6120 struct hlist_head *head; 6121 int i; 6122 6123 /* Unhash all classes that were created by a module. */ 6124 for (i = 0; i < CLASSHASH_SIZE; i++) { 6125 head = classhash_table + i; 6126 hlist_for_each_entry_rcu(class, head, hash_entry) { 6127 if (!within(class->key, start, size) && 6128 !within(class->name, start, size)) 6129 continue; 6130 zap_class(pf, class); 6131 } 6132 } 6133 } 6134 6135 /* 6136 * Used in module.c to remove lock classes from memory that is going to be 6137 * freed; and possibly re-used by other modules. 6138 * 6139 * We will have had one synchronize_rcu() before getting here, so we're 6140 * guaranteed nobody will look up these exact classes -- they're properly dead 6141 * but still allocated. 6142 */ 6143 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6144 { 6145 struct pending_free *pf; 6146 unsigned long flags; 6147 6148 init_data_structures_once(); 6149 6150 raw_local_irq_save(flags); 6151 lockdep_lock(); 6152 pf = get_pending_free(); 6153 __lockdep_free_key_range(pf, start, size); 6154 call_rcu_zapped(pf); 6155 lockdep_unlock(); 6156 raw_local_irq_restore(flags); 6157 6158 /* 6159 * Wait for any possible iterators from look_up_lock_class() to pass 6160 * before continuing to free the memory they refer to. 6161 */ 6162 synchronize_rcu(); 6163 } 6164 6165 /* 6166 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6167 * Ignores debug_locks. Must only be used by the lockdep selftests. 6168 */ 6169 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6170 { 6171 struct pending_free *pf = delayed_free.pf; 6172 unsigned long flags; 6173 6174 init_data_structures_once(); 6175 6176 raw_local_irq_save(flags); 6177 lockdep_lock(); 6178 __lockdep_free_key_range(pf, start, size); 6179 __free_zapped_classes(pf); 6180 lockdep_unlock(); 6181 raw_local_irq_restore(flags); 6182 } 6183 6184 void lockdep_free_key_range(void *start, unsigned long size) 6185 { 6186 init_data_structures_once(); 6187 6188 if (inside_selftest()) 6189 lockdep_free_key_range_imm(start, size); 6190 else 6191 lockdep_free_key_range_reg(start, size); 6192 } 6193 6194 /* 6195 * Check whether any element of the @lock->class_cache[] array refers to a 6196 * registered lock class. The caller must hold either the graph lock or the 6197 * RCU read lock. 6198 */ 6199 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6200 { 6201 struct lock_class *class; 6202 struct hlist_head *head; 6203 int i, j; 6204 6205 for (i = 0; i < CLASSHASH_SIZE; i++) { 6206 head = classhash_table + i; 6207 hlist_for_each_entry_rcu(class, head, hash_entry) { 6208 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6209 if (lock->class_cache[j] == class) 6210 return true; 6211 } 6212 } 6213 return false; 6214 } 6215 6216 /* The caller must hold the graph lock. Does not sleep. */ 6217 static void __lockdep_reset_lock(struct pending_free *pf, 6218 struct lockdep_map *lock) 6219 { 6220 struct lock_class *class; 6221 int j; 6222 6223 /* 6224 * Remove all classes this lock might have: 6225 */ 6226 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6227 /* 6228 * If the class exists we look it up and zap it: 6229 */ 6230 class = look_up_lock_class(lock, j); 6231 if (class) 6232 zap_class(pf, class); 6233 } 6234 /* 6235 * Debug check: in the end all mapped classes should 6236 * be gone. 6237 */ 6238 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6239 debug_locks_off(); 6240 } 6241 6242 /* 6243 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6244 * released data structures from RCU context. 6245 */ 6246 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6247 { 6248 struct pending_free *pf; 6249 unsigned long flags; 6250 int locked; 6251 6252 raw_local_irq_save(flags); 6253 locked = graph_lock(); 6254 if (!locked) 6255 goto out_irq; 6256 6257 pf = get_pending_free(); 6258 __lockdep_reset_lock(pf, lock); 6259 call_rcu_zapped(pf); 6260 6261 graph_unlock(); 6262 out_irq: 6263 raw_local_irq_restore(flags); 6264 } 6265 6266 /* 6267 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6268 * lockdep selftests. 6269 */ 6270 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6271 { 6272 struct pending_free *pf = delayed_free.pf; 6273 unsigned long flags; 6274 6275 raw_local_irq_save(flags); 6276 lockdep_lock(); 6277 __lockdep_reset_lock(pf, lock); 6278 __free_zapped_classes(pf); 6279 lockdep_unlock(); 6280 raw_local_irq_restore(flags); 6281 } 6282 6283 void lockdep_reset_lock(struct lockdep_map *lock) 6284 { 6285 init_data_structures_once(); 6286 6287 if (inside_selftest()) 6288 lockdep_reset_lock_imm(lock); 6289 else 6290 lockdep_reset_lock_reg(lock); 6291 } 6292 6293 /* Unregister a dynamically allocated key. */ 6294 void lockdep_unregister_key(struct lock_class_key *key) 6295 { 6296 struct hlist_head *hash_head = keyhashentry(key); 6297 struct lock_class_key *k; 6298 struct pending_free *pf; 6299 unsigned long flags; 6300 bool found = false; 6301 6302 might_sleep(); 6303 6304 if (WARN_ON_ONCE(static_obj(key))) 6305 return; 6306 6307 raw_local_irq_save(flags); 6308 if (!graph_lock()) 6309 goto out_irq; 6310 6311 pf = get_pending_free(); 6312 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6313 if (k == key) { 6314 hlist_del_rcu(&k->hash_entry); 6315 found = true; 6316 break; 6317 } 6318 } 6319 WARN_ON_ONCE(!found); 6320 __lockdep_free_key_range(pf, key, 1); 6321 call_rcu_zapped(pf); 6322 graph_unlock(); 6323 out_irq: 6324 raw_local_irq_restore(flags); 6325 6326 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6327 synchronize_rcu(); 6328 } 6329 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6330 6331 void __init lockdep_init(void) 6332 { 6333 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6334 6335 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6336 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6337 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6338 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6339 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6340 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6341 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6342 6343 printk(" memory used by lock dependency info: %zu kB\n", 6344 (sizeof(lock_classes) + 6345 sizeof(lock_classes_in_use) + 6346 sizeof(classhash_table) + 6347 sizeof(list_entries) + 6348 sizeof(list_entries_in_use) + 6349 sizeof(chainhash_table) + 6350 sizeof(delayed_free) 6351 #ifdef CONFIG_PROVE_LOCKING 6352 + sizeof(lock_cq) 6353 + sizeof(lock_chains) 6354 + sizeof(lock_chains_in_use) 6355 + sizeof(chain_hlocks) 6356 #endif 6357 ) / 1024 6358 ); 6359 6360 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6361 printk(" memory used for stack traces: %zu kB\n", 6362 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6363 ); 6364 #endif 6365 6366 printk(" per task-struct memory footprint: %zu bytes\n", 6367 sizeof(((struct task_struct *)NULL)->held_locks)); 6368 } 6369 6370 static void 6371 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6372 const void *mem_to, struct held_lock *hlock) 6373 { 6374 if (!debug_locks_off()) 6375 return; 6376 if (debug_locks_silent) 6377 return; 6378 6379 pr_warn("\n"); 6380 pr_warn("=========================\n"); 6381 pr_warn("WARNING: held lock freed!\n"); 6382 print_kernel_ident(); 6383 pr_warn("-------------------------\n"); 6384 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6385 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6386 print_lock(hlock); 6387 lockdep_print_held_locks(curr); 6388 6389 pr_warn("\nstack backtrace:\n"); 6390 dump_stack(); 6391 } 6392 6393 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6394 const void* lock_from, unsigned long lock_len) 6395 { 6396 return lock_from + lock_len <= mem_from || 6397 mem_from + mem_len <= lock_from; 6398 } 6399 6400 /* 6401 * Called when kernel memory is freed (or unmapped), or if a lock 6402 * is destroyed or reinitialized - this code checks whether there is 6403 * any held lock in the memory range of <from> to <to>: 6404 */ 6405 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6406 { 6407 struct task_struct *curr = current; 6408 struct held_lock *hlock; 6409 unsigned long flags; 6410 int i; 6411 6412 if (unlikely(!debug_locks)) 6413 return; 6414 6415 raw_local_irq_save(flags); 6416 for (i = 0; i < curr->lockdep_depth; i++) { 6417 hlock = curr->held_locks + i; 6418 6419 if (not_in_range(mem_from, mem_len, hlock->instance, 6420 sizeof(*hlock->instance))) 6421 continue; 6422 6423 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6424 break; 6425 } 6426 raw_local_irq_restore(flags); 6427 } 6428 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6429 6430 static void print_held_locks_bug(void) 6431 { 6432 if (!debug_locks_off()) 6433 return; 6434 if (debug_locks_silent) 6435 return; 6436 6437 pr_warn("\n"); 6438 pr_warn("====================================\n"); 6439 pr_warn("WARNING: %s/%d still has locks held!\n", 6440 current->comm, task_pid_nr(current)); 6441 print_kernel_ident(); 6442 pr_warn("------------------------------------\n"); 6443 lockdep_print_held_locks(current); 6444 pr_warn("\nstack backtrace:\n"); 6445 dump_stack(); 6446 } 6447 6448 void debug_check_no_locks_held(void) 6449 { 6450 if (unlikely(current->lockdep_depth > 0)) 6451 print_held_locks_bug(); 6452 } 6453 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6454 6455 #ifdef __KERNEL__ 6456 void debug_show_all_locks(void) 6457 { 6458 struct task_struct *g, *p; 6459 6460 if (unlikely(!debug_locks)) { 6461 pr_warn("INFO: lockdep is turned off.\n"); 6462 return; 6463 } 6464 pr_warn("\nShowing all locks held in the system:\n"); 6465 6466 rcu_read_lock(); 6467 for_each_process_thread(g, p) { 6468 if (!p->lockdep_depth) 6469 continue; 6470 lockdep_print_held_locks(p); 6471 touch_nmi_watchdog(); 6472 touch_all_softlockup_watchdogs(); 6473 } 6474 rcu_read_unlock(); 6475 6476 pr_warn("\n"); 6477 pr_warn("=============================================\n\n"); 6478 } 6479 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6480 #endif 6481 6482 /* 6483 * Careful: only use this function if you are sure that 6484 * the task cannot run in parallel! 6485 */ 6486 void debug_show_held_locks(struct task_struct *task) 6487 { 6488 if (unlikely(!debug_locks)) { 6489 printk("INFO: lockdep is turned off.\n"); 6490 return; 6491 } 6492 lockdep_print_held_locks(task); 6493 } 6494 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6495 6496 asmlinkage __visible void lockdep_sys_exit(void) 6497 { 6498 struct task_struct *curr = current; 6499 6500 if (unlikely(curr->lockdep_depth)) { 6501 if (!debug_locks_off()) 6502 return; 6503 pr_warn("\n"); 6504 pr_warn("================================================\n"); 6505 pr_warn("WARNING: lock held when returning to user space!\n"); 6506 print_kernel_ident(); 6507 pr_warn("------------------------------------------------\n"); 6508 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6509 curr->comm, curr->pid); 6510 lockdep_print_held_locks(curr); 6511 } 6512 6513 /* 6514 * The lock history for each syscall should be independent. So wipe the 6515 * slate clean on return to userspace. 6516 */ 6517 lockdep_invariant_state(false); 6518 } 6519 6520 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6521 { 6522 struct task_struct *curr = current; 6523 int dl = READ_ONCE(debug_locks); 6524 6525 /* Note: the following can be executed concurrently, so be careful. */ 6526 pr_warn("\n"); 6527 pr_warn("=============================\n"); 6528 pr_warn("WARNING: suspicious RCU usage\n"); 6529 print_kernel_ident(); 6530 pr_warn("-----------------------------\n"); 6531 pr_warn("%s:%d %s!\n", file, line, s); 6532 pr_warn("\nother info that might help us debug this:\n\n"); 6533 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6534 !rcu_lockdep_current_cpu_online() 6535 ? "RCU used illegally from offline CPU!\n" 6536 : "", 6537 rcu_scheduler_active, dl, 6538 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6539 6540 /* 6541 * If a CPU is in the RCU-free window in idle (ie: in the section 6542 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 6543 * considers that CPU to be in an "extended quiescent state", 6544 * which means that RCU will be completely ignoring that CPU. 6545 * Therefore, rcu_read_lock() and friends have absolutely no 6546 * effect on a CPU running in that state. In other words, even if 6547 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6548 * delete data structures out from under it. RCU really has no 6549 * choice here: we need to keep an RCU-free window in idle where 6550 * the CPU may possibly enter into low power mode. This way we can 6551 * notice an extended quiescent state to other CPUs that started a grace 6552 * period. Otherwise we would delay any grace period as long as we run 6553 * in the idle task. 6554 * 6555 * So complain bitterly if someone does call rcu_read_lock(), 6556 * rcu_read_lock_bh() and so on from extended quiescent states. 6557 */ 6558 if (!rcu_is_watching()) 6559 pr_warn("RCU used illegally from extended quiescent state!\n"); 6560 6561 lockdep_print_held_locks(curr); 6562 pr_warn("\nstack backtrace:\n"); 6563 dump_stack(); 6564 } 6565 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6566