1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 58 #include <asm/sections.h> 59 60 #include "lockdep_internals.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/lock.h> 64 65 #ifdef CONFIG_PROVE_LOCKING 66 int prove_locking = 1; 67 module_param(prove_locking, int, 0644); 68 #else 69 #define prove_locking 0 70 #endif 71 72 #ifdef CONFIG_LOCK_STAT 73 int lock_stat = 1; 74 module_param(lock_stat, int, 0644); 75 #else 76 #define lock_stat 0 77 #endif 78 79 /* 80 * lockdep_lock: protects the lockdep graph, the hashes and the 81 * class/list/hash allocators. 82 * 83 * This is one of the rare exceptions where it's justified 84 * to use a raw spinlock - we really dont want the spinlock 85 * code to recurse back into the lockdep code... 86 */ 87 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 88 static struct task_struct *__owner; 89 90 static inline void lockdep_lock(void) 91 { 92 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 93 94 arch_spin_lock(&__lock); 95 __owner = current; 96 current->lockdep_recursion++; 97 } 98 99 static inline void lockdep_unlock(void) 100 { 101 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 102 return; 103 104 current->lockdep_recursion--; 105 __owner = NULL; 106 arch_spin_unlock(&__lock); 107 } 108 109 static inline bool lockdep_assert_locked(void) 110 { 111 return DEBUG_LOCKS_WARN_ON(__owner != current); 112 } 113 114 static struct task_struct *lockdep_selftest_task_struct; 115 116 117 static int graph_lock(void) 118 { 119 lockdep_lock(); 120 /* 121 * Make sure that if another CPU detected a bug while 122 * walking the graph we dont change it (while the other 123 * CPU is busy printing out stuff with the graph lock 124 * dropped already) 125 */ 126 if (!debug_locks) { 127 lockdep_unlock(); 128 return 0; 129 } 130 return 1; 131 } 132 133 static inline void graph_unlock(void) 134 { 135 lockdep_unlock(); 136 } 137 138 /* 139 * Turn lock debugging off and return with 0 if it was off already, 140 * and also release the graph lock: 141 */ 142 static inline int debug_locks_off_graph_unlock(void) 143 { 144 int ret = debug_locks_off(); 145 146 lockdep_unlock(); 147 148 return ret; 149 } 150 151 unsigned long nr_list_entries; 152 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 153 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 154 155 /* 156 * All data structures here are protected by the global debug_lock. 157 * 158 * nr_lock_classes is the number of elements of lock_classes[] that is 159 * in use. 160 */ 161 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 162 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 163 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 164 unsigned long nr_lock_classes; 165 unsigned long nr_zapped_classes; 166 #ifndef CONFIG_DEBUG_LOCKDEP 167 static 168 #endif 169 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 170 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 171 172 static inline struct lock_class *hlock_class(struct held_lock *hlock) 173 { 174 unsigned int class_idx = hlock->class_idx; 175 176 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 177 barrier(); 178 179 if (!test_bit(class_idx, lock_classes_in_use)) { 180 /* 181 * Someone passed in garbage, we give up. 182 */ 183 DEBUG_LOCKS_WARN_ON(1); 184 return NULL; 185 } 186 187 /* 188 * At this point, if the passed hlock->class_idx is still garbage, 189 * we just have to live with it 190 */ 191 return lock_classes + class_idx; 192 } 193 194 #ifdef CONFIG_LOCK_STAT 195 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 196 197 static inline u64 lockstat_clock(void) 198 { 199 return local_clock(); 200 } 201 202 static int lock_point(unsigned long points[], unsigned long ip) 203 { 204 int i; 205 206 for (i = 0; i < LOCKSTAT_POINTS; i++) { 207 if (points[i] == 0) { 208 points[i] = ip; 209 break; 210 } 211 if (points[i] == ip) 212 break; 213 } 214 215 return i; 216 } 217 218 static void lock_time_inc(struct lock_time *lt, u64 time) 219 { 220 if (time > lt->max) 221 lt->max = time; 222 223 if (time < lt->min || !lt->nr) 224 lt->min = time; 225 226 lt->total += time; 227 lt->nr++; 228 } 229 230 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 231 { 232 if (!src->nr) 233 return; 234 235 if (src->max > dst->max) 236 dst->max = src->max; 237 238 if (src->min < dst->min || !dst->nr) 239 dst->min = src->min; 240 241 dst->total += src->total; 242 dst->nr += src->nr; 243 } 244 245 struct lock_class_stats lock_stats(struct lock_class *class) 246 { 247 struct lock_class_stats stats; 248 int cpu, i; 249 250 memset(&stats, 0, sizeof(struct lock_class_stats)); 251 for_each_possible_cpu(cpu) { 252 struct lock_class_stats *pcs = 253 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 254 255 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 256 stats.contention_point[i] += pcs->contention_point[i]; 257 258 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 259 stats.contending_point[i] += pcs->contending_point[i]; 260 261 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 262 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 263 264 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 265 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 266 267 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 268 stats.bounces[i] += pcs->bounces[i]; 269 } 270 271 return stats; 272 } 273 274 void clear_lock_stats(struct lock_class *class) 275 { 276 int cpu; 277 278 for_each_possible_cpu(cpu) { 279 struct lock_class_stats *cpu_stats = 280 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 281 282 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 283 } 284 memset(class->contention_point, 0, sizeof(class->contention_point)); 285 memset(class->contending_point, 0, sizeof(class->contending_point)); 286 } 287 288 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 289 { 290 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 291 } 292 293 static void lock_release_holdtime(struct held_lock *hlock) 294 { 295 struct lock_class_stats *stats; 296 u64 holdtime; 297 298 if (!lock_stat) 299 return; 300 301 holdtime = lockstat_clock() - hlock->holdtime_stamp; 302 303 stats = get_lock_stats(hlock_class(hlock)); 304 if (hlock->read) 305 lock_time_inc(&stats->read_holdtime, holdtime); 306 else 307 lock_time_inc(&stats->write_holdtime, holdtime); 308 } 309 #else 310 static inline void lock_release_holdtime(struct held_lock *hlock) 311 { 312 } 313 #endif 314 315 /* 316 * We keep a global list of all lock classes. The list is only accessed with 317 * the lockdep spinlock lock held. free_lock_classes is a list with free 318 * elements. These elements are linked together by the lock_entry member in 319 * struct lock_class. 320 */ 321 LIST_HEAD(all_lock_classes); 322 static LIST_HEAD(free_lock_classes); 323 324 /** 325 * struct pending_free - information about data structures about to be freed 326 * @zapped: Head of a list with struct lock_class elements. 327 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 328 * are about to be freed. 329 */ 330 struct pending_free { 331 struct list_head zapped; 332 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 333 }; 334 335 /** 336 * struct delayed_free - data structures used for delayed freeing 337 * 338 * A data structure for delayed freeing of data structures that may be 339 * accessed by RCU readers at the time these were freed. 340 * 341 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 342 * @index: Index of @pf to which freed data structures are added. 343 * @scheduled: Whether or not an RCU callback has been scheduled. 344 * @pf: Array with information about data structures about to be freed. 345 */ 346 static struct delayed_free { 347 struct rcu_head rcu_head; 348 int index; 349 int scheduled; 350 struct pending_free pf[2]; 351 } delayed_free; 352 353 /* 354 * The lockdep classes are in a hash-table as well, for fast lookup: 355 */ 356 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 357 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 358 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 359 #define classhashentry(key) (classhash_table + __classhashfn((key))) 360 361 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 362 363 /* 364 * We put the lock dependency chains into a hash-table as well, to cache 365 * their existence: 366 */ 367 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 368 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 369 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 370 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 371 372 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 373 374 /* 375 * The hash key of the lock dependency chains is a hash itself too: 376 * it's a hash of all locks taken up to that lock, including that lock. 377 * It's a 64-bit hash, because it's important for the keys to be 378 * unique. 379 */ 380 static inline u64 iterate_chain_key(u64 key, u32 idx) 381 { 382 u32 k0 = key, k1 = key >> 32; 383 384 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 385 386 return k0 | (u64)k1 << 32; 387 } 388 389 void lockdep_init_task(struct task_struct *task) 390 { 391 task->lockdep_depth = 0; /* no locks held yet */ 392 task->curr_chain_key = INITIAL_CHAIN_KEY; 393 task->lockdep_recursion = 0; 394 } 395 396 static __always_inline void lockdep_recursion_finish(void) 397 { 398 if (WARN_ON_ONCE((--current->lockdep_recursion) & LOCKDEP_RECURSION_MASK)) 399 current->lockdep_recursion = 0; 400 } 401 402 void lockdep_set_selftest_task(struct task_struct *task) 403 { 404 lockdep_selftest_task_struct = task; 405 } 406 407 /* 408 * Debugging switches: 409 */ 410 411 #define VERBOSE 0 412 #define VERY_VERBOSE 0 413 414 #if VERBOSE 415 # define HARDIRQ_VERBOSE 1 416 # define SOFTIRQ_VERBOSE 1 417 #else 418 # define HARDIRQ_VERBOSE 0 419 # define SOFTIRQ_VERBOSE 0 420 #endif 421 422 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 423 /* 424 * Quick filtering for interesting events: 425 */ 426 static int class_filter(struct lock_class *class) 427 { 428 #if 0 429 /* Example */ 430 if (class->name_version == 1 && 431 !strcmp(class->name, "lockname")) 432 return 1; 433 if (class->name_version == 1 && 434 !strcmp(class->name, "&struct->lockfield")) 435 return 1; 436 #endif 437 /* Filter everything else. 1 would be to allow everything else */ 438 return 0; 439 } 440 #endif 441 442 static int verbose(struct lock_class *class) 443 { 444 #if VERBOSE 445 return class_filter(class); 446 #endif 447 return 0; 448 } 449 450 static void print_lockdep_off(const char *bug_msg) 451 { 452 printk(KERN_DEBUG "%s\n", bug_msg); 453 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 454 #ifdef CONFIG_LOCK_STAT 455 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 456 #endif 457 } 458 459 unsigned long nr_stack_trace_entries; 460 461 #ifdef CONFIG_PROVE_LOCKING 462 /** 463 * struct lock_trace - single stack backtrace 464 * @hash_entry: Entry in a stack_trace_hash[] list. 465 * @hash: jhash() of @entries. 466 * @nr_entries: Number of entries in @entries. 467 * @entries: Actual stack backtrace. 468 */ 469 struct lock_trace { 470 struct hlist_node hash_entry; 471 u32 hash; 472 u32 nr_entries; 473 unsigned long entries[] __aligned(sizeof(unsigned long)); 474 }; 475 #define LOCK_TRACE_SIZE_IN_LONGS \ 476 (sizeof(struct lock_trace) / sizeof(unsigned long)) 477 /* 478 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 479 */ 480 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 481 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 482 483 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 484 { 485 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 486 memcmp(t1->entries, t2->entries, 487 t1->nr_entries * sizeof(t1->entries[0])) == 0; 488 } 489 490 static struct lock_trace *save_trace(void) 491 { 492 struct lock_trace *trace, *t2; 493 struct hlist_head *hash_head; 494 u32 hash; 495 int max_entries; 496 497 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 498 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 499 500 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 501 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 502 LOCK_TRACE_SIZE_IN_LONGS; 503 504 if (max_entries <= 0) { 505 if (!debug_locks_off_graph_unlock()) 506 return NULL; 507 508 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 509 dump_stack(); 510 511 return NULL; 512 } 513 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 514 515 hash = jhash(trace->entries, trace->nr_entries * 516 sizeof(trace->entries[0]), 0); 517 trace->hash = hash; 518 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 519 hlist_for_each_entry(t2, hash_head, hash_entry) { 520 if (traces_identical(trace, t2)) 521 return t2; 522 } 523 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 524 hlist_add_head(&trace->hash_entry, hash_head); 525 526 return trace; 527 } 528 529 /* Return the number of stack traces in the stack_trace[] array. */ 530 u64 lockdep_stack_trace_count(void) 531 { 532 struct lock_trace *trace; 533 u64 c = 0; 534 int i; 535 536 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 537 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 538 c++; 539 } 540 } 541 542 return c; 543 } 544 545 /* Return the number of stack hash chains that have at least one stack trace. */ 546 u64 lockdep_stack_hash_count(void) 547 { 548 u64 c = 0; 549 int i; 550 551 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 552 if (!hlist_empty(&stack_trace_hash[i])) 553 c++; 554 555 return c; 556 } 557 #endif 558 559 unsigned int nr_hardirq_chains; 560 unsigned int nr_softirq_chains; 561 unsigned int nr_process_chains; 562 unsigned int max_lockdep_depth; 563 564 #ifdef CONFIG_DEBUG_LOCKDEP 565 /* 566 * Various lockdep statistics: 567 */ 568 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 569 #endif 570 571 #ifdef CONFIG_PROVE_LOCKING 572 /* 573 * Locking printouts: 574 */ 575 576 #define __USAGE(__STATE) \ 577 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 578 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 579 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 580 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 581 582 static const char *usage_str[] = 583 { 584 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 585 #include "lockdep_states.h" 586 #undef LOCKDEP_STATE 587 [LOCK_USED] = "INITIAL USE", 588 [LOCK_USAGE_STATES] = "IN-NMI", 589 }; 590 #endif 591 592 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 593 { 594 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 595 } 596 597 static inline unsigned long lock_flag(enum lock_usage_bit bit) 598 { 599 return 1UL << bit; 600 } 601 602 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 603 { 604 /* 605 * The usage character defaults to '.' (i.e., irqs disabled and not in 606 * irq context), which is the safest usage category. 607 */ 608 char c = '.'; 609 610 /* 611 * The order of the following usage checks matters, which will 612 * result in the outcome character as follows: 613 * 614 * - '+': irq is enabled and not in irq context 615 * - '-': in irq context and irq is disabled 616 * - '?': in irq context and irq is enabled 617 */ 618 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 619 c = '+'; 620 if (class->usage_mask & lock_flag(bit)) 621 c = '?'; 622 } else if (class->usage_mask & lock_flag(bit)) 623 c = '-'; 624 625 return c; 626 } 627 628 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 629 { 630 int i = 0; 631 632 #define LOCKDEP_STATE(__STATE) \ 633 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 634 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 635 #include "lockdep_states.h" 636 #undef LOCKDEP_STATE 637 638 usage[i] = '\0'; 639 } 640 641 static void __print_lock_name(struct lock_class *class) 642 { 643 char str[KSYM_NAME_LEN]; 644 const char *name; 645 646 name = class->name; 647 if (!name) { 648 name = __get_key_name(class->key, str); 649 printk(KERN_CONT "%s", name); 650 } else { 651 printk(KERN_CONT "%s", name); 652 if (class->name_version > 1) 653 printk(KERN_CONT "#%d", class->name_version); 654 if (class->subclass) 655 printk(KERN_CONT "/%d", class->subclass); 656 } 657 } 658 659 static void print_lock_name(struct lock_class *class) 660 { 661 char usage[LOCK_USAGE_CHARS]; 662 663 get_usage_chars(class, usage); 664 665 printk(KERN_CONT " ("); 666 __print_lock_name(class); 667 printk(KERN_CONT "){%s}-{%hd:%hd}", usage, 668 class->wait_type_outer ?: class->wait_type_inner, 669 class->wait_type_inner); 670 } 671 672 static void print_lockdep_cache(struct lockdep_map *lock) 673 { 674 const char *name; 675 char str[KSYM_NAME_LEN]; 676 677 name = lock->name; 678 if (!name) 679 name = __get_key_name(lock->key->subkeys, str); 680 681 printk(KERN_CONT "%s", name); 682 } 683 684 static void print_lock(struct held_lock *hlock) 685 { 686 /* 687 * We can be called locklessly through debug_show_all_locks() so be 688 * extra careful, the hlock might have been released and cleared. 689 * 690 * If this indeed happens, lets pretend it does not hurt to continue 691 * to print the lock unless the hlock class_idx does not point to a 692 * registered class. The rationale here is: since we don't attempt 693 * to distinguish whether we are in this situation, if it just 694 * happened we can't count on class_idx to tell either. 695 */ 696 struct lock_class *lock = hlock_class(hlock); 697 698 if (!lock) { 699 printk(KERN_CONT "<RELEASED>\n"); 700 return; 701 } 702 703 printk(KERN_CONT "%px", hlock->instance); 704 print_lock_name(lock); 705 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 706 } 707 708 static void lockdep_print_held_locks(struct task_struct *p) 709 { 710 int i, depth = READ_ONCE(p->lockdep_depth); 711 712 if (!depth) 713 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 714 else 715 printk("%d lock%s held by %s/%d:\n", depth, 716 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 717 /* 718 * It's not reliable to print a task's held locks if it's not sleeping 719 * and it's not the current task. 720 */ 721 if (p->state == TASK_RUNNING && p != current) 722 return; 723 for (i = 0; i < depth; i++) { 724 printk(" #%d: ", i); 725 print_lock(p->held_locks + i); 726 } 727 } 728 729 static void print_kernel_ident(void) 730 { 731 printk("%s %.*s %s\n", init_utsname()->release, 732 (int)strcspn(init_utsname()->version, " "), 733 init_utsname()->version, 734 print_tainted()); 735 } 736 737 static int very_verbose(struct lock_class *class) 738 { 739 #if VERY_VERBOSE 740 return class_filter(class); 741 #endif 742 return 0; 743 } 744 745 /* 746 * Is this the address of a static object: 747 */ 748 #ifdef __KERNEL__ 749 static int static_obj(const void *obj) 750 { 751 unsigned long start = (unsigned long) &_stext, 752 end = (unsigned long) &_end, 753 addr = (unsigned long) obj; 754 755 if (arch_is_kernel_initmem_freed(addr)) 756 return 0; 757 758 /* 759 * static variable? 760 */ 761 if ((addr >= start) && (addr < end)) 762 return 1; 763 764 if (arch_is_kernel_data(addr)) 765 return 1; 766 767 /* 768 * in-kernel percpu var? 769 */ 770 if (is_kernel_percpu_address(addr)) 771 return 1; 772 773 /* 774 * module static or percpu var? 775 */ 776 return is_module_address(addr) || is_module_percpu_address(addr); 777 } 778 #endif 779 780 /* 781 * To make lock name printouts unique, we calculate a unique 782 * class->name_version generation counter. The caller must hold the graph 783 * lock. 784 */ 785 static int count_matching_names(struct lock_class *new_class) 786 { 787 struct lock_class *class; 788 int count = 0; 789 790 if (!new_class->name) 791 return 0; 792 793 list_for_each_entry(class, &all_lock_classes, lock_entry) { 794 if (new_class->key - new_class->subclass == class->key) 795 return class->name_version; 796 if (class->name && !strcmp(class->name, new_class->name)) 797 count = max(count, class->name_version); 798 } 799 800 return count + 1; 801 } 802 803 /* used from NMI context -- must be lockless */ 804 static __always_inline struct lock_class * 805 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 806 { 807 struct lockdep_subclass_key *key; 808 struct hlist_head *hash_head; 809 struct lock_class *class; 810 811 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 812 debug_locks_off(); 813 printk(KERN_ERR 814 "BUG: looking up invalid subclass: %u\n", subclass); 815 printk(KERN_ERR 816 "turning off the locking correctness validator.\n"); 817 dump_stack(); 818 return NULL; 819 } 820 821 /* 822 * If it is not initialised then it has never been locked, 823 * so it won't be present in the hash table. 824 */ 825 if (unlikely(!lock->key)) 826 return NULL; 827 828 /* 829 * NOTE: the class-key must be unique. For dynamic locks, a static 830 * lock_class_key variable is passed in through the mutex_init() 831 * (or spin_lock_init()) call - which acts as the key. For static 832 * locks we use the lock object itself as the key. 833 */ 834 BUILD_BUG_ON(sizeof(struct lock_class_key) > 835 sizeof(struct lockdep_map)); 836 837 key = lock->key->subkeys + subclass; 838 839 hash_head = classhashentry(key); 840 841 /* 842 * We do an RCU walk of the hash, see lockdep_free_key_range(). 843 */ 844 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 845 return NULL; 846 847 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 848 if (class->key == key) { 849 /* 850 * Huh! same key, different name? Did someone trample 851 * on some memory? We're most confused. 852 */ 853 WARN_ON_ONCE(class->name != lock->name && 854 lock->key != &__lockdep_no_validate__); 855 return class; 856 } 857 } 858 859 return NULL; 860 } 861 862 /* 863 * Static locks do not have their class-keys yet - for them the key is 864 * the lock object itself. If the lock is in the per cpu area, the 865 * canonical address of the lock (per cpu offset removed) is used. 866 */ 867 static bool assign_lock_key(struct lockdep_map *lock) 868 { 869 unsigned long can_addr, addr = (unsigned long)lock; 870 871 #ifdef __KERNEL__ 872 /* 873 * lockdep_free_key_range() assumes that struct lock_class_key 874 * objects do not overlap. Since we use the address of lock 875 * objects as class key for static objects, check whether the 876 * size of lock_class_key objects does not exceed the size of 877 * the smallest lock object. 878 */ 879 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 880 #endif 881 882 if (__is_kernel_percpu_address(addr, &can_addr)) 883 lock->key = (void *)can_addr; 884 else if (__is_module_percpu_address(addr, &can_addr)) 885 lock->key = (void *)can_addr; 886 else if (static_obj(lock)) 887 lock->key = (void *)lock; 888 else { 889 /* Debug-check: all keys must be persistent! */ 890 debug_locks_off(); 891 pr_err("INFO: trying to register non-static key.\n"); 892 pr_err("the code is fine but needs lockdep annotation.\n"); 893 pr_err("turning off the locking correctness validator.\n"); 894 dump_stack(); 895 return false; 896 } 897 898 return true; 899 } 900 901 #ifdef CONFIG_DEBUG_LOCKDEP 902 903 /* Check whether element @e occurs in list @h */ 904 static bool in_list(struct list_head *e, struct list_head *h) 905 { 906 struct list_head *f; 907 908 list_for_each(f, h) { 909 if (e == f) 910 return true; 911 } 912 913 return false; 914 } 915 916 /* 917 * Check whether entry @e occurs in any of the locks_after or locks_before 918 * lists. 919 */ 920 static bool in_any_class_list(struct list_head *e) 921 { 922 struct lock_class *class; 923 int i; 924 925 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 926 class = &lock_classes[i]; 927 if (in_list(e, &class->locks_after) || 928 in_list(e, &class->locks_before)) 929 return true; 930 } 931 return false; 932 } 933 934 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 935 { 936 struct lock_list *e; 937 938 list_for_each_entry(e, h, entry) { 939 if (e->links_to != c) { 940 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 941 c->name ? : "(?)", 942 (unsigned long)(e - list_entries), 943 e->links_to && e->links_to->name ? 944 e->links_to->name : "(?)", 945 e->class && e->class->name ? e->class->name : 946 "(?)"); 947 return false; 948 } 949 } 950 return true; 951 } 952 953 #ifdef CONFIG_PROVE_LOCKING 954 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 955 #endif 956 957 static bool check_lock_chain_key(struct lock_chain *chain) 958 { 959 #ifdef CONFIG_PROVE_LOCKING 960 u64 chain_key = INITIAL_CHAIN_KEY; 961 int i; 962 963 for (i = chain->base; i < chain->base + chain->depth; i++) 964 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 965 /* 966 * The 'unsigned long long' casts avoid that a compiler warning 967 * is reported when building tools/lib/lockdep. 968 */ 969 if (chain->chain_key != chain_key) { 970 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 971 (unsigned long long)(chain - lock_chains), 972 (unsigned long long)chain->chain_key, 973 (unsigned long long)chain_key); 974 return false; 975 } 976 #endif 977 return true; 978 } 979 980 static bool in_any_zapped_class_list(struct lock_class *class) 981 { 982 struct pending_free *pf; 983 int i; 984 985 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 986 if (in_list(&class->lock_entry, &pf->zapped)) 987 return true; 988 } 989 990 return false; 991 } 992 993 static bool __check_data_structures(void) 994 { 995 struct lock_class *class; 996 struct lock_chain *chain; 997 struct hlist_head *head; 998 struct lock_list *e; 999 int i; 1000 1001 /* Check whether all classes occur in a lock list. */ 1002 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1003 class = &lock_classes[i]; 1004 if (!in_list(&class->lock_entry, &all_lock_classes) && 1005 !in_list(&class->lock_entry, &free_lock_classes) && 1006 !in_any_zapped_class_list(class)) { 1007 printk(KERN_INFO "class %px/%s is not in any class list\n", 1008 class, class->name ? : "(?)"); 1009 return false; 1010 } 1011 } 1012 1013 /* Check whether all classes have valid lock lists. */ 1014 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1015 class = &lock_classes[i]; 1016 if (!class_lock_list_valid(class, &class->locks_before)) 1017 return false; 1018 if (!class_lock_list_valid(class, &class->locks_after)) 1019 return false; 1020 } 1021 1022 /* Check the chain_key of all lock chains. */ 1023 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1024 head = chainhash_table + i; 1025 hlist_for_each_entry_rcu(chain, head, entry) { 1026 if (!check_lock_chain_key(chain)) 1027 return false; 1028 } 1029 } 1030 1031 /* 1032 * Check whether all list entries that are in use occur in a class 1033 * lock list. 1034 */ 1035 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1036 e = list_entries + i; 1037 if (!in_any_class_list(&e->entry)) { 1038 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1039 (unsigned int)(e - list_entries), 1040 e->class->name ? : "(?)", 1041 e->links_to->name ? : "(?)"); 1042 return false; 1043 } 1044 } 1045 1046 /* 1047 * Check whether all list entries that are not in use do not occur in 1048 * a class lock list. 1049 */ 1050 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1051 e = list_entries + i; 1052 if (in_any_class_list(&e->entry)) { 1053 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1054 (unsigned int)(e - list_entries), 1055 e->class && e->class->name ? e->class->name : 1056 "(?)", 1057 e->links_to && e->links_to->name ? 1058 e->links_to->name : "(?)"); 1059 return false; 1060 } 1061 } 1062 1063 return true; 1064 } 1065 1066 int check_consistency = 0; 1067 module_param(check_consistency, int, 0644); 1068 1069 static void check_data_structures(void) 1070 { 1071 static bool once = false; 1072 1073 if (check_consistency && !once) { 1074 if (!__check_data_structures()) { 1075 once = true; 1076 WARN_ON(once); 1077 } 1078 } 1079 } 1080 1081 #else /* CONFIG_DEBUG_LOCKDEP */ 1082 1083 static inline void check_data_structures(void) { } 1084 1085 #endif /* CONFIG_DEBUG_LOCKDEP */ 1086 1087 static void init_chain_block_buckets(void); 1088 1089 /* 1090 * Initialize the lock_classes[] array elements, the free_lock_classes list 1091 * and also the delayed_free structure. 1092 */ 1093 static void init_data_structures_once(void) 1094 { 1095 static bool __read_mostly ds_initialized, rcu_head_initialized; 1096 int i; 1097 1098 if (likely(rcu_head_initialized)) 1099 return; 1100 1101 if (system_state >= SYSTEM_SCHEDULING) { 1102 init_rcu_head(&delayed_free.rcu_head); 1103 rcu_head_initialized = true; 1104 } 1105 1106 if (ds_initialized) 1107 return; 1108 1109 ds_initialized = true; 1110 1111 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1112 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1113 1114 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1115 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1116 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1117 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1118 } 1119 init_chain_block_buckets(); 1120 } 1121 1122 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1123 { 1124 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1125 1126 return lock_keys_hash + hash; 1127 } 1128 1129 /* Register a dynamically allocated key. */ 1130 void lockdep_register_key(struct lock_class_key *key) 1131 { 1132 struct hlist_head *hash_head; 1133 struct lock_class_key *k; 1134 unsigned long flags; 1135 1136 if (WARN_ON_ONCE(static_obj(key))) 1137 return; 1138 hash_head = keyhashentry(key); 1139 1140 raw_local_irq_save(flags); 1141 if (!graph_lock()) 1142 goto restore_irqs; 1143 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1144 if (WARN_ON_ONCE(k == key)) 1145 goto out_unlock; 1146 } 1147 hlist_add_head_rcu(&key->hash_entry, hash_head); 1148 out_unlock: 1149 graph_unlock(); 1150 restore_irqs: 1151 raw_local_irq_restore(flags); 1152 } 1153 EXPORT_SYMBOL_GPL(lockdep_register_key); 1154 1155 /* Check whether a key has been registered as a dynamic key. */ 1156 static bool is_dynamic_key(const struct lock_class_key *key) 1157 { 1158 struct hlist_head *hash_head; 1159 struct lock_class_key *k; 1160 bool found = false; 1161 1162 if (WARN_ON_ONCE(static_obj(key))) 1163 return false; 1164 1165 /* 1166 * If lock debugging is disabled lock_keys_hash[] may contain 1167 * pointers to memory that has already been freed. Avoid triggering 1168 * a use-after-free in that case by returning early. 1169 */ 1170 if (!debug_locks) 1171 return true; 1172 1173 hash_head = keyhashentry(key); 1174 1175 rcu_read_lock(); 1176 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1177 if (k == key) { 1178 found = true; 1179 break; 1180 } 1181 } 1182 rcu_read_unlock(); 1183 1184 return found; 1185 } 1186 1187 /* 1188 * Register a lock's class in the hash-table, if the class is not present 1189 * yet. Otherwise we look it up. We cache the result in the lock object 1190 * itself, so actual lookup of the hash should be once per lock object. 1191 */ 1192 static struct lock_class * 1193 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1194 { 1195 struct lockdep_subclass_key *key; 1196 struct hlist_head *hash_head; 1197 struct lock_class *class; 1198 1199 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1200 1201 class = look_up_lock_class(lock, subclass); 1202 if (likely(class)) 1203 goto out_set_class_cache; 1204 1205 if (!lock->key) { 1206 if (!assign_lock_key(lock)) 1207 return NULL; 1208 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1209 return NULL; 1210 } 1211 1212 key = lock->key->subkeys + subclass; 1213 hash_head = classhashentry(key); 1214 1215 if (!graph_lock()) { 1216 return NULL; 1217 } 1218 /* 1219 * We have to do the hash-walk again, to avoid races 1220 * with another CPU: 1221 */ 1222 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1223 if (class->key == key) 1224 goto out_unlock_set; 1225 } 1226 1227 init_data_structures_once(); 1228 1229 /* Allocate a new lock class and add it to the hash. */ 1230 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1231 lock_entry); 1232 if (!class) { 1233 if (!debug_locks_off_graph_unlock()) { 1234 return NULL; 1235 } 1236 1237 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1238 dump_stack(); 1239 return NULL; 1240 } 1241 nr_lock_classes++; 1242 __set_bit(class - lock_classes, lock_classes_in_use); 1243 debug_atomic_inc(nr_unused_locks); 1244 class->key = key; 1245 class->name = lock->name; 1246 class->subclass = subclass; 1247 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1248 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1249 class->name_version = count_matching_names(class); 1250 class->wait_type_inner = lock->wait_type_inner; 1251 class->wait_type_outer = lock->wait_type_outer; 1252 /* 1253 * We use RCU's safe list-add method to make 1254 * parallel walking of the hash-list safe: 1255 */ 1256 hlist_add_head_rcu(&class->hash_entry, hash_head); 1257 /* 1258 * Remove the class from the free list and add it to the global list 1259 * of classes. 1260 */ 1261 list_move_tail(&class->lock_entry, &all_lock_classes); 1262 1263 if (verbose(class)) { 1264 graph_unlock(); 1265 1266 printk("\nnew class %px: %s", class->key, class->name); 1267 if (class->name_version > 1) 1268 printk(KERN_CONT "#%d", class->name_version); 1269 printk(KERN_CONT "\n"); 1270 dump_stack(); 1271 1272 if (!graph_lock()) { 1273 return NULL; 1274 } 1275 } 1276 out_unlock_set: 1277 graph_unlock(); 1278 1279 out_set_class_cache: 1280 if (!subclass || force) 1281 lock->class_cache[0] = class; 1282 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1283 lock->class_cache[subclass] = class; 1284 1285 /* 1286 * Hash collision, did we smoke some? We found a class with a matching 1287 * hash but the subclass -- which is hashed in -- didn't match. 1288 */ 1289 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1290 return NULL; 1291 1292 return class; 1293 } 1294 1295 #ifdef CONFIG_PROVE_LOCKING 1296 /* 1297 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1298 * with NULL on failure) 1299 */ 1300 static struct lock_list *alloc_list_entry(void) 1301 { 1302 int idx = find_first_zero_bit(list_entries_in_use, 1303 ARRAY_SIZE(list_entries)); 1304 1305 if (idx >= ARRAY_SIZE(list_entries)) { 1306 if (!debug_locks_off_graph_unlock()) 1307 return NULL; 1308 1309 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1310 dump_stack(); 1311 return NULL; 1312 } 1313 nr_list_entries++; 1314 __set_bit(idx, list_entries_in_use); 1315 return list_entries + idx; 1316 } 1317 1318 /* 1319 * Add a new dependency to the head of the list: 1320 */ 1321 static int add_lock_to_list(struct lock_class *this, 1322 struct lock_class *links_to, struct list_head *head, 1323 unsigned long ip, int distance, 1324 const struct lock_trace *trace) 1325 { 1326 struct lock_list *entry; 1327 /* 1328 * Lock not present yet - get a new dependency struct and 1329 * add it to the list: 1330 */ 1331 entry = alloc_list_entry(); 1332 if (!entry) 1333 return 0; 1334 1335 entry->class = this; 1336 entry->links_to = links_to; 1337 entry->distance = distance; 1338 entry->trace = trace; 1339 /* 1340 * Both allocation and removal are done under the graph lock; but 1341 * iteration is under RCU-sched; see look_up_lock_class() and 1342 * lockdep_free_key_range(). 1343 */ 1344 list_add_tail_rcu(&entry->entry, head); 1345 1346 return 1; 1347 } 1348 1349 /* 1350 * For good efficiency of modular, we use power of 2 1351 */ 1352 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL 1353 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1354 1355 /* 1356 * The circular_queue and helpers are used to implement graph 1357 * breadth-first search (BFS) algorithm, by which we can determine 1358 * whether there is a path from a lock to another. In deadlock checks, 1359 * a path from the next lock to be acquired to a previous held lock 1360 * indicates that adding the <prev> -> <next> lock dependency will 1361 * produce a circle in the graph. Breadth-first search instead of 1362 * depth-first search is used in order to find the shortest (circular) 1363 * path. 1364 */ 1365 struct circular_queue { 1366 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1367 unsigned int front, rear; 1368 }; 1369 1370 static struct circular_queue lock_cq; 1371 1372 unsigned int max_bfs_queue_depth; 1373 1374 static unsigned int lockdep_dependency_gen_id; 1375 1376 static inline void __cq_init(struct circular_queue *cq) 1377 { 1378 cq->front = cq->rear = 0; 1379 lockdep_dependency_gen_id++; 1380 } 1381 1382 static inline int __cq_empty(struct circular_queue *cq) 1383 { 1384 return (cq->front == cq->rear); 1385 } 1386 1387 static inline int __cq_full(struct circular_queue *cq) 1388 { 1389 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1390 } 1391 1392 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1393 { 1394 if (__cq_full(cq)) 1395 return -1; 1396 1397 cq->element[cq->rear] = elem; 1398 cq->rear = (cq->rear + 1) & CQ_MASK; 1399 return 0; 1400 } 1401 1402 /* 1403 * Dequeue an element from the circular_queue, return a lock_list if 1404 * the queue is not empty, or NULL if otherwise. 1405 */ 1406 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1407 { 1408 struct lock_list * lock; 1409 1410 if (__cq_empty(cq)) 1411 return NULL; 1412 1413 lock = cq->element[cq->front]; 1414 cq->front = (cq->front + 1) & CQ_MASK; 1415 1416 return lock; 1417 } 1418 1419 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1420 { 1421 return (cq->rear - cq->front) & CQ_MASK; 1422 } 1423 1424 static inline void mark_lock_accessed(struct lock_list *lock, 1425 struct lock_list *parent) 1426 { 1427 unsigned long nr; 1428 1429 nr = lock - list_entries; 1430 WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */ 1431 lock->parent = parent; 1432 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1433 } 1434 1435 static inline unsigned long lock_accessed(struct lock_list *lock) 1436 { 1437 unsigned long nr; 1438 1439 nr = lock - list_entries; 1440 WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */ 1441 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1442 } 1443 1444 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1445 { 1446 return child->parent; 1447 } 1448 1449 static inline int get_lock_depth(struct lock_list *child) 1450 { 1451 int depth = 0; 1452 struct lock_list *parent; 1453 1454 while ((parent = get_lock_parent(child))) { 1455 child = parent; 1456 depth++; 1457 } 1458 return depth; 1459 } 1460 1461 /* 1462 * Return the forward or backward dependency list. 1463 * 1464 * @lock: the lock_list to get its class's dependency list 1465 * @offset: the offset to struct lock_class to determine whether it is 1466 * locks_after or locks_before 1467 */ 1468 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1469 { 1470 void *lock_class = lock->class; 1471 1472 return lock_class + offset; 1473 } 1474 1475 /* 1476 * Forward- or backward-dependency search, used for both circular dependency 1477 * checking and hardirq-unsafe/softirq-unsafe checking. 1478 */ 1479 static int __bfs(struct lock_list *source_entry, 1480 void *data, 1481 int (*match)(struct lock_list *entry, void *data), 1482 struct lock_list **target_entry, 1483 int offset) 1484 { 1485 struct lock_list *entry; 1486 struct lock_list *lock; 1487 struct list_head *head; 1488 struct circular_queue *cq = &lock_cq; 1489 int ret = 1; 1490 1491 lockdep_assert_locked(); 1492 1493 if (match(source_entry, data)) { 1494 *target_entry = source_entry; 1495 ret = 0; 1496 goto exit; 1497 } 1498 1499 head = get_dep_list(source_entry, offset); 1500 if (list_empty(head)) 1501 goto exit; 1502 1503 __cq_init(cq); 1504 __cq_enqueue(cq, source_entry); 1505 1506 while ((lock = __cq_dequeue(cq))) { 1507 1508 if (!lock->class) { 1509 ret = -2; 1510 goto exit; 1511 } 1512 1513 head = get_dep_list(lock, offset); 1514 1515 list_for_each_entry_rcu(entry, head, entry) { 1516 if (!lock_accessed(entry)) { 1517 unsigned int cq_depth; 1518 mark_lock_accessed(entry, lock); 1519 if (match(entry, data)) { 1520 *target_entry = entry; 1521 ret = 0; 1522 goto exit; 1523 } 1524 1525 if (__cq_enqueue(cq, entry)) { 1526 ret = -1; 1527 goto exit; 1528 } 1529 cq_depth = __cq_get_elem_count(cq); 1530 if (max_bfs_queue_depth < cq_depth) 1531 max_bfs_queue_depth = cq_depth; 1532 } 1533 } 1534 } 1535 exit: 1536 return ret; 1537 } 1538 1539 static inline int __bfs_forwards(struct lock_list *src_entry, 1540 void *data, 1541 int (*match)(struct lock_list *entry, void *data), 1542 struct lock_list **target_entry) 1543 { 1544 return __bfs(src_entry, data, match, target_entry, 1545 offsetof(struct lock_class, locks_after)); 1546 1547 } 1548 1549 static inline int __bfs_backwards(struct lock_list *src_entry, 1550 void *data, 1551 int (*match)(struct lock_list *entry, void *data), 1552 struct lock_list **target_entry) 1553 { 1554 return __bfs(src_entry, data, match, target_entry, 1555 offsetof(struct lock_class, locks_before)); 1556 1557 } 1558 1559 static void print_lock_trace(const struct lock_trace *trace, 1560 unsigned int spaces) 1561 { 1562 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1563 } 1564 1565 /* 1566 * Print a dependency chain entry (this is only done when a deadlock 1567 * has been detected): 1568 */ 1569 static noinline void 1570 print_circular_bug_entry(struct lock_list *target, int depth) 1571 { 1572 if (debug_locks_silent) 1573 return; 1574 printk("\n-> #%u", depth); 1575 print_lock_name(target->class); 1576 printk(KERN_CONT ":\n"); 1577 print_lock_trace(target->trace, 6); 1578 } 1579 1580 static void 1581 print_circular_lock_scenario(struct held_lock *src, 1582 struct held_lock *tgt, 1583 struct lock_list *prt) 1584 { 1585 struct lock_class *source = hlock_class(src); 1586 struct lock_class *target = hlock_class(tgt); 1587 struct lock_class *parent = prt->class; 1588 1589 /* 1590 * A direct locking problem where unsafe_class lock is taken 1591 * directly by safe_class lock, then all we need to show 1592 * is the deadlock scenario, as it is obvious that the 1593 * unsafe lock is taken under the safe lock. 1594 * 1595 * But if there is a chain instead, where the safe lock takes 1596 * an intermediate lock (middle_class) where this lock is 1597 * not the same as the safe lock, then the lock chain is 1598 * used to describe the problem. Otherwise we would need 1599 * to show a different CPU case for each link in the chain 1600 * from the safe_class lock to the unsafe_class lock. 1601 */ 1602 if (parent != source) { 1603 printk("Chain exists of:\n "); 1604 __print_lock_name(source); 1605 printk(KERN_CONT " --> "); 1606 __print_lock_name(parent); 1607 printk(KERN_CONT " --> "); 1608 __print_lock_name(target); 1609 printk(KERN_CONT "\n\n"); 1610 } 1611 1612 printk(" Possible unsafe locking scenario:\n\n"); 1613 printk(" CPU0 CPU1\n"); 1614 printk(" ---- ----\n"); 1615 printk(" lock("); 1616 __print_lock_name(target); 1617 printk(KERN_CONT ");\n"); 1618 printk(" lock("); 1619 __print_lock_name(parent); 1620 printk(KERN_CONT ");\n"); 1621 printk(" lock("); 1622 __print_lock_name(target); 1623 printk(KERN_CONT ");\n"); 1624 printk(" lock("); 1625 __print_lock_name(source); 1626 printk(KERN_CONT ");\n"); 1627 printk("\n *** DEADLOCK ***\n\n"); 1628 } 1629 1630 /* 1631 * When a circular dependency is detected, print the 1632 * header first: 1633 */ 1634 static noinline void 1635 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1636 struct held_lock *check_src, 1637 struct held_lock *check_tgt) 1638 { 1639 struct task_struct *curr = current; 1640 1641 if (debug_locks_silent) 1642 return; 1643 1644 pr_warn("\n"); 1645 pr_warn("======================================================\n"); 1646 pr_warn("WARNING: possible circular locking dependency detected\n"); 1647 print_kernel_ident(); 1648 pr_warn("------------------------------------------------------\n"); 1649 pr_warn("%s/%d is trying to acquire lock:\n", 1650 curr->comm, task_pid_nr(curr)); 1651 print_lock(check_src); 1652 1653 pr_warn("\nbut task is already holding lock:\n"); 1654 1655 print_lock(check_tgt); 1656 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1657 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1658 1659 print_circular_bug_entry(entry, depth); 1660 } 1661 1662 static inline int class_equal(struct lock_list *entry, void *data) 1663 { 1664 return entry->class == data; 1665 } 1666 1667 static noinline void print_circular_bug(struct lock_list *this, 1668 struct lock_list *target, 1669 struct held_lock *check_src, 1670 struct held_lock *check_tgt) 1671 { 1672 struct task_struct *curr = current; 1673 struct lock_list *parent; 1674 struct lock_list *first_parent; 1675 int depth; 1676 1677 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1678 return; 1679 1680 this->trace = save_trace(); 1681 if (!this->trace) 1682 return; 1683 1684 depth = get_lock_depth(target); 1685 1686 print_circular_bug_header(target, depth, check_src, check_tgt); 1687 1688 parent = get_lock_parent(target); 1689 first_parent = parent; 1690 1691 while (parent) { 1692 print_circular_bug_entry(parent, --depth); 1693 parent = get_lock_parent(parent); 1694 } 1695 1696 printk("\nother info that might help us debug this:\n\n"); 1697 print_circular_lock_scenario(check_src, check_tgt, 1698 first_parent); 1699 1700 lockdep_print_held_locks(curr); 1701 1702 printk("\nstack backtrace:\n"); 1703 dump_stack(); 1704 } 1705 1706 static noinline void print_bfs_bug(int ret) 1707 { 1708 if (!debug_locks_off_graph_unlock()) 1709 return; 1710 1711 /* 1712 * Breadth-first-search failed, graph got corrupted? 1713 */ 1714 WARN(1, "lockdep bfs error:%d\n", ret); 1715 } 1716 1717 static int noop_count(struct lock_list *entry, void *data) 1718 { 1719 (*(unsigned long *)data)++; 1720 return 0; 1721 } 1722 1723 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 1724 { 1725 unsigned long count = 0; 1726 struct lock_list *target_entry; 1727 1728 __bfs_forwards(this, (void *)&count, noop_count, &target_entry); 1729 1730 return count; 1731 } 1732 unsigned long lockdep_count_forward_deps(struct lock_class *class) 1733 { 1734 unsigned long ret, flags; 1735 struct lock_list this; 1736 1737 this.parent = NULL; 1738 this.class = class; 1739 1740 raw_local_irq_save(flags); 1741 lockdep_lock(); 1742 ret = __lockdep_count_forward_deps(&this); 1743 lockdep_unlock(); 1744 raw_local_irq_restore(flags); 1745 1746 return ret; 1747 } 1748 1749 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 1750 { 1751 unsigned long count = 0; 1752 struct lock_list *target_entry; 1753 1754 __bfs_backwards(this, (void *)&count, noop_count, &target_entry); 1755 1756 return count; 1757 } 1758 1759 unsigned long lockdep_count_backward_deps(struct lock_class *class) 1760 { 1761 unsigned long ret, flags; 1762 struct lock_list this; 1763 1764 this.parent = NULL; 1765 this.class = class; 1766 1767 raw_local_irq_save(flags); 1768 lockdep_lock(); 1769 ret = __lockdep_count_backward_deps(&this); 1770 lockdep_unlock(); 1771 raw_local_irq_restore(flags); 1772 1773 return ret; 1774 } 1775 1776 /* 1777 * Check that the dependency graph starting at <src> can lead to 1778 * <target> or not. Print an error and return 0 if it does. 1779 */ 1780 static noinline int 1781 check_path(struct lock_class *target, struct lock_list *src_entry, 1782 struct lock_list **target_entry) 1783 { 1784 int ret; 1785 1786 ret = __bfs_forwards(src_entry, (void *)target, class_equal, 1787 target_entry); 1788 1789 if (unlikely(ret < 0)) 1790 print_bfs_bug(ret); 1791 1792 return ret; 1793 } 1794 1795 /* 1796 * Prove that the dependency graph starting at <src> can not 1797 * lead to <target>. If it can, there is a circle when adding 1798 * <target> -> <src> dependency. 1799 * 1800 * Print an error and return 0 if it does. 1801 */ 1802 static noinline int 1803 check_noncircular(struct held_lock *src, struct held_lock *target, 1804 struct lock_trace **const trace) 1805 { 1806 int ret; 1807 struct lock_list *target_entry; 1808 struct lock_list src_entry = { 1809 .class = hlock_class(src), 1810 .parent = NULL, 1811 }; 1812 1813 debug_atomic_inc(nr_cyclic_checks); 1814 1815 ret = check_path(hlock_class(target), &src_entry, &target_entry); 1816 1817 if (unlikely(!ret)) { 1818 if (!*trace) { 1819 /* 1820 * If save_trace fails here, the printing might 1821 * trigger a WARN but because of the !nr_entries it 1822 * should not do bad things. 1823 */ 1824 *trace = save_trace(); 1825 } 1826 1827 print_circular_bug(&src_entry, target_entry, src, target); 1828 } 1829 1830 return ret; 1831 } 1832 1833 #ifdef CONFIG_LOCKDEP_SMALL 1834 /* 1835 * Check that the dependency graph starting at <src> can lead to 1836 * <target> or not. If it can, <src> -> <target> dependency is already 1837 * in the graph. 1838 * 1839 * Print an error and return 2 if it does or 1 if it does not. 1840 */ 1841 static noinline int 1842 check_redundant(struct held_lock *src, struct held_lock *target) 1843 { 1844 int ret; 1845 struct lock_list *target_entry; 1846 struct lock_list src_entry = { 1847 .class = hlock_class(src), 1848 .parent = NULL, 1849 }; 1850 1851 debug_atomic_inc(nr_redundant_checks); 1852 1853 ret = check_path(hlock_class(target), &src_entry, &target_entry); 1854 1855 if (!ret) { 1856 debug_atomic_inc(nr_redundant); 1857 ret = 2; 1858 } else if (ret < 0) 1859 ret = 0; 1860 1861 return ret; 1862 } 1863 #endif 1864 1865 #ifdef CONFIG_TRACE_IRQFLAGS 1866 1867 static inline int usage_accumulate(struct lock_list *entry, void *mask) 1868 { 1869 *(unsigned long *)mask |= entry->class->usage_mask; 1870 1871 return 0; 1872 } 1873 1874 /* 1875 * Forwards and backwards subgraph searching, for the purposes of 1876 * proving that two subgraphs can be connected by a new dependency 1877 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 1878 */ 1879 1880 static inline int usage_match(struct lock_list *entry, void *mask) 1881 { 1882 return entry->class->usage_mask & *(unsigned long *)mask; 1883 } 1884 1885 /* 1886 * Find a node in the forwards-direction dependency sub-graph starting 1887 * at @root->class that matches @bit. 1888 * 1889 * Return 0 if such a node exists in the subgraph, and put that node 1890 * into *@target_entry. 1891 * 1892 * Return 1 otherwise and keep *@target_entry unchanged. 1893 * Return <0 on error. 1894 */ 1895 static int 1896 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 1897 struct lock_list **target_entry) 1898 { 1899 int result; 1900 1901 debug_atomic_inc(nr_find_usage_forwards_checks); 1902 1903 result = __bfs_forwards(root, &usage_mask, usage_match, target_entry); 1904 1905 return result; 1906 } 1907 1908 /* 1909 * Find a node in the backwards-direction dependency sub-graph starting 1910 * at @root->class that matches @bit. 1911 * 1912 * Return 0 if such a node exists in the subgraph, and put that node 1913 * into *@target_entry. 1914 * 1915 * Return 1 otherwise and keep *@target_entry unchanged. 1916 * Return <0 on error. 1917 */ 1918 static int 1919 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 1920 struct lock_list **target_entry) 1921 { 1922 int result; 1923 1924 debug_atomic_inc(nr_find_usage_backwards_checks); 1925 1926 result = __bfs_backwards(root, &usage_mask, usage_match, target_entry); 1927 1928 return result; 1929 } 1930 1931 static void print_lock_class_header(struct lock_class *class, int depth) 1932 { 1933 int bit; 1934 1935 printk("%*s->", depth, ""); 1936 print_lock_name(class); 1937 #ifdef CONFIG_DEBUG_LOCKDEP 1938 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 1939 #endif 1940 printk(KERN_CONT " {\n"); 1941 1942 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { 1943 if (class->usage_mask & (1 << bit)) { 1944 int len = depth; 1945 1946 len += printk("%*s %s", depth, "", usage_str[bit]); 1947 len += printk(KERN_CONT " at:\n"); 1948 print_lock_trace(class->usage_traces[bit], len); 1949 } 1950 } 1951 printk("%*s }\n", depth, ""); 1952 1953 printk("%*s ... key at: [<%px>] %pS\n", 1954 depth, "", class->key, class->key); 1955 } 1956 1957 /* 1958 * printk the shortest lock dependencies from @start to @end in reverse order: 1959 */ 1960 static void __used 1961 print_shortest_lock_dependencies(struct lock_list *leaf, 1962 struct lock_list *root) 1963 { 1964 struct lock_list *entry = leaf; 1965 int depth; 1966 1967 /*compute depth from generated tree by BFS*/ 1968 depth = get_lock_depth(leaf); 1969 1970 do { 1971 print_lock_class_header(entry->class, depth); 1972 printk("%*s ... acquired at:\n", depth, ""); 1973 print_lock_trace(entry->trace, 2); 1974 printk("\n"); 1975 1976 if (depth == 0 && (entry != root)) { 1977 printk("lockdep:%s bad path found in chain graph\n", __func__); 1978 break; 1979 } 1980 1981 entry = get_lock_parent(entry); 1982 depth--; 1983 } while (entry && (depth >= 0)); 1984 } 1985 1986 static void 1987 print_irq_lock_scenario(struct lock_list *safe_entry, 1988 struct lock_list *unsafe_entry, 1989 struct lock_class *prev_class, 1990 struct lock_class *next_class) 1991 { 1992 struct lock_class *safe_class = safe_entry->class; 1993 struct lock_class *unsafe_class = unsafe_entry->class; 1994 struct lock_class *middle_class = prev_class; 1995 1996 if (middle_class == safe_class) 1997 middle_class = next_class; 1998 1999 /* 2000 * A direct locking problem where unsafe_class lock is taken 2001 * directly by safe_class lock, then all we need to show 2002 * is the deadlock scenario, as it is obvious that the 2003 * unsafe lock is taken under the safe lock. 2004 * 2005 * But if there is a chain instead, where the safe lock takes 2006 * an intermediate lock (middle_class) where this lock is 2007 * not the same as the safe lock, then the lock chain is 2008 * used to describe the problem. Otherwise we would need 2009 * to show a different CPU case for each link in the chain 2010 * from the safe_class lock to the unsafe_class lock. 2011 */ 2012 if (middle_class != unsafe_class) { 2013 printk("Chain exists of:\n "); 2014 __print_lock_name(safe_class); 2015 printk(KERN_CONT " --> "); 2016 __print_lock_name(middle_class); 2017 printk(KERN_CONT " --> "); 2018 __print_lock_name(unsafe_class); 2019 printk(KERN_CONT "\n\n"); 2020 } 2021 2022 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2023 printk(" CPU0 CPU1\n"); 2024 printk(" ---- ----\n"); 2025 printk(" lock("); 2026 __print_lock_name(unsafe_class); 2027 printk(KERN_CONT ");\n"); 2028 printk(" local_irq_disable();\n"); 2029 printk(" lock("); 2030 __print_lock_name(safe_class); 2031 printk(KERN_CONT ");\n"); 2032 printk(" lock("); 2033 __print_lock_name(middle_class); 2034 printk(KERN_CONT ");\n"); 2035 printk(" <Interrupt>\n"); 2036 printk(" lock("); 2037 __print_lock_name(safe_class); 2038 printk(KERN_CONT ");\n"); 2039 printk("\n *** DEADLOCK ***\n\n"); 2040 } 2041 2042 static void 2043 print_bad_irq_dependency(struct task_struct *curr, 2044 struct lock_list *prev_root, 2045 struct lock_list *next_root, 2046 struct lock_list *backwards_entry, 2047 struct lock_list *forwards_entry, 2048 struct held_lock *prev, 2049 struct held_lock *next, 2050 enum lock_usage_bit bit1, 2051 enum lock_usage_bit bit2, 2052 const char *irqclass) 2053 { 2054 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2055 return; 2056 2057 pr_warn("\n"); 2058 pr_warn("=====================================================\n"); 2059 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2060 irqclass, irqclass); 2061 print_kernel_ident(); 2062 pr_warn("-----------------------------------------------------\n"); 2063 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2064 curr->comm, task_pid_nr(curr), 2065 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2066 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2067 lockdep_hardirqs_enabled(), 2068 curr->softirqs_enabled); 2069 print_lock(next); 2070 2071 pr_warn("\nand this task is already holding:\n"); 2072 print_lock(prev); 2073 pr_warn("which would create a new lock dependency:\n"); 2074 print_lock_name(hlock_class(prev)); 2075 pr_cont(" ->"); 2076 print_lock_name(hlock_class(next)); 2077 pr_cont("\n"); 2078 2079 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2080 irqclass); 2081 print_lock_name(backwards_entry->class); 2082 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2083 2084 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2085 2086 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2087 print_lock_name(forwards_entry->class); 2088 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2089 pr_warn("..."); 2090 2091 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2092 2093 pr_warn("\nother info that might help us debug this:\n\n"); 2094 print_irq_lock_scenario(backwards_entry, forwards_entry, 2095 hlock_class(prev), hlock_class(next)); 2096 2097 lockdep_print_held_locks(curr); 2098 2099 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2100 prev_root->trace = save_trace(); 2101 if (!prev_root->trace) 2102 return; 2103 print_shortest_lock_dependencies(backwards_entry, prev_root); 2104 2105 pr_warn("\nthe dependencies between the lock to be acquired"); 2106 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2107 next_root->trace = save_trace(); 2108 if (!next_root->trace) 2109 return; 2110 print_shortest_lock_dependencies(forwards_entry, next_root); 2111 2112 pr_warn("\nstack backtrace:\n"); 2113 dump_stack(); 2114 } 2115 2116 static const char *state_names[] = { 2117 #define LOCKDEP_STATE(__STATE) \ 2118 __stringify(__STATE), 2119 #include "lockdep_states.h" 2120 #undef LOCKDEP_STATE 2121 }; 2122 2123 static const char *state_rnames[] = { 2124 #define LOCKDEP_STATE(__STATE) \ 2125 __stringify(__STATE)"-READ", 2126 #include "lockdep_states.h" 2127 #undef LOCKDEP_STATE 2128 }; 2129 2130 static inline const char *state_name(enum lock_usage_bit bit) 2131 { 2132 if (bit & LOCK_USAGE_READ_MASK) 2133 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2134 else 2135 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2136 } 2137 2138 /* 2139 * The bit number is encoded like: 2140 * 2141 * bit0: 0 exclusive, 1 read lock 2142 * bit1: 0 used in irq, 1 irq enabled 2143 * bit2-n: state 2144 */ 2145 static int exclusive_bit(int new_bit) 2146 { 2147 int state = new_bit & LOCK_USAGE_STATE_MASK; 2148 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2149 2150 /* 2151 * keep state, bit flip the direction and strip read. 2152 */ 2153 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2154 } 2155 2156 /* 2157 * Observe that when given a bitmask where each bitnr is encoded as above, a 2158 * right shift of the mask transforms the individual bitnrs as -1 and 2159 * conversely, a left shift transforms into +1 for the individual bitnrs. 2160 * 2161 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2162 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2163 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2164 * 2165 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2166 * 2167 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2168 * all bits set) and recompose with bitnr1 flipped. 2169 */ 2170 static unsigned long invert_dir_mask(unsigned long mask) 2171 { 2172 unsigned long excl = 0; 2173 2174 /* Invert dir */ 2175 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2176 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2177 2178 return excl; 2179 } 2180 2181 /* 2182 * As above, we clear bitnr0 (LOCK_*_READ off) with bitmask ops. First, for all 2183 * bits with bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2184 * And then mask out all bitnr0. 2185 */ 2186 static unsigned long exclusive_mask(unsigned long mask) 2187 { 2188 unsigned long excl = invert_dir_mask(mask); 2189 2190 /* Strip read */ 2191 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2192 excl &= ~LOCKF_IRQ_READ; 2193 2194 return excl; 2195 } 2196 2197 /* 2198 * Retrieve the _possible_ original mask to which @mask is 2199 * exclusive. Ie: this is the opposite of exclusive_mask(). 2200 * Note that 2 possible original bits can match an exclusive 2201 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2202 * cleared. So both are returned for each exclusive bit. 2203 */ 2204 static unsigned long original_mask(unsigned long mask) 2205 { 2206 unsigned long excl = invert_dir_mask(mask); 2207 2208 /* Include read in existing usages */ 2209 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2210 2211 return excl; 2212 } 2213 2214 /* 2215 * Find the first pair of bit match between an original 2216 * usage mask and an exclusive usage mask. 2217 */ 2218 static int find_exclusive_match(unsigned long mask, 2219 unsigned long excl_mask, 2220 enum lock_usage_bit *bitp, 2221 enum lock_usage_bit *excl_bitp) 2222 { 2223 int bit, excl; 2224 2225 for_each_set_bit(bit, &mask, LOCK_USED) { 2226 excl = exclusive_bit(bit); 2227 if (excl_mask & lock_flag(excl)) { 2228 *bitp = bit; 2229 *excl_bitp = excl; 2230 return 0; 2231 } 2232 } 2233 return -1; 2234 } 2235 2236 /* 2237 * Prove that the new dependency does not connect a hardirq-safe(-read) 2238 * lock with a hardirq-unsafe lock - to achieve this we search 2239 * the backwards-subgraph starting at <prev>, and the 2240 * forwards-subgraph starting at <next>: 2241 */ 2242 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2243 struct held_lock *next) 2244 { 2245 unsigned long usage_mask = 0, forward_mask, backward_mask; 2246 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2247 struct lock_list *target_entry1; 2248 struct lock_list *target_entry; 2249 struct lock_list this, that; 2250 int ret; 2251 2252 /* 2253 * Step 1: gather all hard/soft IRQs usages backward in an 2254 * accumulated usage mask. 2255 */ 2256 this.parent = NULL; 2257 this.class = hlock_class(prev); 2258 2259 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL); 2260 if (ret < 0) { 2261 print_bfs_bug(ret); 2262 return 0; 2263 } 2264 2265 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2266 if (!usage_mask) 2267 return 1; 2268 2269 /* 2270 * Step 2: find exclusive uses forward that match the previous 2271 * backward accumulated mask. 2272 */ 2273 forward_mask = exclusive_mask(usage_mask); 2274 2275 that.parent = NULL; 2276 that.class = hlock_class(next); 2277 2278 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2279 if (ret < 0) { 2280 print_bfs_bug(ret); 2281 return 0; 2282 } 2283 if (ret == 1) 2284 return ret; 2285 2286 /* 2287 * Step 3: we found a bad match! Now retrieve a lock from the backward 2288 * list whose usage mask matches the exclusive usage mask from the 2289 * lock found on the forward list. 2290 */ 2291 backward_mask = original_mask(target_entry1->class->usage_mask); 2292 2293 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2294 if (ret < 0) { 2295 print_bfs_bug(ret); 2296 return 0; 2297 } 2298 if (DEBUG_LOCKS_WARN_ON(ret == 1)) 2299 return 1; 2300 2301 /* 2302 * Step 4: narrow down to a pair of incompatible usage bits 2303 * and report it. 2304 */ 2305 ret = find_exclusive_match(target_entry->class->usage_mask, 2306 target_entry1->class->usage_mask, 2307 &backward_bit, &forward_bit); 2308 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2309 return 1; 2310 2311 print_bad_irq_dependency(curr, &this, &that, 2312 target_entry, target_entry1, 2313 prev, next, 2314 backward_bit, forward_bit, 2315 state_name(backward_bit)); 2316 2317 return 0; 2318 } 2319 2320 #else 2321 2322 static inline int check_irq_usage(struct task_struct *curr, 2323 struct held_lock *prev, struct held_lock *next) 2324 { 2325 return 1; 2326 } 2327 #endif /* CONFIG_TRACE_IRQFLAGS */ 2328 2329 static void inc_chains(int irq_context) 2330 { 2331 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2332 nr_hardirq_chains++; 2333 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2334 nr_softirq_chains++; 2335 else 2336 nr_process_chains++; 2337 } 2338 2339 static void dec_chains(int irq_context) 2340 { 2341 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2342 nr_hardirq_chains--; 2343 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2344 nr_softirq_chains--; 2345 else 2346 nr_process_chains--; 2347 } 2348 2349 static void 2350 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2351 { 2352 struct lock_class *next = hlock_class(nxt); 2353 struct lock_class *prev = hlock_class(prv); 2354 2355 printk(" Possible unsafe locking scenario:\n\n"); 2356 printk(" CPU0\n"); 2357 printk(" ----\n"); 2358 printk(" lock("); 2359 __print_lock_name(prev); 2360 printk(KERN_CONT ");\n"); 2361 printk(" lock("); 2362 __print_lock_name(next); 2363 printk(KERN_CONT ");\n"); 2364 printk("\n *** DEADLOCK ***\n\n"); 2365 printk(" May be due to missing lock nesting notation\n\n"); 2366 } 2367 2368 static void 2369 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2370 struct held_lock *next) 2371 { 2372 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2373 return; 2374 2375 pr_warn("\n"); 2376 pr_warn("============================================\n"); 2377 pr_warn("WARNING: possible recursive locking detected\n"); 2378 print_kernel_ident(); 2379 pr_warn("--------------------------------------------\n"); 2380 pr_warn("%s/%d is trying to acquire lock:\n", 2381 curr->comm, task_pid_nr(curr)); 2382 print_lock(next); 2383 pr_warn("\nbut task is already holding lock:\n"); 2384 print_lock(prev); 2385 2386 pr_warn("\nother info that might help us debug this:\n"); 2387 print_deadlock_scenario(next, prev); 2388 lockdep_print_held_locks(curr); 2389 2390 pr_warn("\nstack backtrace:\n"); 2391 dump_stack(); 2392 } 2393 2394 /* 2395 * Check whether we are holding such a class already. 2396 * 2397 * (Note that this has to be done separately, because the graph cannot 2398 * detect such classes of deadlocks.) 2399 * 2400 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read 2401 */ 2402 static int 2403 check_deadlock(struct task_struct *curr, struct held_lock *next) 2404 { 2405 struct held_lock *prev; 2406 struct held_lock *nest = NULL; 2407 int i; 2408 2409 for (i = 0; i < curr->lockdep_depth; i++) { 2410 prev = curr->held_locks + i; 2411 2412 if (prev->instance == next->nest_lock) 2413 nest = prev; 2414 2415 if (hlock_class(prev) != hlock_class(next)) 2416 continue; 2417 2418 /* 2419 * Allow read-after-read recursion of the same 2420 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2421 */ 2422 if ((next->read == 2) && prev->read) 2423 return 2; 2424 2425 /* 2426 * We're holding the nest_lock, which serializes this lock's 2427 * nesting behaviour. 2428 */ 2429 if (nest) 2430 return 2; 2431 2432 print_deadlock_bug(curr, prev, next); 2433 return 0; 2434 } 2435 return 1; 2436 } 2437 2438 /* 2439 * There was a chain-cache miss, and we are about to add a new dependency 2440 * to a previous lock. We validate the following rules: 2441 * 2442 * - would the adding of the <prev> -> <next> dependency create a 2443 * circular dependency in the graph? [== circular deadlock] 2444 * 2445 * - does the new prev->next dependency connect any hardirq-safe lock 2446 * (in the full backwards-subgraph starting at <prev>) with any 2447 * hardirq-unsafe lock (in the full forwards-subgraph starting at 2448 * <next>)? [== illegal lock inversion with hardirq contexts] 2449 * 2450 * - does the new prev->next dependency connect any softirq-safe lock 2451 * (in the full backwards-subgraph starting at <prev>) with any 2452 * softirq-unsafe lock (in the full forwards-subgraph starting at 2453 * <next>)? [== illegal lock inversion with softirq contexts] 2454 * 2455 * any of these scenarios could lead to a deadlock. 2456 * 2457 * Then if all the validations pass, we add the forwards and backwards 2458 * dependency. 2459 */ 2460 static int 2461 check_prev_add(struct task_struct *curr, struct held_lock *prev, 2462 struct held_lock *next, int distance, 2463 struct lock_trace **const trace) 2464 { 2465 struct lock_list *entry; 2466 int ret; 2467 2468 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 2469 /* 2470 * The warning statements below may trigger a use-after-free 2471 * of the class name. It is better to trigger a use-after free 2472 * and to have the class name most of the time instead of not 2473 * having the class name available. 2474 */ 2475 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 2476 "Detected use-after-free of lock class %px/%s\n", 2477 hlock_class(prev), 2478 hlock_class(prev)->name); 2479 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 2480 "Detected use-after-free of lock class %px/%s\n", 2481 hlock_class(next), 2482 hlock_class(next)->name); 2483 return 2; 2484 } 2485 2486 /* 2487 * Prove that the new <prev> -> <next> dependency would not 2488 * create a circular dependency in the graph. (We do this by 2489 * a breadth-first search into the graph starting at <next>, 2490 * and check whether we can reach <prev>.) 2491 * 2492 * The search is limited by the size of the circular queue (i.e., 2493 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 2494 * in the graph whose neighbours are to be checked. 2495 */ 2496 ret = check_noncircular(next, prev, trace); 2497 if (unlikely(ret <= 0)) 2498 return 0; 2499 2500 if (!check_irq_usage(curr, prev, next)) 2501 return 0; 2502 2503 /* 2504 * For recursive read-locks we do all the dependency checks, 2505 * but we dont store read-triggered dependencies (only 2506 * write-triggered dependencies). This ensures that only the 2507 * write-side dependencies matter, and that if for example a 2508 * write-lock never takes any other locks, then the reads are 2509 * equivalent to a NOP. 2510 */ 2511 if (next->read == 2 || prev->read == 2) 2512 return 1; 2513 /* 2514 * Is the <prev> -> <next> dependency already present? 2515 * 2516 * (this may occur even though this is a new chain: consider 2517 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 2518 * chains - the second one will be new, but L1 already has 2519 * L2 added to its dependency list, due to the first chain.) 2520 */ 2521 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 2522 if (entry->class == hlock_class(next)) { 2523 if (distance == 1) 2524 entry->distance = 1; 2525 return 1; 2526 } 2527 } 2528 2529 #ifdef CONFIG_LOCKDEP_SMALL 2530 /* 2531 * Is the <prev> -> <next> link redundant? 2532 */ 2533 ret = check_redundant(prev, next); 2534 if (ret != 1) 2535 return ret; 2536 #endif 2537 2538 if (!*trace) { 2539 *trace = save_trace(); 2540 if (!*trace) 2541 return 0; 2542 } 2543 2544 /* 2545 * Ok, all validations passed, add the new lock 2546 * to the previous lock's dependency list: 2547 */ 2548 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 2549 &hlock_class(prev)->locks_after, 2550 next->acquire_ip, distance, *trace); 2551 2552 if (!ret) 2553 return 0; 2554 2555 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 2556 &hlock_class(next)->locks_before, 2557 next->acquire_ip, distance, *trace); 2558 if (!ret) 2559 return 0; 2560 2561 return 2; 2562 } 2563 2564 /* 2565 * Add the dependency to all directly-previous locks that are 'relevant'. 2566 * The ones that are relevant are (in increasing distance from curr): 2567 * all consecutive trylock entries and the final non-trylock entry - or 2568 * the end of this context's lock-chain - whichever comes first. 2569 */ 2570 static int 2571 check_prevs_add(struct task_struct *curr, struct held_lock *next) 2572 { 2573 struct lock_trace *trace = NULL; 2574 int depth = curr->lockdep_depth; 2575 struct held_lock *hlock; 2576 2577 /* 2578 * Debugging checks. 2579 * 2580 * Depth must not be zero for a non-head lock: 2581 */ 2582 if (!depth) 2583 goto out_bug; 2584 /* 2585 * At least two relevant locks must exist for this 2586 * to be a head: 2587 */ 2588 if (curr->held_locks[depth].irq_context != 2589 curr->held_locks[depth-1].irq_context) 2590 goto out_bug; 2591 2592 for (;;) { 2593 int distance = curr->lockdep_depth - depth + 1; 2594 hlock = curr->held_locks + depth - 1; 2595 2596 /* 2597 * Only non-recursive-read entries get new dependencies 2598 * added: 2599 */ 2600 if (hlock->read != 2 && hlock->check) { 2601 int ret = check_prev_add(curr, hlock, next, distance, 2602 &trace); 2603 if (!ret) 2604 return 0; 2605 2606 /* 2607 * Stop after the first non-trylock entry, 2608 * as non-trylock entries have added their 2609 * own direct dependencies already, so this 2610 * lock is connected to them indirectly: 2611 */ 2612 if (!hlock->trylock) 2613 break; 2614 } 2615 2616 depth--; 2617 /* 2618 * End of lock-stack? 2619 */ 2620 if (!depth) 2621 break; 2622 /* 2623 * Stop the search if we cross into another context: 2624 */ 2625 if (curr->held_locks[depth].irq_context != 2626 curr->held_locks[depth-1].irq_context) 2627 break; 2628 } 2629 return 1; 2630 out_bug: 2631 if (!debug_locks_off_graph_unlock()) 2632 return 0; 2633 2634 /* 2635 * Clearly we all shouldn't be here, but since we made it we 2636 * can reliable say we messed up our state. See the above two 2637 * gotos for reasons why we could possibly end up here. 2638 */ 2639 WARN_ON(1); 2640 2641 return 0; 2642 } 2643 2644 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 2645 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 2646 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 2647 unsigned long nr_zapped_lock_chains; 2648 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 2649 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 2650 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 2651 2652 /* 2653 * The first 2 chain_hlocks entries in the chain block in the bucket 2654 * list contains the following meta data: 2655 * 2656 * entry[0]: 2657 * Bit 15 - always set to 1 (it is not a class index) 2658 * Bits 0-14 - upper 15 bits of the next block index 2659 * entry[1] - lower 16 bits of next block index 2660 * 2661 * A next block index of all 1 bits means it is the end of the list. 2662 * 2663 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 2664 * the chain block size: 2665 * 2666 * entry[2] - upper 16 bits of the chain block size 2667 * entry[3] - lower 16 bits of the chain block size 2668 */ 2669 #define MAX_CHAIN_BUCKETS 16 2670 #define CHAIN_BLK_FLAG (1U << 15) 2671 #define CHAIN_BLK_LIST_END 0xFFFFU 2672 2673 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 2674 2675 static inline int size_to_bucket(int size) 2676 { 2677 if (size > MAX_CHAIN_BUCKETS) 2678 return 0; 2679 2680 return size - 1; 2681 } 2682 2683 /* 2684 * Iterate all the chain blocks in a bucket. 2685 */ 2686 #define for_each_chain_block(bucket, prev, curr) \ 2687 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 2688 (curr) >= 0; \ 2689 (prev) = (curr), (curr) = chain_block_next(curr)) 2690 2691 /* 2692 * next block or -1 2693 */ 2694 static inline int chain_block_next(int offset) 2695 { 2696 int next = chain_hlocks[offset]; 2697 2698 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 2699 2700 if (next == CHAIN_BLK_LIST_END) 2701 return -1; 2702 2703 next &= ~CHAIN_BLK_FLAG; 2704 next <<= 16; 2705 next |= chain_hlocks[offset + 1]; 2706 2707 return next; 2708 } 2709 2710 /* 2711 * bucket-0 only 2712 */ 2713 static inline int chain_block_size(int offset) 2714 { 2715 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 2716 } 2717 2718 static inline void init_chain_block(int offset, int next, int bucket, int size) 2719 { 2720 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 2721 chain_hlocks[offset + 1] = (u16)next; 2722 2723 if (size && !bucket) { 2724 chain_hlocks[offset + 2] = size >> 16; 2725 chain_hlocks[offset + 3] = (u16)size; 2726 } 2727 } 2728 2729 static inline void add_chain_block(int offset, int size) 2730 { 2731 int bucket = size_to_bucket(size); 2732 int next = chain_block_buckets[bucket]; 2733 int prev, curr; 2734 2735 if (unlikely(size < 2)) { 2736 /* 2737 * We can't store single entries on the freelist. Leak them. 2738 * 2739 * One possible way out would be to uniquely mark them, other 2740 * than with CHAIN_BLK_FLAG, such that we can recover them when 2741 * the block before it is re-added. 2742 */ 2743 if (size) 2744 nr_lost_chain_hlocks++; 2745 return; 2746 } 2747 2748 nr_free_chain_hlocks += size; 2749 if (!bucket) { 2750 nr_large_chain_blocks++; 2751 2752 /* 2753 * Variable sized, sort large to small. 2754 */ 2755 for_each_chain_block(0, prev, curr) { 2756 if (size >= chain_block_size(curr)) 2757 break; 2758 } 2759 init_chain_block(offset, curr, 0, size); 2760 if (prev < 0) 2761 chain_block_buckets[0] = offset; 2762 else 2763 init_chain_block(prev, offset, 0, 0); 2764 return; 2765 } 2766 /* 2767 * Fixed size, add to head. 2768 */ 2769 init_chain_block(offset, next, bucket, size); 2770 chain_block_buckets[bucket] = offset; 2771 } 2772 2773 /* 2774 * Only the first block in the list can be deleted. 2775 * 2776 * For the variable size bucket[0], the first block (the largest one) is 2777 * returned, broken up and put back into the pool. So if a chain block of 2778 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 2779 * queued up after the primordial chain block and never be used until the 2780 * hlock entries in the primordial chain block is almost used up. That 2781 * causes fragmentation and reduce allocation efficiency. That can be 2782 * monitored by looking at the "large chain blocks" number in lockdep_stats. 2783 */ 2784 static inline void del_chain_block(int bucket, int size, int next) 2785 { 2786 nr_free_chain_hlocks -= size; 2787 chain_block_buckets[bucket] = next; 2788 2789 if (!bucket) 2790 nr_large_chain_blocks--; 2791 } 2792 2793 static void init_chain_block_buckets(void) 2794 { 2795 int i; 2796 2797 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 2798 chain_block_buckets[i] = -1; 2799 2800 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 2801 } 2802 2803 /* 2804 * Return offset of a chain block of the right size or -1 if not found. 2805 * 2806 * Fairly simple worst-fit allocator with the addition of a number of size 2807 * specific free lists. 2808 */ 2809 static int alloc_chain_hlocks(int req) 2810 { 2811 int bucket, curr, size; 2812 2813 /* 2814 * We rely on the MSB to act as an escape bit to denote freelist 2815 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 2816 */ 2817 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 2818 2819 init_data_structures_once(); 2820 2821 if (nr_free_chain_hlocks < req) 2822 return -1; 2823 2824 /* 2825 * We require a minimum of 2 (u16) entries to encode a freelist 2826 * 'pointer'. 2827 */ 2828 req = max(req, 2); 2829 bucket = size_to_bucket(req); 2830 curr = chain_block_buckets[bucket]; 2831 2832 if (bucket) { 2833 if (curr >= 0) { 2834 del_chain_block(bucket, req, chain_block_next(curr)); 2835 return curr; 2836 } 2837 /* Try bucket 0 */ 2838 curr = chain_block_buckets[0]; 2839 } 2840 2841 /* 2842 * The variable sized freelist is sorted by size; the first entry is 2843 * the largest. Use it if it fits. 2844 */ 2845 if (curr >= 0) { 2846 size = chain_block_size(curr); 2847 if (likely(size >= req)) { 2848 del_chain_block(0, size, chain_block_next(curr)); 2849 add_chain_block(curr + req, size - req); 2850 return curr; 2851 } 2852 } 2853 2854 /* 2855 * Last resort, split a block in a larger sized bucket. 2856 */ 2857 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 2858 bucket = size_to_bucket(size); 2859 curr = chain_block_buckets[bucket]; 2860 if (curr < 0) 2861 continue; 2862 2863 del_chain_block(bucket, size, chain_block_next(curr)); 2864 add_chain_block(curr + req, size - req); 2865 return curr; 2866 } 2867 2868 return -1; 2869 } 2870 2871 static inline void free_chain_hlocks(int base, int size) 2872 { 2873 add_chain_block(base, max(size, 2)); 2874 } 2875 2876 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 2877 { 2878 return lock_classes + chain_hlocks[chain->base + i]; 2879 } 2880 2881 /* 2882 * Returns the index of the first held_lock of the current chain 2883 */ 2884 static inline int get_first_held_lock(struct task_struct *curr, 2885 struct held_lock *hlock) 2886 { 2887 int i; 2888 struct held_lock *hlock_curr; 2889 2890 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 2891 hlock_curr = curr->held_locks + i; 2892 if (hlock_curr->irq_context != hlock->irq_context) 2893 break; 2894 2895 } 2896 2897 return ++i; 2898 } 2899 2900 #ifdef CONFIG_DEBUG_LOCKDEP 2901 /* 2902 * Returns the next chain_key iteration 2903 */ 2904 static u64 print_chain_key_iteration(int class_idx, u64 chain_key) 2905 { 2906 u64 new_chain_key = iterate_chain_key(chain_key, class_idx); 2907 2908 printk(" class_idx:%d -> chain_key:%016Lx", 2909 class_idx, 2910 (unsigned long long)new_chain_key); 2911 return new_chain_key; 2912 } 2913 2914 static void 2915 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 2916 { 2917 struct held_lock *hlock; 2918 u64 chain_key = INITIAL_CHAIN_KEY; 2919 int depth = curr->lockdep_depth; 2920 int i = get_first_held_lock(curr, hlock_next); 2921 2922 printk("depth: %u (irq_context %u)\n", depth - i + 1, 2923 hlock_next->irq_context); 2924 for (; i < depth; i++) { 2925 hlock = curr->held_locks + i; 2926 chain_key = print_chain_key_iteration(hlock->class_idx, chain_key); 2927 2928 print_lock(hlock); 2929 } 2930 2931 print_chain_key_iteration(hlock_next->class_idx, chain_key); 2932 print_lock(hlock_next); 2933 } 2934 2935 static void print_chain_keys_chain(struct lock_chain *chain) 2936 { 2937 int i; 2938 u64 chain_key = INITIAL_CHAIN_KEY; 2939 int class_id; 2940 2941 printk("depth: %u\n", chain->depth); 2942 for (i = 0; i < chain->depth; i++) { 2943 class_id = chain_hlocks[chain->base + i]; 2944 chain_key = print_chain_key_iteration(class_id, chain_key); 2945 2946 print_lock_name(lock_classes + class_id); 2947 printk("\n"); 2948 } 2949 } 2950 2951 static void print_collision(struct task_struct *curr, 2952 struct held_lock *hlock_next, 2953 struct lock_chain *chain) 2954 { 2955 pr_warn("\n"); 2956 pr_warn("============================\n"); 2957 pr_warn("WARNING: chain_key collision\n"); 2958 print_kernel_ident(); 2959 pr_warn("----------------------------\n"); 2960 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 2961 pr_warn("Hash chain already cached but the contents don't match!\n"); 2962 2963 pr_warn("Held locks:"); 2964 print_chain_keys_held_locks(curr, hlock_next); 2965 2966 pr_warn("Locks in cached chain:"); 2967 print_chain_keys_chain(chain); 2968 2969 pr_warn("\nstack backtrace:\n"); 2970 dump_stack(); 2971 } 2972 #endif 2973 2974 /* 2975 * Checks whether the chain and the current held locks are consistent 2976 * in depth and also in content. If they are not it most likely means 2977 * that there was a collision during the calculation of the chain_key. 2978 * Returns: 0 not passed, 1 passed 2979 */ 2980 static int check_no_collision(struct task_struct *curr, 2981 struct held_lock *hlock, 2982 struct lock_chain *chain) 2983 { 2984 #ifdef CONFIG_DEBUG_LOCKDEP 2985 int i, j, id; 2986 2987 i = get_first_held_lock(curr, hlock); 2988 2989 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 2990 print_collision(curr, hlock, chain); 2991 return 0; 2992 } 2993 2994 for (j = 0; j < chain->depth - 1; j++, i++) { 2995 id = curr->held_locks[i].class_idx; 2996 2997 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 2998 print_collision(curr, hlock, chain); 2999 return 0; 3000 } 3001 } 3002 #endif 3003 return 1; 3004 } 3005 3006 /* 3007 * Given an index that is >= -1, return the index of the next lock chain. 3008 * Return -2 if there is no next lock chain. 3009 */ 3010 long lockdep_next_lockchain(long i) 3011 { 3012 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3013 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3014 } 3015 3016 unsigned long lock_chain_count(void) 3017 { 3018 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3019 } 3020 3021 /* Must be called with the graph lock held. */ 3022 static struct lock_chain *alloc_lock_chain(void) 3023 { 3024 int idx = find_first_zero_bit(lock_chains_in_use, 3025 ARRAY_SIZE(lock_chains)); 3026 3027 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3028 return NULL; 3029 __set_bit(idx, lock_chains_in_use); 3030 return lock_chains + idx; 3031 } 3032 3033 /* 3034 * Adds a dependency chain into chain hashtable. And must be called with 3035 * graph_lock held. 3036 * 3037 * Return 0 if fail, and graph_lock is released. 3038 * Return 1 if succeed, with graph_lock held. 3039 */ 3040 static inline int add_chain_cache(struct task_struct *curr, 3041 struct held_lock *hlock, 3042 u64 chain_key) 3043 { 3044 struct lock_class *class = hlock_class(hlock); 3045 struct hlist_head *hash_head = chainhashentry(chain_key); 3046 struct lock_chain *chain; 3047 int i, j; 3048 3049 /* 3050 * The caller must hold the graph lock, ensure we've got IRQs 3051 * disabled to make this an IRQ-safe lock.. for recursion reasons 3052 * lockdep won't complain about its own locking errors. 3053 */ 3054 if (lockdep_assert_locked()) 3055 return 0; 3056 3057 chain = alloc_lock_chain(); 3058 if (!chain) { 3059 if (!debug_locks_off_graph_unlock()) 3060 return 0; 3061 3062 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3063 dump_stack(); 3064 return 0; 3065 } 3066 chain->chain_key = chain_key; 3067 chain->irq_context = hlock->irq_context; 3068 i = get_first_held_lock(curr, hlock); 3069 chain->depth = curr->lockdep_depth + 1 - i; 3070 3071 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3072 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3073 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3074 3075 j = alloc_chain_hlocks(chain->depth); 3076 if (j < 0) { 3077 if (!debug_locks_off_graph_unlock()) 3078 return 0; 3079 3080 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3081 dump_stack(); 3082 return 0; 3083 } 3084 3085 chain->base = j; 3086 for (j = 0; j < chain->depth - 1; j++, i++) { 3087 int lock_id = curr->held_locks[i].class_idx; 3088 3089 chain_hlocks[chain->base + j] = lock_id; 3090 } 3091 chain_hlocks[chain->base + j] = class - lock_classes; 3092 hlist_add_head_rcu(&chain->entry, hash_head); 3093 debug_atomic_inc(chain_lookup_misses); 3094 inc_chains(chain->irq_context); 3095 3096 return 1; 3097 } 3098 3099 /* 3100 * Look up a dependency chain. Must be called with either the graph lock or 3101 * the RCU read lock held. 3102 */ 3103 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3104 { 3105 struct hlist_head *hash_head = chainhashentry(chain_key); 3106 struct lock_chain *chain; 3107 3108 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3109 if (READ_ONCE(chain->chain_key) == chain_key) { 3110 debug_atomic_inc(chain_lookup_hits); 3111 return chain; 3112 } 3113 } 3114 return NULL; 3115 } 3116 3117 /* 3118 * If the key is not present yet in dependency chain cache then 3119 * add it and return 1 - in this case the new dependency chain is 3120 * validated. If the key is already hashed, return 0. 3121 * (On return with 1 graph_lock is held.) 3122 */ 3123 static inline int lookup_chain_cache_add(struct task_struct *curr, 3124 struct held_lock *hlock, 3125 u64 chain_key) 3126 { 3127 struct lock_class *class = hlock_class(hlock); 3128 struct lock_chain *chain = lookup_chain_cache(chain_key); 3129 3130 if (chain) { 3131 cache_hit: 3132 if (!check_no_collision(curr, hlock, chain)) 3133 return 0; 3134 3135 if (very_verbose(class)) { 3136 printk("\nhash chain already cached, key: " 3137 "%016Lx tail class: [%px] %s\n", 3138 (unsigned long long)chain_key, 3139 class->key, class->name); 3140 } 3141 3142 return 0; 3143 } 3144 3145 if (very_verbose(class)) { 3146 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3147 (unsigned long long)chain_key, class->key, class->name); 3148 } 3149 3150 if (!graph_lock()) 3151 return 0; 3152 3153 /* 3154 * We have to walk the chain again locked - to avoid duplicates: 3155 */ 3156 chain = lookup_chain_cache(chain_key); 3157 if (chain) { 3158 graph_unlock(); 3159 goto cache_hit; 3160 } 3161 3162 if (!add_chain_cache(curr, hlock, chain_key)) 3163 return 0; 3164 3165 return 1; 3166 } 3167 3168 static int validate_chain(struct task_struct *curr, 3169 struct held_lock *hlock, 3170 int chain_head, u64 chain_key) 3171 { 3172 /* 3173 * Trylock needs to maintain the stack of held locks, but it 3174 * does not add new dependencies, because trylock can be done 3175 * in any order. 3176 * 3177 * We look up the chain_key and do the O(N^2) check and update of 3178 * the dependencies only if this is a new dependency chain. 3179 * (If lookup_chain_cache_add() return with 1 it acquires 3180 * graph_lock for us) 3181 */ 3182 if (!hlock->trylock && hlock->check && 3183 lookup_chain_cache_add(curr, hlock, chain_key)) { 3184 /* 3185 * Check whether last held lock: 3186 * 3187 * - is irq-safe, if this lock is irq-unsafe 3188 * - is softirq-safe, if this lock is hardirq-unsafe 3189 * 3190 * And check whether the new lock's dependency graph 3191 * could lead back to the previous lock: 3192 * 3193 * - within the current held-lock stack 3194 * - across our accumulated lock dependency records 3195 * 3196 * any of these scenarios could lead to a deadlock. 3197 */ 3198 /* 3199 * The simple case: does the current hold the same lock 3200 * already? 3201 */ 3202 int ret = check_deadlock(curr, hlock); 3203 3204 if (!ret) 3205 return 0; 3206 /* 3207 * Mark recursive read, as we jump over it when 3208 * building dependencies (just like we jump over 3209 * trylock entries): 3210 */ 3211 if (ret == 2) 3212 hlock->read = 2; 3213 /* 3214 * Add dependency only if this lock is not the head 3215 * of the chain, and if it's not a secondary read-lock: 3216 */ 3217 if (!chain_head && ret != 2) { 3218 if (!check_prevs_add(curr, hlock)) 3219 return 0; 3220 } 3221 3222 graph_unlock(); 3223 } else { 3224 /* after lookup_chain_cache_add(): */ 3225 if (unlikely(!debug_locks)) 3226 return 0; 3227 } 3228 3229 return 1; 3230 } 3231 #else 3232 static inline int validate_chain(struct task_struct *curr, 3233 struct held_lock *hlock, 3234 int chain_head, u64 chain_key) 3235 { 3236 return 1; 3237 } 3238 3239 static void init_chain_block_buckets(void) { } 3240 #endif /* CONFIG_PROVE_LOCKING */ 3241 3242 /* 3243 * We are building curr_chain_key incrementally, so double-check 3244 * it from scratch, to make sure that it's done correctly: 3245 */ 3246 static void check_chain_key(struct task_struct *curr) 3247 { 3248 #ifdef CONFIG_DEBUG_LOCKDEP 3249 struct held_lock *hlock, *prev_hlock = NULL; 3250 unsigned int i; 3251 u64 chain_key = INITIAL_CHAIN_KEY; 3252 3253 for (i = 0; i < curr->lockdep_depth; i++) { 3254 hlock = curr->held_locks + i; 3255 if (chain_key != hlock->prev_chain_key) { 3256 debug_locks_off(); 3257 /* 3258 * We got mighty confused, our chain keys don't match 3259 * with what we expect, someone trample on our task state? 3260 */ 3261 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3262 curr->lockdep_depth, i, 3263 (unsigned long long)chain_key, 3264 (unsigned long long)hlock->prev_chain_key); 3265 return; 3266 } 3267 3268 /* 3269 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3270 * it registered lock class index? 3271 */ 3272 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3273 return; 3274 3275 if (prev_hlock && (prev_hlock->irq_context != 3276 hlock->irq_context)) 3277 chain_key = INITIAL_CHAIN_KEY; 3278 chain_key = iterate_chain_key(chain_key, hlock->class_idx); 3279 prev_hlock = hlock; 3280 } 3281 if (chain_key != curr->curr_chain_key) { 3282 debug_locks_off(); 3283 /* 3284 * More smoking hash instead of calculating it, damn see these 3285 * numbers float.. I bet that a pink elephant stepped on my memory. 3286 */ 3287 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3288 curr->lockdep_depth, i, 3289 (unsigned long long)chain_key, 3290 (unsigned long long)curr->curr_chain_key); 3291 } 3292 #endif 3293 } 3294 3295 #ifdef CONFIG_PROVE_LOCKING 3296 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3297 enum lock_usage_bit new_bit); 3298 3299 static void print_usage_bug_scenario(struct held_lock *lock) 3300 { 3301 struct lock_class *class = hlock_class(lock); 3302 3303 printk(" Possible unsafe locking scenario:\n\n"); 3304 printk(" CPU0\n"); 3305 printk(" ----\n"); 3306 printk(" lock("); 3307 __print_lock_name(class); 3308 printk(KERN_CONT ");\n"); 3309 printk(" <Interrupt>\n"); 3310 printk(" lock("); 3311 __print_lock_name(class); 3312 printk(KERN_CONT ");\n"); 3313 printk("\n *** DEADLOCK ***\n\n"); 3314 } 3315 3316 static void 3317 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3318 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3319 { 3320 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3321 return; 3322 3323 pr_warn("\n"); 3324 pr_warn("================================\n"); 3325 pr_warn("WARNING: inconsistent lock state\n"); 3326 print_kernel_ident(); 3327 pr_warn("--------------------------------\n"); 3328 3329 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3330 usage_str[prev_bit], usage_str[new_bit]); 3331 3332 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3333 curr->comm, task_pid_nr(curr), 3334 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3335 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3336 lockdep_hardirqs_enabled(), 3337 lockdep_softirqs_enabled(curr)); 3338 print_lock(this); 3339 3340 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3341 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3342 3343 print_irqtrace_events(curr); 3344 pr_warn("\nother info that might help us debug this:\n"); 3345 print_usage_bug_scenario(this); 3346 3347 lockdep_print_held_locks(curr); 3348 3349 pr_warn("\nstack backtrace:\n"); 3350 dump_stack(); 3351 } 3352 3353 /* 3354 * Print out an error if an invalid bit is set: 3355 */ 3356 static inline int 3357 valid_state(struct task_struct *curr, struct held_lock *this, 3358 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3359 { 3360 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3361 print_usage_bug(curr, this, bad_bit, new_bit); 3362 return 0; 3363 } 3364 return 1; 3365 } 3366 3367 3368 /* 3369 * print irq inversion bug: 3370 */ 3371 static void 3372 print_irq_inversion_bug(struct task_struct *curr, 3373 struct lock_list *root, struct lock_list *other, 3374 struct held_lock *this, int forwards, 3375 const char *irqclass) 3376 { 3377 struct lock_list *entry = other; 3378 struct lock_list *middle = NULL; 3379 int depth; 3380 3381 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3382 return; 3383 3384 pr_warn("\n"); 3385 pr_warn("========================================================\n"); 3386 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3387 print_kernel_ident(); 3388 pr_warn("--------------------------------------------------------\n"); 3389 pr_warn("%s/%d just changed the state of lock:\n", 3390 curr->comm, task_pid_nr(curr)); 3391 print_lock(this); 3392 if (forwards) 3393 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3394 else 3395 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3396 print_lock_name(other->class); 3397 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3398 3399 pr_warn("\nother info that might help us debug this:\n"); 3400 3401 /* Find a middle lock (if one exists) */ 3402 depth = get_lock_depth(other); 3403 do { 3404 if (depth == 0 && (entry != root)) { 3405 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3406 break; 3407 } 3408 middle = entry; 3409 entry = get_lock_parent(entry); 3410 depth--; 3411 } while (entry && entry != root && (depth >= 0)); 3412 if (forwards) 3413 print_irq_lock_scenario(root, other, 3414 middle ? middle->class : root->class, other->class); 3415 else 3416 print_irq_lock_scenario(other, root, 3417 middle ? middle->class : other->class, root->class); 3418 3419 lockdep_print_held_locks(curr); 3420 3421 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 3422 root->trace = save_trace(); 3423 if (!root->trace) 3424 return; 3425 print_shortest_lock_dependencies(other, root); 3426 3427 pr_warn("\nstack backtrace:\n"); 3428 dump_stack(); 3429 } 3430 3431 /* 3432 * Prove that in the forwards-direction subgraph starting at <this> 3433 * there is no lock matching <mask>: 3434 */ 3435 static int 3436 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 3437 enum lock_usage_bit bit, const char *irqclass) 3438 { 3439 int ret; 3440 struct lock_list root; 3441 struct lock_list *target_entry; 3442 3443 root.parent = NULL; 3444 root.class = hlock_class(this); 3445 ret = find_usage_forwards(&root, lock_flag(bit), &target_entry); 3446 if (ret < 0) { 3447 print_bfs_bug(ret); 3448 return 0; 3449 } 3450 if (ret == 1) 3451 return ret; 3452 3453 print_irq_inversion_bug(curr, &root, target_entry, 3454 this, 1, irqclass); 3455 return 0; 3456 } 3457 3458 /* 3459 * Prove that in the backwards-direction subgraph starting at <this> 3460 * there is no lock matching <mask>: 3461 */ 3462 static int 3463 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 3464 enum lock_usage_bit bit, const char *irqclass) 3465 { 3466 int ret; 3467 struct lock_list root; 3468 struct lock_list *target_entry; 3469 3470 root.parent = NULL; 3471 root.class = hlock_class(this); 3472 ret = find_usage_backwards(&root, lock_flag(bit), &target_entry); 3473 if (ret < 0) { 3474 print_bfs_bug(ret); 3475 return 0; 3476 } 3477 if (ret == 1) 3478 return ret; 3479 3480 print_irq_inversion_bug(curr, &root, target_entry, 3481 this, 0, irqclass); 3482 return 0; 3483 } 3484 3485 void print_irqtrace_events(struct task_struct *curr) 3486 { 3487 const struct irqtrace_events *trace = &curr->irqtrace; 3488 3489 printk("irq event stamp: %u\n", trace->irq_events); 3490 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 3491 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 3492 (void *)trace->hardirq_enable_ip); 3493 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 3494 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 3495 (void *)trace->hardirq_disable_ip); 3496 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 3497 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 3498 (void *)trace->softirq_enable_ip); 3499 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 3500 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 3501 (void *)trace->softirq_disable_ip); 3502 } 3503 3504 static int HARDIRQ_verbose(struct lock_class *class) 3505 { 3506 #if HARDIRQ_VERBOSE 3507 return class_filter(class); 3508 #endif 3509 return 0; 3510 } 3511 3512 static int SOFTIRQ_verbose(struct lock_class *class) 3513 { 3514 #if SOFTIRQ_VERBOSE 3515 return class_filter(class); 3516 #endif 3517 return 0; 3518 } 3519 3520 #define STRICT_READ_CHECKS 1 3521 3522 static int (*state_verbose_f[])(struct lock_class *class) = { 3523 #define LOCKDEP_STATE(__STATE) \ 3524 __STATE##_verbose, 3525 #include "lockdep_states.h" 3526 #undef LOCKDEP_STATE 3527 }; 3528 3529 static inline int state_verbose(enum lock_usage_bit bit, 3530 struct lock_class *class) 3531 { 3532 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 3533 } 3534 3535 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 3536 enum lock_usage_bit bit, const char *name); 3537 3538 static int 3539 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 3540 enum lock_usage_bit new_bit) 3541 { 3542 int excl_bit = exclusive_bit(new_bit); 3543 int read = new_bit & LOCK_USAGE_READ_MASK; 3544 int dir = new_bit & LOCK_USAGE_DIR_MASK; 3545 3546 /* 3547 * mark USED_IN has to look forwards -- to ensure no dependency 3548 * has ENABLED state, which would allow recursion deadlocks. 3549 * 3550 * mark ENABLED has to look backwards -- to ensure no dependee 3551 * has USED_IN state, which, again, would allow recursion deadlocks. 3552 */ 3553 check_usage_f usage = dir ? 3554 check_usage_backwards : check_usage_forwards; 3555 3556 /* 3557 * Validate that this particular lock does not have conflicting 3558 * usage states. 3559 */ 3560 if (!valid_state(curr, this, new_bit, excl_bit)) 3561 return 0; 3562 3563 /* 3564 * Validate that the lock dependencies don't have conflicting usage 3565 * states. 3566 */ 3567 if ((!read || STRICT_READ_CHECKS) && 3568 !usage(curr, this, excl_bit, state_name(new_bit & ~LOCK_USAGE_READ_MASK))) 3569 return 0; 3570 3571 /* 3572 * Check for read in write conflicts 3573 */ 3574 if (!read) { 3575 if (!valid_state(curr, this, new_bit, excl_bit + LOCK_USAGE_READ_MASK)) 3576 return 0; 3577 3578 if (STRICT_READ_CHECKS && 3579 !usage(curr, this, excl_bit + LOCK_USAGE_READ_MASK, 3580 state_name(new_bit + LOCK_USAGE_READ_MASK))) 3581 return 0; 3582 } 3583 3584 if (state_verbose(new_bit, hlock_class(this))) 3585 return 2; 3586 3587 return 1; 3588 } 3589 3590 /* 3591 * Mark all held locks with a usage bit: 3592 */ 3593 static int 3594 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 3595 { 3596 struct held_lock *hlock; 3597 int i; 3598 3599 for (i = 0; i < curr->lockdep_depth; i++) { 3600 enum lock_usage_bit hlock_bit = base_bit; 3601 hlock = curr->held_locks + i; 3602 3603 if (hlock->read) 3604 hlock_bit += LOCK_USAGE_READ_MASK; 3605 3606 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 3607 3608 if (!hlock->check) 3609 continue; 3610 3611 if (!mark_lock(curr, hlock, hlock_bit)) 3612 return 0; 3613 } 3614 3615 return 1; 3616 } 3617 3618 /* 3619 * Hardirqs will be enabled: 3620 */ 3621 static void __trace_hardirqs_on_caller(void) 3622 { 3623 struct task_struct *curr = current; 3624 3625 /* 3626 * We are going to turn hardirqs on, so set the 3627 * usage bit for all held locks: 3628 */ 3629 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 3630 return; 3631 /* 3632 * If we have softirqs enabled, then set the usage 3633 * bit for all held locks. (disabled hardirqs prevented 3634 * this bit from being set before) 3635 */ 3636 if (curr->softirqs_enabled) 3637 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 3638 } 3639 3640 /** 3641 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 3642 * @ip: Caller address 3643 * 3644 * Invoked before a possible transition to RCU idle from exit to user or 3645 * guest mode. This ensures that all RCU operations are done before RCU 3646 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 3647 * invoked to set the final state. 3648 */ 3649 void lockdep_hardirqs_on_prepare(unsigned long ip) 3650 { 3651 if (unlikely(!debug_locks)) 3652 return; 3653 3654 /* 3655 * NMIs do not (and cannot) track lock dependencies, nothing to do. 3656 */ 3657 if (unlikely(in_nmi())) 3658 return; 3659 3660 if (unlikely(current->lockdep_recursion & LOCKDEP_RECURSION_MASK)) 3661 return; 3662 3663 if (unlikely(lockdep_hardirqs_enabled())) { 3664 /* 3665 * Neither irq nor preemption are disabled here 3666 * so this is racy by nature but losing one hit 3667 * in a stat is not a big deal. 3668 */ 3669 __debug_atomic_inc(redundant_hardirqs_on); 3670 return; 3671 } 3672 3673 /* 3674 * We're enabling irqs and according to our state above irqs weren't 3675 * already enabled, yet we find the hardware thinks they are in fact 3676 * enabled.. someone messed up their IRQ state tracing. 3677 */ 3678 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3679 return; 3680 3681 /* 3682 * See the fine text that goes along with this variable definition. 3683 */ 3684 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 3685 return; 3686 3687 /* 3688 * Can't allow enabling interrupts while in an interrupt handler, 3689 * that's general bad form and such. Recursion, limited stack etc.. 3690 */ 3691 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 3692 return; 3693 3694 current->hardirq_chain_key = current->curr_chain_key; 3695 3696 current->lockdep_recursion++; 3697 __trace_hardirqs_on_caller(); 3698 lockdep_recursion_finish(); 3699 } 3700 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 3701 3702 void noinstr lockdep_hardirqs_on(unsigned long ip) 3703 { 3704 struct irqtrace_events *trace = ¤t->irqtrace; 3705 3706 if (unlikely(!debug_locks)) 3707 return; 3708 3709 /* 3710 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 3711 * tracking state and hardware state are out of sync. 3712 * 3713 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 3714 * and not rely on hardware state like normal interrupts. 3715 */ 3716 if (unlikely(in_nmi())) { 3717 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 3718 return; 3719 3720 /* 3721 * Skip: 3722 * - recursion check, because NMI can hit lockdep; 3723 * - hardware state check, because above; 3724 * - chain_key check, see lockdep_hardirqs_on_prepare(). 3725 */ 3726 goto skip_checks; 3727 } 3728 3729 if (unlikely(current->lockdep_recursion & LOCKDEP_RECURSION_MASK)) 3730 return; 3731 3732 if (lockdep_hardirqs_enabled()) { 3733 /* 3734 * Neither irq nor preemption are disabled here 3735 * so this is racy by nature but losing one hit 3736 * in a stat is not a big deal. 3737 */ 3738 __debug_atomic_inc(redundant_hardirqs_on); 3739 return; 3740 } 3741 3742 /* 3743 * We're enabling irqs and according to our state above irqs weren't 3744 * already enabled, yet we find the hardware thinks they are in fact 3745 * enabled.. someone messed up their IRQ state tracing. 3746 */ 3747 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3748 return; 3749 3750 /* 3751 * Ensure the lock stack remained unchanged between 3752 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 3753 */ 3754 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 3755 current->curr_chain_key); 3756 3757 skip_checks: 3758 /* we'll do an OFF -> ON transition: */ 3759 __this_cpu_write(hardirqs_enabled, 1); 3760 trace->hardirq_enable_ip = ip; 3761 trace->hardirq_enable_event = ++trace->irq_events; 3762 debug_atomic_inc(hardirqs_on_events); 3763 } 3764 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 3765 3766 /* 3767 * Hardirqs were disabled: 3768 */ 3769 void noinstr lockdep_hardirqs_off(unsigned long ip) 3770 { 3771 if (unlikely(!debug_locks)) 3772 return; 3773 3774 /* 3775 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 3776 * they will restore the software state. This ensures the software 3777 * state is consistent inside NMIs as well. 3778 */ 3779 if (in_nmi()) { 3780 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 3781 return; 3782 } else if (current->lockdep_recursion & LOCKDEP_RECURSION_MASK) 3783 return; 3784 3785 /* 3786 * So we're supposed to get called after you mask local IRQs, but for 3787 * some reason the hardware doesn't quite think you did a proper job. 3788 */ 3789 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3790 return; 3791 3792 if (lockdep_hardirqs_enabled()) { 3793 struct irqtrace_events *trace = ¤t->irqtrace; 3794 3795 /* 3796 * We have done an ON -> OFF transition: 3797 */ 3798 __this_cpu_write(hardirqs_enabled, 0); 3799 trace->hardirq_disable_ip = ip; 3800 trace->hardirq_disable_event = ++trace->irq_events; 3801 debug_atomic_inc(hardirqs_off_events); 3802 } else { 3803 debug_atomic_inc(redundant_hardirqs_off); 3804 } 3805 } 3806 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 3807 3808 /* 3809 * Softirqs will be enabled: 3810 */ 3811 void lockdep_softirqs_on(unsigned long ip) 3812 { 3813 struct irqtrace_events *trace = ¤t->irqtrace; 3814 3815 if (unlikely(!debug_locks || current->lockdep_recursion)) 3816 return; 3817 3818 /* 3819 * We fancy IRQs being disabled here, see softirq.c, avoids 3820 * funny state and nesting things. 3821 */ 3822 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3823 return; 3824 3825 if (current->softirqs_enabled) { 3826 debug_atomic_inc(redundant_softirqs_on); 3827 return; 3828 } 3829 3830 current->lockdep_recursion++; 3831 /* 3832 * We'll do an OFF -> ON transition: 3833 */ 3834 current->softirqs_enabled = 1; 3835 trace->softirq_enable_ip = ip; 3836 trace->softirq_enable_event = ++trace->irq_events; 3837 debug_atomic_inc(softirqs_on_events); 3838 /* 3839 * We are going to turn softirqs on, so set the 3840 * usage bit for all held locks, if hardirqs are 3841 * enabled too: 3842 */ 3843 if (lockdep_hardirqs_enabled()) 3844 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 3845 lockdep_recursion_finish(); 3846 } 3847 3848 /* 3849 * Softirqs were disabled: 3850 */ 3851 void lockdep_softirqs_off(unsigned long ip) 3852 { 3853 if (unlikely(!debug_locks || current->lockdep_recursion)) 3854 return; 3855 3856 /* 3857 * We fancy IRQs being disabled here, see softirq.c 3858 */ 3859 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3860 return; 3861 3862 if (current->softirqs_enabled) { 3863 struct irqtrace_events *trace = ¤t->irqtrace; 3864 3865 /* 3866 * We have done an ON -> OFF transition: 3867 */ 3868 current->softirqs_enabled = 0; 3869 trace->softirq_disable_ip = ip; 3870 trace->softirq_disable_event = ++trace->irq_events; 3871 debug_atomic_inc(softirqs_off_events); 3872 /* 3873 * Whoops, we wanted softirqs off, so why aren't they? 3874 */ 3875 DEBUG_LOCKS_WARN_ON(!softirq_count()); 3876 } else 3877 debug_atomic_inc(redundant_softirqs_off); 3878 } 3879 3880 static int 3881 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 3882 { 3883 if (!check) 3884 goto lock_used; 3885 3886 /* 3887 * If non-trylock use in a hardirq or softirq context, then 3888 * mark the lock as used in these contexts: 3889 */ 3890 if (!hlock->trylock) { 3891 if (hlock->read) { 3892 if (lockdep_hardirq_context()) 3893 if (!mark_lock(curr, hlock, 3894 LOCK_USED_IN_HARDIRQ_READ)) 3895 return 0; 3896 if (curr->softirq_context) 3897 if (!mark_lock(curr, hlock, 3898 LOCK_USED_IN_SOFTIRQ_READ)) 3899 return 0; 3900 } else { 3901 if (lockdep_hardirq_context()) 3902 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 3903 return 0; 3904 if (curr->softirq_context) 3905 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 3906 return 0; 3907 } 3908 } 3909 if (!hlock->hardirqs_off) { 3910 if (hlock->read) { 3911 if (!mark_lock(curr, hlock, 3912 LOCK_ENABLED_HARDIRQ_READ)) 3913 return 0; 3914 if (curr->softirqs_enabled) 3915 if (!mark_lock(curr, hlock, 3916 LOCK_ENABLED_SOFTIRQ_READ)) 3917 return 0; 3918 } else { 3919 if (!mark_lock(curr, hlock, 3920 LOCK_ENABLED_HARDIRQ)) 3921 return 0; 3922 if (curr->softirqs_enabled) 3923 if (!mark_lock(curr, hlock, 3924 LOCK_ENABLED_SOFTIRQ)) 3925 return 0; 3926 } 3927 } 3928 3929 lock_used: 3930 /* mark it as used: */ 3931 if (!mark_lock(curr, hlock, LOCK_USED)) 3932 return 0; 3933 3934 return 1; 3935 } 3936 3937 static inline unsigned int task_irq_context(struct task_struct *task) 3938 { 3939 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 3940 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 3941 } 3942 3943 static int separate_irq_context(struct task_struct *curr, 3944 struct held_lock *hlock) 3945 { 3946 unsigned int depth = curr->lockdep_depth; 3947 3948 /* 3949 * Keep track of points where we cross into an interrupt context: 3950 */ 3951 if (depth) { 3952 struct held_lock *prev_hlock; 3953 3954 prev_hlock = curr->held_locks + depth-1; 3955 /* 3956 * If we cross into another context, reset the 3957 * hash key (this also prevents the checking and the 3958 * adding of the dependency to 'prev'): 3959 */ 3960 if (prev_hlock->irq_context != hlock->irq_context) 3961 return 1; 3962 } 3963 return 0; 3964 } 3965 3966 /* 3967 * Mark a lock with a usage bit, and validate the state transition: 3968 */ 3969 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3970 enum lock_usage_bit new_bit) 3971 { 3972 unsigned int old_mask, new_mask, ret = 1; 3973 3974 if (new_bit >= LOCK_USAGE_STATES) { 3975 DEBUG_LOCKS_WARN_ON(1); 3976 return 0; 3977 } 3978 3979 if (new_bit == LOCK_USED && this->read) 3980 new_bit = LOCK_USED_READ; 3981 3982 new_mask = 1 << new_bit; 3983 3984 /* 3985 * If already set then do not dirty the cacheline, 3986 * nor do any checks: 3987 */ 3988 if (likely(hlock_class(this)->usage_mask & new_mask)) 3989 return 1; 3990 3991 if (!graph_lock()) 3992 return 0; 3993 /* 3994 * Make sure we didn't race: 3995 */ 3996 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 3997 goto unlock; 3998 3999 old_mask = hlock_class(this)->usage_mask; 4000 hlock_class(this)->usage_mask |= new_mask; 4001 4002 /* 4003 * Save one usage_traces[] entry and map both LOCK_USED and 4004 * LOCK_USED_READ onto the same entry. 4005 */ 4006 if (new_bit == LOCK_USED || new_bit == LOCK_USED_READ) { 4007 if (old_mask & (LOCKF_USED | LOCKF_USED_READ)) 4008 goto unlock; 4009 new_bit = LOCK_USED; 4010 } 4011 4012 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4013 return 0; 4014 4015 switch (new_bit) { 4016 case LOCK_USED: 4017 debug_atomic_dec(nr_unused_locks); 4018 break; 4019 default: 4020 ret = mark_lock_irq(curr, this, new_bit); 4021 if (!ret) 4022 return 0; 4023 } 4024 4025 unlock: 4026 graph_unlock(); 4027 4028 /* 4029 * We must printk outside of the graph_lock: 4030 */ 4031 if (ret == 2) { 4032 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4033 print_lock(this); 4034 print_irqtrace_events(curr); 4035 dump_stack(); 4036 } 4037 4038 return ret; 4039 } 4040 4041 static inline short task_wait_context(struct task_struct *curr) 4042 { 4043 /* 4044 * Set appropriate wait type for the context; for IRQs we have to take 4045 * into account force_irqthread as that is implied by PREEMPT_RT. 4046 */ 4047 if (lockdep_hardirq_context()) { 4048 /* 4049 * Check if force_irqthreads will run us threaded. 4050 */ 4051 if (curr->hardirq_threaded || curr->irq_config) 4052 return LD_WAIT_CONFIG; 4053 4054 return LD_WAIT_SPIN; 4055 } else if (curr->softirq_context) { 4056 /* 4057 * Softirqs are always threaded. 4058 */ 4059 return LD_WAIT_CONFIG; 4060 } 4061 4062 return LD_WAIT_MAX; 4063 } 4064 4065 static int 4066 print_lock_invalid_wait_context(struct task_struct *curr, 4067 struct held_lock *hlock) 4068 { 4069 short curr_inner; 4070 4071 if (!debug_locks_off()) 4072 return 0; 4073 if (debug_locks_silent) 4074 return 0; 4075 4076 pr_warn("\n"); 4077 pr_warn("=============================\n"); 4078 pr_warn("[ BUG: Invalid wait context ]\n"); 4079 print_kernel_ident(); 4080 pr_warn("-----------------------------\n"); 4081 4082 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4083 print_lock(hlock); 4084 4085 pr_warn("other info that might help us debug this:\n"); 4086 4087 curr_inner = task_wait_context(curr); 4088 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4089 4090 lockdep_print_held_locks(curr); 4091 4092 pr_warn("stack backtrace:\n"); 4093 dump_stack(); 4094 4095 return 0; 4096 } 4097 4098 /* 4099 * Verify the wait_type context. 4100 * 4101 * This check validates we takes locks in the right wait-type order; that is it 4102 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4103 * acquire spinlocks inside raw_spinlocks and the sort. 4104 * 4105 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4106 * can be taken from (pretty much) any context but also has constraints. 4107 * However when taken in a stricter environment the RCU lock does not loosen 4108 * the constraints. 4109 * 4110 * Therefore we must look for the strictest environment in the lock stack and 4111 * compare that to the lock we're trying to acquire. 4112 */ 4113 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4114 { 4115 short next_inner = hlock_class(next)->wait_type_inner; 4116 short next_outer = hlock_class(next)->wait_type_outer; 4117 short curr_inner; 4118 int depth; 4119 4120 if (!curr->lockdep_depth || !next_inner || next->trylock) 4121 return 0; 4122 4123 if (!next_outer) 4124 next_outer = next_inner; 4125 4126 /* 4127 * Find start of current irq_context.. 4128 */ 4129 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4130 struct held_lock *prev = curr->held_locks + depth; 4131 if (prev->irq_context != next->irq_context) 4132 break; 4133 } 4134 depth++; 4135 4136 curr_inner = task_wait_context(curr); 4137 4138 for (; depth < curr->lockdep_depth; depth++) { 4139 struct held_lock *prev = curr->held_locks + depth; 4140 short prev_inner = hlock_class(prev)->wait_type_inner; 4141 4142 if (prev_inner) { 4143 /* 4144 * We can have a bigger inner than a previous one 4145 * when outer is smaller than inner, as with RCU. 4146 * 4147 * Also due to trylocks. 4148 */ 4149 curr_inner = min(curr_inner, prev_inner); 4150 } 4151 } 4152 4153 if (next_outer > curr_inner) 4154 return print_lock_invalid_wait_context(curr, next); 4155 4156 return 0; 4157 } 4158 4159 #else /* CONFIG_PROVE_LOCKING */ 4160 4161 static inline int 4162 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4163 { 4164 return 1; 4165 } 4166 4167 static inline unsigned int task_irq_context(struct task_struct *task) 4168 { 4169 return 0; 4170 } 4171 4172 static inline int separate_irq_context(struct task_struct *curr, 4173 struct held_lock *hlock) 4174 { 4175 return 0; 4176 } 4177 4178 static inline int check_wait_context(struct task_struct *curr, 4179 struct held_lock *next) 4180 { 4181 return 0; 4182 } 4183 4184 #endif /* CONFIG_PROVE_LOCKING */ 4185 4186 /* 4187 * Initialize a lock instance's lock-class mapping info: 4188 */ 4189 void lockdep_init_map_waits(struct lockdep_map *lock, const char *name, 4190 struct lock_class_key *key, int subclass, 4191 short inner, short outer) 4192 { 4193 int i; 4194 4195 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4196 lock->class_cache[i] = NULL; 4197 4198 #ifdef CONFIG_LOCK_STAT 4199 lock->cpu = raw_smp_processor_id(); 4200 #endif 4201 4202 /* 4203 * Can't be having no nameless bastards around this place! 4204 */ 4205 if (DEBUG_LOCKS_WARN_ON(!name)) { 4206 lock->name = "NULL"; 4207 return; 4208 } 4209 4210 lock->name = name; 4211 4212 lock->wait_type_outer = outer; 4213 lock->wait_type_inner = inner; 4214 4215 /* 4216 * No key, no joy, we need to hash something. 4217 */ 4218 if (DEBUG_LOCKS_WARN_ON(!key)) 4219 return; 4220 /* 4221 * Sanity check, the lock-class key must either have been allocated 4222 * statically or must have been registered as a dynamic key. 4223 */ 4224 if (!static_obj(key) && !is_dynamic_key(key)) { 4225 if (debug_locks) 4226 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4227 DEBUG_LOCKS_WARN_ON(1); 4228 return; 4229 } 4230 lock->key = key; 4231 4232 if (unlikely(!debug_locks)) 4233 return; 4234 4235 if (subclass) { 4236 unsigned long flags; 4237 4238 if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion)) 4239 return; 4240 4241 raw_local_irq_save(flags); 4242 current->lockdep_recursion++; 4243 register_lock_class(lock, subclass, 1); 4244 lockdep_recursion_finish(); 4245 raw_local_irq_restore(flags); 4246 } 4247 } 4248 EXPORT_SYMBOL_GPL(lockdep_init_map_waits); 4249 4250 struct lock_class_key __lockdep_no_validate__; 4251 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4252 4253 static void 4254 print_lock_nested_lock_not_held(struct task_struct *curr, 4255 struct held_lock *hlock, 4256 unsigned long ip) 4257 { 4258 if (!debug_locks_off()) 4259 return; 4260 if (debug_locks_silent) 4261 return; 4262 4263 pr_warn("\n"); 4264 pr_warn("==================================\n"); 4265 pr_warn("WARNING: Nested lock was not taken\n"); 4266 print_kernel_ident(); 4267 pr_warn("----------------------------------\n"); 4268 4269 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4270 print_lock(hlock); 4271 4272 pr_warn("\nbut this task is not holding:\n"); 4273 pr_warn("%s\n", hlock->nest_lock->name); 4274 4275 pr_warn("\nstack backtrace:\n"); 4276 dump_stack(); 4277 4278 pr_warn("\nother info that might help us debug this:\n"); 4279 lockdep_print_held_locks(curr); 4280 4281 pr_warn("\nstack backtrace:\n"); 4282 dump_stack(); 4283 } 4284 4285 static int __lock_is_held(const struct lockdep_map *lock, int read); 4286 4287 /* 4288 * This gets called for every mutex_lock*()/spin_lock*() operation. 4289 * We maintain the dependency maps and validate the locking attempt: 4290 * 4291 * The callers must make sure that IRQs are disabled before calling it, 4292 * otherwise we could get an interrupt which would want to take locks, 4293 * which would end up in lockdep again. 4294 */ 4295 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4296 int trylock, int read, int check, int hardirqs_off, 4297 struct lockdep_map *nest_lock, unsigned long ip, 4298 int references, int pin_count) 4299 { 4300 struct task_struct *curr = current; 4301 struct lock_class *class = NULL; 4302 struct held_lock *hlock; 4303 unsigned int depth; 4304 int chain_head = 0; 4305 int class_idx; 4306 u64 chain_key; 4307 4308 if (unlikely(!debug_locks)) 4309 return 0; 4310 4311 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4312 check = 0; 4313 4314 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4315 class = lock->class_cache[subclass]; 4316 /* 4317 * Not cached? 4318 */ 4319 if (unlikely(!class)) { 4320 class = register_lock_class(lock, subclass, 0); 4321 if (!class) 4322 return 0; 4323 } 4324 4325 debug_class_ops_inc(class); 4326 4327 if (very_verbose(class)) { 4328 printk("\nacquire class [%px] %s", class->key, class->name); 4329 if (class->name_version > 1) 4330 printk(KERN_CONT "#%d", class->name_version); 4331 printk(KERN_CONT "\n"); 4332 dump_stack(); 4333 } 4334 4335 /* 4336 * Add the lock to the list of currently held locks. 4337 * (we dont increase the depth just yet, up until the 4338 * dependency checks are done) 4339 */ 4340 depth = curr->lockdep_depth; 4341 /* 4342 * Ran out of static storage for our per-task lock stack again have we? 4343 */ 4344 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4345 return 0; 4346 4347 class_idx = class - lock_classes; 4348 4349 if (depth) { /* we're holding locks */ 4350 hlock = curr->held_locks + depth - 1; 4351 if (hlock->class_idx == class_idx && nest_lock) { 4352 if (!references) 4353 references++; 4354 4355 if (!hlock->references) 4356 hlock->references++; 4357 4358 hlock->references += references; 4359 4360 /* Overflow */ 4361 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4362 return 0; 4363 4364 return 2; 4365 } 4366 } 4367 4368 hlock = curr->held_locks + depth; 4369 /* 4370 * Plain impossible, we just registered it and checked it weren't no 4371 * NULL like.. I bet this mushroom I ate was good! 4372 */ 4373 if (DEBUG_LOCKS_WARN_ON(!class)) 4374 return 0; 4375 hlock->class_idx = class_idx; 4376 hlock->acquire_ip = ip; 4377 hlock->instance = lock; 4378 hlock->nest_lock = nest_lock; 4379 hlock->irq_context = task_irq_context(curr); 4380 hlock->trylock = trylock; 4381 hlock->read = read; 4382 hlock->check = check; 4383 hlock->hardirqs_off = !!hardirqs_off; 4384 hlock->references = references; 4385 #ifdef CONFIG_LOCK_STAT 4386 hlock->waittime_stamp = 0; 4387 hlock->holdtime_stamp = lockstat_clock(); 4388 #endif 4389 hlock->pin_count = pin_count; 4390 4391 if (check_wait_context(curr, hlock)) 4392 return 0; 4393 4394 /* Initialize the lock usage bit */ 4395 if (!mark_usage(curr, hlock, check)) 4396 return 0; 4397 4398 /* 4399 * Calculate the chain hash: it's the combined hash of all the 4400 * lock keys along the dependency chain. We save the hash value 4401 * at every step so that we can get the current hash easily 4402 * after unlock. The chain hash is then used to cache dependency 4403 * results. 4404 * 4405 * The 'key ID' is what is the most compact key value to drive 4406 * the hash, not class->key. 4407 */ 4408 /* 4409 * Whoops, we did it again.. class_idx is invalid. 4410 */ 4411 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 4412 return 0; 4413 4414 chain_key = curr->curr_chain_key; 4415 if (!depth) { 4416 /* 4417 * How can we have a chain hash when we ain't got no keys?! 4418 */ 4419 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 4420 return 0; 4421 chain_head = 1; 4422 } 4423 4424 hlock->prev_chain_key = chain_key; 4425 if (separate_irq_context(curr, hlock)) { 4426 chain_key = INITIAL_CHAIN_KEY; 4427 chain_head = 1; 4428 } 4429 chain_key = iterate_chain_key(chain_key, class_idx); 4430 4431 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 4432 print_lock_nested_lock_not_held(curr, hlock, ip); 4433 return 0; 4434 } 4435 4436 if (!debug_locks_silent) { 4437 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 4438 WARN_ON_ONCE(!hlock_class(hlock)->key); 4439 } 4440 4441 if (!validate_chain(curr, hlock, chain_head, chain_key)) 4442 return 0; 4443 4444 curr->curr_chain_key = chain_key; 4445 curr->lockdep_depth++; 4446 check_chain_key(curr); 4447 #ifdef CONFIG_DEBUG_LOCKDEP 4448 if (unlikely(!debug_locks)) 4449 return 0; 4450 #endif 4451 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 4452 debug_locks_off(); 4453 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 4454 printk(KERN_DEBUG "depth: %i max: %lu!\n", 4455 curr->lockdep_depth, MAX_LOCK_DEPTH); 4456 4457 lockdep_print_held_locks(current); 4458 debug_show_all_locks(); 4459 dump_stack(); 4460 4461 return 0; 4462 } 4463 4464 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 4465 max_lockdep_depth = curr->lockdep_depth; 4466 4467 return 1; 4468 } 4469 4470 static void print_unlock_imbalance_bug(struct task_struct *curr, 4471 struct lockdep_map *lock, 4472 unsigned long ip) 4473 { 4474 if (!debug_locks_off()) 4475 return; 4476 if (debug_locks_silent) 4477 return; 4478 4479 pr_warn("\n"); 4480 pr_warn("=====================================\n"); 4481 pr_warn("WARNING: bad unlock balance detected!\n"); 4482 print_kernel_ident(); 4483 pr_warn("-------------------------------------\n"); 4484 pr_warn("%s/%d is trying to release lock (", 4485 curr->comm, task_pid_nr(curr)); 4486 print_lockdep_cache(lock); 4487 pr_cont(") at:\n"); 4488 print_ip_sym(KERN_WARNING, ip); 4489 pr_warn("but there are no more locks to release!\n"); 4490 pr_warn("\nother info that might help us debug this:\n"); 4491 lockdep_print_held_locks(curr); 4492 4493 pr_warn("\nstack backtrace:\n"); 4494 dump_stack(); 4495 } 4496 4497 static noinstr int match_held_lock(const struct held_lock *hlock, 4498 const struct lockdep_map *lock) 4499 { 4500 if (hlock->instance == lock) 4501 return 1; 4502 4503 if (hlock->references) { 4504 const struct lock_class *class = lock->class_cache[0]; 4505 4506 if (!class) 4507 class = look_up_lock_class(lock, 0); 4508 4509 /* 4510 * If look_up_lock_class() failed to find a class, we're trying 4511 * to test if we hold a lock that has never yet been acquired. 4512 * Clearly if the lock hasn't been acquired _ever_, we're not 4513 * holding it either, so report failure. 4514 */ 4515 if (!class) 4516 return 0; 4517 4518 /* 4519 * References, but not a lock we're actually ref-counting? 4520 * State got messed up, follow the sites that change ->references 4521 * and try to make sense of it. 4522 */ 4523 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 4524 return 0; 4525 4526 if (hlock->class_idx == class - lock_classes) 4527 return 1; 4528 } 4529 4530 return 0; 4531 } 4532 4533 /* @depth must not be zero */ 4534 static struct held_lock *find_held_lock(struct task_struct *curr, 4535 struct lockdep_map *lock, 4536 unsigned int depth, int *idx) 4537 { 4538 struct held_lock *ret, *hlock, *prev_hlock; 4539 int i; 4540 4541 i = depth - 1; 4542 hlock = curr->held_locks + i; 4543 ret = hlock; 4544 if (match_held_lock(hlock, lock)) 4545 goto out; 4546 4547 ret = NULL; 4548 for (i--, prev_hlock = hlock--; 4549 i >= 0; 4550 i--, prev_hlock = hlock--) { 4551 /* 4552 * We must not cross into another context: 4553 */ 4554 if (prev_hlock->irq_context != hlock->irq_context) { 4555 ret = NULL; 4556 break; 4557 } 4558 if (match_held_lock(hlock, lock)) { 4559 ret = hlock; 4560 break; 4561 } 4562 } 4563 4564 out: 4565 *idx = i; 4566 return ret; 4567 } 4568 4569 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 4570 int idx, unsigned int *merged) 4571 { 4572 struct held_lock *hlock; 4573 int first_idx = idx; 4574 4575 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4576 return 0; 4577 4578 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 4579 switch (__lock_acquire(hlock->instance, 4580 hlock_class(hlock)->subclass, 4581 hlock->trylock, 4582 hlock->read, hlock->check, 4583 hlock->hardirqs_off, 4584 hlock->nest_lock, hlock->acquire_ip, 4585 hlock->references, hlock->pin_count)) { 4586 case 0: 4587 return 1; 4588 case 1: 4589 break; 4590 case 2: 4591 *merged += (idx == first_idx); 4592 break; 4593 default: 4594 WARN_ON(1); 4595 return 0; 4596 } 4597 } 4598 return 0; 4599 } 4600 4601 static int 4602 __lock_set_class(struct lockdep_map *lock, const char *name, 4603 struct lock_class_key *key, unsigned int subclass, 4604 unsigned long ip) 4605 { 4606 struct task_struct *curr = current; 4607 unsigned int depth, merged = 0; 4608 struct held_lock *hlock; 4609 struct lock_class *class; 4610 int i; 4611 4612 if (unlikely(!debug_locks)) 4613 return 0; 4614 4615 depth = curr->lockdep_depth; 4616 /* 4617 * This function is about (re)setting the class of a held lock, 4618 * yet we're not actually holding any locks. Naughty user! 4619 */ 4620 if (DEBUG_LOCKS_WARN_ON(!depth)) 4621 return 0; 4622 4623 hlock = find_held_lock(curr, lock, depth, &i); 4624 if (!hlock) { 4625 print_unlock_imbalance_bug(curr, lock, ip); 4626 return 0; 4627 } 4628 4629 lockdep_init_map_waits(lock, name, key, 0, 4630 lock->wait_type_inner, 4631 lock->wait_type_outer); 4632 class = register_lock_class(lock, subclass, 0); 4633 hlock->class_idx = class - lock_classes; 4634 4635 curr->lockdep_depth = i; 4636 curr->curr_chain_key = hlock->prev_chain_key; 4637 4638 if (reacquire_held_locks(curr, depth, i, &merged)) 4639 return 0; 4640 4641 /* 4642 * I took it apart and put it back together again, except now I have 4643 * these 'spare' parts.. where shall I put them. 4644 */ 4645 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 4646 return 0; 4647 return 1; 4648 } 4649 4650 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 4651 { 4652 struct task_struct *curr = current; 4653 unsigned int depth, merged = 0; 4654 struct held_lock *hlock; 4655 int i; 4656 4657 if (unlikely(!debug_locks)) 4658 return 0; 4659 4660 depth = curr->lockdep_depth; 4661 /* 4662 * This function is about (re)setting the class of a held lock, 4663 * yet we're not actually holding any locks. Naughty user! 4664 */ 4665 if (DEBUG_LOCKS_WARN_ON(!depth)) 4666 return 0; 4667 4668 hlock = find_held_lock(curr, lock, depth, &i); 4669 if (!hlock) { 4670 print_unlock_imbalance_bug(curr, lock, ip); 4671 return 0; 4672 } 4673 4674 curr->lockdep_depth = i; 4675 curr->curr_chain_key = hlock->prev_chain_key; 4676 4677 WARN(hlock->read, "downgrading a read lock"); 4678 hlock->read = 1; 4679 hlock->acquire_ip = ip; 4680 4681 if (reacquire_held_locks(curr, depth, i, &merged)) 4682 return 0; 4683 4684 /* Merging can't happen with unchanged classes.. */ 4685 if (DEBUG_LOCKS_WARN_ON(merged)) 4686 return 0; 4687 4688 /* 4689 * I took it apart and put it back together again, except now I have 4690 * these 'spare' parts.. where shall I put them. 4691 */ 4692 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 4693 return 0; 4694 4695 return 1; 4696 } 4697 4698 /* 4699 * Remove the lock from the list of currently held locks - this gets 4700 * called on mutex_unlock()/spin_unlock*() (or on a failed 4701 * mutex_lock_interruptible()). 4702 */ 4703 static int 4704 __lock_release(struct lockdep_map *lock, unsigned long ip) 4705 { 4706 struct task_struct *curr = current; 4707 unsigned int depth, merged = 1; 4708 struct held_lock *hlock; 4709 int i; 4710 4711 if (unlikely(!debug_locks)) 4712 return 0; 4713 4714 depth = curr->lockdep_depth; 4715 /* 4716 * So we're all set to release this lock.. wait what lock? We don't 4717 * own any locks, you've been drinking again? 4718 */ 4719 if (depth <= 0) { 4720 print_unlock_imbalance_bug(curr, lock, ip); 4721 return 0; 4722 } 4723 4724 /* 4725 * Check whether the lock exists in the current stack 4726 * of held locks: 4727 */ 4728 hlock = find_held_lock(curr, lock, depth, &i); 4729 if (!hlock) { 4730 print_unlock_imbalance_bug(curr, lock, ip); 4731 return 0; 4732 } 4733 4734 if (hlock->instance == lock) 4735 lock_release_holdtime(hlock); 4736 4737 WARN(hlock->pin_count, "releasing a pinned lock\n"); 4738 4739 if (hlock->references) { 4740 hlock->references--; 4741 if (hlock->references) { 4742 /* 4743 * We had, and after removing one, still have 4744 * references, the current lock stack is still 4745 * valid. We're done! 4746 */ 4747 return 1; 4748 } 4749 } 4750 4751 /* 4752 * We have the right lock to unlock, 'hlock' points to it. 4753 * Now we remove it from the stack, and add back the other 4754 * entries (if any), recalculating the hash along the way: 4755 */ 4756 4757 curr->lockdep_depth = i; 4758 curr->curr_chain_key = hlock->prev_chain_key; 4759 4760 /* 4761 * The most likely case is when the unlock is on the innermost 4762 * lock. In this case, we are done! 4763 */ 4764 if (i == depth-1) 4765 return 1; 4766 4767 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 4768 return 0; 4769 4770 /* 4771 * We had N bottles of beer on the wall, we drank one, but now 4772 * there's not N-1 bottles of beer left on the wall... 4773 * Pouring two of the bottles together is acceptable. 4774 */ 4775 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 4776 4777 /* 4778 * Since reacquire_held_locks() would have called check_chain_key() 4779 * indirectly via __lock_acquire(), we don't need to do it again 4780 * on return. 4781 */ 4782 return 0; 4783 } 4784 4785 static __always_inline 4786 int __lock_is_held(const struct lockdep_map *lock, int read) 4787 { 4788 struct task_struct *curr = current; 4789 int i; 4790 4791 for (i = 0; i < curr->lockdep_depth; i++) { 4792 struct held_lock *hlock = curr->held_locks + i; 4793 4794 if (match_held_lock(hlock, lock)) { 4795 if (read == -1 || hlock->read == read) 4796 return 1; 4797 4798 return 0; 4799 } 4800 } 4801 4802 return 0; 4803 } 4804 4805 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 4806 { 4807 struct pin_cookie cookie = NIL_COOKIE; 4808 struct task_struct *curr = current; 4809 int i; 4810 4811 if (unlikely(!debug_locks)) 4812 return cookie; 4813 4814 for (i = 0; i < curr->lockdep_depth; i++) { 4815 struct held_lock *hlock = curr->held_locks + i; 4816 4817 if (match_held_lock(hlock, lock)) { 4818 /* 4819 * Grab 16bits of randomness; this is sufficient to not 4820 * be guessable and still allows some pin nesting in 4821 * our u32 pin_count. 4822 */ 4823 cookie.val = 1 + (prandom_u32() >> 16); 4824 hlock->pin_count += cookie.val; 4825 return cookie; 4826 } 4827 } 4828 4829 WARN(1, "pinning an unheld lock\n"); 4830 return cookie; 4831 } 4832 4833 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 4834 { 4835 struct task_struct *curr = current; 4836 int i; 4837 4838 if (unlikely(!debug_locks)) 4839 return; 4840 4841 for (i = 0; i < curr->lockdep_depth; i++) { 4842 struct held_lock *hlock = curr->held_locks + i; 4843 4844 if (match_held_lock(hlock, lock)) { 4845 hlock->pin_count += cookie.val; 4846 return; 4847 } 4848 } 4849 4850 WARN(1, "pinning an unheld lock\n"); 4851 } 4852 4853 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 4854 { 4855 struct task_struct *curr = current; 4856 int i; 4857 4858 if (unlikely(!debug_locks)) 4859 return; 4860 4861 for (i = 0; i < curr->lockdep_depth; i++) { 4862 struct held_lock *hlock = curr->held_locks + i; 4863 4864 if (match_held_lock(hlock, lock)) { 4865 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 4866 return; 4867 4868 hlock->pin_count -= cookie.val; 4869 4870 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 4871 hlock->pin_count = 0; 4872 4873 return; 4874 } 4875 } 4876 4877 WARN(1, "unpinning an unheld lock\n"); 4878 } 4879 4880 /* 4881 * Check whether we follow the irq-flags state precisely: 4882 */ 4883 static void check_flags(unsigned long flags) 4884 { 4885 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 4886 if (!debug_locks) 4887 return; 4888 4889 if (irqs_disabled_flags(flags)) { 4890 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 4891 printk("possible reason: unannotated irqs-off.\n"); 4892 } 4893 } else { 4894 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 4895 printk("possible reason: unannotated irqs-on.\n"); 4896 } 4897 } 4898 4899 /* 4900 * We dont accurately track softirq state in e.g. 4901 * hardirq contexts (such as on 4KSTACKS), so only 4902 * check if not in hardirq contexts: 4903 */ 4904 if (!hardirq_count()) { 4905 if (softirq_count()) { 4906 /* like the above, but with softirqs */ 4907 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 4908 } else { 4909 /* lick the above, does it taste good? */ 4910 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 4911 } 4912 } 4913 4914 if (!debug_locks) 4915 print_irqtrace_events(current); 4916 #endif 4917 } 4918 4919 void lock_set_class(struct lockdep_map *lock, const char *name, 4920 struct lock_class_key *key, unsigned int subclass, 4921 unsigned long ip) 4922 { 4923 unsigned long flags; 4924 4925 if (unlikely(current->lockdep_recursion)) 4926 return; 4927 4928 raw_local_irq_save(flags); 4929 current->lockdep_recursion++; 4930 check_flags(flags); 4931 if (__lock_set_class(lock, name, key, subclass, ip)) 4932 check_chain_key(current); 4933 lockdep_recursion_finish(); 4934 raw_local_irq_restore(flags); 4935 } 4936 EXPORT_SYMBOL_GPL(lock_set_class); 4937 4938 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 4939 { 4940 unsigned long flags; 4941 4942 if (unlikely(current->lockdep_recursion)) 4943 return; 4944 4945 raw_local_irq_save(flags); 4946 current->lockdep_recursion++; 4947 check_flags(flags); 4948 if (__lock_downgrade(lock, ip)) 4949 check_chain_key(current); 4950 lockdep_recursion_finish(); 4951 raw_local_irq_restore(flags); 4952 } 4953 EXPORT_SYMBOL_GPL(lock_downgrade); 4954 4955 /* NMI context !!! */ 4956 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 4957 { 4958 #ifdef CONFIG_PROVE_LOCKING 4959 struct lock_class *class = look_up_lock_class(lock, subclass); 4960 unsigned long mask = LOCKF_USED; 4961 4962 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 4963 if (!class) 4964 return; 4965 4966 /* 4967 * READ locks only conflict with USED, such that if we only ever use 4968 * READ locks, there is no deadlock possible -- RCU. 4969 */ 4970 if (!hlock->read) 4971 mask |= LOCKF_USED_READ; 4972 4973 if (!(class->usage_mask & mask)) 4974 return; 4975 4976 hlock->class_idx = class - lock_classes; 4977 4978 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 4979 #endif 4980 } 4981 4982 static bool lockdep_nmi(void) 4983 { 4984 if (current->lockdep_recursion & LOCKDEP_RECURSION_MASK) 4985 return false; 4986 4987 if (!in_nmi()) 4988 return false; 4989 4990 return true; 4991 } 4992 4993 /* 4994 * We are not always called with irqs disabled - do that here, 4995 * and also avoid lockdep recursion: 4996 */ 4997 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4998 int trylock, int read, int check, 4999 struct lockdep_map *nest_lock, unsigned long ip) 5000 { 5001 unsigned long flags; 5002 5003 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5004 5005 if (unlikely(current->lockdep_recursion)) { 5006 /* XXX allow trylock from NMI ?!? */ 5007 if (lockdep_nmi() && !trylock) { 5008 struct held_lock hlock; 5009 5010 hlock.acquire_ip = ip; 5011 hlock.instance = lock; 5012 hlock.nest_lock = nest_lock; 5013 hlock.irq_context = 2; // XXX 5014 hlock.trylock = trylock; 5015 hlock.read = read; 5016 hlock.check = check; 5017 hlock.hardirqs_off = true; 5018 hlock.references = 0; 5019 5020 verify_lock_unused(lock, &hlock, subclass); 5021 } 5022 return; 5023 } 5024 5025 raw_local_irq_save(flags); 5026 check_flags(flags); 5027 5028 current->lockdep_recursion++; 5029 __lock_acquire(lock, subclass, trylock, read, check, 5030 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5031 lockdep_recursion_finish(); 5032 raw_local_irq_restore(flags); 5033 } 5034 EXPORT_SYMBOL_GPL(lock_acquire); 5035 5036 void lock_release(struct lockdep_map *lock, unsigned long ip) 5037 { 5038 unsigned long flags; 5039 5040 trace_lock_release(lock, ip); 5041 5042 if (unlikely(current->lockdep_recursion)) 5043 return; 5044 5045 raw_local_irq_save(flags); 5046 check_flags(flags); 5047 5048 current->lockdep_recursion++; 5049 if (__lock_release(lock, ip)) 5050 check_chain_key(current); 5051 lockdep_recursion_finish(); 5052 raw_local_irq_restore(flags); 5053 } 5054 EXPORT_SYMBOL_GPL(lock_release); 5055 5056 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5057 { 5058 unsigned long flags; 5059 int ret = 0; 5060 5061 if (unlikely(current->lockdep_recursion)) 5062 return 1; /* avoid false negative lockdep_assert_held() */ 5063 5064 raw_local_irq_save(flags); 5065 check_flags(flags); 5066 5067 current->lockdep_recursion++; 5068 ret = __lock_is_held(lock, read); 5069 lockdep_recursion_finish(); 5070 raw_local_irq_restore(flags); 5071 5072 return ret; 5073 } 5074 EXPORT_SYMBOL_GPL(lock_is_held_type); 5075 NOKPROBE_SYMBOL(lock_is_held_type); 5076 5077 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5078 { 5079 struct pin_cookie cookie = NIL_COOKIE; 5080 unsigned long flags; 5081 5082 if (unlikely(current->lockdep_recursion)) 5083 return cookie; 5084 5085 raw_local_irq_save(flags); 5086 check_flags(flags); 5087 5088 current->lockdep_recursion++; 5089 cookie = __lock_pin_lock(lock); 5090 lockdep_recursion_finish(); 5091 raw_local_irq_restore(flags); 5092 5093 return cookie; 5094 } 5095 EXPORT_SYMBOL_GPL(lock_pin_lock); 5096 5097 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5098 { 5099 unsigned long flags; 5100 5101 if (unlikely(current->lockdep_recursion)) 5102 return; 5103 5104 raw_local_irq_save(flags); 5105 check_flags(flags); 5106 5107 current->lockdep_recursion++; 5108 __lock_repin_lock(lock, cookie); 5109 lockdep_recursion_finish(); 5110 raw_local_irq_restore(flags); 5111 } 5112 EXPORT_SYMBOL_GPL(lock_repin_lock); 5113 5114 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5115 { 5116 unsigned long flags; 5117 5118 if (unlikely(current->lockdep_recursion)) 5119 return; 5120 5121 raw_local_irq_save(flags); 5122 check_flags(flags); 5123 5124 current->lockdep_recursion++; 5125 __lock_unpin_lock(lock, cookie); 5126 lockdep_recursion_finish(); 5127 raw_local_irq_restore(flags); 5128 } 5129 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5130 5131 #ifdef CONFIG_LOCK_STAT 5132 static void print_lock_contention_bug(struct task_struct *curr, 5133 struct lockdep_map *lock, 5134 unsigned long ip) 5135 { 5136 if (!debug_locks_off()) 5137 return; 5138 if (debug_locks_silent) 5139 return; 5140 5141 pr_warn("\n"); 5142 pr_warn("=================================\n"); 5143 pr_warn("WARNING: bad contention detected!\n"); 5144 print_kernel_ident(); 5145 pr_warn("---------------------------------\n"); 5146 pr_warn("%s/%d is trying to contend lock (", 5147 curr->comm, task_pid_nr(curr)); 5148 print_lockdep_cache(lock); 5149 pr_cont(") at:\n"); 5150 print_ip_sym(KERN_WARNING, ip); 5151 pr_warn("but there are no locks held!\n"); 5152 pr_warn("\nother info that might help us debug this:\n"); 5153 lockdep_print_held_locks(curr); 5154 5155 pr_warn("\nstack backtrace:\n"); 5156 dump_stack(); 5157 } 5158 5159 static void 5160 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5161 { 5162 struct task_struct *curr = current; 5163 struct held_lock *hlock; 5164 struct lock_class_stats *stats; 5165 unsigned int depth; 5166 int i, contention_point, contending_point; 5167 5168 depth = curr->lockdep_depth; 5169 /* 5170 * Whee, we contended on this lock, except it seems we're not 5171 * actually trying to acquire anything much at all.. 5172 */ 5173 if (DEBUG_LOCKS_WARN_ON(!depth)) 5174 return; 5175 5176 hlock = find_held_lock(curr, lock, depth, &i); 5177 if (!hlock) { 5178 print_lock_contention_bug(curr, lock, ip); 5179 return; 5180 } 5181 5182 if (hlock->instance != lock) 5183 return; 5184 5185 hlock->waittime_stamp = lockstat_clock(); 5186 5187 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5188 contending_point = lock_point(hlock_class(hlock)->contending_point, 5189 lock->ip); 5190 5191 stats = get_lock_stats(hlock_class(hlock)); 5192 if (contention_point < LOCKSTAT_POINTS) 5193 stats->contention_point[contention_point]++; 5194 if (contending_point < LOCKSTAT_POINTS) 5195 stats->contending_point[contending_point]++; 5196 if (lock->cpu != smp_processor_id()) 5197 stats->bounces[bounce_contended + !!hlock->read]++; 5198 } 5199 5200 static void 5201 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5202 { 5203 struct task_struct *curr = current; 5204 struct held_lock *hlock; 5205 struct lock_class_stats *stats; 5206 unsigned int depth; 5207 u64 now, waittime = 0; 5208 int i, cpu; 5209 5210 depth = curr->lockdep_depth; 5211 /* 5212 * Yay, we acquired ownership of this lock we didn't try to 5213 * acquire, how the heck did that happen? 5214 */ 5215 if (DEBUG_LOCKS_WARN_ON(!depth)) 5216 return; 5217 5218 hlock = find_held_lock(curr, lock, depth, &i); 5219 if (!hlock) { 5220 print_lock_contention_bug(curr, lock, _RET_IP_); 5221 return; 5222 } 5223 5224 if (hlock->instance != lock) 5225 return; 5226 5227 cpu = smp_processor_id(); 5228 if (hlock->waittime_stamp) { 5229 now = lockstat_clock(); 5230 waittime = now - hlock->waittime_stamp; 5231 hlock->holdtime_stamp = now; 5232 } 5233 5234 stats = get_lock_stats(hlock_class(hlock)); 5235 if (waittime) { 5236 if (hlock->read) 5237 lock_time_inc(&stats->read_waittime, waittime); 5238 else 5239 lock_time_inc(&stats->write_waittime, waittime); 5240 } 5241 if (lock->cpu != cpu) 5242 stats->bounces[bounce_acquired + !!hlock->read]++; 5243 5244 lock->cpu = cpu; 5245 lock->ip = ip; 5246 } 5247 5248 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5249 { 5250 unsigned long flags; 5251 5252 trace_lock_acquired(lock, ip); 5253 5254 if (unlikely(!lock_stat || !debug_locks)) 5255 return; 5256 5257 if (unlikely(current->lockdep_recursion)) 5258 return; 5259 5260 raw_local_irq_save(flags); 5261 check_flags(flags); 5262 current->lockdep_recursion++; 5263 __lock_contended(lock, ip); 5264 lockdep_recursion_finish(); 5265 raw_local_irq_restore(flags); 5266 } 5267 EXPORT_SYMBOL_GPL(lock_contended); 5268 5269 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5270 { 5271 unsigned long flags; 5272 5273 trace_lock_contended(lock, ip); 5274 5275 if (unlikely(!lock_stat || !debug_locks)) 5276 return; 5277 5278 if (unlikely(current->lockdep_recursion)) 5279 return; 5280 5281 raw_local_irq_save(flags); 5282 check_flags(flags); 5283 current->lockdep_recursion++; 5284 __lock_acquired(lock, ip); 5285 lockdep_recursion_finish(); 5286 raw_local_irq_restore(flags); 5287 } 5288 EXPORT_SYMBOL_GPL(lock_acquired); 5289 #endif 5290 5291 /* 5292 * Used by the testsuite, sanitize the validator state 5293 * after a simulated failure: 5294 */ 5295 5296 void lockdep_reset(void) 5297 { 5298 unsigned long flags; 5299 int i; 5300 5301 raw_local_irq_save(flags); 5302 lockdep_init_task(current); 5303 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5304 nr_hardirq_chains = 0; 5305 nr_softirq_chains = 0; 5306 nr_process_chains = 0; 5307 debug_locks = 1; 5308 for (i = 0; i < CHAINHASH_SIZE; i++) 5309 INIT_HLIST_HEAD(chainhash_table + i); 5310 raw_local_irq_restore(flags); 5311 } 5312 5313 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5314 static void remove_class_from_lock_chain(struct pending_free *pf, 5315 struct lock_chain *chain, 5316 struct lock_class *class) 5317 { 5318 #ifdef CONFIG_PROVE_LOCKING 5319 int i; 5320 5321 for (i = chain->base; i < chain->base + chain->depth; i++) { 5322 if (chain_hlocks[i] != class - lock_classes) 5323 continue; 5324 /* 5325 * Each lock class occurs at most once in a lock chain so once 5326 * we found a match we can break out of this loop. 5327 */ 5328 goto free_lock_chain; 5329 } 5330 /* Since the chain has not been modified, return. */ 5331 return; 5332 5333 free_lock_chain: 5334 free_chain_hlocks(chain->base, chain->depth); 5335 /* Overwrite the chain key for concurrent RCU readers. */ 5336 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5337 dec_chains(chain->irq_context); 5338 5339 /* 5340 * Note: calling hlist_del_rcu() from inside a 5341 * hlist_for_each_entry_rcu() loop is safe. 5342 */ 5343 hlist_del_rcu(&chain->entry); 5344 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5345 nr_zapped_lock_chains++; 5346 #endif 5347 } 5348 5349 /* Must be called with the graph lock held. */ 5350 static void remove_class_from_lock_chains(struct pending_free *pf, 5351 struct lock_class *class) 5352 { 5353 struct lock_chain *chain; 5354 struct hlist_head *head; 5355 int i; 5356 5357 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5358 head = chainhash_table + i; 5359 hlist_for_each_entry_rcu(chain, head, entry) { 5360 remove_class_from_lock_chain(pf, chain, class); 5361 } 5362 } 5363 } 5364 5365 /* 5366 * Remove all references to a lock class. The caller must hold the graph lock. 5367 */ 5368 static void zap_class(struct pending_free *pf, struct lock_class *class) 5369 { 5370 struct lock_list *entry; 5371 int i; 5372 5373 WARN_ON_ONCE(!class->key); 5374 5375 /* 5376 * Remove all dependencies this lock is 5377 * involved in: 5378 */ 5379 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5380 entry = list_entries + i; 5381 if (entry->class != class && entry->links_to != class) 5382 continue; 5383 __clear_bit(i, list_entries_in_use); 5384 nr_list_entries--; 5385 list_del_rcu(&entry->entry); 5386 } 5387 if (list_empty(&class->locks_after) && 5388 list_empty(&class->locks_before)) { 5389 list_move_tail(&class->lock_entry, &pf->zapped); 5390 hlist_del_rcu(&class->hash_entry); 5391 WRITE_ONCE(class->key, NULL); 5392 WRITE_ONCE(class->name, NULL); 5393 nr_lock_classes--; 5394 __clear_bit(class - lock_classes, lock_classes_in_use); 5395 } else { 5396 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 5397 class->name); 5398 } 5399 5400 remove_class_from_lock_chains(pf, class); 5401 nr_zapped_classes++; 5402 } 5403 5404 static void reinit_class(struct lock_class *class) 5405 { 5406 void *const p = class; 5407 const unsigned int offset = offsetof(struct lock_class, key); 5408 5409 WARN_ON_ONCE(!class->lock_entry.next); 5410 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5411 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5412 memset(p + offset, 0, sizeof(*class) - offset); 5413 WARN_ON_ONCE(!class->lock_entry.next); 5414 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5415 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5416 } 5417 5418 static inline int within(const void *addr, void *start, unsigned long size) 5419 { 5420 return addr >= start && addr < start + size; 5421 } 5422 5423 static bool inside_selftest(void) 5424 { 5425 return current == lockdep_selftest_task_struct; 5426 } 5427 5428 /* The caller must hold the graph lock. */ 5429 static struct pending_free *get_pending_free(void) 5430 { 5431 return delayed_free.pf + delayed_free.index; 5432 } 5433 5434 static void free_zapped_rcu(struct rcu_head *cb); 5435 5436 /* 5437 * Schedule an RCU callback if no RCU callback is pending. Must be called with 5438 * the graph lock held. 5439 */ 5440 static void call_rcu_zapped(struct pending_free *pf) 5441 { 5442 WARN_ON_ONCE(inside_selftest()); 5443 5444 if (list_empty(&pf->zapped)) 5445 return; 5446 5447 if (delayed_free.scheduled) 5448 return; 5449 5450 delayed_free.scheduled = true; 5451 5452 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 5453 delayed_free.index ^= 1; 5454 5455 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 5456 } 5457 5458 /* The caller must hold the graph lock. May be called from RCU context. */ 5459 static void __free_zapped_classes(struct pending_free *pf) 5460 { 5461 struct lock_class *class; 5462 5463 check_data_structures(); 5464 5465 list_for_each_entry(class, &pf->zapped, lock_entry) 5466 reinit_class(class); 5467 5468 list_splice_init(&pf->zapped, &free_lock_classes); 5469 5470 #ifdef CONFIG_PROVE_LOCKING 5471 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 5472 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 5473 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 5474 #endif 5475 } 5476 5477 static void free_zapped_rcu(struct rcu_head *ch) 5478 { 5479 struct pending_free *pf; 5480 unsigned long flags; 5481 5482 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 5483 return; 5484 5485 raw_local_irq_save(flags); 5486 lockdep_lock(); 5487 5488 /* closed head */ 5489 pf = delayed_free.pf + (delayed_free.index ^ 1); 5490 __free_zapped_classes(pf); 5491 delayed_free.scheduled = false; 5492 5493 /* 5494 * If there's anything on the open list, close and start a new callback. 5495 */ 5496 call_rcu_zapped(delayed_free.pf + delayed_free.index); 5497 5498 lockdep_unlock(); 5499 raw_local_irq_restore(flags); 5500 } 5501 5502 /* 5503 * Remove all lock classes from the class hash table and from the 5504 * all_lock_classes list whose key or name is in the address range [start, 5505 * start + size). Move these lock classes to the zapped_classes list. Must 5506 * be called with the graph lock held. 5507 */ 5508 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 5509 unsigned long size) 5510 { 5511 struct lock_class *class; 5512 struct hlist_head *head; 5513 int i; 5514 5515 /* Unhash all classes that were created by a module. */ 5516 for (i = 0; i < CLASSHASH_SIZE; i++) { 5517 head = classhash_table + i; 5518 hlist_for_each_entry_rcu(class, head, hash_entry) { 5519 if (!within(class->key, start, size) && 5520 !within(class->name, start, size)) 5521 continue; 5522 zap_class(pf, class); 5523 } 5524 } 5525 } 5526 5527 /* 5528 * Used in module.c to remove lock classes from memory that is going to be 5529 * freed; and possibly re-used by other modules. 5530 * 5531 * We will have had one synchronize_rcu() before getting here, so we're 5532 * guaranteed nobody will look up these exact classes -- they're properly dead 5533 * but still allocated. 5534 */ 5535 static void lockdep_free_key_range_reg(void *start, unsigned long size) 5536 { 5537 struct pending_free *pf; 5538 unsigned long flags; 5539 5540 init_data_structures_once(); 5541 5542 raw_local_irq_save(flags); 5543 lockdep_lock(); 5544 pf = get_pending_free(); 5545 __lockdep_free_key_range(pf, start, size); 5546 call_rcu_zapped(pf); 5547 lockdep_unlock(); 5548 raw_local_irq_restore(flags); 5549 5550 /* 5551 * Wait for any possible iterators from look_up_lock_class() to pass 5552 * before continuing to free the memory they refer to. 5553 */ 5554 synchronize_rcu(); 5555 } 5556 5557 /* 5558 * Free all lockdep keys in the range [start, start+size). Does not sleep. 5559 * Ignores debug_locks. Must only be used by the lockdep selftests. 5560 */ 5561 static void lockdep_free_key_range_imm(void *start, unsigned long size) 5562 { 5563 struct pending_free *pf = delayed_free.pf; 5564 unsigned long flags; 5565 5566 init_data_structures_once(); 5567 5568 raw_local_irq_save(flags); 5569 lockdep_lock(); 5570 __lockdep_free_key_range(pf, start, size); 5571 __free_zapped_classes(pf); 5572 lockdep_unlock(); 5573 raw_local_irq_restore(flags); 5574 } 5575 5576 void lockdep_free_key_range(void *start, unsigned long size) 5577 { 5578 init_data_structures_once(); 5579 5580 if (inside_selftest()) 5581 lockdep_free_key_range_imm(start, size); 5582 else 5583 lockdep_free_key_range_reg(start, size); 5584 } 5585 5586 /* 5587 * Check whether any element of the @lock->class_cache[] array refers to a 5588 * registered lock class. The caller must hold either the graph lock or the 5589 * RCU read lock. 5590 */ 5591 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 5592 { 5593 struct lock_class *class; 5594 struct hlist_head *head; 5595 int i, j; 5596 5597 for (i = 0; i < CLASSHASH_SIZE; i++) { 5598 head = classhash_table + i; 5599 hlist_for_each_entry_rcu(class, head, hash_entry) { 5600 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 5601 if (lock->class_cache[j] == class) 5602 return true; 5603 } 5604 } 5605 return false; 5606 } 5607 5608 /* The caller must hold the graph lock. Does not sleep. */ 5609 static void __lockdep_reset_lock(struct pending_free *pf, 5610 struct lockdep_map *lock) 5611 { 5612 struct lock_class *class; 5613 int j; 5614 5615 /* 5616 * Remove all classes this lock might have: 5617 */ 5618 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 5619 /* 5620 * If the class exists we look it up and zap it: 5621 */ 5622 class = look_up_lock_class(lock, j); 5623 if (class) 5624 zap_class(pf, class); 5625 } 5626 /* 5627 * Debug check: in the end all mapped classes should 5628 * be gone. 5629 */ 5630 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 5631 debug_locks_off(); 5632 } 5633 5634 /* 5635 * Remove all information lockdep has about a lock if debug_locks == 1. Free 5636 * released data structures from RCU context. 5637 */ 5638 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 5639 { 5640 struct pending_free *pf; 5641 unsigned long flags; 5642 int locked; 5643 5644 raw_local_irq_save(flags); 5645 locked = graph_lock(); 5646 if (!locked) 5647 goto out_irq; 5648 5649 pf = get_pending_free(); 5650 __lockdep_reset_lock(pf, lock); 5651 call_rcu_zapped(pf); 5652 5653 graph_unlock(); 5654 out_irq: 5655 raw_local_irq_restore(flags); 5656 } 5657 5658 /* 5659 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 5660 * lockdep selftests. 5661 */ 5662 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 5663 { 5664 struct pending_free *pf = delayed_free.pf; 5665 unsigned long flags; 5666 5667 raw_local_irq_save(flags); 5668 lockdep_lock(); 5669 __lockdep_reset_lock(pf, lock); 5670 __free_zapped_classes(pf); 5671 lockdep_unlock(); 5672 raw_local_irq_restore(flags); 5673 } 5674 5675 void lockdep_reset_lock(struct lockdep_map *lock) 5676 { 5677 init_data_structures_once(); 5678 5679 if (inside_selftest()) 5680 lockdep_reset_lock_imm(lock); 5681 else 5682 lockdep_reset_lock_reg(lock); 5683 } 5684 5685 /* Unregister a dynamically allocated key. */ 5686 void lockdep_unregister_key(struct lock_class_key *key) 5687 { 5688 struct hlist_head *hash_head = keyhashentry(key); 5689 struct lock_class_key *k; 5690 struct pending_free *pf; 5691 unsigned long flags; 5692 bool found = false; 5693 5694 might_sleep(); 5695 5696 if (WARN_ON_ONCE(static_obj(key))) 5697 return; 5698 5699 raw_local_irq_save(flags); 5700 if (!graph_lock()) 5701 goto out_irq; 5702 5703 pf = get_pending_free(); 5704 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 5705 if (k == key) { 5706 hlist_del_rcu(&k->hash_entry); 5707 found = true; 5708 break; 5709 } 5710 } 5711 WARN_ON_ONCE(!found); 5712 __lockdep_free_key_range(pf, key, 1); 5713 call_rcu_zapped(pf); 5714 graph_unlock(); 5715 out_irq: 5716 raw_local_irq_restore(flags); 5717 5718 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 5719 synchronize_rcu(); 5720 } 5721 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 5722 5723 void __init lockdep_init(void) 5724 { 5725 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 5726 5727 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 5728 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 5729 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 5730 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 5731 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 5732 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 5733 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 5734 5735 printk(" memory used by lock dependency info: %zu kB\n", 5736 (sizeof(lock_classes) + 5737 sizeof(lock_classes_in_use) + 5738 sizeof(classhash_table) + 5739 sizeof(list_entries) + 5740 sizeof(list_entries_in_use) + 5741 sizeof(chainhash_table) + 5742 sizeof(delayed_free) 5743 #ifdef CONFIG_PROVE_LOCKING 5744 + sizeof(lock_cq) 5745 + sizeof(lock_chains) 5746 + sizeof(lock_chains_in_use) 5747 + sizeof(chain_hlocks) 5748 #endif 5749 ) / 1024 5750 ); 5751 5752 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 5753 printk(" memory used for stack traces: %zu kB\n", 5754 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 5755 ); 5756 #endif 5757 5758 printk(" per task-struct memory footprint: %zu bytes\n", 5759 sizeof(((struct task_struct *)NULL)->held_locks)); 5760 } 5761 5762 static void 5763 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 5764 const void *mem_to, struct held_lock *hlock) 5765 { 5766 if (!debug_locks_off()) 5767 return; 5768 if (debug_locks_silent) 5769 return; 5770 5771 pr_warn("\n"); 5772 pr_warn("=========================\n"); 5773 pr_warn("WARNING: held lock freed!\n"); 5774 print_kernel_ident(); 5775 pr_warn("-------------------------\n"); 5776 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 5777 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 5778 print_lock(hlock); 5779 lockdep_print_held_locks(curr); 5780 5781 pr_warn("\nstack backtrace:\n"); 5782 dump_stack(); 5783 } 5784 5785 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 5786 const void* lock_from, unsigned long lock_len) 5787 { 5788 return lock_from + lock_len <= mem_from || 5789 mem_from + mem_len <= lock_from; 5790 } 5791 5792 /* 5793 * Called when kernel memory is freed (or unmapped), or if a lock 5794 * is destroyed or reinitialized - this code checks whether there is 5795 * any held lock in the memory range of <from> to <to>: 5796 */ 5797 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 5798 { 5799 struct task_struct *curr = current; 5800 struct held_lock *hlock; 5801 unsigned long flags; 5802 int i; 5803 5804 if (unlikely(!debug_locks)) 5805 return; 5806 5807 raw_local_irq_save(flags); 5808 for (i = 0; i < curr->lockdep_depth; i++) { 5809 hlock = curr->held_locks + i; 5810 5811 if (not_in_range(mem_from, mem_len, hlock->instance, 5812 sizeof(*hlock->instance))) 5813 continue; 5814 5815 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 5816 break; 5817 } 5818 raw_local_irq_restore(flags); 5819 } 5820 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 5821 5822 static void print_held_locks_bug(void) 5823 { 5824 if (!debug_locks_off()) 5825 return; 5826 if (debug_locks_silent) 5827 return; 5828 5829 pr_warn("\n"); 5830 pr_warn("====================================\n"); 5831 pr_warn("WARNING: %s/%d still has locks held!\n", 5832 current->comm, task_pid_nr(current)); 5833 print_kernel_ident(); 5834 pr_warn("------------------------------------\n"); 5835 lockdep_print_held_locks(current); 5836 pr_warn("\nstack backtrace:\n"); 5837 dump_stack(); 5838 } 5839 5840 void debug_check_no_locks_held(void) 5841 { 5842 if (unlikely(current->lockdep_depth > 0)) 5843 print_held_locks_bug(); 5844 } 5845 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 5846 5847 #ifdef __KERNEL__ 5848 void debug_show_all_locks(void) 5849 { 5850 struct task_struct *g, *p; 5851 5852 if (unlikely(!debug_locks)) { 5853 pr_warn("INFO: lockdep is turned off.\n"); 5854 return; 5855 } 5856 pr_warn("\nShowing all locks held in the system:\n"); 5857 5858 rcu_read_lock(); 5859 for_each_process_thread(g, p) { 5860 if (!p->lockdep_depth) 5861 continue; 5862 lockdep_print_held_locks(p); 5863 touch_nmi_watchdog(); 5864 touch_all_softlockup_watchdogs(); 5865 } 5866 rcu_read_unlock(); 5867 5868 pr_warn("\n"); 5869 pr_warn("=============================================\n\n"); 5870 } 5871 EXPORT_SYMBOL_GPL(debug_show_all_locks); 5872 #endif 5873 5874 /* 5875 * Careful: only use this function if you are sure that 5876 * the task cannot run in parallel! 5877 */ 5878 void debug_show_held_locks(struct task_struct *task) 5879 { 5880 if (unlikely(!debug_locks)) { 5881 printk("INFO: lockdep is turned off.\n"); 5882 return; 5883 } 5884 lockdep_print_held_locks(task); 5885 } 5886 EXPORT_SYMBOL_GPL(debug_show_held_locks); 5887 5888 asmlinkage __visible void lockdep_sys_exit(void) 5889 { 5890 struct task_struct *curr = current; 5891 5892 if (unlikely(curr->lockdep_depth)) { 5893 if (!debug_locks_off()) 5894 return; 5895 pr_warn("\n"); 5896 pr_warn("================================================\n"); 5897 pr_warn("WARNING: lock held when returning to user space!\n"); 5898 print_kernel_ident(); 5899 pr_warn("------------------------------------------------\n"); 5900 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 5901 curr->comm, curr->pid); 5902 lockdep_print_held_locks(curr); 5903 } 5904 5905 /* 5906 * The lock history for each syscall should be independent. So wipe the 5907 * slate clean on return to userspace. 5908 */ 5909 lockdep_invariant_state(false); 5910 } 5911 5912 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 5913 { 5914 struct task_struct *curr = current; 5915 5916 /* Note: the following can be executed concurrently, so be careful. */ 5917 pr_warn("\n"); 5918 pr_warn("=============================\n"); 5919 pr_warn("WARNING: suspicious RCU usage\n"); 5920 print_kernel_ident(); 5921 pr_warn("-----------------------------\n"); 5922 pr_warn("%s:%d %s!\n", file, line, s); 5923 pr_warn("\nother info that might help us debug this:\n\n"); 5924 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 5925 !rcu_lockdep_current_cpu_online() 5926 ? "RCU used illegally from offline CPU!\n" 5927 : "", 5928 rcu_scheduler_active, debug_locks); 5929 5930 /* 5931 * If a CPU is in the RCU-free window in idle (ie: in the section 5932 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 5933 * considers that CPU to be in an "extended quiescent state", 5934 * which means that RCU will be completely ignoring that CPU. 5935 * Therefore, rcu_read_lock() and friends have absolutely no 5936 * effect on a CPU running in that state. In other words, even if 5937 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 5938 * delete data structures out from under it. RCU really has no 5939 * choice here: we need to keep an RCU-free window in idle where 5940 * the CPU may possibly enter into low power mode. This way we can 5941 * notice an extended quiescent state to other CPUs that started a grace 5942 * period. Otherwise we would delay any grace period as long as we run 5943 * in the idle task. 5944 * 5945 * So complain bitterly if someone does call rcu_read_lock(), 5946 * rcu_read_lock_bh() and so on from extended quiescent states. 5947 */ 5948 if (!rcu_is_watching()) 5949 pr_warn("RCU used illegally from extended quiescent state!\n"); 5950 5951 lockdep_print_held_locks(curr); 5952 pr_warn("\nstack backtrace:\n"); 5953 dump_stack(); 5954 } 5955 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 5956