1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 #include <linux/context_tracking.h> 59 60 #include <asm/sections.h> 61 62 #include "lockdep_internals.h" 63 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 static int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 static int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 #ifdef CONFIG_SYSCTL 81 static struct ctl_table kern_lockdep_table[] = { 82 #ifdef CONFIG_PROVE_LOCKING 83 { 84 .procname = "prove_locking", 85 .data = &prove_locking, 86 .maxlen = sizeof(int), 87 .mode = 0644, 88 .proc_handler = proc_dointvec, 89 }, 90 #endif /* CONFIG_PROVE_LOCKING */ 91 #ifdef CONFIG_LOCK_STAT 92 { 93 .procname = "lock_stat", 94 .data = &lock_stat, 95 .maxlen = sizeof(int), 96 .mode = 0644, 97 .proc_handler = proc_dointvec, 98 }, 99 #endif /* CONFIG_LOCK_STAT */ 100 { } 101 }; 102 103 static __init int kernel_lockdep_sysctls_init(void) 104 { 105 register_sysctl_init("kernel", kern_lockdep_table); 106 return 0; 107 } 108 late_initcall(kernel_lockdep_sysctls_init); 109 #endif /* CONFIG_SYSCTL */ 110 111 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 113 114 static __always_inline bool lockdep_enabled(void) 115 { 116 if (!debug_locks) 117 return false; 118 119 if (this_cpu_read(lockdep_recursion)) 120 return false; 121 122 if (current->lockdep_recursion) 123 return false; 124 125 return true; 126 } 127 128 /* 129 * lockdep_lock: protects the lockdep graph, the hashes and the 130 * class/list/hash allocators. 131 * 132 * This is one of the rare exceptions where it's justified 133 * to use a raw spinlock - we really dont want the spinlock 134 * code to recurse back into the lockdep code... 135 */ 136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 137 static struct task_struct *__owner; 138 139 static inline void lockdep_lock(void) 140 { 141 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 142 143 __this_cpu_inc(lockdep_recursion); 144 arch_spin_lock(&__lock); 145 __owner = current; 146 } 147 148 static inline void lockdep_unlock(void) 149 { 150 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 151 152 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 153 return; 154 155 __owner = NULL; 156 arch_spin_unlock(&__lock); 157 __this_cpu_dec(lockdep_recursion); 158 } 159 160 static inline bool lockdep_assert_locked(void) 161 { 162 return DEBUG_LOCKS_WARN_ON(__owner != current); 163 } 164 165 static struct task_struct *lockdep_selftest_task_struct; 166 167 168 static int graph_lock(void) 169 { 170 lockdep_lock(); 171 /* 172 * Make sure that if another CPU detected a bug while 173 * walking the graph we dont change it (while the other 174 * CPU is busy printing out stuff with the graph lock 175 * dropped already) 176 */ 177 if (!debug_locks) { 178 lockdep_unlock(); 179 return 0; 180 } 181 return 1; 182 } 183 184 static inline void graph_unlock(void) 185 { 186 lockdep_unlock(); 187 } 188 189 /* 190 * Turn lock debugging off and return with 0 if it was off already, 191 * and also release the graph lock: 192 */ 193 static inline int debug_locks_off_graph_unlock(void) 194 { 195 int ret = debug_locks_off(); 196 197 lockdep_unlock(); 198 199 return ret; 200 } 201 202 unsigned long nr_list_entries; 203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 205 206 /* 207 * All data structures here are protected by the global debug_lock. 208 * 209 * nr_lock_classes is the number of elements of lock_classes[] that is 210 * in use. 211 */ 212 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 213 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 215 unsigned long nr_lock_classes; 216 unsigned long nr_zapped_classes; 217 unsigned long max_lock_class_idx; 218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 220 221 static inline struct lock_class *hlock_class(struct held_lock *hlock) 222 { 223 unsigned int class_idx = hlock->class_idx; 224 225 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 226 barrier(); 227 228 if (!test_bit(class_idx, lock_classes_in_use)) { 229 /* 230 * Someone passed in garbage, we give up. 231 */ 232 DEBUG_LOCKS_WARN_ON(1); 233 return NULL; 234 } 235 236 /* 237 * At this point, if the passed hlock->class_idx is still garbage, 238 * we just have to live with it 239 */ 240 return lock_classes + class_idx; 241 } 242 243 #ifdef CONFIG_LOCK_STAT 244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 245 246 static inline u64 lockstat_clock(void) 247 { 248 return local_clock(); 249 } 250 251 static int lock_point(unsigned long points[], unsigned long ip) 252 { 253 int i; 254 255 for (i = 0; i < LOCKSTAT_POINTS; i++) { 256 if (points[i] == 0) { 257 points[i] = ip; 258 break; 259 } 260 if (points[i] == ip) 261 break; 262 } 263 264 return i; 265 } 266 267 static void lock_time_inc(struct lock_time *lt, u64 time) 268 { 269 if (time > lt->max) 270 lt->max = time; 271 272 if (time < lt->min || !lt->nr) 273 lt->min = time; 274 275 lt->total += time; 276 lt->nr++; 277 } 278 279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 280 { 281 if (!src->nr) 282 return; 283 284 if (src->max > dst->max) 285 dst->max = src->max; 286 287 if (src->min < dst->min || !dst->nr) 288 dst->min = src->min; 289 290 dst->total += src->total; 291 dst->nr += src->nr; 292 } 293 294 struct lock_class_stats lock_stats(struct lock_class *class) 295 { 296 struct lock_class_stats stats; 297 int cpu, i; 298 299 memset(&stats, 0, sizeof(struct lock_class_stats)); 300 for_each_possible_cpu(cpu) { 301 struct lock_class_stats *pcs = 302 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 303 304 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 305 stats.contention_point[i] += pcs->contention_point[i]; 306 307 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 308 stats.contending_point[i] += pcs->contending_point[i]; 309 310 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 311 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 312 313 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 314 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 315 316 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 317 stats.bounces[i] += pcs->bounces[i]; 318 } 319 320 return stats; 321 } 322 323 void clear_lock_stats(struct lock_class *class) 324 { 325 int cpu; 326 327 for_each_possible_cpu(cpu) { 328 struct lock_class_stats *cpu_stats = 329 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 330 331 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 332 } 333 memset(class->contention_point, 0, sizeof(class->contention_point)); 334 memset(class->contending_point, 0, sizeof(class->contending_point)); 335 } 336 337 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 338 { 339 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 340 } 341 342 static void lock_release_holdtime(struct held_lock *hlock) 343 { 344 struct lock_class_stats *stats; 345 u64 holdtime; 346 347 if (!lock_stat) 348 return; 349 350 holdtime = lockstat_clock() - hlock->holdtime_stamp; 351 352 stats = get_lock_stats(hlock_class(hlock)); 353 if (hlock->read) 354 lock_time_inc(&stats->read_holdtime, holdtime); 355 else 356 lock_time_inc(&stats->write_holdtime, holdtime); 357 } 358 #else 359 static inline void lock_release_holdtime(struct held_lock *hlock) 360 { 361 } 362 #endif 363 364 /* 365 * We keep a global list of all lock classes. The list is only accessed with 366 * the lockdep spinlock lock held. free_lock_classes is a list with free 367 * elements. These elements are linked together by the lock_entry member in 368 * struct lock_class. 369 */ 370 static LIST_HEAD(all_lock_classes); 371 static LIST_HEAD(free_lock_classes); 372 373 /** 374 * struct pending_free - information about data structures about to be freed 375 * @zapped: Head of a list with struct lock_class elements. 376 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 377 * are about to be freed. 378 */ 379 struct pending_free { 380 struct list_head zapped; 381 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 382 }; 383 384 /** 385 * struct delayed_free - data structures used for delayed freeing 386 * 387 * A data structure for delayed freeing of data structures that may be 388 * accessed by RCU readers at the time these were freed. 389 * 390 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 391 * @index: Index of @pf to which freed data structures are added. 392 * @scheduled: Whether or not an RCU callback has been scheduled. 393 * @pf: Array with information about data structures about to be freed. 394 */ 395 static struct delayed_free { 396 struct rcu_head rcu_head; 397 int index; 398 int scheduled; 399 struct pending_free pf[2]; 400 } delayed_free; 401 402 /* 403 * The lockdep classes are in a hash-table as well, for fast lookup: 404 */ 405 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 406 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 407 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 408 #define classhashentry(key) (classhash_table + __classhashfn((key))) 409 410 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 411 412 /* 413 * We put the lock dependency chains into a hash-table as well, to cache 414 * their existence: 415 */ 416 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 417 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 418 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 419 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 420 421 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 422 423 /* 424 * the id of held_lock 425 */ 426 static inline u16 hlock_id(struct held_lock *hlock) 427 { 428 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 429 430 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 431 } 432 433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 434 { 435 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 436 } 437 438 /* 439 * The hash key of the lock dependency chains is a hash itself too: 440 * it's a hash of all locks taken up to that lock, including that lock. 441 * It's a 64-bit hash, because it's important for the keys to be 442 * unique. 443 */ 444 static inline u64 iterate_chain_key(u64 key, u32 idx) 445 { 446 u32 k0 = key, k1 = key >> 32; 447 448 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 449 450 return k0 | (u64)k1 << 32; 451 } 452 453 void lockdep_init_task(struct task_struct *task) 454 { 455 task->lockdep_depth = 0; /* no locks held yet */ 456 task->curr_chain_key = INITIAL_CHAIN_KEY; 457 task->lockdep_recursion = 0; 458 } 459 460 static __always_inline void lockdep_recursion_inc(void) 461 { 462 __this_cpu_inc(lockdep_recursion); 463 } 464 465 static __always_inline void lockdep_recursion_finish(void) 466 { 467 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 468 __this_cpu_write(lockdep_recursion, 0); 469 } 470 471 void lockdep_set_selftest_task(struct task_struct *task) 472 { 473 lockdep_selftest_task_struct = task; 474 } 475 476 /* 477 * Debugging switches: 478 */ 479 480 #define VERBOSE 0 481 #define VERY_VERBOSE 0 482 483 #if VERBOSE 484 # define HARDIRQ_VERBOSE 1 485 # define SOFTIRQ_VERBOSE 1 486 #else 487 # define HARDIRQ_VERBOSE 0 488 # define SOFTIRQ_VERBOSE 0 489 #endif 490 491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 492 /* 493 * Quick filtering for interesting events: 494 */ 495 static int class_filter(struct lock_class *class) 496 { 497 #if 0 498 /* Example */ 499 if (class->name_version == 1 && 500 !strcmp(class->name, "lockname")) 501 return 1; 502 if (class->name_version == 1 && 503 !strcmp(class->name, "&struct->lockfield")) 504 return 1; 505 #endif 506 /* Filter everything else. 1 would be to allow everything else */ 507 return 0; 508 } 509 #endif 510 511 static int verbose(struct lock_class *class) 512 { 513 #if VERBOSE 514 return class_filter(class); 515 #endif 516 return 0; 517 } 518 519 static void print_lockdep_off(const char *bug_msg) 520 { 521 printk(KERN_DEBUG "%s\n", bug_msg); 522 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 523 #ifdef CONFIG_LOCK_STAT 524 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 525 #endif 526 } 527 528 unsigned long nr_stack_trace_entries; 529 530 #ifdef CONFIG_PROVE_LOCKING 531 /** 532 * struct lock_trace - single stack backtrace 533 * @hash_entry: Entry in a stack_trace_hash[] list. 534 * @hash: jhash() of @entries. 535 * @nr_entries: Number of entries in @entries. 536 * @entries: Actual stack backtrace. 537 */ 538 struct lock_trace { 539 struct hlist_node hash_entry; 540 u32 hash; 541 u32 nr_entries; 542 unsigned long entries[] __aligned(sizeof(unsigned long)); 543 }; 544 #define LOCK_TRACE_SIZE_IN_LONGS \ 545 (sizeof(struct lock_trace) / sizeof(unsigned long)) 546 /* 547 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 548 */ 549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 551 552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 553 { 554 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 555 memcmp(t1->entries, t2->entries, 556 t1->nr_entries * sizeof(t1->entries[0])) == 0; 557 } 558 559 static struct lock_trace *save_trace(void) 560 { 561 struct lock_trace *trace, *t2; 562 struct hlist_head *hash_head; 563 u32 hash; 564 int max_entries; 565 566 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 567 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 568 569 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 570 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 571 LOCK_TRACE_SIZE_IN_LONGS; 572 573 if (max_entries <= 0) { 574 if (!debug_locks_off_graph_unlock()) 575 return NULL; 576 577 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 578 dump_stack(); 579 580 return NULL; 581 } 582 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 583 584 hash = jhash(trace->entries, trace->nr_entries * 585 sizeof(trace->entries[0]), 0); 586 trace->hash = hash; 587 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 588 hlist_for_each_entry(t2, hash_head, hash_entry) { 589 if (traces_identical(trace, t2)) 590 return t2; 591 } 592 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 593 hlist_add_head(&trace->hash_entry, hash_head); 594 595 return trace; 596 } 597 598 /* Return the number of stack traces in the stack_trace[] array. */ 599 u64 lockdep_stack_trace_count(void) 600 { 601 struct lock_trace *trace; 602 u64 c = 0; 603 int i; 604 605 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 606 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 607 c++; 608 } 609 } 610 611 return c; 612 } 613 614 /* Return the number of stack hash chains that have at least one stack trace. */ 615 u64 lockdep_stack_hash_count(void) 616 { 617 u64 c = 0; 618 int i; 619 620 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 621 if (!hlist_empty(&stack_trace_hash[i])) 622 c++; 623 624 return c; 625 } 626 #endif 627 628 unsigned int nr_hardirq_chains; 629 unsigned int nr_softirq_chains; 630 unsigned int nr_process_chains; 631 unsigned int max_lockdep_depth; 632 633 #ifdef CONFIG_DEBUG_LOCKDEP 634 /* 635 * Various lockdep statistics: 636 */ 637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 638 #endif 639 640 #ifdef CONFIG_PROVE_LOCKING 641 /* 642 * Locking printouts: 643 */ 644 645 #define __USAGE(__STATE) \ 646 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 647 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 648 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 649 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 650 651 static const char *usage_str[] = 652 { 653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 654 #include "lockdep_states.h" 655 #undef LOCKDEP_STATE 656 [LOCK_USED] = "INITIAL USE", 657 [LOCK_USED_READ] = "INITIAL READ USE", 658 /* abused as string storage for verify_lock_unused() */ 659 [LOCK_USAGE_STATES] = "IN-NMI", 660 }; 661 #endif 662 663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 664 { 665 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 666 } 667 668 static inline unsigned long lock_flag(enum lock_usage_bit bit) 669 { 670 return 1UL << bit; 671 } 672 673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 674 { 675 /* 676 * The usage character defaults to '.' (i.e., irqs disabled and not in 677 * irq context), which is the safest usage category. 678 */ 679 char c = '.'; 680 681 /* 682 * The order of the following usage checks matters, which will 683 * result in the outcome character as follows: 684 * 685 * - '+': irq is enabled and not in irq context 686 * - '-': in irq context and irq is disabled 687 * - '?': in irq context and irq is enabled 688 */ 689 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 690 c = '+'; 691 if (class->usage_mask & lock_flag(bit)) 692 c = '?'; 693 } else if (class->usage_mask & lock_flag(bit)) 694 c = '-'; 695 696 return c; 697 } 698 699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 700 { 701 int i = 0; 702 703 #define LOCKDEP_STATE(__STATE) \ 704 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 705 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 706 #include "lockdep_states.h" 707 #undef LOCKDEP_STATE 708 709 usage[i] = '\0'; 710 } 711 712 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class) 713 { 714 char str[KSYM_NAME_LEN]; 715 const char *name; 716 717 name = class->name; 718 if (!name) { 719 name = __get_key_name(class->key, str); 720 printk(KERN_CONT "%s", name); 721 } else { 722 printk(KERN_CONT "%s", name); 723 if (class->name_version > 1) 724 printk(KERN_CONT "#%d", class->name_version); 725 if (class->subclass) 726 printk(KERN_CONT "/%d", class->subclass); 727 if (hlock && class->print_fn) 728 class->print_fn(hlock->instance); 729 } 730 } 731 732 static void print_lock_name(struct held_lock *hlock, struct lock_class *class) 733 { 734 char usage[LOCK_USAGE_CHARS]; 735 736 get_usage_chars(class, usage); 737 738 printk(KERN_CONT " ("); 739 __print_lock_name(hlock, class); 740 printk(KERN_CONT "){%s}-{%d:%d}", usage, 741 class->wait_type_outer ?: class->wait_type_inner, 742 class->wait_type_inner); 743 } 744 745 static void print_lockdep_cache(struct lockdep_map *lock) 746 { 747 const char *name; 748 char str[KSYM_NAME_LEN]; 749 750 name = lock->name; 751 if (!name) 752 name = __get_key_name(lock->key->subkeys, str); 753 754 printk(KERN_CONT "%s", name); 755 } 756 757 static void print_lock(struct held_lock *hlock) 758 { 759 /* 760 * We can be called locklessly through debug_show_all_locks() so be 761 * extra careful, the hlock might have been released and cleared. 762 * 763 * If this indeed happens, lets pretend it does not hurt to continue 764 * to print the lock unless the hlock class_idx does not point to a 765 * registered class. The rationale here is: since we don't attempt 766 * to distinguish whether we are in this situation, if it just 767 * happened we can't count on class_idx to tell either. 768 */ 769 struct lock_class *lock = hlock_class(hlock); 770 771 if (!lock) { 772 printk(KERN_CONT "<RELEASED>\n"); 773 return; 774 } 775 776 printk(KERN_CONT "%px", hlock->instance); 777 print_lock_name(hlock, lock); 778 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 779 } 780 781 static void lockdep_print_held_locks(struct task_struct *p) 782 { 783 int i, depth = READ_ONCE(p->lockdep_depth); 784 785 if (!depth) 786 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 787 else 788 printk("%d lock%s held by %s/%d:\n", depth, 789 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 790 /* 791 * It's not reliable to print a task's held locks if it's not sleeping 792 * and it's not the current task. 793 */ 794 if (p != current && task_is_running(p)) 795 return; 796 for (i = 0; i < depth; i++) { 797 printk(" #%d: ", i); 798 print_lock(p->held_locks + i); 799 } 800 } 801 802 static void print_kernel_ident(void) 803 { 804 printk("%s %.*s %s\n", init_utsname()->release, 805 (int)strcspn(init_utsname()->version, " "), 806 init_utsname()->version, 807 print_tainted()); 808 } 809 810 static int very_verbose(struct lock_class *class) 811 { 812 #if VERY_VERBOSE 813 return class_filter(class); 814 #endif 815 return 0; 816 } 817 818 /* 819 * Is this the address of a static object: 820 */ 821 #ifdef __KERNEL__ 822 /* 823 * Check if an address is part of freed initmem. After initmem is freed, 824 * memory can be allocated from it, and such allocations would then have 825 * addresses within the range [_stext, _end]. 826 */ 827 #ifndef arch_is_kernel_initmem_freed 828 static int arch_is_kernel_initmem_freed(unsigned long addr) 829 { 830 if (system_state < SYSTEM_FREEING_INITMEM) 831 return 0; 832 833 return init_section_contains((void *)addr, 1); 834 } 835 #endif 836 837 static int static_obj(const void *obj) 838 { 839 unsigned long start = (unsigned long) &_stext, 840 end = (unsigned long) &_end, 841 addr = (unsigned long) obj; 842 843 if (arch_is_kernel_initmem_freed(addr)) 844 return 0; 845 846 /* 847 * static variable? 848 */ 849 if ((addr >= start) && (addr < end)) 850 return 1; 851 852 /* 853 * in-kernel percpu var? 854 */ 855 if (is_kernel_percpu_address(addr)) 856 return 1; 857 858 /* 859 * module static or percpu var? 860 */ 861 return is_module_address(addr) || is_module_percpu_address(addr); 862 } 863 #endif 864 865 /* 866 * To make lock name printouts unique, we calculate a unique 867 * class->name_version generation counter. The caller must hold the graph 868 * lock. 869 */ 870 static int count_matching_names(struct lock_class *new_class) 871 { 872 struct lock_class *class; 873 int count = 0; 874 875 if (!new_class->name) 876 return 0; 877 878 list_for_each_entry(class, &all_lock_classes, lock_entry) { 879 if (new_class->key - new_class->subclass == class->key) 880 return class->name_version; 881 if (class->name && !strcmp(class->name, new_class->name)) 882 count = max(count, class->name_version); 883 } 884 885 return count + 1; 886 } 887 888 /* used from NMI context -- must be lockless */ 889 static noinstr struct lock_class * 890 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 891 { 892 struct lockdep_subclass_key *key; 893 struct hlist_head *hash_head; 894 struct lock_class *class; 895 896 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 897 instrumentation_begin(); 898 debug_locks_off(); 899 printk(KERN_ERR 900 "BUG: looking up invalid subclass: %u\n", subclass); 901 printk(KERN_ERR 902 "turning off the locking correctness validator.\n"); 903 dump_stack(); 904 instrumentation_end(); 905 return NULL; 906 } 907 908 /* 909 * If it is not initialised then it has never been locked, 910 * so it won't be present in the hash table. 911 */ 912 if (unlikely(!lock->key)) 913 return NULL; 914 915 /* 916 * NOTE: the class-key must be unique. For dynamic locks, a static 917 * lock_class_key variable is passed in through the mutex_init() 918 * (or spin_lock_init()) call - which acts as the key. For static 919 * locks we use the lock object itself as the key. 920 */ 921 BUILD_BUG_ON(sizeof(struct lock_class_key) > 922 sizeof(struct lockdep_map)); 923 924 key = lock->key->subkeys + subclass; 925 926 hash_head = classhashentry(key); 927 928 /* 929 * We do an RCU walk of the hash, see lockdep_free_key_range(). 930 */ 931 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 932 return NULL; 933 934 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 935 if (class->key == key) { 936 /* 937 * Huh! same key, different name? Did someone trample 938 * on some memory? We're most confused. 939 */ 940 WARN_ONCE(class->name != lock->name && 941 lock->key != &__lockdep_no_validate__, 942 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", 943 lock->name, lock->key, class->name); 944 return class; 945 } 946 } 947 948 return NULL; 949 } 950 951 /* 952 * Static locks do not have their class-keys yet - for them the key is 953 * the lock object itself. If the lock is in the per cpu area, the 954 * canonical address of the lock (per cpu offset removed) is used. 955 */ 956 static bool assign_lock_key(struct lockdep_map *lock) 957 { 958 unsigned long can_addr, addr = (unsigned long)lock; 959 960 #ifdef __KERNEL__ 961 /* 962 * lockdep_free_key_range() assumes that struct lock_class_key 963 * objects do not overlap. Since we use the address of lock 964 * objects as class key for static objects, check whether the 965 * size of lock_class_key objects does not exceed the size of 966 * the smallest lock object. 967 */ 968 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 969 #endif 970 971 if (__is_kernel_percpu_address(addr, &can_addr)) 972 lock->key = (void *)can_addr; 973 else if (__is_module_percpu_address(addr, &can_addr)) 974 lock->key = (void *)can_addr; 975 else if (static_obj(lock)) 976 lock->key = (void *)lock; 977 else { 978 /* Debug-check: all keys must be persistent! */ 979 debug_locks_off(); 980 pr_err("INFO: trying to register non-static key.\n"); 981 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 982 pr_err("you didn't initialize this object before use?\n"); 983 pr_err("turning off the locking correctness validator.\n"); 984 dump_stack(); 985 return false; 986 } 987 988 return true; 989 } 990 991 #ifdef CONFIG_DEBUG_LOCKDEP 992 993 /* Check whether element @e occurs in list @h */ 994 static bool in_list(struct list_head *e, struct list_head *h) 995 { 996 struct list_head *f; 997 998 list_for_each(f, h) { 999 if (e == f) 1000 return true; 1001 } 1002 1003 return false; 1004 } 1005 1006 /* 1007 * Check whether entry @e occurs in any of the locks_after or locks_before 1008 * lists. 1009 */ 1010 static bool in_any_class_list(struct list_head *e) 1011 { 1012 struct lock_class *class; 1013 int i; 1014 1015 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1016 class = &lock_classes[i]; 1017 if (in_list(e, &class->locks_after) || 1018 in_list(e, &class->locks_before)) 1019 return true; 1020 } 1021 return false; 1022 } 1023 1024 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 1025 { 1026 struct lock_list *e; 1027 1028 list_for_each_entry(e, h, entry) { 1029 if (e->links_to != c) { 1030 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1031 c->name ? : "(?)", 1032 (unsigned long)(e - list_entries), 1033 e->links_to && e->links_to->name ? 1034 e->links_to->name : "(?)", 1035 e->class && e->class->name ? e->class->name : 1036 "(?)"); 1037 return false; 1038 } 1039 } 1040 return true; 1041 } 1042 1043 #ifdef CONFIG_PROVE_LOCKING 1044 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1045 #endif 1046 1047 static bool check_lock_chain_key(struct lock_chain *chain) 1048 { 1049 #ifdef CONFIG_PROVE_LOCKING 1050 u64 chain_key = INITIAL_CHAIN_KEY; 1051 int i; 1052 1053 for (i = chain->base; i < chain->base + chain->depth; i++) 1054 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1055 /* 1056 * The 'unsigned long long' casts avoid that a compiler warning 1057 * is reported when building tools/lib/lockdep. 1058 */ 1059 if (chain->chain_key != chain_key) { 1060 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1061 (unsigned long long)(chain - lock_chains), 1062 (unsigned long long)chain->chain_key, 1063 (unsigned long long)chain_key); 1064 return false; 1065 } 1066 #endif 1067 return true; 1068 } 1069 1070 static bool in_any_zapped_class_list(struct lock_class *class) 1071 { 1072 struct pending_free *pf; 1073 int i; 1074 1075 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1076 if (in_list(&class->lock_entry, &pf->zapped)) 1077 return true; 1078 } 1079 1080 return false; 1081 } 1082 1083 static bool __check_data_structures(void) 1084 { 1085 struct lock_class *class; 1086 struct lock_chain *chain; 1087 struct hlist_head *head; 1088 struct lock_list *e; 1089 int i; 1090 1091 /* Check whether all classes occur in a lock list. */ 1092 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1093 class = &lock_classes[i]; 1094 if (!in_list(&class->lock_entry, &all_lock_classes) && 1095 !in_list(&class->lock_entry, &free_lock_classes) && 1096 !in_any_zapped_class_list(class)) { 1097 printk(KERN_INFO "class %px/%s is not in any class list\n", 1098 class, class->name ? : "(?)"); 1099 return false; 1100 } 1101 } 1102 1103 /* Check whether all classes have valid lock lists. */ 1104 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1105 class = &lock_classes[i]; 1106 if (!class_lock_list_valid(class, &class->locks_before)) 1107 return false; 1108 if (!class_lock_list_valid(class, &class->locks_after)) 1109 return false; 1110 } 1111 1112 /* Check the chain_key of all lock chains. */ 1113 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1114 head = chainhash_table + i; 1115 hlist_for_each_entry_rcu(chain, head, entry) { 1116 if (!check_lock_chain_key(chain)) 1117 return false; 1118 } 1119 } 1120 1121 /* 1122 * Check whether all list entries that are in use occur in a class 1123 * lock list. 1124 */ 1125 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1126 e = list_entries + i; 1127 if (!in_any_class_list(&e->entry)) { 1128 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1129 (unsigned int)(e - list_entries), 1130 e->class->name ? : "(?)", 1131 e->links_to->name ? : "(?)"); 1132 return false; 1133 } 1134 } 1135 1136 /* 1137 * Check whether all list entries that are not in use do not occur in 1138 * a class lock list. 1139 */ 1140 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1141 e = list_entries + i; 1142 if (in_any_class_list(&e->entry)) { 1143 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1144 (unsigned int)(e - list_entries), 1145 e->class && e->class->name ? e->class->name : 1146 "(?)", 1147 e->links_to && e->links_to->name ? 1148 e->links_to->name : "(?)"); 1149 return false; 1150 } 1151 } 1152 1153 return true; 1154 } 1155 1156 int check_consistency = 0; 1157 module_param(check_consistency, int, 0644); 1158 1159 static void check_data_structures(void) 1160 { 1161 static bool once = false; 1162 1163 if (check_consistency && !once) { 1164 if (!__check_data_structures()) { 1165 once = true; 1166 WARN_ON(once); 1167 } 1168 } 1169 } 1170 1171 #else /* CONFIG_DEBUG_LOCKDEP */ 1172 1173 static inline void check_data_structures(void) { } 1174 1175 #endif /* CONFIG_DEBUG_LOCKDEP */ 1176 1177 static void init_chain_block_buckets(void); 1178 1179 /* 1180 * Initialize the lock_classes[] array elements, the free_lock_classes list 1181 * and also the delayed_free structure. 1182 */ 1183 static void init_data_structures_once(void) 1184 { 1185 static bool __read_mostly ds_initialized, rcu_head_initialized; 1186 int i; 1187 1188 if (likely(rcu_head_initialized)) 1189 return; 1190 1191 if (system_state >= SYSTEM_SCHEDULING) { 1192 init_rcu_head(&delayed_free.rcu_head); 1193 rcu_head_initialized = true; 1194 } 1195 1196 if (ds_initialized) 1197 return; 1198 1199 ds_initialized = true; 1200 1201 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1202 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1203 1204 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1205 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1206 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1207 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1208 } 1209 init_chain_block_buckets(); 1210 } 1211 1212 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1213 { 1214 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1215 1216 return lock_keys_hash + hash; 1217 } 1218 1219 /* Register a dynamically allocated key. */ 1220 void lockdep_register_key(struct lock_class_key *key) 1221 { 1222 struct hlist_head *hash_head; 1223 struct lock_class_key *k; 1224 unsigned long flags; 1225 1226 if (WARN_ON_ONCE(static_obj(key))) 1227 return; 1228 hash_head = keyhashentry(key); 1229 1230 raw_local_irq_save(flags); 1231 if (!graph_lock()) 1232 goto restore_irqs; 1233 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1234 if (WARN_ON_ONCE(k == key)) 1235 goto out_unlock; 1236 } 1237 hlist_add_head_rcu(&key->hash_entry, hash_head); 1238 out_unlock: 1239 graph_unlock(); 1240 restore_irqs: 1241 raw_local_irq_restore(flags); 1242 } 1243 EXPORT_SYMBOL_GPL(lockdep_register_key); 1244 1245 /* Check whether a key has been registered as a dynamic key. */ 1246 static bool is_dynamic_key(const struct lock_class_key *key) 1247 { 1248 struct hlist_head *hash_head; 1249 struct lock_class_key *k; 1250 bool found = false; 1251 1252 if (WARN_ON_ONCE(static_obj(key))) 1253 return false; 1254 1255 /* 1256 * If lock debugging is disabled lock_keys_hash[] may contain 1257 * pointers to memory that has already been freed. Avoid triggering 1258 * a use-after-free in that case by returning early. 1259 */ 1260 if (!debug_locks) 1261 return true; 1262 1263 hash_head = keyhashentry(key); 1264 1265 rcu_read_lock(); 1266 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1267 if (k == key) { 1268 found = true; 1269 break; 1270 } 1271 } 1272 rcu_read_unlock(); 1273 1274 return found; 1275 } 1276 1277 /* 1278 * Register a lock's class in the hash-table, if the class is not present 1279 * yet. Otherwise we look it up. We cache the result in the lock object 1280 * itself, so actual lookup of the hash should be once per lock object. 1281 */ 1282 static struct lock_class * 1283 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1284 { 1285 struct lockdep_subclass_key *key; 1286 struct hlist_head *hash_head; 1287 struct lock_class *class; 1288 int idx; 1289 1290 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1291 1292 class = look_up_lock_class(lock, subclass); 1293 if (likely(class)) 1294 goto out_set_class_cache; 1295 1296 if (!lock->key) { 1297 if (!assign_lock_key(lock)) 1298 return NULL; 1299 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1300 return NULL; 1301 } 1302 1303 key = lock->key->subkeys + subclass; 1304 hash_head = classhashentry(key); 1305 1306 if (!graph_lock()) { 1307 return NULL; 1308 } 1309 /* 1310 * We have to do the hash-walk again, to avoid races 1311 * with another CPU: 1312 */ 1313 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1314 if (class->key == key) 1315 goto out_unlock_set; 1316 } 1317 1318 init_data_structures_once(); 1319 1320 /* Allocate a new lock class and add it to the hash. */ 1321 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1322 lock_entry); 1323 if (!class) { 1324 if (!debug_locks_off_graph_unlock()) { 1325 return NULL; 1326 } 1327 1328 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1329 dump_stack(); 1330 return NULL; 1331 } 1332 nr_lock_classes++; 1333 __set_bit(class - lock_classes, lock_classes_in_use); 1334 debug_atomic_inc(nr_unused_locks); 1335 class->key = key; 1336 class->name = lock->name; 1337 class->subclass = subclass; 1338 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1339 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1340 class->name_version = count_matching_names(class); 1341 class->wait_type_inner = lock->wait_type_inner; 1342 class->wait_type_outer = lock->wait_type_outer; 1343 class->lock_type = lock->lock_type; 1344 /* 1345 * We use RCU's safe list-add method to make 1346 * parallel walking of the hash-list safe: 1347 */ 1348 hlist_add_head_rcu(&class->hash_entry, hash_head); 1349 /* 1350 * Remove the class from the free list and add it to the global list 1351 * of classes. 1352 */ 1353 list_move_tail(&class->lock_entry, &all_lock_classes); 1354 idx = class - lock_classes; 1355 if (idx > max_lock_class_idx) 1356 max_lock_class_idx = idx; 1357 1358 if (verbose(class)) { 1359 graph_unlock(); 1360 1361 printk("\nnew class %px: %s", class->key, class->name); 1362 if (class->name_version > 1) 1363 printk(KERN_CONT "#%d", class->name_version); 1364 printk(KERN_CONT "\n"); 1365 dump_stack(); 1366 1367 if (!graph_lock()) { 1368 return NULL; 1369 } 1370 } 1371 out_unlock_set: 1372 graph_unlock(); 1373 1374 out_set_class_cache: 1375 if (!subclass || force) 1376 lock->class_cache[0] = class; 1377 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1378 lock->class_cache[subclass] = class; 1379 1380 /* 1381 * Hash collision, did we smoke some? We found a class with a matching 1382 * hash but the subclass -- which is hashed in -- didn't match. 1383 */ 1384 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1385 return NULL; 1386 1387 return class; 1388 } 1389 1390 #ifdef CONFIG_PROVE_LOCKING 1391 /* 1392 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1393 * with NULL on failure) 1394 */ 1395 static struct lock_list *alloc_list_entry(void) 1396 { 1397 int idx = find_first_zero_bit(list_entries_in_use, 1398 ARRAY_SIZE(list_entries)); 1399 1400 if (idx >= ARRAY_SIZE(list_entries)) { 1401 if (!debug_locks_off_graph_unlock()) 1402 return NULL; 1403 1404 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1405 dump_stack(); 1406 return NULL; 1407 } 1408 nr_list_entries++; 1409 __set_bit(idx, list_entries_in_use); 1410 return list_entries + idx; 1411 } 1412 1413 /* 1414 * Add a new dependency to the head of the list: 1415 */ 1416 static int add_lock_to_list(struct lock_class *this, 1417 struct lock_class *links_to, struct list_head *head, 1418 u16 distance, u8 dep, 1419 const struct lock_trace *trace) 1420 { 1421 struct lock_list *entry; 1422 /* 1423 * Lock not present yet - get a new dependency struct and 1424 * add it to the list: 1425 */ 1426 entry = alloc_list_entry(); 1427 if (!entry) 1428 return 0; 1429 1430 entry->class = this; 1431 entry->links_to = links_to; 1432 entry->dep = dep; 1433 entry->distance = distance; 1434 entry->trace = trace; 1435 /* 1436 * Both allocation and removal are done under the graph lock; but 1437 * iteration is under RCU-sched; see look_up_lock_class() and 1438 * lockdep_free_key_range(). 1439 */ 1440 list_add_tail_rcu(&entry->entry, head); 1441 1442 return 1; 1443 } 1444 1445 /* 1446 * For good efficiency of modular, we use power of 2 1447 */ 1448 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1449 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1450 1451 /* 1452 * The circular_queue and helpers are used to implement graph 1453 * breadth-first search (BFS) algorithm, by which we can determine 1454 * whether there is a path from a lock to another. In deadlock checks, 1455 * a path from the next lock to be acquired to a previous held lock 1456 * indicates that adding the <prev> -> <next> lock dependency will 1457 * produce a circle in the graph. Breadth-first search instead of 1458 * depth-first search is used in order to find the shortest (circular) 1459 * path. 1460 */ 1461 struct circular_queue { 1462 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1463 unsigned int front, rear; 1464 }; 1465 1466 static struct circular_queue lock_cq; 1467 1468 unsigned int max_bfs_queue_depth; 1469 1470 static unsigned int lockdep_dependency_gen_id; 1471 1472 static inline void __cq_init(struct circular_queue *cq) 1473 { 1474 cq->front = cq->rear = 0; 1475 lockdep_dependency_gen_id++; 1476 } 1477 1478 static inline int __cq_empty(struct circular_queue *cq) 1479 { 1480 return (cq->front == cq->rear); 1481 } 1482 1483 static inline int __cq_full(struct circular_queue *cq) 1484 { 1485 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1486 } 1487 1488 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1489 { 1490 if (__cq_full(cq)) 1491 return -1; 1492 1493 cq->element[cq->rear] = elem; 1494 cq->rear = (cq->rear + 1) & CQ_MASK; 1495 return 0; 1496 } 1497 1498 /* 1499 * Dequeue an element from the circular_queue, return a lock_list if 1500 * the queue is not empty, or NULL if otherwise. 1501 */ 1502 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1503 { 1504 struct lock_list * lock; 1505 1506 if (__cq_empty(cq)) 1507 return NULL; 1508 1509 lock = cq->element[cq->front]; 1510 cq->front = (cq->front + 1) & CQ_MASK; 1511 1512 return lock; 1513 } 1514 1515 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1516 { 1517 return (cq->rear - cq->front) & CQ_MASK; 1518 } 1519 1520 static inline void mark_lock_accessed(struct lock_list *lock) 1521 { 1522 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1523 } 1524 1525 static inline void visit_lock_entry(struct lock_list *lock, 1526 struct lock_list *parent) 1527 { 1528 lock->parent = parent; 1529 } 1530 1531 static inline unsigned long lock_accessed(struct lock_list *lock) 1532 { 1533 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1534 } 1535 1536 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1537 { 1538 return child->parent; 1539 } 1540 1541 static inline int get_lock_depth(struct lock_list *child) 1542 { 1543 int depth = 0; 1544 struct lock_list *parent; 1545 1546 while ((parent = get_lock_parent(child))) { 1547 child = parent; 1548 depth++; 1549 } 1550 return depth; 1551 } 1552 1553 /* 1554 * Return the forward or backward dependency list. 1555 * 1556 * @lock: the lock_list to get its class's dependency list 1557 * @offset: the offset to struct lock_class to determine whether it is 1558 * locks_after or locks_before 1559 */ 1560 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1561 { 1562 void *lock_class = lock->class; 1563 1564 return lock_class + offset; 1565 } 1566 /* 1567 * Return values of a bfs search: 1568 * 1569 * BFS_E* indicates an error 1570 * BFS_R* indicates a result (match or not) 1571 * 1572 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1573 * 1574 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1575 * 1576 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1577 * *@target_entry. 1578 * 1579 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1580 * _unchanged_. 1581 */ 1582 enum bfs_result { 1583 BFS_EINVALIDNODE = -2, 1584 BFS_EQUEUEFULL = -1, 1585 BFS_RMATCH = 0, 1586 BFS_RNOMATCH = 1, 1587 }; 1588 1589 /* 1590 * bfs_result < 0 means error 1591 */ 1592 static inline bool bfs_error(enum bfs_result res) 1593 { 1594 return res < 0; 1595 } 1596 1597 /* 1598 * DEP_*_BIT in lock_list::dep 1599 * 1600 * For dependency @prev -> @next: 1601 * 1602 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1603 * (->read == 2) 1604 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1605 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1606 * EN: @prev is exclusive locker and @next is non-recursive locker 1607 * 1608 * Note that we define the value of DEP_*_BITs so that: 1609 * bit0 is prev->read == 0 1610 * bit1 is next->read != 2 1611 */ 1612 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1613 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1614 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1615 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1616 1617 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1618 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1619 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1620 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1621 1622 static inline unsigned int 1623 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1624 { 1625 return (prev->read == 0) + ((next->read != 2) << 1); 1626 } 1627 1628 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1629 { 1630 return 1U << __calc_dep_bit(prev, next); 1631 } 1632 1633 /* 1634 * calculate the dep_bit for backwards edges. We care about whether @prev is 1635 * shared and whether @next is recursive. 1636 */ 1637 static inline unsigned int 1638 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1639 { 1640 return (next->read != 2) + ((prev->read == 0) << 1); 1641 } 1642 1643 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1644 { 1645 return 1U << __calc_dep_bitb(prev, next); 1646 } 1647 1648 /* 1649 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1650 * search. 1651 */ 1652 static inline void __bfs_init_root(struct lock_list *lock, 1653 struct lock_class *class) 1654 { 1655 lock->class = class; 1656 lock->parent = NULL; 1657 lock->only_xr = 0; 1658 } 1659 1660 /* 1661 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1662 * root for a BFS search. 1663 * 1664 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1665 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1666 * and -(S*)->. 1667 */ 1668 static inline void bfs_init_root(struct lock_list *lock, 1669 struct held_lock *hlock) 1670 { 1671 __bfs_init_root(lock, hlock_class(hlock)); 1672 lock->only_xr = (hlock->read == 2); 1673 } 1674 1675 /* 1676 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1677 * 1678 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1679 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1680 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1681 */ 1682 static inline void bfs_init_rootb(struct lock_list *lock, 1683 struct held_lock *hlock) 1684 { 1685 __bfs_init_root(lock, hlock_class(hlock)); 1686 lock->only_xr = (hlock->read != 0); 1687 } 1688 1689 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1690 { 1691 if (!lock || !lock->parent) 1692 return NULL; 1693 1694 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1695 &lock->entry, struct lock_list, entry); 1696 } 1697 1698 /* 1699 * Breadth-First Search to find a strong path in the dependency graph. 1700 * 1701 * @source_entry: the source of the path we are searching for. 1702 * @data: data used for the second parameter of @match function 1703 * @match: match function for the search 1704 * @target_entry: pointer to the target of a matched path 1705 * @offset: the offset to struct lock_class to determine whether it is 1706 * locks_after or locks_before 1707 * 1708 * We may have multiple edges (considering different kinds of dependencies, 1709 * e.g. ER and SN) between two nodes in the dependency graph. But 1710 * only the strong dependency path in the graph is relevant to deadlocks. A 1711 * strong dependency path is a dependency path that doesn't have two adjacent 1712 * dependencies as -(*R)-> -(S*)->, please see: 1713 * 1714 * Documentation/locking/lockdep-design.rst 1715 * 1716 * for more explanation of the definition of strong dependency paths 1717 * 1718 * In __bfs(), we only traverse in the strong dependency path: 1719 * 1720 * In lock_list::only_xr, we record whether the previous dependency only 1721 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1722 * filter out any -(S*)-> in the current dependency and after that, the 1723 * ->only_xr is set according to whether we only have -(*R)-> left. 1724 */ 1725 static enum bfs_result __bfs(struct lock_list *source_entry, 1726 void *data, 1727 bool (*match)(struct lock_list *entry, void *data), 1728 bool (*skip)(struct lock_list *entry, void *data), 1729 struct lock_list **target_entry, 1730 int offset) 1731 { 1732 struct circular_queue *cq = &lock_cq; 1733 struct lock_list *lock = NULL; 1734 struct lock_list *entry; 1735 struct list_head *head; 1736 unsigned int cq_depth; 1737 bool first; 1738 1739 lockdep_assert_locked(); 1740 1741 __cq_init(cq); 1742 __cq_enqueue(cq, source_entry); 1743 1744 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1745 if (!lock->class) 1746 return BFS_EINVALIDNODE; 1747 1748 /* 1749 * Step 1: check whether we already finish on this one. 1750 * 1751 * If we have visited all the dependencies from this @lock to 1752 * others (iow, if we have visited all lock_list entries in 1753 * @lock->class->locks_{after,before}) we skip, otherwise go 1754 * and visit all the dependencies in the list and mark this 1755 * list accessed. 1756 */ 1757 if (lock_accessed(lock)) 1758 continue; 1759 else 1760 mark_lock_accessed(lock); 1761 1762 /* 1763 * Step 2: check whether prev dependency and this form a strong 1764 * dependency path. 1765 */ 1766 if (lock->parent) { /* Parent exists, check prev dependency */ 1767 u8 dep = lock->dep; 1768 bool prev_only_xr = lock->parent->only_xr; 1769 1770 /* 1771 * Mask out all -(S*)-> if we only have *R in previous 1772 * step, because -(*R)-> -(S*)-> don't make up a strong 1773 * dependency. 1774 */ 1775 if (prev_only_xr) 1776 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1777 1778 /* If nothing left, we skip */ 1779 if (!dep) 1780 continue; 1781 1782 /* If there are only -(*R)-> left, set that for the next step */ 1783 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1784 } 1785 1786 /* 1787 * Step 3: we haven't visited this and there is a strong 1788 * dependency path to this, so check with @match. 1789 * If @skip is provide and returns true, we skip this 1790 * lock (and any path this lock is in). 1791 */ 1792 if (skip && skip(lock, data)) 1793 continue; 1794 1795 if (match(lock, data)) { 1796 *target_entry = lock; 1797 return BFS_RMATCH; 1798 } 1799 1800 /* 1801 * Step 4: if not match, expand the path by adding the 1802 * forward or backwards dependencies in the search 1803 * 1804 */ 1805 first = true; 1806 head = get_dep_list(lock, offset); 1807 list_for_each_entry_rcu(entry, head, entry) { 1808 visit_lock_entry(entry, lock); 1809 1810 /* 1811 * Note we only enqueue the first of the list into the 1812 * queue, because we can always find a sibling 1813 * dependency from one (see __bfs_next()), as a result 1814 * the space of queue is saved. 1815 */ 1816 if (!first) 1817 continue; 1818 1819 first = false; 1820 1821 if (__cq_enqueue(cq, entry)) 1822 return BFS_EQUEUEFULL; 1823 1824 cq_depth = __cq_get_elem_count(cq); 1825 if (max_bfs_queue_depth < cq_depth) 1826 max_bfs_queue_depth = cq_depth; 1827 } 1828 } 1829 1830 return BFS_RNOMATCH; 1831 } 1832 1833 static inline enum bfs_result 1834 __bfs_forwards(struct lock_list *src_entry, 1835 void *data, 1836 bool (*match)(struct lock_list *entry, void *data), 1837 bool (*skip)(struct lock_list *entry, void *data), 1838 struct lock_list **target_entry) 1839 { 1840 return __bfs(src_entry, data, match, skip, target_entry, 1841 offsetof(struct lock_class, locks_after)); 1842 1843 } 1844 1845 static inline enum bfs_result 1846 __bfs_backwards(struct lock_list *src_entry, 1847 void *data, 1848 bool (*match)(struct lock_list *entry, void *data), 1849 bool (*skip)(struct lock_list *entry, void *data), 1850 struct lock_list **target_entry) 1851 { 1852 return __bfs(src_entry, data, match, skip, target_entry, 1853 offsetof(struct lock_class, locks_before)); 1854 1855 } 1856 1857 static void print_lock_trace(const struct lock_trace *trace, 1858 unsigned int spaces) 1859 { 1860 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1861 } 1862 1863 /* 1864 * Print a dependency chain entry (this is only done when a deadlock 1865 * has been detected): 1866 */ 1867 static noinline void 1868 print_circular_bug_entry(struct lock_list *target, int depth) 1869 { 1870 if (debug_locks_silent) 1871 return; 1872 printk("\n-> #%u", depth); 1873 print_lock_name(NULL, target->class); 1874 printk(KERN_CONT ":\n"); 1875 print_lock_trace(target->trace, 6); 1876 } 1877 1878 static void 1879 print_circular_lock_scenario(struct held_lock *src, 1880 struct held_lock *tgt, 1881 struct lock_list *prt) 1882 { 1883 struct lock_class *source = hlock_class(src); 1884 struct lock_class *target = hlock_class(tgt); 1885 struct lock_class *parent = prt->class; 1886 int src_read = src->read; 1887 int tgt_read = tgt->read; 1888 1889 /* 1890 * A direct locking problem where unsafe_class lock is taken 1891 * directly by safe_class lock, then all we need to show 1892 * is the deadlock scenario, as it is obvious that the 1893 * unsafe lock is taken under the safe lock. 1894 * 1895 * But if there is a chain instead, where the safe lock takes 1896 * an intermediate lock (middle_class) where this lock is 1897 * not the same as the safe lock, then the lock chain is 1898 * used to describe the problem. Otherwise we would need 1899 * to show a different CPU case for each link in the chain 1900 * from the safe_class lock to the unsafe_class lock. 1901 */ 1902 if (parent != source) { 1903 printk("Chain exists of:\n "); 1904 __print_lock_name(src, source); 1905 printk(KERN_CONT " --> "); 1906 __print_lock_name(NULL, parent); 1907 printk(KERN_CONT " --> "); 1908 __print_lock_name(tgt, target); 1909 printk(KERN_CONT "\n\n"); 1910 } 1911 1912 printk(" Possible unsafe locking scenario:\n\n"); 1913 printk(" CPU0 CPU1\n"); 1914 printk(" ---- ----\n"); 1915 if (tgt_read != 0) 1916 printk(" rlock("); 1917 else 1918 printk(" lock("); 1919 __print_lock_name(tgt, target); 1920 printk(KERN_CONT ");\n"); 1921 printk(" lock("); 1922 __print_lock_name(NULL, parent); 1923 printk(KERN_CONT ");\n"); 1924 printk(" lock("); 1925 __print_lock_name(tgt, target); 1926 printk(KERN_CONT ");\n"); 1927 if (src_read != 0) 1928 printk(" rlock("); 1929 else if (src->sync) 1930 printk(" sync("); 1931 else 1932 printk(" lock("); 1933 __print_lock_name(src, source); 1934 printk(KERN_CONT ");\n"); 1935 printk("\n *** DEADLOCK ***\n\n"); 1936 } 1937 1938 /* 1939 * When a circular dependency is detected, print the 1940 * header first: 1941 */ 1942 static noinline void 1943 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1944 struct held_lock *check_src, 1945 struct held_lock *check_tgt) 1946 { 1947 struct task_struct *curr = current; 1948 1949 if (debug_locks_silent) 1950 return; 1951 1952 pr_warn("\n"); 1953 pr_warn("======================================================\n"); 1954 pr_warn("WARNING: possible circular locking dependency detected\n"); 1955 print_kernel_ident(); 1956 pr_warn("------------------------------------------------------\n"); 1957 pr_warn("%s/%d is trying to acquire lock:\n", 1958 curr->comm, task_pid_nr(curr)); 1959 print_lock(check_src); 1960 1961 pr_warn("\nbut task is already holding lock:\n"); 1962 1963 print_lock(check_tgt); 1964 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1965 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1966 1967 print_circular_bug_entry(entry, depth); 1968 } 1969 1970 /* 1971 * We are about to add A -> B into the dependency graph, and in __bfs() a 1972 * strong dependency path A -> .. -> B is found: hlock_class equals 1973 * entry->class. 1974 * 1975 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1976 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1977 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1978 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1979 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1980 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1981 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1982 * 1983 * We need to make sure both the start and the end of A -> .. -> B is not 1984 * weaker than A -> B. For the start part, please see the comment in 1985 * check_redundant(). For the end part, we need: 1986 * 1987 * Either 1988 * 1989 * a) A -> B is -(*R)-> (everything is not weaker than that) 1990 * 1991 * or 1992 * 1993 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1994 * 1995 */ 1996 static inline bool hlock_equal(struct lock_list *entry, void *data) 1997 { 1998 struct held_lock *hlock = (struct held_lock *)data; 1999 2000 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2001 (hlock->read == 2 || /* A -> B is -(*R)-> */ 2002 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2003 } 2004 2005 /* 2006 * We are about to add B -> A into the dependency graph, and in __bfs() a 2007 * strong dependency path A -> .. -> B is found: hlock_class equals 2008 * entry->class. 2009 * 2010 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 2011 * dependency cycle, that means: 2012 * 2013 * Either 2014 * 2015 * a) B -> A is -(E*)-> 2016 * 2017 * or 2018 * 2019 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 2020 * 2021 * as then we don't have -(*R)-> -(S*)-> in the cycle. 2022 */ 2023 static inline bool hlock_conflict(struct lock_list *entry, void *data) 2024 { 2025 struct held_lock *hlock = (struct held_lock *)data; 2026 2027 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2028 (hlock->read == 0 || /* B -> A is -(E*)-> */ 2029 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2030 } 2031 2032 static noinline void print_circular_bug(struct lock_list *this, 2033 struct lock_list *target, 2034 struct held_lock *check_src, 2035 struct held_lock *check_tgt) 2036 { 2037 struct task_struct *curr = current; 2038 struct lock_list *parent; 2039 struct lock_list *first_parent; 2040 int depth; 2041 2042 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2043 return; 2044 2045 this->trace = save_trace(); 2046 if (!this->trace) 2047 return; 2048 2049 depth = get_lock_depth(target); 2050 2051 print_circular_bug_header(target, depth, check_src, check_tgt); 2052 2053 parent = get_lock_parent(target); 2054 first_parent = parent; 2055 2056 while (parent) { 2057 print_circular_bug_entry(parent, --depth); 2058 parent = get_lock_parent(parent); 2059 } 2060 2061 printk("\nother info that might help us debug this:\n\n"); 2062 print_circular_lock_scenario(check_src, check_tgt, 2063 first_parent); 2064 2065 lockdep_print_held_locks(curr); 2066 2067 printk("\nstack backtrace:\n"); 2068 dump_stack(); 2069 } 2070 2071 static noinline void print_bfs_bug(int ret) 2072 { 2073 if (!debug_locks_off_graph_unlock()) 2074 return; 2075 2076 /* 2077 * Breadth-first-search failed, graph got corrupted? 2078 */ 2079 WARN(1, "lockdep bfs error:%d\n", ret); 2080 } 2081 2082 static bool noop_count(struct lock_list *entry, void *data) 2083 { 2084 (*(unsigned long *)data)++; 2085 return false; 2086 } 2087 2088 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2089 { 2090 unsigned long count = 0; 2091 struct lock_list *target_entry; 2092 2093 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2094 2095 return count; 2096 } 2097 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2098 { 2099 unsigned long ret, flags; 2100 struct lock_list this; 2101 2102 __bfs_init_root(&this, class); 2103 2104 raw_local_irq_save(flags); 2105 lockdep_lock(); 2106 ret = __lockdep_count_forward_deps(&this); 2107 lockdep_unlock(); 2108 raw_local_irq_restore(flags); 2109 2110 return ret; 2111 } 2112 2113 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2114 { 2115 unsigned long count = 0; 2116 struct lock_list *target_entry; 2117 2118 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2119 2120 return count; 2121 } 2122 2123 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2124 { 2125 unsigned long ret, flags; 2126 struct lock_list this; 2127 2128 __bfs_init_root(&this, class); 2129 2130 raw_local_irq_save(flags); 2131 lockdep_lock(); 2132 ret = __lockdep_count_backward_deps(&this); 2133 lockdep_unlock(); 2134 raw_local_irq_restore(flags); 2135 2136 return ret; 2137 } 2138 2139 /* 2140 * Check that the dependency graph starting at <src> can lead to 2141 * <target> or not. 2142 */ 2143 static noinline enum bfs_result 2144 check_path(struct held_lock *target, struct lock_list *src_entry, 2145 bool (*match)(struct lock_list *entry, void *data), 2146 bool (*skip)(struct lock_list *entry, void *data), 2147 struct lock_list **target_entry) 2148 { 2149 enum bfs_result ret; 2150 2151 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2152 2153 if (unlikely(bfs_error(ret))) 2154 print_bfs_bug(ret); 2155 2156 return ret; 2157 } 2158 2159 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *); 2160 2161 /* 2162 * Prove that the dependency graph starting at <src> can not 2163 * lead to <target>. If it can, there is a circle when adding 2164 * <target> -> <src> dependency. 2165 * 2166 * Print an error and return BFS_RMATCH if it does. 2167 */ 2168 static noinline enum bfs_result 2169 check_noncircular(struct held_lock *src, struct held_lock *target, 2170 struct lock_trace **const trace) 2171 { 2172 enum bfs_result ret; 2173 struct lock_list *target_entry; 2174 struct lock_list src_entry; 2175 2176 bfs_init_root(&src_entry, src); 2177 2178 debug_atomic_inc(nr_cyclic_checks); 2179 2180 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2181 2182 if (unlikely(ret == BFS_RMATCH)) { 2183 if (!*trace) { 2184 /* 2185 * If save_trace fails here, the printing might 2186 * trigger a WARN but because of the !nr_entries it 2187 * should not do bad things. 2188 */ 2189 *trace = save_trace(); 2190 } 2191 2192 if (src->class_idx == target->class_idx) 2193 print_deadlock_bug(current, src, target); 2194 else 2195 print_circular_bug(&src_entry, target_entry, src, target); 2196 } 2197 2198 return ret; 2199 } 2200 2201 #ifdef CONFIG_TRACE_IRQFLAGS 2202 2203 /* 2204 * Forwards and backwards subgraph searching, for the purposes of 2205 * proving that two subgraphs can be connected by a new dependency 2206 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2207 * 2208 * A irq safe->unsafe deadlock happens with the following conditions: 2209 * 2210 * 1) We have a strong dependency path A -> ... -> B 2211 * 2212 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2213 * irq can create a new dependency B -> A (consider the case that a holder 2214 * of B gets interrupted by an irq whose handler will try to acquire A). 2215 * 2216 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2217 * strong circle: 2218 * 2219 * For the usage bits of B: 2220 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2221 * ENABLED_IRQ usage suffices. 2222 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2223 * ENABLED_IRQ_*_READ usage suffices. 2224 * 2225 * For the usage bits of A: 2226 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2227 * USED_IN_IRQ usage suffices. 2228 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2229 * USED_IN_IRQ_*_READ usage suffices. 2230 */ 2231 2232 /* 2233 * There is a strong dependency path in the dependency graph: A -> B, and now 2234 * we need to decide which usage bit of A should be accumulated to detect 2235 * safe->unsafe bugs. 2236 * 2237 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2238 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2239 * 2240 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2241 * path, any usage of A should be considered. Otherwise, we should only 2242 * consider _READ usage. 2243 */ 2244 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2245 { 2246 if (!entry->only_xr) 2247 *(unsigned long *)mask |= entry->class->usage_mask; 2248 else /* Mask out _READ usage bits */ 2249 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2250 2251 return false; 2252 } 2253 2254 /* 2255 * There is a strong dependency path in the dependency graph: A -> B, and now 2256 * we need to decide which usage bit of B conflicts with the usage bits of A, 2257 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2258 * 2259 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2260 * path, any usage of B should be considered. Otherwise, we should only 2261 * consider _READ usage. 2262 */ 2263 static inline bool usage_match(struct lock_list *entry, void *mask) 2264 { 2265 if (!entry->only_xr) 2266 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2267 else /* Mask out _READ usage bits */ 2268 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2269 } 2270 2271 static inline bool usage_skip(struct lock_list *entry, void *mask) 2272 { 2273 if (entry->class->lock_type == LD_LOCK_NORMAL) 2274 return false; 2275 2276 /* 2277 * Skip local_lock() for irq inversion detection. 2278 * 2279 * For !RT, local_lock() is not a real lock, so it won't carry any 2280 * dependency. 2281 * 2282 * For RT, an irq inversion happens when we have lock A and B, and on 2283 * some CPU we can have: 2284 * 2285 * lock(A); 2286 * <interrupted> 2287 * lock(B); 2288 * 2289 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2290 * 2291 * Now we prove local_lock() cannot exist in that dependency. First we 2292 * have the observation for any lock chain L1 -> ... -> Ln, for any 2293 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2294 * wait context check will complain. And since B is not a sleep lock, 2295 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2296 * local_lock() is 3, which is greater than 2, therefore there is no 2297 * way the local_lock() exists in the dependency B -> ... -> A. 2298 * 2299 * As a result, we will skip local_lock(), when we search for irq 2300 * inversion bugs. 2301 */ 2302 if (entry->class->lock_type == LD_LOCK_PERCPU && 2303 DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2304 return false; 2305 2306 /* 2307 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually 2308 * a lock and only used to override the wait_type. 2309 */ 2310 2311 return true; 2312 } 2313 2314 /* 2315 * Find a node in the forwards-direction dependency sub-graph starting 2316 * at @root->class that matches @bit. 2317 * 2318 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2319 * into *@target_entry. 2320 */ 2321 static enum bfs_result 2322 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2323 struct lock_list **target_entry) 2324 { 2325 enum bfs_result result; 2326 2327 debug_atomic_inc(nr_find_usage_forwards_checks); 2328 2329 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2330 2331 return result; 2332 } 2333 2334 /* 2335 * Find a node in the backwards-direction dependency sub-graph starting 2336 * at @root->class that matches @bit. 2337 */ 2338 static enum bfs_result 2339 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2340 struct lock_list **target_entry) 2341 { 2342 enum bfs_result result; 2343 2344 debug_atomic_inc(nr_find_usage_backwards_checks); 2345 2346 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2347 2348 return result; 2349 } 2350 2351 static void print_lock_class_header(struct lock_class *class, int depth) 2352 { 2353 int bit; 2354 2355 printk("%*s->", depth, ""); 2356 print_lock_name(NULL, class); 2357 #ifdef CONFIG_DEBUG_LOCKDEP 2358 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2359 #endif 2360 printk(KERN_CONT " {\n"); 2361 2362 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2363 if (class->usage_mask & (1 << bit)) { 2364 int len = depth; 2365 2366 len += printk("%*s %s", depth, "", usage_str[bit]); 2367 len += printk(KERN_CONT " at:\n"); 2368 print_lock_trace(class->usage_traces[bit], len); 2369 } 2370 } 2371 printk("%*s }\n", depth, ""); 2372 2373 printk("%*s ... key at: [<%px>] %pS\n", 2374 depth, "", class->key, class->key); 2375 } 2376 2377 /* 2378 * Dependency path printing: 2379 * 2380 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2381 * printing out each lock in the dependency path will help on understanding how 2382 * the deadlock could happen. Here are some details about dependency path 2383 * printing: 2384 * 2385 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2386 * for a lock dependency A -> B, there are two lock_lists: 2387 * 2388 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2389 * ->links_to is A. In this case, we can say the lock_list is 2390 * "A -> B" (forwards case). 2391 * 2392 * b) lock_list in the ->locks_before list of B, whose ->class is A 2393 * and ->links_to is B. In this case, we can say the lock_list is 2394 * "B <- A" (bacwards case). 2395 * 2396 * The ->trace of both a) and b) point to the call trace where B was 2397 * acquired with A held. 2398 * 2399 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2400 * represent a certain lock dependency, it only provides an initial entry 2401 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2402 * ->class is A, as a result BFS will search all dependencies starting with 2403 * A, e.g. A -> B or A -> C. 2404 * 2405 * The notation of a forwards helper lock_list is like "-> A", which means 2406 * we should search the forwards dependencies starting with "A", e.g A -> B 2407 * or A -> C. 2408 * 2409 * The notation of a bacwards helper lock_list is like "<- B", which means 2410 * we should search the backwards dependencies ending with "B", e.g. 2411 * B <- A or B <- C. 2412 */ 2413 2414 /* 2415 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2416 * 2417 * We have a lock dependency path as follow: 2418 * 2419 * @root @leaf 2420 * | | 2421 * V V 2422 * ->parent ->parent 2423 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2424 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2425 * 2426 * , so it's natural that we start from @leaf and print every ->class and 2427 * ->trace until we reach the @root. 2428 */ 2429 static void __used 2430 print_shortest_lock_dependencies(struct lock_list *leaf, 2431 struct lock_list *root) 2432 { 2433 struct lock_list *entry = leaf; 2434 int depth; 2435 2436 /*compute depth from generated tree by BFS*/ 2437 depth = get_lock_depth(leaf); 2438 2439 do { 2440 print_lock_class_header(entry->class, depth); 2441 printk("%*s ... acquired at:\n", depth, ""); 2442 print_lock_trace(entry->trace, 2); 2443 printk("\n"); 2444 2445 if (depth == 0 && (entry != root)) { 2446 printk("lockdep:%s bad path found in chain graph\n", __func__); 2447 break; 2448 } 2449 2450 entry = get_lock_parent(entry); 2451 depth--; 2452 } while (entry && (depth >= 0)); 2453 } 2454 2455 /* 2456 * printk the shortest lock dependencies from @leaf to @root. 2457 * 2458 * We have a lock dependency path (from a backwards search) as follow: 2459 * 2460 * @leaf @root 2461 * | | 2462 * V V 2463 * ->parent ->parent 2464 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2465 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2466 * 2467 * , so when we iterate from @leaf to @root, we actually print the lock 2468 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2469 * 2470 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2471 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2472 * trace of L1 in the dependency path, which is alright, because most of the 2473 * time we can figure out where L1 is held from the call trace of L2. 2474 */ 2475 static void __used 2476 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2477 struct lock_list *root) 2478 { 2479 struct lock_list *entry = leaf; 2480 const struct lock_trace *trace = NULL; 2481 int depth; 2482 2483 /*compute depth from generated tree by BFS*/ 2484 depth = get_lock_depth(leaf); 2485 2486 do { 2487 print_lock_class_header(entry->class, depth); 2488 if (trace) { 2489 printk("%*s ... acquired at:\n", depth, ""); 2490 print_lock_trace(trace, 2); 2491 printk("\n"); 2492 } 2493 2494 /* 2495 * Record the pointer to the trace for the next lock_list 2496 * entry, see the comments for the function. 2497 */ 2498 trace = entry->trace; 2499 2500 if (depth == 0 && (entry != root)) { 2501 printk("lockdep:%s bad path found in chain graph\n", __func__); 2502 break; 2503 } 2504 2505 entry = get_lock_parent(entry); 2506 depth--; 2507 } while (entry && (depth >= 0)); 2508 } 2509 2510 static void 2511 print_irq_lock_scenario(struct lock_list *safe_entry, 2512 struct lock_list *unsafe_entry, 2513 struct lock_class *prev_class, 2514 struct lock_class *next_class) 2515 { 2516 struct lock_class *safe_class = safe_entry->class; 2517 struct lock_class *unsafe_class = unsafe_entry->class; 2518 struct lock_class *middle_class = prev_class; 2519 2520 if (middle_class == safe_class) 2521 middle_class = next_class; 2522 2523 /* 2524 * A direct locking problem where unsafe_class lock is taken 2525 * directly by safe_class lock, then all we need to show 2526 * is the deadlock scenario, as it is obvious that the 2527 * unsafe lock is taken under the safe lock. 2528 * 2529 * But if there is a chain instead, where the safe lock takes 2530 * an intermediate lock (middle_class) where this lock is 2531 * not the same as the safe lock, then the lock chain is 2532 * used to describe the problem. Otherwise we would need 2533 * to show a different CPU case for each link in the chain 2534 * from the safe_class lock to the unsafe_class lock. 2535 */ 2536 if (middle_class != unsafe_class) { 2537 printk("Chain exists of:\n "); 2538 __print_lock_name(NULL, safe_class); 2539 printk(KERN_CONT " --> "); 2540 __print_lock_name(NULL, middle_class); 2541 printk(KERN_CONT " --> "); 2542 __print_lock_name(NULL, unsafe_class); 2543 printk(KERN_CONT "\n\n"); 2544 } 2545 2546 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2547 printk(" CPU0 CPU1\n"); 2548 printk(" ---- ----\n"); 2549 printk(" lock("); 2550 __print_lock_name(NULL, unsafe_class); 2551 printk(KERN_CONT ");\n"); 2552 printk(" local_irq_disable();\n"); 2553 printk(" lock("); 2554 __print_lock_name(NULL, safe_class); 2555 printk(KERN_CONT ");\n"); 2556 printk(" lock("); 2557 __print_lock_name(NULL, middle_class); 2558 printk(KERN_CONT ");\n"); 2559 printk(" <Interrupt>\n"); 2560 printk(" lock("); 2561 __print_lock_name(NULL, safe_class); 2562 printk(KERN_CONT ");\n"); 2563 printk("\n *** DEADLOCK ***\n\n"); 2564 } 2565 2566 static void 2567 print_bad_irq_dependency(struct task_struct *curr, 2568 struct lock_list *prev_root, 2569 struct lock_list *next_root, 2570 struct lock_list *backwards_entry, 2571 struct lock_list *forwards_entry, 2572 struct held_lock *prev, 2573 struct held_lock *next, 2574 enum lock_usage_bit bit1, 2575 enum lock_usage_bit bit2, 2576 const char *irqclass) 2577 { 2578 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2579 return; 2580 2581 pr_warn("\n"); 2582 pr_warn("=====================================================\n"); 2583 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2584 irqclass, irqclass); 2585 print_kernel_ident(); 2586 pr_warn("-----------------------------------------------------\n"); 2587 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2588 curr->comm, task_pid_nr(curr), 2589 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2590 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2591 lockdep_hardirqs_enabled(), 2592 curr->softirqs_enabled); 2593 print_lock(next); 2594 2595 pr_warn("\nand this task is already holding:\n"); 2596 print_lock(prev); 2597 pr_warn("which would create a new lock dependency:\n"); 2598 print_lock_name(prev, hlock_class(prev)); 2599 pr_cont(" ->"); 2600 print_lock_name(next, hlock_class(next)); 2601 pr_cont("\n"); 2602 2603 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2604 irqclass); 2605 print_lock_name(NULL, backwards_entry->class); 2606 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2607 2608 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2609 2610 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2611 print_lock_name(NULL, forwards_entry->class); 2612 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2613 pr_warn("..."); 2614 2615 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2616 2617 pr_warn("\nother info that might help us debug this:\n\n"); 2618 print_irq_lock_scenario(backwards_entry, forwards_entry, 2619 hlock_class(prev), hlock_class(next)); 2620 2621 lockdep_print_held_locks(curr); 2622 2623 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2624 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2625 2626 pr_warn("\nthe dependencies between the lock to be acquired"); 2627 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2628 next_root->trace = save_trace(); 2629 if (!next_root->trace) 2630 return; 2631 print_shortest_lock_dependencies(forwards_entry, next_root); 2632 2633 pr_warn("\nstack backtrace:\n"); 2634 dump_stack(); 2635 } 2636 2637 static const char *state_names[] = { 2638 #define LOCKDEP_STATE(__STATE) \ 2639 __stringify(__STATE), 2640 #include "lockdep_states.h" 2641 #undef LOCKDEP_STATE 2642 }; 2643 2644 static const char *state_rnames[] = { 2645 #define LOCKDEP_STATE(__STATE) \ 2646 __stringify(__STATE)"-READ", 2647 #include "lockdep_states.h" 2648 #undef LOCKDEP_STATE 2649 }; 2650 2651 static inline const char *state_name(enum lock_usage_bit bit) 2652 { 2653 if (bit & LOCK_USAGE_READ_MASK) 2654 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2655 else 2656 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2657 } 2658 2659 /* 2660 * The bit number is encoded like: 2661 * 2662 * bit0: 0 exclusive, 1 read lock 2663 * bit1: 0 used in irq, 1 irq enabled 2664 * bit2-n: state 2665 */ 2666 static int exclusive_bit(int new_bit) 2667 { 2668 int state = new_bit & LOCK_USAGE_STATE_MASK; 2669 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2670 2671 /* 2672 * keep state, bit flip the direction and strip read. 2673 */ 2674 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2675 } 2676 2677 /* 2678 * Observe that when given a bitmask where each bitnr is encoded as above, a 2679 * right shift of the mask transforms the individual bitnrs as -1 and 2680 * conversely, a left shift transforms into +1 for the individual bitnrs. 2681 * 2682 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2683 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2684 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2685 * 2686 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2687 * 2688 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2689 * all bits set) and recompose with bitnr1 flipped. 2690 */ 2691 static unsigned long invert_dir_mask(unsigned long mask) 2692 { 2693 unsigned long excl = 0; 2694 2695 /* Invert dir */ 2696 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2697 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2698 2699 return excl; 2700 } 2701 2702 /* 2703 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2704 * usage may cause deadlock too, for example: 2705 * 2706 * P1 P2 2707 * <irq disabled> 2708 * write_lock(l1); <irq enabled> 2709 * read_lock(l2); 2710 * write_lock(l2); 2711 * <in irq> 2712 * read_lock(l1); 2713 * 2714 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2715 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2716 * deadlock. 2717 * 2718 * In fact, all of the following cases may cause deadlocks: 2719 * 2720 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2721 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2722 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2723 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2724 * 2725 * As a result, to calculate the "exclusive mask", first we invert the 2726 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2727 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2728 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2729 */ 2730 static unsigned long exclusive_mask(unsigned long mask) 2731 { 2732 unsigned long excl = invert_dir_mask(mask); 2733 2734 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2735 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2736 2737 return excl; 2738 } 2739 2740 /* 2741 * Retrieve the _possible_ original mask to which @mask is 2742 * exclusive. Ie: this is the opposite of exclusive_mask(). 2743 * Note that 2 possible original bits can match an exclusive 2744 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2745 * cleared. So both are returned for each exclusive bit. 2746 */ 2747 static unsigned long original_mask(unsigned long mask) 2748 { 2749 unsigned long excl = invert_dir_mask(mask); 2750 2751 /* Include read in existing usages */ 2752 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2753 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2754 2755 return excl; 2756 } 2757 2758 /* 2759 * Find the first pair of bit match between an original 2760 * usage mask and an exclusive usage mask. 2761 */ 2762 static int find_exclusive_match(unsigned long mask, 2763 unsigned long excl_mask, 2764 enum lock_usage_bit *bitp, 2765 enum lock_usage_bit *excl_bitp) 2766 { 2767 int bit, excl, excl_read; 2768 2769 for_each_set_bit(bit, &mask, LOCK_USED) { 2770 /* 2771 * exclusive_bit() strips the read bit, however, 2772 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2773 * to search excl | LOCK_USAGE_READ_MASK as well. 2774 */ 2775 excl = exclusive_bit(bit); 2776 excl_read = excl | LOCK_USAGE_READ_MASK; 2777 if (excl_mask & lock_flag(excl)) { 2778 *bitp = bit; 2779 *excl_bitp = excl; 2780 return 0; 2781 } else if (excl_mask & lock_flag(excl_read)) { 2782 *bitp = bit; 2783 *excl_bitp = excl_read; 2784 return 0; 2785 } 2786 } 2787 return -1; 2788 } 2789 2790 /* 2791 * Prove that the new dependency does not connect a hardirq-safe(-read) 2792 * lock with a hardirq-unsafe lock - to achieve this we search 2793 * the backwards-subgraph starting at <prev>, and the 2794 * forwards-subgraph starting at <next>: 2795 */ 2796 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2797 struct held_lock *next) 2798 { 2799 unsigned long usage_mask = 0, forward_mask, backward_mask; 2800 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2801 struct lock_list *target_entry1; 2802 struct lock_list *target_entry; 2803 struct lock_list this, that; 2804 enum bfs_result ret; 2805 2806 /* 2807 * Step 1: gather all hard/soft IRQs usages backward in an 2808 * accumulated usage mask. 2809 */ 2810 bfs_init_rootb(&this, prev); 2811 2812 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2813 if (bfs_error(ret)) { 2814 print_bfs_bug(ret); 2815 return 0; 2816 } 2817 2818 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2819 if (!usage_mask) 2820 return 1; 2821 2822 /* 2823 * Step 2: find exclusive uses forward that match the previous 2824 * backward accumulated mask. 2825 */ 2826 forward_mask = exclusive_mask(usage_mask); 2827 2828 bfs_init_root(&that, next); 2829 2830 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2831 if (bfs_error(ret)) { 2832 print_bfs_bug(ret); 2833 return 0; 2834 } 2835 if (ret == BFS_RNOMATCH) 2836 return 1; 2837 2838 /* 2839 * Step 3: we found a bad match! Now retrieve a lock from the backward 2840 * list whose usage mask matches the exclusive usage mask from the 2841 * lock found on the forward list. 2842 * 2843 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2844 * the follow case: 2845 * 2846 * When trying to add A -> B to the graph, we find that there is a 2847 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2848 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2849 * invert bits of M's usage_mask, we will find another lock N that is 2850 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2851 * cause a inversion deadlock. 2852 */ 2853 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2854 2855 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2856 if (bfs_error(ret)) { 2857 print_bfs_bug(ret); 2858 return 0; 2859 } 2860 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2861 return 1; 2862 2863 /* 2864 * Step 4: narrow down to a pair of incompatible usage bits 2865 * and report it. 2866 */ 2867 ret = find_exclusive_match(target_entry->class->usage_mask, 2868 target_entry1->class->usage_mask, 2869 &backward_bit, &forward_bit); 2870 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2871 return 1; 2872 2873 print_bad_irq_dependency(curr, &this, &that, 2874 target_entry, target_entry1, 2875 prev, next, 2876 backward_bit, forward_bit, 2877 state_name(backward_bit)); 2878 2879 return 0; 2880 } 2881 2882 #else 2883 2884 static inline int check_irq_usage(struct task_struct *curr, 2885 struct held_lock *prev, struct held_lock *next) 2886 { 2887 return 1; 2888 } 2889 2890 static inline bool usage_skip(struct lock_list *entry, void *mask) 2891 { 2892 return false; 2893 } 2894 2895 #endif /* CONFIG_TRACE_IRQFLAGS */ 2896 2897 #ifdef CONFIG_LOCKDEP_SMALL 2898 /* 2899 * Check that the dependency graph starting at <src> can lead to 2900 * <target> or not. If it can, <src> -> <target> dependency is already 2901 * in the graph. 2902 * 2903 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2904 * any error appears in the bfs search. 2905 */ 2906 static noinline enum bfs_result 2907 check_redundant(struct held_lock *src, struct held_lock *target) 2908 { 2909 enum bfs_result ret; 2910 struct lock_list *target_entry; 2911 struct lock_list src_entry; 2912 2913 bfs_init_root(&src_entry, src); 2914 /* 2915 * Special setup for check_redundant(). 2916 * 2917 * To report redundant, we need to find a strong dependency path that 2918 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2919 * we need to let __bfs() only search for a path starting at a -(E*)->, 2920 * we achieve this by setting the initial node's ->only_xr to true in 2921 * that case. And if <prev> is S, we set initial ->only_xr to false 2922 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2923 */ 2924 src_entry.only_xr = src->read == 0; 2925 2926 debug_atomic_inc(nr_redundant_checks); 2927 2928 /* 2929 * Note: we skip local_lock() for redundant check, because as the 2930 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2931 * the same. 2932 */ 2933 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2934 2935 if (ret == BFS_RMATCH) 2936 debug_atomic_inc(nr_redundant); 2937 2938 return ret; 2939 } 2940 2941 #else 2942 2943 static inline enum bfs_result 2944 check_redundant(struct held_lock *src, struct held_lock *target) 2945 { 2946 return BFS_RNOMATCH; 2947 } 2948 2949 #endif 2950 2951 static void inc_chains(int irq_context) 2952 { 2953 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2954 nr_hardirq_chains++; 2955 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2956 nr_softirq_chains++; 2957 else 2958 nr_process_chains++; 2959 } 2960 2961 static void dec_chains(int irq_context) 2962 { 2963 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2964 nr_hardirq_chains--; 2965 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2966 nr_softirq_chains--; 2967 else 2968 nr_process_chains--; 2969 } 2970 2971 static void 2972 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2973 { 2974 struct lock_class *next = hlock_class(nxt); 2975 struct lock_class *prev = hlock_class(prv); 2976 2977 printk(" Possible unsafe locking scenario:\n\n"); 2978 printk(" CPU0\n"); 2979 printk(" ----\n"); 2980 printk(" lock("); 2981 __print_lock_name(prv, prev); 2982 printk(KERN_CONT ");\n"); 2983 printk(" lock("); 2984 __print_lock_name(nxt, next); 2985 printk(KERN_CONT ");\n"); 2986 printk("\n *** DEADLOCK ***\n\n"); 2987 printk(" May be due to missing lock nesting notation\n\n"); 2988 } 2989 2990 static void 2991 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2992 struct held_lock *next) 2993 { 2994 struct lock_class *class = hlock_class(prev); 2995 2996 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2997 return; 2998 2999 pr_warn("\n"); 3000 pr_warn("============================================\n"); 3001 pr_warn("WARNING: possible recursive locking detected\n"); 3002 print_kernel_ident(); 3003 pr_warn("--------------------------------------------\n"); 3004 pr_warn("%s/%d is trying to acquire lock:\n", 3005 curr->comm, task_pid_nr(curr)); 3006 print_lock(next); 3007 pr_warn("\nbut task is already holding lock:\n"); 3008 print_lock(prev); 3009 3010 if (class->cmp_fn) { 3011 pr_warn("and the lock comparison function returns %i:\n", 3012 class->cmp_fn(prev->instance, next->instance)); 3013 } 3014 3015 pr_warn("\nother info that might help us debug this:\n"); 3016 print_deadlock_scenario(next, prev); 3017 lockdep_print_held_locks(curr); 3018 3019 pr_warn("\nstack backtrace:\n"); 3020 dump_stack(); 3021 } 3022 3023 /* 3024 * Check whether we are holding such a class already. 3025 * 3026 * (Note that this has to be done separately, because the graph cannot 3027 * detect such classes of deadlocks.) 3028 * 3029 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 3030 * lock class is held but nest_lock is also held, i.e. we rely on the 3031 * nest_lock to avoid the deadlock. 3032 */ 3033 static int 3034 check_deadlock(struct task_struct *curr, struct held_lock *next) 3035 { 3036 struct lock_class *class; 3037 struct held_lock *prev; 3038 struct held_lock *nest = NULL; 3039 int i; 3040 3041 for (i = 0; i < curr->lockdep_depth; i++) { 3042 prev = curr->held_locks + i; 3043 3044 if (prev->instance == next->nest_lock) 3045 nest = prev; 3046 3047 if (hlock_class(prev) != hlock_class(next)) 3048 continue; 3049 3050 /* 3051 * Allow read-after-read recursion of the same 3052 * lock class (i.e. read_lock(lock)+read_lock(lock)): 3053 */ 3054 if ((next->read == 2) && prev->read) 3055 continue; 3056 3057 class = hlock_class(prev); 3058 3059 if (class->cmp_fn && 3060 class->cmp_fn(prev->instance, next->instance) < 0) 3061 continue; 3062 3063 /* 3064 * We're holding the nest_lock, which serializes this lock's 3065 * nesting behaviour. 3066 */ 3067 if (nest) 3068 return 2; 3069 3070 print_deadlock_bug(curr, prev, next); 3071 return 0; 3072 } 3073 return 1; 3074 } 3075 3076 /* 3077 * There was a chain-cache miss, and we are about to add a new dependency 3078 * to a previous lock. We validate the following rules: 3079 * 3080 * - would the adding of the <prev> -> <next> dependency create a 3081 * circular dependency in the graph? [== circular deadlock] 3082 * 3083 * - does the new prev->next dependency connect any hardirq-safe lock 3084 * (in the full backwards-subgraph starting at <prev>) with any 3085 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3086 * <next>)? [== illegal lock inversion with hardirq contexts] 3087 * 3088 * - does the new prev->next dependency connect any softirq-safe lock 3089 * (in the full backwards-subgraph starting at <prev>) with any 3090 * softirq-unsafe lock (in the full forwards-subgraph starting at 3091 * <next>)? [== illegal lock inversion with softirq contexts] 3092 * 3093 * any of these scenarios could lead to a deadlock. 3094 * 3095 * Then if all the validations pass, we add the forwards and backwards 3096 * dependency. 3097 */ 3098 static int 3099 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3100 struct held_lock *next, u16 distance, 3101 struct lock_trace **const trace) 3102 { 3103 struct lock_list *entry; 3104 enum bfs_result ret; 3105 3106 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3107 /* 3108 * The warning statements below may trigger a use-after-free 3109 * of the class name. It is better to trigger a use-after free 3110 * and to have the class name most of the time instead of not 3111 * having the class name available. 3112 */ 3113 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3114 "Detected use-after-free of lock class %px/%s\n", 3115 hlock_class(prev), 3116 hlock_class(prev)->name); 3117 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3118 "Detected use-after-free of lock class %px/%s\n", 3119 hlock_class(next), 3120 hlock_class(next)->name); 3121 return 2; 3122 } 3123 3124 if (prev->class_idx == next->class_idx) { 3125 struct lock_class *class = hlock_class(prev); 3126 3127 if (class->cmp_fn && 3128 class->cmp_fn(prev->instance, next->instance) < 0) 3129 return 2; 3130 } 3131 3132 /* 3133 * Prove that the new <prev> -> <next> dependency would not 3134 * create a circular dependency in the graph. (We do this by 3135 * a breadth-first search into the graph starting at <next>, 3136 * and check whether we can reach <prev>.) 3137 * 3138 * The search is limited by the size of the circular queue (i.e., 3139 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3140 * in the graph whose neighbours are to be checked. 3141 */ 3142 ret = check_noncircular(next, prev, trace); 3143 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3144 return 0; 3145 3146 if (!check_irq_usage(curr, prev, next)) 3147 return 0; 3148 3149 /* 3150 * Is the <prev> -> <next> dependency already present? 3151 * 3152 * (this may occur even though this is a new chain: consider 3153 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3154 * chains - the second one will be new, but L1 already has 3155 * L2 added to its dependency list, due to the first chain.) 3156 */ 3157 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3158 if (entry->class == hlock_class(next)) { 3159 if (distance == 1) 3160 entry->distance = 1; 3161 entry->dep |= calc_dep(prev, next); 3162 3163 /* 3164 * Also, update the reverse dependency in @next's 3165 * ->locks_before list. 3166 * 3167 * Here we reuse @entry as the cursor, which is fine 3168 * because we won't go to the next iteration of the 3169 * outer loop: 3170 * 3171 * For normal cases, we return in the inner loop. 3172 * 3173 * If we fail to return, we have inconsistency, i.e. 3174 * <prev>::locks_after contains <next> while 3175 * <next>::locks_before doesn't contain <prev>. In 3176 * that case, we return after the inner and indicate 3177 * something is wrong. 3178 */ 3179 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3180 if (entry->class == hlock_class(prev)) { 3181 if (distance == 1) 3182 entry->distance = 1; 3183 entry->dep |= calc_depb(prev, next); 3184 return 1; 3185 } 3186 } 3187 3188 /* <prev> is not found in <next>::locks_before */ 3189 return 0; 3190 } 3191 } 3192 3193 /* 3194 * Is the <prev> -> <next> link redundant? 3195 */ 3196 ret = check_redundant(prev, next); 3197 if (bfs_error(ret)) 3198 return 0; 3199 else if (ret == BFS_RMATCH) 3200 return 2; 3201 3202 if (!*trace) { 3203 *trace = save_trace(); 3204 if (!*trace) 3205 return 0; 3206 } 3207 3208 /* 3209 * Ok, all validations passed, add the new lock 3210 * to the previous lock's dependency list: 3211 */ 3212 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3213 &hlock_class(prev)->locks_after, distance, 3214 calc_dep(prev, next), *trace); 3215 3216 if (!ret) 3217 return 0; 3218 3219 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3220 &hlock_class(next)->locks_before, distance, 3221 calc_depb(prev, next), *trace); 3222 if (!ret) 3223 return 0; 3224 3225 return 2; 3226 } 3227 3228 /* 3229 * Add the dependency to all directly-previous locks that are 'relevant'. 3230 * The ones that are relevant are (in increasing distance from curr): 3231 * all consecutive trylock entries and the final non-trylock entry - or 3232 * the end of this context's lock-chain - whichever comes first. 3233 */ 3234 static int 3235 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3236 { 3237 struct lock_trace *trace = NULL; 3238 int depth = curr->lockdep_depth; 3239 struct held_lock *hlock; 3240 3241 /* 3242 * Debugging checks. 3243 * 3244 * Depth must not be zero for a non-head lock: 3245 */ 3246 if (!depth) 3247 goto out_bug; 3248 /* 3249 * At least two relevant locks must exist for this 3250 * to be a head: 3251 */ 3252 if (curr->held_locks[depth].irq_context != 3253 curr->held_locks[depth-1].irq_context) 3254 goto out_bug; 3255 3256 for (;;) { 3257 u16 distance = curr->lockdep_depth - depth + 1; 3258 hlock = curr->held_locks + depth - 1; 3259 3260 if (hlock->check) { 3261 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3262 if (!ret) 3263 return 0; 3264 3265 /* 3266 * Stop after the first non-trylock entry, 3267 * as non-trylock entries have added their 3268 * own direct dependencies already, so this 3269 * lock is connected to them indirectly: 3270 */ 3271 if (!hlock->trylock) 3272 break; 3273 } 3274 3275 depth--; 3276 /* 3277 * End of lock-stack? 3278 */ 3279 if (!depth) 3280 break; 3281 /* 3282 * Stop the search if we cross into another context: 3283 */ 3284 if (curr->held_locks[depth].irq_context != 3285 curr->held_locks[depth-1].irq_context) 3286 break; 3287 } 3288 return 1; 3289 out_bug: 3290 if (!debug_locks_off_graph_unlock()) 3291 return 0; 3292 3293 /* 3294 * Clearly we all shouldn't be here, but since we made it we 3295 * can reliable say we messed up our state. See the above two 3296 * gotos for reasons why we could possibly end up here. 3297 */ 3298 WARN_ON(1); 3299 3300 return 0; 3301 } 3302 3303 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3304 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3305 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3306 unsigned long nr_zapped_lock_chains; 3307 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3308 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3309 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3310 3311 /* 3312 * The first 2 chain_hlocks entries in the chain block in the bucket 3313 * list contains the following meta data: 3314 * 3315 * entry[0]: 3316 * Bit 15 - always set to 1 (it is not a class index) 3317 * Bits 0-14 - upper 15 bits of the next block index 3318 * entry[1] - lower 16 bits of next block index 3319 * 3320 * A next block index of all 1 bits means it is the end of the list. 3321 * 3322 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3323 * the chain block size: 3324 * 3325 * entry[2] - upper 16 bits of the chain block size 3326 * entry[3] - lower 16 bits of the chain block size 3327 */ 3328 #define MAX_CHAIN_BUCKETS 16 3329 #define CHAIN_BLK_FLAG (1U << 15) 3330 #define CHAIN_BLK_LIST_END 0xFFFFU 3331 3332 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3333 3334 static inline int size_to_bucket(int size) 3335 { 3336 if (size > MAX_CHAIN_BUCKETS) 3337 return 0; 3338 3339 return size - 1; 3340 } 3341 3342 /* 3343 * Iterate all the chain blocks in a bucket. 3344 */ 3345 #define for_each_chain_block(bucket, prev, curr) \ 3346 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3347 (curr) >= 0; \ 3348 (prev) = (curr), (curr) = chain_block_next(curr)) 3349 3350 /* 3351 * next block or -1 3352 */ 3353 static inline int chain_block_next(int offset) 3354 { 3355 int next = chain_hlocks[offset]; 3356 3357 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3358 3359 if (next == CHAIN_BLK_LIST_END) 3360 return -1; 3361 3362 next &= ~CHAIN_BLK_FLAG; 3363 next <<= 16; 3364 next |= chain_hlocks[offset + 1]; 3365 3366 return next; 3367 } 3368 3369 /* 3370 * bucket-0 only 3371 */ 3372 static inline int chain_block_size(int offset) 3373 { 3374 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3375 } 3376 3377 static inline void init_chain_block(int offset, int next, int bucket, int size) 3378 { 3379 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3380 chain_hlocks[offset + 1] = (u16)next; 3381 3382 if (size && !bucket) { 3383 chain_hlocks[offset + 2] = size >> 16; 3384 chain_hlocks[offset + 3] = (u16)size; 3385 } 3386 } 3387 3388 static inline void add_chain_block(int offset, int size) 3389 { 3390 int bucket = size_to_bucket(size); 3391 int next = chain_block_buckets[bucket]; 3392 int prev, curr; 3393 3394 if (unlikely(size < 2)) { 3395 /* 3396 * We can't store single entries on the freelist. Leak them. 3397 * 3398 * One possible way out would be to uniquely mark them, other 3399 * than with CHAIN_BLK_FLAG, such that we can recover them when 3400 * the block before it is re-added. 3401 */ 3402 if (size) 3403 nr_lost_chain_hlocks++; 3404 return; 3405 } 3406 3407 nr_free_chain_hlocks += size; 3408 if (!bucket) { 3409 nr_large_chain_blocks++; 3410 3411 /* 3412 * Variable sized, sort large to small. 3413 */ 3414 for_each_chain_block(0, prev, curr) { 3415 if (size >= chain_block_size(curr)) 3416 break; 3417 } 3418 init_chain_block(offset, curr, 0, size); 3419 if (prev < 0) 3420 chain_block_buckets[0] = offset; 3421 else 3422 init_chain_block(prev, offset, 0, 0); 3423 return; 3424 } 3425 /* 3426 * Fixed size, add to head. 3427 */ 3428 init_chain_block(offset, next, bucket, size); 3429 chain_block_buckets[bucket] = offset; 3430 } 3431 3432 /* 3433 * Only the first block in the list can be deleted. 3434 * 3435 * For the variable size bucket[0], the first block (the largest one) is 3436 * returned, broken up and put back into the pool. So if a chain block of 3437 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3438 * queued up after the primordial chain block and never be used until the 3439 * hlock entries in the primordial chain block is almost used up. That 3440 * causes fragmentation and reduce allocation efficiency. That can be 3441 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3442 */ 3443 static inline void del_chain_block(int bucket, int size, int next) 3444 { 3445 nr_free_chain_hlocks -= size; 3446 chain_block_buckets[bucket] = next; 3447 3448 if (!bucket) 3449 nr_large_chain_blocks--; 3450 } 3451 3452 static void init_chain_block_buckets(void) 3453 { 3454 int i; 3455 3456 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3457 chain_block_buckets[i] = -1; 3458 3459 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3460 } 3461 3462 /* 3463 * Return offset of a chain block of the right size or -1 if not found. 3464 * 3465 * Fairly simple worst-fit allocator with the addition of a number of size 3466 * specific free lists. 3467 */ 3468 static int alloc_chain_hlocks(int req) 3469 { 3470 int bucket, curr, size; 3471 3472 /* 3473 * We rely on the MSB to act as an escape bit to denote freelist 3474 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3475 */ 3476 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3477 3478 init_data_structures_once(); 3479 3480 if (nr_free_chain_hlocks < req) 3481 return -1; 3482 3483 /* 3484 * We require a minimum of 2 (u16) entries to encode a freelist 3485 * 'pointer'. 3486 */ 3487 req = max(req, 2); 3488 bucket = size_to_bucket(req); 3489 curr = chain_block_buckets[bucket]; 3490 3491 if (bucket) { 3492 if (curr >= 0) { 3493 del_chain_block(bucket, req, chain_block_next(curr)); 3494 return curr; 3495 } 3496 /* Try bucket 0 */ 3497 curr = chain_block_buckets[0]; 3498 } 3499 3500 /* 3501 * The variable sized freelist is sorted by size; the first entry is 3502 * the largest. Use it if it fits. 3503 */ 3504 if (curr >= 0) { 3505 size = chain_block_size(curr); 3506 if (likely(size >= req)) { 3507 del_chain_block(0, size, chain_block_next(curr)); 3508 add_chain_block(curr + req, size - req); 3509 return curr; 3510 } 3511 } 3512 3513 /* 3514 * Last resort, split a block in a larger sized bucket. 3515 */ 3516 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3517 bucket = size_to_bucket(size); 3518 curr = chain_block_buckets[bucket]; 3519 if (curr < 0) 3520 continue; 3521 3522 del_chain_block(bucket, size, chain_block_next(curr)); 3523 add_chain_block(curr + req, size - req); 3524 return curr; 3525 } 3526 3527 return -1; 3528 } 3529 3530 static inline void free_chain_hlocks(int base, int size) 3531 { 3532 add_chain_block(base, max(size, 2)); 3533 } 3534 3535 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3536 { 3537 u16 chain_hlock = chain_hlocks[chain->base + i]; 3538 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3539 3540 return lock_classes + class_idx; 3541 } 3542 3543 /* 3544 * Returns the index of the first held_lock of the current chain 3545 */ 3546 static inline int get_first_held_lock(struct task_struct *curr, 3547 struct held_lock *hlock) 3548 { 3549 int i; 3550 struct held_lock *hlock_curr; 3551 3552 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3553 hlock_curr = curr->held_locks + i; 3554 if (hlock_curr->irq_context != hlock->irq_context) 3555 break; 3556 3557 } 3558 3559 return ++i; 3560 } 3561 3562 #ifdef CONFIG_DEBUG_LOCKDEP 3563 /* 3564 * Returns the next chain_key iteration 3565 */ 3566 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3567 { 3568 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3569 3570 printk(" hlock_id:%d -> chain_key:%016Lx", 3571 (unsigned int)hlock_id, 3572 (unsigned long long)new_chain_key); 3573 return new_chain_key; 3574 } 3575 3576 static void 3577 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3578 { 3579 struct held_lock *hlock; 3580 u64 chain_key = INITIAL_CHAIN_KEY; 3581 int depth = curr->lockdep_depth; 3582 int i = get_first_held_lock(curr, hlock_next); 3583 3584 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3585 hlock_next->irq_context); 3586 for (; i < depth; i++) { 3587 hlock = curr->held_locks + i; 3588 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3589 3590 print_lock(hlock); 3591 } 3592 3593 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3594 print_lock(hlock_next); 3595 } 3596 3597 static void print_chain_keys_chain(struct lock_chain *chain) 3598 { 3599 int i; 3600 u64 chain_key = INITIAL_CHAIN_KEY; 3601 u16 hlock_id; 3602 3603 printk("depth: %u\n", chain->depth); 3604 for (i = 0; i < chain->depth; i++) { 3605 hlock_id = chain_hlocks[chain->base + i]; 3606 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3607 3608 print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id)); 3609 printk("\n"); 3610 } 3611 } 3612 3613 static void print_collision(struct task_struct *curr, 3614 struct held_lock *hlock_next, 3615 struct lock_chain *chain) 3616 { 3617 pr_warn("\n"); 3618 pr_warn("============================\n"); 3619 pr_warn("WARNING: chain_key collision\n"); 3620 print_kernel_ident(); 3621 pr_warn("----------------------------\n"); 3622 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3623 pr_warn("Hash chain already cached but the contents don't match!\n"); 3624 3625 pr_warn("Held locks:"); 3626 print_chain_keys_held_locks(curr, hlock_next); 3627 3628 pr_warn("Locks in cached chain:"); 3629 print_chain_keys_chain(chain); 3630 3631 pr_warn("\nstack backtrace:\n"); 3632 dump_stack(); 3633 } 3634 #endif 3635 3636 /* 3637 * Checks whether the chain and the current held locks are consistent 3638 * in depth and also in content. If they are not it most likely means 3639 * that there was a collision during the calculation of the chain_key. 3640 * Returns: 0 not passed, 1 passed 3641 */ 3642 static int check_no_collision(struct task_struct *curr, 3643 struct held_lock *hlock, 3644 struct lock_chain *chain) 3645 { 3646 #ifdef CONFIG_DEBUG_LOCKDEP 3647 int i, j, id; 3648 3649 i = get_first_held_lock(curr, hlock); 3650 3651 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3652 print_collision(curr, hlock, chain); 3653 return 0; 3654 } 3655 3656 for (j = 0; j < chain->depth - 1; j++, i++) { 3657 id = hlock_id(&curr->held_locks[i]); 3658 3659 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3660 print_collision(curr, hlock, chain); 3661 return 0; 3662 } 3663 } 3664 #endif 3665 return 1; 3666 } 3667 3668 /* 3669 * Given an index that is >= -1, return the index of the next lock chain. 3670 * Return -2 if there is no next lock chain. 3671 */ 3672 long lockdep_next_lockchain(long i) 3673 { 3674 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3675 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3676 } 3677 3678 unsigned long lock_chain_count(void) 3679 { 3680 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3681 } 3682 3683 /* Must be called with the graph lock held. */ 3684 static struct lock_chain *alloc_lock_chain(void) 3685 { 3686 int idx = find_first_zero_bit(lock_chains_in_use, 3687 ARRAY_SIZE(lock_chains)); 3688 3689 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3690 return NULL; 3691 __set_bit(idx, lock_chains_in_use); 3692 return lock_chains + idx; 3693 } 3694 3695 /* 3696 * Adds a dependency chain into chain hashtable. And must be called with 3697 * graph_lock held. 3698 * 3699 * Return 0 if fail, and graph_lock is released. 3700 * Return 1 if succeed, with graph_lock held. 3701 */ 3702 static inline int add_chain_cache(struct task_struct *curr, 3703 struct held_lock *hlock, 3704 u64 chain_key) 3705 { 3706 struct hlist_head *hash_head = chainhashentry(chain_key); 3707 struct lock_chain *chain; 3708 int i, j; 3709 3710 /* 3711 * The caller must hold the graph lock, ensure we've got IRQs 3712 * disabled to make this an IRQ-safe lock.. for recursion reasons 3713 * lockdep won't complain about its own locking errors. 3714 */ 3715 if (lockdep_assert_locked()) 3716 return 0; 3717 3718 chain = alloc_lock_chain(); 3719 if (!chain) { 3720 if (!debug_locks_off_graph_unlock()) 3721 return 0; 3722 3723 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3724 dump_stack(); 3725 return 0; 3726 } 3727 chain->chain_key = chain_key; 3728 chain->irq_context = hlock->irq_context; 3729 i = get_first_held_lock(curr, hlock); 3730 chain->depth = curr->lockdep_depth + 1 - i; 3731 3732 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3733 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3734 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3735 3736 j = alloc_chain_hlocks(chain->depth); 3737 if (j < 0) { 3738 if (!debug_locks_off_graph_unlock()) 3739 return 0; 3740 3741 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3742 dump_stack(); 3743 return 0; 3744 } 3745 3746 chain->base = j; 3747 for (j = 0; j < chain->depth - 1; j++, i++) { 3748 int lock_id = hlock_id(curr->held_locks + i); 3749 3750 chain_hlocks[chain->base + j] = lock_id; 3751 } 3752 chain_hlocks[chain->base + j] = hlock_id(hlock); 3753 hlist_add_head_rcu(&chain->entry, hash_head); 3754 debug_atomic_inc(chain_lookup_misses); 3755 inc_chains(chain->irq_context); 3756 3757 return 1; 3758 } 3759 3760 /* 3761 * Look up a dependency chain. Must be called with either the graph lock or 3762 * the RCU read lock held. 3763 */ 3764 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3765 { 3766 struct hlist_head *hash_head = chainhashentry(chain_key); 3767 struct lock_chain *chain; 3768 3769 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3770 if (READ_ONCE(chain->chain_key) == chain_key) { 3771 debug_atomic_inc(chain_lookup_hits); 3772 return chain; 3773 } 3774 } 3775 return NULL; 3776 } 3777 3778 /* 3779 * If the key is not present yet in dependency chain cache then 3780 * add it and return 1 - in this case the new dependency chain is 3781 * validated. If the key is already hashed, return 0. 3782 * (On return with 1 graph_lock is held.) 3783 */ 3784 static inline int lookup_chain_cache_add(struct task_struct *curr, 3785 struct held_lock *hlock, 3786 u64 chain_key) 3787 { 3788 struct lock_class *class = hlock_class(hlock); 3789 struct lock_chain *chain = lookup_chain_cache(chain_key); 3790 3791 if (chain) { 3792 cache_hit: 3793 if (!check_no_collision(curr, hlock, chain)) 3794 return 0; 3795 3796 if (very_verbose(class)) { 3797 printk("\nhash chain already cached, key: " 3798 "%016Lx tail class: [%px] %s\n", 3799 (unsigned long long)chain_key, 3800 class->key, class->name); 3801 } 3802 3803 return 0; 3804 } 3805 3806 if (very_verbose(class)) { 3807 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3808 (unsigned long long)chain_key, class->key, class->name); 3809 } 3810 3811 if (!graph_lock()) 3812 return 0; 3813 3814 /* 3815 * We have to walk the chain again locked - to avoid duplicates: 3816 */ 3817 chain = lookup_chain_cache(chain_key); 3818 if (chain) { 3819 graph_unlock(); 3820 goto cache_hit; 3821 } 3822 3823 if (!add_chain_cache(curr, hlock, chain_key)) 3824 return 0; 3825 3826 return 1; 3827 } 3828 3829 static int validate_chain(struct task_struct *curr, 3830 struct held_lock *hlock, 3831 int chain_head, u64 chain_key) 3832 { 3833 /* 3834 * Trylock needs to maintain the stack of held locks, but it 3835 * does not add new dependencies, because trylock can be done 3836 * in any order. 3837 * 3838 * We look up the chain_key and do the O(N^2) check and update of 3839 * the dependencies only if this is a new dependency chain. 3840 * (If lookup_chain_cache_add() return with 1 it acquires 3841 * graph_lock for us) 3842 */ 3843 if (!hlock->trylock && hlock->check && 3844 lookup_chain_cache_add(curr, hlock, chain_key)) { 3845 /* 3846 * Check whether last held lock: 3847 * 3848 * - is irq-safe, if this lock is irq-unsafe 3849 * - is softirq-safe, if this lock is hardirq-unsafe 3850 * 3851 * And check whether the new lock's dependency graph 3852 * could lead back to the previous lock: 3853 * 3854 * - within the current held-lock stack 3855 * - across our accumulated lock dependency records 3856 * 3857 * any of these scenarios could lead to a deadlock. 3858 */ 3859 /* 3860 * The simple case: does the current hold the same lock 3861 * already? 3862 */ 3863 int ret = check_deadlock(curr, hlock); 3864 3865 if (!ret) 3866 return 0; 3867 /* 3868 * Add dependency only if this lock is not the head 3869 * of the chain, and if the new lock introduces no more 3870 * lock dependency (because we already hold a lock with the 3871 * same lock class) nor deadlock (because the nest_lock 3872 * serializes nesting locks), see the comments for 3873 * check_deadlock(). 3874 */ 3875 if (!chain_head && ret != 2) { 3876 if (!check_prevs_add(curr, hlock)) 3877 return 0; 3878 } 3879 3880 graph_unlock(); 3881 } else { 3882 /* after lookup_chain_cache_add(): */ 3883 if (unlikely(!debug_locks)) 3884 return 0; 3885 } 3886 3887 return 1; 3888 } 3889 #else 3890 static inline int validate_chain(struct task_struct *curr, 3891 struct held_lock *hlock, 3892 int chain_head, u64 chain_key) 3893 { 3894 return 1; 3895 } 3896 3897 static void init_chain_block_buckets(void) { } 3898 #endif /* CONFIG_PROVE_LOCKING */ 3899 3900 /* 3901 * We are building curr_chain_key incrementally, so double-check 3902 * it from scratch, to make sure that it's done correctly: 3903 */ 3904 static void check_chain_key(struct task_struct *curr) 3905 { 3906 #ifdef CONFIG_DEBUG_LOCKDEP 3907 struct held_lock *hlock, *prev_hlock = NULL; 3908 unsigned int i; 3909 u64 chain_key = INITIAL_CHAIN_KEY; 3910 3911 for (i = 0; i < curr->lockdep_depth; i++) { 3912 hlock = curr->held_locks + i; 3913 if (chain_key != hlock->prev_chain_key) { 3914 debug_locks_off(); 3915 /* 3916 * We got mighty confused, our chain keys don't match 3917 * with what we expect, someone trample on our task state? 3918 */ 3919 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3920 curr->lockdep_depth, i, 3921 (unsigned long long)chain_key, 3922 (unsigned long long)hlock->prev_chain_key); 3923 return; 3924 } 3925 3926 /* 3927 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3928 * it registered lock class index? 3929 */ 3930 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3931 return; 3932 3933 if (prev_hlock && (prev_hlock->irq_context != 3934 hlock->irq_context)) 3935 chain_key = INITIAL_CHAIN_KEY; 3936 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3937 prev_hlock = hlock; 3938 } 3939 if (chain_key != curr->curr_chain_key) { 3940 debug_locks_off(); 3941 /* 3942 * More smoking hash instead of calculating it, damn see these 3943 * numbers float.. I bet that a pink elephant stepped on my memory. 3944 */ 3945 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3946 curr->lockdep_depth, i, 3947 (unsigned long long)chain_key, 3948 (unsigned long long)curr->curr_chain_key); 3949 } 3950 #endif 3951 } 3952 3953 #ifdef CONFIG_PROVE_LOCKING 3954 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3955 enum lock_usage_bit new_bit); 3956 3957 static void print_usage_bug_scenario(struct held_lock *lock) 3958 { 3959 struct lock_class *class = hlock_class(lock); 3960 3961 printk(" Possible unsafe locking scenario:\n\n"); 3962 printk(" CPU0\n"); 3963 printk(" ----\n"); 3964 printk(" lock("); 3965 __print_lock_name(lock, class); 3966 printk(KERN_CONT ");\n"); 3967 printk(" <Interrupt>\n"); 3968 printk(" lock("); 3969 __print_lock_name(lock, class); 3970 printk(KERN_CONT ");\n"); 3971 printk("\n *** DEADLOCK ***\n\n"); 3972 } 3973 3974 static void 3975 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3976 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3977 { 3978 if (!debug_locks_off() || debug_locks_silent) 3979 return; 3980 3981 pr_warn("\n"); 3982 pr_warn("================================\n"); 3983 pr_warn("WARNING: inconsistent lock state\n"); 3984 print_kernel_ident(); 3985 pr_warn("--------------------------------\n"); 3986 3987 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3988 usage_str[prev_bit], usage_str[new_bit]); 3989 3990 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3991 curr->comm, task_pid_nr(curr), 3992 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3993 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3994 lockdep_hardirqs_enabled(), 3995 lockdep_softirqs_enabled(curr)); 3996 print_lock(this); 3997 3998 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3999 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 4000 4001 print_irqtrace_events(curr); 4002 pr_warn("\nother info that might help us debug this:\n"); 4003 print_usage_bug_scenario(this); 4004 4005 lockdep_print_held_locks(curr); 4006 4007 pr_warn("\nstack backtrace:\n"); 4008 dump_stack(); 4009 } 4010 4011 /* 4012 * Print out an error if an invalid bit is set: 4013 */ 4014 static inline int 4015 valid_state(struct task_struct *curr, struct held_lock *this, 4016 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 4017 { 4018 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 4019 graph_unlock(); 4020 print_usage_bug(curr, this, bad_bit, new_bit); 4021 return 0; 4022 } 4023 return 1; 4024 } 4025 4026 4027 /* 4028 * print irq inversion bug: 4029 */ 4030 static void 4031 print_irq_inversion_bug(struct task_struct *curr, 4032 struct lock_list *root, struct lock_list *other, 4033 struct held_lock *this, int forwards, 4034 const char *irqclass) 4035 { 4036 struct lock_list *entry = other; 4037 struct lock_list *middle = NULL; 4038 int depth; 4039 4040 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 4041 return; 4042 4043 pr_warn("\n"); 4044 pr_warn("========================================================\n"); 4045 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 4046 print_kernel_ident(); 4047 pr_warn("--------------------------------------------------------\n"); 4048 pr_warn("%s/%d just changed the state of lock:\n", 4049 curr->comm, task_pid_nr(curr)); 4050 print_lock(this); 4051 if (forwards) 4052 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 4053 else 4054 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 4055 print_lock_name(NULL, other->class); 4056 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 4057 4058 pr_warn("\nother info that might help us debug this:\n"); 4059 4060 /* Find a middle lock (if one exists) */ 4061 depth = get_lock_depth(other); 4062 do { 4063 if (depth == 0 && (entry != root)) { 4064 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 4065 break; 4066 } 4067 middle = entry; 4068 entry = get_lock_parent(entry); 4069 depth--; 4070 } while (entry && entry != root && (depth >= 0)); 4071 if (forwards) 4072 print_irq_lock_scenario(root, other, 4073 middle ? middle->class : root->class, other->class); 4074 else 4075 print_irq_lock_scenario(other, root, 4076 middle ? middle->class : other->class, root->class); 4077 4078 lockdep_print_held_locks(curr); 4079 4080 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4081 root->trace = save_trace(); 4082 if (!root->trace) 4083 return; 4084 print_shortest_lock_dependencies(other, root); 4085 4086 pr_warn("\nstack backtrace:\n"); 4087 dump_stack(); 4088 } 4089 4090 /* 4091 * Prove that in the forwards-direction subgraph starting at <this> 4092 * there is no lock matching <mask>: 4093 */ 4094 static int 4095 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4096 enum lock_usage_bit bit) 4097 { 4098 enum bfs_result ret; 4099 struct lock_list root; 4100 struct lock_list *target_entry; 4101 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4102 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4103 4104 bfs_init_root(&root, this); 4105 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4106 if (bfs_error(ret)) { 4107 print_bfs_bug(ret); 4108 return 0; 4109 } 4110 if (ret == BFS_RNOMATCH) 4111 return 1; 4112 4113 /* Check whether write or read usage is the match */ 4114 if (target_entry->class->usage_mask & lock_flag(bit)) { 4115 print_irq_inversion_bug(curr, &root, target_entry, 4116 this, 1, state_name(bit)); 4117 } else { 4118 print_irq_inversion_bug(curr, &root, target_entry, 4119 this, 1, state_name(read_bit)); 4120 } 4121 4122 return 0; 4123 } 4124 4125 /* 4126 * Prove that in the backwards-direction subgraph starting at <this> 4127 * there is no lock matching <mask>: 4128 */ 4129 static int 4130 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4131 enum lock_usage_bit bit) 4132 { 4133 enum bfs_result ret; 4134 struct lock_list root; 4135 struct lock_list *target_entry; 4136 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4137 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4138 4139 bfs_init_rootb(&root, this); 4140 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4141 if (bfs_error(ret)) { 4142 print_bfs_bug(ret); 4143 return 0; 4144 } 4145 if (ret == BFS_RNOMATCH) 4146 return 1; 4147 4148 /* Check whether write or read usage is the match */ 4149 if (target_entry->class->usage_mask & lock_flag(bit)) { 4150 print_irq_inversion_bug(curr, &root, target_entry, 4151 this, 0, state_name(bit)); 4152 } else { 4153 print_irq_inversion_bug(curr, &root, target_entry, 4154 this, 0, state_name(read_bit)); 4155 } 4156 4157 return 0; 4158 } 4159 4160 void print_irqtrace_events(struct task_struct *curr) 4161 { 4162 const struct irqtrace_events *trace = &curr->irqtrace; 4163 4164 printk("irq event stamp: %u\n", trace->irq_events); 4165 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4166 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4167 (void *)trace->hardirq_enable_ip); 4168 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4169 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4170 (void *)trace->hardirq_disable_ip); 4171 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4172 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4173 (void *)trace->softirq_enable_ip); 4174 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4175 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4176 (void *)trace->softirq_disable_ip); 4177 } 4178 4179 static int HARDIRQ_verbose(struct lock_class *class) 4180 { 4181 #if HARDIRQ_VERBOSE 4182 return class_filter(class); 4183 #endif 4184 return 0; 4185 } 4186 4187 static int SOFTIRQ_verbose(struct lock_class *class) 4188 { 4189 #if SOFTIRQ_VERBOSE 4190 return class_filter(class); 4191 #endif 4192 return 0; 4193 } 4194 4195 static int (*state_verbose_f[])(struct lock_class *class) = { 4196 #define LOCKDEP_STATE(__STATE) \ 4197 __STATE##_verbose, 4198 #include "lockdep_states.h" 4199 #undef LOCKDEP_STATE 4200 }; 4201 4202 static inline int state_verbose(enum lock_usage_bit bit, 4203 struct lock_class *class) 4204 { 4205 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4206 } 4207 4208 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4209 enum lock_usage_bit bit, const char *name); 4210 4211 static int 4212 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4213 enum lock_usage_bit new_bit) 4214 { 4215 int excl_bit = exclusive_bit(new_bit); 4216 int read = new_bit & LOCK_USAGE_READ_MASK; 4217 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4218 4219 /* 4220 * Validate that this particular lock does not have conflicting 4221 * usage states. 4222 */ 4223 if (!valid_state(curr, this, new_bit, excl_bit)) 4224 return 0; 4225 4226 /* 4227 * Check for read in write conflicts 4228 */ 4229 if (!read && !valid_state(curr, this, new_bit, 4230 excl_bit + LOCK_USAGE_READ_MASK)) 4231 return 0; 4232 4233 4234 /* 4235 * Validate that the lock dependencies don't have conflicting usage 4236 * states. 4237 */ 4238 if (dir) { 4239 /* 4240 * mark ENABLED has to look backwards -- to ensure no dependee 4241 * has USED_IN state, which, again, would allow recursion deadlocks. 4242 */ 4243 if (!check_usage_backwards(curr, this, excl_bit)) 4244 return 0; 4245 } else { 4246 /* 4247 * mark USED_IN has to look forwards -- to ensure no dependency 4248 * has ENABLED state, which would allow recursion deadlocks. 4249 */ 4250 if (!check_usage_forwards(curr, this, excl_bit)) 4251 return 0; 4252 } 4253 4254 if (state_verbose(new_bit, hlock_class(this))) 4255 return 2; 4256 4257 return 1; 4258 } 4259 4260 /* 4261 * Mark all held locks with a usage bit: 4262 */ 4263 static int 4264 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4265 { 4266 struct held_lock *hlock; 4267 int i; 4268 4269 for (i = 0; i < curr->lockdep_depth; i++) { 4270 enum lock_usage_bit hlock_bit = base_bit; 4271 hlock = curr->held_locks + i; 4272 4273 if (hlock->read) 4274 hlock_bit += LOCK_USAGE_READ_MASK; 4275 4276 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4277 4278 if (!hlock->check) 4279 continue; 4280 4281 if (!mark_lock(curr, hlock, hlock_bit)) 4282 return 0; 4283 } 4284 4285 return 1; 4286 } 4287 4288 /* 4289 * Hardirqs will be enabled: 4290 */ 4291 static void __trace_hardirqs_on_caller(void) 4292 { 4293 struct task_struct *curr = current; 4294 4295 /* 4296 * We are going to turn hardirqs on, so set the 4297 * usage bit for all held locks: 4298 */ 4299 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4300 return; 4301 /* 4302 * If we have softirqs enabled, then set the usage 4303 * bit for all held locks. (disabled hardirqs prevented 4304 * this bit from being set before) 4305 */ 4306 if (curr->softirqs_enabled) 4307 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4308 } 4309 4310 /** 4311 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4312 * 4313 * Invoked before a possible transition to RCU idle from exit to user or 4314 * guest mode. This ensures that all RCU operations are done before RCU 4315 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4316 * invoked to set the final state. 4317 */ 4318 void lockdep_hardirqs_on_prepare(void) 4319 { 4320 if (unlikely(!debug_locks)) 4321 return; 4322 4323 /* 4324 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4325 */ 4326 if (unlikely(in_nmi())) 4327 return; 4328 4329 if (unlikely(this_cpu_read(lockdep_recursion))) 4330 return; 4331 4332 if (unlikely(lockdep_hardirqs_enabled())) { 4333 /* 4334 * Neither irq nor preemption are disabled here 4335 * so this is racy by nature but losing one hit 4336 * in a stat is not a big deal. 4337 */ 4338 __debug_atomic_inc(redundant_hardirqs_on); 4339 return; 4340 } 4341 4342 /* 4343 * We're enabling irqs and according to our state above irqs weren't 4344 * already enabled, yet we find the hardware thinks they are in fact 4345 * enabled.. someone messed up their IRQ state tracing. 4346 */ 4347 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4348 return; 4349 4350 /* 4351 * See the fine text that goes along with this variable definition. 4352 */ 4353 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4354 return; 4355 4356 /* 4357 * Can't allow enabling interrupts while in an interrupt handler, 4358 * that's general bad form and such. Recursion, limited stack etc.. 4359 */ 4360 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4361 return; 4362 4363 current->hardirq_chain_key = current->curr_chain_key; 4364 4365 lockdep_recursion_inc(); 4366 __trace_hardirqs_on_caller(); 4367 lockdep_recursion_finish(); 4368 } 4369 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4370 4371 void noinstr lockdep_hardirqs_on(unsigned long ip) 4372 { 4373 struct irqtrace_events *trace = ¤t->irqtrace; 4374 4375 if (unlikely(!debug_locks)) 4376 return; 4377 4378 /* 4379 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4380 * tracking state and hardware state are out of sync. 4381 * 4382 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4383 * and not rely on hardware state like normal interrupts. 4384 */ 4385 if (unlikely(in_nmi())) { 4386 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4387 return; 4388 4389 /* 4390 * Skip: 4391 * - recursion check, because NMI can hit lockdep; 4392 * - hardware state check, because above; 4393 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4394 */ 4395 goto skip_checks; 4396 } 4397 4398 if (unlikely(this_cpu_read(lockdep_recursion))) 4399 return; 4400 4401 if (lockdep_hardirqs_enabled()) { 4402 /* 4403 * Neither irq nor preemption are disabled here 4404 * so this is racy by nature but losing one hit 4405 * in a stat is not a big deal. 4406 */ 4407 __debug_atomic_inc(redundant_hardirqs_on); 4408 return; 4409 } 4410 4411 /* 4412 * We're enabling irqs and according to our state above irqs weren't 4413 * already enabled, yet we find the hardware thinks they are in fact 4414 * enabled.. someone messed up their IRQ state tracing. 4415 */ 4416 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4417 return; 4418 4419 /* 4420 * Ensure the lock stack remained unchanged between 4421 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4422 */ 4423 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4424 current->curr_chain_key); 4425 4426 skip_checks: 4427 /* we'll do an OFF -> ON transition: */ 4428 __this_cpu_write(hardirqs_enabled, 1); 4429 trace->hardirq_enable_ip = ip; 4430 trace->hardirq_enable_event = ++trace->irq_events; 4431 debug_atomic_inc(hardirqs_on_events); 4432 } 4433 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4434 4435 /* 4436 * Hardirqs were disabled: 4437 */ 4438 void noinstr lockdep_hardirqs_off(unsigned long ip) 4439 { 4440 if (unlikely(!debug_locks)) 4441 return; 4442 4443 /* 4444 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4445 * they will restore the software state. This ensures the software 4446 * state is consistent inside NMIs as well. 4447 */ 4448 if (in_nmi()) { 4449 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4450 return; 4451 } else if (__this_cpu_read(lockdep_recursion)) 4452 return; 4453 4454 /* 4455 * So we're supposed to get called after you mask local IRQs, but for 4456 * some reason the hardware doesn't quite think you did a proper job. 4457 */ 4458 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4459 return; 4460 4461 if (lockdep_hardirqs_enabled()) { 4462 struct irqtrace_events *trace = ¤t->irqtrace; 4463 4464 /* 4465 * We have done an ON -> OFF transition: 4466 */ 4467 __this_cpu_write(hardirqs_enabled, 0); 4468 trace->hardirq_disable_ip = ip; 4469 trace->hardirq_disable_event = ++trace->irq_events; 4470 debug_atomic_inc(hardirqs_off_events); 4471 } else { 4472 debug_atomic_inc(redundant_hardirqs_off); 4473 } 4474 } 4475 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4476 4477 /* 4478 * Softirqs will be enabled: 4479 */ 4480 void lockdep_softirqs_on(unsigned long ip) 4481 { 4482 struct irqtrace_events *trace = ¤t->irqtrace; 4483 4484 if (unlikely(!lockdep_enabled())) 4485 return; 4486 4487 /* 4488 * We fancy IRQs being disabled here, see softirq.c, avoids 4489 * funny state and nesting things. 4490 */ 4491 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4492 return; 4493 4494 if (current->softirqs_enabled) { 4495 debug_atomic_inc(redundant_softirqs_on); 4496 return; 4497 } 4498 4499 lockdep_recursion_inc(); 4500 /* 4501 * We'll do an OFF -> ON transition: 4502 */ 4503 current->softirqs_enabled = 1; 4504 trace->softirq_enable_ip = ip; 4505 trace->softirq_enable_event = ++trace->irq_events; 4506 debug_atomic_inc(softirqs_on_events); 4507 /* 4508 * We are going to turn softirqs on, so set the 4509 * usage bit for all held locks, if hardirqs are 4510 * enabled too: 4511 */ 4512 if (lockdep_hardirqs_enabled()) 4513 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4514 lockdep_recursion_finish(); 4515 } 4516 4517 /* 4518 * Softirqs were disabled: 4519 */ 4520 void lockdep_softirqs_off(unsigned long ip) 4521 { 4522 if (unlikely(!lockdep_enabled())) 4523 return; 4524 4525 /* 4526 * We fancy IRQs being disabled here, see softirq.c 4527 */ 4528 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4529 return; 4530 4531 if (current->softirqs_enabled) { 4532 struct irqtrace_events *trace = ¤t->irqtrace; 4533 4534 /* 4535 * We have done an ON -> OFF transition: 4536 */ 4537 current->softirqs_enabled = 0; 4538 trace->softirq_disable_ip = ip; 4539 trace->softirq_disable_event = ++trace->irq_events; 4540 debug_atomic_inc(softirqs_off_events); 4541 /* 4542 * Whoops, we wanted softirqs off, so why aren't they? 4543 */ 4544 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4545 } else 4546 debug_atomic_inc(redundant_softirqs_off); 4547 } 4548 4549 static int 4550 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4551 { 4552 if (!check) 4553 goto lock_used; 4554 4555 /* 4556 * If non-trylock use in a hardirq or softirq context, then 4557 * mark the lock as used in these contexts: 4558 */ 4559 if (!hlock->trylock) { 4560 if (hlock->read) { 4561 if (lockdep_hardirq_context()) 4562 if (!mark_lock(curr, hlock, 4563 LOCK_USED_IN_HARDIRQ_READ)) 4564 return 0; 4565 if (curr->softirq_context) 4566 if (!mark_lock(curr, hlock, 4567 LOCK_USED_IN_SOFTIRQ_READ)) 4568 return 0; 4569 } else { 4570 if (lockdep_hardirq_context()) 4571 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4572 return 0; 4573 if (curr->softirq_context) 4574 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4575 return 0; 4576 } 4577 } 4578 4579 /* 4580 * For lock_sync(), don't mark the ENABLED usage, since lock_sync() 4581 * creates no critical section and no extra dependency can be introduced 4582 * by interrupts 4583 */ 4584 if (!hlock->hardirqs_off && !hlock->sync) { 4585 if (hlock->read) { 4586 if (!mark_lock(curr, hlock, 4587 LOCK_ENABLED_HARDIRQ_READ)) 4588 return 0; 4589 if (curr->softirqs_enabled) 4590 if (!mark_lock(curr, hlock, 4591 LOCK_ENABLED_SOFTIRQ_READ)) 4592 return 0; 4593 } else { 4594 if (!mark_lock(curr, hlock, 4595 LOCK_ENABLED_HARDIRQ)) 4596 return 0; 4597 if (curr->softirqs_enabled) 4598 if (!mark_lock(curr, hlock, 4599 LOCK_ENABLED_SOFTIRQ)) 4600 return 0; 4601 } 4602 } 4603 4604 lock_used: 4605 /* mark it as used: */ 4606 if (!mark_lock(curr, hlock, LOCK_USED)) 4607 return 0; 4608 4609 return 1; 4610 } 4611 4612 static inline unsigned int task_irq_context(struct task_struct *task) 4613 { 4614 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4615 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4616 } 4617 4618 static int separate_irq_context(struct task_struct *curr, 4619 struct held_lock *hlock) 4620 { 4621 unsigned int depth = curr->lockdep_depth; 4622 4623 /* 4624 * Keep track of points where we cross into an interrupt context: 4625 */ 4626 if (depth) { 4627 struct held_lock *prev_hlock; 4628 4629 prev_hlock = curr->held_locks + depth-1; 4630 /* 4631 * If we cross into another context, reset the 4632 * hash key (this also prevents the checking and the 4633 * adding of the dependency to 'prev'): 4634 */ 4635 if (prev_hlock->irq_context != hlock->irq_context) 4636 return 1; 4637 } 4638 return 0; 4639 } 4640 4641 /* 4642 * Mark a lock with a usage bit, and validate the state transition: 4643 */ 4644 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4645 enum lock_usage_bit new_bit) 4646 { 4647 unsigned int new_mask, ret = 1; 4648 4649 if (new_bit >= LOCK_USAGE_STATES) { 4650 DEBUG_LOCKS_WARN_ON(1); 4651 return 0; 4652 } 4653 4654 if (new_bit == LOCK_USED && this->read) 4655 new_bit = LOCK_USED_READ; 4656 4657 new_mask = 1 << new_bit; 4658 4659 /* 4660 * If already set then do not dirty the cacheline, 4661 * nor do any checks: 4662 */ 4663 if (likely(hlock_class(this)->usage_mask & new_mask)) 4664 return 1; 4665 4666 if (!graph_lock()) 4667 return 0; 4668 /* 4669 * Make sure we didn't race: 4670 */ 4671 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4672 goto unlock; 4673 4674 if (!hlock_class(this)->usage_mask) 4675 debug_atomic_dec(nr_unused_locks); 4676 4677 hlock_class(this)->usage_mask |= new_mask; 4678 4679 if (new_bit < LOCK_TRACE_STATES) { 4680 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4681 return 0; 4682 } 4683 4684 if (new_bit < LOCK_USED) { 4685 ret = mark_lock_irq(curr, this, new_bit); 4686 if (!ret) 4687 return 0; 4688 } 4689 4690 unlock: 4691 graph_unlock(); 4692 4693 /* 4694 * We must printk outside of the graph_lock: 4695 */ 4696 if (ret == 2) { 4697 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4698 print_lock(this); 4699 print_irqtrace_events(curr); 4700 dump_stack(); 4701 } 4702 4703 return ret; 4704 } 4705 4706 static inline short task_wait_context(struct task_struct *curr) 4707 { 4708 /* 4709 * Set appropriate wait type for the context; for IRQs we have to take 4710 * into account force_irqthread as that is implied by PREEMPT_RT. 4711 */ 4712 if (lockdep_hardirq_context()) { 4713 /* 4714 * Check if force_irqthreads will run us threaded. 4715 */ 4716 if (curr->hardirq_threaded || curr->irq_config) 4717 return LD_WAIT_CONFIG; 4718 4719 return LD_WAIT_SPIN; 4720 } else if (curr->softirq_context) { 4721 /* 4722 * Softirqs are always threaded. 4723 */ 4724 return LD_WAIT_CONFIG; 4725 } 4726 4727 return LD_WAIT_MAX; 4728 } 4729 4730 static int 4731 print_lock_invalid_wait_context(struct task_struct *curr, 4732 struct held_lock *hlock) 4733 { 4734 short curr_inner; 4735 4736 if (!debug_locks_off()) 4737 return 0; 4738 if (debug_locks_silent) 4739 return 0; 4740 4741 pr_warn("\n"); 4742 pr_warn("=============================\n"); 4743 pr_warn("[ BUG: Invalid wait context ]\n"); 4744 print_kernel_ident(); 4745 pr_warn("-----------------------------\n"); 4746 4747 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4748 print_lock(hlock); 4749 4750 pr_warn("other info that might help us debug this:\n"); 4751 4752 curr_inner = task_wait_context(curr); 4753 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4754 4755 lockdep_print_held_locks(curr); 4756 4757 pr_warn("stack backtrace:\n"); 4758 dump_stack(); 4759 4760 return 0; 4761 } 4762 4763 /* 4764 * Verify the wait_type context. 4765 * 4766 * This check validates we take locks in the right wait-type order; that is it 4767 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4768 * acquire spinlocks inside raw_spinlocks and the sort. 4769 * 4770 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4771 * can be taken from (pretty much) any context but also has constraints. 4772 * However when taken in a stricter environment the RCU lock does not loosen 4773 * the constraints. 4774 * 4775 * Therefore we must look for the strictest environment in the lock stack and 4776 * compare that to the lock we're trying to acquire. 4777 */ 4778 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4779 { 4780 u8 next_inner = hlock_class(next)->wait_type_inner; 4781 u8 next_outer = hlock_class(next)->wait_type_outer; 4782 u8 curr_inner; 4783 int depth; 4784 4785 if (!next_inner || next->trylock) 4786 return 0; 4787 4788 if (!next_outer) 4789 next_outer = next_inner; 4790 4791 /* 4792 * Find start of current irq_context.. 4793 */ 4794 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4795 struct held_lock *prev = curr->held_locks + depth; 4796 if (prev->irq_context != next->irq_context) 4797 break; 4798 } 4799 depth++; 4800 4801 curr_inner = task_wait_context(curr); 4802 4803 for (; depth < curr->lockdep_depth; depth++) { 4804 struct held_lock *prev = curr->held_locks + depth; 4805 struct lock_class *class = hlock_class(prev); 4806 u8 prev_inner = class->wait_type_inner; 4807 4808 if (prev_inner) { 4809 /* 4810 * We can have a bigger inner than a previous one 4811 * when outer is smaller than inner, as with RCU. 4812 * 4813 * Also due to trylocks. 4814 */ 4815 curr_inner = min(curr_inner, prev_inner); 4816 4817 /* 4818 * Allow override for annotations -- this is typically 4819 * only valid/needed for code that only exists when 4820 * CONFIG_PREEMPT_RT=n. 4821 */ 4822 if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE)) 4823 curr_inner = prev_inner; 4824 } 4825 } 4826 4827 if (next_outer > curr_inner) 4828 return print_lock_invalid_wait_context(curr, next); 4829 4830 return 0; 4831 } 4832 4833 #else /* CONFIG_PROVE_LOCKING */ 4834 4835 static inline int 4836 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4837 { 4838 return 1; 4839 } 4840 4841 static inline unsigned int task_irq_context(struct task_struct *task) 4842 { 4843 return 0; 4844 } 4845 4846 static inline int separate_irq_context(struct task_struct *curr, 4847 struct held_lock *hlock) 4848 { 4849 return 0; 4850 } 4851 4852 static inline int check_wait_context(struct task_struct *curr, 4853 struct held_lock *next) 4854 { 4855 return 0; 4856 } 4857 4858 #endif /* CONFIG_PROVE_LOCKING */ 4859 4860 /* 4861 * Initialize a lock instance's lock-class mapping info: 4862 */ 4863 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4864 struct lock_class_key *key, int subclass, 4865 u8 inner, u8 outer, u8 lock_type) 4866 { 4867 int i; 4868 4869 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4870 lock->class_cache[i] = NULL; 4871 4872 #ifdef CONFIG_LOCK_STAT 4873 lock->cpu = raw_smp_processor_id(); 4874 #endif 4875 4876 /* 4877 * Can't be having no nameless bastards around this place! 4878 */ 4879 if (DEBUG_LOCKS_WARN_ON(!name)) { 4880 lock->name = "NULL"; 4881 return; 4882 } 4883 4884 lock->name = name; 4885 4886 lock->wait_type_outer = outer; 4887 lock->wait_type_inner = inner; 4888 lock->lock_type = lock_type; 4889 4890 /* 4891 * No key, no joy, we need to hash something. 4892 */ 4893 if (DEBUG_LOCKS_WARN_ON(!key)) 4894 return; 4895 /* 4896 * Sanity check, the lock-class key must either have been allocated 4897 * statically or must have been registered as a dynamic key. 4898 */ 4899 if (!static_obj(key) && !is_dynamic_key(key)) { 4900 if (debug_locks) 4901 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4902 DEBUG_LOCKS_WARN_ON(1); 4903 return; 4904 } 4905 lock->key = key; 4906 4907 if (unlikely(!debug_locks)) 4908 return; 4909 4910 if (subclass) { 4911 unsigned long flags; 4912 4913 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4914 return; 4915 4916 raw_local_irq_save(flags); 4917 lockdep_recursion_inc(); 4918 register_lock_class(lock, subclass, 1); 4919 lockdep_recursion_finish(); 4920 raw_local_irq_restore(flags); 4921 } 4922 } 4923 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4924 4925 struct lock_class_key __lockdep_no_validate__; 4926 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4927 4928 #ifdef CONFIG_PROVE_LOCKING 4929 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn, 4930 lock_print_fn print_fn) 4931 { 4932 struct lock_class *class = lock->class_cache[0]; 4933 unsigned long flags; 4934 4935 raw_local_irq_save(flags); 4936 lockdep_recursion_inc(); 4937 4938 if (!class) 4939 class = register_lock_class(lock, 0, 0); 4940 4941 if (class) { 4942 WARN_ON(class->cmp_fn && class->cmp_fn != cmp_fn); 4943 WARN_ON(class->print_fn && class->print_fn != print_fn); 4944 4945 class->cmp_fn = cmp_fn; 4946 class->print_fn = print_fn; 4947 } 4948 4949 lockdep_recursion_finish(); 4950 raw_local_irq_restore(flags); 4951 } 4952 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn); 4953 #endif 4954 4955 static void 4956 print_lock_nested_lock_not_held(struct task_struct *curr, 4957 struct held_lock *hlock) 4958 { 4959 if (!debug_locks_off()) 4960 return; 4961 if (debug_locks_silent) 4962 return; 4963 4964 pr_warn("\n"); 4965 pr_warn("==================================\n"); 4966 pr_warn("WARNING: Nested lock was not taken\n"); 4967 print_kernel_ident(); 4968 pr_warn("----------------------------------\n"); 4969 4970 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4971 print_lock(hlock); 4972 4973 pr_warn("\nbut this task is not holding:\n"); 4974 pr_warn("%s\n", hlock->nest_lock->name); 4975 4976 pr_warn("\nstack backtrace:\n"); 4977 dump_stack(); 4978 4979 pr_warn("\nother info that might help us debug this:\n"); 4980 lockdep_print_held_locks(curr); 4981 4982 pr_warn("\nstack backtrace:\n"); 4983 dump_stack(); 4984 } 4985 4986 static int __lock_is_held(const struct lockdep_map *lock, int read); 4987 4988 /* 4989 * This gets called for every mutex_lock*()/spin_lock*() operation. 4990 * We maintain the dependency maps and validate the locking attempt: 4991 * 4992 * The callers must make sure that IRQs are disabled before calling it, 4993 * otherwise we could get an interrupt which would want to take locks, 4994 * which would end up in lockdep again. 4995 */ 4996 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4997 int trylock, int read, int check, int hardirqs_off, 4998 struct lockdep_map *nest_lock, unsigned long ip, 4999 int references, int pin_count, int sync) 5000 { 5001 struct task_struct *curr = current; 5002 struct lock_class *class = NULL; 5003 struct held_lock *hlock; 5004 unsigned int depth; 5005 int chain_head = 0; 5006 int class_idx; 5007 u64 chain_key; 5008 5009 if (unlikely(!debug_locks)) 5010 return 0; 5011 5012 if (!prove_locking || lock->key == &__lockdep_no_validate__) 5013 check = 0; 5014 5015 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 5016 class = lock->class_cache[subclass]; 5017 /* 5018 * Not cached? 5019 */ 5020 if (unlikely(!class)) { 5021 class = register_lock_class(lock, subclass, 0); 5022 if (!class) 5023 return 0; 5024 } 5025 5026 debug_class_ops_inc(class); 5027 5028 if (very_verbose(class)) { 5029 printk("\nacquire class [%px] %s", class->key, class->name); 5030 if (class->name_version > 1) 5031 printk(KERN_CONT "#%d", class->name_version); 5032 printk(KERN_CONT "\n"); 5033 dump_stack(); 5034 } 5035 5036 /* 5037 * Add the lock to the list of currently held locks. 5038 * (we dont increase the depth just yet, up until the 5039 * dependency checks are done) 5040 */ 5041 depth = curr->lockdep_depth; 5042 /* 5043 * Ran out of static storage for our per-task lock stack again have we? 5044 */ 5045 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 5046 return 0; 5047 5048 class_idx = class - lock_classes; 5049 5050 if (depth && !sync) { 5051 /* we're holding locks and the new held lock is not a sync */ 5052 hlock = curr->held_locks + depth - 1; 5053 if (hlock->class_idx == class_idx && nest_lock) { 5054 if (!references) 5055 references++; 5056 5057 if (!hlock->references) 5058 hlock->references++; 5059 5060 hlock->references += references; 5061 5062 /* Overflow */ 5063 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 5064 return 0; 5065 5066 return 2; 5067 } 5068 } 5069 5070 hlock = curr->held_locks + depth; 5071 /* 5072 * Plain impossible, we just registered it and checked it weren't no 5073 * NULL like.. I bet this mushroom I ate was good! 5074 */ 5075 if (DEBUG_LOCKS_WARN_ON(!class)) 5076 return 0; 5077 hlock->class_idx = class_idx; 5078 hlock->acquire_ip = ip; 5079 hlock->instance = lock; 5080 hlock->nest_lock = nest_lock; 5081 hlock->irq_context = task_irq_context(curr); 5082 hlock->trylock = trylock; 5083 hlock->read = read; 5084 hlock->check = check; 5085 hlock->sync = !!sync; 5086 hlock->hardirqs_off = !!hardirqs_off; 5087 hlock->references = references; 5088 #ifdef CONFIG_LOCK_STAT 5089 hlock->waittime_stamp = 0; 5090 hlock->holdtime_stamp = lockstat_clock(); 5091 #endif 5092 hlock->pin_count = pin_count; 5093 5094 if (check_wait_context(curr, hlock)) 5095 return 0; 5096 5097 /* Initialize the lock usage bit */ 5098 if (!mark_usage(curr, hlock, check)) 5099 return 0; 5100 5101 /* 5102 * Calculate the chain hash: it's the combined hash of all the 5103 * lock keys along the dependency chain. We save the hash value 5104 * at every step so that we can get the current hash easily 5105 * after unlock. The chain hash is then used to cache dependency 5106 * results. 5107 * 5108 * The 'key ID' is what is the most compact key value to drive 5109 * the hash, not class->key. 5110 */ 5111 /* 5112 * Whoops, we did it again.. class_idx is invalid. 5113 */ 5114 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5115 return 0; 5116 5117 chain_key = curr->curr_chain_key; 5118 if (!depth) { 5119 /* 5120 * How can we have a chain hash when we ain't got no keys?! 5121 */ 5122 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5123 return 0; 5124 chain_head = 1; 5125 } 5126 5127 hlock->prev_chain_key = chain_key; 5128 if (separate_irq_context(curr, hlock)) { 5129 chain_key = INITIAL_CHAIN_KEY; 5130 chain_head = 1; 5131 } 5132 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5133 5134 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5135 print_lock_nested_lock_not_held(curr, hlock); 5136 return 0; 5137 } 5138 5139 if (!debug_locks_silent) { 5140 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5141 WARN_ON_ONCE(!hlock_class(hlock)->key); 5142 } 5143 5144 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5145 return 0; 5146 5147 /* For lock_sync(), we are done here since no actual critical section */ 5148 if (hlock->sync) 5149 return 1; 5150 5151 curr->curr_chain_key = chain_key; 5152 curr->lockdep_depth++; 5153 check_chain_key(curr); 5154 #ifdef CONFIG_DEBUG_LOCKDEP 5155 if (unlikely(!debug_locks)) 5156 return 0; 5157 #endif 5158 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5159 debug_locks_off(); 5160 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5161 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5162 curr->lockdep_depth, MAX_LOCK_DEPTH); 5163 5164 lockdep_print_held_locks(current); 5165 debug_show_all_locks(); 5166 dump_stack(); 5167 5168 return 0; 5169 } 5170 5171 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5172 max_lockdep_depth = curr->lockdep_depth; 5173 5174 return 1; 5175 } 5176 5177 static void print_unlock_imbalance_bug(struct task_struct *curr, 5178 struct lockdep_map *lock, 5179 unsigned long ip) 5180 { 5181 if (!debug_locks_off()) 5182 return; 5183 if (debug_locks_silent) 5184 return; 5185 5186 pr_warn("\n"); 5187 pr_warn("=====================================\n"); 5188 pr_warn("WARNING: bad unlock balance detected!\n"); 5189 print_kernel_ident(); 5190 pr_warn("-------------------------------------\n"); 5191 pr_warn("%s/%d is trying to release lock (", 5192 curr->comm, task_pid_nr(curr)); 5193 print_lockdep_cache(lock); 5194 pr_cont(") at:\n"); 5195 print_ip_sym(KERN_WARNING, ip); 5196 pr_warn("but there are no more locks to release!\n"); 5197 pr_warn("\nother info that might help us debug this:\n"); 5198 lockdep_print_held_locks(curr); 5199 5200 pr_warn("\nstack backtrace:\n"); 5201 dump_stack(); 5202 } 5203 5204 static noinstr int match_held_lock(const struct held_lock *hlock, 5205 const struct lockdep_map *lock) 5206 { 5207 if (hlock->instance == lock) 5208 return 1; 5209 5210 if (hlock->references) { 5211 const struct lock_class *class = lock->class_cache[0]; 5212 5213 if (!class) 5214 class = look_up_lock_class(lock, 0); 5215 5216 /* 5217 * If look_up_lock_class() failed to find a class, we're trying 5218 * to test if we hold a lock that has never yet been acquired. 5219 * Clearly if the lock hasn't been acquired _ever_, we're not 5220 * holding it either, so report failure. 5221 */ 5222 if (!class) 5223 return 0; 5224 5225 /* 5226 * References, but not a lock we're actually ref-counting? 5227 * State got messed up, follow the sites that change ->references 5228 * and try to make sense of it. 5229 */ 5230 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5231 return 0; 5232 5233 if (hlock->class_idx == class - lock_classes) 5234 return 1; 5235 } 5236 5237 return 0; 5238 } 5239 5240 /* @depth must not be zero */ 5241 static struct held_lock *find_held_lock(struct task_struct *curr, 5242 struct lockdep_map *lock, 5243 unsigned int depth, int *idx) 5244 { 5245 struct held_lock *ret, *hlock, *prev_hlock; 5246 int i; 5247 5248 i = depth - 1; 5249 hlock = curr->held_locks + i; 5250 ret = hlock; 5251 if (match_held_lock(hlock, lock)) 5252 goto out; 5253 5254 ret = NULL; 5255 for (i--, prev_hlock = hlock--; 5256 i >= 0; 5257 i--, prev_hlock = hlock--) { 5258 /* 5259 * We must not cross into another context: 5260 */ 5261 if (prev_hlock->irq_context != hlock->irq_context) { 5262 ret = NULL; 5263 break; 5264 } 5265 if (match_held_lock(hlock, lock)) { 5266 ret = hlock; 5267 break; 5268 } 5269 } 5270 5271 out: 5272 *idx = i; 5273 return ret; 5274 } 5275 5276 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5277 int idx, unsigned int *merged) 5278 { 5279 struct held_lock *hlock; 5280 int first_idx = idx; 5281 5282 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5283 return 0; 5284 5285 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5286 switch (__lock_acquire(hlock->instance, 5287 hlock_class(hlock)->subclass, 5288 hlock->trylock, 5289 hlock->read, hlock->check, 5290 hlock->hardirqs_off, 5291 hlock->nest_lock, hlock->acquire_ip, 5292 hlock->references, hlock->pin_count, 0)) { 5293 case 0: 5294 return 1; 5295 case 1: 5296 break; 5297 case 2: 5298 *merged += (idx == first_idx); 5299 break; 5300 default: 5301 WARN_ON(1); 5302 return 0; 5303 } 5304 } 5305 return 0; 5306 } 5307 5308 static int 5309 __lock_set_class(struct lockdep_map *lock, const char *name, 5310 struct lock_class_key *key, unsigned int subclass, 5311 unsigned long ip) 5312 { 5313 struct task_struct *curr = current; 5314 unsigned int depth, merged = 0; 5315 struct held_lock *hlock; 5316 struct lock_class *class; 5317 int i; 5318 5319 if (unlikely(!debug_locks)) 5320 return 0; 5321 5322 depth = curr->lockdep_depth; 5323 /* 5324 * This function is about (re)setting the class of a held lock, 5325 * yet we're not actually holding any locks. Naughty user! 5326 */ 5327 if (DEBUG_LOCKS_WARN_ON(!depth)) 5328 return 0; 5329 5330 hlock = find_held_lock(curr, lock, depth, &i); 5331 if (!hlock) { 5332 print_unlock_imbalance_bug(curr, lock, ip); 5333 return 0; 5334 } 5335 5336 lockdep_init_map_type(lock, name, key, 0, 5337 lock->wait_type_inner, 5338 lock->wait_type_outer, 5339 lock->lock_type); 5340 class = register_lock_class(lock, subclass, 0); 5341 hlock->class_idx = class - lock_classes; 5342 5343 curr->lockdep_depth = i; 5344 curr->curr_chain_key = hlock->prev_chain_key; 5345 5346 if (reacquire_held_locks(curr, depth, i, &merged)) 5347 return 0; 5348 5349 /* 5350 * I took it apart and put it back together again, except now I have 5351 * these 'spare' parts.. where shall I put them. 5352 */ 5353 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5354 return 0; 5355 return 1; 5356 } 5357 5358 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5359 { 5360 struct task_struct *curr = current; 5361 unsigned int depth, merged = 0; 5362 struct held_lock *hlock; 5363 int i; 5364 5365 if (unlikely(!debug_locks)) 5366 return 0; 5367 5368 depth = curr->lockdep_depth; 5369 /* 5370 * This function is about (re)setting the class of a held lock, 5371 * yet we're not actually holding any locks. Naughty user! 5372 */ 5373 if (DEBUG_LOCKS_WARN_ON(!depth)) 5374 return 0; 5375 5376 hlock = find_held_lock(curr, lock, depth, &i); 5377 if (!hlock) { 5378 print_unlock_imbalance_bug(curr, lock, ip); 5379 return 0; 5380 } 5381 5382 curr->lockdep_depth = i; 5383 curr->curr_chain_key = hlock->prev_chain_key; 5384 5385 WARN(hlock->read, "downgrading a read lock"); 5386 hlock->read = 1; 5387 hlock->acquire_ip = ip; 5388 5389 if (reacquire_held_locks(curr, depth, i, &merged)) 5390 return 0; 5391 5392 /* Merging can't happen with unchanged classes.. */ 5393 if (DEBUG_LOCKS_WARN_ON(merged)) 5394 return 0; 5395 5396 /* 5397 * I took it apart and put it back together again, except now I have 5398 * these 'spare' parts.. where shall I put them. 5399 */ 5400 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5401 return 0; 5402 5403 return 1; 5404 } 5405 5406 /* 5407 * Remove the lock from the list of currently held locks - this gets 5408 * called on mutex_unlock()/spin_unlock*() (or on a failed 5409 * mutex_lock_interruptible()). 5410 */ 5411 static int 5412 __lock_release(struct lockdep_map *lock, unsigned long ip) 5413 { 5414 struct task_struct *curr = current; 5415 unsigned int depth, merged = 1; 5416 struct held_lock *hlock; 5417 int i; 5418 5419 if (unlikely(!debug_locks)) 5420 return 0; 5421 5422 depth = curr->lockdep_depth; 5423 /* 5424 * So we're all set to release this lock.. wait what lock? We don't 5425 * own any locks, you've been drinking again? 5426 */ 5427 if (depth <= 0) { 5428 print_unlock_imbalance_bug(curr, lock, ip); 5429 return 0; 5430 } 5431 5432 /* 5433 * Check whether the lock exists in the current stack 5434 * of held locks: 5435 */ 5436 hlock = find_held_lock(curr, lock, depth, &i); 5437 if (!hlock) { 5438 print_unlock_imbalance_bug(curr, lock, ip); 5439 return 0; 5440 } 5441 5442 if (hlock->instance == lock) 5443 lock_release_holdtime(hlock); 5444 5445 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5446 5447 if (hlock->references) { 5448 hlock->references--; 5449 if (hlock->references) { 5450 /* 5451 * We had, and after removing one, still have 5452 * references, the current lock stack is still 5453 * valid. We're done! 5454 */ 5455 return 1; 5456 } 5457 } 5458 5459 /* 5460 * We have the right lock to unlock, 'hlock' points to it. 5461 * Now we remove it from the stack, and add back the other 5462 * entries (if any), recalculating the hash along the way: 5463 */ 5464 5465 curr->lockdep_depth = i; 5466 curr->curr_chain_key = hlock->prev_chain_key; 5467 5468 /* 5469 * The most likely case is when the unlock is on the innermost 5470 * lock. In this case, we are done! 5471 */ 5472 if (i == depth-1) 5473 return 1; 5474 5475 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5476 return 0; 5477 5478 /* 5479 * We had N bottles of beer on the wall, we drank one, but now 5480 * there's not N-1 bottles of beer left on the wall... 5481 * Pouring two of the bottles together is acceptable. 5482 */ 5483 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5484 5485 /* 5486 * Since reacquire_held_locks() would have called check_chain_key() 5487 * indirectly via __lock_acquire(), we don't need to do it again 5488 * on return. 5489 */ 5490 return 0; 5491 } 5492 5493 static __always_inline 5494 int __lock_is_held(const struct lockdep_map *lock, int read) 5495 { 5496 struct task_struct *curr = current; 5497 int i; 5498 5499 for (i = 0; i < curr->lockdep_depth; i++) { 5500 struct held_lock *hlock = curr->held_locks + i; 5501 5502 if (match_held_lock(hlock, lock)) { 5503 if (read == -1 || !!hlock->read == read) 5504 return LOCK_STATE_HELD; 5505 5506 return LOCK_STATE_NOT_HELD; 5507 } 5508 } 5509 5510 return LOCK_STATE_NOT_HELD; 5511 } 5512 5513 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5514 { 5515 struct pin_cookie cookie = NIL_COOKIE; 5516 struct task_struct *curr = current; 5517 int i; 5518 5519 if (unlikely(!debug_locks)) 5520 return cookie; 5521 5522 for (i = 0; i < curr->lockdep_depth; i++) { 5523 struct held_lock *hlock = curr->held_locks + i; 5524 5525 if (match_held_lock(hlock, lock)) { 5526 /* 5527 * Grab 16bits of randomness; this is sufficient to not 5528 * be guessable and still allows some pin nesting in 5529 * our u32 pin_count. 5530 */ 5531 cookie.val = 1 + (sched_clock() & 0xffff); 5532 hlock->pin_count += cookie.val; 5533 return cookie; 5534 } 5535 } 5536 5537 WARN(1, "pinning an unheld lock\n"); 5538 return cookie; 5539 } 5540 5541 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5542 { 5543 struct task_struct *curr = current; 5544 int i; 5545 5546 if (unlikely(!debug_locks)) 5547 return; 5548 5549 for (i = 0; i < curr->lockdep_depth; i++) { 5550 struct held_lock *hlock = curr->held_locks + i; 5551 5552 if (match_held_lock(hlock, lock)) { 5553 hlock->pin_count += cookie.val; 5554 return; 5555 } 5556 } 5557 5558 WARN(1, "pinning an unheld lock\n"); 5559 } 5560 5561 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5562 { 5563 struct task_struct *curr = current; 5564 int i; 5565 5566 if (unlikely(!debug_locks)) 5567 return; 5568 5569 for (i = 0; i < curr->lockdep_depth; i++) { 5570 struct held_lock *hlock = curr->held_locks + i; 5571 5572 if (match_held_lock(hlock, lock)) { 5573 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5574 return; 5575 5576 hlock->pin_count -= cookie.val; 5577 5578 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5579 hlock->pin_count = 0; 5580 5581 return; 5582 } 5583 } 5584 5585 WARN(1, "unpinning an unheld lock\n"); 5586 } 5587 5588 /* 5589 * Check whether we follow the irq-flags state precisely: 5590 */ 5591 static noinstr void check_flags(unsigned long flags) 5592 { 5593 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5594 if (!debug_locks) 5595 return; 5596 5597 /* Get the warning out.. */ 5598 instrumentation_begin(); 5599 5600 if (irqs_disabled_flags(flags)) { 5601 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5602 printk("possible reason: unannotated irqs-off.\n"); 5603 } 5604 } else { 5605 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5606 printk("possible reason: unannotated irqs-on.\n"); 5607 } 5608 } 5609 5610 #ifndef CONFIG_PREEMPT_RT 5611 /* 5612 * We dont accurately track softirq state in e.g. 5613 * hardirq contexts (such as on 4KSTACKS), so only 5614 * check if not in hardirq contexts: 5615 */ 5616 if (!hardirq_count()) { 5617 if (softirq_count()) { 5618 /* like the above, but with softirqs */ 5619 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5620 } else { 5621 /* lick the above, does it taste good? */ 5622 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5623 } 5624 } 5625 #endif 5626 5627 if (!debug_locks) 5628 print_irqtrace_events(current); 5629 5630 instrumentation_end(); 5631 #endif 5632 } 5633 5634 void lock_set_class(struct lockdep_map *lock, const char *name, 5635 struct lock_class_key *key, unsigned int subclass, 5636 unsigned long ip) 5637 { 5638 unsigned long flags; 5639 5640 if (unlikely(!lockdep_enabled())) 5641 return; 5642 5643 raw_local_irq_save(flags); 5644 lockdep_recursion_inc(); 5645 check_flags(flags); 5646 if (__lock_set_class(lock, name, key, subclass, ip)) 5647 check_chain_key(current); 5648 lockdep_recursion_finish(); 5649 raw_local_irq_restore(flags); 5650 } 5651 EXPORT_SYMBOL_GPL(lock_set_class); 5652 5653 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5654 { 5655 unsigned long flags; 5656 5657 if (unlikely(!lockdep_enabled())) 5658 return; 5659 5660 raw_local_irq_save(flags); 5661 lockdep_recursion_inc(); 5662 check_flags(flags); 5663 if (__lock_downgrade(lock, ip)) 5664 check_chain_key(current); 5665 lockdep_recursion_finish(); 5666 raw_local_irq_restore(flags); 5667 } 5668 EXPORT_SYMBOL_GPL(lock_downgrade); 5669 5670 /* NMI context !!! */ 5671 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5672 { 5673 #ifdef CONFIG_PROVE_LOCKING 5674 struct lock_class *class = look_up_lock_class(lock, subclass); 5675 unsigned long mask = LOCKF_USED; 5676 5677 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5678 if (!class) 5679 return; 5680 5681 /* 5682 * READ locks only conflict with USED, such that if we only ever use 5683 * READ locks, there is no deadlock possible -- RCU. 5684 */ 5685 if (!hlock->read) 5686 mask |= LOCKF_USED_READ; 5687 5688 if (!(class->usage_mask & mask)) 5689 return; 5690 5691 hlock->class_idx = class - lock_classes; 5692 5693 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5694 #endif 5695 } 5696 5697 static bool lockdep_nmi(void) 5698 { 5699 if (raw_cpu_read(lockdep_recursion)) 5700 return false; 5701 5702 if (!in_nmi()) 5703 return false; 5704 5705 return true; 5706 } 5707 5708 /* 5709 * read_lock() is recursive if: 5710 * 1. We force lockdep think this way in selftests or 5711 * 2. The implementation is not queued read/write lock or 5712 * 3. The locker is at an in_interrupt() context. 5713 */ 5714 bool read_lock_is_recursive(void) 5715 { 5716 return force_read_lock_recursive || 5717 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5718 in_interrupt(); 5719 } 5720 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5721 5722 /* 5723 * We are not always called with irqs disabled - do that here, 5724 * and also avoid lockdep recursion: 5725 */ 5726 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5727 int trylock, int read, int check, 5728 struct lockdep_map *nest_lock, unsigned long ip) 5729 { 5730 unsigned long flags; 5731 5732 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5733 5734 if (!debug_locks) 5735 return; 5736 5737 if (unlikely(!lockdep_enabled())) { 5738 /* XXX allow trylock from NMI ?!? */ 5739 if (lockdep_nmi() && !trylock) { 5740 struct held_lock hlock; 5741 5742 hlock.acquire_ip = ip; 5743 hlock.instance = lock; 5744 hlock.nest_lock = nest_lock; 5745 hlock.irq_context = 2; // XXX 5746 hlock.trylock = trylock; 5747 hlock.read = read; 5748 hlock.check = check; 5749 hlock.hardirqs_off = true; 5750 hlock.references = 0; 5751 5752 verify_lock_unused(lock, &hlock, subclass); 5753 } 5754 return; 5755 } 5756 5757 raw_local_irq_save(flags); 5758 check_flags(flags); 5759 5760 lockdep_recursion_inc(); 5761 __lock_acquire(lock, subclass, trylock, read, check, 5762 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0); 5763 lockdep_recursion_finish(); 5764 raw_local_irq_restore(flags); 5765 } 5766 EXPORT_SYMBOL_GPL(lock_acquire); 5767 5768 void lock_release(struct lockdep_map *lock, unsigned long ip) 5769 { 5770 unsigned long flags; 5771 5772 trace_lock_release(lock, ip); 5773 5774 if (unlikely(!lockdep_enabled())) 5775 return; 5776 5777 raw_local_irq_save(flags); 5778 check_flags(flags); 5779 5780 lockdep_recursion_inc(); 5781 if (__lock_release(lock, ip)) 5782 check_chain_key(current); 5783 lockdep_recursion_finish(); 5784 raw_local_irq_restore(flags); 5785 } 5786 EXPORT_SYMBOL_GPL(lock_release); 5787 5788 /* 5789 * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API. 5790 * 5791 * No actual critical section is created by the APIs annotated with this: these 5792 * APIs are used to wait for one or multiple critical sections (on other CPUs 5793 * or threads), and it means that calling these APIs inside these critical 5794 * sections is potential deadlock. 5795 */ 5796 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read, 5797 int check, struct lockdep_map *nest_lock, unsigned long ip) 5798 { 5799 unsigned long flags; 5800 5801 if (unlikely(!lockdep_enabled())) 5802 return; 5803 5804 raw_local_irq_save(flags); 5805 check_flags(flags); 5806 5807 lockdep_recursion_inc(); 5808 __lock_acquire(lock, subclass, 0, read, check, 5809 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1); 5810 check_chain_key(current); 5811 lockdep_recursion_finish(); 5812 raw_local_irq_restore(flags); 5813 } 5814 EXPORT_SYMBOL_GPL(lock_sync); 5815 5816 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5817 { 5818 unsigned long flags; 5819 int ret = LOCK_STATE_NOT_HELD; 5820 5821 /* 5822 * Avoid false negative lockdep_assert_held() and 5823 * lockdep_assert_not_held(). 5824 */ 5825 if (unlikely(!lockdep_enabled())) 5826 return LOCK_STATE_UNKNOWN; 5827 5828 raw_local_irq_save(flags); 5829 check_flags(flags); 5830 5831 lockdep_recursion_inc(); 5832 ret = __lock_is_held(lock, read); 5833 lockdep_recursion_finish(); 5834 raw_local_irq_restore(flags); 5835 5836 return ret; 5837 } 5838 EXPORT_SYMBOL_GPL(lock_is_held_type); 5839 NOKPROBE_SYMBOL(lock_is_held_type); 5840 5841 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5842 { 5843 struct pin_cookie cookie = NIL_COOKIE; 5844 unsigned long flags; 5845 5846 if (unlikely(!lockdep_enabled())) 5847 return cookie; 5848 5849 raw_local_irq_save(flags); 5850 check_flags(flags); 5851 5852 lockdep_recursion_inc(); 5853 cookie = __lock_pin_lock(lock); 5854 lockdep_recursion_finish(); 5855 raw_local_irq_restore(flags); 5856 5857 return cookie; 5858 } 5859 EXPORT_SYMBOL_GPL(lock_pin_lock); 5860 5861 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5862 { 5863 unsigned long flags; 5864 5865 if (unlikely(!lockdep_enabled())) 5866 return; 5867 5868 raw_local_irq_save(flags); 5869 check_flags(flags); 5870 5871 lockdep_recursion_inc(); 5872 __lock_repin_lock(lock, cookie); 5873 lockdep_recursion_finish(); 5874 raw_local_irq_restore(flags); 5875 } 5876 EXPORT_SYMBOL_GPL(lock_repin_lock); 5877 5878 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5879 { 5880 unsigned long flags; 5881 5882 if (unlikely(!lockdep_enabled())) 5883 return; 5884 5885 raw_local_irq_save(flags); 5886 check_flags(flags); 5887 5888 lockdep_recursion_inc(); 5889 __lock_unpin_lock(lock, cookie); 5890 lockdep_recursion_finish(); 5891 raw_local_irq_restore(flags); 5892 } 5893 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5894 5895 #ifdef CONFIG_LOCK_STAT 5896 static void print_lock_contention_bug(struct task_struct *curr, 5897 struct lockdep_map *lock, 5898 unsigned long ip) 5899 { 5900 if (!debug_locks_off()) 5901 return; 5902 if (debug_locks_silent) 5903 return; 5904 5905 pr_warn("\n"); 5906 pr_warn("=================================\n"); 5907 pr_warn("WARNING: bad contention detected!\n"); 5908 print_kernel_ident(); 5909 pr_warn("---------------------------------\n"); 5910 pr_warn("%s/%d is trying to contend lock (", 5911 curr->comm, task_pid_nr(curr)); 5912 print_lockdep_cache(lock); 5913 pr_cont(") at:\n"); 5914 print_ip_sym(KERN_WARNING, ip); 5915 pr_warn("but there are no locks held!\n"); 5916 pr_warn("\nother info that might help us debug this:\n"); 5917 lockdep_print_held_locks(curr); 5918 5919 pr_warn("\nstack backtrace:\n"); 5920 dump_stack(); 5921 } 5922 5923 static void 5924 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5925 { 5926 struct task_struct *curr = current; 5927 struct held_lock *hlock; 5928 struct lock_class_stats *stats; 5929 unsigned int depth; 5930 int i, contention_point, contending_point; 5931 5932 depth = curr->lockdep_depth; 5933 /* 5934 * Whee, we contended on this lock, except it seems we're not 5935 * actually trying to acquire anything much at all.. 5936 */ 5937 if (DEBUG_LOCKS_WARN_ON(!depth)) 5938 return; 5939 5940 hlock = find_held_lock(curr, lock, depth, &i); 5941 if (!hlock) { 5942 print_lock_contention_bug(curr, lock, ip); 5943 return; 5944 } 5945 5946 if (hlock->instance != lock) 5947 return; 5948 5949 hlock->waittime_stamp = lockstat_clock(); 5950 5951 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5952 contending_point = lock_point(hlock_class(hlock)->contending_point, 5953 lock->ip); 5954 5955 stats = get_lock_stats(hlock_class(hlock)); 5956 if (contention_point < LOCKSTAT_POINTS) 5957 stats->contention_point[contention_point]++; 5958 if (contending_point < LOCKSTAT_POINTS) 5959 stats->contending_point[contending_point]++; 5960 if (lock->cpu != smp_processor_id()) 5961 stats->bounces[bounce_contended + !!hlock->read]++; 5962 } 5963 5964 static void 5965 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5966 { 5967 struct task_struct *curr = current; 5968 struct held_lock *hlock; 5969 struct lock_class_stats *stats; 5970 unsigned int depth; 5971 u64 now, waittime = 0; 5972 int i, cpu; 5973 5974 depth = curr->lockdep_depth; 5975 /* 5976 * Yay, we acquired ownership of this lock we didn't try to 5977 * acquire, how the heck did that happen? 5978 */ 5979 if (DEBUG_LOCKS_WARN_ON(!depth)) 5980 return; 5981 5982 hlock = find_held_lock(curr, lock, depth, &i); 5983 if (!hlock) { 5984 print_lock_contention_bug(curr, lock, _RET_IP_); 5985 return; 5986 } 5987 5988 if (hlock->instance != lock) 5989 return; 5990 5991 cpu = smp_processor_id(); 5992 if (hlock->waittime_stamp) { 5993 now = lockstat_clock(); 5994 waittime = now - hlock->waittime_stamp; 5995 hlock->holdtime_stamp = now; 5996 } 5997 5998 stats = get_lock_stats(hlock_class(hlock)); 5999 if (waittime) { 6000 if (hlock->read) 6001 lock_time_inc(&stats->read_waittime, waittime); 6002 else 6003 lock_time_inc(&stats->write_waittime, waittime); 6004 } 6005 if (lock->cpu != cpu) 6006 stats->bounces[bounce_acquired + !!hlock->read]++; 6007 6008 lock->cpu = cpu; 6009 lock->ip = ip; 6010 } 6011 6012 void lock_contended(struct lockdep_map *lock, unsigned long ip) 6013 { 6014 unsigned long flags; 6015 6016 trace_lock_contended(lock, ip); 6017 6018 if (unlikely(!lock_stat || !lockdep_enabled())) 6019 return; 6020 6021 raw_local_irq_save(flags); 6022 check_flags(flags); 6023 lockdep_recursion_inc(); 6024 __lock_contended(lock, ip); 6025 lockdep_recursion_finish(); 6026 raw_local_irq_restore(flags); 6027 } 6028 EXPORT_SYMBOL_GPL(lock_contended); 6029 6030 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 6031 { 6032 unsigned long flags; 6033 6034 trace_lock_acquired(lock, ip); 6035 6036 if (unlikely(!lock_stat || !lockdep_enabled())) 6037 return; 6038 6039 raw_local_irq_save(flags); 6040 check_flags(flags); 6041 lockdep_recursion_inc(); 6042 __lock_acquired(lock, ip); 6043 lockdep_recursion_finish(); 6044 raw_local_irq_restore(flags); 6045 } 6046 EXPORT_SYMBOL_GPL(lock_acquired); 6047 #endif 6048 6049 /* 6050 * Used by the testsuite, sanitize the validator state 6051 * after a simulated failure: 6052 */ 6053 6054 void lockdep_reset(void) 6055 { 6056 unsigned long flags; 6057 int i; 6058 6059 raw_local_irq_save(flags); 6060 lockdep_init_task(current); 6061 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 6062 nr_hardirq_chains = 0; 6063 nr_softirq_chains = 0; 6064 nr_process_chains = 0; 6065 debug_locks = 1; 6066 for (i = 0; i < CHAINHASH_SIZE; i++) 6067 INIT_HLIST_HEAD(chainhash_table + i); 6068 raw_local_irq_restore(flags); 6069 } 6070 6071 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 6072 static void remove_class_from_lock_chain(struct pending_free *pf, 6073 struct lock_chain *chain, 6074 struct lock_class *class) 6075 { 6076 #ifdef CONFIG_PROVE_LOCKING 6077 int i; 6078 6079 for (i = chain->base; i < chain->base + chain->depth; i++) { 6080 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 6081 continue; 6082 /* 6083 * Each lock class occurs at most once in a lock chain so once 6084 * we found a match we can break out of this loop. 6085 */ 6086 goto free_lock_chain; 6087 } 6088 /* Since the chain has not been modified, return. */ 6089 return; 6090 6091 free_lock_chain: 6092 free_chain_hlocks(chain->base, chain->depth); 6093 /* Overwrite the chain key for concurrent RCU readers. */ 6094 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 6095 dec_chains(chain->irq_context); 6096 6097 /* 6098 * Note: calling hlist_del_rcu() from inside a 6099 * hlist_for_each_entry_rcu() loop is safe. 6100 */ 6101 hlist_del_rcu(&chain->entry); 6102 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 6103 nr_zapped_lock_chains++; 6104 #endif 6105 } 6106 6107 /* Must be called with the graph lock held. */ 6108 static void remove_class_from_lock_chains(struct pending_free *pf, 6109 struct lock_class *class) 6110 { 6111 struct lock_chain *chain; 6112 struct hlist_head *head; 6113 int i; 6114 6115 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 6116 head = chainhash_table + i; 6117 hlist_for_each_entry_rcu(chain, head, entry) { 6118 remove_class_from_lock_chain(pf, chain, class); 6119 } 6120 } 6121 } 6122 6123 /* 6124 * Remove all references to a lock class. The caller must hold the graph lock. 6125 */ 6126 static void zap_class(struct pending_free *pf, struct lock_class *class) 6127 { 6128 struct lock_list *entry; 6129 int i; 6130 6131 WARN_ON_ONCE(!class->key); 6132 6133 /* 6134 * Remove all dependencies this lock is 6135 * involved in: 6136 */ 6137 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 6138 entry = list_entries + i; 6139 if (entry->class != class && entry->links_to != class) 6140 continue; 6141 __clear_bit(i, list_entries_in_use); 6142 nr_list_entries--; 6143 list_del_rcu(&entry->entry); 6144 } 6145 if (list_empty(&class->locks_after) && 6146 list_empty(&class->locks_before)) { 6147 list_move_tail(&class->lock_entry, &pf->zapped); 6148 hlist_del_rcu(&class->hash_entry); 6149 WRITE_ONCE(class->key, NULL); 6150 WRITE_ONCE(class->name, NULL); 6151 nr_lock_classes--; 6152 __clear_bit(class - lock_classes, lock_classes_in_use); 6153 if (class - lock_classes == max_lock_class_idx) 6154 max_lock_class_idx--; 6155 } else { 6156 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6157 class->name); 6158 } 6159 6160 remove_class_from_lock_chains(pf, class); 6161 nr_zapped_classes++; 6162 } 6163 6164 static void reinit_class(struct lock_class *class) 6165 { 6166 WARN_ON_ONCE(!class->lock_entry.next); 6167 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6168 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6169 memset_startat(class, 0, key); 6170 WARN_ON_ONCE(!class->lock_entry.next); 6171 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6172 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6173 } 6174 6175 static inline int within(const void *addr, void *start, unsigned long size) 6176 { 6177 return addr >= start && addr < start + size; 6178 } 6179 6180 static bool inside_selftest(void) 6181 { 6182 return current == lockdep_selftest_task_struct; 6183 } 6184 6185 /* The caller must hold the graph lock. */ 6186 static struct pending_free *get_pending_free(void) 6187 { 6188 return delayed_free.pf + delayed_free.index; 6189 } 6190 6191 static void free_zapped_rcu(struct rcu_head *cb); 6192 6193 /* 6194 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6195 * the graph lock held. 6196 */ 6197 static void call_rcu_zapped(struct pending_free *pf) 6198 { 6199 WARN_ON_ONCE(inside_selftest()); 6200 6201 if (list_empty(&pf->zapped)) 6202 return; 6203 6204 if (delayed_free.scheduled) 6205 return; 6206 6207 delayed_free.scheduled = true; 6208 6209 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6210 delayed_free.index ^= 1; 6211 6212 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6213 } 6214 6215 /* The caller must hold the graph lock. May be called from RCU context. */ 6216 static void __free_zapped_classes(struct pending_free *pf) 6217 { 6218 struct lock_class *class; 6219 6220 check_data_structures(); 6221 6222 list_for_each_entry(class, &pf->zapped, lock_entry) 6223 reinit_class(class); 6224 6225 list_splice_init(&pf->zapped, &free_lock_classes); 6226 6227 #ifdef CONFIG_PROVE_LOCKING 6228 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6229 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6230 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6231 #endif 6232 } 6233 6234 static void free_zapped_rcu(struct rcu_head *ch) 6235 { 6236 struct pending_free *pf; 6237 unsigned long flags; 6238 6239 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6240 return; 6241 6242 raw_local_irq_save(flags); 6243 lockdep_lock(); 6244 6245 /* closed head */ 6246 pf = delayed_free.pf + (delayed_free.index ^ 1); 6247 __free_zapped_classes(pf); 6248 delayed_free.scheduled = false; 6249 6250 /* 6251 * If there's anything on the open list, close and start a new callback. 6252 */ 6253 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6254 6255 lockdep_unlock(); 6256 raw_local_irq_restore(flags); 6257 } 6258 6259 /* 6260 * Remove all lock classes from the class hash table and from the 6261 * all_lock_classes list whose key or name is in the address range [start, 6262 * start + size). Move these lock classes to the zapped_classes list. Must 6263 * be called with the graph lock held. 6264 */ 6265 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6266 unsigned long size) 6267 { 6268 struct lock_class *class; 6269 struct hlist_head *head; 6270 int i; 6271 6272 /* Unhash all classes that were created by a module. */ 6273 for (i = 0; i < CLASSHASH_SIZE; i++) { 6274 head = classhash_table + i; 6275 hlist_for_each_entry_rcu(class, head, hash_entry) { 6276 if (!within(class->key, start, size) && 6277 !within(class->name, start, size)) 6278 continue; 6279 zap_class(pf, class); 6280 } 6281 } 6282 } 6283 6284 /* 6285 * Used in module.c to remove lock classes from memory that is going to be 6286 * freed; and possibly re-used by other modules. 6287 * 6288 * We will have had one synchronize_rcu() before getting here, so we're 6289 * guaranteed nobody will look up these exact classes -- they're properly dead 6290 * but still allocated. 6291 */ 6292 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6293 { 6294 struct pending_free *pf; 6295 unsigned long flags; 6296 6297 init_data_structures_once(); 6298 6299 raw_local_irq_save(flags); 6300 lockdep_lock(); 6301 pf = get_pending_free(); 6302 __lockdep_free_key_range(pf, start, size); 6303 call_rcu_zapped(pf); 6304 lockdep_unlock(); 6305 raw_local_irq_restore(flags); 6306 6307 /* 6308 * Wait for any possible iterators from look_up_lock_class() to pass 6309 * before continuing to free the memory they refer to. 6310 */ 6311 synchronize_rcu(); 6312 } 6313 6314 /* 6315 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6316 * Ignores debug_locks. Must only be used by the lockdep selftests. 6317 */ 6318 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6319 { 6320 struct pending_free *pf = delayed_free.pf; 6321 unsigned long flags; 6322 6323 init_data_structures_once(); 6324 6325 raw_local_irq_save(flags); 6326 lockdep_lock(); 6327 __lockdep_free_key_range(pf, start, size); 6328 __free_zapped_classes(pf); 6329 lockdep_unlock(); 6330 raw_local_irq_restore(flags); 6331 } 6332 6333 void lockdep_free_key_range(void *start, unsigned long size) 6334 { 6335 init_data_structures_once(); 6336 6337 if (inside_selftest()) 6338 lockdep_free_key_range_imm(start, size); 6339 else 6340 lockdep_free_key_range_reg(start, size); 6341 } 6342 6343 /* 6344 * Check whether any element of the @lock->class_cache[] array refers to a 6345 * registered lock class. The caller must hold either the graph lock or the 6346 * RCU read lock. 6347 */ 6348 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6349 { 6350 struct lock_class *class; 6351 struct hlist_head *head; 6352 int i, j; 6353 6354 for (i = 0; i < CLASSHASH_SIZE; i++) { 6355 head = classhash_table + i; 6356 hlist_for_each_entry_rcu(class, head, hash_entry) { 6357 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6358 if (lock->class_cache[j] == class) 6359 return true; 6360 } 6361 } 6362 return false; 6363 } 6364 6365 /* The caller must hold the graph lock. Does not sleep. */ 6366 static void __lockdep_reset_lock(struct pending_free *pf, 6367 struct lockdep_map *lock) 6368 { 6369 struct lock_class *class; 6370 int j; 6371 6372 /* 6373 * Remove all classes this lock might have: 6374 */ 6375 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6376 /* 6377 * If the class exists we look it up and zap it: 6378 */ 6379 class = look_up_lock_class(lock, j); 6380 if (class) 6381 zap_class(pf, class); 6382 } 6383 /* 6384 * Debug check: in the end all mapped classes should 6385 * be gone. 6386 */ 6387 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6388 debug_locks_off(); 6389 } 6390 6391 /* 6392 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6393 * released data structures from RCU context. 6394 */ 6395 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6396 { 6397 struct pending_free *pf; 6398 unsigned long flags; 6399 int locked; 6400 6401 raw_local_irq_save(flags); 6402 locked = graph_lock(); 6403 if (!locked) 6404 goto out_irq; 6405 6406 pf = get_pending_free(); 6407 __lockdep_reset_lock(pf, lock); 6408 call_rcu_zapped(pf); 6409 6410 graph_unlock(); 6411 out_irq: 6412 raw_local_irq_restore(flags); 6413 } 6414 6415 /* 6416 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6417 * lockdep selftests. 6418 */ 6419 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6420 { 6421 struct pending_free *pf = delayed_free.pf; 6422 unsigned long flags; 6423 6424 raw_local_irq_save(flags); 6425 lockdep_lock(); 6426 __lockdep_reset_lock(pf, lock); 6427 __free_zapped_classes(pf); 6428 lockdep_unlock(); 6429 raw_local_irq_restore(flags); 6430 } 6431 6432 void lockdep_reset_lock(struct lockdep_map *lock) 6433 { 6434 init_data_structures_once(); 6435 6436 if (inside_selftest()) 6437 lockdep_reset_lock_imm(lock); 6438 else 6439 lockdep_reset_lock_reg(lock); 6440 } 6441 6442 /* 6443 * Unregister a dynamically allocated key. 6444 * 6445 * Unlike lockdep_register_key(), a search is always done to find a matching 6446 * key irrespective of debug_locks to avoid potential invalid access to freed 6447 * memory in lock_class entry. 6448 */ 6449 void lockdep_unregister_key(struct lock_class_key *key) 6450 { 6451 struct hlist_head *hash_head = keyhashentry(key); 6452 struct lock_class_key *k; 6453 struct pending_free *pf; 6454 unsigned long flags; 6455 bool found = false; 6456 6457 might_sleep(); 6458 6459 if (WARN_ON_ONCE(static_obj(key))) 6460 return; 6461 6462 raw_local_irq_save(flags); 6463 lockdep_lock(); 6464 6465 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6466 if (k == key) { 6467 hlist_del_rcu(&k->hash_entry); 6468 found = true; 6469 break; 6470 } 6471 } 6472 WARN_ON_ONCE(!found && debug_locks); 6473 if (found) { 6474 pf = get_pending_free(); 6475 __lockdep_free_key_range(pf, key, 1); 6476 call_rcu_zapped(pf); 6477 } 6478 lockdep_unlock(); 6479 raw_local_irq_restore(flags); 6480 6481 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6482 synchronize_rcu(); 6483 } 6484 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6485 6486 void __init lockdep_init(void) 6487 { 6488 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6489 6490 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6491 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6492 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6493 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6494 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6495 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6496 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6497 6498 printk(" memory used by lock dependency info: %zu kB\n", 6499 (sizeof(lock_classes) + 6500 sizeof(lock_classes_in_use) + 6501 sizeof(classhash_table) + 6502 sizeof(list_entries) + 6503 sizeof(list_entries_in_use) + 6504 sizeof(chainhash_table) + 6505 sizeof(delayed_free) 6506 #ifdef CONFIG_PROVE_LOCKING 6507 + sizeof(lock_cq) 6508 + sizeof(lock_chains) 6509 + sizeof(lock_chains_in_use) 6510 + sizeof(chain_hlocks) 6511 #endif 6512 ) / 1024 6513 ); 6514 6515 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6516 printk(" memory used for stack traces: %zu kB\n", 6517 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6518 ); 6519 #endif 6520 6521 printk(" per task-struct memory footprint: %zu bytes\n", 6522 sizeof(((struct task_struct *)NULL)->held_locks)); 6523 } 6524 6525 static void 6526 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6527 const void *mem_to, struct held_lock *hlock) 6528 { 6529 if (!debug_locks_off()) 6530 return; 6531 if (debug_locks_silent) 6532 return; 6533 6534 pr_warn("\n"); 6535 pr_warn("=========================\n"); 6536 pr_warn("WARNING: held lock freed!\n"); 6537 print_kernel_ident(); 6538 pr_warn("-------------------------\n"); 6539 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6540 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6541 print_lock(hlock); 6542 lockdep_print_held_locks(curr); 6543 6544 pr_warn("\nstack backtrace:\n"); 6545 dump_stack(); 6546 } 6547 6548 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6549 const void* lock_from, unsigned long lock_len) 6550 { 6551 return lock_from + lock_len <= mem_from || 6552 mem_from + mem_len <= lock_from; 6553 } 6554 6555 /* 6556 * Called when kernel memory is freed (or unmapped), or if a lock 6557 * is destroyed or reinitialized - this code checks whether there is 6558 * any held lock in the memory range of <from> to <to>: 6559 */ 6560 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6561 { 6562 struct task_struct *curr = current; 6563 struct held_lock *hlock; 6564 unsigned long flags; 6565 int i; 6566 6567 if (unlikely(!debug_locks)) 6568 return; 6569 6570 raw_local_irq_save(flags); 6571 for (i = 0; i < curr->lockdep_depth; i++) { 6572 hlock = curr->held_locks + i; 6573 6574 if (not_in_range(mem_from, mem_len, hlock->instance, 6575 sizeof(*hlock->instance))) 6576 continue; 6577 6578 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6579 break; 6580 } 6581 raw_local_irq_restore(flags); 6582 } 6583 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6584 6585 static void print_held_locks_bug(void) 6586 { 6587 if (!debug_locks_off()) 6588 return; 6589 if (debug_locks_silent) 6590 return; 6591 6592 pr_warn("\n"); 6593 pr_warn("====================================\n"); 6594 pr_warn("WARNING: %s/%d still has locks held!\n", 6595 current->comm, task_pid_nr(current)); 6596 print_kernel_ident(); 6597 pr_warn("------------------------------------\n"); 6598 lockdep_print_held_locks(current); 6599 pr_warn("\nstack backtrace:\n"); 6600 dump_stack(); 6601 } 6602 6603 void debug_check_no_locks_held(void) 6604 { 6605 if (unlikely(current->lockdep_depth > 0)) 6606 print_held_locks_bug(); 6607 } 6608 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6609 6610 #ifdef __KERNEL__ 6611 void debug_show_all_locks(void) 6612 { 6613 struct task_struct *g, *p; 6614 6615 if (unlikely(!debug_locks)) { 6616 pr_warn("INFO: lockdep is turned off.\n"); 6617 return; 6618 } 6619 pr_warn("\nShowing all locks held in the system:\n"); 6620 6621 rcu_read_lock(); 6622 for_each_process_thread(g, p) { 6623 if (!p->lockdep_depth) 6624 continue; 6625 lockdep_print_held_locks(p); 6626 touch_nmi_watchdog(); 6627 touch_all_softlockup_watchdogs(); 6628 } 6629 rcu_read_unlock(); 6630 6631 pr_warn("\n"); 6632 pr_warn("=============================================\n\n"); 6633 } 6634 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6635 #endif 6636 6637 /* 6638 * Careful: only use this function if you are sure that 6639 * the task cannot run in parallel! 6640 */ 6641 void debug_show_held_locks(struct task_struct *task) 6642 { 6643 if (unlikely(!debug_locks)) { 6644 printk("INFO: lockdep is turned off.\n"); 6645 return; 6646 } 6647 lockdep_print_held_locks(task); 6648 } 6649 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6650 6651 asmlinkage __visible void lockdep_sys_exit(void) 6652 { 6653 struct task_struct *curr = current; 6654 6655 if (unlikely(curr->lockdep_depth)) { 6656 if (!debug_locks_off()) 6657 return; 6658 pr_warn("\n"); 6659 pr_warn("================================================\n"); 6660 pr_warn("WARNING: lock held when returning to user space!\n"); 6661 print_kernel_ident(); 6662 pr_warn("------------------------------------------------\n"); 6663 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6664 curr->comm, curr->pid); 6665 lockdep_print_held_locks(curr); 6666 } 6667 6668 /* 6669 * The lock history for each syscall should be independent. So wipe the 6670 * slate clean on return to userspace. 6671 */ 6672 lockdep_invariant_state(false); 6673 } 6674 6675 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6676 { 6677 struct task_struct *curr = current; 6678 int dl = READ_ONCE(debug_locks); 6679 bool rcu = warn_rcu_enter(); 6680 6681 /* Note: the following can be executed concurrently, so be careful. */ 6682 pr_warn("\n"); 6683 pr_warn("=============================\n"); 6684 pr_warn("WARNING: suspicious RCU usage\n"); 6685 print_kernel_ident(); 6686 pr_warn("-----------------------------\n"); 6687 pr_warn("%s:%d %s!\n", file, line, s); 6688 pr_warn("\nother info that might help us debug this:\n\n"); 6689 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6690 !rcu_lockdep_current_cpu_online() 6691 ? "RCU used illegally from offline CPU!\n" 6692 : "", 6693 rcu_scheduler_active, dl, 6694 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6695 6696 /* 6697 * If a CPU is in the RCU-free window in idle (ie: in the section 6698 * between ct_idle_enter() and ct_idle_exit(), then RCU 6699 * considers that CPU to be in an "extended quiescent state", 6700 * which means that RCU will be completely ignoring that CPU. 6701 * Therefore, rcu_read_lock() and friends have absolutely no 6702 * effect on a CPU running in that state. In other words, even if 6703 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6704 * delete data structures out from under it. RCU really has no 6705 * choice here: we need to keep an RCU-free window in idle where 6706 * the CPU may possibly enter into low power mode. This way we can 6707 * notice an extended quiescent state to other CPUs that started a grace 6708 * period. Otherwise we would delay any grace period as long as we run 6709 * in the idle task. 6710 * 6711 * So complain bitterly if someone does call rcu_read_lock(), 6712 * rcu_read_lock_bh() and so on from extended quiescent states. 6713 */ 6714 if (!rcu_is_watching()) 6715 pr_warn("RCU used illegally from extended quiescent state!\n"); 6716 6717 lockdep_print_held_locks(curr); 6718 pr_warn("\nstack backtrace:\n"); 6719 dump_stack(); 6720 warn_rcu_exit(rcu); 6721 } 6722 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6723