xref: /openbmc/linux/kernel/locking/lockdep.c (revision db66795f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 
60 #include <asm/sections.h>
61 
62 #include "lockdep_internals.h"
63 
64 #include <trace/events/lock.h>
65 
66 #ifdef CONFIG_PROVE_LOCKING
67 static int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72 
73 #ifdef CONFIG_LOCK_STAT
74 static int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79 
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_lockdep_table[] = {
82 #ifdef CONFIG_PROVE_LOCKING
83 	{
84 		.procname       = "prove_locking",
85 		.data           = &prove_locking,
86 		.maxlen         = sizeof(int),
87 		.mode           = 0644,
88 		.proc_handler   = proc_dointvec,
89 	},
90 #endif /* CONFIG_PROVE_LOCKING */
91 #ifdef CONFIG_LOCK_STAT
92 	{
93 		.procname       = "lock_stat",
94 		.data           = &lock_stat,
95 		.maxlen         = sizeof(int),
96 		.mode           = 0644,
97 		.proc_handler   = proc_dointvec,
98 	},
99 #endif /* CONFIG_LOCK_STAT */
100 	{ }
101 };
102 
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105 	register_sysctl_init("kernel", kern_lockdep_table);
106 	return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110 
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113 
114 static __always_inline bool lockdep_enabled(void)
115 {
116 	if (!debug_locks)
117 		return false;
118 
119 	if (this_cpu_read(lockdep_recursion))
120 		return false;
121 
122 	if (current->lockdep_recursion)
123 		return false;
124 
125 	return true;
126 }
127 
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138 
139 static inline void lockdep_lock(void)
140 {
141 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142 
143 	__this_cpu_inc(lockdep_recursion);
144 	arch_spin_lock(&__lock);
145 	__owner = current;
146 }
147 
148 static inline void lockdep_unlock(void)
149 {
150 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151 
152 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153 		return;
154 
155 	__owner = NULL;
156 	arch_spin_unlock(&__lock);
157 	__this_cpu_dec(lockdep_recursion);
158 }
159 
160 static inline bool lockdep_assert_locked(void)
161 {
162 	return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164 
165 static struct task_struct *lockdep_selftest_task_struct;
166 
167 
168 static int graph_lock(void)
169 {
170 	lockdep_lock();
171 	/*
172 	 * Make sure that if another CPU detected a bug while
173 	 * walking the graph we dont change it (while the other
174 	 * CPU is busy printing out stuff with the graph lock
175 	 * dropped already)
176 	 */
177 	if (!debug_locks) {
178 		lockdep_unlock();
179 		return 0;
180 	}
181 	return 1;
182 }
183 
184 static inline void graph_unlock(void)
185 {
186 	lockdep_unlock();
187 }
188 
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
193 static inline int debug_locks_off_graph_unlock(void)
194 {
195 	int ret = debug_locks_off();
196 
197 	lockdep_unlock();
198 
199 	return ret;
200 }
201 
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205 
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220 
221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223 	unsigned int class_idx = hlock->class_idx;
224 
225 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226 	barrier();
227 
228 	if (!test_bit(class_idx, lock_classes_in_use)) {
229 		/*
230 		 * Someone passed in garbage, we give up.
231 		 */
232 		DEBUG_LOCKS_WARN_ON(1);
233 		return NULL;
234 	}
235 
236 	/*
237 	 * At this point, if the passed hlock->class_idx is still garbage,
238 	 * we just have to live with it
239 	 */
240 	return lock_classes + class_idx;
241 }
242 
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245 
246 static inline u64 lockstat_clock(void)
247 {
248 	return local_clock();
249 }
250 
251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253 	int i;
254 
255 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
256 		if (points[i] == 0) {
257 			points[i] = ip;
258 			break;
259 		}
260 		if (points[i] == ip)
261 			break;
262 	}
263 
264 	return i;
265 }
266 
267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269 	if (time > lt->max)
270 		lt->max = time;
271 
272 	if (time < lt->min || !lt->nr)
273 		lt->min = time;
274 
275 	lt->total += time;
276 	lt->nr++;
277 }
278 
279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281 	if (!src->nr)
282 		return;
283 
284 	if (src->max > dst->max)
285 		dst->max = src->max;
286 
287 	if (src->min < dst->min || !dst->nr)
288 		dst->min = src->min;
289 
290 	dst->total += src->total;
291 	dst->nr += src->nr;
292 }
293 
294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296 	struct lock_class_stats stats;
297 	int cpu, i;
298 
299 	memset(&stats, 0, sizeof(struct lock_class_stats));
300 	for_each_possible_cpu(cpu) {
301 		struct lock_class_stats *pcs =
302 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303 
304 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305 			stats.contention_point[i] += pcs->contention_point[i];
306 
307 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308 			stats.contending_point[i] += pcs->contending_point[i];
309 
310 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312 
313 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315 
316 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317 			stats.bounces[i] += pcs->bounces[i];
318 	}
319 
320 	return stats;
321 }
322 
323 void clear_lock_stats(struct lock_class *class)
324 {
325 	int cpu;
326 
327 	for_each_possible_cpu(cpu) {
328 		struct lock_class_stats *cpu_stats =
329 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330 
331 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332 	}
333 	memset(class->contention_point, 0, sizeof(class->contention_point));
334 	memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336 
337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341 
342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344 	struct lock_class_stats *stats;
345 	u64 holdtime;
346 
347 	if (!lock_stat)
348 		return;
349 
350 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
351 
352 	stats = get_lock_stats(hlock_class(hlock));
353 	if (hlock->read)
354 		lock_time_inc(&stats->read_holdtime, holdtime);
355 	else
356 		lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363 
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372 
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *	are about to be freed.
378  */
379 struct pending_free {
380 	struct list_head zapped;
381 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383 
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396 	struct rcu_head		rcu_head;
397 	int			index;
398 	int			scheduled;
399 	struct pending_free	pf[2];
400 } delayed_free;
401 
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
409 
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411 
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
420 
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422 
423 /*
424  * the id of held_lock
425  */
426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429 
430 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432 
433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437 
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446 	u32 k0 = key, k1 = key >> 32;
447 
448 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449 
450 	return k0 | (u64)k1 << 32;
451 }
452 
453 void lockdep_init_task(struct task_struct *task)
454 {
455 	task->lockdep_depth = 0; /* no locks held yet */
456 	task->curr_chain_key = INITIAL_CHAIN_KEY;
457 	task->lockdep_recursion = 0;
458 }
459 
460 static __always_inline void lockdep_recursion_inc(void)
461 {
462 	__this_cpu_inc(lockdep_recursion);
463 }
464 
465 static __always_inline void lockdep_recursion_finish(void)
466 {
467 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468 		__this_cpu_write(lockdep_recursion, 0);
469 }
470 
471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473 	lockdep_selftest_task_struct = task;
474 }
475 
476 /*
477  * Debugging switches:
478  */
479 
480 #define VERBOSE			0
481 #define VERY_VERBOSE		0
482 
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE	1
485 # define SOFTIRQ_VERBOSE	1
486 #else
487 # define HARDIRQ_VERBOSE	0
488 # define SOFTIRQ_VERBOSE	0
489 #endif
490 
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498 	/* Example */
499 	if (class->name_version == 1 &&
500 			!strcmp(class->name, "lockname"))
501 		return 1;
502 	if (class->name_version == 1 &&
503 			!strcmp(class->name, "&struct->lockfield"))
504 		return 1;
505 #endif
506 	/* Filter everything else. 1 would be to allow everything else */
507 	return 0;
508 }
509 #endif
510 
511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514 	return class_filter(class);
515 #endif
516 	return 0;
517 }
518 
519 static void print_lockdep_off(const char *bug_msg)
520 {
521 	printk(KERN_DEBUG "%s\n", bug_msg);
522 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527 
528 unsigned long nr_stack_trace_entries;
529 
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry:	Entry in a stack_trace_hash[] list.
534  * @hash:	jhash() of @entries.
535  * @nr_entries:	Number of entries in @entries.
536  * @entries:	Actual stack backtrace.
537  */
538 struct lock_trace {
539 	struct hlist_node	hash_entry;
540 	u32			hash;
541 	u32			nr_entries;
542 	unsigned long		entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS				\
545 	(sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551 
552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555 		memcmp(t1->entries, t2->entries,
556 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558 
559 static struct lock_trace *save_trace(void)
560 {
561 	struct lock_trace *trace, *t2;
562 	struct hlist_head *hash_head;
563 	u32 hash;
564 	int max_entries;
565 
566 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568 
569 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571 		LOCK_TRACE_SIZE_IN_LONGS;
572 
573 	if (max_entries <= 0) {
574 		if (!debug_locks_off_graph_unlock())
575 			return NULL;
576 
577 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578 		dump_stack();
579 
580 		return NULL;
581 	}
582 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583 
584 	hash = jhash(trace->entries, trace->nr_entries *
585 		     sizeof(trace->entries[0]), 0);
586 	trace->hash = hash;
587 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588 	hlist_for_each_entry(t2, hash_head, hash_entry) {
589 		if (traces_identical(trace, t2))
590 			return t2;
591 	}
592 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593 	hlist_add_head(&trace->hash_entry, hash_head);
594 
595 	return trace;
596 }
597 
598 /* Return the number of stack traces in the stack_trace[] array. */
599 u64 lockdep_stack_trace_count(void)
600 {
601 	struct lock_trace *trace;
602 	u64 c = 0;
603 	int i;
604 
605 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607 			c++;
608 		}
609 	}
610 
611 	return c;
612 }
613 
614 /* Return the number of stack hash chains that have at least one stack trace. */
615 u64 lockdep_stack_hash_count(void)
616 {
617 	u64 c = 0;
618 	int i;
619 
620 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621 		if (!hlist_empty(&stack_trace_hash[i]))
622 			c++;
623 
624 	return c;
625 }
626 #endif
627 
628 unsigned int nr_hardirq_chains;
629 unsigned int nr_softirq_chains;
630 unsigned int nr_process_chains;
631 unsigned int max_lockdep_depth;
632 
633 #ifdef CONFIG_DEBUG_LOCKDEP
634 /*
635  * Various lockdep statistics:
636  */
637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638 #endif
639 
640 #ifdef CONFIG_PROVE_LOCKING
641 /*
642  * Locking printouts:
643  */
644 
645 #define __USAGE(__STATE)						\
646 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
647 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
648 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650 
651 static const char *usage_str[] =
652 {
653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656 	[LOCK_USED] = "INITIAL USE",
657 	[LOCK_USED_READ] = "INITIAL READ USE",
658 	/* abused as string storage for verify_lock_unused() */
659 	[LOCK_USAGE_STATES] = "IN-NMI",
660 };
661 #endif
662 
663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664 {
665 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666 }
667 
668 static inline unsigned long lock_flag(enum lock_usage_bit bit)
669 {
670 	return 1UL << bit;
671 }
672 
673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674 {
675 	/*
676 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
677 	 * irq context), which is the safest usage category.
678 	 */
679 	char c = '.';
680 
681 	/*
682 	 * The order of the following usage checks matters, which will
683 	 * result in the outcome character as follows:
684 	 *
685 	 * - '+': irq is enabled and not in irq context
686 	 * - '-': in irq context and irq is disabled
687 	 * - '?': in irq context and irq is enabled
688 	 */
689 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690 		c = '+';
691 		if (class->usage_mask & lock_flag(bit))
692 			c = '?';
693 	} else if (class->usage_mask & lock_flag(bit))
694 		c = '-';
695 
696 	return c;
697 }
698 
699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700 {
701 	int i = 0;
702 
703 #define LOCKDEP_STATE(__STATE) 						\
704 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
705 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706 #include "lockdep_states.h"
707 #undef LOCKDEP_STATE
708 
709 	usage[i] = '\0';
710 }
711 
712 static void __print_lock_name(struct held_lock *hlock, struct lock_class *class)
713 {
714 	char str[KSYM_NAME_LEN];
715 	const char *name;
716 
717 	name = class->name;
718 	if (!name) {
719 		name = __get_key_name(class->key, str);
720 		printk(KERN_CONT "%s", name);
721 	} else {
722 		printk(KERN_CONT "%s", name);
723 		if (class->name_version > 1)
724 			printk(KERN_CONT "#%d", class->name_version);
725 		if (class->subclass)
726 			printk(KERN_CONT "/%d", class->subclass);
727 		if (hlock && class->print_fn)
728 			class->print_fn(hlock->instance);
729 	}
730 }
731 
732 static void print_lock_name(struct held_lock *hlock, struct lock_class *class)
733 {
734 	char usage[LOCK_USAGE_CHARS];
735 
736 	get_usage_chars(class, usage);
737 
738 	printk(KERN_CONT " (");
739 	__print_lock_name(hlock, class);
740 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
741 			class->wait_type_outer ?: class->wait_type_inner,
742 			class->wait_type_inner);
743 }
744 
745 static void print_lockdep_cache(struct lockdep_map *lock)
746 {
747 	const char *name;
748 	char str[KSYM_NAME_LEN];
749 
750 	name = lock->name;
751 	if (!name)
752 		name = __get_key_name(lock->key->subkeys, str);
753 
754 	printk(KERN_CONT "%s", name);
755 }
756 
757 static void print_lock(struct held_lock *hlock)
758 {
759 	/*
760 	 * We can be called locklessly through debug_show_all_locks() so be
761 	 * extra careful, the hlock might have been released and cleared.
762 	 *
763 	 * If this indeed happens, lets pretend it does not hurt to continue
764 	 * to print the lock unless the hlock class_idx does not point to a
765 	 * registered class. The rationale here is: since we don't attempt
766 	 * to distinguish whether we are in this situation, if it just
767 	 * happened we can't count on class_idx to tell either.
768 	 */
769 	struct lock_class *lock = hlock_class(hlock);
770 
771 	if (!lock) {
772 		printk(KERN_CONT "<RELEASED>\n");
773 		return;
774 	}
775 
776 	printk(KERN_CONT "%px", hlock->instance);
777 	print_lock_name(hlock, lock);
778 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
779 }
780 
781 static void lockdep_print_held_locks(struct task_struct *p)
782 {
783 	int i, depth = READ_ONCE(p->lockdep_depth);
784 
785 	if (!depth)
786 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
787 	else
788 		printk("%d lock%s held by %s/%d:\n", depth,
789 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
790 	/*
791 	 * It's not reliable to print a task's held locks if it's not sleeping
792 	 * and it's not the current task.
793 	 */
794 	if (p != current && task_is_running(p))
795 		return;
796 	for (i = 0; i < depth; i++) {
797 		printk(" #%d: ", i);
798 		print_lock(p->held_locks + i);
799 	}
800 }
801 
802 static void print_kernel_ident(void)
803 {
804 	printk("%s %.*s %s\n", init_utsname()->release,
805 		(int)strcspn(init_utsname()->version, " "),
806 		init_utsname()->version,
807 		print_tainted());
808 }
809 
810 static int very_verbose(struct lock_class *class)
811 {
812 #if VERY_VERBOSE
813 	return class_filter(class);
814 #endif
815 	return 0;
816 }
817 
818 /*
819  * Is this the address of a static object:
820  */
821 #ifdef __KERNEL__
822 /*
823  * Check if an address is part of freed initmem. After initmem is freed,
824  * memory can be allocated from it, and such allocations would then have
825  * addresses within the range [_stext, _end].
826  */
827 #ifndef arch_is_kernel_initmem_freed
828 static int arch_is_kernel_initmem_freed(unsigned long addr)
829 {
830 	if (system_state < SYSTEM_FREEING_INITMEM)
831 		return 0;
832 
833 	return init_section_contains((void *)addr, 1);
834 }
835 #endif
836 
837 static int static_obj(const void *obj)
838 {
839 	unsigned long start = (unsigned long) &_stext,
840 		      end   = (unsigned long) &_end,
841 		      addr  = (unsigned long) obj;
842 
843 	if (arch_is_kernel_initmem_freed(addr))
844 		return 0;
845 
846 	/*
847 	 * static variable?
848 	 */
849 	if ((addr >= start) && (addr < end))
850 		return 1;
851 
852 	/*
853 	 * in-kernel percpu var?
854 	 */
855 	if (is_kernel_percpu_address(addr))
856 		return 1;
857 
858 	/*
859 	 * module static or percpu var?
860 	 */
861 	return is_module_address(addr) || is_module_percpu_address(addr);
862 }
863 #endif
864 
865 /*
866  * To make lock name printouts unique, we calculate a unique
867  * class->name_version generation counter. The caller must hold the graph
868  * lock.
869  */
870 static int count_matching_names(struct lock_class *new_class)
871 {
872 	struct lock_class *class;
873 	int count = 0;
874 
875 	if (!new_class->name)
876 		return 0;
877 
878 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
879 		if (new_class->key - new_class->subclass == class->key)
880 			return class->name_version;
881 		if (class->name && !strcmp(class->name, new_class->name))
882 			count = max(count, class->name_version);
883 	}
884 
885 	return count + 1;
886 }
887 
888 /* used from NMI context -- must be lockless */
889 static noinstr struct lock_class *
890 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
891 {
892 	struct lockdep_subclass_key *key;
893 	struct hlist_head *hash_head;
894 	struct lock_class *class;
895 
896 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
897 		instrumentation_begin();
898 		debug_locks_off();
899 		printk(KERN_ERR
900 			"BUG: looking up invalid subclass: %u\n", subclass);
901 		printk(KERN_ERR
902 			"turning off the locking correctness validator.\n");
903 		dump_stack();
904 		instrumentation_end();
905 		return NULL;
906 	}
907 
908 	/*
909 	 * If it is not initialised then it has never been locked,
910 	 * so it won't be present in the hash table.
911 	 */
912 	if (unlikely(!lock->key))
913 		return NULL;
914 
915 	/*
916 	 * NOTE: the class-key must be unique. For dynamic locks, a static
917 	 * lock_class_key variable is passed in through the mutex_init()
918 	 * (or spin_lock_init()) call - which acts as the key. For static
919 	 * locks we use the lock object itself as the key.
920 	 */
921 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
922 			sizeof(struct lockdep_map));
923 
924 	key = lock->key->subkeys + subclass;
925 
926 	hash_head = classhashentry(key);
927 
928 	/*
929 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
930 	 */
931 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
932 		return NULL;
933 
934 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
935 		if (class->key == key) {
936 			/*
937 			 * Huh! same key, different name? Did someone trample
938 			 * on some memory? We're most confused.
939 			 */
940 			WARN_ONCE(class->name != lock->name &&
941 				  lock->key != &__lockdep_no_validate__,
942 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
943 				  lock->name, lock->key, class->name);
944 			return class;
945 		}
946 	}
947 
948 	return NULL;
949 }
950 
951 /*
952  * Static locks do not have their class-keys yet - for them the key is
953  * the lock object itself. If the lock is in the per cpu area, the
954  * canonical address of the lock (per cpu offset removed) is used.
955  */
956 static bool assign_lock_key(struct lockdep_map *lock)
957 {
958 	unsigned long can_addr, addr = (unsigned long)lock;
959 
960 #ifdef __KERNEL__
961 	/*
962 	 * lockdep_free_key_range() assumes that struct lock_class_key
963 	 * objects do not overlap. Since we use the address of lock
964 	 * objects as class key for static objects, check whether the
965 	 * size of lock_class_key objects does not exceed the size of
966 	 * the smallest lock object.
967 	 */
968 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
969 #endif
970 
971 	if (__is_kernel_percpu_address(addr, &can_addr))
972 		lock->key = (void *)can_addr;
973 	else if (__is_module_percpu_address(addr, &can_addr))
974 		lock->key = (void *)can_addr;
975 	else if (static_obj(lock))
976 		lock->key = (void *)lock;
977 	else {
978 		/* Debug-check: all keys must be persistent! */
979 		debug_locks_off();
980 		pr_err("INFO: trying to register non-static key.\n");
981 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
982 		pr_err("you didn't initialize this object before use?\n");
983 		pr_err("turning off the locking correctness validator.\n");
984 		dump_stack();
985 		return false;
986 	}
987 
988 	return true;
989 }
990 
991 #ifdef CONFIG_DEBUG_LOCKDEP
992 
993 /* Check whether element @e occurs in list @h */
994 static bool in_list(struct list_head *e, struct list_head *h)
995 {
996 	struct list_head *f;
997 
998 	list_for_each(f, h) {
999 		if (e == f)
1000 			return true;
1001 	}
1002 
1003 	return false;
1004 }
1005 
1006 /*
1007  * Check whether entry @e occurs in any of the locks_after or locks_before
1008  * lists.
1009  */
1010 static bool in_any_class_list(struct list_head *e)
1011 {
1012 	struct lock_class *class;
1013 	int i;
1014 
1015 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1016 		class = &lock_classes[i];
1017 		if (in_list(e, &class->locks_after) ||
1018 		    in_list(e, &class->locks_before))
1019 			return true;
1020 	}
1021 	return false;
1022 }
1023 
1024 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1025 {
1026 	struct lock_list *e;
1027 
1028 	list_for_each_entry(e, h, entry) {
1029 		if (e->links_to != c) {
1030 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1031 			       c->name ? : "(?)",
1032 			       (unsigned long)(e - list_entries),
1033 			       e->links_to && e->links_to->name ?
1034 			       e->links_to->name : "(?)",
1035 			       e->class && e->class->name ? e->class->name :
1036 			       "(?)");
1037 			return false;
1038 		}
1039 	}
1040 	return true;
1041 }
1042 
1043 #ifdef CONFIG_PROVE_LOCKING
1044 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1045 #endif
1046 
1047 static bool check_lock_chain_key(struct lock_chain *chain)
1048 {
1049 #ifdef CONFIG_PROVE_LOCKING
1050 	u64 chain_key = INITIAL_CHAIN_KEY;
1051 	int i;
1052 
1053 	for (i = chain->base; i < chain->base + chain->depth; i++)
1054 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1055 	/*
1056 	 * The 'unsigned long long' casts avoid that a compiler warning
1057 	 * is reported when building tools/lib/lockdep.
1058 	 */
1059 	if (chain->chain_key != chain_key) {
1060 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1061 		       (unsigned long long)(chain - lock_chains),
1062 		       (unsigned long long)chain->chain_key,
1063 		       (unsigned long long)chain_key);
1064 		return false;
1065 	}
1066 #endif
1067 	return true;
1068 }
1069 
1070 static bool in_any_zapped_class_list(struct lock_class *class)
1071 {
1072 	struct pending_free *pf;
1073 	int i;
1074 
1075 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1076 		if (in_list(&class->lock_entry, &pf->zapped))
1077 			return true;
1078 	}
1079 
1080 	return false;
1081 }
1082 
1083 static bool __check_data_structures(void)
1084 {
1085 	struct lock_class *class;
1086 	struct lock_chain *chain;
1087 	struct hlist_head *head;
1088 	struct lock_list *e;
1089 	int i;
1090 
1091 	/* Check whether all classes occur in a lock list. */
1092 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1093 		class = &lock_classes[i];
1094 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1095 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1096 		    !in_any_zapped_class_list(class)) {
1097 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1098 			       class, class->name ? : "(?)");
1099 			return false;
1100 		}
1101 	}
1102 
1103 	/* Check whether all classes have valid lock lists. */
1104 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1105 		class = &lock_classes[i];
1106 		if (!class_lock_list_valid(class, &class->locks_before))
1107 			return false;
1108 		if (!class_lock_list_valid(class, &class->locks_after))
1109 			return false;
1110 	}
1111 
1112 	/* Check the chain_key of all lock chains. */
1113 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1114 		head = chainhash_table + i;
1115 		hlist_for_each_entry_rcu(chain, head, entry) {
1116 			if (!check_lock_chain_key(chain))
1117 				return false;
1118 		}
1119 	}
1120 
1121 	/*
1122 	 * Check whether all list entries that are in use occur in a class
1123 	 * lock list.
1124 	 */
1125 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1126 		e = list_entries + i;
1127 		if (!in_any_class_list(&e->entry)) {
1128 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1129 			       (unsigned int)(e - list_entries),
1130 			       e->class->name ? : "(?)",
1131 			       e->links_to->name ? : "(?)");
1132 			return false;
1133 		}
1134 	}
1135 
1136 	/*
1137 	 * Check whether all list entries that are not in use do not occur in
1138 	 * a class lock list.
1139 	 */
1140 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1141 		e = list_entries + i;
1142 		if (in_any_class_list(&e->entry)) {
1143 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1144 			       (unsigned int)(e - list_entries),
1145 			       e->class && e->class->name ? e->class->name :
1146 			       "(?)",
1147 			       e->links_to && e->links_to->name ?
1148 			       e->links_to->name : "(?)");
1149 			return false;
1150 		}
1151 	}
1152 
1153 	return true;
1154 }
1155 
1156 int check_consistency = 0;
1157 module_param(check_consistency, int, 0644);
1158 
1159 static void check_data_structures(void)
1160 {
1161 	static bool once = false;
1162 
1163 	if (check_consistency && !once) {
1164 		if (!__check_data_structures()) {
1165 			once = true;
1166 			WARN_ON(once);
1167 		}
1168 	}
1169 }
1170 
1171 #else /* CONFIG_DEBUG_LOCKDEP */
1172 
1173 static inline void check_data_structures(void) { }
1174 
1175 #endif /* CONFIG_DEBUG_LOCKDEP */
1176 
1177 static void init_chain_block_buckets(void);
1178 
1179 /*
1180  * Initialize the lock_classes[] array elements, the free_lock_classes list
1181  * and also the delayed_free structure.
1182  */
1183 static void init_data_structures_once(void)
1184 {
1185 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1186 	int i;
1187 
1188 	if (likely(rcu_head_initialized))
1189 		return;
1190 
1191 	if (system_state >= SYSTEM_SCHEDULING) {
1192 		init_rcu_head(&delayed_free.rcu_head);
1193 		rcu_head_initialized = true;
1194 	}
1195 
1196 	if (ds_initialized)
1197 		return;
1198 
1199 	ds_initialized = true;
1200 
1201 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1202 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1203 
1204 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1205 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1206 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1207 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1208 	}
1209 	init_chain_block_buckets();
1210 }
1211 
1212 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1213 {
1214 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1215 
1216 	return lock_keys_hash + hash;
1217 }
1218 
1219 /* Register a dynamically allocated key. */
1220 void lockdep_register_key(struct lock_class_key *key)
1221 {
1222 	struct hlist_head *hash_head;
1223 	struct lock_class_key *k;
1224 	unsigned long flags;
1225 
1226 	if (WARN_ON_ONCE(static_obj(key)))
1227 		return;
1228 	hash_head = keyhashentry(key);
1229 
1230 	raw_local_irq_save(flags);
1231 	if (!graph_lock())
1232 		goto restore_irqs;
1233 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1234 		if (WARN_ON_ONCE(k == key))
1235 			goto out_unlock;
1236 	}
1237 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1238 out_unlock:
1239 	graph_unlock();
1240 restore_irqs:
1241 	raw_local_irq_restore(flags);
1242 }
1243 EXPORT_SYMBOL_GPL(lockdep_register_key);
1244 
1245 /* Check whether a key has been registered as a dynamic key. */
1246 static bool is_dynamic_key(const struct lock_class_key *key)
1247 {
1248 	struct hlist_head *hash_head;
1249 	struct lock_class_key *k;
1250 	bool found = false;
1251 
1252 	if (WARN_ON_ONCE(static_obj(key)))
1253 		return false;
1254 
1255 	/*
1256 	 * If lock debugging is disabled lock_keys_hash[] may contain
1257 	 * pointers to memory that has already been freed. Avoid triggering
1258 	 * a use-after-free in that case by returning early.
1259 	 */
1260 	if (!debug_locks)
1261 		return true;
1262 
1263 	hash_head = keyhashentry(key);
1264 
1265 	rcu_read_lock();
1266 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1267 		if (k == key) {
1268 			found = true;
1269 			break;
1270 		}
1271 	}
1272 	rcu_read_unlock();
1273 
1274 	return found;
1275 }
1276 
1277 /*
1278  * Register a lock's class in the hash-table, if the class is not present
1279  * yet. Otherwise we look it up. We cache the result in the lock object
1280  * itself, so actual lookup of the hash should be once per lock object.
1281  */
1282 static struct lock_class *
1283 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1284 {
1285 	struct lockdep_subclass_key *key;
1286 	struct hlist_head *hash_head;
1287 	struct lock_class *class;
1288 	int idx;
1289 
1290 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1291 
1292 	class = look_up_lock_class(lock, subclass);
1293 	if (likely(class))
1294 		goto out_set_class_cache;
1295 
1296 	if (!lock->key) {
1297 		if (!assign_lock_key(lock))
1298 			return NULL;
1299 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1300 		return NULL;
1301 	}
1302 
1303 	key = lock->key->subkeys + subclass;
1304 	hash_head = classhashentry(key);
1305 
1306 	if (!graph_lock()) {
1307 		return NULL;
1308 	}
1309 	/*
1310 	 * We have to do the hash-walk again, to avoid races
1311 	 * with another CPU:
1312 	 */
1313 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1314 		if (class->key == key)
1315 			goto out_unlock_set;
1316 	}
1317 
1318 	init_data_structures_once();
1319 
1320 	/* Allocate a new lock class and add it to the hash. */
1321 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1322 					 lock_entry);
1323 	if (!class) {
1324 		if (!debug_locks_off_graph_unlock()) {
1325 			return NULL;
1326 		}
1327 
1328 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1329 		dump_stack();
1330 		return NULL;
1331 	}
1332 	nr_lock_classes++;
1333 	__set_bit(class - lock_classes, lock_classes_in_use);
1334 	debug_atomic_inc(nr_unused_locks);
1335 	class->key = key;
1336 	class->name = lock->name;
1337 	class->subclass = subclass;
1338 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1339 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1340 	class->name_version = count_matching_names(class);
1341 	class->wait_type_inner = lock->wait_type_inner;
1342 	class->wait_type_outer = lock->wait_type_outer;
1343 	class->lock_type = lock->lock_type;
1344 	/*
1345 	 * We use RCU's safe list-add method to make
1346 	 * parallel walking of the hash-list safe:
1347 	 */
1348 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1349 	/*
1350 	 * Remove the class from the free list and add it to the global list
1351 	 * of classes.
1352 	 */
1353 	list_move_tail(&class->lock_entry, &all_lock_classes);
1354 	idx = class - lock_classes;
1355 	if (idx > max_lock_class_idx)
1356 		max_lock_class_idx = idx;
1357 
1358 	if (verbose(class)) {
1359 		graph_unlock();
1360 
1361 		printk("\nnew class %px: %s", class->key, class->name);
1362 		if (class->name_version > 1)
1363 			printk(KERN_CONT "#%d", class->name_version);
1364 		printk(KERN_CONT "\n");
1365 		dump_stack();
1366 
1367 		if (!graph_lock()) {
1368 			return NULL;
1369 		}
1370 	}
1371 out_unlock_set:
1372 	graph_unlock();
1373 
1374 out_set_class_cache:
1375 	if (!subclass || force)
1376 		lock->class_cache[0] = class;
1377 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1378 		lock->class_cache[subclass] = class;
1379 
1380 	/*
1381 	 * Hash collision, did we smoke some? We found a class with a matching
1382 	 * hash but the subclass -- which is hashed in -- didn't match.
1383 	 */
1384 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1385 		return NULL;
1386 
1387 	return class;
1388 }
1389 
1390 #ifdef CONFIG_PROVE_LOCKING
1391 /*
1392  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1393  * with NULL on failure)
1394  */
1395 static struct lock_list *alloc_list_entry(void)
1396 {
1397 	int idx = find_first_zero_bit(list_entries_in_use,
1398 				      ARRAY_SIZE(list_entries));
1399 
1400 	if (idx >= ARRAY_SIZE(list_entries)) {
1401 		if (!debug_locks_off_graph_unlock())
1402 			return NULL;
1403 
1404 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1405 		dump_stack();
1406 		return NULL;
1407 	}
1408 	nr_list_entries++;
1409 	__set_bit(idx, list_entries_in_use);
1410 	return list_entries + idx;
1411 }
1412 
1413 /*
1414  * Add a new dependency to the head of the list:
1415  */
1416 static int add_lock_to_list(struct lock_class *this,
1417 			    struct lock_class *links_to, struct list_head *head,
1418 			    u16 distance, u8 dep,
1419 			    const struct lock_trace *trace)
1420 {
1421 	struct lock_list *entry;
1422 	/*
1423 	 * Lock not present yet - get a new dependency struct and
1424 	 * add it to the list:
1425 	 */
1426 	entry = alloc_list_entry();
1427 	if (!entry)
1428 		return 0;
1429 
1430 	entry->class = this;
1431 	entry->links_to = links_to;
1432 	entry->dep = dep;
1433 	entry->distance = distance;
1434 	entry->trace = trace;
1435 	/*
1436 	 * Both allocation and removal are done under the graph lock; but
1437 	 * iteration is under RCU-sched; see look_up_lock_class() and
1438 	 * lockdep_free_key_range().
1439 	 */
1440 	list_add_tail_rcu(&entry->entry, head);
1441 
1442 	return 1;
1443 }
1444 
1445 /*
1446  * For good efficiency of modular, we use power of 2
1447  */
1448 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1449 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1450 
1451 /*
1452  * The circular_queue and helpers are used to implement graph
1453  * breadth-first search (BFS) algorithm, by which we can determine
1454  * whether there is a path from a lock to another. In deadlock checks,
1455  * a path from the next lock to be acquired to a previous held lock
1456  * indicates that adding the <prev> -> <next> lock dependency will
1457  * produce a circle in the graph. Breadth-first search instead of
1458  * depth-first search is used in order to find the shortest (circular)
1459  * path.
1460  */
1461 struct circular_queue {
1462 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1463 	unsigned int  front, rear;
1464 };
1465 
1466 static struct circular_queue lock_cq;
1467 
1468 unsigned int max_bfs_queue_depth;
1469 
1470 static unsigned int lockdep_dependency_gen_id;
1471 
1472 static inline void __cq_init(struct circular_queue *cq)
1473 {
1474 	cq->front = cq->rear = 0;
1475 	lockdep_dependency_gen_id++;
1476 }
1477 
1478 static inline int __cq_empty(struct circular_queue *cq)
1479 {
1480 	return (cq->front == cq->rear);
1481 }
1482 
1483 static inline int __cq_full(struct circular_queue *cq)
1484 {
1485 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1486 }
1487 
1488 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1489 {
1490 	if (__cq_full(cq))
1491 		return -1;
1492 
1493 	cq->element[cq->rear] = elem;
1494 	cq->rear = (cq->rear + 1) & CQ_MASK;
1495 	return 0;
1496 }
1497 
1498 /*
1499  * Dequeue an element from the circular_queue, return a lock_list if
1500  * the queue is not empty, or NULL if otherwise.
1501  */
1502 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1503 {
1504 	struct lock_list * lock;
1505 
1506 	if (__cq_empty(cq))
1507 		return NULL;
1508 
1509 	lock = cq->element[cq->front];
1510 	cq->front = (cq->front + 1) & CQ_MASK;
1511 
1512 	return lock;
1513 }
1514 
1515 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1516 {
1517 	return (cq->rear - cq->front) & CQ_MASK;
1518 }
1519 
1520 static inline void mark_lock_accessed(struct lock_list *lock)
1521 {
1522 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1523 }
1524 
1525 static inline void visit_lock_entry(struct lock_list *lock,
1526 				    struct lock_list *parent)
1527 {
1528 	lock->parent = parent;
1529 }
1530 
1531 static inline unsigned long lock_accessed(struct lock_list *lock)
1532 {
1533 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1534 }
1535 
1536 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1537 {
1538 	return child->parent;
1539 }
1540 
1541 static inline int get_lock_depth(struct lock_list *child)
1542 {
1543 	int depth = 0;
1544 	struct lock_list *parent;
1545 
1546 	while ((parent = get_lock_parent(child))) {
1547 		child = parent;
1548 		depth++;
1549 	}
1550 	return depth;
1551 }
1552 
1553 /*
1554  * Return the forward or backward dependency list.
1555  *
1556  * @lock:   the lock_list to get its class's dependency list
1557  * @offset: the offset to struct lock_class to determine whether it is
1558  *          locks_after or locks_before
1559  */
1560 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1561 {
1562 	void *lock_class = lock->class;
1563 
1564 	return lock_class + offset;
1565 }
1566 /*
1567  * Return values of a bfs search:
1568  *
1569  * BFS_E* indicates an error
1570  * BFS_R* indicates a result (match or not)
1571  *
1572  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1573  *
1574  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1575  *
1576  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1577  *             *@target_entry.
1578  *
1579  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1580  *               _unchanged_.
1581  */
1582 enum bfs_result {
1583 	BFS_EINVALIDNODE = -2,
1584 	BFS_EQUEUEFULL = -1,
1585 	BFS_RMATCH = 0,
1586 	BFS_RNOMATCH = 1,
1587 };
1588 
1589 /*
1590  * bfs_result < 0 means error
1591  */
1592 static inline bool bfs_error(enum bfs_result res)
1593 {
1594 	return res < 0;
1595 }
1596 
1597 /*
1598  * DEP_*_BIT in lock_list::dep
1599  *
1600  * For dependency @prev -> @next:
1601  *
1602  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1603  *       (->read == 2)
1604  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1605  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1606  *   EN: @prev is exclusive locker and @next is non-recursive locker
1607  *
1608  * Note that we define the value of DEP_*_BITs so that:
1609  *   bit0 is prev->read == 0
1610  *   bit1 is next->read != 2
1611  */
1612 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1613 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1614 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1615 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1616 
1617 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1618 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1619 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1620 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1621 
1622 static inline unsigned int
1623 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1624 {
1625 	return (prev->read == 0) + ((next->read != 2) << 1);
1626 }
1627 
1628 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1629 {
1630 	return 1U << __calc_dep_bit(prev, next);
1631 }
1632 
1633 /*
1634  * calculate the dep_bit for backwards edges. We care about whether @prev is
1635  * shared and whether @next is recursive.
1636  */
1637 static inline unsigned int
1638 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1639 {
1640 	return (next->read != 2) + ((prev->read == 0) << 1);
1641 }
1642 
1643 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1644 {
1645 	return 1U << __calc_dep_bitb(prev, next);
1646 }
1647 
1648 /*
1649  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1650  * search.
1651  */
1652 static inline void __bfs_init_root(struct lock_list *lock,
1653 				   struct lock_class *class)
1654 {
1655 	lock->class = class;
1656 	lock->parent = NULL;
1657 	lock->only_xr = 0;
1658 }
1659 
1660 /*
1661  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1662  * root for a BFS search.
1663  *
1664  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1665  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1666  * and -(S*)->.
1667  */
1668 static inline void bfs_init_root(struct lock_list *lock,
1669 				 struct held_lock *hlock)
1670 {
1671 	__bfs_init_root(lock, hlock_class(hlock));
1672 	lock->only_xr = (hlock->read == 2);
1673 }
1674 
1675 /*
1676  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1677  *
1678  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1679  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1680  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1681  */
1682 static inline void bfs_init_rootb(struct lock_list *lock,
1683 				  struct held_lock *hlock)
1684 {
1685 	__bfs_init_root(lock, hlock_class(hlock));
1686 	lock->only_xr = (hlock->read != 0);
1687 }
1688 
1689 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1690 {
1691 	if (!lock || !lock->parent)
1692 		return NULL;
1693 
1694 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1695 				     &lock->entry, struct lock_list, entry);
1696 }
1697 
1698 /*
1699  * Breadth-First Search to find a strong path in the dependency graph.
1700  *
1701  * @source_entry: the source of the path we are searching for.
1702  * @data: data used for the second parameter of @match function
1703  * @match: match function for the search
1704  * @target_entry: pointer to the target of a matched path
1705  * @offset: the offset to struct lock_class to determine whether it is
1706  *          locks_after or locks_before
1707  *
1708  * We may have multiple edges (considering different kinds of dependencies,
1709  * e.g. ER and SN) between two nodes in the dependency graph. But
1710  * only the strong dependency path in the graph is relevant to deadlocks. A
1711  * strong dependency path is a dependency path that doesn't have two adjacent
1712  * dependencies as -(*R)-> -(S*)->, please see:
1713  *
1714  *         Documentation/locking/lockdep-design.rst
1715  *
1716  * for more explanation of the definition of strong dependency paths
1717  *
1718  * In __bfs(), we only traverse in the strong dependency path:
1719  *
1720  *     In lock_list::only_xr, we record whether the previous dependency only
1721  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1722  *     filter out any -(S*)-> in the current dependency and after that, the
1723  *     ->only_xr is set according to whether we only have -(*R)-> left.
1724  */
1725 static enum bfs_result __bfs(struct lock_list *source_entry,
1726 			     void *data,
1727 			     bool (*match)(struct lock_list *entry, void *data),
1728 			     bool (*skip)(struct lock_list *entry, void *data),
1729 			     struct lock_list **target_entry,
1730 			     int offset)
1731 {
1732 	struct circular_queue *cq = &lock_cq;
1733 	struct lock_list *lock = NULL;
1734 	struct lock_list *entry;
1735 	struct list_head *head;
1736 	unsigned int cq_depth;
1737 	bool first;
1738 
1739 	lockdep_assert_locked();
1740 
1741 	__cq_init(cq);
1742 	__cq_enqueue(cq, source_entry);
1743 
1744 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1745 		if (!lock->class)
1746 			return BFS_EINVALIDNODE;
1747 
1748 		/*
1749 		 * Step 1: check whether we already finish on this one.
1750 		 *
1751 		 * If we have visited all the dependencies from this @lock to
1752 		 * others (iow, if we have visited all lock_list entries in
1753 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1754 		 * and visit all the dependencies in the list and mark this
1755 		 * list accessed.
1756 		 */
1757 		if (lock_accessed(lock))
1758 			continue;
1759 		else
1760 			mark_lock_accessed(lock);
1761 
1762 		/*
1763 		 * Step 2: check whether prev dependency and this form a strong
1764 		 *         dependency path.
1765 		 */
1766 		if (lock->parent) { /* Parent exists, check prev dependency */
1767 			u8 dep = lock->dep;
1768 			bool prev_only_xr = lock->parent->only_xr;
1769 
1770 			/*
1771 			 * Mask out all -(S*)-> if we only have *R in previous
1772 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1773 			 * dependency.
1774 			 */
1775 			if (prev_only_xr)
1776 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1777 
1778 			/* If nothing left, we skip */
1779 			if (!dep)
1780 				continue;
1781 
1782 			/* If there are only -(*R)-> left, set that for the next step */
1783 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1784 		}
1785 
1786 		/*
1787 		 * Step 3: we haven't visited this and there is a strong
1788 		 *         dependency path to this, so check with @match.
1789 		 *         If @skip is provide and returns true, we skip this
1790 		 *         lock (and any path this lock is in).
1791 		 */
1792 		if (skip && skip(lock, data))
1793 			continue;
1794 
1795 		if (match(lock, data)) {
1796 			*target_entry = lock;
1797 			return BFS_RMATCH;
1798 		}
1799 
1800 		/*
1801 		 * Step 4: if not match, expand the path by adding the
1802 		 *         forward or backwards dependencies in the search
1803 		 *
1804 		 */
1805 		first = true;
1806 		head = get_dep_list(lock, offset);
1807 		list_for_each_entry_rcu(entry, head, entry) {
1808 			visit_lock_entry(entry, lock);
1809 
1810 			/*
1811 			 * Note we only enqueue the first of the list into the
1812 			 * queue, because we can always find a sibling
1813 			 * dependency from one (see __bfs_next()), as a result
1814 			 * the space of queue is saved.
1815 			 */
1816 			if (!first)
1817 				continue;
1818 
1819 			first = false;
1820 
1821 			if (__cq_enqueue(cq, entry))
1822 				return BFS_EQUEUEFULL;
1823 
1824 			cq_depth = __cq_get_elem_count(cq);
1825 			if (max_bfs_queue_depth < cq_depth)
1826 				max_bfs_queue_depth = cq_depth;
1827 		}
1828 	}
1829 
1830 	return BFS_RNOMATCH;
1831 }
1832 
1833 static inline enum bfs_result
1834 __bfs_forwards(struct lock_list *src_entry,
1835 	       void *data,
1836 	       bool (*match)(struct lock_list *entry, void *data),
1837 	       bool (*skip)(struct lock_list *entry, void *data),
1838 	       struct lock_list **target_entry)
1839 {
1840 	return __bfs(src_entry, data, match, skip, target_entry,
1841 		     offsetof(struct lock_class, locks_after));
1842 
1843 }
1844 
1845 static inline enum bfs_result
1846 __bfs_backwards(struct lock_list *src_entry,
1847 		void *data,
1848 		bool (*match)(struct lock_list *entry, void *data),
1849 	       bool (*skip)(struct lock_list *entry, void *data),
1850 		struct lock_list **target_entry)
1851 {
1852 	return __bfs(src_entry, data, match, skip, target_entry,
1853 		     offsetof(struct lock_class, locks_before));
1854 
1855 }
1856 
1857 static void print_lock_trace(const struct lock_trace *trace,
1858 			     unsigned int spaces)
1859 {
1860 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1861 }
1862 
1863 /*
1864  * Print a dependency chain entry (this is only done when a deadlock
1865  * has been detected):
1866  */
1867 static noinline void
1868 print_circular_bug_entry(struct lock_list *target, int depth)
1869 {
1870 	if (debug_locks_silent)
1871 		return;
1872 	printk("\n-> #%u", depth);
1873 	print_lock_name(NULL, target->class);
1874 	printk(KERN_CONT ":\n");
1875 	print_lock_trace(target->trace, 6);
1876 }
1877 
1878 static void
1879 print_circular_lock_scenario(struct held_lock *src,
1880 			     struct held_lock *tgt,
1881 			     struct lock_list *prt)
1882 {
1883 	struct lock_class *source = hlock_class(src);
1884 	struct lock_class *target = hlock_class(tgt);
1885 	struct lock_class *parent = prt->class;
1886 	int src_read = src->read;
1887 	int tgt_read = tgt->read;
1888 
1889 	/*
1890 	 * A direct locking problem where unsafe_class lock is taken
1891 	 * directly by safe_class lock, then all we need to show
1892 	 * is the deadlock scenario, as it is obvious that the
1893 	 * unsafe lock is taken under the safe lock.
1894 	 *
1895 	 * But if there is a chain instead, where the safe lock takes
1896 	 * an intermediate lock (middle_class) where this lock is
1897 	 * not the same as the safe lock, then the lock chain is
1898 	 * used to describe the problem. Otherwise we would need
1899 	 * to show a different CPU case for each link in the chain
1900 	 * from the safe_class lock to the unsafe_class lock.
1901 	 */
1902 	if (parent != source) {
1903 		printk("Chain exists of:\n  ");
1904 		__print_lock_name(src, source);
1905 		printk(KERN_CONT " --> ");
1906 		__print_lock_name(NULL, parent);
1907 		printk(KERN_CONT " --> ");
1908 		__print_lock_name(tgt, target);
1909 		printk(KERN_CONT "\n\n");
1910 	}
1911 
1912 	printk(" Possible unsafe locking scenario:\n\n");
1913 	printk("       CPU0                    CPU1\n");
1914 	printk("       ----                    ----\n");
1915 	if (tgt_read != 0)
1916 		printk("  rlock(");
1917 	else
1918 		printk("  lock(");
1919 	__print_lock_name(tgt, target);
1920 	printk(KERN_CONT ");\n");
1921 	printk("                               lock(");
1922 	__print_lock_name(NULL, parent);
1923 	printk(KERN_CONT ");\n");
1924 	printk("                               lock(");
1925 	__print_lock_name(tgt, target);
1926 	printk(KERN_CONT ");\n");
1927 	if (src_read != 0)
1928 		printk("  rlock(");
1929 	else if (src->sync)
1930 		printk("  sync(");
1931 	else
1932 		printk("  lock(");
1933 	__print_lock_name(src, source);
1934 	printk(KERN_CONT ");\n");
1935 	printk("\n *** DEADLOCK ***\n\n");
1936 }
1937 
1938 /*
1939  * When a circular dependency is detected, print the
1940  * header first:
1941  */
1942 static noinline void
1943 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1944 			struct held_lock *check_src,
1945 			struct held_lock *check_tgt)
1946 {
1947 	struct task_struct *curr = current;
1948 
1949 	if (debug_locks_silent)
1950 		return;
1951 
1952 	pr_warn("\n");
1953 	pr_warn("======================================================\n");
1954 	pr_warn("WARNING: possible circular locking dependency detected\n");
1955 	print_kernel_ident();
1956 	pr_warn("------------------------------------------------------\n");
1957 	pr_warn("%s/%d is trying to acquire lock:\n",
1958 		curr->comm, task_pid_nr(curr));
1959 	print_lock(check_src);
1960 
1961 	pr_warn("\nbut task is already holding lock:\n");
1962 
1963 	print_lock(check_tgt);
1964 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1965 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1966 
1967 	print_circular_bug_entry(entry, depth);
1968 }
1969 
1970 /*
1971  * We are about to add A -> B into the dependency graph, and in __bfs() a
1972  * strong dependency path A -> .. -> B is found: hlock_class equals
1973  * entry->class.
1974  *
1975  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1976  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1977  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1978  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1979  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1980  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1981  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1982  *
1983  * We need to make sure both the start and the end of A -> .. -> B is not
1984  * weaker than A -> B. For the start part, please see the comment in
1985  * check_redundant(). For the end part, we need:
1986  *
1987  * Either
1988  *
1989  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1990  *
1991  * or
1992  *
1993  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1994  *
1995  */
1996 static inline bool hlock_equal(struct lock_list *entry, void *data)
1997 {
1998 	struct held_lock *hlock = (struct held_lock *)data;
1999 
2000 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2001 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
2002 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2003 }
2004 
2005 /*
2006  * We are about to add B -> A into the dependency graph, and in __bfs() a
2007  * strong dependency path A -> .. -> B is found: hlock_class equals
2008  * entry->class.
2009  *
2010  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
2011  * dependency cycle, that means:
2012  *
2013  * Either
2014  *
2015  *     a) B -> A is -(E*)->
2016  *
2017  * or
2018  *
2019  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2020  *
2021  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2022  */
2023 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2024 {
2025 	struct held_lock *hlock = (struct held_lock *)data;
2026 
2027 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2028 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2029 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2030 }
2031 
2032 static noinline void print_circular_bug(struct lock_list *this,
2033 				struct lock_list *target,
2034 				struct held_lock *check_src,
2035 				struct held_lock *check_tgt)
2036 {
2037 	struct task_struct *curr = current;
2038 	struct lock_list *parent;
2039 	struct lock_list *first_parent;
2040 	int depth;
2041 
2042 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2043 		return;
2044 
2045 	this->trace = save_trace();
2046 	if (!this->trace)
2047 		return;
2048 
2049 	depth = get_lock_depth(target);
2050 
2051 	print_circular_bug_header(target, depth, check_src, check_tgt);
2052 
2053 	parent = get_lock_parent(target);
2054 	first_parent = parent;
2055 
2056 	while (parent) {
2057 		print_circular_bug_entry(parent, --depth);
2058 		parent = get_lock_parent(parent);
2059 	}
2060 
2061 	printk("\nother info that might help us debug this:\n\n");
2062 	print_circular_lock_scenario(check_src, check_tgt,
2063 				     first_parent);
2064 
2065 	lockdep_print_held_locks(curr);
2066 
2067 	printk("\nstack backtrace:\n");
2068 	dump_stack();
2069 }
2070 
2071 static noinline void print_bfs_bug(int ret)
2072 {
2073 	if (!debug_locks_off_graph_unlock())
2074 		return;
2075 
2076 	/*
2077 	 * Breadth-first-search failed, graph got corrupted?
2078 	 */
2079 	WARN(1, "lockdep bfs error:%d\n", ret);
2080 }
2081 
2082 static bool noop_count(struct lock_list *entry, void *data)
2083 {
2084 	(*(unsigned long *)data)++;
2085 	return false;
2086 }
2087 
2088 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2089 {
2090 	unsigned long  count = 0;
2091 	struct lock_list *target_entry;
2092 
2093 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2094 
2095 	return count;
2096 }
2097 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2098 {
2099 	unsigned long ret, flags;
2100 	struct lock_list this;
2101 
2102 	__bfs_init_root(&this, class);
2103 
2104 	raw_local_irq_save(flags);
2105 	lockdep_lock();
2106 	ret = __lockdep_count_forward_deps(&this);
2107 	lockdep_unlock();
2108 	raw_local_irq_restore(flags);
2109 
2110 	return ret;
2111 }
2112 
2113 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2114 {
2115 	unsigned long  count = 0;
2116 	struct lock_list *target_entry;
2117 
2118 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2119 
2120 	return count;
2121 }
2122 
2123 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2124 {
2125 	unsigned long ret, flags;
2126 	struct lock_list this;
2127 
2128 	__bfs_init_root(&this, class);
2129 
2130 	raw_local_irq_save(flags);
2131 	lockdep_lock();
2132 	ret = __lockdep_count_backward_deps(&this);
2133 	lockdep_unlock();
2134 	raw_local_irq_restore(flags);
2135 
2136 	return ret;
2137 }
2138 
2139 /*
2140  * Check that the dependency graph starting at <src> can lead to
2141  * <target> or not.
2142  */
2143 static noinline enum bfs_result
2144 check_path(struct held_lock *target, struct lock_list *src_entry,
2145 	   bool (*match)(struct lock_list *entry, void *data),
2146 	   bool (*skip)(struct lock_list *entry, void *data),
2147 	   struct lock_list **target_entry)
2148 {
2149 	enum bfs_result ret;
2150 
2151 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2152 
2153 	if (unlikely(bfs_error(ret)))
2154 		print_bfs_bug(ret);
2155 
2156 	return ret;
2157 }
2158 
2159 static void print_deadlock_bug(struct task_struct *, struct held_lock *, struct held_lock *);
2160 
2161 /*
2162  * Prove that the dependency graph starting at <src> can not
2163  * lead to <target>. If it can, there is a circle when adding
2164  * <target> -> <src> dependency.
2165  *
2166  * Print an error and return BFS_RMATCH if it does.
2167  */
2168 static noinline enum bfs_result
2169 check_noncircular(struct held_lock *src, struct held_lock *target,
2170 		  struct lock_trace **const trace)
2171 {
2172 	enum bfs_result ret;
2173 	struct lock_list *target_entry;
2174 	struct lock_list src_entry;
2175 
2176 	bfs_init_root(&src_entry, src);
2177 
2178 	debug_atomic_inc(nr_cyclic_checks);
2179 
2180 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2181 
2182 	if (unlikely(ret == BFS_RMATCH)) {
2183 		if (!*trace) {
2184 			/*
2185 			 * If save_trace fails here, the printing might
2186 			 * trigger a WARN but because of the !nr_entries it
2187 			 * should not do bad things.
2188 			 */
2189 			*trace = save_trace();
2190 		}
2191 
2192 		if (src->class_idx == target->class_idx)
2193 			print_deadlock_bug(current, src, target);
2194 		else
2195 			print_circular_bug(&src_entry, target_entry, src, target);
2196 	}
2197 
2198 	return ret;
2199 }
2200 
2201 #ifdef CONFIG_TRACE_IRQFLAGS
2202 
2203 /*
2204  * Forwards and backwards subgraph searching, for the purposes of
2205  * proving that two subgraphs can be connected by a new dependency
2206  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2207  *
2208  * A irq safe->unsafe deadlock happens with the following conditions:
2209  *
2210  * 1) We have a strong dependency path A -> ... -> B
2211  *
2212  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2213  *    irq can create a new dependency B -> A (consider the case that a holder
2214  *    of B gets interrupted by an irq whose handler will try to acquire A).
2215  *
2216  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2217  *    strong circle:
2218  *
2219  *      For the usage bits of B:
2220  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2221  *           ENABLED_IRQ usage suffices.
2222  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2223  *           ENABLED_IRQ_*_READ usage suffices.
2224  *
2225  *      For the usage bits of A:
2226  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2227  *           USED_IN_IRQ usage suffices.
2228  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2229  *           USED_IN_IRQ_*_READ usage suffices.
2230  */
2231 
2232 /*
2233  * There is a strong dependency path in the dependency graph: A -> B, and now
2234  * we need to decide which usage bit of A should be accumulated to detect
2235  * safe->unsafe bugs.
2236  *
2237  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2238  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2239  *
2240  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2241  * path, any usage of A should be considered. Otherwise, we should only
2242  * consider _READ usage.
2243  */
2244 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2245 {
2246 	if (!entry->only_xr)
2247 		*(unsigned long *)mask |= entry->class->usage_mask;
2248 	else /* Mask out _READ usage bits */
2249 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2250 
2251 	return false;
2252 }
2253 
2254 /*
2255  * There is a strong dependency path in the dependency graph: A -> B, and now
2256  * we need to decide which usage bit of B conflicts with the usage bits of A,
2257  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2258  *
2259  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2260  * path, any usage of B should be considered. Otherwise, we should only
2261  * consider _READ usage.
2262  */
2263 static inline bool usage_match(struct lock_list *entry, void *mask)
2264 {
2265 	if (!entry->only_xr)
2266 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2267 	else /* Mask out _READ usage bits */
2268 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2269 }
2270 
2271 static inline bool usage_skip(struct lock_list *entry, void *mask)
2272 {
2273 	if (entry->class->lock_type == LD_LOCK_NORMAL)
2274 		return false;
2275 
2276 	/*
2277 	 * Skip local_lock() for irq inversion detection.
2278 	 *
2279 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2280 	 * dependency.
2281 	 *
2282 	 * For RT, an irq inversion happens when we have lock A and B, and on
2283 	 * some CPU we can have:
2284 	 *
2285 	 *	lock(A);
2286 	 *	<interrupted>
2287 	 *	  lock(B);
2288 	 *
2289 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2290 	 *
2291 	 * Now we prove local_lock() cannot exist in that dependency. First we
2292 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2293 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2294 	 * wait context check will complain. And since B is not a sleep lock,
2295 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2296 	 * local_lock() is 3, which is greater than 2, therefore there is no
2297 	 * way the local_lock() exists in the dependency B -> ... -> A.
2298 	 *
2299 	 * As a result, we will skip local_lock(), when we search for irq
2300 	 * inversion bugs.
2301 	 */
2302 	if (entry->class->lock_type == LD_LOCK_PERCPU &&
2303 	    DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2304 		return false;
2305 
2306 	/*
2307 	 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually
2308 	 * a lock and only used to override the wait_type.
2309 	 */
2310 
2311 	return true;
2312 }
2313 
2314 /*
2315  * Find a node in the forwards-direction dependency sub-graph starting
2316  * at @root->class that matches @bit.
2317  *
2318  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2319  * into *@target_entry.
2320  */
2321 static enum bfs_result
2322 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2323 			struct lock_list **target_entry)
2324 {
2325 	enum bfs_result result;
2326 
2327 	debug_atomic_inc(nr_find_usage_forwards_checks);
2328 
2329 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2330 
2331 	return result;
2332 }
2333 
2334 /*
2335  * Find a node in the backwards-direction dependency sub-graph starting
2336  * at @root->class that matches @bit.
2337  */
2338 static enum bfs_result
2339 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2340 			struct lock_list **target_entry)
2341 {
2342 	enum bfs_result result;
2343 
2344 	debug_atomic_inc(nr_find_usage_backwards_checks);
2345 
2346 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2347 
2348 	return result;
2349 }
2350 
2351 static void print_lock_class_header(struct lock_class *class, int depth)
2352 {
2353 	int bit;
2354 
2355 	printk("%*s->", depth, "");
2356 	print_lock_name(NULL, class);
2357 #ifdef CONFIG_DEBUG_LOCKDEP
2358 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2359 #endif
2360 	printk(KERN_CONT " {\n");
2361 
2362 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2363 		if (class->usage_mask & (1 << bit)) {
2364 			int len = depth;
2365 
2366 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2367 			len += printk(KERN_CONT " at:\n");
2368 			print_lock_trace(class->usage_traces[bit], len);
2369 		}
2370 	}
2371 	printk("%*s }\n", depth, "");
2372 
2373 	printk("%*s ... key      at: [<%px>] %pS\n",
2374 		depth, "", class->key, class->key);
2375 }
2376 
2377 /*
2378  * Dependency path printing:
2379  *
2380  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2381  * printing out each lock in the dependency path will help on understanding how
2382  * the deadlock could happen. Here are some details about dependency path
2383  * printing:
2384  *
2385  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2386  * 	for a lock dependency A -> B, there are two lock_lists:
2387  *
2388  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2389  * 		->links_to is A. In this case, we can say the lock_list is
2390  * 		"A -> B" (forwards case).
2391  *
2392  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2393  * 		and ->links_to is B. In this case, we can say the lock_list is
2394  * 		"B <- A" (bacwards case).
2395  *
2396  * 	The ->trace of both a) and b) point to the call trace where B was
2397  * 	acquired with A held.
2398  *
2399  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2400  * 	represent a certain lock dependency, it only provides an initial entry
2401  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2402  * 	->class is A, as a result BFS will search all dependencies starting with
2403  * 	A, e.g. A -> B or A -> C.
2404  *
2405  * 	The notation of a forwards helper lock_list is like "-> A", which means
2406  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2407  * 	or A -> C.
2408  *
2409  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2410  * 	we should search the backwards dependencies ending with "B", e.g.
2411  * 	B <- A or B <- C.
2412  */
2413 
2414 /*
2415  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2416  *
2417  * We have a lock dependency path as follow:
2418  *
2419  *    @root                                                                 @leaf
2420  *      |                                                                     |
2421  *      V                                                                     V
2422  *	          ->parent                                   ->parent
2423  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2424  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2425  *
2426  * , so it's natural that we start from @leaf and print every ->class and
2427  * ->trace until we reach the @root.
2428  */
2429 static void __used
2430 print_shortest_lock_dependencies(struct lock_list *leaf,
2431 				 struct lock_list *root)
2432 {
2433 	struct lock_list *entry = leaf;
2434 	int depth;
2435 
2436 	/*compute depth from generated tree by BFS*/
2437 	depth = get_lock_depth(leaf);
2438 
2439 	do {
2440 		print_lock_class_header(entry->class, depth);
2441 		printk("%*s ... acquired at:\n", depth, "");
2442 		print_lock_trace(entry->trace, 2);
2443 		printk("\n");
2444 
2445 		if (depth == 0 && (entry != root)) {
2446 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2447 			break;
2448 		}
2449 
2450 		entry = get_lock_parent(entry);
2451 		depth--;
2452 	} while (entry && (depth >= 0));
2453 }
2454 
2455 /*
2456  * printk the shortest lock dependencies from @leaf to @root.
2457  *
2458  * We have a lock dependency path (from a backwards search) as follow:
2459  *
2460  *    @leaf                                                                 @root
2461  *      |                                                                     |
2462  *      V                                                                     V
2463  *	          ->parent                                   ->parent
2464  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2465  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2466  *
2467  * , so when we iterate from @leaf to @root, we actually print the lock
2468  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2469  *
2470  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2471  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2472  * trace of L1 in the dependency path, which is alright, because most of the
2473  * time we can figure out where L1 is held from the call trace of L2.
2474  */
2475 static void __used
2476 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2477 					   struct lock_list *root)
2478 {
2479 	struct lock_list *entry = leaf;
2480 	const struct lock_trace *trace = NULL;
2481 	int depth;
2482 
2483 	/*compute depth from generated tree by BFS*/
2484 	depth = get_lock_depth(leaf);
2485 
2486 	do {
2487 		print_lock_class_header(entry->class, depth);
2488 		if (trace) {
2489 			printk("%*s ... acquired at:\n", depth, "");
2490 			print_lock_trace(trace, 2);
2491 			printk("\n");
2492 		}
2493 
2494 		/*
2495 		 * Record the pointer to the trace for the next lock_list
2496 		 * entry, see the comments for the function.
2497 		 */
2498 		trace = entry->trace;
2499 
2500 		if (depth == 0 && (entry != root)) {
2501 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2502 			break;
2503 		}
2504 
2505 		entry = get_lock_parent(entry);
2506 		depth--;
2507 	} while (entry && (depth >= 0));
2508 }
2509 
2510 static void
2511 print_irq_lock_scenario(struct lock_list *safe_entry,
2512 			struct lock_list *unsafe_entry,
2513 			struct lock_class *prev_class,
2514 			struct lock_class *next_class)
2515 {
2516 	struct lock_class *safe_class = safe_entry->class;
2517 	struct lock_class *unsafe_class = unsafe_entry->class;
2518 	struct lock_class *middle_class = prev_class;
2519 
2520 	if (middle_class == safe_class)
2521 		middle_class = next_class;
2522 
2523 	/*
2524 	 * A direct locking problem where unsafe_class lock is taken
2525 	 * directly by safe_class lock, then all we need to show
2526 	 * is the deadlock scenario, as it is obvious that the
2527 	 * unsafe lock is taken under the safe lock.
2528 	 *
2529 	 * But if there is a chain instead, where the safe lock takes
2530 	 * an intermediate lock (middle_class) where this lock is
2531 	 * not the same as the safe lock, then the lock chain is
2532 	 * used to describe the problem. Otherwise we would need
2533 	 * to show a different CPU case for each link in the chain
2534 	 * from the safe_class lock to the unsafe_class lock.
2535 	 */
2536 	if (middle_class != unsafe_class) {
2537 		printk("Chain exists of:\n  ");
2538 		__print_lock_name(NULL, safe_class);
2539 		printk(KERN_CONT " --> ");
2540 		__print_lock_name(NULL, middle_class);
2541 		printk(KERN_CONT " --> ");
2542 		__print_lock_name(NULL, unsafe_class);
2543 		printk(KERN_CONT "\n\n");
2544 	}
2545 
2546 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2547 	printk("       CPU0                    CPU1\n");
2548 	printk("       ----                    ----\n");
2549 	printk("  lock(");
2550 	__print_lock_name(NULL, unsafe_class);
2551 	printk(KERN_CONT ");\n");
2552 	printk("                               local_irq_disable();\n");
2553 	printk("                               lock(");
2554 	__print_lock_name(NULL, safe_class);
2555 	printk(KERN_CONT ");\n");
2556 	printk("                               lock(");
2557 	__print_lock_name(NULL, middle_class);
2558 	printk(KERN_CONT ");\n");
2559 	printk("  <Interrupt>\n");
2560 	printk("    lock(");
2561 	__print_lock_name(NULL, safe_class);
2562 	printk(KERN_CONT ");\n");
2563 	printk("\n *** DEADLOCK ***\n\n");
2564 }
2565 
2566 static void
2567 print_bad_irq_dependency(struct task_struct *curr,
2568 			 struct lock_list *prev_root,
2569 			 struct lock_list *next_root,
2570 			 struct lock_list *backwards_entry,
2571 			 struct lock_list *forwards_entry,
2572 			 struct held_lock *prev,
2573 			 struct held_lock *next,
2574 			 enum lock_usage_bit bit1,
2575 			 enum lock_usage_bit bit2,
2576 			 const char *irqclass)
2577 {
2578 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2579 		return;
2580 
2581 	pr_warn("\n");
2582 	pr_warn("=====================================================\n");
2583 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2584 		irqclass, irqclass);
2585 	print_kernel_ident();
2586 	pr_warn("-----------------------------------------------------\n");
2587 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2588 		curr->comm, task_pid_nr(curr),
2589 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2590 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2591 		lockdep_hardirqs_enabled(),
2592 		curr->softirqs_enabled);
2593 	print_lock(next);
2594 
2595 	pr_warn("\nand this task is already holding:\n");
2596 	print_lock(prev);
2597 	pr_warn("which would create a new lock dependency:\n");
2598 	print_lock_name(prev, hlock_class(prev));
2599 	pr_cont(" ->");
2600 	print_lock_name(next, hlock_class(next));
2601 	pr_cont("\n");
2602 
2603 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2604 		irqclass);
2605 	print_lock_name(NULL, backwards_entry->class);
2606 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2607 
2608 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2609 
2610 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2611 	print_lock_name(NULL, forwards_entry->class);
2612 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2613 	pr_warn("...");
2614 
2615 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2616 
2617 	pr_warn("\nother info that might help us debug this:\n\n");
2618 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2619 				hlock_class(prev), hlock_class(next));
2620 
2621 	lockdep_print_held_locks(curr);
2622 
2623 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2624 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2625 
2626 	pr_warn("\nthe dependencies between the lock to be acquired");
2627 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2628 	next_root->trace = save_trace();
2629 	if (!next_root->trace)
2630 		return;
2631 	print_shortest_lock_dependencies(forwards_entry, next_root);
2632 
2633 	pr_warn("\nstack backtrace:\n");
2634 	dump_stack();
2635 }
2636 
2637 static const char *state_names[] = {
2638 #define LOCKDEP_STATE(__STATE) \
2639 	__stringify(__STATE),
2640 #include "lockdep_states.h"
2641 #undef LOCKDEP_STATE
2642 };
2643 
2644 static const char *state_rnames[] = {
2645 #define LOCKDEP_STATE(__STATE) \
2646 	__stringify(__STATE)"-READ",
2647 #include "lockdep_states.h"
2648 #undef LOCKDEP_STATE
2649 };
2650 
2651 static inline const char *state_name(enum lock_usage_bit bit)
2652 {
2653 	if (bit & LOCK_USAGE_READ_MASK)
2654 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2655 	else
2656 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2657 }
2658 
2659 /*
2660  * The bit number is encoded like:
2661  *
2662  *  bit0: 0 exclusive, 1 read lock
2663  *  bit1: 0 used in irq, 1 irq enabled
2664  *  bit2-n: state
2665  */
2666 static int exclusive_bit(int new_bit)
2667 {
2668 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2669 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2670 
2671 	/*
2672 	 * keep state, bit flip the direction and strip read.
2673 	 */
2674 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2675 }
2676 
2677 /*
2678  * Observe that when given a bitmask where each bitnr is encoded as above, a
2679  * right shift of the mask transforms the individual bitnrs as -1 and
2680  * conversely, a left shift transforms into +1 for the individual bitnrs.
2681  *
2682  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2683  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2684  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2685  *
2686  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2687  *
2688  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2689  * all bits set) and recompose with bitnr1 flipped.
2690  */
2691 static unsigned long invert_dir_mask(unsigned long mask)
2692 {
2693 	unsigned long excl = 0;
2694 
2695 	/* Invert dir */
2696 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2697 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2698 
2699 	return excl;
2700 }
2701 
2702 /*
2703  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2704  * usage may cause deadlock too, for example:
2705  *
2706  * P1				P2
2707  * <irq disabled>
2708  * write_lock(l1);		<irq enabled>
2709  *				read_lock(l2);
2710  * write_lock(l2);
2711  * 				<in irq>
2712  * 				read_lock(l1);
2713  *
2714  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2715  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2716  * deadlock.
2717  *
2718  * In fact, all of the following cases may cause deadlocks:
2719  *
2720  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2721  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2722  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2723  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2724  *
2725  * As a result, to calculate the "exclusive mask", first we invert the
2726  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2727  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2728  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2729  */
2730 static unsigned long exclusive_mask(unsigned long mask)
2731 {
2732 	unsigned long excl = invert_dir_mask(mask);
2733 
2734 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2735 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2736 
2737 	return excl;
2738 }
2739 
2740 /*
2741  * Retrieve the _possible_ original mask to which @mask is
2742  * exclusive. Ie: this is the opposite of exclusive_mask().
2743  * Note that 2 possible original bits can match an exclusive
2744  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2745  * cleared. So both are returned for each exclusive bit.
2746  */
2747 static unsigned long original_mask(unsigned long mask)
2748 {
2749 	unsigned long excl = invert_dir_mask(mask);
2750 
2751 	/* Include read in existing usages */
2752 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2753 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2754 
2755 	return excl;
2756 }
2757 
2758 /*
2759  * Find the first pair of bit match between an original
2760  * usage mask and an exclusive usage mask.
2761  */
2762 static int find_exclusive_match(unsigned long mask,
2763 				unsigned long excl_mask,
2764 				enum lock_usage_bit *bitp,
2765 				enum lock_usage_bit *excl_bitp)
2766 {
2767 	int bit, excl, excl_read;
2768 
2769 	for_each_set_bit(bit, &mask, LOCK_USED) {
2770 		/*
2771 		 * exclusive_bit() strips the read bit, however,
2772 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2773 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2774 		 */
2775 		excl = exclusive_bit(bit);
2776 		excl_read = excl | LOCK_USAGE_READ_MASK;
2777 		if (excl_mask & lock_flag(excl)) {
2778 			*bitp = bit;
2779 			*excl_bitp = excl;
2780 			return 0;
2781 		} else if (excl_mask & lock_flag(excl_read)) {
2782 			*bitp = bit;
2783 			*excl_bitp = excl_read;
2784 			return 0;
2785 		}
2786 	}
2787 	return -1;
2788 }
2789 
2790 /*
2791  * Prove that the new dependency does not connect a hardirq-safe(-read)
2792  * lock with a hardirq-unsafe lock - to achieve this we search
2793  * the backwards-subgraph starting at <prev>, and the
2794  * forwards-subgraph starting at <next>:
2795  */
2796 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2797 			   struct held_lock *next)
2798 {
2799 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2800 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2801 	struct lock_list *target_entry1;
2802 	struct lock_list *target_entry;
2803 	struct lock_list this, that;
2804 	enum bfs_result ret;
2805 
2806 	/*
2807 	 * Step 1: gather all hard/soft IRQs usages backward in an
2808 	 * accumulated usage mask.
2809 	 */
2810 	bfs_init_rootb(&this, prev);
2811 
2812 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2813 	if (bfs_error(ret)) {
2814 		print_bfs_bug(ret);
2815 		return 0;
2816 	}
2817 
2818 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2819 	if (!usage_mask)
2820 		return 1;
2821 
2822 	/*
2823 	 * Step 2: find exclusive uses forward that match the previous
2824 	 * backward accumulated mask.
2825 	 */
2826 	forward_mask = exclusive_mask(usage_mask);
2827 
2828 	bfs_init_root(&that, next);
2829 
2830 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2831 	if (bfs_error(ret)) {
2832 		print_bfs_bug(ret);
2833 		return 0;
2834 	}
2835 	if (ret == BFS_RNOMATCH)
2836 		return 1;
2837 
2838 	/*
2839 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2840 	 * list whose usage mask matches the exclusive usage mask from the
2841 	 * lock found on the forward list.
2842 	 *
2843 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2844 	 * the follow case:
2845 	 *
2846 	 * When trying to add A -> B to the graph, we find that there is a
2847 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2848 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2849 	 * invert bits of M's usage_mask, we will find another lock N that is
2850 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2851 	 * cause a inversion deadlock.
2852 	 */
2853 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2854 
2855 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2856 	if (bfs_error(ret)) {
2857 		print_bfs_bug(ret);
2858 		return 0;
2859 	}
2860 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2861 		return 1;
2862 
2863 	/*
2864 	 * Step 4: narrow down to a pair of incompatible usage bits
2865 	 * and report it.
2866 	 */
2867 	ret = find_exclusive_match(target_entry->class->usage_mask,
2868 				   target_entry1->class->usage_mask,
2869 				   &backward_bit, &forward_bit);
2870 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2871 		return 1;
2872 
2873 	print_bad_irq_dependency(curr, &this, &that,
2874 				 target_entry, target_entry1,
2875 				 prev, next,
2876 				 backward_bit, forward_bit,
2877 				 state_name(backward_bit));
2878 
2879 	return 0;
2880 }
2881 
2882 #else
2883 
2884 static inline int check_irq_usage(struct task_struct *curr,
2885 				  struct held_lock *prev, struct held_lock *next)
2886 {
2887 	return 1;
2888 }
2889 
2890 static inline bool usage_skip(struct lock_list *entry, void *mask)
2891 {
2892 	return false;
2893 }
2894 
2895 #endif /* CONFIG_TRACE_IRQFLAGS */
2896 
2897 #ifdef CONFIG_LOCKDEP_SMALL
2898 /*
2899  * Check that the dependency graph starting at <src> can lead to
2900  * <target> or not. If it can, <src> -> <target> dependency is already
2901  * in the graph.
2902  *
2903  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2904  * any error appears in the bfs search.
2905  */
2906 static noinline enum bfs_result
2907 check_redundant(struct held_lock *src, struct held_lock *target)
2908 {
2909 	enum bfs_result ret;
2910 	struct lock_list *target_entry;
2911 	struct lock_list src_entry;
2912 
2913 	bfs_init_root(&src_entry, src);
2914 	/*
2915 	 * Special setup for check_redundant().
2916 	 *
2917 	 * To report redundant, we need to find a strong dependency path that
2918 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2919 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2920 	 * we achieve this by setting the initial node's ->only_xr to true in
2921 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2922 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2923 	 */
2924 	src_entry.only_xr = src->read == 0;
2925 
2926 	debug_atomic_inc(nr_redundant_checks);
2927 
2928 	/*
2929 	 * Note: we skip local_lock() for redundant check, because as the
2930 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2931 	 * the same.
2932 	 */
2933 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2934 
2935 	if (ret == BFS_RMATCH)
2936 		debug_atomic_inc(nr_redundant);
2937 
2938 	return ret;
2939 }
2940 
2941 #else
2942 
2943 static inline enum bfs_result
2944 check_redundant(struct held_lock *src, struct held_lock *target)
2945 {
2946 	return BFS_RNOMATCH;
2947 }
2948 
2949 #endif
2950 
2951 static void inc_chains(int irq_context)
2952 {
2953 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2954 		nr_hardirq_chains++;
2955 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2956 		nr_softirq_chains++;
2957 	else
2958 		nr_process_chains++;
2959 }
2960 
2961 static void dec_chains(int irq_context)
2962 {
2963 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2964 		nr_hardirq_chains--;
2965 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2966 		nr_softirq_chains--;
2967 	else
2968 		nr_process_chains--;
2969 }
2970 
2971 static void
2972 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2973 {
2974 	struct lock_class *next = hlock_class(nxt);
2975 	struct lock_class *prev = hlock_class(prv);
2976 
2977 	printk(" Possible unsafe locking scenario:\n\n");
2978 	printk("       CPU0\n");
2979 	printk("       ----\n");
2980 	printk("  lock(");
2981 	__print_lock_name(prv, prev);
2982 	printk(KERN_CONT ");\n");
2983 	printk("  lock(");
2984 	__print_lock_name(nxt, next);
2985 	printk(KERN_CONT ");\n");
2986 	printk("\n *** DEADLOCK ***\n\n");
2987 	printk(" May be due to missing lock nesting notation\n\n");
2988 }
2989 
2990 static void
2991 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2992 		   struct held_lock *next)
2993 {
2994 	struct lock_class *class = hlock_class(prev);
2995 
2996 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2997 		return;
2998 
2999 	pr_warn("\n");
3000 	pr_warn("============================================\n");
3001 	pr_warn("WARNING: possible recursive locking detected\n");
3002 	print_kernel_ident();
3003 	pr_warn("--------------------------------------------\n");
3004 	pr_warn("%s/%d is trying to acquire lock:\n",
3005 		curr->comm, task_pid_nr(curr));
3006 	print_lock(next);
3007 	pr_warn("\nbut task is already holding lock:\n");
3008 	print_lock(prev);
3009 
3010 	if (class->cmp_fn) {
3011 		pr_warn("and the lock comparison function returns %i:\n",
3012 			class->cmp_fn(prev->instance, next->instance));
3013 	}
3014 
3015 	pr_warn("\nother info that might help us debug this:\n");
3016 	print_deadlock_scenario(next, prev);
3017 	lockdep_print_held_locks(curr);
3018 
3019 	pr_warn("\nstack backtrace:\n");
3020 	dump_stack();
3021 }
3022 
3023 /*
3024  * Check whether we are holding such a class already.
3025  *
3026  * (Note that this has to be done separately, because the graph cannot
3027  * detect such classes of deadlocks.)
3028  *
3029  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3030  * lock class is held but nest_lock is also held, i.e. we rely on the
3031  * nest_lock to avoid the deadlock.
3032  */
3033 static int
3034 check_deadlock(struct task_struct *curr, struct held_lock *next)
3035 {
3036 	struct lock_class *class;
3037 	struct held_lock *prev;
3038 	struct held_lock *nest = NULL;
3039 	int i;
3040 
3041 	for (i = 0; i < curr->lockdep_depth; i++) {
3042 		prev = curr->held_locks + i;
3043 
3044 		if (prev->instance == next->nest_lock)
3045 			nest = prev;
3046 
3047 		if (hlock_class(prev) != hlock_class(next))
3048 			continue;
3049 
3050 		/*
3051 		 * Allow read-after-read recursion of the same
3052 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3053 		 */
3054 		if ((next->read == 2) && prev->read)
3055 			continue;
3056 
3057 		class = hlock_class(prev);
3058 
3059 		if (class->cmp_fn &&
3060 		    class->cmp_fn(prev->instance, next->instance) < 0)
3061 			continue;
3062 
3063 		/*
3064 		 * We're holding the nest_lock, which serializes this lock's
3065 		 * nesting behaviour.
3066 		 */
3067 		if (nest)
3068 			return 2;
3069 
3070 		print_deadlock_bug(curr, prev, next);
3071 		return 0;
3072 	}
3073 	return 1;
3074 }
3075 
3076 /*
3077  * There was a chain-cache miss, and we are about to add a new dependency
3078  * to a previous lock. We validate the following rules:
3079  *
3080  *  - would the adding of the <prev> -> <next> dependency create a
3081  *    circular dependency in the graph? [== circular deadlock]
3082  *
3083  *  - does the new prev->next dependency connect any hardirq-safe lock
3084  *    (in the full backwards-subgraph starting at <prev>) with any
3085  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3086  *    <next>)? [== illegal lock inversion with hardirq contexts]
3087  *
3088  *  - does the new prev->next dependency connect any softirq-safe lock
3089  *    (in the full backwards-subgraph starting at <prev>) with any
3090  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3091  *    <next>)? [== illegal lock inversion with softirq contexts]
3092  *
3093  * any of these scenarios could lead to a deadlock.
3094  *
3095  * Then if all the validations pass, we add the forwards and backwards
3096  * dependency.
3097  */
3098 static int
3099 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3100 	       struct held_lock *next, u16 distance,
3101 	       struct lock_trace **const trace)
3102 {
3103 	struct lock_list *entry;
3104 	enum bfs_result ret;
3105 
3106 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3107 		/*
3108 		 * The warning statements below may trigger a use-after-free
3109 		 * of the class name. It is better to trigger a use-after free
3110 		 * and to have the class name most of the time instead of not
3111 		 * having the class name available.
3112 		 */
3113 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3114 			  "Detected use-after-free of lock class %px/%s\n",
3115 			  hlock_class(prev),
3116 			  hlock_class(prev)->name);
3117 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3118 			  "Detected use-after-free of lock class %px/%s\n",
3119 			  hlock_class(next),
3120 			  hlock_class(next)->name);
3121 		return 2;
3122 	}
3123 
3124 	if (prev->class_idx == next->class_idx) {
3125 		struct lock_class *class = hlock_class(prev);
3126 
3127 		if (class->cmp_fn &&
3128 		    class->cmp_fn(prev->instance, next->instance) < 0)
3129 			return 2;
3130 	}
3131 
3132 	/*
3133 	 * Prove that the new <prev> -> <next> dependency would not
3134 	 * create a circular dependency in the graph. (We do this by
3135 	 * a breadth-first search into the graph starting at <next>,
3136 	 * and check whether we can reach <prev>.)
3137 	 *
3138 	 * The search is limited by the size of the circular queue (i.e.,
3139 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3140 	 * in the graph whose neighbours are to be checked.
3141 	 */
3142 	ret = check_noncircular(next, prev, trace);
3143 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3144 		return 0;
3145 
3146 	if (!check_irq_usage(curr, prev, next))
3147 		return 0;
3148 
3149 	/*
3150 	 * Is the <prev> -> <next> dependency already present?
3151 	 *
3152 	 * (this may occur even though this is a new chain: consider
3153 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3154 	 *  chains - the second one will be new, but L1 already has
3155 	 *  L2 added to its dependency list, due to the first chain.)
3156 	 */
3157 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3158 		if (entry->class == hlock_class(next)) {
3159 			if (distance == 1)
3160 				entry->distance = 1;
3161 			entry->dep |= calc_dep(prev, next);
3162 
3163 			/*
3164 			 * Also, update the reverse dependency in @next's
3165 			 * ->locks_before list.
3166 			 *
3167 			 *  Here we reuse @entry as the cursor, which is fine
3168 			 *  because we won't go to the next iteration of the
3169 			 *  outer loop:
3170 			 *
3171 			 *  For normal cases, we return in the inner loop.
3172 			 *
3173 			 *  If we fail to return, we have inconsistency, i.e.
3174 			 *  <prev>::locks_after contains <next> while
3175 			 *  <next>::locks_before doesn't contain <prev>. In
3176 			 *  that case, we return after the inner and indicate
3177 			 *  something is wrong.
3178 			 */
3179 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3180 				if (entry->class == hlock_class(prev)) {
3181 					if (distance == 1)
3182 						entry->distance = 1;
3183 					entry->dep |= calc_depb(prev, next);
3184 					return 1;
3185 				}
3186 			}
3187 
3188 			/* <prev> is not found in <next>::locks_before */
3189 			return 0;
3190 		}
3191 	}
3192 
3193 	/*
3194 	 * Is the <prev> -> <next> link redundant?
3195 	 */
3196 	ret = check_redundant(prev, next);
3197 	if (bfs_error(ret))
3198 		return 0;
3199 	else if (ret == BFS_RMATCH)
3200 		return 2;
3201 
3202 	if (!*trace) {
3203 		*trace = save_trace();
3204 		if (!*trace)
3205 			return 0;
3206 	}
3207 
3208 	/*
3209 	 * Ok, all validations passed, add the new lock
3210 	 * to the previous lock's dependency list:
3211 	 */
3212 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3213 			       &hlock_class(prev)->locks_after, distance,
3214 			       calc_dep(prev, next), *trace);
3215 
3216 	if (!ret)
3217 		return 0;
3218 
3219 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3220 			       &hlock_class(next)->locks_before, distance,
3221 			       calc_depb(prev, next), *trace);
3222 	if (!ret)
3223 		return 0;
3224 
3225 	return 2;
3226 }
3227 
3228 /*
3229  * Add the dependency to all directly-previous locks that are 'relevant'.
3230  * The ones that are relevant are (in increasing distance from curr):
3231  * all consecutive trylock entries and the final non-trylock entry - or
3232  * the end of this context's lock-chain - whichever comes first.
3233  */
3234 static int
3235 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3236 {
3237 	struct lock_trace *trace = NULL;
3238 	int depth = curr->lockdep_depth;
3239 	struct held_lock *hlock;
3240 
3241 	/*
3242 	 * Debugging checks.
3243 	 *
3244 	 * Depth must not be zero for a non-head lock:
3245 	 */
3246 	if (!depth)
3247 		goto out_bug;
3248 	/*
3249 	 * At least two relevant locks must exist for this
3250 	 * to be a head:
3251 	 */
3252 	if (curr->held_locks[depth].irq_context !=
3253 			curr->held_locks[depth-1].irq_context)
3254 		goto out_bug;
3255 
3256 	for (;;) {
3257 		u16 distance = curr->lockdep_depth - depth + 1;
3258 		hlock = curr->held_locks + depth - 1;
3259 
3260 		if (hlock->check) {
3261 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3262 			if (!ret)
3263 				return 0;
3264 
3265 			/*
3266 			 * Stop after the first non-trylock entry,
3267 			 * as non-trylock entries have added their
3268 			 * own direct dependencies already, so this
3269 			 * lock is connected to them indirectly:
3270 			 */
3271 			if (!hlock->trylock)
3272 				break;
3273 		}
3274 
3275 		depth--;
3276 		/*
3277 		 * End of lock-stack?
3278 		 */
3279 		if (!depth)
3280 			break;
3281 		/*
3282 		 * Stop the search if we cross into another context:
3283 		 */
3284 		if (curr->held_locks[depth].irq_context !=
3285 				curr->held_locks[depth-1].irq_context)
3286 			break;
3287 	}
3288 	return 1;
3289 out_bug:
3290 	if (!debug_locks_off_graph_unlock())
3291 		return 0;
3292 
3293 	/*
3294 	 * Clearly we all shouldn't be here, but since we made it we
3295 	 * can reliable say we messed up our state. See the above two
3296 	 * gotos for reasons why we could possibly end up here.
3297 	 */
3298 	WARN_ON(1);
3299 
3300 	return 0;
3301 }
3302 
3303 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3304 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3305 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3306 unsigned long nr_zapped_lock_chains;
3307 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3308 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3309 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3310 
3311 /*
3312  * The first 2 chain_hlocks entries in the chain block in the bucket
3313  * list contains the following meta data:
3314  *
3315  *   entry[0]:
3316  *     Bit    15 - always set to 1 (it is not a class index)
3317  *     Bits 0-14 - upper 15 bits of the next block index
3318  *   entry[1]    - lower 16 bits of next block index
3319  *
3320  * A next block index of all 1 bits means it is the end of the list.
3321  *
3322  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3323  * the chain block size:
3324  *
3325  *   entry[2] - upper 16 bits of the chain block size
3326  *   entry[3] - lower 16 bits of the chain block size
3327  */
3328 #define MAX_CHAIN_BUCKETS	16
3329 #define CHAIN_BLK_FLAG		(1U << 15)
3330 #define CHAIN_BLK_LIST_END	0xFFFFU
3331 
3332 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3333 
3334 static inline int size_to_bucket(int size)
3335 {
3336 	if (size > MAX_CHAIN_BUCKETS)
3337 		return 0;
3338 
3339 	return size - 1;
3340 }
3341 
3342 /*
3343  * Iterate all the chain blocks in a bucket.
3344  */
3345 #define for_each_chain_block(bucket, prev, curr)		\
3346 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3347 	     (curr) >= 0;					\
3348 	     (prev) = (curr), (curr) = chain_block_next(curr))
3349 
3350 /*
3351  * next block or -1
3352  */
3353 static inline int chain_block_next(int offset)
3354 {
3355 	int next = chain_hlocks[offset];
3356 
3357 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3358 
3359 	if (next == CHAIN_BLK_LIST_END)
3360 		return -1;
3361 
3362 	next &= ~CHAIN_BLK_FLAG;
3363 	next <<= 16;
3364 	next |= chain_hlocks[offset + 1];
3365 
3366 	return next;
3367 }
3368 
3369 /*
3370  * bucket-0 only
3371  */
3372 static inline int chain_block_size(int offset)
3373 {
3374 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3375 }
3376 
3377 static inline void init_chain_block(int offset, int next, int bucket, int size)
3378 {
3379 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3380 	chain_hlocks[offset + 1] = (u16)next;
3381 
3382 	if (size && !bucket) {
3383 		chain_hlocks[offset + 2] = size >> 16;
3384 		chain_hlocks[offset + 3] = (u16)size;
3385 	}
3386 }
3387 
3388 static inline void add_chain_block(int offset, int size)
3389 {
3390 	int bucket = size_to_bucket(size);
3391 	int next = chain_block_buckets[bucket];
3392 	int prev, curr;
3393 
3394 	if (unlikely(size < 2)) {
3395 		/*
3396 		 * We can't store single entries on the freelist. Leak them.
3397 		 *
3398 		 * One possible way out would be to uniquely mark them, other
3399 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3400 		 * the block before it is re-added.
3401 		 */
3402 		if (size)
3403 			nr_lost_chain_hlocks++;
3404 		return;
3405 	}
3406 
3407 	nr_free_chain_hlocks += size;
3408 	if (!bucket) {
3409 		nr_large_chain_blocks++;
3410 
3411 		/*
3412 		 * Variable sized, sort large to small.
3413 		 */
3414 		for_each_chain_block(0, prev, curr) {
3415 			if (size >= chain_block_size(curr))
3416 				break;
3417 		}
3418 		init_chain_block(offset, curr, 0, size);
3419 		if (prev < 0)
3420 			chain_block_buckets[0] = offset;
3421 		else
3422 			init_chain_block(prev, offset, 0, 0);
3423 		return;
3424 	}
3425 	/*
3426 	 * Fixed size, add to head.
3427 	 */
3428 	init_chain_block(offset, next, bucket, size);
3429 	chain_block_buckets[bucket] = offset;
3430 }
3431 
3432 /*
3433  * Only the first block in the list can be deleted.
3434  *
3435  * For the variable size bucket[0], the first block (the largest one) is
3436  * returned, broken up and put back into the pool. So if a chain block of
3437  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3438  * queued up after the primordial chain block and never be used until the
3439  * hlock entries in the primordial chain block is almost used up. That
3440  * causes fragmentation and reduce allocation efficiency. That can be
3441  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3442  */
3443 static inline void del_chain_block(int bucket, int size, int next)
3444 {
3445 	nr_free_chain_hlocks -= size;
3446 	chain_block_buckets[bucket] = next;
3447 
3448 	if (!bucket)
3449 		nr_large_chain_blocks--;
3450 }
3451 
3452 static void init_chain_block_buckets(void)
3453 {
3454 	int i;
3455 
3456 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3457 		chain_block_buckets[i] = -1;
3458 
3459 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3460 }
3461 
3462 /*
3463  * Return offset of a chain block of the right size or -1 if not found.
3464  *
3465  * Fairly simple worst-fit allocator with the addition of a number of size
3466  * specific free lists.
3467  */
3468 static int alloc_chain_hlocks(int req)
3469 {
3470 	int bucket, curr, size;
3471 
3472 	/*
3473 	 * We rely on the MSB to act as an escape bit to denote freelist
3474 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3475 	 */
3476 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3477 
3478 	init_data_structures_once();
3479 
3480 	if (nr_free_chain_hlocks < req)
3481 		return -1;
3482 
3483 	/*
3484 	 * We require a minimum of 2 (u16) entries to encode a freelist
3485 	 * 'pointer'.
3486 	 */
3487 	req = max(req, 2);
3488 	bucket = size_to_bucket(req);
3489 	curr = chain_block_buckets[bucket];
3490 
3491 	if (bucket) {
3492 		if (curr >= 0) {
3493 			del_chain_block(bucket, req, chain_block_next(curr));
3494 			return curr;
3495 		}
3496 		/* Try bucket 0 */
3497 		curr = chain_block_buckets[0];
3498 	}
3499 
3500 	/*
3501 	 * The variable sized freelist is sorted by size; the first entry is
3502 	 * the largest. Use it if it fits.
3503 	 */
3504 	if (curr >= 0) {
3505 		size = chain_block_size(curr);
3506 		if (likely(size >= req)) {
3507 			del_chain_block(0, size, chain_block_next(curr));
3508 			add_chain_block(curr + req, size - req);
3509 			return curr;
3510 		}
3511 	}
3512 
3513 	/*
3514 	 * Last resort, split a block in a larger sized bucket.
3515 	 */
3516 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3517 		bucket = size_to_bucket(size);
3518 		curr = chain_block_buckets[bucket];
3519 		if (curr < 0)
3520 			continue;
3521 
3522 		del_chain_block(bucket, size, chain_block_next(curr));
3523 		add_chain_block(curr + req, size - req);
3524 		return curr;
3525 	}
3526 
3527 	return -1;
3528 }
3529 
3530 static inline void free_chain_hlocks(int base, int size)
3531 {
3532 	add_chain_block(base, max(size, 2));
3533 }
3534 
3535 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3536 {
3537 	u16 chain_hlock = chain_hlocks[chain->base + i];
3538 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3539 
3540 	return lock_classes + class_idx;
3541 }
3542 
3543 /*
3544  * Returns the index of the first held_lock of the current chain
3545  */
3546 static inline int get_first_held_lock(struct task_struct *curr,
3547 					struct held_lock *hlock)
3548 {
3549 	int i;
3550 	struct held_lock *hlock_curr;
3551 
3552 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3553 		hlock_curr = curr->held_locks + i;
3554 		if (hlock_curr->irq_context != hlock->irq_context)
3555 			break;
3556 
3557 	}
3558 
3559 	return ++i;
3560 }
3561 
3562 #ifdef CONFIG_DEBUG_LOCKDEP
3563 /*
3564  * Returns the next chain_key iteration
3565  */
3566 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3567 {
3568 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3569 
3570 	printk(" hlock_id:%d -> chain_key:%016Lx",
3571 		(unsigned int)hlock_id,
3572 		(unsigned long long)new_chain_key);
3573 	return new_chain_key;
3574 }
3575 
3576 static void
3577 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3578 {
3579 	struct held_lock *hlock;
3580 	u64 chain_key = INITIAL_CHAIN_KEY;
3581 	int depth = curr->lockdep_depth;
3582 	int i = get_first_held_lock(curr, hlock_next);
3583 
3584 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3585 		hlock_next->irq_context);
3586 	for (; i < depth; i++) {
3587 		hlock = curr->held_locks + i;
3588 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3589 
3590 		print_lock(hlock);
3591 	}
3592 
3593 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3594 	print_lock(hlock_next);
3595 }
3596 
3597 static void print_chain_keys_chain(struct lock_chain *chain)
3598 {
3599 	int i;
3600 	u64 chain_key = INITIAL_CHAIN_KEY;
3601 	u16 hlock_id;
3602 
3603 	printk("depth: %u\n", chain->depth);
3604 	for (i = 0; i < chain->depth; i++) {
3605 		hlock_id = chain_hlocks[chain->base + i];
3606 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3607 
3608 		print_lock_name(NULL, lock_classes + chain_hlock_class_idx(hlock_id));
3609 		printk("\n");
3610 	}
3611 }
3612 
3613 static void print_collision(struct task_struct *curr,
3614 			struct held_lock *hlock_next,
3615 			struct lock_chain *chain)
3616 {
3617 	pr_warn("\n");
3618 	pr_warn("============================\n");
3619 	pr_warn("WARNING: chain_key collision\n");
3620 	print_kernel_ident();
3621 	pr_warn("----------------------------\n");
3622 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3623 	pr_warn("Hash chain already cached but the contents don't match!\n");
3624 
3625 	pr_warn("Held locks:");
3626 	print_chain_keys_held_locks(curr, hlock_next);
3627 
3628 	pr_warn("Locks in cached chain:");
3629 	print_chain_keys_chain(chain);
3630 
3631 	pr_warn("\nstack backtrace:\n");
3632 	dump_stack();
3633 }
3634 #endif
3635 
3636 /*
3637  * Checks whether the chain and the current held locks are consistent
3638  * in depth and also in content. If they are not it most likely means
3639  * that there was a collision during the calculation of the chain_key.
3640  * Returns: 0 not passed, 1 passed
3641  */
3642 static int check_no_collision(struct task_struct *curr,
3643 			struct held_lock *hlock,
3644 			struct lock_chain *chain)
3645 {
3646 #ifdef CONFIG_DEBUG_LOCKDEP
3647 	int i, j, id;
3648 
3649 	i = get_first_held_lock(curr, hlock);
3650 
3651 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3652 		print_collision(curr, hlock, chain);
3653 		return 0;
3654 	}
3655 
3656 	for (j = 0; j < chain->depth - 1; j++, i++) {
3657 		id = hlock_id(&curr->held_locks[i]);
3658 
3659 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3660 			print_collision(curr, hlock, chain);
3661 			return 0;
3662 		}
3663 	}
3664 #endif
3665 	return 1;
3666 }
3667 
3668 /*
3669  * Given an index that is >= -1, return the index of the next lock chain.
3670  * Return -2 if there is no next lock chain.
3671  */
3672 long lockdep_next_lockchain(long i)
3673 {
3674 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3675 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3676 }
3677 
3678 unsigned long lock_chain_count(void)
3679 {
3680 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3681 }
3682 
3683 /* Must be called with the graph lock held. */
3684 static struct lock_chain *alloc_lock_chain(void)
3685 {
3686 	int idx = find_first_zero_bit(lock_chains_in_use,
3687 				      ARRAY_SIZE(lock_chains));
3688 
3689 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3690 		return NULL;
3691 	__set_bit(idx, lock_chains_in_use);
3692 	return lock_chains + idx;
3693 }
3694 
3695 /*
3696  * Adds a dependency chain into chain hashtable. And must be called with
3697  * graph_lock held.
3698  *
3699  * Return 0 if fail, and graph_lock is released.
3700  * Return 1 if succeed, with graph_lock held.
3701  */
3702 static inline int add_chain_cache(struct task_struct *curr,
3703 				  struct held_lock *hlock,
3704 				  u64 chain_key)
3705 {
3706 	struct hlist_head *hash_head = chainhashentry(chain_key);
3707 	struct lock_chain *chain;
3708 	int i, j;
3709 
3710 	/*
3711 	 * The caller must hold the graph lock, ensure we've got IRQs
3712 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3713 	 * lockdep won't complain about its own locking errors.
3714 	 */
3715 	if (lockdep_assert_locked())
3716 		return 0;
3717 
3718 	chain = alloc_lock_chain();
3719 	if (!chain) {
3720 		if (!debug_locks_off_graph_unlock())
3721 			return 0;
3722 
3723 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3724 		dump_stack();
3725 		return 0;
3726 	}
3727 	chain->chain_key = chain_key;
3728 	chain->irq_context = hlock->irq_context;
3729 	i = get_first_held_lock(curr, hlock);
3730 	chain->depth = curr->lockdep_depth + 1 - i;
3731 
3732 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3733 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3734 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3735 
3736 	j = alloc_chain_hlocks(chain->depth);
3737 	if (j < 0) {
3738 		if (!debug_locks_off_graph_unlock())
3739 			return 0;
3740 
3741 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3742 		dump_stack();
3743 		return 0;
3744 	}
3745 
3746 	chain->base = j;
3747 	for (j = 0; j < chain->depth - 1; j++, i++) {
3748 		int lock_id = hlock_id(curr->held_locks + i);
3749 
3750 		chain_hlocks[chain->base + j] = lock_id;
3751 	}
3752 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3753 	hlist_add_head_rcu(&chain->entry, hash_head);
3754 	debug_atomic_inc(chain_lookup_misses);
3755 	inc_chains(chain->irq_context);
3756 
3757 	return 1;
3758 }
3759 
3760 /*
3761  * Look up a dependency chain. Must be called with either the graph lock or
3762  * the RCU read lock held.
3763  */
3764 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3765 {
3766 	struct hlist_head *hash_head = chainhashentry(chain_key);
3767 	struct lock_chain *chain;
3768 
3769 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3770 		if (READ_ONCE(chain->chain_key) == chain_key) {
3771 			debug_atomic_inc(chain_lookup_hits);
3772 			return chain;
3773 		}
3774 	}
3775 	return NULL;
3776 }
3777 
3778 /*
3779  * If the key is not present yet in dependency chain cache then
3780  * add it and return 1 - in this case the new dependency chain is
3781  * validated. If the key is already hashed, return 0.
3782  * (On return with 1 graph_lock is held.)
3783  */
3784 static inline int lookup_chain_cache_add(struct task_struct *curr,
3785 					 struct held_lock *hlock,
3786 					 u64 chain_key)
3787 {
3788 	struct lock_class *class = hlock_class(hlock);
3789 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3790 
3791 	if (chain) {
3792 cache_hit:
3793 		if (!check_no_collision(curr, hlock, chain))
3794 			return 0;
3795 
3796 		if (very_verbose(class)) {
3797 			printk("\nhash chain already cached, key: "
3798 					"%016Lx tail class: [%px] %s\n",
3799 					(unsigned long long)chain_key,
3800 					class->key, class->name);
3801 		}
3802 
3803 		return 0;
3804 	}
3805 
3806 	if (very_verbose(class)) {
3807 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3808 			(unsigned long long)chain_key, class->key, class->name);
3809 	}
3810 
3811 	if (!graph_lock())
3812 		return 0;
3813 
3814 	/*
3815 	 * We have to walk the chain again locked - to avoid duplicates:
3816 	 */
3817 	chain = lookup_chain_cache(chain_key);
3818 	if (chain) {
3819 		graph_unlock();
3820 		goto cache_hit;
3821 	}
3822 
3823 	if (!add_chain_cache(curr, hlock, chain_key))
3824 		return 0;
3825 
3826 	return 1;
3827 }
3828 
3829 static int validate_chain(struct task_struct *curr,
3830 			  struct held_lock *hlock,
3831 			  int chain_head, u64 chain_key)
3832 {
3833 	/*
3834 	 * Trylock needs to maintain the stack of held locks, but it
3835 	 * does not add new dependencies, because trylock can be done
3836 	 * in any order.
3837 	 *
3838 	 * We look up the chain_key and do the O(N^2) check and update of
3839 	 * the dependencies only if this is a new dependency chain.
3840 	 * (If lookup_chain_cache_add() return with 1 it acquires
3841 	 * graph_lock for us)
3842 	 */
3843 	if (!hlock->trylock && hlock->check &&
3844 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3845 		/*
3846 		 * Check whether last held lock:
3847 		 *
3848 		 * - is irq-safe, if this lock is irq-unsafe
3849 		 * - is softirq-safe, if this lock is hardirq-unsafe
3850 		 *
3851 		 * And check whether the new lock's dependency graph
3852 		 * could lead back to the previous lock:
3853 		 *
3854 		 * - within the current held-lock stack
3855 		 * - across our accumulated lock dependency records
3856 		 *
3857 		 * any of these scenarios could lead to a deadlock.
3858 		 */
3859 		/*
3860 		 * The simple case: does the current hold the same lock
3861 		 * already?
3862 		 */
3863 		int ret = check_deadlock(curr, hlock);
3864 
3865 		if (!ret)
3866 			return 0;
3867 		/*
3868 		 * Add dependency only if this lock is not the head
3869 		 * of the chain, and if the new lock introduces no more
3870 		 * lock dependency (because we already hold a lock with the
3871 		 * same lock class) nor deadlock (because the nest_lock
3872 		 * serializes nesting locks), see the comments for
3873 		 * check_deadlock().
3874 		 */
3875 		if (!chain_head && ret != 2) {
3876 			if (!check_prevs_add(curr, hlock))
3877 				return 0;
3878 		}
3879 
3880 		graph_unlock();
3881 	} else {
3882 		/* after lookup_chain_cache_add(): */
3883 		if (unlikely(!debug_locks))
3884 			return 0;
3885 	}
3886 
3887 	return 1;
3888 }
3889 #else
3890 static inline int validate_chain(struct task_struct *curr,
3891 				 struct held_lock *hlock,
3892 				 int chain_head, u64 chain_key)
3893 {
3894 	return 1;
3895 }
3896 
3897 static void init_chain_block_buckets(void)	{ }
3898 #endif /* CONFIG_PROVE_LOCKING */
3899 
3900 /*
3901  * We are building curr_chain_key incrementally, so double-check
3902  * it from scratch, to make sure that it's done correctly:
3903  */
3904 static void check_chain_key(struct task_struct *curr)
3905 {
3906 #ifdef CONFIG_DEBUG_LOCKDEP
3907 	struct held_lock *hlock, *prev_hlock = NULL;
3908 	unsigned int i;
3909 	u64 chain_key = INITIAL_CHAIN_KEY;
3910 
3911 	for (i = 0; i < curr->lockdep_depth; i++) {
3912 		hlock = curr->held_locks + i;
3913 		if (chain_key != hlock->prev_chain_key) {
3914 			debug_locks_off();
3915 			/*
3916 			 * We got mighty confused, our chain keys don't match
3917 			 * with what we expect, someone trample on our task state?
3918 			 */
3919 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3920 				curr->lockdep_depth, i,
3921 				(unsigned long long)chain_key,
3922 				(unsigned long long)hlock->prev_chain_key);
3923 			return;
3924 		}
3925 
3926 		/*
3927 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3928 		 * it registered lock class index?
3929 		 */
3930 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3931 			return;
3932 
3933 		if (prev_hlock && (prev_hlock->irq_context !=
3934 							hlock->irq_context))
3935 			chain_key = INITIAL_CHAIN_KEY;
3936 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3937 		prev_hlock = hlock;
3938 	}
3939 	if (chain_key != curr->curr_chain_key) {
3940 		debug_locks_off();
3941 		/*
3942 		 * More smoking hash instead of calculating it, damn see these
3943 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3944 		 */
3945 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3946 			curr->lockdep_depth, i,
3947 			(unsigned long long)chain_key,
3948 			(unsigned long long)curr->curr_chain_key);
3949 	}
3950 #endif
3951 }
3952 
3953 #ifdef CONFIG_PROVE_LOCKING
3954 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3955 		     enum lock_usage_bit new_bit);
3956 
3957 static void print_usage_bug_scenario(struct held_lock *lock)
3958 {
3959 	struct lock_class *class = hlock_class(lock);
3960 
3961 	printk(" Possible unsafe locking scenario:\n\n");
3962 	printk("       CPU0\n");
3963 	printk("       ----\n");
3964 	printk("  lock(");
3965 	__print_lock_name(lock, class);
3966 	printk(KERN_CONT ");\n");
3967 	printk("  <Interrupt>\n");
3968 	printk("    lock(");
3969 	__print_lock_name(lock, class);
3970 	printk(KERN_CONT ");\n");
3971 	printk("\n *** DEADLOCK ***\n\n");
3972 }
3973 
3974 static void
3975 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3976 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3977 {
3978 	if (!debug_locks_off() || debug_locks_silent)
3979 		return;
3980 
3981 	pr_warn("\n");
3982 	pr_warn("================================\n");
3983 	pr_warn("WARNING: inconsistent lock state\n");
3984 	print_kernel_ident();
3985 	pr_warn("--------------------------------\n");
3986 
3987 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3988 		usage_str[prev_bit], usage_str[new_bit]);
3989 
3990 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3991 		curr->comm, task_pid_nr(curr),
3992 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3993 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3994 		lockdep_hardirqs_enabled(),
3995 		lockdep_softirqs_enabled(curr));
3996 	print_lock(this);
3997 
3998 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3999 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
4000 
4001 	print_irqtrace_events(curr);
4002 	pr_warn("\nother info that might help us debug this:\n");
4003 	print_usage_bug_scenario(this);
4004 
4005 	lockdep_print_held_locks(curr);
4006 
4007 	pr_warn("\nstack backtrace:\n");
4008 	dump_stack();
4009 }
4010 
4011 /*
4012  * Print out an error if an invalid bit is set:
4013  */
4014 static inline int
4015 valid_state(struct task_struct *curr, struct held_lock *this,
4016 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
4017 {
4018 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
4019 		graph_unlock();
4020 		print_usage_bug(curr, this, bad_bit, new_bit);
4021 		return 0;
4022 	}
4023 	return 1;
4024 }
4025 
4026 
4027 /*
4028  * print irq inversion bug:
4029  */
4030 static void
4031 print_irq_inversion_bug(struct task_struct *curr,
4032 			struct lock_list *root, struct lock_list *other,
4033 			struct held_lock *this, int forwards,
4034 			const char *irqclass)
4035 {
4036 	struct lock_list *entry = other;
4037 	struct lock_list *middle = NULL;
4038 	int depth;
4039 
4040 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
4041 		return;
4042 
4043 	pr_warn("\n");
4044 	pr_warn("========================================================\n");
4045 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4046 	print_kernel_ident();
4047 	pr_warn("--------------------------------------------------------\n");
4048 	pr_warn("%s/%d just changed the state of lock:\n",
4049 		curr->comm, task_pid_nr(curr));
4050 	print_lock(this);
4051 	if (forwards)
4052 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4053 	else
4054 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4055 	print_lock_name(NULL, other->class);
4056 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4057 
4058 	pr_warn("\nother info that might help us debug this:\n");
4059 
4060 	/* Find a middle lock (if one exists) */
4061 	depth = get_lock_depth(other);
4062 	do {
4063 		if (depth == 0 && (entry != root)) {
4064 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4065 			break;
4066 		}
4067 		middle = entry;
4068 		entry = get_lock_parent(entry);
4069 		depth--;
4070 	} while (entry && entry != root && (depth >= 0));
4071 	if (forwards)
4072 		print_irq_lock_scenario(root, other,
4073 			middle ? middle->class : root->class, other->class);
4074 	else
4075 		print_irq_lock_scenario(other, root,
4076 			middle ? middle->class : other->class, root->class);
4077 
4078 	lockdep_print_held_locks(curr);
4079 
4080 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4081 	root->trace = save_trace();
4082 	if (!root->trace)
4083 		return;
4084 	print_shortest_lock_dependencies(other, root);
4085 
4086 	pr_warn("\nstack backtrace:\n");
4087 	dump_stack();
4088 }
4089 
4090 /*
4091  * Prove that in the forwards-direction subgraph starting at <this>
4092  * there is no lock matching <mask>:
4093  */
4094 static int
4095 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4096 		     enum lock_usage_bit bit)
4097 {
4098 	enum bfs_result ret;
4099 	struct lock_list root;
4100 	struct lock_list *target_entry;
4101 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4102 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4103 
4104 	bfs_init_root(&root, this);
4105 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4106 	if (bfs_error(ret)) {
4107 		print_bfs_bug(ret);
4108 		return 0;
4109 	}
4110 	if (ret == BFS_RNOMATCH)
4111 		return 1;
4112 
4113 	/* Check whether write or read usage is the match */
4114 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4115 		print_irq_inversion_bug(curr, &root, target_entry,
4116 					this, 1, state_name(bit));
4117 	} else {
4118 		print_irq_inversion_bug(curr, &root, target_entry,
4119 					this, 1, state_name(read_bit));
4120 	}
4121 
4122 	return 0;
4123 }
4124 
4125 /*
4126  * Prove that in the backwards-direction subgraph starting at <this>
4127  * there is no lock matching <mask>:
4128  */
4129 static int
4130 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4131 		      enum lock_usage_bit bit)
4132 {
4133 	enum bfs_result ret;
4134 	struct lock_list root;
4135 	struct lock_list *target_entry;
4136 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4137 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4138 
4139 	bfs_init_rootb(&root, this);
4140 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4141 	if (bfs_error(ret)) {
4142 		print_bfs_bug(ret);
4143 		return 0;
4144 	}
4145 	if (ret == BFS_RNOMATCH)
4146 		return 1;
4147 
4148 	/* Check whether write or read usage is the match */
4149 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4150 		print_irq_inversion_bug(curr, &root, target_entry,
4151 					this, 0, state_name(bit));
4152 	} else {
4153 		print_irq_inversion_bug(curr, &root, target_entry,
4154 					this, 0, state_name(read_bit));
4155 	}
4156 
4157 	return 0;
4158 }
4159 
4160 void print_irqtrace_events(struct task_struct *curr)
4161 {
4162 	const struct irqtrace_events *trace = &curr->irqtrace;
4163 
4164 	printk("irq event stamp: %u\n", trace->irq_events);
4165 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4166 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4167 		(void *)trace->hardirq_enable_ip);
4168 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4169 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4170 		(void *)trace->hardirq_disable_ip);
4171 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4172 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4173 		(void *)trace->softirq_enable_ip);
4174 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4175 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4176 		(void *)trace->softirq_disable_ip);
4177 }
4178 
4179 static int HARDIRQ_verbose(struct lock_class *class)
4180 {
4181 #if HARDIRQ_VERBOSE
4182 	return class_filter(class);
4183 #endif
4184 	return 0;
4185 }
4186 
4187 static int SOFTIRQ_verbose(struct lock_class *class)
4188 {
4189 #if SOFTIRQ_VERBOSE
4190 	return class_filter(class);
4191 #endif
4192 	return 0;
4193 }
4194 
4195 static int (*state_verbose_f[])(struct lock_class *class) = {
4196 #define LOCKDEP_STATE(__STATE) \
4197 	__STATE##_verbose,
4198 #include "lockdep_states.h"
4199 #undef LOCKDEP_STATE
4200 };
4201 
4202 static inline int state_verbose(enum lock_usage_bit bit,
4203 				struct lock_class *class)
4204 {
4205 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4206 }
4207 
4208 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4209 			     enum lock_usage_bit bit, const char *name);
4210 
4211 static int
4212 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4213 		enum lock_usage_bit new_bit)
4214 {
4215 	int excl_bit = exclusive_bit(new_bit);
4216 	int read = new_bit & LOCK_USAGE_READ_MASK;
4217 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4218 
4219 	/*
4220 	 * Validate that this particular lock does not have conflicting
4221 	 * usage states.
4222 	 */
4223 	if (!valid_state(curr, this, new_bit, excl_bit))
4224 		return 0;
4225 
4226 	/*
4227 	 * Check for read in write conflicts
4228 	 */
4229 	if (!read && !valid_state(curr, this, new_bit,
4230 				  excl_bit + LOCK_USAGE_READ_MASK))
4231 		return 0;
4232 
4233 
4234 	/*
4235 	 * Validate that the lock dependencies don't have conflicting usage
4236 	 * states.
4237 	 */
4238 	if (dir) {
4239 		/*
4240 		 * mark ENABLED has to look backwards -- to ensure no dependee
4241 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4242 		 */
4243 		if (!check_usage_backwards(curr, this, excl_bit))
4244 			return 0;
4245 	} else {
4246 		/*
4247 		 * mark USED_IN has to look forwards -- to ensure no dependency
4248 		 * has ENABLED state, which would allow recursion deadlocks.
4249 		 */
4250 		if (!check_usage_forwards(curr, this, excl_bit))
4251 			return 0;
4252 	}
4253 
4254 	if (state_verbose(new_bit, hlock_class(this)))
4255 		return 2;
4256 
4257 	return 1;
4258 }
4259 
4260 /*
4261  * Mark all held locks with a usage bit:
4262  */
4263 static int
4264 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4265 {
4266 	struct held_lock *hlock;
4267 	int i;
4268 
4269 	for (i = 0; i < curr->lockdep_depth; i++) {
4270 		enum lock_usage_bit hlock_bit = base_bit;
4271 		hlock = curr->held_locks + i;
4272 
4273 		if (hlock->read)
4274 			hlock_bit += LOCK_USAGE_READ_MASK;
4275 
4276 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4277 
4278 		if (!hlock->check)
4279 			continue;
4280 
4281 		if (!mark_lock(curr, hlock, hlock_bit))
4282 			return 0;
4283 	}
4284 
4285 	return 1;
4286 }
4287 
4288 /*
4289  * Hardirqs will be enabled:
4290  */
4291 static void __trace_hardirqs_on_caller(void)
4292 {
4293 	struct task_struct *curr = current;
4294 
4295 	/*
4296 	 * We are going to turn hardirqs on, so set the
4297 	 * usage bit for all held locks:
4298 	 */
4299 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4300 		return;
4301 	/*
4302 	 * If we have softirqs enabled, then set the usage
4303 	 * bit for all held locks. (disabled hardirqs prevented
4304 	 * this bit from being set before)
4305 	 */
4306 	if (curr->softirqs_enabled)
4307 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4308 }
4309 
4310 /**
4311  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4312  *
4313  * Invoked before a possible transition to RCU idle from exit to user or
4314  * guest mode. This ensures that all RCU operations are done before RCU
4315  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4316  * invoked to set the final state.
4317  */
4318 void lockdep_hardirqs_on_prepare(void)
4319 {
4320 	if (unlikely(!debug_locks))
4321 		return;
4322 
4323 	/*
4324 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4325 	 */
4326 	if (unlikely(in_nmi()))
4327 		return;
4328 
4329 	if (unlikely(this_cpu_read(lockdep_recursion)))
4330 		return;
4331 
4332 	if (unlikely(lockdep_hardirqs_enabled())) {
4333 		/*
4334 		 * Neither irq nor preemption are disabled here
4335 		 * so this is racy by nature but losing one hit
4336 		 * in a stat is not a big deal.
4337 		 */
4338 		__debug_atomic_inc(redundant_hardirqs_on);
4339 		return;
4340 	}
4341 
4342 	/*
4343 	 * We're enabling irqs and according to our state above irqs weren't
4344 	 * already enabled, yet we find the hardware thinks they are in fact
4345 	 * enabled.. someone messed up their IRQ state tracing.
4346 	 */
4347 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4348 		return;
4349 
4350 	/*
4351 	 * See the fine text that goes along with this variable definition.
4352 	 */
4353 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4354 		return;
4355 
4356 	/*
4357 	 * Can't allow enabling interrupts while in an interrupt handler,
4358 	 * that's general bad form and such. Recursion, limited stack etc..
4359 	 */
4360 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4361 		return;
4362 
4363 	current->hardirq_chain_key = current->curr_chain_key;
4364 
4365 	lockdep_recursion_inc();
4366 	__trace_hardirqs_on_caller();
4367 	lockdep_recursion_finish();
4368 }
4369 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4370 
4371 void noinstr lockdep_hardirqs_on(unsigned long ip)
4372 {
4373 	struct irqtrace_events *trace = &current->irqtrace;
4374 
4375 	if (unlikely(!debug_locks))
4376 		return;
4377 
4378 	/*
4379 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4380 	 * tracking state and hardware state are out of sync.
4381 	 *
4382 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4383 	 * and not rely on hardware state like normal interrupts.
4384 	 */
4385 	if (unlikely(in_nmi())) {
4386 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4387 			return;
4388 
4389 		/*
4390 		 * Skip:
4391 		 *  - recursion check, because NMI can hit lockdep;
4392 		 *  - hardware state check, because above;
4393 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4394 		 */
4395 		goto skip_checks;
4396 	}
4397 
4398 	if (unlikely(this_cpu_read(lockdep_recursion)))
4399 		return;
4400 
4401 	if (lockdep_hardirqs_enabled()) {
4402 		/*
4403 		 * Neither irq nor preemption are disabled here
4404 		 * so this is racy by nature but losing one hit
4405 		 * in a stat is not a big deal.
4406 		 */
4407 		__debug_atomic_inc(redundant_hardirqs_on);
4408 		return;
4409 	}
4410 
4411 	/*
4412 	 * We're enabling irqs and according to our state above irqs weren't
4413 	 * already enabled, yet we find the hardware thinks they are in fact
4414 	 * enabled.. someone messed up their IRQ state tracing.
4415 	 */
4416 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4417 		return;
4418 
4419 	/*
4420 	 * Ensure the lock stack remained unchanged between
4421 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4422 	 */
4423 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4424 			    current->curr_chain_key);
4425 
4426 skip_checks:
4427 	/* we'll do an OFF -> ON transition: */
4428 	__this_cpu_write(hardirqs_enabled, 1);
4429 	trace->hardirq_enable_ip = ip;
4430 	trace->hardirq_enable_event = ++trace->irq_events;
4431 	debug_atomic_inc(hardirqs_on_events);
4432 }
4433 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4434 
4435 /*
4436  * Hardirqs were disabled:
4437  */
4438 void noinstr lockdep_hardirqs_off(unsigned long ip)
4439 {
4440 	if (unlikely(!debug_locks))
4441 		return;
4442 
4443 	/*
4444 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4445 	 * they will restore the software state. This ensures the software
4446 	 * state is consistent inside NMIs as well.
4447 	 */
4448 	if (in_nmi()) {
4449 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4450 			return;
4451 	} else if (__this_cpu_read(lockdep_recursion))
4452 		return;
4453 
4454 	/*
4455 	 * So we're supposed to get called after you mask local IRQs, but for
4456 	 * some reason the hardware doesn't quite think you did a proper job.
4457 	 */
4458 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4459 		return;
4460 
4461 	if (lockdep_hardirqs_enabled()) {
4462 		struct irqtrace_events *trace = &current->irqtrace;
4463 
4464 		/*
4465 		 * We have done an ON -> OFF transition:
4466 		 */
4467 		__this_cpu_write(hardirqs_enabled, 0);
4468 		trace->hardirq_disable_ip = ip;
4469 		trace->hardirq_disable_event = ++trace->irq_events;
4470 		debug_atomic_inc(hardirqs_off_events);
4471 	} else {
4472 		debug_atomic_inc(redundant_hardirqs_off);
4473 	}
4474 }
4475 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4476 
4477 /*
4478  * Softirqs will be enabled:
4479  */
4480 void lockdep_softirqs_on(unsigned long ip)
4481 {
4482 	struct irqtrace_events *trace = &current->irqtrace;
4483 
4484 	if (unlikely(!lockdep_enabled()))
4485 		return;
4486 
4487 	/*
4488 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4489 	 * funny state and nesting things.
4490 	 */
4491 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4492 		return;
4493 
4494 	if (current->softirqs_enabled) {
4495 		debug_atomic_inc(redundant_softirqs_on);
4496 		return;
4497 	}
4498 
4499 	lockdep_recursion_inc();
4500 	/*
4501 	 * We'll do an OFF -> ON transition:
4502 	 */
4503 	current->softirqs_enabled = 1;
4504 	trace->softirq_enable_ip = ip;
4505 	trace->softirq_enable_event = ++trace->irq_events;
4506 	debug_atomic_inc(softirqs_on_events);
4507 	/*
4508 	 * We are going to turn softirqs on, so set the
4509 	 * usage bit for all held locks, if hardirqs are
4510 	 * enabled too:
4511 	 */
4512 	if (lockdep_hardirqs_enabled())
4513 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4514 	lockdep_recursion_finish();
4515 }
4516 
4517 /*
4518  * Softirqs were disabled:
4519  */
4520 void lockdep_softirqs_off(unsigned long ip)
4521 {
4522 	if (unlikely(!lockdep_enabled()))
4523 		return;
4524 
4525 	/*
4526 	 * We fancy IRQs being disabled here, see softirq.c
4527 	 */
4528 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4529 		return;
4530 
4531 	if (current->softirqs_enabled) {
4532 		struct irqtrace_events *trace = &current->irqtrace;
4533 
4534 		/*
4535 		 * We have done an ON -> OFF transition:
4536 		 */
4537 		current->softirqs_enabled = 0;
4538 		trace->softirq_disable_ip = ip;
4539 		trace->softirq_disable_event = ++trace->irq_events;
4540 		debug_atomic_inc(softirqs_off_events);
4541 		/*
4542 		 * Whoops, we wanted softirqs off, so why aren't they?
4543 		 */
4544 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4545 	} else
4546 		debug_atomic_inc(redundant_softirqs_off);
4547 }
4548 
4549 static int
4550 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4551 {
4552 	if (!check)
4553 		goto lock_used;
4554 
4555 	/*
4556 	 * If non-trylock use in a hardirq or softirq context, then
4557 	 * mark the lock as used in these contexts:
4558 	 */
4559 	if (!hlock->trylock) {
4560 		if (hlock->read) {
4561 			if (lockdep_hardirq_context())
4562 				if (!mark_lock(curr, hlock,
4563 						LOCK_USED_IN_HARDIRQ_READ))
4564 					return 0;
4565 			if (curr->softirq_context)
4566 				if (!mark_lock(curr, hlock,
4567 						LOCK_USED_IN_SOFTIRQ_READ))
4568 					return 0;
4569 		} else {
4570 			if (lockdep_hardirq_context())
4571 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4572 					return 0;
4573 			if (curr->softirq_context)
4574 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4575 					return 0;
4576 		}
4577 	}
4578 
4579 	/*
4580 	 * For lock_sync(), don't mark the ENABLED usage, since lock_sync()
4581 	 * creates no critical section and no extra dependency can be introduced
4582 	 * by interrupts
4583 	 */
4584 	if (!hlock->hardirqs_off && !hlock->sync) {
4585 		if (hlock->read) {
4586 			if (!mark_lock(curr, hlock,
4587 					LOCK_ENABLED_HARDIRQ_READ))
4588 				return 0;
4589 			if (curr->softirqs_enabled)
4590 				if (!mark_lock(curr, hlock,
4591 						LOCK_ENABLED_SOFTIRQ_READ))
4592 					return 0;
4593 		} else {
4594 			if (!mark_lock(curr, hlock,
4595 					LOCK_ENABLED_HARDIRQ))
4596 				return 0;
4597 			if (curr->softirqs_enabled)
4598 				if (!mark_lock(curr, hlock,
4599 						LOCK_ENABLED_SOFTIRQ))
4600 					return 0;
4601 		}
4602 	}
4603 
4604 lock_used:
4605 	/* mark it as used: */
4606 	if (!mark_lock(curr, hlock, LOCK_USED))
4607 		return 0;
4608 
4609 	return 1;
4610 }
4611 
4612 static inline unsigned int task_irq_context(struct task_struct *task)
4613 {
4614 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4615 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4616 }
4617 
4618 static int separate_irq_context(struct task_struct *curr,
4619 		struct held_lock *hlock)
4620 {
4621 	unsigned int depth = curr->lockdep_depth;
4622 
4623 	/*
4624 	 * Keep track of points where we cross into an interrupt context:
4625 	 */
4626 	if (depth) {
4627 		struct held_lock *prev_hlock;
4628 
4629 		prev_hlock = curr->held_locks + depth-1;
4630 		/*
4631 		 * If we cross into another context, reset the
4632 		 * hash key (this also prevents the checking and the
4633 		 * adding of the dependency to 'prev'):
4634 		 */
4635 		if (prev_hlock->irq_context != hlock->irq_context)
4636 			return 1;
4637 	}
4638 	return 0;
4639 }
4640 
4641 /*
4642  * Mark a lock with a usage bit, and validate the state transition:
4643  */
4644 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4645 			     enum lock_usage_bit new_bit)
4646 {
4647 	unsigned int new_mask, ret = 1;
4648 
4649 	if (new_bit >= LOCK_USAGE_STATES) {
4650 		DEBUG_LOCKS_WARN_ON(1);
4651 		return 0;
4652 	}
4653 
4654 	if (new_bit == LOCK_USED && this->read)
4655 		new_bit = LOCK_USED_READ;
4656 
4657 	new_mask = 1 << new_bit;
4658 
4659 	/*
4660 	 * If already set then do not dirty the cacheline,
4661 	 * nor do any checks:
4662 	 */
4663 	if (likely(hlock_class(this)->usage_mask & new_mask))
4664 		return 1;
4665 
4666 	if (!graph_lock())
4667 		return 0;
4668 	/*
4669 	 * Make sure we didn't race:
4670 	 */
4671 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4672 		goto unlock;
4673 
4674 	if (!hlock_class(this)->usage_mask)
4675 		debug_atomic_dec(nr_unused_locks);
4676 
4677 	hlock_class(this)->usage_mask |= new_mask;
4678 
4679 	if (new_bit < LOCK_TRACE_STATES) {
4680 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4681 			return 0;
4682 	}
4683 
4684 	if (new_bit < LOCK_USED) {
4685 		ret = mark_lock_irq(curr, this, new_bit);
4686 		if (!ret)
4687 			return 0;
4688 	}
4689 
4690 unlock:
4691 	graph_unlock();
4692 
4693 	/*
4694 	 * We must printk outside of the graph_lock:
4695 	 */
4696 	if (ret == 2) {
4697 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4698 		print_lock(this);
4699 		print_irqtrace_events(curr);
4700 		dump_stack();
4701 	}
4702 
4703 	return ret;
4704 }
4705 
4706 static inline short task_wait_context(struct task_struct *curr)
4707 {
4708 	/*
4709 	 * Set appropriate wait type for the context; for IRQs we have to take
4710 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4711 	 */
4712 	if (lockdep_hardirq_context()) {
4713 		/*
4714 		 * Check if force_irqthreads will run us threaded.
4715 		 */
4716 		if (curr->hardirq_threaded || curr->irq_config)
4717 			return LD_WAIT_CONFIG;
4718 
4719 		return LD_WAIT_SPIN;
4720 	} else if (curr->softirq_context) {
4721 		/*
4722 		 * Softirqs are always threaded.
4723 		 */
4724 		return LD_WAIT_CONFIG;
4725 	}
4726 
4727 	return LD_WAIT_MAX;
4728 }
4729 
4730 static int
4731 print_lock_invalid_wait_context(struct task_struct *curr,
4732 				struct held_lock *hlock)
4733 {
4734 	short curr_inner;
4735 
4736 	if (!debug_locks_off())
4737 		return 0;
4738 	if (debug_locks_silent)
4739 		return 0;
4740 
4741 	pr_warn("\n");
4742 	pr_warn("=============================\n");
4743 	pr_warn("[ BUG: Invalid wait context ]\n");
4744 	print_kernel_ident();
4745 	pr_warn("-----------------------------\n");
4746 
4747 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4748 	print_lock(hlock);
4749 
4750 	pr_warn("other info that might help us debug this:\n");
4751 
4752 	curr_inner = task_wait_context(curr);
4753 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4754 
4755 	lockdep_print_held_locks(curr);
4756 
4757 	pr_warn("stack backtrace:\n");
4758 	dump_stack();
4759 
4760 	return 0;
4761 }
4762 
4763 /*
4764  * Verify the wait_type context.
4765  *
4766  * This check validates we take locks in the right wait-type order; that is it
4767  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4768  * acquire spinlocks inside raw_spinlocks and the sort.
4769  *
4770  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4771  * can be taken from (pretty much) any context but also has constraints.
4772  * However when taken in a stricter environment the RCU lock does not loosen
4773  * the constraints.
4774  *
4775  * Therefore we must look for the strictest environment in the lock stack and
4776  * compare that to the lock we're trying to acquire.
4777  */
4778 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4779 {
4780 	u8 next_inner = hlock_class(next)->wait_type_inner;
4781 	u8 next_outer = hlock_class(next)->wait_type_outer;
4782 	u8 curr_inner;
4783 	int depth;
4784 
4785 	if (!next_inner || next->trylock)
4786 		return 0;
4787 
4788 	if (!next_outer)
4789 		next_outer = next_inner;
4790 
4791 	/*
4792 	 * Find start of current irq_context..
4793 	 */
4794 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4795 		struct held_lock *prev = curr->held_locks + depth;
4796 		if (prev->irq_context != next->irq_context)
4797 			break;
4798 	}
4799 	depth++;
4800 
4801 	curr_inner = task_wait_context(curr);
4802 
4803 	for (; depth < curr->lockdep_depth; depth++) {
4804 		struct held_lock *prev = curr->held_locks + depth;
4805 		struct lock_class *class = hlock_class(prev);
4806 		u8 prev_inner = class->wait_type_inner;
4807 
4808 		if (prev_inner) {
4809 			/*
4810 			 * We can have a bigger inner than a previous one
4811 			 * when outer is smaller than inner, as with RCU.
4812 			 *
4813 			 * Also due to trylocks.
4814 			 */
4815 			curr_inner = min(curr_inner, prev_inner);
4816 
4817 			/*
4818 			 * Allow override for annotations -- this is typically
4819 			 * only valid/needed for code that only exists when
4820 			 * CONFIG_PREEMPT_RT=n.
4821 			 */
4822 			if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE))
4823 				curr_inner = prev_inner;
4824 		}
4825 	}
4826 
4827 	if (next_outer > curr_inner)
4828 		return print_lock_invalid_wait_context(curr, next);
4829 
4830 	return 0;
4831 }
4832 
4833 #else /* CONFIG_PROVE_LOCKING */
4834 
4835 static inline int
4836 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4837 {
4838 	return 1;
4839 }
4840 
4841 static inline unsigned int task_irq_context(struct task_struct *task)
4842 {
4843 	return 0;
4844 }
4845 
4846 static inline int separate_irq_context(struct task_struct *curr,
4847 		struct held_lock *hlock)
4848 {
4849 	return 0;
4850 }
4851 
4852 static inline int check_wait_context(struct task_struct *curr,
4853 				     struct held_lock *next)
4854 {
4855 	return 0;
4856 }
4857 
4858 #endif /* CONFIG_PROVE_LOCKING */
4859 
4860 /*
4861  * Initialize a lock instance's lock-class mapping info:
4862  */
4863 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4864 			    struct lock_class_key *key, int subclass,
4865 			    u8 inner, u8 outer, u8 lock_type)
4866 {
4867 	int i;
4868 
4869 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4870 		lock->class_cache[i] = NULL;
4871 
4872 #ifdef CONFIG_LOCK_STAT
4873 	lock->cpu = raw_smp_processor_id();
4874 #endif
4875 
4876 	/*
4877 	 * Can't be having no nameless bastards around this place!
4878 	 */
4879 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4880 		lock->name = "NULL";
4881 		return;
4882 	}
4883 
4884 	lock->name = name;
4885 
4886 	lock->wait_type_outer = outer;
4887 	lock->wait_type_inner = inner;
4888 	lock->lock_type = lock_type;
4889 
4890 	/*
4891 	 * No key, no joy, we need to hash something.
4892 	 */
4893 	if (DEBUG_LOCKS_WARN_ON(!key))
4894 		return;
4895 	/*
4896 	 * Sanity check, the lock-class key must either have been allocated
4897 	 * statically or must have been registered as a dynamic key.
4898 	 */
4899 	if (!static_obj(key) && !is_dynamic_key(key)) {
4900 		if (debug_locks)
4901 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4902 		DEBUG_LOCKS_WARN_ON(1);
4903 		return;
4904 	}
4905 	lock->key = key;
4906 
4907 	if (unlikely(!debug_locks))
4908 		return;
4909 
4910 	if (subclass) {
4911 		unsigned long flags;
4912 
4913 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4914 			return;
4915 
4916 		raw_local_irq_save(flags);
4917 		lockdep_recursion_inc();
4918 		register_lock_class(lock, subclass, 1);
4919 		lockdep_recursion_finish();
4920 		raw_local_irq_restore(flags);
4921 	}
4922 }
4923 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4924 
4925 struct lock_class_key __lockdep_no_validate__;
4926 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4927 
4928 #ifdef CONFIG_PROVE_LOCKING
4929 void lockdep_set_lock_cmp_fn(struct lockdep_map *lock, lock_cmp_fn cmp_fn,
4930 			     lock_print_fn print_fn)
4931 {
4932 	struct lock_class *class = lock->class_cache[0];
4933 	unsigned long flags;
4934 
4935 	raw_local_irq_save(flags);
4936 	lockdep_recursion_inc();
4937 
4938 	if (!class)
4939 		class = register_lock_class(lock, 0, 0);
4940 
4941 	if (class) {
4942 		WARN_ON(class->cmp_fn	&& class->cmp_fn != cmp_fn);
4943 		WARN_ON(class->print_fn && class->print_fn != print_fn);
4944 
4945 		class->cmp_fn	= cmp_fn;
4946 		class->print_fn = print_fn;
4947 	}
4948 
4949 	lockdep_recursion_finish();
4950 	raw_local_irq_restore(flags);
4951 }
4952 EXPORT_SYMBOL_GPL(lockdep_set_lock_cmp_fn);
4953 #endif
4954 
4955 static void
4956 print_lock_nested_lock_not_held(struct task_struct *curr,
4957 				struct held_lock *hlock)
4958 {
4959 	if (!debug_locks_off())
4960 		return;
4961 	if (debug_locks_silent)
4962 		return;
4963 
4964 	pr_warn("\n");
4965 	pr_warn("==================================\n");
4966 	pr_warn("WARNING: Nested lock was not taken\n");
4967 	print_kernel_ident();
4968 	pr_warn("----------------------------------\n");
4969 
4970 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4971 	print_lock(hlock);
4972 
4973 	pr_warn("\nbut this task is not holding:\n");
4974 	pr_warn("%s\n", hlock->nest_lock->name);
4975 
4976 	pr_warn("\nstack backtrace:\n");
4977 	dump_stack();
4978 
4979 	pr_warn("\nother info that might help us debug this:\n");
4980 	lockdep_print_held_locks(curr);
4981 
4982 	pr_warn("\nstack backtrace:\n");
4983 	dump_stack();
4984 }
4985 
4986 static int __lock_is_held(const struct lockdep_map *lock, int read);
4987 
4988 /*
4989  * This gets called for every mutex_lock*()/spin_lock*() operation.
4990  * We maintain the dependency maps and validate the locking attempt:
4991  *
4992  * The callers must make sure that IRQs are disabled before calling it,
4993  * otherwise we could get an interrupt which would want to take locks,
4994  * which would end up in lockdep again.
4995  */
4996 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4997 			  int trylock, int read, int check, int hardirqs_off,
4998 			  struct lockdep_map *nest_lock, unsigned long ip,
4999 			  int references, int pin_count, int sync)
5000 {
5001 	struct task_struct *curr = current;
5002 	struct lock_class *class = NULL;
5003 	struct held_lock *hlock;
5004 	unsigned int depth;
5005 	int chain_head = 0;
5006 	int class_idx;
5007 	u64 chain_key;
5008 
5009 	if (unlikely(!debug_locks))
5010 		return 0;
5011 
5012 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
5013 		check = 0;
5014 
5015 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
5016 		class = lock->class_cache[subclass];
5017 	/*
5018 	 * Not cached?
5019 	 */
5020 	if (unlikely(!class)) {
5021 		class = register_lock_class(lock, subclass, 0);
5022 		if (!class)
5023 			return 0;
5024 	}
5025 
5026 	debug_class_ops_inc(class);
5027 
5028 	if (very_verbose(class)) {
5029 		printk("\nacquire class [%px] %s", class->key, class->name);
5030 		if (class->name_version > 1)
5031 			printk(KERN_CONT "#%d", class->name_version);
5032 		printk(KERN_CONT "\n");
5033 		dump_stack();
5034 	}
5035 
5036 	/*
5037 	 * Add the lock to the list of currently held locks.
5038 	 * (we dont increase the depth just yet, up until the
5039 	 * dependency checks are done)
5040 	 */
5041 	depth = curr->lockdep_depth;
5042 	/*
5043 	 * Ran out of static storage for our per-task lock stack again have we?
5044 	 */
5045 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
5046 		return 0;
5047 
5048 	class_idx = class - lock_classes;
5049 
5050 	if (depth && !sync) {
5051 		/* we're holding locks and the new held lock is not a sync */
5052 		hlock = curr->held_locks + depth - 1;
5053 		if (hlock->class_idx == class_idx && nest_lock) {
5054 			if (!references)
5055 				references++;
5056 
5057 			if (!hlock->references)
5058 				hlock->references++;
5059 
5060 			hlock->references += references;
5061 
5062 			/* Overflow */
5063 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
5064 				return 0;
5065 
5066 			return 2;
5067 		}
5068 	}
5069 
5070 	hlock = curr->held_locks + depth;
5071 	/*
5072 	 * Plain impossible, we just registered it and checked it weren't no
5073 	 * NULL like.. I bet this mushroom I ate was good!
5074 	 */
5075 	if (DEBUG_LOCKS_WARN_ON(!class))
5076 		return 0;
5077 	hlock->class_idx = class_idx;
5078 	hlock->acquire_ip = ip;
5079 	hlock->instance = lock;
5080 	hlock->nest_lock = nest_lock;
5081 	hlock->irq_context = task_irq_context(curr);
5082 	hlock->trylock = trylock;
5083 	hlock->read = read;
5084 	hlock->check = check;
5085 	hlock->sync = !!sync;
5086 	hlock->hardirqs_off = !!hardirqs_off;
5087 	hlock->references = references;
5088 #ifdef CONFIG_LOCK_STAT
5089 	hlock->waittime_stamp = 0;
5090 	hlock->holdtime_stamp = lockstat_clock();
5091 #endif
5092 	hlock->pin_count = pin_count;
5093 
5094 	if (check_wait_context(curr, hlock))
5095 		return 0;
5096 
5097 	/* Initialize the lock usage bit */
5098 	if (!mark_usage(curr, hlock, check))
5099 		return 0;
5100 
5101 	/*
5102 	 * Calculate the chain hash: it's the combined hash of all the
5103 	 * lock keys along the dependency chain. We save the hash value
5104 	 * at every step so that we can get the current hash easily
5105 	 * after unlock. The chain hash is then used to cache dependency
5106 	 * results.
5107 	 *
5108 	 * The 'key ID' is what is the most compact key value to drive
5109 	 * the hash, not class->key.
5110 	 */
5111 	/*
5112 	 * Whoops, we did it again.. class_idx is invalid.
5113 	 */
5114 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5115 		return 0;
5116 
5117 	chain_key = curr->curr_chain_key;
5118 	if (!depth) {
5119 		/*
5120 		 * How can we have a chain hash when we ain't got no keys?!
5121 		 */
5122 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5123 			return 0;
5124 		chain_head = 1;
5125 	}
5126 
5127 	hlock->prev_chain_key = chain_key;
5128 	if (separate_irq_context(curr, hlock)) {
5129 		chain_key = INITIAL_CHAIN_KEY;
5130 		chain_head = 1;
5131 	}
5132 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5133 
5134 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5135 		print_lock_nested_lock_not_held(curr, hlock);
5136 		return 0;
5137 	}
5138 
5139 	if (!debug_locks_silent) {
5140 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5141 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5142 	}
5143 
5144 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5145 		return 0;
5146 
5147 	/* For lock_sync(), we are done here since no actual critical section */
5148 	if (hlock->sync)
5149 		return 1;
5150 
5151 	curr->curr_chain_key = chain_key;
5152 	curr->lockdep_depth++;
5153 	check_chain_key(curr);
5154 #ifdef CONFIG_DEBUG_LOCKDEP
5155 	if (unlikely(!debug_locks))
5156 		return 0;
5157 #endif
5158 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5159 		debug_locks_off();
5160 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5161 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5162 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5163 
5164 		lockdep_print_held_locks(current);
5165 		debug_show_all_locks();
5166 		dump_stack();
5167 
5168 		return 0;
5169 	}
5170 
5171 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5172 		max_lockdep_depth = curr->lockdep_depth;
5173 
5174 	return 1;
5175 }
5176 
5177 static void print_unlock_imbalance_bug(struct task_struct *curr,
5178 				       struct lockdep_map *lock,
5179 				       unsigned long ip)
5180 {
5181 	if (!debug_locks_off())
5182 		return;
5183 	if (debug_locks_silent)
5184 		return;
5185 
5186 	pr_warn("\n");
5187 	pr_warn("=====================================\n");
5188 	pr_warn("WARNING: bad unlock balance detected!\n");
5189 	print_kernel_ident();
5190 	pr_warn("-------------------------------------\n");
5191 	pr_warn("%s/%d is trying to release lock (",
5192 		curr->comm, task_pid_nr(curr));
5193 	print_lockdep_cache(lock);
5194 	pr_cont(") at:\n");
5195 	print_ip_sym(KERN_WARNING, ip);
5196 	pr_warn("but there are no more locks to release!\n");
5197 	pr_warn("\nother info that might help us debug this:\n");
5198 	lockdep_print_held_locks(curr);
5199 
5200 	pr_warn("\nstack backtrace:\n");
5201 	dump_stack();
5202 }
5203 
5204 static noinstr int match_held_lock(const struct held_lock *hlock,
5205 				   const struct lockdep_map *lock)
5206 {
5207 	if (hlock->instance == lock)
5208 		return 1;
5209 
5210 	if (hlock->references) {
5211 		const struct lock_class *class = lock->class_cache[0];
5212 
5213 		if (!class)
5214 			class = look_up_lock_class(lock, 0);
5215 
5216 		/*
5217 		 * If look_up_lock_class() failed to find a class, we're trying
5218 		 * to test if we hold a lock that has never yet been acquired.
5219 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5220 		 * holding it either, so report failure.
5221 		 */
5222 		if (!class)
5223 			return 0;
5224 
5225 		/*
5226 		 * References, but not a lock we're actually ref-counting?
5227 		 * State got messed up, follow the sites that change ->references
5228 		 * and try to make sense of it.
5229 		 */
5230 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5231 			return 0;
5232 
5233 		if (hlock->class_idx == class - lock_classes)
5234 			return 1;
5235 	}
5236 
5237 	return 0;
5238 }
5239 
5240 /* @depth must not be zero */
5241 static struct held_lock *find_held_lock(struct task_struct *curr,
5242 					struct lockdep_map *lock,
5243 					unsigned int depth, int *idx)
5244 {
5245 	struct held_lock *ret, *hlock, *prev_hlock;
5246 	int i;
5247 
5248 	i = depth - 1;
5249 	hlock = curr->held_locks + i;
5250 	ret = hlock;
5251 	if (match_held_lock(hlock, lock))
5252 		goto out;
5253 
5254 	ret = NULL;
5255 	for (i--, prev_hlock = hlock--;
5256 	     i >= 0;
5257 	     i--, prev_hlock = hlock--) {
5258 		/*
5259 		 * We must not cross into another context:
5260 		 */
5261 		if (prev_hlock->irq_context != hlock->irq_context) {
5262 			ret = NULL;
5263 			break;
5264 		}
5265 		if (match_held_lock(hlock, lock)) {
5266 			ret = hlock;
5267 			break;
5268 		}
5269 	}
5270 
5271 out:
5272 	*idx = i;
5273 	return ret;
5274 }
5275 
5276 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5277 				int idx, unsigned int *merged)
5278 {
5279 	struct held_lock *hlock;
5280 	int first_idx = idx;
5281 
5282 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5283 		return 0;
5284 
5285 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5286 		switch (__lock_acquire(hlock->instance,
5287 				    hlock_class(hlock)->subclass,
5288 				    hlock->trylock,
5289 				    hlock->read, hlock->check,
5290 				    hlock->hardirqs_off,
5291 				    hlock->nest_lock, hlock->acquire_ip,
5292 				    hlock->references, hlock->pin_count, 0)) {
5293 		case 0:
5294 			return 1;
5295 		case 1:
5296 			break;
5297 		case 2:
5298 			*merged += (idx == first_idx);
5299 			break;
5300 		default:
5301 			WARN_ON(1);
5302 			return 0;
5303 		}
5304 	}
5305 	return 0;
5306 }
5307 
5308 static int
5309 __lock_set_class(struct lockdep_map *lock, const char *name,
5310 		 struct lock_class_key *key, unsigned int subclass,
5311 		 unsigned long ip)
5312 {
5313 	struct task_struct *curr = current;
5314 	unsigned int depth, merged = 0;
5315 	struct held_lock *hlock;
5316 	struct lock_class *class;
5317 	int i;
5318 
5319 	if (unlikely(!debug_locks))
5320 		return 0;
5321 
5322 	depth = curr->lockdep_depth;
5323 	/*
5324 	 * This function is about (re)setting the class of a held lock,
5325 	 * yet we're not actually holding any locks. Naughty user!
5326 	 */
5327 	if (DEBUG_LOCKS_WARN_ON(!depth))
5328 		return 0;
5329 
5330 	hlock = find_held_lock(curr, lock, depth, &i);
5331 	if (!hlock) {
5332 		print_unlock_imbalance_bug(curr, lock, ip);
5333 		return 0;
5334 	}
5335 
5336 	lockdep_init_map_type(lock, name, key, 0,
5337 			      lock->wait_type_inner,
5338 			      lock->wait_type_outer,
5339 			      lock->lock_type);
5340 	class = register_lock_class(lock, subclass, 0);
5341 	hlock->class_idx = class - lock_classes;
5342 
5343 	curr->lockdep_depth = i;
5344 	curr->curr_chain_key = hlock->prev_chain_key;
5345 
5346 	if (reacquire_held_locks(curr, depth, i, &merged))
5347 		return 0;
5348 
5349 	/*
5350 	 * I took it apart and put it back together again, except now I have
5351 	 * these 'spare' parts.. where shall I put them.
5352 	 */
5353 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5354 		return 0;
5355 	return 1;
5356 }
5357 
5358 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5359 {
5360 	struct task_struct *curr = current;
5361 	unsigned int depth, merged = 0;
5362 	struct held_lock *hlock;
5363 	int i;
5364 
5365 	if (unlikely(!debug_locks))
5366 		return 0;
5367 
5368 	depth = curr->lockdep_depth;
5369 	/*
5370 	 * This function is about (re)setting the class of a held lock,
5371 	 * yet we're not actually holding any locks. Naughty user!
5372 	 */
5373 	if (DEBUG_LOCKS_WARN_ON(!depth))
5374 		return 0;
5375 
5376 	hlock = find_held_lock(curr, lock, depth, &i);
5377 	if (!hlock) {
5378 		print_unlock_imbalance_bug(curr, lock, ip);
5379 		return 0;
5380 	}
5381 
5382 	curr->lockdep_depth = i;
5383 	curr->curr_chain_key = hlock->prev_chain_key;
5384 
5385 	WARN(hlock->read, "downgrading a read lock");
5386 	hlock->read = 1;
5387 	hlock->acquire_ip = ip;
5388 
5389 	if (reacquire_held_locks(curr, depth, i, &merged))
5390 		return 0;
5391 
5392 	/* Merging can't happen with unchanged classes.. */
5393 	if (DEBUG_LOCKS_WARN_ON(merged))
5394 		return 0;
5395 
5396 	/*
5397 	 * I took it apart and put it back together again, except now I have
5398 	 * these 'spare' parts.. where shall I put them.
5399 	 */
5400 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5401 		return 0;
5402 
5403 	return 1;
5404 }
5405 
5406 /*
5407  * Remove the lock from the list of currently held locks - this gets
5408  * called on mutex_unlock()/spin_unlock*() (or on a failed
5409  * mutex_lock_interruptible()).
5410  */
5411 static int
5412 __lock_release(struct lockdep_map *lock, unsigned long ip)
5413 {
5414 	struct task_struct *curr = current;
5415 	unsigned int depth, merged = 1;
5416 	struct held_lock *hlock;
5417 	int i;
5418 
5419 	if (unlikely(!debug_locks))
5420 		return 0;
5421 
5422 	depth = curr->lockdep_depth;
5423 	/*
5424 	 * So we're all set to release this lock.. wait what lock? We don't
5425 	 * own any locks, you've been drinking again?
5426 	 */
5427 	if (depth <= 0) {
5428 		print_unlock_imbalance_bug(curr, lock, ip);
5429 		return 0;
5430 	}
5431 
5432 	/*
5433 	 * Check whether the lock exists in the current stack
5434 	 * of held locks:
5435 	 */
5436 	hlock = find_held_lock(curr, lock, depth, &i);
5437 	if (!hlock) {
5438 		print_unlock_imbalance_bug(curr, lock, ip);
5439 		return 0;
5440 	}
5441 
5442 	if (hlock->instance == lock)
5443 		lock_release_holdtime(hlock);
5444 
5445 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5446 
5447 	if (hlock->references) {
5448 		hlock->references--;
5449 		if (hlock->references) {
5450 			/*
5451 			 * We had, and after removing one, still have
5452 			 * references, the current lock stack is still
5453 			 * valid. We're done!
5454 			 */
5455 			return 1;
5456 		}
5457 	}
5458 
5459 	/*
5460 	 * We have the right lock to unlock, 'hlock' points to it.
5461 	 * Now we remove it from the stack, and add back the other
5462 	 * entries (if any), recalculating the hash along the way:
5463 	 */
5464 
5465 	curr->lockdep_depth = i;
5466 	curr->curr_chain_key = hlock->prev_chain_key;
5467 
5468 	/*
5469 	 * The most likely case is when the unlock is on the innermost
5470 	 * lock. In this case, we are done!
5471 	 */
5472 	if (i == depth-1)
5473 		return 1;
5474 
5475 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5476 		return 0;
5477 
5478 	/*
5479 	 * We had N bottles of beer on the wall, we drank one, but now
5480 	 * there's not N-1 bottles of beer left on the wall...
5481 	 * Pouring two of the bottles together is acceptable.
5482 	 */
5483 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5484 
5485 	/*
5486 	 * Since reacquire_held_locks() would have called check_chain_key()
5487 	 * indirectly via __lock_acquire(), we don't need to do it again
5488 	 * on return.
5489 	 */
5490 	return 0;
5491 }
5492 
5493 static __always_inline
5494 int __lock_is_held(const struct lockdep_map *lock, int read)
5495 {
5496 	struct task_struct *curr = current;
5497 	int i;
5498 
5499 	for (i = 0; i < curr->lockdep_depth; i++) {
5500 		struct held_lock *hlock = curr->held_locks + i;
5501 
5502 		if (match_held_lock(hlock, lock)) {
5503 			if (read == -1 || !!hlock->read == read)
5504 				return LOCK_STATE_HELD;
5505 
5506 			return LOCK_STATE_NOT_HELD;
5507 		}
5508 	}
5509 
5510 	return LOCK_STATE_NOT_HELD;
5511 }
5512 
5513 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5514 {
5515 	struct pin_cookie cookie = NIL_COOKIE;
5516 	struct task_struct *curr = current;
5517 	int i;
5518 
5519 	if (unlikely(!debug_locks))
5520 		return cookie;
5521 
5522 	for (i = 0; i < curr->lockdep_depth; i++) {
5523 		struct held_lock *hlock = curr->held_locks + i;
5524 
5525 		if (match_held_lock(hlock, lock)) {
5526 			/*
5527 			 * Grab 16bits of randomness; this is sufficient to not
5528 			 * be guessable and still allows some pin nesting in
5529 			 * our u32 pin_count.
5530 			 */
5531 			cookie.val = 1 + (sched_clock() & 0xffff);
5532 			hlock->pin_count += cookie.val;
5533 			return cookie;
5534 		}
5535 	}
5536 
5537 	WARN(1, "pinning an unheld lock\n");
5538 	return cookie;
5539 }
5540 
5541 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5542 {
5543 	struct task_struct *curr = current;
5544 	int i;
5545 
5546 	if (unlikely(!debug_locks))
5547 		return;
5548 
5549 	for (i = 0; i < curr->lockdep_depth; i++) {
5550 		struct held_lock *hlock = curr->held_locks + i;
5551 
5552 		if (match_held_lock(hlock, lock)) {
5553 			hlock->pin_count += cookie.val;
5554 			return;
5555 		}
5556 	}
5557 
5558 	WARN(1, "pinning an unheld lock\n");
5559 }
5560 
5561 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5562 {
5563 	struct task_struct *curr = current;
5564 	int i;
5565 
5566 	if (unlikely(!debug_locks))
5567 		return;
5568 
5569 	for (i = 0; i < curr->lockdep_depth; i++) {
5570 		struct held_lock *hlock = curr->held_locks + i;
5571 
5572 		if (match_held_lock(hlock, lock)) {
5573 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5574 				return;
5575 
5576 			hlock->pin_count -= cookie.val;
5577 
5578 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5579 				hlock->pin_count = 0;
5580 
5581 			return;
5582 		}
5583 	}
5584 
5585 	WARN(1, "unpinning an unheld lock\n");
5586 }
5587 
5588 /*
5589  * Check whether we follow the irq-flags state precisely:
5590  */
5591 static noinstr void check_flags(unsigned long flags)
5592 {
5593 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5594 	if (!debug_locks)
5595 		return;
5596 
5597 	/* Get the warning out..  */
5598 	instrumentation_begin();
5599 
5600 	if (irqs_disabled_flags(flags)) {
5601 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5602 			printk("possible reason: unannotated irqs-off.\n");
5603 		}
5604 	} else {
5605 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5606 			printk("possible reason: unannotated irqs-on.\n");
5607 		}
5608 	}
5609 
5610 #ifndef CONFIG_PREEMPT_RT
5611 	/*
5612 	 * We dont accurately track softirq state in e.g.
5613 	 * hardirq contexts (such as on 4KSTACKS), so only
5614 	 * check if not in hardirq contexts:
5615 	 */
5616 	if (!hardirq_count()) {
5617 		if (softirq_count()) {
5618 			/* like the above, but with softirqs */
5619 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5620 		} else {
5621 			/* lick the above, does it taste good? */
5622 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5623 		}
5624 	}
5625 #endif
5626 
5627 	if (!debug_locks)
5628 		print_irqtrace_events(current);
5629 
5630 	instrumentation_end();
5631 #endif
5632 }
5633 
5634 void lock_set_class(struct lockdep_map *lock, const char *name,
5635 		    struct lock_class_key *key, unsigned int subclass,
5636 		    unsigned long ip)
5637 {
5638 	unsigned long flags;
5639 
5640 	if (unlikely(!lockdep_enabled()))
5641 		return;
5642 
5643 	raw_local_irq_save(flags);
5644 	lockdep_recursion_inc();
5645 	check_flags(flags);
5646 	if (__lock_set_class(lock, name, key, subclass, ip))
5647 		check_chain_key(current);
5648 	lockdep_recursion_finish();
5649 	raw_local_irq_restore(flags);
5650 }
5651 EXPORT_SYMBOL_GPL(lock_set_class);
5652 
5653 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5654 {
5655 	unsigned long flags;
5656 
5657 	if (unlikely(!lockdep_enabled()))
5658 		return;
5659 
5660 	raw_local_irq_save(flags);
5661 	lockdep_recursion_inc();
5662 	check_flags(flags);
5663 	if (__lock_downgrade(lock, ip))
5664 		check_chain_key(current);
5665 	lockdep_recursion_finish();
5666 	raw_local_irq_restore(flags);
5667 }
5668 EXPORT_SYMBOL_GPL(lock_downgrade);
5669 
5670 /* NMI context !!! */
5671 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5672 {
5673 #ifdef CONFIG_PROVE_LOCKING
5674 	struct lock_class *class = look_up_lock_class(lock, subclass);
5675 	unsigned long mask = LOCKF_USED;
5676 
5677 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5678 	if (!class)
5679 		return;
5680 
5681 	/*
5682 	 * READ locks only conflict with USED, such that if we only ever use
5683 	 * READ locks, there is no deadlock possible -- RCU.
5684 	 */
5685 	if (!hlock->read)
5686 		mask |= LOCKF_USED_READ;
5687 
5688 	if (!(class->usage_mask & mask))
5689 		return;
5690 
5691 	hlock->class_idx = class - lock_classes;
5692 
5693 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5694 #endif
5695 }
5696 
5697 static bool lockdep_nmi(void)
5698 {
5699 	if (raw_cpu_read(lockdep_recursion))
5700 		return false;
5701 
5702 	if (!in_nmi())
5703 		return false;
5704 
5705 	return true;
5706 }
5707 
5708 /*
5709  * read_lock() is recursive if:
5710  * 1. We force lockdep think this way in selftests or
5711  * 2. The implementation is not queued read/write lock or
5712  * 3. The locker is at an in_interrupt() context.
5713  */
5714 bool read_lock_is_recursive(void)
5715 {
5716 	return force_read_lock_recursive ||
5717 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5718 	       in_interrupt();
5719 }
5720 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5721 
5722 /*
5723  * We are not always called with irqs disabled - do that here,
5724  * and also avoid lockdep recursion:
5725  */
5726 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5727 			  int trylock, int read, int check,
5728 			  struct lockdep_map *nest_lock, unsigned long ip)
5729 {
5730 	unsigned long flags;
5731 
5732 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5733 
5734 	if (!debug_locks)
5735 		return;
5736 
5737 	if (unlikely(!lockdep_enabled())) {
5738 		/* XXX allow trylock from NMI ?!? */
5739 		if (lockdep_nmi() && !trylock) {
5740 			struct held_lock hlock;
5741 
5742 			hlock.acquire_ip = ip;
5743 			hlock.instance = lock;
5744 			hlock.nest_lock = nest_lock;
5745 			hlock.irq_context = 2; // XXX
5746 			hlock.trylock = trylock;
5747 			hlock.read = read;
5748 			hlock.check = check;
5749 			hlock.hardirqs_off = true;
5750 			hlock.references = 0;
5751 
5752 			verify_lock_unused(lock, &hlock, subclass);
5753 		}
5754 		return;
5755 	}
5756 
5757 	raw_local_irq_save(flags);
5758 	check_flags(flags);
5759 
5760 	lockdep_recursion_inc();
5761 	__lock_acquire(lock, subclass, trylock, read, check,
5762 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0);
5763 	lockdep_recursion_finish();
5764 	raw_local_irq_restore(flags);
5765 }
5766 EXPORT_SYMBOL_GPL(lock_acquire);
5767 
5768 void lock_release(struct lockdep_map *lock, unsigned long ip)
5769 {
5770 	unsigned long flags;
5771 
5772 	trace_lock_release(lock, ip);
5773 
5774 	if (unlikely(!lockdep_enabled()))
5775 		return;
5776 
5777 	raw_local_irq_save(flags);
5778 	check_flags(flags);
5779 
5780 	lockdep_recursion_inc();
5781 	if (__lock_release(lock, ip))
5782 		check_chain_key(current);
5783 	lockdep_recursion_finish();
5784 	raw_local_irq_restore(flags);
5785 }
5786 EXPORT_SYMBOL_GPL(lock_release);
5787 
5788 /*
5789  * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API.
5790  *
5791  * No actual critical section is created by the APIs annotated with this: these
5792  * APIs are used to wait for one or multiple critical sections (on other CPUs
5793  * or threads), and it means that calling these APIs inside these critical
5794  * sections is potential deadlock.
5795  */
5796 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read,
5797 	       int check, struct lockdep_map *nest_lock, unsigned long ip)
5798 {
5799 	unsigned long flags;
5800 
5801 	if (unlikely(!lockdep_enabled()))
5802 		return;
5803 
5804 	raw_local_irq_save(flags);
5805 	check_flags(flags);
5806 
5807 	lockdep_recursion_inc();
5808 	__lock_acquire(lock, subclass, 0, read, check,
5809 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1);
5810 	check_chain_key(current);
5811 	lockdep_recursion_finish();
5812 	raw_local_irq_restore(flags);
5813 }
5814 EXPORT_SYMBOL_GPL(lock_sync);
5815 
5816 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5817 {
5818 	unsigned long flags;
5819 	int ret = LOCK_STATE_NOT_HELD;
5820 
5821 	/*
5822 	 * Avoid false negative lockdep_assert_held() and
5823 	 * lockdep_assert_not_held().
5824 	 */
5825 	if (unlikely(!lockdep_enabled()))
5826 		return LOCK_STATE_UNKNOWN;
5827 
5828 	raw_local_irq_save(flags);
5829 	check_flags(flags);
5830 
5831 	lockdep_recursion_inc();
5832 	ret = __lock_is_held(lock, read);
5833 	lockdep_recursion_finish();
5834 	raw_local_irq_restore(flags);
5835 
5836 	return ret;
5837 }
5838 EXPORT_SYMBOL_GPL(lock_is_held_type);
5839 NOKPROBE_SYMBOL(lock_is_held_type);
5840 
5841 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5842 {
5843 	struct pin_cookie cookie = NIL_COOKIE;
5844 	unsigned long flags;
5845 
5846 	if (unlikely(!lockdep_enabled()))
5847 		return cookie;
5848 
5849 	raw_local_irq_save(flags);
5850 	check_flags(flags);
5851 
5852 	lockdep_recursion_inc();
5853 	cookie = __lock_pin_lock(lock);
5854 	lockdep_recursion_finish();
5855 	raw_local_irq_restore(flags);
5856 
5857 	return cookie;
5858 }
5859 EXPORT_SYMBOL_GPL(lock_pin_lock);
5860 
5861 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5862 {
5863 	unsigned long flags;
5864 
5865 	if (unlikely(!lockdep_enabled()))
5866 		return;
5867 
5868 	raw_local_irq_save(flags);
5869 	check_flags(flags);
5870 
5871 	lockdep_recursion_inc();
5872 	__lock_repin_lock(lock, cookie);
5873 	lockdep_recursion_finish();
5874 	raw_local_irq_restore(flags);
5875 }
5876 EXPORT_SYMBOL_GPL(lock_repin_lock);
5877 
5878 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5879 {
5880 	unsigned long flags;
5881 
5882 	if (unlikely(!lockdep_enabled()))
5883 		return;
5884 
5885 	raw_local_irq_save(flags);
5886 	check_flags(flags);
5887 
5888 	lockdep_recursion_inc();
5889 	__lock_unpin_lock(lock, cookie);
5890 	lockdep_recursion_finish();
5891 	raw_local_irq_restore(flags);
5892 }
5893 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5894 
5895 #ifdef CONFIG_LOCK_STAT
5896 static void print_lock_contention_bug(struct task_struct *curr,
5897 				      struct lockdep_map *lock,
5898 				      unsigned long ip)
5899 {
5900 	if (!debug_locks_off())
5901 		return;
5902 	if (debug_locks_silent)
5903 		return;
5904 
5905 	pr_warn("\n");
5906 	pr_warn("=================================\n");
5907 	pr_warn("WARNING: bad contention detected!\n");
5908 	print_kernel_ident();
5909 	pr_warn("---------------------------------\n");
5910 	pr_warn("%s/%d is trying to contend lock (",
5911 		curr->comm, task_pid_nr(curr));
5912 	print_lockdep_cache(lock);
5913 	pr_cont(") at:\n");
5914 	print_ip_sym(KERN_WARNING, ip);
5915 	pr_warn("but there are no locks held!\n");
5916 	pr_warn("\nother info that might help us debug this:\n");
5917 	lockdep_print_held_locks(curr);
5918 
5919 	pr_warn("\nstack backtrace:\n");
5920 	dump_stack();
5921 }
5922 
5923 static void
5924 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5925 {
5926 	struct task_struct *curr = current;
5927 	struct held_lock *hlock;
5928 	struct lock_class_stats *stats;
5929 	unsigned int depth;
5930 	int i, contention_point, contending_point;
5931 
5932 	depth = curr->lockdep_depth;
5933 	/*
5934 	 * Whee, we contended on this lock, except it seems we're not
5935 	 * actually trying to acquire anything much at all..
5936 	 */
5937 	if (DEBUG_LOCKS_WARN_ON(!depth))
5938 		return;
5939 
5940 	hlock = find_held_lock(curr, lock, depth, &i);
5941 	if (!hlock) {
5942 		print_lock_contention_bug(curr, lock, ip);
5943 		return;
5944 	}
5945 
5946 	if (hlock->instance != lock)
5947 		return;
5948 
5949 	hlock->waittime_stamp = lockstat_clock();
5950 
5951 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5952 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5953 				      lock->ip);
5954 
5955 	stats = get_lock_stats(hlock_class(hlock));
5956 	if (contention_point < LOCKSTAT_POINTS)
5957 		stats->contention_point[contention_point]++;
5958 	if (contending_point < LOCKSTAT_POINTS)
5959 		stats->contending_point[contending_point]++;
5960 	if (lock->cpu != smp_processor_id())
5961 		stats->bounces[bounce_contended + !!hlock->read]++;
5962 }
5963 
5964 static void
5965 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5966 {
5967 	struct task_struct *curr = current;
5968 	struct held_lock *hlock;
5969 	struct lock_class_stats *stats;
5970 	unsigned int depth;
5971 	u64 now, waittime = 0;
5972 	int i, cpu;
5973 
5974 	depth = curr->lockdep_depth;
5975 	/*
5976 	 * Yay, we acquired ownership of this lock we didn't try to
5977 	 * acquire, how the heck did that happen?
5978 	 */
5979 	if (DEBUG_LOCKS_WARN_ON(!depth))
5980 		return;
5981 
5982 	hlock = find_held_lock(curr, lock, depth, &i);
5983 	if (!hlock) {
5984 		print_lock_contention_bug(curr, lock, _RET_IP_);
5985 		return;
5986 	}
5987 
5988 	if (hlock->instance != lock)
5989 		return;
5990 
5991 	cpu = smp_processor_id();
5992 	if (hlock->waittime_stamp) {
5993 		now = lockstat_clock();
5994 		waittime = now - hlock->waittime_stamp;
5995 		hlock->holdtime_stamp = now;
5996 	}
5997 
5998 	stats = get_lock_stats(hlock_class(hlock));
5999 	if (waittime) {
6000 		if (hlock->read)
6001 			lock_time_inc(&stats->read_waittime, waittime);
6002 		else
6003 			lock_time_inc(&stats->write_waittime, waittime);
6004 	}
6005 	if (lock->cpu != cpu)
6006 		stats->bounces[bounce_acquired + !!hlock->read]++;
6007 
6008 	lock->cpu = cpu;
6009 	lock->ip = ip;
6010 }
6011 
6012 void lock_contended(struct lockdep_map *lock, unsigned long ip)
6013 {
6014 	unsigned long flags;
6015 
6016 	trace_lock_contended(lock, ip);
6017 
6018 	if (unlikely(!lock_stat || !lockdep_enabled()))
6019 		return;
6020 
6021 	raw_local_irq_save(flags);
6022 	check_flags(flags);
6023 	lockdep_recursion_inc();
6024 	__lock_contended(lock, ip);
6025 	lockdep_recursion_finish();
6026 	raw_local_irq_restore(flags);
6027 }
6028 EXPORT_SYMBOL_GPL(lock_contended);
6029 
6030 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
6031 {
6032 	unsigned long flags;
6033 
6034 	trace_lock_acquired(lock, ip);
6035 
6036 	if (unlikely(!lock_stat || !lockdep_enabled()))
6037 		return;
6038 
6039 	raw_local_irq_save(flags);
6040 	check_flags(flags);
6041 	lockdep_recursion_inc();
6042 	__lock_acquired(lock, ip);
6043 	lockdep_recursion_finish();
6044 	raw_local_irq_restore(flags);
6045 }
6046 EXPORT_SYMBOL_GPL(lock_acquired);
6047 #endif
6048 
6049 /*
6050  * Used by the testsuite, sanitize the validator state
6051  * after a simulated failure:
6052  */
6053 
6054 void lockdep_reset(void)
6055 {
6056 	unsigned long flags;
6057 	int i;
6058 
6059 	raw_local_irq_save(flags);
6060 	lockdep_init_task(current);
6061 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
6062 	nr_hardirq_chains = 0;
6063 	nr_softirq_chains = 0;
6064 	nr_process_chains = 0;
6065 	debug_locks = 1;
6066 	for (i = 0; i < CHAINHASH_SIZE; i++)
6067 		INIT_HLIST_HEAD(chainhash_table + i);
6068 	raw_local_irq_restore(flags);
6069 }
6070 
6071 /* Remove a class from a lock chain. Must be called with the graph lock held. */
6072 static void remove_class_from_lock_chain(struct pending_free *pf,
6073 					 struct lock_chain *chain,
6074 					 struct lock_class *class)
6075 {
6076 #ifdef CONFIG_PROVE_LOCKING
6077 	int i;
6078 
6079 	for (i = chain->base; i < chain->base + chain->depth; i++) {
6080 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
6081 			continue;
6082 		/*
6083 		 * Each lock class occurs at most once in a lock chain so once
6084 		 * we found a match we can break out of this loop.
6085 		 */
6086 		goto free_lock_chain;
6087 	}
6088 	/* Since the chain has not been modified, return. */
6089 	return;
6090 
6091 free_lock_chain:
6092 	free_chain_hlocks(chain->base, chain->depth);
6093 	/* Overwrite the chain key for concurrent RCU readers. */
6094 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
6095 	dec_chains(chain->irq_context);
6096 
6097 	/*
6098 	 * Note: calling hlist_del_rcu() from inside a
6099 	 * hlist_for_each_entry_rcu() loop is safe.
6100 	 */
6101 	hlist_del_rcu(&chain->entry);
6102 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
6103 	nr_zapped_lock_chains++;
6104 #endif
6105 }
6106 
6107 /* Must be called with the graph lock held. */
6108 static void remove_class_from_lock_chains(struct pending_free *pf,
6109 					  struct lock_class *class)
6110 {
6111 	struct lock_chain *chain;
6112 	struct hlist_head *head;
6113 	int i;
6114 
6115 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
6116 		head = chainhash_table + i;
6117 		hlist_for_each_entry_rcu(chain, head, entry) {
6118 			remove_class_from_lock_chain(pf, chain, class);
6119 		}
6120 	}
6121 }
6122 
6123 /*
6124  * Remove all references to a lock class. The caller must hold the graph lock.
6125  */
6126 static void zap_class(struct pending_free *pf, struct lock_class *class)
6127 {
6128 	struct lock_list *entry;
6129 	int i;
6130 
6131 	WARN_ON_ONCE(!class->key);
6132 
6133 	/*
6134 	 * Remove all dependencies this lock is
6135 	 * involved in:
6136 	 */
6137 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6138 		entry = list_entries + i;
6139 		if (entry->class != class && entry->links_to != class)
6140 			continue;
6141 		__clear_bit(i, list_entries_in_use);
6142 		nr_list_entries--;
6143 		list_del_rcu(&entry->entry);
6144 	}
6145 	if (list_empty(&class->locks_after) &&
6146 	    list_empty(&class->locks_before)) {
6147 		list_move_tail(&class->lock_entry, &pf->zapped);
6148 		hlist_del_rcu(&class->hash_entry);
6149 		WRITE_ONCE(class->key, NULL);
6150 		WRITE_ONCE(class->name, NULL);
6151 		nr_lock_classes--;
6152 		__clear_bit(class - lock_classes, lock_classes_in_use);
6153 		if (class - lock_classes == max_lock_class_idx)
6154 			max_lock_class_idx--;
6155 	} else {
6156 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6157 			  class->name);
6158 	}
6159 
6160 	remove_class_from_lock_chains(pf, class);
6161 	nr_zapped_classes++;
6162 }
6163 
6164 static void reinit_class(struct lock_class *class)
6165 {
6166 	WARN_ON_ONCE(!class->lock_entry.next);
6167 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6168 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6169 	memset_startat(class, 0, key);
6170 	WARN_ON_ONCE(!class->lock_entry.next);
6171 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6172 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6173 }
6174 
6175 static inline int within(const void *addr, void *start, unsigned long size)
6176 {
6177 	return addr >= start && addr < start + size;
6178 }
6179 
6180 static bool inside_selftest(void)
6181 {
6182 	return current == lockdep_selftest_task_struct;
6183 }
6184 
6185 /* The caller must hold the graph lock. */
6186 static struct pending_free *get_pending_free(void)
6187 {
6188 	return delayed_free.pf + delayed_free.index;
6189 }
6190 
6191 static void free_zapped_rcu(struct rcu_head *cb);
6192 
6193 /*
6194  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6195  * the graph lock held.
6196  */
6197 static void call_rcu_zapped(struct pending_free *pf)
6198 {
6199 	WARN_ON_ONCE(inside_selftest());
6200 
6201 	if (list_empty(&pf->zapped))
6202 		return;
6203 
6204 	if (delayed_free.scheduled)
6205 		return;
6206 
6207 	delayed_free.scheduled = true;
6208 
6209 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6210 	delayed_free.index ^= 1;
6211 
6212 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6213 }
6214 
6215 /* The caller must hold the graph lock. May be called from RCU context. */
6216 static void __free_zapped_classes(struct pending_free *pf)
6217 {
6218 	struct lock_class *class;
6219 
6220 	check_data_structures();
6221 
6222 	list_for_each_entry(class, &pf->zapped, lock_entry)
6223 		reinit_class(class);
6224 
6225 	list_splice_init(&pf->zapped, &free_lock_classes);
6226 
6227 #ifdef CONFIG_PROVE_LOCKING
6228 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6229 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6230 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6231 #endif
6232 }
6233 
6234 static void free_zapped_rcu(struct rcu_head *ch)
6235 {
6236 	struct pending_free *pf;
6237 	unsigned long flags;
6238 
6239 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6240 		return;
6241 
6242 	raw_local_irq_save(flags);
6243 	lockdep_lock();
6244 
6245 	/* closed head */
6246 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6247 	__free_zapped_classes(pf);
6248 	delayed_free.scheduled = false;
6249 
6250 	/*
6251 	 * If there's anything on the open list, close and start a new callback.
6252 	 */
6253 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6254 
6255 	lockdep_unlock();
6256 	raw_local_irq_restore(flags);
6257 }
6258 
6259 /*
6260  * Remove all lock classes from the class hash table and from the
6261  * all_lock_classes list whose key or name is in the address range [start,
6262  * start + size). Move these lock classes to the zapped_classes list. Must
6263  * be called with the graph lock held.
6264  */
6265 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6266 				     unsigned long size)
6267 {
6268 	struct lock_class *class;
6269 	struct hlist_head *head;
6270 	int i;
6271 
6272 	/* Unhash all classes that were created by a module. */
6273 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6274 		head = classhash_table + i;
6275 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6276 			if (!within(class->key, start, size) &&
6277 			    !within(class->name, start, size))
6278 				continue;
6279 			zap_class(pf, class);
6280 		}
6281 	}
6282 }
6283 
6284 /*
6285  * Used in module.c to remove lock classes from memory that is going to be
6286  * freed; and possibly re-used by other modules.
6287  *
6288  * We will have had one synchronize_rcu() before getting here, so we're
6289  * guaranteed nobody will look up these exact classes -- they're properly dead
6290  * but still allocated.
6291  */
6292 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6293 {
6294 	struct pending_free *pf;
6295 	unsigned long flags;
6296 
6297 	init_data_structures_once();
6298 
6299 	raw_local_irq_save(flags);
6300 	lockdep_lock();
6301 	pf = get_pending_free();
6302 	__lockdep_free_key_range(pf, start, size);
6303 	call_rcu_zapped(pf);
6304 	lockdep_unlock();
6305 	raw_local_irq_restore(flags);
6306 
6307 	/*
6308 	 * Wait for any possible iterators from look_up_lock_class() to pass
6309 	 * before continuing to free the memory they refer to.
6310 	 */
6311 	synchronize_rcu();
6312 }
6313 
6314 /*
6315  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6316  * Ignores debug_locks. Must only be used by the lockdep selftests.
6317  */
6318 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6319 {
6320 	struct pending_free *pf = delayed_free.pf;
6321 	unsigned long flags;
6322 
6323 	init_data_structures_once();
6324 
6325 	raw_local_irq_save(flags);
6326 	lockdep_lock();
6327 	__lockdep_free_key_range(pf, start, size);
6328 	__free_zapped_classes(pf);
6329 	lockdep_unlock();
6330 	raw_local_irq_restore(flags);
6331 }
6332 
6333 void lockdep_free_key_range(void *start, unsigned long size)
6334 {
6335 	init_data_structures_once();
6336 
6337 	if (inside_selftest())
6338 		lockdep_free_key_range_imm(start, size);
6339 	else
6340 		lockdep_free_key_range_reg(start, size);
6341 }
6342 
6343 /*
6344  * Check whether any element of the @lock->class_cache[] array refers to a
6345  * registered lock class. The caller must hold either the graph lock or the
6346  * RCU read lock.
6347  */
6348 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6349 {
6350 	struct lock_class *class;
6351 	struct hlist_head *head;
6352 	int i, j;
6353 
6354 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6355 		head = classhash_table + i;
6356 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6357 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6358 				if (lock->class_cache[j] == class)
6359 					return true;
6360 		}
6361 	}
6362 	return false;
6363 }
6364 
6365 /* The caller must hold the graph lock. Does not sleep. */
6366 static void __lockdep_reset_lock(struct pending_free *pf,
6367 				 struct lockdep_map *lock)
6368 {
6369 	struct lock_class *class;
6370 	int j;
6371 
6372 	/*
6373 	 * Remove all classes this lock might have:
6374 	 */
6375 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6376 		/*
6377 		 * If the class exists we look it up and zap it:
6378 		 */
6379 		class = look_up_lock_class(lock, j);
6380 		if (class)
6381 			zap_class(pf, class);
6382 	}
6383 	/*
6384 	 * Debug check: in the end all mapped classes should
6385 	 * be gone.
6386 	 */
6387 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6388 		debug_locks_off();
6389 }
6390 
6391 /*
6392  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6393  * released data structures from RCU context.
6394  */
6395 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6396 {
6397 	struct pending_free *pf;
6398 	unsigned long flags;
6399 	int locked;
6400 
6401 	raw_local_irq_save(flags);
6402 	locked = graph_lock();
6403 	if (!locked)
6404 		goto out_irq;
6405 
6406 	pf = get_pending_free();
6407 	__lockdep_reset_lock(pf, lock);
6408 	call_rcu_zapped(pf);
6409 
6410 	graph_unlock();
6411 out_irq:
6412 	raw_local_irq_restore(flags);
6413 }
6414 
6415 /*
6416  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6417  * lockdep selftests.
6418  */
6419 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6420 {
6421 	struct pending_free *pf = delayed_free.pf;
6422 	unsigned long flags;
6423 
6424 	raw_local_irq_save(flags);
6425 	lockdep_lock();
6426 	__lockdep_reset_lock(pf, lock);
6427 	__free_zapped_classes(pf);
6428 	lockdep_unlock();
6429 	raw_local_irq_restore(flags);
6430 }
6431 
6432 void lockdep_reset_lock(struct lockdep_map *lock)
6433 {
6434 	init_data_structures_once();
6435 
6436 	if (inside_selftest())
6437 		lockdep_reset_lock_imm(lock);
6438 	else
6439 		lockdep_reset_lock_reg(lock);
6440 }
6441 
6442 /*
6443  * Unregister a dynamically allocated key.
6444  *
6445  * Unlike lockdep_register_key(), a search is always done to find a matching
6446  * key irrespective of debug_locks to avoid potential invalid access to freed
6447  * memory in lock_class entry.
6448  */
6449 void lockdep_unregister_key(struct lock_class_key *key)
6450 {
6451 	struct hlist_head *hash_head = keyhashentry(key);
6452 	struct lock_class_key *k;
6453 	struct pending_free *pf;
6454 	unsigned long flags;
6455 	bool found = false;
6456 
6457 	might_sleep();
6458 
6459 	if (WARN_ON_ONCE(static_obj(key)))
6460 		return;
6461 
6462 	raw_local_irq_save(flags);
6463 	lockdep_lock();
6464 
6465 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6466 		if (k == key) {
6467 			hlist_del_rcu(&k->hash_entry);
6468 			found = true;
6469 			break;
6470 		}
6471 	}
6472 	WARN_ON_ONCE(!found && debug_locks);
6473 	if (found) {
6474 		pf = get_pending_free();
6475 		__lockdep_free_key_range(pf, key, 1);
6476 		call_rcu_zapped(pf);
6477 	}
6478 	lockdep_unlock();
6479 	raw_local_irq_restore(flags);
6480 
6481 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6482 	synchronize_rcu();
6483 }
6484 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6485 
6486 void __init lockdep_init(void)
6487 {
6488 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6489 
6490 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6491 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6492 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6493 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6494 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6495 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6496 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6497 
6498 	printk(" memory used by lock dependency info: %zu kB\n",
6499 	       (sizeof(lock_classes) +
6500 		sizeof(lock_classes_in_use) +
6501 		sizeof(classhash_table) +
6502 		sizeof(list_entries) +
6503 		sizeof(list_entries_in_use) +
6504 		sizeof(chainhash_table) +
6505 		sizeof(delayed_free)
6506 #ifdef CONFIG_PROVE_LOCKING
6507 		+ sizeof(lock_cq)
6508 		+ sizeof(lock_chains)
6509 		+ sizeof(lock_chains_in_use)
6510 		+ sizeof(chain_hlocks)
6511 #endif
6512 		) / 1024
6513 		);
6514 
6515 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6516 	printk(" memory used for stack traces: %zu kB\n",
6517 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6518 	       );
6519 #endif
6520 
6521 	printk(" per task-struct memory footprint: %zu bytes\n",
6522 	       sizeof(((struct task_struct *)NULL)->held_locks));
6523 }
6524 
6525 static void
6526 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6527 		     const void *mem_to, struct held_lock *hlock)
6528 {
6529 	if (!debug_locks_off())
6530 		return;
6531 	if (debug_locks_silent)
6532 		return;
6533 
6534 	pr_warn("\n");
6535 	pr_warn("=========================\n");
6536 	pr_warn("WARNING: held lock freed!\n");
6537 	print_kernel_ident();
6538 	pr_warn("-------------------------\n");
6539 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6540 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6541 	print_lock(hlock);
6542 	lockdep_print_held_locks(curr);
6543 
6544 	pr_warn("\nstack backtrace:\n");
6545 	dump_stack();
6546 }
6547 
6548 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6549 				const void* lock_from, unsigned long lock_len)
6550 {
6551 	return lock_from + lock_len <= mem_from ||
6552 		mem_from + mem_len <= lock_from;
6553 }
6554 
6555 /*
6556  * Called when kernel memory is freed (or unmapped), or if a lock
6557  * is destroyed or reinitialized - this code checks whether there is
6558  * any held lock in the memory range of <from> to <to>:
6559  */
6560 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6561 {
6562 	struct task_struct *curr = current;
6563 	struct held_lock *hlock;
6564 	unsigned long flags;
6565 	int i;
6566 
6567 	if (unlikely(!debug_locks))
6568 		return;
6569 
6570 	raw_local_irq_save(flags);
6571 	for (i = 0; i < curr->lockdep_depth; i++) {
6572 		hlock = curr->held_locks + i;
6573 
6574 		if (not_in_range(mem_from, mem_len, hlock->instance,
6575 					sizeof(*hlock->instance)))
6576 			continue;
6577 
6578 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6579 		break;
6580 	}
6581 	raw_local_irq_restore(flags);
6582 }
6583 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6584 
6585 static void print_held_locks_bug(void)
6586 {
6587 	if (!debug_locks_off())
6588 		return;
6589 	if (debug_locks_silent)
6590 		return;
6591 
6592 	pr_warn("\n");
6593 	pr_warn("====================================\n");
6594 	pr_warn("WARNING: %s/%d still has locks held!\n",
6595 	       current->comm, task_pid_nr(current));
6596 	print_kernel_ident();
6597 	pr_warn("------------------------------------\n");
6598 	lockdep_print_held_locks(current);
6599 	pr_warn("\nstack backtrace:\n");
6600 	dump_stack();
6601 }
6602 
6603 void debug_check_no_locks_held(void)
6604 {
6605 	if (unlikely(current->lockdep_depth > 0))
6606 		print_held_locks_bug();
6607 }
6608 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6609 
6610 #ifdef __KERNEL__
6611 void debug_show_all_locks(void)
6612 {
6613 	struct task_struct *g, *p;
6614 
6615 	if (unlikely(!debug_locks)) {
6616 		pr_warn("INFO: lockdep is turned off.\n");
6617 		return;
6618 	}
6619 	pr_warn("\nShowing all locks held in the system:\n");
6620 
6621 	rcu_read_lock();
6622 	for_each_process_thread(g, p) {
6623 		if (!p->lockdep_depth)
6624 			continue;
6625 		lockdep_print_held_locks(p);
6626 		touch_nmi_watchdog();
6627 		touch_all_softlockup_watchdogs();
6628 	}
6629 	rcu_read_unlock();
6630 
6631 	pr_warn("\n");
6632 	pr_warn("=============================================\n\n");
6633 }
6634 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6635 #endif
6636 
6637 /*
6638  * Careful: only use this function if you are sure that
6639  * the task cannot run in parallel!
6640  */
6641 void debug_show_held_locks(struct task_struct *task)
6642 {
6643 	if (unlikely(!debug_locks)) {
6644 		printk("INFO: lockdep is turned off.\n");
6645 		return;
6646 	}
6647 	lockdep_print_held_locks(task);
6648 }
6649 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6650 
6651 asmlinkage __visible void lockdep_sys_exit(void)
6652 {
6653 	struct task_struct *curr = current;
6654 
6655 	if (unlikely(curr->lockdep_depth)) {
6656 		if (!debug_locks_off())
6657 			return;
6658 		pr_warn("\n");
6659 		pr_warn("================================================\n");
6660 		pr_warn("WARNING: lock held when returning to user space!\n");
6661 		print_kernel_ident();
6662 		pr_warn("------------------------------------------------\n");
6663 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6664 				curr->comm, curr->pid);
6665 		lockdep_print_held_locks(curr);
6666 	}
6667 
6668 	/*
6669 	 * The lock history for each syscall should be independent. So wipe the
6670 	 * slate clean on return to userspace.
6671 	 */
6672 	lockdep_invariant_state(false);
6673 }
6674 
6675 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6676 {
6677 	struct task_struct *curr = current;
6678 	int dl = READ_ONCE(debug_locks);
6679 	bool rcu = warn_rcu_enter();
6680 
6681 	/* Note: the following can be executed concurrently, so be careful. */
6682 	pr_warn("\n");
6683 	pr_warn("=============================\n");
6684 	pr_warn("WARNING: suspicious RCU usage\n");
6685 	print_kernel_ident();
6686 	pr_warn("-----------------------------\n");
6687 	pr_warn("%s:%d %s!\n", file, line, s);
6688 	pr_warn("\nother info that might help us debug this:\n\n");
6689 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6690 	       !rcu_lockdep_current_cpu_online()
6691 			? "RCU used illegally from offline CPU!\n"
6692 			: "",
6693 	       rcu_scheduler_active, dl,
6694 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6695 
6696 	/*
6697 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6698 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6699 	 * considers that CPU to be in an "extended quiescent state",
6700 	 * which means that RCU will be completely ignoring that CPU.
6701 	 * Therefore, rcu_read_lock() and friends have absolutely no
6702 	 * effect on a CPU running in that state. In other words, even if
6703 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6704 	 * delete data structures out from under it.  RCU really has no
6705 	 * choice here: we need to keep an RCU-free window in idle where
6706 	 * the CPU may possibly enter into low power mode. This way we can
6707 	 * notice an extended quiescent state to other CPUs that started a grace
6708 	 * period. Otherwise we would delay any grace period as long as we run
6709 	 * in the idle task.
6710 	 *
6711 	 * So complain bitterly if someone does call rcu_read_lock(),
6712 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6713 	 */
6714 	if (!rcu_is_watching())
6715 		pr_warn("RCU used illegally from extended quiescent state!\n");
6716 
6717 	lockdep_print_held_locks(curr);
6718 	pr_warn("\nstack backtrace:\n");
6719 	dump_stack();
6720 	warn_rcu_exit(rcu);
6721 }
6722 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6723