1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 #include <linux/context_tracking.h> 59 60 #include <asm/sections.h> 61 62 #include "lockdep_internals.h" 63 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 static int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 static int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 #ifdef CONFIG_SYSCTL 81 static struct ctl_table kern_lockdep_table[] = { 82 #ifdef CONFIG_PROVE_LOCKING 83 { 84 .procname = "prove_locking", 85 .data = &prove_locking, 86 .maxlen = sizeof(int), 87 .mode = 0644, 88 .proc_handler = proc_dointvec, 89 }, 90 #endif /* CONFIG_PROVE_LOCKING */ 91 #ifdef CONFIG_LOCK_STAT 92 { 93 .procname = "lock_stat", 94 .data = &lock_stat, 95 .maxlen = sizeof(int), 96 .mode = 0644, 97 .proc_handler = proc_dointvec, 98 }, 99 #endif /* CONFIG_LOCK_STAT */ 100 { } 101 }; 102 103 static __init int kernel_lockdep_sysctls_init(void) 104 { 105 register_sysctl_init("kernel", kern_lockdep_table); 106 return 0; 107 } 108 late_initcall(kernel_lockdep_sysctls_init); 109 #endif /* CONFIG_SYSCTL */ 110 111 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 113 114 static __always_inline bool lockdep_enabled(void) 115 { 116 if (!debug_locks) 117 return false; 118 119 if (this_cpu_read(lockdep_recursion)) 120 return false; 121 122 if (current->lockdep_recursion) 123 return false; 124 125 return true; 126 } 127 128 /* 129 * lockdep_lock: protects the lockdep graph, the hashes and the 130 * class/list/hash allocators. 131 * 132 * This is one of the rare exceptions where it's justified 133 * to use a raw spinlock - we really dont want the spinlock 134 * code to recurse back into the lockdep code... 135 */ 136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 137 static struct task_struct *__owner; 138 139 static inline void lockdep_lock(void) 140 { 141 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 142 143 __this_cpu_inc(lockdep_recursion); 144 arch_spin_lock(&__lock); 145 __owner = current; 146 } 147 148 static inline void lockdep_unlock(void) 149 { 150 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 151 152 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 153 return; 154 155 __owner = NULL; 156 arch_spin_unlock(&__lock); 157 __this_cpu_dec(lockdep_recursion); 158 } 159 160 static inline bool lockdep_assert_locked(void) 161 { 162 return DEBUG_LOCKS_WARN_ON(__owner != current); 163 } 164 165 static struct task_struct *lockdep_selftest_task_struct; 166 167 168 static int graph_lock(void) 169 { 170 lockdep_lock(); 171 /* 172 * Make sure that if another CPU detected a bug while 173 * walking the graph we dont change it (while the other 174 * CPU is busy printing out stuff with the graph lock 175 * dropped already) 176 */ 177 if (!debug_locks) { 178 lockdep_unlock(); 179 return 0; 180 } 181 return 1; 182 } 183 184 static inline void graph_unlock(void) 185 { 186 lockdep_unlock(); 187 } 188 189 /* 190 * Turn lock debugging off and return with 0 if it was off already, 191 * and also release the graph lock: 192 */ 193 static inline int debug_locks_off_graph_unlock(void) 194 { 195 int ret = debug_locks_off(); 196 197 lockdep_unlock(); 198 199 return ret; 200 } 201 202 unsigned long nr_list_entries; 203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 205 206 /* 207 * All data structures here are protected by the global debug_lock. 208 * 209 * nr_lock_classes is the number of elements of lock_classes[] that is 210 * in use. 211 */ 212 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 213 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 215 unsigned long nr_lock_classes; 216 unsigned long nr_zapped_classes; 217 unsigned long max_lock_class_idx; 218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 220 221 static inline struct lock_class *hlock_class(struct held_lock *hlock) 222 { 223 unsigned int class_idx = hlock->class_idx; 224 225 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 226 barrier(); 227 228 if (!test_bit(class_idx, lock_classes_in_use)) { 229 /* 230 * Someone passed in garbage, we give up. 231 */ 232 DEBUG_LOCKS_WARN_ON(1); 233 return NULL; 234 } 235 236 /* 237 * At this point, if the passed hlock->class_idx is still garbage, 238 * we just have to live with it 239 */ 240 return lock_classes + class_idx; 241 } 242 243 #ifdef CONFIG_LOCK_STAT 244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 245 246 static inline u64 lockstat_clock(void) 247 { 248 return local_clock(); 249 } 250 251 static int lock_point(unsigned long points[], unsigned long ip) 252 { 253 int i; 254 255 for (i = 0; i < LOCKSTAT_POINTS; i++) { 256 if (points[i] == 0) { 257 points[i] = ip; 258 break; 259 } 260 if (points[i] == ip) 261 break; 262 } 263 264 return i; 265 } 266 267 static void lock_time_inc(struct lock_time *lt, u64 time) 268 { 269 if (time > lt->max) 270 lt->max = time; 271 272 if (time < lt->min || !lt->nr) 273 lt->min = time; 274 275 lt->total += time; 276 lt->nr++; 277 } 278 279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 280 { 281 if (!src->nr) 282 return; 283 284 if (src->max > dst->max) 285 dst->max = src->max; 286 287 if (src->min < dst->min || !dst->nr) 288 dst->min = src->min; 289 290 dst->total += src->total; 291 dst->nr += src->nr; 292 } 293 294 struct lock_class_stats lock_stats(struct lock_class *class) 295 { 296 struct lock_class_stats stats; 297 int cpu, i; 298 299 memset(&stats, 0, sizeof(struct lock_class_stats)); 300 for_each_possible_cpu(cpu) { 301 struct lock_class_stats *pcs = 302 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 303 304 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 305 stats.contention_point[i] += pcs->contention_point[i]; 306 307 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 308 stats.contending_point[i] += pcs->contending_point[i]; 309 310 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 311 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 312 313 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 314 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 315 316 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 317 stats.bounces[i] += pcs->bounces[i]; 318 } 319 320 return stats; 321 } 322 323 void clear_lock_stats(struct lock_class *class) 324 { 325 int cpu; 326 327 for_each_possible_cpu(cpu) { 328 struct lock_class_stats *cpu_stats = 329 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 330 331 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 332 } 333 memset(class->contention_point, 0, sizeof(class->contention_point)); 334 memset(class->contending_point, 0, sizeof(class->contending_point)); 335 } 336 337 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 338 { 339 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 340 } 341 342 static void lock_release_holdtime(struct held_lock *hlock) 343 { 344 struct lock_class_stats *stats; 345 u64 holdtime; 346 347 if (!lock_stat) 348 return; 349 350 holdtime = lockstat_clock() - hlock->holdtime_stamp; 351 352 stats = get_lock_stats(hlock_class(hlock)); 353 if (hlock->read) 354 lock_time_inc(&stats->read_holdtime, holdtime); 355 else 356 lock_time_inc(&stats->write_holdtime, holdtime); 357 } 358 #else 359 static inline void lock_release_holdtime(struct held_lock *hlock) 360 { 361 } 362 #endif 363 364 /* 365 * We keep a global list of all lock classes. The list is only accessed with 366 * the lockdep spinlock lock held. free_lock_classes is a list with free 367 * elements. These elements are linked together by the lock_entry member in 368 * struct lock_class. 369 */ 370 static LIST_HEAD(all_lock_classes); 371 static LIST_HEAD(free_lock_classes); 372 373 /** 374 * struct pending_free - information about data structures about to be freed 375 * @zapped: Head of a list with struct lock_class elements. 376 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 377 * are about to be freed. 378 */ 379 struct pending_free { 380 struct list_head zapped; 381 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 382 }; 383 384 /** 385 * struct delayed_free - data structures used for delayed freeing 386 * 387 * A data structure for delayed freeing of data structures that may be 388 * accessed by RCU readers at the time these were freed. 389 * 390 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 391 * @index: Index of @pf to which freed data structures are added. 392 * @scheduled: Whether or not an RCU callback has been scheduled. 393 * @pf: Array with information about data structures about to be freed. 394 */ 395 static struct delayed_free { 396 struct rcu_head rcu_head; 397 int index; 398 int scheduled; 399 struct pending_free pf[2]; 400 } delayed_free; 401 402 /* 403 * The lockdep classes are in a hash-table as well, for fast lookup: 404 */ 405 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 406 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 407 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 408 #define classhashentry(key) (classhash_table + __classhashfn((key))) 409 410 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 411 412 /* 413 * We put the lock dependency chains into a hash-table as well, to cache 414 * their existence: 415 */ 416 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 417 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 418 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 419 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 420 421 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 422 423 /* 424 * the id of held_lock 425 */ 426 static inline u16 hlock_id(struct held_lock *hlock) 427 { 428 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 429 430 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 431 } 432 433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 434 { 435 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 436 } 437 438 /* 439 * The hash key of the lock dependency chains is a hash itself too: 440 * it's a hash of all locks taken up to that lock, including that lock. 441 * It's a 64-bit hash, because it's important for the keys to be 442 * unique. 443 */ 444 static inline u64 iterate_chain_key(u64 key, u32 idx) 445 { 446 u32 k0 = key, k1 = key >> 32; 447 448 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 449 450 return k0 | (u64)k1 << 32; 451 } 452 453 void lockdep_init_task(struct task_struct *task) 454 { 455 task->lockdep_depth = 0; /* no locks held yet */ 456 task->curr_chain_key = INITIAL_CHAIN_KEY; 457 task->lockdep_recursion = 0; 458 } 459 460 static __always_inline void lockdep_recursion_inc(void) 461 { 462 __this_cpu_inc(lockdep_recursion); 463 } 464 465 static __always_inline void lockdep_recursion_finish(void) 466 { 467 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 468 __this_cpu_write(lockdep_recursion, 0); 469 } 470 471 void lockdep_set_selftest_task(struct task_struct *task) 472 { 473 lockdep_selftest_task_struct = task; 474 } 475 476 /* 477 * Debugging switches: 478 */ 479 480 #define VERBOSE 0 481 #define VERY_VERBOSE 0 482 483 #if VERBOSE 484 # define HARDIRQ_VERBOSE 1 485 # define SOFTIRQ_VERBOSE 1 486 #else 487 # define HARDIRQ_VERBOSE 0 488 # define SOFTIRQ_VERBOSE 0 489 #endif 490 491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 492 /* 493 * Quick filtering for interesting events: 494 */ 495 static int class_filter(struct lock_class *class) 496 { 497 #if 0 498 /* Example */ 499 if (class->name_version == 1 && 500 !strcmp(class->name, "lockname")) 501 return 1; 502 if (class->name_version == 1 && 503 !strcmp(class->name, "&struct->lockfield")) 504 return 1; 505 #endif 506 /* Filter everything else. 1 would be to allow everything else */ 507 return 0; 508 } 509 #endif 510 511 static int verbose(struct lock_class *class) 512 { 513 #if VERBOSE 514 return class_filter(class); 515 #endif 516 return 0; 517 } 518 519 static void print_lockdep_off(const char *bug_msg) 520 { 521 printk(KERN_DEBUG "%s\n", bug_msg); 522 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 523 #ifdef CONFIG_LOCK_STAT 524 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 525 #endif 526 } 527 528 unsigned long nr_stack_trace_entries; 529 530 #ifdef CONFIG_PROVE_LOCKING 531 /** 532 * struct lock_trace - single stack backtrace 533 * @hash_entry: Entry in a stack_trace_hash[] list. 534 * @hash: jhash() of @entries. 535 * @nr_entries: Number of entries in @entries. 536 * @entries: Actual stack backtrace. 537 */ 538 struct lock_trace { 539 struct hlist_node hash_entry; 540 u32 hash; 541 u32 nr_entries; 542 unsigned long entries[] __aligned(sizeof(unsigned long)); 543 }; 544 #define LOCK_TRACE_SIZE_IN_LONGS \ 545 (sizeof(struct lock_trace) / sizeof(unsigned long)) 546 /* 547 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 548 */ 549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 551 552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 553 { 554 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 555 memcmp(t1->entries, t2->entries, 556 t1->nr_entries * sizeof(t1->entries[0])) == 0; 557 } 558 559 static struct lock_trace *save_trace(void) 560 { 561 struct lock_trace *trace, *t2; 562 struct hlist_head *hash_head; 563 u32 hash; 564 int max_entries; 565 566 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 567 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 568 569 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 570 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 571 LOCK_TRACE_SIZE_IN_LONGS; 572 573 if (max_entries <= 0) { 574 if (!debug_locks_off_graph_unlock()) 575 return NULL; 576 577 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 578 dump_stack(); 579 580 return NULL; 581 } 582 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 583 584 hash = jhash(trace->entries, trace->nr_entries * 585 sizeof(trace->entries[0]), 0); 586 trace->hash = hash; 587 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 588 hlist_for_each_entry(t2, hash_head, hash_entry) { 589 if (traces_identical(trace, t2)) 590 return t2; 591 } 592 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 593 hlist_add_head(&trace->hash_entry, hash_head); 594 595 return trace; 596 } 597 598 /* Return the number of stack traces in the stack_trace[] array. */ 599 u64 lockdep_stack_trace_count(void) 600 { 601 struct lock_trace *trace; 602 u64 c = 0; 603 int i; 604 605 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 606 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 607 c++; 608 } 609 } 610 611 return c; 612 } 613 614 /* Return the number of stack hash chains that have at least one stack trace. */ 615 u64 lockdep_stack_hash_count(void) 616 { 617 u64 c = 0; 618 int i; 619 620 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 621 if (!hlist_empty(&stack_trace_hash[i])) 622 c++; 623 624 return c; 625 } 626 #endif 627 628 unsigned int nr_hardirq_chains; 629 unsigned int nr_softirq_chains; 630 unsigned int nr_process_chains; 631 unsigned int max_lockdep_depth; 632 633 #ifdef CONFIG_DEBUG_LOCKDEP 634 /* 635 * Various lockdep statistics: 636 */ 637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 638 #endif 639 640 #ifdef CONFIG_PROVE_LOCKING 641 /* 642 * Locking printouts: 643 */ 644 645 #define __USAGE(__STATE) \ 646 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 647 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 648 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 649 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 650 651 static const char *usage_str[] = 652 { 653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 654 #include "lockdep_states.h" 655 #undef LOCKDEP_STATE 656 [LOCK_USED] = "INITIAL USE", 657 [LOCK_USED_READ] = "INITIAL READ USE", 658 /* abused as string storage for verify_lock_unused() */ 659 [LOCK_USAGE_STATES] = "IN-NMI", 660 }; 661 #endif 662 663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 664 { 665 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 666 } 667 668 static inline unsigned long lock_flag(enum lock_usage_bit bit) 669 { 670 return 1UL << bit; 671 } 672 673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 674 { 675 /* 676 * The usage character defaults to '.' (i.e., irqs disabled and not in 677 * irq context), which is the safest usage category. 678 */ 679 char c = '.'; 680 681 /* 682 * The order of the following usage checks matters, which will 683 * result in the outcome character as follows: 684 * 685 * - '+': irq is enabled and not in irq context 686 * - '-': in irq context and irq is disabled 687 * - '?': in irq context and irq is enabled 688 */ 689 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 690 c = '+'; 691 if (class->usage_mask & lock_flag(bit)) 692 c = '?'; 693 } else if (class->usage_mask & lock_flag(bit)) 694 c = '-'; 695 696 return c; 697 } 698 699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 700 { 701 int i = 0; 702 703 #define LOCKDEP_STATE(__STATE) \ 704 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 705 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 706 #include "lockdep_states.h" 707 #undef LOCKDEP_STATE 708 709 usage[i] = '\0'; 710 } 711 712 static void __print_lock_name(struct lock_class *class) 713 { 714 char str[KSYM_NAME_LEN]; 715 const char *name; 716 717 name = class->name; 718 if (!name) { 719 name = __get_key_name(class->key, str); 720 printk(KERN_CONT "%s", name); 721 } else { 722 printk(KERN_CONT "%s", name); 723 if (class->name_version > 1) 724 printk(KERN_CONT "#%d", class->name_version); 725 if (class->subclass) 726 printk(KERN_CONT "/%d", class->subclass); 727 } 728 } 729 730 static void print_lock_name(struct lock_class *class) 731 { 732 char usage[LOCK_USAGE_CHARS]; 733 734 get_usage_chars(class, usage); 735 736 printk(KERN_CONT " ("); 737 __print_lock_name(class); 738 printk(KERN_CONT "){%s}-{%d:%d}", usage, 739 class->wait_type_outer ?: class->wait_type_inner, 740 class->wait_type_inner); 741 } 742 743 static void print_lockdep_cache(struct lockdep_map *lock) 744 { 745 const char *name; 746 char str[KSYM_NAME_LEN]; 747 748 name = lock->name; 749 if (!name) 750 name = __get_key_name(lock->key->subkeys, str); 751 752 printk(KERN_CONT "%s", name); 753 } 754 755 static void print_lock(struct held_lock *hlock) 756 { 757 /* 758 * We can be called locklessly through debug_show_all_locks() so be 759 * extra careful, the hlock might have been released and cleared. 760 * 761 * If this indeed happens, lets pretend it does not hurt to continue 762 * to print the lock unless the hlock class_idx does not point to a 763 * registered class. The rationale here is: since we don't attempt 764 * to distinguish whether we are in this situation, if it just 765 * happened we can't count on class_idx to tell either. 766 */ 767 struct lock_class *lock = hlock_class(hlock); 768 769 if (!lock) { 770 printk(KERN_CONT "<RELEASED>\n"); 771 return; 772 } 773 774 printk(KERN_CONT "%px", hlock->instance); 775 print_lock_name(lock); 776 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 777 } 778 779 static void lockdep_print_held_locks(struct task_struct *p) 780 { 781 int i, depth = READ_ONCE(p->lockdep_depth); 782 783 if (!depth) 784 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 785 else 786 printk("%d lock%s held by %s/%d:\n", depth, 787 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 788 /* 789 * It's not reliable to print a task's held locks if it's not sleeping 790 * and it's not the current task. 791 */ 792 if (p != current && task_is_running(p)) 793 return; 794 for (i = 0; i < depth; i++) { 795 printk(" #%d: ", i); 796 print_lock(p->held_locks + i); 797 } 798 } 799 800 static void print_kernel_ident(void) 801 { 802 printk("%s %.*s %s\n", init_utsname()->release, 803 (int)strcspn(init_utsname()->version, " "), 804 init_utsname()->version, 805 print_tainted()); 806 } 807 808 static int very_verbose(struct lock_class *class) 809 { 810 #if VERY_VERBOSE 811 return class_filter(class); 812 #endif 813 return 0; 814 } 815 816 /* 817 * Is this the address of a static object: 818 */ 819 #ifdef __KERNEL__ 820 /* 821 * Check if an address is part of freed initmem. After initmem is freed, 822 * memory can be allocated from it, and such allocations would then have 823 * addresses within the range [_stext, _end]. 824 */ 825 #ifndef arch_is_kernel_initmem_freed 826 static int arch_is_kernel_initmem_freed(unsigned long addr) 827 { 828 if (system_state < SYSTEM_FREEING_INITMEM) 829 return 0; 830 831 return init_section_contains((void *)addr, 1); 832 } 833 #endif 834 835 static int static_obj(const void *obj) 836 { 837 unsigned long start = (unsigned long) &_stext, 838 end = (unsigned long) &_end, 839 addr = (unsigned long) obj; 840 841 if (arch_is_kernel_initmem_freed(addr)) 842 return 0; 843 844 /* 845 * static variable? 846 */ 847 if ((addr >= start) && (addr < end)) 848 return 1; 849 850 /* 851 * in-kernel percpu var? 852 */ 853 if (is_kernel_percpu_address(addr)) 854 return 1; 855 856 /* 857 * module static or percpu var? 858 */ 859 return is_module_address(addr) || is_module_percpu_address(addr); 860 } 861 #endif 862 863 /* 864 * To make lock name printouts unique, we calculate a unique 865 * class->name_version generation counter. The caller must hold the graph 866 * lock. 867 */ 868 static int count_matching_names(struct lock_class *new_class) 869 { 870 struct lock_class *class; 871 int count = 0; 872 873 if (!new_class->name) 874 return 0; 875 876 list_for_each_entry(class, &all_lock_classes, lock_entry) { 877 if (new_class->key - new_class->subclass == class->key) 878 return class->name_version; 879 if (class->name && !strcmp(class->name, new_class->name)) 880 count = max(count, class->name_version); 881 } 882 883 return count + 1; 884 } 885 886 /* used from NMI context -- must be lockless */ 887 static noinstr struct lock_class * 888 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 889 { 890 struct lockdep_subclass_key *key; 891 struct hlist_head *hash_head; 892 struct lock_class *class; 893 894 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 895 instrumentation_begin(); 896 debug_locks_off(); 897 printk(KERN_ERR 898 "BUG: looking up invalid subclass: %u\n", subclass); 899 printk(KERN_ERR 900 "turning off the locking correctness validator.\n"); 901 dump_stack(); 902 instrumentation_end(); 903 return NULL; 904 } 905 906 /* 907 * If it is not initialised then it has never been locked, 908 * so it won't be present in the hash table. 909 */ 910 if (unlikely(!lock->key)) 911 return NULL; 912 913 /* 914 * NOTE: the class-key must be unique. For dynamic locks, a static 915 * lock_class_key variable is passed in through the mutex_init() 916 * (or spin_lock_init()) call - which acts as the key. For static 917 * locks we use the lock object itself as the key. 918 */ 919 BUILD_BUG_ON(sizeof(struct lock_class_key) > 920 sizeof(struct lockdep_map)); 921 922 key = lock->key->subkeys + subclass; 923 924 hash_head = classhashentry(key); 925 926 /* 927 * We do an RCU walk of the hash, see lockdep_free_key_range(). 928 */ 929 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 930 return NULL; 931 932 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 933 if (class->key == key) { 934 /* 935 * Huh! same key, different name? Did someone trample 936 * on some memory? We're most confused. 937 */ 938 WARN_ONCE(class->name != lock->name && 939 lock->key != &__lockdep_no_validate__, 940 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", 941 lock->name, lock->key, class->name); 942 return class; 943 } 944 } 945 946 return NULL; 947 } 948 949 /* 950 * Static locks do not have their class-keys yet - for them the key is 951 * the lock object itself. If the lock is in the per cpu area, the 952 * canonical address of the lock (per cpu offset removed) is used. 953 */ 954 static bool assign_lock_key(struct lockdep_map *lock) 955 { 956 unsigned long can_addr, addr = (unsigned long)lock; 957 958 #ifdef __KERNEL__ 959 /* 960 * lockdep_free_key_range() assumes that struct lock_class_key 961 * objects do not overlap. Since we use the address of lock 962 * objects as class key for static objects, check whether the 963 * size of lock_class_key objects does not exceed the size of 964 * the smallest lock object. 965 */ 966 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 967 #endif 968 969 if (__is_kernel_percpu_address(addr, &can_addr)) 970 lock->key = (void *)can_addr; 971 else if (__is_module_percpu_address(addr, &can_addr)) 972 lock->key = (void *)can_addr; 973 else if (static_obj(lock)) 974 lock->key = (void *)lock; 975 else { 976 /* Debug-check: all keys must be persistent! */ 977 debug_locks_off(); 978 pr_err("INFO: trying to register non-static key.\n"); 979 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 980 pr_err("you didn't initialize this object before use?\n"); 981 pr_err("turning off the locking correctness validator.\n"); 982 dump_stack(); 983 return false; 984 } 985 986 return true; 987 } 988 989 #ifdef CONFIG_DEBUG_LOCKDEP 990 991 /* Check whether element @e occurs in list @h */ 992 static bool in_list(struct list_head *e, struct list_head *h) 993 { 994 struct list_head *f; 995 996 list_for_each(f, h) { 997 if (e == f) 998 return true; 999 } 1000 1001 return false; 1002 } 1003 1004 /* 1005 * Check whether entry @e occurs in any of the locks_after or locks_before 1006 * lists. 1007 */ 1008 static bool in_any_class_list(struct list_head *e) 1009 { 1010 struct lock_class *class; 1011 int i; 1012 1013 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1014 class = &lock_classes[i]; 1015 if (in_list(e, &class->locks_after) || 1016 in_list(e, &class->locks_before)) 1017 return true; 1018 } 1019 return false; 1020 } 1021 1022 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 1023 { 1024 struct lock_list *e; 1025 1026 list_for_each_entry(e, h, entry) { 1027 if (e->links_to != c) { 1028 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1029 c->name ? : "(?)", 1030 (unsigned long)(e - list_entries), 1031 e->links_to && e->links_to->name ? 1032 e->links_to->name : "(?)", 1033 e->class && e->class->name ? e->class->name : 1034 "(?)"); 1035 return false; 1036 } 1037 } 1038 return true; 1039 } 1040 1041 #ifdef CONFIG_PROVE_LOCKING 1042 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1043 #endif 1044 1045 static bool check_lock_chain_key(struct lock_chain *chain) 1046 { 1047 #ifdef CONFIG_PROVE_LOCKING 1048 u64 chain_key = INITIAL_CHAIN_KEY; 1049 int i; 1050 1051 for (i = chain->base; i < chain->base + chain->depth; i++) 1052 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1053 /* 1054 * The 'unsigned long long' casts avoid that a compiler warning 1055 * is reported when building tools/lib/lockdep. 1056 */ 1057 if (chain->chain_key != chain_key) { 1058 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1059 (unsigned long long)(chain - lock_chains), 1060 (unsigned long long)chain->chain_key, 1061 (unsigned long long)chain_key); 1062 return false; 1063 } 1064 #endif 1065 return true; 1066 } 1067 1068 static bool in_any_zapped_class_list(struct lock_class *class) 1069 { 1070 struct pending_free *pf; 1071 int i; 1072 1073 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1074 if (in_list(&class->lock_entry, &pf->zapped)) 1075 return true; 1076 } 1077 1078 return false; 1079 } 1080 1081 static bool __check_data_structures(void) 1082 { 1083 struct lock_class *class; 1084 struct lock_chain *chain; 1085 struct hlist_head *head; 1086 struct lock_list *e; 1087 int i; 1088 1089 /* Check whether all classes occur in a lock list. */ 1090 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1091 class = &lock_classes[i]; 1092 if (!in_list(&class->lock_entry, &all_lock_classes) && 1093 !in_list(&class->lock_entry, &free_lock_classes) && 1094 !in_any_zapped_class_list(class)) { 1095 printk(KERN_INFO "class %px/%s is not in any class list\n", 1096 class, class->name ? : "(?)"); 1097 return false; 1098 } 1099 } 1100 1101 /* Check whether all classes have valid lock lists. */ 1102 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1103 class = &lock_classes[i]; 1104 if (!class_lock_list_valid(class, &class->locks_before)) 1105 return false; 1106 if (!class_lock_list_valid(class, &class->locks_after)) 1107 return false; 1108 } 1109 1110 /* Check the chain_key of all lock chains. */ 1111 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1112 head = chainhash_table + i; 1113 hlist_for_each_entry_rcu(chain, head, entry) { 1114 if (!check_lock_chain_key(chain)) 1115 return false; 1116 } 1117 } 1118 1119 /* 1120 * Check whether all list entries that are in use occur in a class 1121 * lock list. 1122 */ 1123 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1124 e = list_entries + i; 1125 if (!in_any_class_list(&e->entry)) { 1126 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1127 (unsigned int)(e - list_entries), 1128 e->class->name ? : "(?)", 1129 e->links_to->name ? : "(?)"); 1130 return false; 1131 } 1132 } 1133 1134 /* 1135 * Check whether all list entries that are not in use do not occur in 1136 * a class lock list. 1137 */ 1138 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1139 e = list_entries + i; 1140 if (in_any_class_list(&e->entry)) { 1141 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1142 (unsigned int)(e - list_entries), 1143 e->class && e->class->name ? e->class->name : 1144 "(?)", 1145 e->links_to && e->links_to->name ? 1146 e->links_to->name : "(?)"); 1147 return false; 1148 } 1149 } 1150 1151 return true; 1152 } 1153 1154 int check_consistency = 0; 1155 module_param(check_consistency, int, 0644); 1156 1157 static void check_data_structures(void) 1158 { 1159 static bool once = false; 1160 1161 if (check_consistency && !once) { 1162 if (!__check_data_structures()) { 1163 once = true; 1164 WARN_ON(once); 1165 } 1166 } 1167 } 1168 1169 #else /* CONFIG_DEBUG_LOCKDEP */ 1170 1171 static inline void check_data_structures(void) { } 1172 1173 #endif /* CONFIG_DEBUG_LOCKDEP */ 1174 1175 static void init_chain_block_buckets(void); 1176 1177 /* 1178 * Initialize the lock_classes[] array elements, the free_lock_classes list 1179 * and also the delayed_free structure. 1180 */ 1181 static void init_data_structures_once(void) 1182 { 1183 static bool __read_mostly ds_initialized, rcu_head_initialized; 1184 int i; 1185 1186 if (likely(rcu_head_initialized)) 1187 return; 1188 1189 if (system_state >= SYSTEM_SCHEDULING) { 1190 init_rcu_head(&delayed_free.rcu_head); 1191 rcu_head_initialized = true; 1192 } 1193 1194 if (ds_initialized) 1195 return; 1196 1197 ds_initialized = true; 1198 1199 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1200 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1201 1202 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1203 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1204 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1205 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1206 } 1207 init_chain_block_buckets(); 1208 } 1209 1210 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1211 { 1212 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1213 1214 return lock_keys_hash + hash; 1215 } 1216 1217 /* Register a dynamically allocated key. */ 1218 void lockdep_register_key(struct lock_class_key *key) 1219 { 1220 struct hlist_head *hash_head; 1221 struct lock_class_key *k; 1222 unsigned long flags; 1223 1224 if (WARN_ON_ONCE(static_obj(key))) 1225 return; 1226 hash_head = keyhashentry(key); 1227 1228 raw_local_irq_save(flags); 1229 if (!graph_lock()) 1230 goto restore_irqs; 1231 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1232 if (WARN_ON_ONCE(k == key)) 1233 goto out_unlock; 1234 } 1235 hlist_add_head_rcu(&key->hash_entry, hash_head); 1236 out_unlock: 1237 graph_unlock(); 1238 restore_irqs: 1239 raw_local_irq_restore(flags); 1240 } 1241 EXPORT_SYMBOL_GPL(lockdep_register_key); 1242 1243 /* Check whether a key has been registered as a dynamic key. */ 1244 static bool is_dynamic_key(const struct lock_class_key *key) 1245 { 1246 struct hlist_head *hash_head; 1247 struct lock_class_key *k; 1248 bool found = false; 1249 1250 if (WARN_ON_ONCE(static_obj(key))) 1251 return false; 1252 1253 /* 1254 * If lock debugging is disabled lock_keys_hash[] may contain 1255 * pointers to memory that has already been freed. Avoid triggering 1256 * a use-after-free in that case by returning early. 1257 */ 1258 if (!debug_locks) 1259 return true; 1260 1261 hash_head = keyhashentry(key); 1262 1263 rcu_read_lock(); 1264 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1265 if (k == key) { 1266 found = true; 1267 break; 1268 } 1269 } 1270 rcu_read_unlock(); 1271 1272 return found; 1273 } 1274 1275 /* 1276 * Register a lock's class in the hash-table, if the class is not present 1277 * yet. Otherwise we look it up. We cache the result in the lock object 1278 * itself, so actual lookup of the hash should be once per lock object. 1279 */ 1280 static struct lock_class * 1281 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1282 { 1283 struct lockdep_subclass_key *key; 1284 struct hlist_head *hash_head; 1285 struct lock_class *class; 1286 int idx; 1287 1288 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1289 1290 class = look_up_lock_class(lock, subclass); 1291 if (likely(class)) 1292 goto out_set_class_cache; 1293 1294 if (!lock->key) { 1295 if (!assign_lock_key(lock)) 1296 return NULL; 1297 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1298 return NULL; 1299 } 1300 1301 key = lock->key->subkeys + subclass; 1302 hash_head = classhashentry(key); 1303 1304 if (!graph_lock()) { 1305 return NULL; 1306 } 1307 /* 1308 * We have to do the hash-walk again, to avoid races 1309 * with another CPU: 1310 */ 1311 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1312 if (class->key == key) 1313 goto out_unlock_set; 1314 } 1315 1316 init_data_structures_once(); 1317 1318 /* Allocate a new lock class and add it to the hash. */ 1319 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1320 lock_entry); 1321 if (!class) { 1322 if (!debug_locks_off_graph_unlock()) { 1323 return NULL; 1324 } 1325 1326 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1327 dump_stack(); 1328 return NULL; 1329 } 1330 nr_lock_classes++; 1331 __set_bit(class - lock_classes, lock_classes_in_use); 1332 debug_atomic_inc(nr_unused_locks); 1333 class->key = key; 1334 class->name = lock->name; 1335 class->subclass = subclass; 1336 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1337 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1338 class->name_version = count_matching_names(class); 1339 class->wait_type_inner = lock->wait_type_inner; 1340 class->wait_type_outer = lock->wait_type_outer; 1341 class->lock_type = lock->lock_type; 1342 /* 1343 * We use RCU's safe list-add method to make 1344 * parallel walking of the hash-list safe: 1345 */ 1346 hlist_add_head_rcu(&class->hash_entry, hash_head); 1347 /* 1348 * Remove the class from the free list and add it to the global list 1349 * of classes. 1350 */ 1351 list_move_tail(&class->lock_entry, &all_lock_classes); 1352 idx = class - lock_classes; 1353 if (idx > max_lock_class_idx) 1354 max_lock_class_idx = idx; 1355 1356 if (verbose(class)) { 1357 graph_unlock(); 1358 1359 printk("\nnew class %px: %s", class->key, class->name); 1360 if (class->name_version > 1) 1361 printk(KERN_CONT "#%d", class->name_version); 1362 printk(KERN_CONT "\n"); 1363 dump_stack(); 1364 1365 if (!graph_lock()) { 1366 return NULL; 1367 } 1368 } 1369 out_unlock_set: 1370 graph_unlock(); 1371 1372 out_set_class_cache: 1373 if (!subclass || force) 1374 lock->class_cache[0] = class; 1375 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1376 lock->class_cache[subclass] = class; 1377 1378 /* 1379 * Hash collision, did we smoke some? We found a class with a matching 1380 * hash but the subclass -- which is hashed in -- didn't match. 1381 */ 1382 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1383 return NULL; 1384 1385 return class; 1386 } 1387 1388 #ifdef CONFIG_PROVE_LOCKING 1389 /* 1390 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1391 * with NULL on failure) 1392 */ 1393 static struct lock_list *alloc_list_entry(void) 1394 { 1395 int idx = find_first_zero_bit(list_entries_in_use, 1396 ARRAY_SIZE(list_entries)); 1397 1398 if (idx >= ARRAY_SIZE(list_entries)) { 1399 if (!debug_locks_off_graph_unlock()) 1400 return NULL; 1401 1402 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1403 dump_stack(); 1404 return NULL; 1405 } 1406 nr_list_entries++; 1407 __set_bit(idx, list_entries_in_use); 1408 return list_entries + idx; 1409 } 1410 1411 /* 1412 * Add a new dependency to the head of the list: 1413 */ 1414 static int add_lock_to_list(struct lock_class *this, 1415 struct lock_class *links_to, struct list_head *head, 1416 u16 distance, u8 dep, 1417 const struct lock_trace *trace) 1418 { 1419 struct lock_list *entry; 1420 /* 1421 * Lock not present yet - get a new dependency struct and 1422 * add it to the list: 1423 */ 1424 entry = alloc_list_entry(); 1425 if (!entry) 1426 return 0; 1427 1428 entry->class = this; 1429 entry->links_to = links_to; 1430 entry->dep = dep; 1431 entry->distance = distance; 1432 entry->trace = trace; 1433 /* 1434 * Both allocation and removal are done under the graph lock; but 1435 * iteration is under RCU-sched; see look_up_lock_class() and 1436 * lockdep_free_key_range(). 1437 */ 1438 list_add_tail_rcu(&entry->entry, head); 1439 1440 return 1; 1441 } 1442 1443 /* 1444 * For good efficiency of modular, we use power of 2 1445 */ 1446 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1447 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1448 1449 /* 1450 * The circular_queue and helpers are used to implement graph 1451 * breadth-first search (BFS) algorithm, by which we can determine 1452 * whether there is a path from a lock to another. In deadlock checks, 1453 * a path from the next lock to be acquired to a previous held lock 1454 * indicates that adding the <prev> -> <next> lock dependency will 1455 * produce a circle in the graph. Breadth-first search instead of 1456 * depth-first search is used in order to find the shortest (circular) 1457 * path. 1458 */ 1459 struct circular_queue { 1460 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1461 unsigned int front, rear; 1462 }; 1463 1464 static struct circular_queue lock_cq; 1465 1466 unsigned int max_bfs_queue_depth; 1467 1468 static unsigned int lockdep_dependency_gen_id; 1469 1470 static inline void __cq_init(struct circular_queue *cq) 1471 { 1472 cq->front = cq->rear = 0; 1473 lockdep_dependency_gen_id++; 1474 } 1475 1476 static inline int __cq_empty(struct circular_queue *cq) 1477 { 1478 return (cq->front == cq->rear); 1479 } 1480 1481 static inline int __cq_full(struct circular_queue *cq) 1482 { 1483 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1484 } 1485 1486 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1487 { 1488 if (__cq_full(cq)) 1489 return -1; 1490 1491 cq->element[cq->rear] = elem; 1492 cq->rear = (cq->rear + 1) & CQ_MASK; 1493 return 0; 1494 } 1495 1496 /* 1497 * Dequeue an element from the circular_queue, return a lock_list if 1498 * the queue is not empty, or NULL if otherwise. 1499 */ 1500 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1501 { 1502 struct lock_list * lock; 1503 1504 if (__cq_empty(cq)) 1505 return NULL; 1506 1507 lock = cq->element[cq->front]; 1508 cq->front = (cq->front + 1) & CQ_MASK; 1509 1510 return lock; 1511 } 1512 1513 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1514 { 1515 return (cq->rear - cq->front) & CQ_MASK; 1516 } 1517 1518 static inline void mark_lock_accessed(struct lock_list *lock) 1519 { 1520 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1521 } 1522 1523 static inline void visit_lock_entry(struct lock_list *lock, 1524 struct lock_list *parent) 1525 { 1526 lock->parent = parent; 1527 } 1528 1529 static inline unsigned long lock_accessed(struct lock_list *lock) 1530 { 1531 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1532 } 1533 1534 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1535 { 1536 return child->parent; 1537 } 1538 1539 static inline int get_lock_depth(struct lock_list *child) 1540 { 1541 int depth = 0; 1542 struct lock_list *parent; 1543 1544 while ((parent = get_lock_parent(child))) { 1545 child = parent; 1546 depth++; 1547 } 1548 return depth; 1549 } 1550 1551 /* 1552 * Return the forward or backward dependency list. 1553 * 1554 * @lock: the lock_list to get its class's dependency list 1555 * @offset: the offset to struct lock_class to determine whether it is 1556 * locks_after or locks_before 1557 */ 1558 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1559 { 1560 void *lock_class = lock->class; 1561 1562 return lock_class + offset; 1563 } 1564 /* 1565 * Return values of a bfs search: 1566 * 1567 * BFS_E* indicates an error 1568 * BFS_R* indicates a result (match or not) 1569 * 1570 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1571 * 1572 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1573 * 1574 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1575 * *@target_entry. 1576 * 1577 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1578 * _unchanged_. 1579 */ 1580 enum bfs_result { 1581 BFS_EINVALIDNODE = -2, 1582 BFS_EQUEUEFULL = -1, 1583 BFS_RMATCH = 0, 1584 BFS_RNOMATCH = 1, 1585 }; 1586 1587 /* 1588 * bfs_result < 0 means error 1589 */ 1590 static inline bool bfs_error(enum bfs_result res) 1591 { 1592 return res < 0; 1593 } 1594 1595 /* 1596 * DEP_*_BIT in lock_list::dep 1597 * 1598 * For dependency @prev -> @next: 1599 * 1600 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1601 * (->read == 2) 1602 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1603 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1604 * EN: @prev is exclusive locker and @next is non-recursive locker 1605 * 1606 * Note that we define the value of DEP_*_BITs so that: 1607 * bit0 is prev->read == 0 1608 * bit1 is next->read != 2 1609 */ 1610 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1611 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1612 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1613 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1614 1615 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1616 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1617 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1618 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1619 1620 static inline unsigned int 1621 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1622 { 1623 return (prev->read == 0) + ((next->read != 2) << 1); 1624 } 1625 1626 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1627 { 1628 return 1U << __calc_dep_bit(prev, next); 1629 } 1630 1631 /* 1632 * calculate the dep_bit for backwards edges. We care about whether @prev is 1633 * shared and whether @next is recursive. 1634 */ 1635 static inline unsigned int 1636 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1637 { 1638 return (next->read != 2) + ((prev->read == 0) << 1); 1639 } 1640 1641 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1642 { 1643 return 1U << __calc_dep_bitb(prev, next); 1644 } 1645 1646 /* 1647 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1648 * search. 1649 */ 1650 static inline void __bfs_init_root(struct lock_list *lock, 1651 struct lock_class *class) 1652 { 1653 lock->class = class; 1654 lock->parent = NULL; 1655 lock->only_xr = 0; 1656 } 1657 1658 /* 1659 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1660 * root for a BFS search. 1661 * 1662 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1663 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1664 * and -(S*)->. 1665 */ 1666 static inline void bfs_init_root(struct lock_list *lock, 1667 struct held_lock *hlock) 1668 { 1669 __bfs_init_root(lock, hlock_class(hlock)); 1670 lock->only_xr = (hlock->read == 2); 1671 } 1672 1673 /* 1674 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1675 * 1676 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1677 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1678 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1679 */ 1680 static inline void bfs_init_rootb(struct lock_list *lock, 1681 struct held_lock *hlock) 1682 { 1683 __bfs_init_root(lock, hlock_class(hlock)); 1684 lock->only_xr = (hlock->read != 0); 1685 } 1686 1687 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1688 { 1689 if (!lock || !lock->parent) 1690 return NULL; 1691 1692 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1693 &lock->entry, struct lock_list, entry); 1694 } 1695 1696 /* 1697 * Breadth-First Search to find a strong path in the dependency graph. 1698 * 1699 * @source_entry: the source of the path we are searching for. 1700 * @data: data used for the second parameter of @match function 1701 * @match: match function for the search 1702 * @target_entry: pointer to the target of a matched path 1703 * @offset: the offset to struct lock_class to determine whether it is 1704 * locks_after or locks_before 1705 * 1706 * We may have multiple edges (considering different kinds of dependencies, 1707 * e.g. ER and SN) between two nodes in the dependency graph. But 1708 * only the strong dependency path in the graph is relevant to deadlocks. A 1709 * strong dependency path is a dependency path that doesn't have two adjacent 1710 * dependencies as -(*R)-> -(S*)->, please see: 1711 * 1712 * Documentation/locking/lockdep-design.rst 1713 * 1714 * for more explanation of the definition of strong dependency paths 1715 * 1716 * In __bfs(), we only traverse in the strong dependency path: 1717 * 1718 * In lock_list::only_xr, we record whether the previous dependency only 1719 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1720 * filter out any -(S*)-> in the current dependency and after that, the 1721 * ->only_xr is set according to whether we only have -(*R)-> left. 1722 */ 1723 static enum bfs_result __bfs(struct lock_list *source_entry, 1724 void *data, 1725 bool (*match)(struct lock_list *entry, void *data), 1726 bool (*skip)(struct lock_list *entry, void *data), 1727 struct lock_list **target_entry, 1728 int offset) 1729 { 1730 struct circular_queue *cq = &lock_cq; 1731 struct lock_list *lock = NULL; 1732 struct lock_list *entry; 1733 struct list_head *head; 1734 unsigned int cq_depth; 1735 bool first; 1736 1737 lockdep_assert_locked(); 1738 1739 __cq_init(cq); 1740 __cq_enqueue(cq, source_entry); 1741 1742 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1743 if (!lock->class) 1744 return BFS_EINVALIDNODE; 1745 1746 /* 1747 * Step 1: check whether we already finish on this one. 1748 * 1749 * If we have visited all the dependencies from this @lock to 1750 * others (iow, if we have visited all lock_list entries in 1751 * @lock->class->locks_{after,before}) we skip, otherwise go 1752 * and visit all the dependencies in the list and mark this 1753 * list accessed. 1754 */ 1755 if (lock_accessed(lock)) 1756 continue; 1757 else 1758 mark_lock_accessed(lock); 1759 1760 /* 1761 * Step 2: check whether prev dependency and this form a strong 1762 * dependency path. 1763 */ 1764 if (lock->parent) { /* Parent exists, check prev dependency */ 1765 u8 dep = lock->dep; 1766 bool prev_only_xr = lock->parent->only_xr; 1767 1768 /* 1769 * Mask out all -(S*)-> if we only have *R in previous 1770 * step, because -(*R)-> -(S*)-> don't make up a strong 1771 * dependency. 1772 */ 1773 if (prev_only_xr) 1774 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1775 1776 /* If nothing left, we skip */ 1777 if (!dep) 1778 continue; 1779 1780 /* If there are only -(*R)-> left, set that for the next step */ 1781 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1782 } 1783 1784 /* 1785 * Step 3: we haven't visited this and there is a strong 1786 * dependency path to this, so check with @match. 1787 * If @skip is provide and returns true, we skip this 1788 * lock (and any path this lock is in). 1789 */ 1790 if (skip && skip(lock, data)) 1791 continue; 1792 1793 if (match(lock, data)) { 1794 *target_entry = lock; 1795 return BFS_RMATCH; 1796 } 1797 1798 /* 1799 * Step 4: if not match, expand the path by adding the 1800 * forward or backwards dependencies in the search 1801 * 1802 */ 1803 first = true; 1804 head = get_dep_list(lock, offset); 1805 list_for_each_entry_rcu(entry, head, entry) { 1806 visit_lock_entry(entry, lock); 1807 1808 /* 1809 * Note we only enqueue the first of the list into the 1810 * queue, because we can always find a sibling 1811 * dependency from one (see __bfs_next()), as a result 1812 * the space of queue is saved. 1813 */ 1814 if (!first) 1815 continue; 1816 1817 first = false; 1818 1819 if (__cq_enqueue(cq, entry)) 1820 return BFS_EQUEUEFULL; 1821 1822 cq_depth = __cq_get_elem_count(cq); 1823 if (max_bfs_queue_depth < cq_depth) 1824 max_bfs_queue_depth = cq_depth; 1825 } 1826 } 1827 1828 return BFS_RNOMATCH; 1829 } 1830 1831 static inline enum bfs_result 1832 __bfs_forwards(struct lock_list *src_entry, 1833 void *data, 1834 bool (*match)(struct lock_list *entry, void *data), 1835 bool (*skip)(struct lock_list *entry, void *data), 1836 struct lock_list **target_entry) 1837 { 1838 return __bfs(src_entry, data, match, skip, target_entry, 1839 offsetof(struct lock_class, locks_after)); 1840 1841 } 1842 1843 static inline enum bfs_result 1844 __bfs_backwards(struct lock_list *src_entry, 1845 void *data, 1846 bool (*match)(struct lock_list *entry, void *data), 1847 bool (*skip)(struct lock_list *entry, void *data), 1848 struct lock_list **target_entry) 1849 { 1850 return __bfs(src_entry, data, match, skip, target_entry, 1851 offsetof(struct lock_class, locks_before)); 1852 1853 } 1854 1855 static void print_lock_trace(const struct lock_trace *trace, 1856 unsigned int spaces) 1857 { 1858 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1859 } 1860 1861 /* 1862 * Print a dependency chain entry (this is only done when a deadlock 1863 * has been detected): 1864 */ 1865 static noinline void 1866 print_circular_bug_entry(struct lock_list *target, int depth) 1867 { 1868 if (debug_locks_silent) 1869 return; 1870 printk("\n-> #%u", depth); 1871 print_lock_name(target->class); 1872 printk(KERN_CONT ":\n"); 1873 print_lock_trace(target->trace, 6); 1874 } 1875 1876 static void 1877 print_circular_lock_scenario(struct held_lock *src, 1878 struct held_lock *tgt, 1879 struct lock_list *prt) 1880 { 1881 struct lock_class *source = hlock_class(src); 1882 struct lock_class *target = hlock_class(tgt); 1883 struct lock_class *parent = prt->class; 1884 int src_read = src->read; 1885 int tgt_read = tgt->read; 1886 1887 /* 1888 * A direct locking problem where unsafe_class lock is taken 1889 * directly by safe_class lock, then all we need to show 1890 * is the deadlock scenario, as it is obvious that the 1891 * unsafe lock is taken under the safe lock. 1892 * 1893 * But if there is a chain instead, where the safe lock takes 1894 * an intermediate lock (middle_class) where this lock is 1895 * not the same as the safe lock, then the lock chain is 1896 * used to describe the problem. Otherwise we would need 1897 * to show a different CPU case for each link in the chain 1898 * from the safe_class lock to the unsafe_class lock. 1899 */ 1900 if (parent != source) { 1901 printk("Chain exists of:\n "); 1902 __print_lock_name(source); 1903 printk(KERN_CONT " --> "); 1904 __print_lock_name(parent); 1905 printk(KERN_CONT " --> "); 1906 __print_lock_name(target); 1907 printk(KERN_CONT "\n\n"); 1908 } 1909 1910 printk(" Possible unsafe locking scenario:\n\n"); 1911 printk(" CPU0 CPU1\n"); 1912 printk(" ---- ----\n"); 1913 if (tgt_read != 0) 1914 printk(" rlock("); 1915 else 1916 printk(" lock("); 1917 __print_lock_name(target); 1918 printk(KERN_CONT ");\n"); 1919 printk(" lock("); 1920 __print_lock_name(parent); 1921 printk(KERN_CONT ");\n"); 1922 printk(" lock("); 1923 __print_lock_name(target); 1924 printk(KERN_CONT ");\n"); 1925 if (src_read != 0) 1926 printk(" rlock("); 1927 else if (src->sync) 1928 printk(" sync("); 1929 else 1930 printk(" lock("); 1931 __print_lock_name(source); 1932 printk(KERN_CONT ");\n"); 1933 printk("\n *** DEADLOCK ***\n\n"); 1934 } 1935 1936 /* 1937 * When a circular dependency is detected, print the 1938 * header first: 1939 */ 1940 static noinline void 1941 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1942 struct held_lock *check_src, 1943 struct held_lock *check_tgt) 1944 { 1945 struct task_struct *curr = current; 1946 1947 if (debug_locks_silent) 1948 return; 1949 1950 pr_warn("\n"); 1951 pr_warn("======================================================\n"); 1952 pr_warn("WARNING: possible circular locking dependency detected\n"); 1953 print_kernel_ident(); 1954 pr_warn("------------------------------------------------------\n"); 1955 pr_warn("%s/%d is trying to acquire lock:\n", 1956 curr->comm, task_pid_nr(curr)); 1957 print_lock(check_src); 1958 1959 pr_warn("\nbut task is already holding lock:\n"); 1960 1961 print_lock(check_tgt); 1962 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1963 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1964 1965 print_circular_bug_entry(entry, depth); 1966 } 1967 1968 /* 1969 * We are about to add A -> B into the dependency graph, and in __bfs() a 1970 * strong dependency path A -> .. -> B is found: hlock_class equals 1971 * entry->class. 1972 * 1973 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1974 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1975 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1976 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1977 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1978 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1979 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1980 * 1981 * We need to make sure both the start and the end of A -> .. -> B is not 1982 * weaker than A -> B. For the start part, please see the comment in 1983 * check_redundant(). For the end part, we need: 1984 * 1985 * Either 1986 * 1987 * a) A -> B is -(*R)-> (everything is not weaker than that) 1988 * 1989 * or 1990 * 1991 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1992 * 1993 */ 1994 static inline bool hlock_equal(struct lock_list *entry, void *data) 1995 { 1996 struct held_lock *hlock = (struct held_lock *)data; 1997 1998 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1999 (hlock->read == 2 || /* A -> B is -(*R)-> */ 2000 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2001 } 2002 2003 /* 2004 * We are about to add B -> A into the dependency graph, and in __bfs() a 2005 * strong dependency path A -> .. -> B is found: hlock_class equals 2006 * entry->class. 2007 * 2008 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 2009 * dependency cycle, that means: 2010 * 2011 * Either 2012 * 2013 * a) B -> A is -(E*)-> 2014 * 2015 * or 2016 * 2017 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 2018 * 2019 * as then we don't have -(*R)-> -(S*)-> in the cycle. 2020 */ 2021 static inline bool hlock_conflict(struct lock_list *entry, void *data) 2022 { 2023 struct held_lock *hlock = (struct held_lock *)data; 2024 2025 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2026 (hlock->read == 0 || /* B -> A is -(E*)-> */ 2027 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2028 } 2029 2030 static noinline void print_circular_bug(struct lock_list *this, 2031 struct lock_list *target, 2032 struct held_lock *check_src, 2033 struct held_lock *check_tgt) 2034 { 2035 struct task_struct *curr = current; 2036 struct lock_list *parent; 2037 struct lock_list *first_parent; 2038 int depth; 2039 2040 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2041 return; 2042 2043 this->trace = save_trace(); 2044 if (!this->trace) 2045 return; 2046 2047 depth = get_lock_depth(target); 2048 2049 print_circular_bug_header(target, depth, check_src, check_tgt); 2050 2051 parent = get_lock_parent(target); 2052 first_parent = parent; 2053 2054 while (parent) { 2055 print_circular_bug_entry(parent, --depth); 2056 parent = get_lock_parent(parent); 2057 } 2058 2059 printk("\nother info that might help us debug this:\n\n"); 2060 print_circular_lock_scenario(check_src, check_tgt, 2061 first_parent); 2062 2063 lockdep_print_held_locks(curr); 2064 2065 printk("\nstack backtrace:\n"); 2066 dump_stack(); 2067 } 2068 2069 static noinline void print_bfs_bug(int ret) 2070 { 2071 if (!debug_locks_off_graph_unlock()) 2072 return; 2073 2074 /* 2075 * Breadth-first-search failed, graph got corrupted? 2076 */ 2077 WARN(1, "lockdep bfs error:%d\n", ret); 2078 } 2079 2080 static bool noop_count(struct lock_list *entry, void *data) 2081 { 2082 (*(unsigned long *)data)++; 2083 return false; 2084 } 2085 2086 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2087 { 2088 unsigned long count = 0; 2089 struct lock_list *target_entry; 2090 2091 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2092 2093 return count; 2094 } 2095 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2096 { 2097 unsigned long ret, flags; 2098 struct lock_list this; 2099 2100 __bfs_init_root(&this, class); 2101 2102 raw_local_irq_save(flags); 2103 lockdep_lock(); 2104 ret = __lockdep_count_forward_deps(&this); 2105 lockdep_unlock(); 2106 raw_local_irq_restore(flags); 2107 2108 return ret; 2109 } 2110 2111 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2112 { 2113 unsigned long count = 0; 2114 struct lock_list *target_entry; 2115 2116 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2117 2118 return count; 2119 } 2120 2121 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2122 { 2123 unsigned long ret, flags; 2124 struct lock_list this; 2125 2126 __bfs_init_root(&this, class); 2127 2128 raw_local_irq_save(flags); 2129 lockdep_lock(); 2130 ret = __lockdep_count_backward_deps(&this); 2131 lockdep_unlock(); 2132 raw_local_irq_restore(flags); 2133 2134 return ret; 2135 } 2136 2137 /* 2138 * Check that the dependency graph starting at <src> can lead to 2139 * <target> or not. 2140 */ 2141 static noinline enum bfs_result 2142 check_path(struct held_lock *target, struct lock_list *src_entry, 2143 bool (*match)(struct lock_list *entry, void *data), 2144 bool (*skip)(struct lock_list *entry, void *data), 2145 struct lock_list **target_entry) 2146 { 2147 enum bfs_result ret; 2148 2149 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2150 2151 if (unlikely(bfs_error(ret))) 2152 print_bfs_bug(ret); 2153 2154 return ret; 2155 } 2156 2157 /* 2158 * Prove that the dependency graph starting at <src> can not 2159 * lead to <target>. If it can, there is a circle when adding 2160 * <target> -> <src> dependency. 2161 * 2162 * Print an error and return BFS_RMATCH if it does. 2163 */ 2164 static noinline enum bfs_result 2165 check_noncircular(struct held_lock *src, struct held_lock *target, 2166 struct lock_trace **const trace) 2167 { 2168 enum bfs_result ret; 2169 struct lock_list *target_entry; 2170 struct lock_list src_entry; 2171 2172 bfs_init_root(&src_entry, src); 2173 2174 debug_atomic_inc(nr_cyclic_checks); 2175 2176 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2177 2178 if (unlikely(ret == BFS_RMATCH)) { 2179 if (!*trace) { 2180 /* 2181 * If save_trace fails here, the printing might 2182 * trigger a WARN but because of the !nr_entries it 2183 * should not do bad things. 2184 */ 2185 *trace = save_trace(); 2186 } 2187 2188 print_circular_bug(&src_entry, target_entry, src, target); 2189 } 2190 2191 return ret; 2192 } 2193 2194 #ifdef CONFIG_TRACE_IRQFLAGS 2195 2196 /* 2197 * Forwards and backwards subgraph searching, for the purposes of 2198 * proving that two subgraphs can be connected by a new dependency 2199 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2200 * 2201 * A irq safe->unsafe deadlock happens with the following conditions: 2202 * 2203 * 1) We have a strong dependency path A -> ... -> B 2204 * 2205 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2206 * irq can create a new dependency B -> A (consider the case that a holder 2207 * of B gets interrupted by an irq whose handler will try to acquire A). 2208 * 2209 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2210 * strong circle: 2211 * 2212 * For the usage bits of B: 2213 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2214 * ENABLED_IRQ usage suffices. 2215 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2216 * ENABLED_IRQ_*_READ usage suffices. 2217 * 2218 * For the usage bits of A: 2219 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2220 * USED_IN_IRQ usage suffices. 2221 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2222 * USED_IN_IRQ_*_READ usage suffices. 2223 */ 2224 2225 /* 2226 * There is a strong dependency path in the dependency graph: A -> B, and now 2227 * we need to decide which usage bit of A should be accumulated to detect 2228 * safe->unsafe bugs. 2229 * 2230 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2231 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2232 * 2233 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2234 * path, any usage of A should be considered. Otherwise, we should only 2235 * consider _READ usage. 2236 */ 2237 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2238 { 2239 if (!entry->only_xr) 2240 *(unsigned long *)mask |= entry->class->usage_mask; 2241 else /* Mask out _READ usage bits */ 2242 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2243 2244 return false; 2245 } 2246 2247 /* 2248 * There is a strong dependency path in the dependency graph: A -> B, and now 2249 * we need to decide which usage bit of B conflicts with the usage bits of A, 2250 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2251 * 2252 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2253 * path, any usage of B should be considered. Otherwise, we should only 2254 * consider _READ usage. 2255 */ 2256 static inline bool usage_match(struct lock_list *entry, void *mask) 2257 { 2258 if (!entry->only_xr) 2259 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2260 else /* Mask out _READ usage bits */ 2261 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2262 } 2263 2264 static inline bool usage_skip(struct lock_list *entry, void *mask) 2265 { 2266 if (entry->class->lock_type == LD_LOCK_NORMAL) 2267 return false; 2268 2269 /* 2270 * Skip local_lock() for irq inversion detection. 2271 * 2272 * For !RT, local_lock() is not a real lock, so it won't carry any 2273 * dependency. 2274 * 2275 * For RT, an irq inversion happens when we have lock A and B, and on 2276 * some CPU we can have: 2277 * 2278 * lock(A); 2279 * <interrupted> 2280 * lock(B); 2281 * 2282 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2283 * 2284 * Now we prove local_lock() cannot exist in that dependency. First we 2285 * have the observation for any lock chain L1 -> ... -> Ln, for any 2286 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2287 * wait context check will complain. And since B is not a sleep lock, 2288 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2289 * local_lock() is 3, which is greater than 2, therefore there is no 2290 * way the local_lock() exists in the dependency B -> ... -> A. 2291 * 2292 * As a result, we will skip local_lock(), when we search for irq 2293 * inversion bugs. 2294 */ 2295 if (entry->class->lock_type == LD_LOCK_PERCPU && 2296 DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2297 return false; 2298 2299 /* 2300 * Skip WAIT_OVERRIDE for irq inversion detection -- it's not actually 2301 * a lock and only used to override the wait_type. 2302 */ 2303 2304 return true; 2305 } 2306 2307 /* 2308 * Find a node in the forwards-direction dependency sub-graph starting 2309 * at @root->class that matches @bit. 2310 * 2311 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2312 * into *@target_entry. 2313 */ 2314 static enum bfs_result 2315 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2316 struct lock_list **target_entry) 2317 { 2318 enum bfs_result result; 2319 2320 debug_atomic_inc(nr_find_usage_forwards_checks); 2321 2322 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2323 2324 return result; 2325 } 2326 2327 /* 2328 * Find a node in the backwards-direction dependency sub-graph starting 2329 * at @root->class that matches @bit. 2330 */ 2331 static enum bfs_result 2332 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2333 struct lock_list **target_entry) 2334 { 2335 enum bfs_result result; 2336 2337 debug_atomic_inc(nr_find_usage_backwards_checks); 2338 2339 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2340 2341 return result; 2342 } 2343 2344 static void print_lock_class_header(struct lock_class *class, int depth) 2345 { 2346 int bit; 2347 2348 printk("%*s->", depth, ""); 2349 print_lock_name(class); 2350 #ifdef CONFIG_DEBUG_LOCKDEP 2351 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2352 #endif 2353 printk(KERN_CONT " {\n"); 2354 2355 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2356 if (class->usage_mask & (1 << bit)) { 2357 int len = depth; 2358 2359 len += printk("%*s %s", depth, "", usage_str[bit]); 2360 len += printk(KERN_CONT " at:\n"); 2361 print_lock_trace(class->usage_traces[bit], len); 2362 } 2363 } 2364 printk("%*s }\n", depth, ""); 2365 2366 printk("%*s ... key at: [<%px>] %pS\n", 2367 depth, "", class->key, class->key); 2368 } 2369 2370 /* 2371 * Dependency path printing: 2372 * 2373 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2374 * printing out each lock in the dependency path will help on understanding how 2375 * the deadlock could happen. Here are some details about dependency path 2376 * printing: 2377 * 2378 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2379 * for a lock dependency A -> B, there are two lock_lists: 2380 * 2381 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2382 * ->links_to is A. In this case, we can say the lock_list is 2383 * "A -> B" (forwards case). 2384 * 2385 * b) lock_list in the ->locks_before list of B, whose ->class is A 2386 * and ->links_to is B. In this case, we can say the lock_list is 2387 * "B <- A" (bacwards case). 2388 * 2389 * The ->trace of both a) and b) point to the call trace where B was 2390 * acquired with A held. 2391 * 2392 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2393 * represent a certain lock dependency, it only provides an initial entry 2394 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2395 * ->class is A, as a result BFS will search all dependencies starting with 2396 * A, e.g. A -> B or A -> C. 2397 * 2398 * The notation of a forwards helper lock_list is like "-> A", which means 2399 * we should search the forwards dependencies starting with "A", e.g A -> B 2400 * or A -> C. 2401 * 2402 * The notation of a bacwards helper lock_list is like "<- B", which means 2403 * we should search the backwards dependencies ending with "B", e.g. 2404 * B <- A or B <- C. 2405 */ 2406 2407 /* 2408 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2409 * 2410 * We have a lock dependency path as follow: 2411 * 2412 * @root @leaf 2413 * | | 2414 * V V 2415 * ->parent ->parent 2416 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2417 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2418 * 2419 * , so it's natural that we start from @leaf and print every ->class and 2420 * ->trace until we reach the @root. 2421 */ 2422 static void __used 2423 print_shortest_lock_dependencies(struct lock_list *leaf, 2424 struct lock_list *root) 2425 { 2426 struct lock_list *entry = leaf; 2427 int depth; 2428 2429 /*compute depth from generated tree by BFS*/ 2430 depth = get_lock_depth(leaf); 2431 2432 do { 2433 print_lock_class_header(entry->class, depth); 2434 printk("%*s ... acquired at:\n", depth, ""); 2435 print_lock_trace(entry->trace, 2); 2436 printk("\n"); 2437 2438 if (depth == 0 && (entry != root)) { 2439 printk("lockdep:%s bad path found in chain graph\n", __func__); 2440 break; 2441 } 2442 2443 entry = get_lock_parent(entry); 2444 depth--; 2445 } while (entry && (depth >= 0)); 2446 } 2447 2448 /* 2449 * printk the shortest lock dependencies from @leaf to @root. 2450 * 2451 * We have a lock dependency path (from a backwards search) as follow: 2452 * 2453 * @leaf @root 2454 * | | 2455 * V V 2456 * ->parent ->parent 2457 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2458 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2459 * 2460 * , so when we iterate from @leaf to @root, we actually print the lock 2461 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2462 * 2463 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2464 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2465 * trace of L1 in the dependency path, which is alright, because most of the 2466 * time we can figure out where L1 is held from the call trace of L2. 2467 */ 2468 static void __used 2469 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2470 struct lock_list *root) 2471 { 2472 struct lock_list *entry = leaf; 2473 const struct lock_trace *trace = NULL; 2474 int depth; 2475 2476 /*compute depth from generated tree by BFS*/ 2477 depth = get_lock_depth(leaf); 2478 2479 do { 2480 print_lock_class_header(entry->class, depth); 2481 if (trace) { 2482 printk("%*s ... acquired at:\n", depth, ""); 2483 print_lock_trace(trace, 2); 2484 printk("\n"); 2485 } 2486 2487 /* 2488 * Record the pointer to the trace for the next lock_list 2489 * entry, see the comments for the function. 2490 */ 2491 trace = entry->trace; 2492 2493 if (depth == 0 && (entry != root)) { 2494 printk("lockdep:%s bad path found in chain graph\n", __func__); 2495 break; 2496 } 2497 2498 entry = get_lock_parent(entry); 2499 depth--; 2500 } while (entry && (depth >= 0)); 2501 } 2502 2503 static void 2504 print_irq_lock_scenario(struct lock_list *safe_entry, 2505 struct lock_list *unsafe_entry, 2506 struct lock_class *prev_class, 2507 struct lock_class *next_class) 2508 { 2509 struct lock_class *safe_class = safe_entry->class; 2510 struct lock_class *unsafe_class = unsafe_entry->class; 2511 struct lock_class *middle_class = prev_class; 2512 2513 if (middle_class == safe_class) 2514 middle_class = next_class; 2515 2516 /* 2517 * A direct locking problem where unsafe_class lock is taken 2518 * directly by safe_class lock, then all we need to show 2519 * is the deadlock scenario, as it is obvious that the 2520 * unsafe lock is taken under the safe lock. 2521 * 2522 * But if there is a chain instead, where the safe lock takes 2523 * an intermediate lock (middle_class) where this lock is 2524 * not the same as the safe lock, then the lock chain is 2525 * used to describe the problem. Otherwise we would need 2526 * to show a different CPU case for each link in the chain 2527 * from the safe_class lock to the unsafe_class lock. 2528 */ 2529 if (middle_class != unsafe_class) { 2530 printk("Chain exists of:\n "); 2531 __print_lock_name(safe_class); 2532 printk(KERN_CONT " --> "); 2533 __print_lock_name(middle_class); 2534 printk(KERN_CONT " --> "); 2535 __print_lock_name(unsafe_class); 2536 printk(KERN_CONT "\n\n"); 2537 } 2538 2539 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2540 printk(" CPU0 CPU1\n"); 2541 printk(" ---- ----\n"); 2542 printk(" lock("); 2543 __print_lock_name(unsafe_class); 2544 printk(KERN_CONT ");\n"); 2545 printk(" local_irq_disable();\n"); 2546 printk(" lock("); 2547 __print_lock_name(safe_class); 2548 printk(KERN_CONT ");\n"); 2549 printk(" lock("); 2550 __print_lock_name(middle_class); 2551 printk(KERN_CONT ");\n"); 2552 printk(" <Interrupt>\n"); 2553 printk(" lock("); 2554 __print_lock_name(safe_class); 2555 printk(KERN_CONT ");\n"); 2556 printk("\n *** DEADLOCK ***\n\n"); 2557 } 2558 2559 static void 2560 print_bad_irq_dependency(struct task_struct *curr, 2561 struct lock_list *prev_root, 2562 struct lock_list *next_root, 2563 struct lock_list *backwards_entry, 2564 struct lock_list *forwards_entry, 2565 struct held_lock *prev, 2566 struct held_lock *next, 2567 enum lock_usage_bit bit1, 2568 enum lock_usage_bit bit2, 2569 const char *irqclass) 2570 { 2571 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2572 return; 2573 2574 pr_warn("\n"); 2575 pr_warn("=====================================================\n"); 2576 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2577 irqclass, irqclass); 2578 print_kernel_ident(); 2579 pr_warn("-----------------------------------------------------\n"); 2580 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2581 curr->comm, task_pid_nr(curr), 2582 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2583 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2584 lockdep_hardirqs_enabled(), 2585 curr->softirqs_enabled); 2586 print_lock(next); 2587 2588 pr_warn("\nand this task is already holding:\n"); 2589 print_lock(prev); 2590 pr_warn("which would create a new lock dependency:\n"); 2591 print_lock_name(hlock_class(prev)); 2592 pr_cont(" ->"); 2593 print_lock_name(hlock_class(next)); 2594 pr_cont("\n"); 2595 2596 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2597 irqclass); 2598 print_lock_name(backwards_entry->class); 2599 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2600 2601 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2602 2603 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2604 print_lock_name(forwards_entry->class); 2605 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2606 pr_warn("..."); 2607 2608 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2609 2610 pr_warn("\nother info that might help us debug this:\n\n"); 2611 print_irq_lock_scenario(backwards_entry, forwards_entry, 2612 hlock_class(prev), hlock_class(next)); 2613 2614 lockdep_print_held_locks(curr); 2615 2616 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2617 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2618 2619 pr_warn("\nthe dependencies between the lock to be acquired"); 2620 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2621 next_root->trace = save_trace(); 2622 if (!next_root->trace) 2623 return; 2624 print_shortest_lock_dependencies(forwards_entry, next_root); 2625 2626 pr_warn("\nstack backtrace:\n"); 2627 dump_stack(); 2628 } 2629 2630 static const char *state_names[] = { 2631 #define LOCKDEP_STATE(__STATE) \ 2632 __stringify(__STATE), 2633 #include "lockdep_states.h" 2634 #undef LOCKDEP_STATE 2635 }; 2636 2637 static const char *state_rnames[] = { 2638 #define LOCKDEP_STATE(__STATE) \ 2639 __stringify(__STATE)"-READ", 2640 #include "lockdep_states.h" 2641 #undef LOCKDEP_STATE 2642 }; 2643 2644 static inline const char *state_name(enum lock_usage_bit bit) 2645 { 2646 if (bit & LOCK_USAGE_READ_MASK) 2647 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2648 else 2649 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2650 } 2651 2652 /* 2653 * The bit number is encoded like: 2654 * 2655 * bit0: 0 exclusive, 1 read lock 2656 * bit1: 0 used in irq, 1 irq enabled 2657 * bit2-n: state 2658 */ 2659 static int exclusive_bit(int new_bit) 2660 { 2661 int state = new_bit & LOCK_USAGE_STATE_MASK; 2662 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2663 2664 /* 2665 * keep state, bit flip the direction and strip read. 2666 */ 2667 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2668 } 2669 2670 /* 2671 * Observe that when given a bitmask where each bitnr is encoded as above, a 2672 * right shift of the mask transforms the individual bitnrs as -1 and 2673 * conversely, a left shift transforms into +1 for the individual bitnrs. 2674 * 2675 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2676 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2677 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2678 * 2679 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2680 * 2681 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2682 * all bits set) and recompose with bitnr1 flipped. 2683 */ 2684 static unsigned long invert_dir_mask(unsigned long mask) 2685 { 2686 unsigned long excl = 0; 2687 2688 /* Invert dir */ 2689 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2690 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2691 2692 return excl; 2693 } 2694 2695 /* 2696 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2697 * usage may cause deadlock too, for example: 2698 * 2699 * P1 P2 2700 * <irq disabled> 2701 * write_lock(l1); <irq enabled> 2702 * read_lock(l2); 2703 * write_lock(l2); 2704 * <in irq> 2705 * read_lock(l1); 2706 * 2707 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2708 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2709 * deadlock. 2710 * 2711 * In fact, all of the following cases may cause deadlocks: 2712 * 2713 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2714 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2715 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2716 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2717 * 2718 * As a result, to calculate the "exclusive mask", first we invert the 2719 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2720 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2721 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2722 */ 2723 static unsigned long exclusive_mask(unsigned long mask) 2724 { 2725 unsigned long excl = invert_dir_mask(mask); 2726 2727 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2728 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2729 2730 return excl; 2731 } 2732 2733 /* 2734 * Retrieve the _possible_ original mask to which @mask is 2735 * exclusive. Ie: this is the opposite of exclusive_mask(). 2736 * Note that 2 possible original bits can match an exclusive 2737 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2738 * cleared. So both are returned for each exclusive bit. 2739 */ 2740 static unsigned long original_mask(unsigned long mask) 2741 { 2742 unsigned long excl = invert_dir_mask(mask); 2743 2744 /* Include read in existing usages */ 2745 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2746 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2747 2748 return excl; 2749 } 2750 2751 /* 2752 * Find the first pair of bit match between an original 2753 * usage mask and an exclusive usage mask. 2754 */ 2755 static int find_exclusive_match(unsigned long mask, 2756 unsigned long excl_mask, 2757 enum lock_usage_bit *bitp, 2758 enum lock_usage_bit *excl_bitp) 2759 { 2760 int bit, excl, excl_read; 2761 2762 for_each_set_bit(bit, &mask, LOCK_USED) { 2763 /* 2764 * exclusive_bit() strips the read bit, however, 2765 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2766 * to search excl | LOCK_USAGE_READ_MASK as well. 2767 */ 2768 excl = exclusive_bit(bit); 2769 excl_read = excl | LOCK_USAGE_READ_MASK; 2770 if (excl_mask & lock_flag(excl)) { 2771 *bitp = bit; 2772 *excl_bitp = excl; 2773 return 0; 2774 } else if (excl_mask & lock_flag(excl_read)) { 2775 *bitp = bit; 2776 *excl_bitp = excl_read; 2777 return 0; 2778 } 2779 } 2780 return -1; 2781 } 2782 2783 /* 2784 * Prove that the new dependency does not connect a hardirq-safe(-read) 2785 * lock with a hardirq-unsafe lock - to achieve this we search 2786 * the backwards-subgraph starting at <prev>, and the 2787 * forwards-subgraph starting at <next>: 2788 */ 2789 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2790 struct held_lock *next) 2791 { 2792 unsigned long usage_mask = 0, forward_mask, backward_mask; 2793 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2794 struct lock_list *target_entry1; 2795 struct lock_list *target_entry; 2796 struct lock_list this, that; 2797 enum bfs_result ret; 2798 2799 /* 2800 * Step 1: gather all hard/soft IRQs usages backward in an 2801 * accumulated usage mask. 2802 */ 2803 bfs_init_rootb(&this, prev); 2804 2805 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2806 if (bfs_error(ret)) { 2807 print_bfs_bug(ret); 2808 return 0; 2809 } 2810 2811 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2812 if (!usage_mask) 2813 return 1; 2814 2815 /* 2816 * Step 2: find exclusive uses forward that match the previous 2817 * backward accumulated mask. 2818 */ 2819 forward_mask = exclusive_mask(usage_mask); 2820 2821 bfs_init_root(&that, next); 2822 2823 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2824 if (bfs_error(ret)) { 2825 print_bfs_bug(ret); 2826 return 0; 2827 } 2828 if (ret == BFS_RNOMATCH) 2829 return 1; 2830 2831 /* 2832 * Step 3: we found a bad match! Now retrieve a lock from the backward 2833 * list whose usage mask matches the exclusive usage mask from the 2834 * lock found on the forward list. 2835 * 2836 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2837 * the follow case: 2838 * 2839 * When trying to add A -> B to the graph, we find that there is a 2840 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2841 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2842 * invert bits of M's usage_mask, we will find another lock N that is 2843 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2844 * cause a inversion deadlock. 2845 */ 2846 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2847 2848 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2849 if (bfs_error(ret)) { 2850 print_bfs_bug(ret); 2851 return 0; 2852 } 2853 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2854 return 1; 2855 2856 /* 2857 * Step 4: narrow down to a pair of incompatible usage bits 2858 * and report it. 2859 */ 2860 ret = find_exclusive_match(target_entry->class->usage_mask, 2861 target_entry1->class->usage_mask, 2862 &backward_bit, &forward_bit); 2863 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2864 return 1; 2865 2866 print_bad_irq_dependency(curr, &this, &that, 2867 target_entry, target_entry1, 2868 prev, next, 2869 backward_bit, forward_bit, 2870 state_name(backward_bit)); 2871 2872 return 0; 2873 } 2874 2875 #else 2876 2877 static inline int check_irq_usage(struct task_struct *curr, 2878 struct held_lock *prev, struct held_lock *next) 2879 { 2880 return 1; 2881 } 2882 2883 static inline bool usage_skip(struct lock_list *entry, void *mask) 2884 { 2885 return false; 2886 } 2887 2888 #endif /* CONFIG_TRACE_IRQFLAGS */ 2889 2890 #ifdef CONFIG_LOCKDEP_SMALL 2891 /* 2892 * Check that the dependency graph starting at <src> can lead to 2893 * <target> or not. If it can, <src> -> <target> dependency is already 2894 * in the graph. 2895 * 2896 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2897 * any error appears in the bfs search. 2898 */ 2899 static noinline enum bfs_result 2900 check_redundant(struct held_lock *src, struct held_lock *target) 2901 { 2902 enum bfs_result ret; 2903 struct lock_list *target_entry; 2904 struct lock_list src_entry; 2905 2906 bfs_init_root(&src_entry, src); 2907 /* 2908 * Special setup for check_redundant(). 2909 * 2910 * To report redundant, we need to find a strong dependency path that 2911 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2912 * we need to let __bfs() only search for a path starting at a -(E*)->, 2913 * we achieve this by setting the initial node's ->only_xr to true in 2914 * that case. And if <prev> is S, we set initial ->only_xr to false 2915 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2916 */ 2917 src_entry.only_xr = src->read == 0; 2918 2919 debug_atomic_inc(nr_redundant_checks); 2920 2921 /* 2922 * Note: we skip local_lock() for redundant check, because as the 2923 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2924 * the same. 2925 */ 2926 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2927 2928 if (ret == BFS_RMATCH) 2929 debug_atomic_inc(nr_redundant); 2930 2931 return ret; 2932 } 2933 2934 #else 2935 2936 static inline enum bfs_result 2937 check_redundant(struct held_lock *src, struct held_lock *target) 2938 { 2939 return BFS_RNOMATCH; 2940 } 2941 2942 #endif 2943 2944 static void inc_chains(int irq_context) 2945 { 2946 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2947 nr_hardirq_chains++; 2948 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2949 nr_softirq_chains++; 2950 else 2951 nr_process_chains++; 2952 } 2953 2954 static void dec_chains(int irq_context) 2955 { 2956 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2957 nr_hardirq_chains--; 2958 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2959 nr_softirq_chains--; 2960 else 2961 nr_process_chains--; 2962 } 2963 2964 static void 2965 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2966 { 2967 struct lock_class *next = hlock_class(nxt); 2968 struct lock_class *prev = hlock_class(prv); 2969 2970 printk(" Possible unsafe locking scenario:\n\n"); 2971 printk(" CPU0\n"); 2972 printk(" ----\n"); 2973 printk(" lock("); 2974 __print_lock_name(prev); 2975 printk(KERN_CONT ");\n"); 2976 printk(" lock("); 2977 __print_lock_name(next); 2978 printk(KERN_CONT ");\n"); 2979 printk("\n *** DEADLOCK ***\n\n"); 2980 printk(" May be due to missing lock nesting notation\n\n"); 2981 } 2982 2983 static void 2984 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2985 struct held_lock *next) 2986 { 2987 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2988 return; 2989 2990 pr_warn("\n"); 2991 pr_warn("============================================\n"); 2992 pr_warn("WARNING: possible recursive locking detected\n"); 2993 print_kernel_ident(); 2994 pr_warn("--------------------------------------------\n"); 2995 pr_warn("%s/%d is trying to acquire lock:\n", 2996 curr->comm, task_pid_nr(curr)); 2997 print_lock(next); 2998 pr_warn("\nbut task is already holding lock:\n"); 2999 print_lock(prev); 3000 3001 pr_warn("\nother info that might help us debug this:\n"); 3002 print_deadlock_scenario(next, prev); 3003 lockdep_print_held_locks(curr); 3004 3005 pr_warn("\nstack backtrace:\n"); 3006 dump_stack(); 3007 } 3008 3009 /* 3010 * Check whether we are holding such a class already. 3011 * 3012 * (Note that this has to be done separately, because the graph cannot 3013 * detect such classes of deadlocks.) 3014 * 3015 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 3016 * lock class is held but nest_lock is also held, i.e. we rely on the 3017 * nest_lock to avoid the deadlock. 3018 */ 3019 static int 3020 check_deadlock(struct task_struct *curr, struct held_lock *next) 3021 { 3022 struct held_lock *prev; 3023 struct held_lock *nest = NULL; 3024 int i; 3025 3026 for (i = 0; i < curr->lockdep_depth; i++) { 3027 prev = curr->held_locks + i; 3028 3029 if (prev->instance == next->nest_lock) 3030 nest = prev; 3031 3032 if (hlock_class(prev) != hlock_class(next)) 3033 continue; 3034 3035 /* 3036 * Allow read-after-read recursion of the same 3037 * lock class (i.e. read_lock(lock)+read_lock(lock)): 3038 */ 3039 if ((next->read == 2) && prev->read) 3040 continue; 3041 3042 /* 3043 * We're holding the nest_lock, which serializes this lock's 3044 * nesting behaviour. 3045 */ 3046 if (nest) 3047 return 2; 3048 3049 print_deadlock_bug(curr, prev, next); 3050 return 0; 3051 } 3052 return 1; 3053 } 3054 3055 /* 3056 * There was a chain-cache miss, and we are about to add a new dependency 3057 * to a previous lock. We validate the following rules: 3058 * 3059 * - would the adding of the <prev> -> <next> dependency create a 3060 * circular dependency in the graph? [== circular deadlock] 3061 * 3062 * - does the new prev->next dependency connect any hardirq-safe lock 3063 * (in the full backwards-subgraph starting at <prev>) with any 3064 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3065 * <next>)? [== illegal lock inversion with hardirq contexts] 3066 * 3067 * - does the new prev->next dependency connect any softirq-safe lock 3068 * (in the full backwards-subgraph starting at <prev>) with any 3069 * softirq-unsafe lock (in the full forwards-subgraph starting at 3070 * <next>)? [== illegal lock inversion with softirq contexts] 3071 * 3072 * any of these scenarios could lead to a deadlock. 3073 * 3074 * Then if all the validations pass, we add the forwards and backwards 3075 * dependency. 3076 */ 3077 static int 3078 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3079 struct held_lock *next, u16 distance, 3080 struct lock_trace **const trace) 3081 { 3082 struct lock_list *entry; 3083 enum bfs_result ret; 3084 3085 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3086 /* 3087 * The warning statements below may trigger a use-after-free 3088 * of the class name. It is better to trigger a use-after free 3089 * and to have the class name most of the time instead of not 3090 * having the class name available. 3091 */ 3092 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3093 "Detected use-after-free of lock class %px/%s\n", 3094 hlock_class(prev), 3095 hlock_class(prev)->name); 3096 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3097 "Detected use-after-free of lock class %px/%s\n", 3098 hlock_class(next), 3099 hlock_class(next)->name); 3100 return 2; 3101 } 3102 3103 /* 3104 * Prove that the new <prev> -> <next> dependency would not 3105 * create a circular dependency in the graph. (We do this by 3106 * a breadth-first search into the graph starting at <next>, 3107 * and check whether we can reach <prev>.) 3108 * 3109 * The search is limited by the size of the circular queue (i.e., 3110 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3111 * in the graph whose neighbours are to be checked. 3112 */ 3113 ret = check_noncircular(next, prev, trace); 3114 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3115 return 0; 3116 3117 if (!check_irq_usage(curr, prev, next)) 3118 return 0; 3119 3120 /* 3121 * Is the <prev> -> <next> dependency already present? 3122 * 3123 * (this may occur even though this is a new chain: consider 3124 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3125 * chains - the second one will be new, but L1 already has 3126 * L2 added to its dependency list, due to the first chain.) 3127 */ 3128 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3129 if (entry->class == hlock_class(next)) { 3130 if (distance == 1) 3131 entry->distance = 1; 3132 entry->dep |= calc_dep(prev, next); 3133 3134 /* 3135 * Also, update the reverse dependency in @next's 3136 * ->locks_before list. 3137 * 3138 * Here we reuse @entry as the cursor, which is fine 3139 * because we won't go to the next iteration of the 3140 * outer loop: 3141 * 3142 * For normal cases, we return in the inner loop. 3143 * 3144 * If we fail to return, we have inconsistency, i.e. 3145 * <prev>::locks_after contains <next> while 3146 * <next>::locks_before doesn't contain <prev>. In 3147 * that case, we return after the inner and indicate 3148 * something is wrong. 3149 */ 3150 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3151 if (entry->class == hlock_class(prev)) { 3152 if (distance == 1) 3153 entry->distance = 1; 3154 entry->dep |= calc_depb(prev, next); 3155 return 1; 3156 } 3157 } 3158 3159 /* <prev> is not found in <next>::locks_before */ 3160 return 0; 3161 } 3162 } 3163 3164 /* 3165 * Is the <prev> -> <next> link redundant? 3166 */ 3167 ret = check_redundant(prev, next); 3168 if (bfs_error(ret)) 3169 return 0; 3170 else if (ret == BFS_RMATCH) 3171 return 2; 3172 3173 if (!*trace) { 3174 *trace = save_trace(); 3175 if (!*trace) 3176 return 0; 3177 } 3178 3179 /* 3180 * Ok, all validations passed, add the new lock 3181 * to the previous lock's dependency list: 3182 */ 3183 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3184 &hlock_class(prev)->locks_after, distance, 3185 calc_dep(prev, next), *trace); 3186 3187 if (!ret) 3188 return 0; 3189 3190 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3191 &hlock_class(next)->locks_before, distance, 3192 calc_depb(prev, next), *trace); 3193 if (!ret) 3194 return 0; 3195 3196 return 2; 3197 } 3198 3199 /* 3200 * Add the dependency to all directly-previous locks that are 'relevant'. 3201 * The ones that are relevant are (in increasing distance from curr): 3202 * all consecutive trylock entries and the final non-trylock entry - or 3203 * the end of this context's lock-chain - whichever comes first. 3204 */ 3205 static int 3206 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3207 { 3208 struct lock_trace *trace = NULL; 3209 int depth = curr->lockdep_depth; 3210 struct held_lock *hlock; 3211 3212 /* 3213 * Debugging checks. 3214 * 3215 * Depth must not be zero for a non-head lock: 3216 */ 3217 if (!depth) 3218 goto out_bug; 3219 /* 3220 * At least two relevant locks must exist for this 3221 * to be a head: 3222 */ 3223 if (curr->held_locks[depth].irq_context != 3224 curr->held_locks[depth-1].irq_context) 3225 goto out_bug; 3226 3227 for (;;) { 3228 u16 distance = curr->lockdep_depth - depth + 1; 3229 hlock = curr->held_locks + depth - 1; 3230 3231 if (hlock->check) { 3232 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3233 if (!ret) 3234 return 0; 3235 3236 /* 3237 * Stop after the first non-trylock entry, 3238 * as non-trylock entries have added their 3239 * own direct dependencies already, so this 3240 * lock is connected to them indirectly: 3241 */ 3242 if (!hlock->trylock) 3243 break; 3244 } 3245 3246 depth--; 3247 /* 3248 * End of lock-stack? 3249 */ 3250 if (!depth) 3251 break; 3252 /* 3253 * Stop the search if we cross into another context: 3254 */ 3255 if (curr->held_locks[depth].irq_context != 3256 curr->held_locks[depth-1].irq_context) 3257 break; 3258 } 3259 return 1; 3260 out_bug: 3261 if (!debug_locks_off_graph_unlock()) 3262 return 0; 3263 3264 /* 3265 * Clearly we all shouldn't be here, but since we made it we 3266 * can reliable say we messed up our state. See the above two 3267 * gotos for reasons why we could possibly end up here. 3268 */ 3269 WARN_ON(1); 3270 3271 return 0; 3272 } 3273 3274 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3275 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3276 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3277 unsigned long nr_zapped_lock_chains; 3278 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3279 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3280 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3281 3282 /* 3283 * The first 2 chain_hlocks entries in the chain block in the bucket 3284 * list contains the following meta data: 3285 * 3286 * entry[0]: 3287 * Bit 15 - always set to 1 (it is not a class index) 3288 * Bits 0-14 - upper 15 bits of the next block index 3289 * entry[1] - lower 16 bits of next block index 3290 * 3291 * A next block index of all 1 bits means it is the end of the list. 3292 * 3293 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3294 * the chain block size: 3295 * 3296 * entry[2] - upper 16 bits of the chain block size 3297 * entry[3] - lower 16 bits of the chain block size 3298 */ 3299 #define MAX_CHAIN_BUCKETS 16 3300 #define CHAIN_BLK_FLAG (1U << 15) 3301 #define CHAIN_BLK_LIST_END 0xFFFFU 3302 3303 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3304 3305 static inline int size_to_bucket(int size) 3306 { 3307 if (size > MAX_CHAIN_BUCKETS) 3308 return 0; 3309 3310 return size - 1; 3311 } 3312 3313 /* 3314 * Iterate all the chain blocks in a bucket. 3315 */ 3316 #define for_each_chain_block(bucket, prev, curr) \ 3317 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3318 (curr) >= 0; \ 3319 (prev) = (curr), (curr) = chain_block_next(curr)) 3320 3321 /* 3322 * next block or -1 3323 */ 3324 static inline int chain_block_next(int offset) 3325 { 3326 int next = chain_hlocks[offset]; 3327 3328 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3329 3330 if (next == CHAIN_BLK_LIST_END) 3331 return -1; 3332 3333 next &= ~CHAIN_BLK_FLAG; 3334 next <<= 16; 3335 next |= chain_hlocks[offset + 1]; 3336 3337 return next; 3338 } 3339 3340 /* 3341 * bucket-0 only 3342 */ 3343 static inline int chain_block_size(int offset) 3344 { 3345 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3346 } 3347 3348 static inline void init_chain_block(int offset, int next, int bucket, int size) 3349 { 3350 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3351 chain_hlocks[offset + 1] = (u16)next; 3352 3353 if (size && !bucket) { 3354 chain_hlocks[offset + 2] = size >> 16; 3355 chain_hlocks[offset + 3] = (u16)size; 3356 } 3357 } 3358 3359 static inline void add_chain_block(int offset, int size) 3360 { 3361 int bucket = size_to_bucket(size); 3362 int next = chain_block_buckets[bucket]; 3363 int prev, curr; 3364 3365 if (unlikely(size < 2)) { 3366 /* 3367 * We can't store single entries on the freelist. Leak them. 3368 * 3369 * One possible way out would be to uniquely mark them, other 3370 * than with CHAIN_BLK_FLAG, such that we can recover them when 3371 * the block before it is re-added. 3372 */ 3373 if (size) 3374 nr_lost_chain_hlocks++; 3375 return; 3376 } 3377 3378 nr_free_chain_hlocks += size; 3379 if (!bucket) { 3380 nr_large_chain_blocks++; 3381 3382 /* 3383 * Variable sized, sort large to small. 3384 */ 3385 for_each_chain_block(0, prev, curr) { 3386 if (size >= chain_block_size(curr)) 3387 break; 3388 } 3389 init_chain_block(offset, curr, 0, size); 3390 if (prev < 0) 3391 chain_block_buckets[0] = offset; 3392 else 3393 init_chain_block(prev, offset, 0, 0); 3394 return; 3395 } 3396 /* 3397 * Fixed size, add to head. 3398 */ 3399 init_chain_block(offset, next, bucket, size); 3400 chain_block_buckets[bucket] = offset; 3401 } 3402 3403 /* 3404 * Only the first block in the list can be deleted. 3405 * 3406 * For the variable size bucket[0], the first block (the largest one) is 3407 * returned, broken up and put back into the pool. So if a chain block of 3408 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3409 * queued up after the primordial chain block and never be used until the 3410 * hlock entries in the primordial chain block is almost used up. That 3411 * causes fragmentation and reduce allocation efficiency. That can be 3412 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3413 */ 3414 static inline void del_chain_block(int bucket, int size, int next) 3415 { 3416 nr_free_chain_hlocks -= size; 3417 chain_block_buckets[bucket] = next; 3418 3419 if (!bucket) 3420 nr_large_chain_blocks--; 3421 } 3422 3423 static void init_chain_block_buckets(void) 3424 { 3425 int i; 3426 3427 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3428 chain_block_buckets[i] = -1; 3429 3430 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3431 } 3432 3433 /* 3434 * Return offset of a chain block of the right size or -1 if not found. 3435 * 3436 * Fairly simple worst-fit allocator with the addition of a number of size 3437 * specific free lists. 3438 */ 3439 static int alloc_chain_hlocks(int req) 3440 { 3441 int bucket, curr, size; 3442 3443 /* 3444 * We rely on the MSB to act as an escape bit to denote freelist 3445 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3446 */ 3447 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3448 3449 init_data_structures_once(); 3450 3451 if (nr_free_chain_hlocks < req) 3452 return -1; 3453 3454 /* 3455 * We require a minimum of 2 (u16) entries to encode a freelist 3456 * 'pointer'. 3457 */ 3458 req = max(req, 2); 3459 bucket = size_to_bucket(req); 3460 curr = chain_block_buckets[bucket]; 3461 3462 if (bucket) { 3463 if (curr >= 0) { 3464 del_chain_block(bucket, req, chain_block_next(curr)); 3465 return curr; 3466 } 3467 /* Try bucket 0 */ 3468 curr = chain_block_buckets[0]; 3469 } 3470 3471 /* 3472 * The variable sized freelist is sorted by size; the first entry is 3473 * the largest. Use it if it fits. 3474 */ 3475 if (curr >= 0) { 3476 size = chain_block_size(curr); 3477 if (likely(size >= req)) { 3478 del_chain_block(0, size, chain_block_next(curr)); 3479 add_chain_block(curr + req, size - req); 3480 return curr; 3481 } 3482 } 3483 3484 /* 3485 * Last resort, split a block in a larger sized bucket. 3486 */ 3487 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3488 bucket = size_to_bucket(size); 3489 curr = chain_block_buckets[bucket]; 3490 if (curr < 0) 3491 continue; 3492 3493 del_chain_block(bucket, size, chain_block_next(curr)); 3494 add_chain_block(curr + req, size - req); 3495 return curr; 3496 } 3497 3498 return -1; 3499 } 3500 3501 static inline void free_chain_hlocks(int base, int size) 3502 { 3503 add_chain_block(base, max(size, 2)); 3504 } 3505 3506 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3507 { 3508 u16 chain_hlock = chain_hlocks[chain->base + i]; 3509 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3510 3511 return lock_classes + class_idx; 3512 } 3513 3514 /* 3515 * Returns the index of the first held_lock of the current chain 3516 */ 3517 static inline int get_first_held_lock(struct task_struct *curr, 3518 struct held_lock *hlock) 3519 { 3520 int i; 3521 struct held_lock *hlock_curr; 3522 3523 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3524 hlock_curr = curr->held_locks + i; 3525 if (hlock_curr->irq_context != hlock->irq_context) 3526 break; 3527 3528 } 3529 3530 return ++i; 3531 } 3532 3533 #ifdef CONFIG_DEBUG_LOCKDEP 3534 /* 3535 * Returns the next chain_key iteration 3536 */ 3537 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3538 { 3539 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3540 3541 printk(" hlock_id:%d -> chain_key:%016Lx", 3542 (unsigned int)hlock_id, 3543 (unsigned long long)new_chain_key); 3544 return new_chain_key; 3545 } 3546 3547 static void 3548 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3549 { 3550 struct held_lock *hlock; 3551 u64 chain_key = INITIAL_CHAIN_KEY; 3552 int depth = curr->lockdep_depth; 3553 int i = get_first_held_lock(curr, hlock_next); 3554 3555 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3556 hlock_next->irq_context); 3557 for (; i < depth; i++) { 3558 hlock = curr->held_locks + i; 3559 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3560 3561 print_lock(hlock); 3562 } 3563 3564 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3565 print_lock(hlock_next); 3566 } 3567 3568 static void print_chain_keys_chain(struct lock_chain *chain) 3569 { 3570 int i; 3571 u64 chain_key = INITIAL_CHAIN_KEY; 3572 u16 hlock_id; 3573 3574 printk("depth: %u\n", chain->depth); 3575 for (i = 0; i < chain->depth; i++) { 3576 hlock_id = chain_hlocks[chain->base + i]; 3577 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3578 3579 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id)); 3580 printk("\n"); 3581 } 3582 } 3583 3584 static void print_collision(struct task_struct *curr, 3585 struct held_lock *hlock_next, 3586 struct lock_chain *chain) 3587 { 3588 pr_warn("\n"); 3589 pr_warn("============================\n"); 3590 pr_warn("WARNING: chain_key collision\n"); 3591 print_kernel_ident(); 3592 pr_warn("----------------------------\n"); 3593 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3594 pr_warn("Hash chain already cached but the contents don't match!\n"); 3595 3596 pr_warn("Held locks:"); 3597 print_chain_keys_held_locks(curr, hlock_next); 3598 3599 pr_warn("Locks in cached chain:"); 3600 print_chain_keys_chain(chain); 3601 3602 pr_warn("\nstack backtrace:\n"); 3603 dump_stack(); 3604 } 3605 #endif 3606 3607 /* 3608 * Checks whether the chain and the current held locks are consistent 3609 * in depth and also in content. If they are not it most likely means 3610 * that there was a collision during the calculation of the chain_key. 3611 * Returns: 0 not passed, 1 passed 3612 */ 3613 static int check_no_collision(struct task_struct *curr, 3614 struct held_lock *hlock, 3615 struct lock_chain *chain) 3616 { 3617 #ifdef CONFIG_DEBUG_LOCKDEP 3618 int i, j, id; 3619 3620 i = get_first_held_lock(curr, hlock); 3621 3622 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3623 print_collision(curr, hlock, chain); 3624 return 0; 3625 } 3626 3627 for (j = 0; j < chain->depth - 1; j++, i++) { 3628 id = hlock_id(&curr->held_locks[i]); 3629 3630 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3631 print_collision(curr, hlock, chain); 3632 return 0; 3633 } 3634 } 3635 #endif 3636 return 1; 3637 } 3638 3639 /* 3640 * Given an index that is >= -1, return the index of the next lock chain. 3641 * Return -2 if there is no next lock chain. 3642 */ 3643 long lockdep_next_lockchain(long i) 3644 { 3645 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3646 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3647 } 3648 3649 unsigned long lock_chain_count(void) 3650 { 3651 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3652 } 3653 3654 /* Must be called with the graph lock held. */ 3655 static struct lock_chain *alloc_lock_chain(void) 3656 { 3657 int idx = find_first_zero_bit(lock_chains_in_use, 3658 ARRAY_SIZE(lock_chains)); 3659 3660 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3661 return NULL; 3662 __set_bit(idx, lock_chains_in_use); 3663 return lock_chains + idx; 3664 } 3665 3666 /* 3667 * Adds a dependency chain into chain hashtable. And must be called with 3668 * graph_lock held. 3669 * 3670 * Return 0 if fail, and graph_lock is released. 3671 * Return 1 if succeed, with graph_lock held. 3672 */ 3673 static inline int add_chain_cache(struct task_struct *curr, 3674 struct held_lock *hlock, 3675 u64 chain_key) 3676 { 3677 struct hlist_head *hash_head = chainhashentry(chain_key); 3678 struct lock_chain *chain; 3679 int i, j; 3680 3681 /* 3682 * The caller must hold the graph lock, ensure we've got IRQs 3683 * disabled to make this an IRQ-safe lock.. for recursion reasons 3684 * lockdep won't complain about its own locking errors. 3685 */ 3686 if (lockdep_assert_locked()) 3687 return 0; 3688 3689 chain = alloc_lock_chain(); 3690 if (!chain) { 3691 if (!debug_locks_off_graph_unlock()) 3692 return 0; 3693 3694 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3695 dump_stack(); 3696 return 0; 3697 } 3698 chain->chain_key = chain_key; 3699 chain->irq_context = hlock->irq_context; 3700 i = get_first_held_lock(curr, hlock); 3701 chain->depth = curr->lockdep_depth + 1 - i; 3702 3703 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3704 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3705 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3706 3707 j = alloc_chain_hlocks(chain->depth); 3708 if (j < 0) { 3709 if (!debug_locks_off_graph_unlock()) 3710 return 0; 3711 3712 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3713 dump_stack(); 3714 return 0; 3715 } 3716 3717 chain->base = j; 3718 for (j = 0; j < chain->depth - 1; j++, i++) { 3719 int lock_id = hlock_id(curr->held_locks + i); 3720 3721 chain_hlocks[chain->base + j] = lock_id; 3722 } 3723 chain_hlocks[chain->base + j] = hlock_id(hlock); 3724 hlist_add_head_rcu(&chain->entry, hash_head); 3725 debug_atomic_inc(chain_lookup_misses); 3726 inc_chains(chain->irq_context); 3727 3728 return 1; 3729 } 3730 3731 /* 3732 * Look up a dependency chain. Must be called with either the graph lock or 3733 * the RCU read lock held. 3734 */ 3735 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3736 { 3737 struct hlist_head *hash_head = chainhashentry(chain_key); 3738 struct lock_chain *chain; 3739 3740 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3741 if (READ_ONCE(chain->chain_key) == chain_key) { 3742 debug_atomic_inc(chain_lookup_hits); 3743 return chain; 3744 } 3745 } 3746 return NULL; 3747 } 3748 3749 /* 3750 * If the key is not present yet in dependency chain cache then 3751 * add it and return 1 - in this case the new dependency chain is 3752 * validated. If the key is already hashed, return 0. 3753 * (On return with 1 graph_lock is held.) 3754 */ 3755 static inline int lookup_chain_cache_add(struct task_struct *curr, 3756 struct held_lock *hlock, 3757 u64 chain_key) 3758 { 3759 struct lock_class *class = hlock_class(hlock); 3760 struct lock_chain *chain = lookup_chain_cache(chain_key); 3761 3762 if (chain) { 3763 cache_hit: 3764 if (!check_no_collision(curr, hlock, chain)) 3765 return 0; 3766 3767 if (very_verbose(class)) { 3768 printk("\nhash chain already cached, key: " 3769 "%016Lx tail class: [%px] %s\n", 3770 (unsigned long long)chain_key, 3771 class->key, class->name); 3772 } 3773 3774 return 0; 3775 } 3776 3777 if (very_verbose(class)) { 3778 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3779 (unsigned long long)chain_key, class->key, class->name); 3780 } 3781 3782 if (!graph_lock()) 3783 return 0; 3784 3785 /* 3786 * We have to walk the chain again locked - to avoid duplicates: 3787 */ 3788 chain = lookup_chain_cache(chain_key); 3789 if (chain) { 3790 graph_unlock(); 3791 goto cache_hit; 3792 } 3793 3794 if (!add_chain_cache(curr, hlock, chain_key)) 3795 return 0; 3796 3797 return 1; 3798 } 3799 3800 static int validate_chain(struct task_struct *curr, 3801 struct held_lock *hlock, 3802 int chain_head, u64 chain_key) 3803 { 3804 /* 3805 * Trylock needs to maintain the stack of held locks, but it 3806 * does not add new dependencies, because trylock can be done 3807 * in any order. 3808 * 3809 * We look up the chain_key and do the O(N^2) check and update of 3810 * the dependencies only if this is a new dependency chain. 3811 * (If lookup_chain_cache_add() return with 1 it acquires 3812 * graph_lock for us) 3813 */ 3814 if (!hlock->trylock && hlock->check && 3815 lookup_chain_cache_add(curr, hlock, chain_key)) { 3816 /* 3817 * Check whether last held lock: 3818 * 3819 * - is irq-safe, if this lock is irq-unsafe 3820 * - is softirq-safe, if this lock is hardirq-unsafe 3821 * 3822 * And check whether the new lock's dependency graph 3823 * could lead back to the previous lock: 3824 * 3825 * - within the current held-lock stack 3826 * - across our accumulated lock dependency records 3827 * 3828 * any of these scenarios could lead to a deadlock. 3829 */ 3830 /* 3831 * The simple case: does the current hold the same lock 3832 * already? 3833 */ 3834 int ret = check_deadlock(curr, hlock); 3835 3836 if (!ret) 3837 return 0; 3838 /* 3839 * Add dependency only if this lock is not the head 3840 * of the chain, and if the new lock introduces no more 3841 * lock dependency (because we already hold a lock with the 3842 * same lock class) nor deadlock (because the nest_lock 3843 * serializes nesting locks), see the comments for 3844 * check_deadlock(). 3845 */ 3846 if (!chain_head && ret != 2) { 3847 if (!check_prevs_add(curr, hlock)) 3848 return 0; 3849 } 3850 3851 graph_unlock(); 3852 } else { 3853 /* after lookup_chain_cache_add(): */ 3854 if (unlikely(!debug_locks)) 3855 return 0; 3856 } 3857 3858 return 1; 3859 } 3860 #else 3861 static inline int validate_chain(struct task_struct *curr, 3862 struct held_lock *hlock, 3863 int chain_head, u64 chain_key) 3864 { 3865 return 1; 3866 } 3867 3868 static void init_chain_block_buckets(void) { } 3869 #endif /* CONFIG_PROVE_LOCKING */ 3870 3871 /* 3872 * We are building curr_chain_key incrementally, so double-check 3873 * it from scratch, to make sure that it's done correctly: 3874 */ 3875 static void check_chain_key(struct task_struct *curr) 3876 { 3877 #ifdef CONFIG_DEBUG_LOCKDEP 3878 struct held_lock *hlock, *prev_hlock = NULL; 3879 unsigned int i; 3880 u64 chain_key = INITIAL_CHAIN_KEY; 3881 3882 for (i = 0; i < curr->lockdep_depth; i++) { 3883 hlock = curr->held_locks + i; 3884 if (chain_key != hlock->prev_chain_key) { 3885 debug_locks_off(); 3886 /* 3887 * We got mighty confused, our chain keys don't match 3888 * with what we expect, someone trample on our task state? 3889 */ 3890 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3891 curr->lockdep_depth, i, 3892 (unsigned long long)chain_key, 3893 (unsigned long long)hlock->prev_chain_key); 3894 return; 3895 } 3896 3897 /* 3898 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3899 * it registered lock class index? 3900 */ 3901 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3902 return; 3903 3904 if (prev_hlock && (prev_hlock->irq_context != 3905 hlock->irq_context)) 3906 chain_key = INITIAL_CHAIN_KEY; 3907 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3908 prev_hlock = hlock; 3909 } 3910 if (chain_key != curr->curr_chain_key) { 3911 debug_locks_off(); 3912 /* 3913 * More smoking hash instead of calculating it, damn see these 3914 * numbers float.. I bet that a pink elephant stepped on my memory. 3915 */ 3916 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3917 curr->lockdep_depth, i, 3918 (unsigned long long)chain_key, 3919 (unsigned long long)curr->curr_chain_key); 3920 } 3921 #endif 3922 } 3923 3924 #ifdef CONFIG_PROVE_LOCKING 3925 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3926 enum lock_usage_bit new_bit); 3927 3928 static void print_usage_bug_scenario(struct held_lock *lock) 3929 { 3930 struct lock_class *class = hlock_class(lock); 3931 3932 printk(" Possible unsafe locking scenario:\n\n"); 3933 printk(" CPU0\n"); 3934 printk(" ----\n"); 3935 printk(" lock("); 3936 __print_lock_name(class); 3937 printk(KERN_CONT ");\n"); 3938 printk(" <Interrupt>\n"); 3939 printk(" lock("); 3940 __print_lock_name(class); 3941 printk(KERN_CONT ");\n"); 3942 printk("\n *** DEADLOCK ***\n\n"); 3943 } 3944 3945 static void 3946 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3947 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3948 { 3949 if (!debug_locks_off() || debug_locks_silent) 3950 return; 3951 3952 pr_warn("\n"); 3953 pr_warn("================================\n"); 3954 pr_warn("WARNING: inconsistent lock state\n"); 3955 print_kernel_ident(); 3956 pr_warn("--------------------------------\n"); 3957 3958 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3959 usage_str[prev_bit], usage_str[new_bit]); 3960 3961 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3962 curr->comm, task_pid_nr(curr), 3963 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3964 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3965 lockdep_hardirqs_enabled(), 3966 lockdep_softirqs_enabled(curr)); 3967 print_lock(this); 3968 3969 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3970 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3971 3972 print_irqtrace_events(curr); 3973 pr_warn("\nother info that might help us debug this:\n"); 3974 print_usage_bug_scenario(this); 3975 3976 lockdep_print_held_locks(curr); 3977 3978 pr_warn("\nstack backtrace:\n"); 3979 dump_stack(); 3980 } 3981 3982 /* 3983 * Print out an error if an invalid bit is set: 3984 */ 3985 static inline int 3986 valid_state(struct task_struct *curr, struct held_lock *this, 3987 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3988 { 3989 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3990 graph_unlock(); 3991 print_usage_bug(curr, this, bad_bit, new_bit); 3992 return 0; 3993 } 3994 return 1; 3995 } 3996 3997 3998 /* 3999 * print irq inversion bug: 4000 */ 4001 static void 4002 print_irq_inversion_bug(struct task_struct *curr, 4003 struct lock_list *root, struct lock_list *other, 4004 struct held_lock *this, int forwards, 4005 const char *irqclass) 4006 { 4007 struct lock_list *entry = other; 4008 struct lock_list *middle = NULL; 4009 int depth; 4010 4011 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 4012 return; 4013 4014 pr_warn("\n"); 4015 pr_warn("========================================================\n"); 4016 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 4017 print_kernel_ident(); 4018 pr_warn("--------------------------------------------------------\n"); 4019 pr_warn("%s/%d just changed the state of lock:\n", 4020 curr->comm, task_pid_nr(curr)); 4021 print_lock(this); 4022 if (forwards) 4023 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 4024 else 4025 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 4026 print_lock_name(other->class); 4027 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 4028 4029 pr_warn("\nother info that might help us debug this:\n"); 4030 4031 /* Find a middle lock (if one exists) */ 4032 depth = get_lock_depth(other); 4033 do { 4034 if (depth == 0 && (entry != root)) { 4035 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 4036 break; 4037 } 4038 middle = entry; 4039 entry = get_lock_parent(entry); 4040 depth--; 4041 } while (entry && entry != root && (depth >= 0)); 4042 if (forwards) 4043 print_irq_lock_scenario(root, other, 4044 middle ? middle->class : root->class, other->class); 4045 else 4046 print_irq_lock_scenario(other, root, 4047 middle ? middle->class : other->class, root->class); 4048 4049 lockdep_print_held_locks(curr); 4050 4051 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4052 root->trace = save_trace(); 4053 if (!root->trace) 4054 return; 4055 print_shortest_lock_dependencies(other, root); 4056 4057 pr_warn("\nstack backtrace:\n"); 4058 dump_stack(); 4059 } 4060 4061 /* 4062 * Prove that in the forwards-direction subgraph starting at <this> 4063 * there is no lock matching <mask>: 4064 */ 4065 static int 4066 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4067 enum lock_usage_bit bit) 4068 { 4069 enum bfs_result ret; 4070 struct lock_list root; 4071 struct lock_list *target_entry; 4072 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4073 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4074 4075 bfs_init_root(&root, this); 4076 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4077 if (bfs_error(ret)) { 4078 print_bfs_bug(ret); 4079 return 0; 4080 } 4081 if (ret == BFS_RNOMATCH) 4082 return 1; 4083 4084 /* Check whether write or read usage is the match */ 4085 if (target_entry->class->usage_mask & lock_flag(bit)) { 4086 print_irq_inversion_bug(curr, &root, target_entry, 4087 this, 1, state_name(bit)); 4088 } else { 4089 print_irq_inversion_bug(curr, &root, target_entry, 4090 this, 1, state_name(read_bit)); 4091 } 4092 4093 return 0; 4094 } 4095 4096 /* 4097 * Prove that in the backwards-direction subgraph starting at <this> 4098 * there is no lock matching <mask>: 4099 */ 4100 static int 4101 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4102 enum lock_usage_bit bit) 4103 { 4104 enum bfs_result ret; 4105 struct lock_list root; 4106 struct lock_list *target_entry; 4107 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4108 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4109 4110 bfs_init_rootb(&root, this); 4111 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4112 if (bfs_error(ret)) { 4113 print_bfs_bug(ret); 4114 return 0; 4115 } 4116 if (ret == BFS_RNOMATCH) 4117 return 1; 4118 4119 /* Check whether write or read usage is the match */ 4120 if (target_entry->class->usage_mask & lock_flag(bit)) { 4121 print_irq_inversion_bug(curr, &root, target_entry, 4122 this, 0, state_name(bit)); 4123 } else { 4124 print_irq_inversion_bug(curr, &root, target_entry, 4125 this, 0, state_name(read_bit)); 4126 } 4127 4128 return 0; 4129 } 4130 4131 void print_irqtrace_events(struct task_struct *curr) 4132 { 4133 const struct irqtrace_events *trace = &curr->irqtrace; 4134 4135 printk("irq event stamp: %u\n", trace->irq_events); 4136 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4137 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4138 (void *)trace->hardirq_enable_ip); 4139 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4140 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4141 (void *)trace->hardirq_disable_ip); 4142 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4143 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4144 (void *)trace->softirq_enable_ip); 4145 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4146 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4147 (void *)trace->softirq_disable_ip); 4148 } 4149 4150 static int HARDIRQ_verbose(struct lock_class *class) 4151 { 4152 #if HARDIRQ_VERBOSE 4153 return class_filter(class); 4154 #endif 4155 return 0; 4156 } 4157 4158 static int SOFTIRQ_verbose(struct lock_class *class) 4159 { 4160 #if SOFTIRQ_VERBOSE 4161 return class_filter(class); 4162 #endif 4163 return 0; 4164 } 4165 4166 static int (*state_verbose_f[])(struct lock_class *class) = { 4167 #define LOCKDEP_STATE(__STATE) \ 4168 __STATE##_verbose, 4169 #include "lockdep_states.h" 4170 #undef LOCKDEP_STATE 4171 }; 4172 4173 static inline int state_verbose(enum lock_usage_bit bit, 4174 struct lock_class *class) 4175 { 4176 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4177 } 4178 4179 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4180 enum lock_usage_bit bit, const char *name); 4181 4182 static int 4183 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4184 enum lock_usage_bit new_bit) 4185 { 4186 int excl_bit = exclusive_bit(new_bit); 4187 int read = new_bit & LOCK_USAGE_READ_MASK; 4188 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4189 4190 /* 4191 * Validate that this particular lock does not have conflicting 4192 * usage states. 4193 */ 4194 if (!valid_state(curr, this, new_bit, excl_bit)) 4195 return 0; 4196 4197 /* 4198 * Check for read in write conflicts 4199 */ 4200 if (!read && !valid_state(curr, this, new_bit, 4201 excl_bit + LOCK_USAGE_READ_MASK)) 4202 return 0; 4203 4204 4205 /* 4206 * Validate that the lock dependencies don't have conflicting usage 4207 * states. 4208 */ 4209 if (dir) { 4210 /* 4211 * mark ENABLED has to look backwards -- to ensure no dependee 4212 * has USED_IN state, which, again, would allow recursion deadlocks. 4213 */ 4214 if (!check_usage_backwards(curr, this, excl_bit)) 4215 return 0; 4216 } else { 4217 /* 4218 * mark USED_IN has to look forwards -- to ensure no dependency 4219 * has ENABLED state, which would allow recursion deadlocks. 4220 */ 4221 if (!check_usage_forwards(curr, this, excl_bit)) 4222 return 0; 4223 } 4224 4225 if (state_verbose(new_bit, hlock_class(this))) 4226 return 2; 4227 4228 return 1; 4229 } 4230 4231 /* 4232 * Mark all held locks with a usage bit: 4233 */ 4234 static int 4235 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4236 { 4237 struct held_lock *hlock; 4238 int i; 4239 4240 for (i = 0; i < curr->lockdep_depth; i++) { 4241 enum lock_usage_bit hlock_bit = base_bit; 4242 hlock = curr->held_locks + i; 4243 4244 if (hlock->read) 4245 hlock_bit += LOCK_USAGE_READ_MASK; 4246 4247 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4248 4249 if (!hlock->check) 4250 continue; 4251 4252 if (!mark_lock(curr, hlock, hlock_bit)) 4253 return 0; 4254 } 4255 4256 return 1; 4257 } 4258 4259 /* 4260 * Hardirqs will be enabled: 4261 */ 4262 static void __trace_hardirqs_on_caller(void) 4263 { 4264 struct task_struct *curr = current; 4265 4266 /* 4267 * We are going to turn hardirqs on, so set the 4268 * usage bit for all held locks: 4269 */ 4270 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4271 return; 4272 /* 4273 * If we have softirqs enabled, then set the usage 4274 * bit for all held locks. (disabled hardirqs prevented 4275 * this bit from being set before) 4276 */ 4277 if (curr->softirqs_enabled) 4278 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4279 } 4280 4281 /** 4282 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4283 * 4284 * Invoked before a possible transition to RCU idle from exit to user or 4285 * guest mode. This ensures that all RCU operations are done before RCU 4286 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4287 * invoked to set the final state. 4288 */ 4289 void lockdep_hardirqs_on_prepare(void) 4290 { 4291 if (unlikely(!debug_locks)) 4292 return; 4293 4294 /* 4295 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4296 */ 4297 if (unlikely(in_nmi())) 4298 return; 4299 4300 if (unlikely(this_cpu_read(lockdep_recursion))) 4301 return; 4302 4303 if (unlikely(lockdep_hardirqs_enabled())) { 4304 /* 4305 * Neither irq nor preemption are disabled here 4306 * so this is racy by nature but losing one hit 4307 * in a stat is not a big deal. 4308 */ 4309 __debug_atomic_inc(redundant_hardirqs_on); 4310 return; 4311 } 4312 4313 /* 4314 * We're enabling irqs and according to our state above irqs weren't 4315 * already enabled, yet we find the hardware thinks they are in fact 4316 * enabled.. someone messed up their IRQ state tracing. 4317 */ 4318 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4319 return; 4320 4321 /* 4322 * See the fine text that goes along with this variable definition. 4323 */ 4324 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4325 return; 4326 4327 /* 4328 * Can't allow enabling interrupts while in an interrupt handler, 4329 * that's general bad form and such. Recursion, limited stack etc.. 4330 */ 4331 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4332 return; 4333 4334 current->hardirq_chain_key = current->curr_chain_key; 4335 4336 lockdep_recursion_inc(); 4337 __trace_hardirqs_on_caller(); 4338 lockdep_recursion_finish(); 4339 } 4340 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4341 4342 void noinstr lockdep_hardirqs_on(unsigned long ip) 4343 { 4344 struct irqtrace_events *trace = ¤t->irqtrace; 4345 4346 if (unlikely(!debug_locks)) 4347 return; 4348 4349 /* 4350 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4351 * tracking state and hardware state are out of sync. 4352 * 4353 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4354 * and not rely on hardware state like normal interrupts. 4355 */ 4356 if (unlikely(in_nmi())) { 4357 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4358 return; 4359 4360 /* 4361 * Skip: 4362 * - recursion check, because NMI can hit lockdep; 4363 * - hardware state check, because above; 4364 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4365 */ 4366 goto skip_checks; 4367 } 4368 4369 if (unlikely(this_cpu_read(lockdep_recursion))) 4370 return; 4371 4372 if (lockdep_hardirqs_enabled()) { 4373 /* 4374 * Neither irq nor preemption are disabled here 4375 * so this is racy by nature but losing one hit 4376 * in a stat is not a big deal. 4377 */ 4378 __debug_atomic_inc(redundant_hardirqs_on); 4379 return; 4380 } 4381 4382 /* 4383 * We're enabling irqs and according to our state above irqs weren't 4384 * already enabled, yet we find the hardware thinks they are in fact 4385 * enabled.. someone messed up their IRQ state tracing. 4386 */ 4387 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4388 return; 4389 4390 /* 4391 * Ensure the lock stack remained unchanged between 4392 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4393 */ 4394 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4395 current->curr_chain_key); 4396 4397 skip_checks: 4398 /* we'll do an OFF -> ON transition: */ 4399 __this_cpu_write(hardirqs_enabled, 1); 4400 trace->hardirq_enable_ip = ip; 4401 trace->hardirq_enable_event = ++trace->irq_events; 4402 debug_atomic_inc(hardirqs_on_events); 4403 } 4404 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4405 4406 /* 4407 * Hardirqs were disabled: 4408 */ 4409 void noinstr lockdep_hardirqs_off(unsigned long ip) 4410 { 4411 if (unlikely(!debug_locks)) 4412 return; 4413 4414 /* 4415 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4416 * they will restore the software state. This ensures the software 4417 * state is consistent inside NMIs as well. 4418 */ 4419 if (in_nmi()) { 4420 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4421 return; 4422 } else if (__this_cpu_read(lockdep_recursion)) 4423 return; 4424 4425 /* 4426 * So we're supposed to get called after you mask local IRQs, but for 4427 * some reason the hardware doesn't quite think you did a proper job. 4428 */ 4429 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4430 return; 4431 4432 if (lockdep_hardirqs_enabled()) { 4433 struct irqtrace_events *trace = ¤t->irqtrace; 4434 4435 /* 4436 * We have done an ON -> OFF transition: 4437 */ 4438 __this_cpu_write(hardirqs_enabled, 0); 4439 trace->hardirq_disable_ip = ip; 4440 trace->hardirq_disable_event = ++trace->irq_events; 4441 debug_atomic_inc(hardirqs_off_events); 4442 } else { 4443 debug_atomic_inc(redundant_hardirqs_off); 4444 } 4445 } 4446 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4447 4448 /* 4449 * Softirqs will be enabled: 4450 */ 4451 void lockdep_softirqs_on(unsigned long ip) 4452 { 4453 struct irqtrace_events *trace = ¤t->irqtrace; 4454 4455 if (unlikely(!lockdep_enabled())) 4456 return; 4457 4458 /* 4459 * We fancy IRQs being disabled here, see softirq.c, avoids 4460 * funny state and nesting things. 4461 */ 4462 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4463 return; 4464 4465 if (current->softirqs_enabled) { 4466 debug_atomic_inc(redundant_softirqs_on); 4467 return; 4468 } 4469 4470 lockdep_recursion_inc(); 4471 /* 4472 * We'll do an OFF -> ON transition: 4473 */ 4474 current->softirqs_enabled = 1; 4475 trace->softirq_enable_ip = ip; 4476 trace->softirq_enable_event = ++trace->irq_events; 4477 debug_atomic_inc(softirqs_on_events); 4478 /* 4479 * We are going to turn softirqs on, so set the 4480 * usage bit for all held locks, if hardirqs are 4481 * enabled too: 4482 */ 4483 if (lockdep_hardirqs_enabled()) 4484 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4485 lockdep_recursion_finish(); 4486 } 4487 4488 /* 4489 * Softirqs were disabled: 4490 */ 4491 void lockdep_softirqs_off(unsigned long ip) 4492 { 4493 if (unlikely(!lockdep_enabled())) 4494 return; 4495 4496 /* 4497 * We fancy IRQs being disabled here, see softirq.c 4498 */ 4499 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4500 return; 4501 4502 if (current->softirqs_enabled) { 4503 struct irqtrace_events *trace = ¤t->irqtrace; 4504 4505 /* 4506 * We have done an ON -> OFF transition: 4507 */ 4508 current->softirqs_enabled = 0; 4509 trace->softirq_disable_ip = ip; 4510 trace->softirq_disable_event = ++trace->irq_events; 4511 debug_atomic_inc(softirqs_off_events); 4512 /* 4513 * Whoops, we wanted softirqs off, so why aren't they? 4514 */ 4515 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4516 } else 4517 debug_atomic_inc(redundant_softirqs_off); 4518 } 4519 4520 static int 4521 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4522 { 4523 if (!check) 4524 goto lock_used; 4525 4526 /* 4527 * If non-trylock use in a hardirq or softirq context, then 4528 * mark the lock as used in these contexts: 4529 */ 4530 if (!hlock->trylock) { 4531 if (hlock->read) { 4532 if (lockdep_hardirq_context()) 4533 if (!mark_lock(curr, hlock, 4534 LOCK_USED_IN_HARDIRQ_READ)) 4535 return 0; 4536 if (curr->softirq_context) 4537 if (!mark_lock(curr, hlock, 4538 LOCK_USED_IN_SOFTIRQ_READ)) 4539 return 0; 4540 } else { 4541 if (lockdep_hardirq_context()) 4542 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4543 return 0; 4544 if (curr->softirq_context) 4545 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4546 return 0; 4547 } 4548 } 4549 4550 /* 4551 * For lock_sync(), don't mark the ENABLED usage, since lock_sync() 4552 * creates no critical section and no extra dependency can be introduced 4553 * by interrupts 4554 */ 4555 if (!hlock->hardirqs_off && !hlock->sync) { 4556 if (hlock->read) { 4557 if (!mark_lock(curr, hlock, 4558 LOCK_ENABLED_HARDIRQ_READ)) 4559 return 0; 4560 if (curr->softirqs_enabled) 4561 if (!mark_lock(curr, hlock, 4562 LOCK_ENABLED_SOFTIRQ_READ)) 4563 return 0; 4564 } else { 4565 if (!mark_lock(curr, hlock, 4566 LOCK_ENABLED_HARDIRQ)) 4567 return 0; 4568 if (curr->softirqs_enabled) 4569 if (!mark_lock(curr, hlock, 4570 LOCK_ENABLED_SOFTIRQ)) 4571 return 0; 4572 } 4573 } 4574 4575 lock_used: 4576 /* mark it as used: */ 4577 if (!mark_lock(curr, hlock, LOCK_USED)) 4578 return 0; 4579 4580 return 1; 4581 } 4582 4583 static inline unsigned int task_irq_context(struct task_struct *task) 4584 { 4585 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4586 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4587 } 4588 4589 static int separate_irq_context(struct task_struct *curr, 4590 struct held_lock *hlock) 4591 { 4592 unsigned int depth = curr->lockdep_depth; 4593 4594 /* 4595 * Keep track of points where we cross into an interrupt context: 4596 */ 4597 if (depth) { 4598 struct held_lock *prev_hlock; 4599 4600 prev_hlock = curr->held_locks + depth-1; 4601 /* 4602 * If we cross into another context, reset the 4603 * hash key (this also prevents the checking and the 4604 * adding of the dependency to 'prev'): 4605 */ 4606 if (prev_hlock->irq_context != hlock->irq_context) 4607 return 1; 4608 } 4609 return 0; 4610 } 4611 4612 /* 4613 * Mark a lock with a usage bit, and validate the state transition: 4614 */ 4615 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4616 enum lock_usage_bit new_bit) 4617 { 4618 unsigned int new_mask, ret = 1; 4619 4620 if (new_bit >= LOCK_USAGE_STATES) { 4621 DEBUG_LOCKS_WARN_ON(1); 4622 return 0; 4623 } 4624 4625 if (new_bit == LOCK_USED && this->read) 4626 new_bit = LOCK_USED_READ; 4627 4628 new_mask = 1 << new_bit; 4629 4630 /* 4631 * If already set then do not dirty the cacheline, 4632 * nor do any checks: 4633 */ 4634 if (likely(hlock_class(this)->usage_mask & new_mask)) 4635 return 1; 4636 4637 if (!graph_lock()) 4638 return 0; 4639 /* 4640 * Make sure we didn't race: 4641 */ 4642 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4643 goto unlock; 4644 4645 if (!hlock_class(this)->usage_mask) 4646 debug_atomic_dec(nr_unused_locks); 4647 4648 hlock_class(this)->usage_mask |= new_mask; 4649 4650 if (new_bit < LOCK_TRACE_STATES) { 4651 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4652 return 0; 4653 } 4654 4655 if (new_bit < LOCK_USED) { 4656 ret = mark_lock_irq(curr, this, new_bit); 4657 if (!ret) 4658 return 0; 4659 } 4660 4661 unlock: 4662 graph_unlock(); 4663 4664 /* 4665 * We must printk outside of the graph_lock: 4666 */ 4667 if (ret == 2) { 4668 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4669 print_lock(this); 4670 print_irqtrace_events(curr); 4671 dump_stack(); 4672 } 4673 4674 return ret; 4675 } 4676 4677 static inline short task_wait_context(struct task_struct *curr) 4678 { 4679 /* 4680 * Set appropriate wait type for the context; for IRQs we have to take 4681 * into account force_irqthread as that is implied by PREEMPT_RT. 4682 */ 4683 if (lockdep_hardirq_context()) { 4684 /* 4685 * Check if force_irqthreads will run us threaded. 4686 */ 4687 if (curr->hardirq_threaded || curr->irq_config) 4688 return LD_WAIT_CONFIG; 4689 4690 return LD_WAIT_SPIN; 4691 } else if (curr->softirq_context) { 4692 /* 4693 * Softirqs are always threaded. 4694 */ 4695 return LD_WAIT_CONFIG; 4696 } 4697 4698 return LD_WAIT_MAX; 4699 } 4700 4701 static int 4702 print_lock_invalid_wait_context(struct task_struct *curr, 4703 struct held_lock *hlock) 4704 { 4705 short curr_inner; 4706 4707 if (!debug_locks_off()) 4708 return 0; 4709 if (debug_locks_silent) 4710 return 0; 4711 4712 pr_warn("\n"); 4713 pr_warn("=============================\n"); 4714 pr_warn("[ BUG: Invalid wait context ]\n"); 4715 print_kernel_ident(); 4716 pr_warn("-----------------------------\n"); 4717 4718 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4719 print_lock(hlock); 4720 4721 pr_warn("other info that might help us debug this:\n"); 4722 4723 curr_inner = task_wait_context(curr); 4724 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4725 4726 lockdep_print_held_locks(curr); 4727 4728 pr_warn("stack backtrace:\n"); 4729 dump_stack(); 4730 4731 return 0; 4732 } 4733 4734 /* 4735 * Verify the wait_type context. 4736 * 4737 * This check validates we take locks in the right wait-type order; that is it 4738 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4739 * acquire spinlocks inside raw_spinlocks and the sort. 4740 * 4741 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4742 * can be taken from (pretty much) any context but also has constraints. 4743 * However when taken in a stricter environment the RCU lock does not loosen 4744 * the constraints. 4745 * 4746 * Therefore we must look for the strictest environment in the lock stack and 4747 * compare that to the lock we're trying to acquire. 4748 */ 4749 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4750 { 4751 u8 next_inner = hlock_class(next)->wait_type_inner; 4752 u8 next_outer = hlock_class(next)->wait_type_outer; 4753 u8 curr_inner; 4754 int depth; 4755 4756 if (!next_inner || next->trylock) 4757 return 0; 4758 4759 if (!next_outer) 4760 next_outer = next_inner; 4761 4762 /* 4763 * Find start of current irq_context.. 4764 */ 4765 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4766 struct held_lock *prev = curr->held_locks + depth; 4767 if (prev->irq_context != next->irq_context) 4768 break; 4769 } 4770 depth++; 4771 4772 curr_inner = task_wait_context(curr); 4773 4774 for (; depth < curr->lockdep_depth; depth++) { 4775 struct held_lock *prev = curr->held_locks + depth; 4776 struct lock_class *class = hlock_class(prev); 4777 u8 prev_inner = class->wait_type_inner; 4778 4779 if (prev_inner) { 4780 /* 4781 * We can have a bigger inner than a previous one 4782 * when outer is smaller than inner, as with RCU. 4783 * 4784 * Also due to trylocks. 4785 */ 4786 curr_inner = min(curr_inner, prev_inner); 4787 4788 /* 4789 * Allow override for annotations -- this is typically 4790 * only valid/needed for code that only exists when 4791 * CONFIG_PREEMPT_RT=n. 4792 */ 4793 if (unlikely(class->lock_type == LD_LOCK_WAIT_OVERRIDE)) 4794 curr_inner = prev_inner; 4795 } 4796 } 4797 4798 if (next_outer > curr_inner) 4799 return print_lock_invalid_wait_context(curr, next); 4800 4801 return 0; 4802 } 4803 4804 #else /* CONFIG_PROVE_LOCKING */ 4805 4806 static inline int 4807 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4808 { 4809 return 1; 4810 } 4811 4812 static inline unsigned int task_irq_context(struct task_struct *task) 4813 { 4814 return 0; 4815 } 4816 4817 static inline int separate_irq_context(struct task_struct *curr, 4818 struct held_lock *hlock) 4819 { 4820 return 0; 4821 } 4822 4823 static inline int check_wait_context(struct task_struct *curr, 4824 struct held_lock *next) 4825 { 4826 return 0; 4827 } 4828 4829 #endif /* CONFIG_PROVE_LOCKING */ 4830 4831 /* 4832 * Initialize a lock instance's lock-class mapping info: 4833 */ 4834 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4835 struct lock_class_key *key, int subclass, 4836 u8 inner, u8 outer, u8 lock_type) 4837 { 4838 int i; 4839 4840 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4841 lock->class_cache[i] = NULL; 4842 4843 #ifdef CONFIG_LOCK_STAT 4844 lock->cpu = raw_smp_processor_id(); 4845 #endif 4846 4847 /* 4848 * Can't be having no nameless bastards around this place! 4849 */ 4850 if (DEBUG_LOCKS_WARN_ON(!name)) { 4851 lock->name = "NULL"; 4852 return; 4853 } 4854 4855 lock->name = name; 4856 4857 lock->wait_type_outer = outer; 4858 lock->wait_type_inner = inner; 4859 lock->lock_type = lock_type; 4860 4861 /* 4862 * No key, no joy, we need to hash something. 4863 */ 4864 if (DEBUG_LOCKS_WARN_ON(!key)) 4865 return; 4866 /* 4867 * Sanity check, the lock-class key must either have been allocated 4868 * statically or must have been registered as a dynamic key. 4869 */ 4870 if (!static_obj(key) && !is_dynamic_key(key)) { 4871 if (debug_locks) 4872 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4873 DEBUG_LOCKS_WARN_ON(1); 4874 return; 4875 } 4876 lock->key = key; 4877 4878 if (unlikely(!debug_locks)) 4879 return; 4880 4881 if (subclass) { 4882 unsigned long flags; 4883 4884 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4885 return; 4886 4887 raw_local_irq_save(flags); 4888 lockdep_recursion_inc(); 4889 register_lock_class(lock, subclass, 1); 4890 lockdep_recursion_finish(); 4891 raw_local_irq_restore(flags); 4892 } 4893 } 4894 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4895 4896 struct lock_class_key __lockdep_no_validate__; 4897 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4898 4899 static void 4900 print_lock_nested_lock_not_held(struct task_struct *curr, 4901 struct held_lock *hlock) 4902 { 4903 if (!debug_locks_off()) 4904 return; 4905 if (debug_locks_silent) 4906 return; 4907 4908 pr_warn("\n"); 4909 pr_warn("==================================\n"); 4910 pr_warn("WARNING: Nested lock was not taken\n"); 4911 print_kernel_ident(); 4912 pr_warn("----------------------------------\n"); 4913 4914 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4915 print_lock(hlock); 4916 4917 pr_warn("\nbut this task is not holding:\n"); 4918 pr_warn("%s\n", hlock->nest_lock->name); 4919 4920 pr_warn("\nstack backtrace:\n"); 4921 dump_stack(); 4922 4923 pr_warn("\nother info that might help us debug this:\n"); 4924 lockdep_print_held_locks(curr); 4925 4926 pr_warn("\nstack backtrace:\n"); 4927 dump_stack(); 4928 } 4929 4930 static int __lock_is_held(const struct lockdep_map *lock, int read); 4931 4932 /* 4933 * This gets called for every mutex_lock*()/spin_lock*() operation. 4934 * We maintain the dependency maps and validate the locking attempt: 4935 * 4936 * The callers must make sure that IRQs are disabled before calling it, 4937 * otherwise we could get an interrupt which would want to take locks, 4938 * which would end up in lockdep again. 4939 */ 4940 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4941 int trylock, int read, int check, int hardirqs_off, 4942 struct lockdep_map *nest_lock, unsigned long ip, 4943 int references, int pin_count, int sync) 4944 { 4945 struct task_struct *curr = current; 4946 struct lock_class *class = NULL; 4947 struct held_lock *hlock; 4948 unsigned int depth; 4949 int chain_head = 0; 4950 int class_idx; 4951 u64 chain_key; 4952 4953 if (unlikely(!debug_locks)) 4954 return 0; 4955 4956 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4957 check = 0; 4958 4959 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4960 class = lock->class_cache[subclass]; 4961 /* 4962 * Not cached? 4963 */ 4964 if (unlikely(!class)) { 4965 class = register_lock_class(lock, subclass, 0); 4966 if (!class) 4967 return 0; 4968 } 4969 4970 debug_class_ops_inc(class); 4971 4972 if (very_verbose(class)) { 4973 printk("\nacquire class [%px] %s", class->key, class->name); 4974 if (class->name_version > 1) 4975 printk(KERN_CONT "#%d", class->name_version); 4976 printk(KERN_CONT "\n"); 4977 dump_stack(); 4978 } 4979 4980 /* 4981 * Add the lock to the list of currently held locks. 4982 * (we dont increase the depth just yet, up until the 4983 * dependency checks are done) 4984 */ 4985 depth = curr->lockdep_depth; 4986 /* 4987 * Ran out of static storage for our per-task lock stack again have we? 4988 */ 4989 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4990 return 0; 4991 4992 class_idx = class - lock_classes; 4993 4994 if (depth && !sync) { 4995 /* we're holding locks and the new held lock is not a sync */ 4996 hlock = curr->held_locks + depth - 1; 4997 if (hlock->class_idx == class_idx && nest_lock) { 4998 if (!references) 4999 references++; 5000 5001 if (!hlock->references) 5002 hlock->references++; 5003 5004 hlock->references += references; 5005 5006 /* Overflow */ 5007 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 5008 return 0; 5009 5010 return 2; 5011 } 5012 } 5013 5014 hlock = curr->held_locks + depth; 5015 /* 5016 * Plain impossible, we just registered it and checked it weren't no 5017 * NULL like.. I bet this mushroom I ate was good! 5018 */ 5019 if (DEBUG_LOCKS_WARN_ON(!class)) 5020 return 0; 5021 hlock->class_idx = class_idx; 5022 hlock->acquire_ip = ip; 5023 hlock->instance = lock; 5024 hlock->nest_lock = nest_lock; 5025 hlock->irq_context = task_irq_context(curr); 5026 hlock->trylock = trylock; 5027 hlock->read = read; 5028 hlock->check = check; 5029 hlock->sync = !!sync; 5030 hlock->hardirqs_off = !!hardirqs_off; 5031 hlock->references = references; 5032 #ifdef CONFIG_LOCK_STAT 5033 hlock->waittime_stamp = 0; 5034 hlock->holdtime_stamp = lockstat_clock(); 5035 #endif 5036 hlock->pin_count = pin_count; 5037 5038 if (check_wait_context(curr, hlock)) 5039 return 0; 5040 5041 /* Initialize the lock usage bit */ 5042 if (!mark_usage(curr, hlock, check)) 5043 return 0; 5044 5045 /* 5046 * Calculate the chain hash: it's the combined hash of all the 5047 * lock keys along the dependency chain. We save the hash value 5048 * at every step so that we can get the current hash easily 5049 * after unlock. The chain hash is then used to cache dependency 5050 * results. 5051 * 5052 * The 'key ID' is what is the most compact key value to drive 5053 * the hash, not class->key. 5054 */ 5055 /* 5056 * Whoops, we did it again.. class_idx is invalid. 5057 */ 5058 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5059 return 0; 5060 5061 chain_key = curr->curr_chain_key; 5062 if (!depth) { 5063 /* 5064 * How can we have a chain hash when we ain't got no keys?! 5065 */ 5066 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5067 return 0; 5068 chain_head = 1; 5069 } 5070 5071 hlock->prev_chain_key = chain_key; 5072 if (separate_irq_context(curr, hlock)) { 5073 chain_key = INITIAL_CHAIN_KEY; 5074 chain_head = 1; 5075 } 5076 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5077 5078 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5079 print_lock_nested_lock_not_held(curr, hlock); 5080 return 0; 5081 } 5082 5083 if (!debug_locks_silent) { 5084 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5085 WARN_ON_ONCE(!hlock_class(hlock)->key); 5086 } 5087 5088 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5089 return 0; 5090 5091 /* For lock_sync(), we are done here since no actual critical section */ 5092 if (hlock->sync) 5093 return 1; 5094 5095 curr->curr_chain_key = chain_key; 5096 curr->lockdep_depth++; 5097 check_chain_key(curr); 5098 #ifdef CONFIG_DEBUG_LOCKDEP 5099 if (unlikely(!debug_locks)) 5100 return 0; 5101 #endif 5102 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5103 debug_locks_off(); 5104 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5105 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5106 curr->lockdep_depth, MAX_LOCK_DEPTH); 5107 5108 lockdep_print_held_locks(current); 5109 debug_show_all_locks(); 5110 dump_stack(); 5111 5112 return 0; 5113 } 5114 5115 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5116 max_lockdep_depth = curr->lockdep_depth; 5117 5118 return 1; 5119 } 5120 5121 static void print_unlock_imbalance_bug(struct task_struct *curr, 5122 struct lockdep_map *lock, 5123 unsigned long ip) 5124 { 5125 if (!debug_locks_off()) 5126 return; 5127 if (debug_locks_silent) 5128 return; 5129 5130 pr_warn("\n"); 5131 pr_warn("=====================================\n"); 5132 pr_warn("WARNING: bad unlock balance detected!\n"); 5133 print_kernel_ident(); 5134 pr_warn("-------------------------------------\n"); 5135 pr_warn("%s/%d is trying to release lock (", 5136 curr->comm, task_pid_nr(curr)); 5137 print_lockdep_cache(lock); 5138 pr_cont(") at:\n"); 5139 print_ip_sym(KERN_WARNING, ip); 5140 pr_warn("but there are no more locks to release!\n"); 5141 pr_warn("\nother info that might help us debug this:\n"); 5142 lockdep_print_held_locks(curr); 5143 5144 pr_warn("\nstack backtrace:\n"); 5145 dump_stack(); 5146 } 5147 5148 static noinstr int match_held_lock(const struct held_lock *hlock, 5149 const struct lockdep_map *lock) 5150 { 5151 if (hlock->instance == lock) 5152 return 1; 5153 5154 if (hlock->references) { 5155 const struct lock_class *class = lock->class_cache[0]; 5156 5157 if (!class) 5158 class = look_up_lock_class(lock, 0); 5159 5160 /* 5161 * If look_up_lock_class() failed to find a class, we're trying 5162 * to test if we hold a lock that has never yet been acquired. 5163 * Clearly if the lock hasn't been acquired _ever_, we're not 5164 * holding it either, so report failure. 5165 */ 5166 if (!class) 5167 return 0; 5168 5169 /* 5170 * References, but not a lock we're actually ref-counting? 5171 * State got messed up, follow the sites that change ->references 5172 * and try to make sense of it. 5173 */ 5174 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5175 return 0; 5176 5177 if (hlock->class_idx == class - lock_classes) 5178 return 1; 5179 } 5180 5181 return 0; 5182 } 5183 5184 /* @depth must not be zero */ 5185 static struct held_lock *find_held_lock(struct task_struct *curr, 5186 struct lockdep_map *lock, 5187 unsigned int depth, int *idx) 5188 { 5189 struct held_lock *ret, *hlock, *prev_hlock; 5190 int i; 5191 5192 i = depth - 1; 5193 hlock = curr->held_locks + i; 5194 ret = hlock; 5195 if (match_held_lock(hlock, lock)) 5196 goto out; 5197 5198 ret = NULL; 5199 for (i--, prev_hlock = hlock--; 5200 i >= 0; 5201 i--, prev_hlock = hlock--) { 5202 /* 5203 * We must not cross into another context: 5204 */ 5205 if (prev_hlock->irq_context != hlock->irq_context) { 5206 ret = NULL; 5207 break; 5208 } 5209 if (match_held_lock(hlock, lock)) { 5210 ret = hlock; 5211 break; 5212 } 5213 } 5214 5215 out: 5216 *idx = i; 5217 return ret; 5218 } 5219 5220 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5221 int idx, unsigned int *merged) 5222 { 5223 struct held_lock *hlock; 5224 int first_idx = idx; 5225 5226 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5227 return 0; 5228 5229 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5230 switch (__lock_acquire(hlock->instance, 5231 hlock_class(hlock)->subclass, 5232 hlock->trylock, 5233 hlock->read, hlock->check, 5234 hlock->hardirqs_off, 5235 hlock->nest_lock, hlock->acquire_ip, 5236 hlock->references, hlock->pin_count, 0)) { 5237 case 0: 5238 return 1; 5239 case 1: 5240 break; 5241 case 2: 5242 *merged += (idx == first_idx); 5243 break; 5244 default: 5245 WARN_ON(1); 5246 return 0; 5247 } 5248 } 5249 return 0; 5250 } 5251 5252 static int 5253 __lock_set_class(struct lockdep_map *lock, const char *name, 5254 struct lock_class_key *key, unsigned int subclass, 5255 unsigned long ip) 5256 { 5257 struct task_struct *curr = current; 5258 unsigned int depth, merged = 0; 5259 struct held_lock *hlock; 5260 struct lock_class *class; 5261 int i; 5262 5263 if (unlikely(!debug_locks)) 5264 return 0; 5265 5266 depth = curr->lockdep_depth; 5267 /* 5268 * This function is about (re)setting the class of a held lock, 5269 * yet we're not actually holding any locks. Naughty user! 5270 */ 5271 if (DEBUG_LOCKS_WARN_ON(!depth)) 5272 return 0; 5273 5274 hlock = find_held_lock(curr, lock, depth, &i); 5275 if (!hlock) { 5276 print_unlock_imbalance_bug(curr, lock, ip); 5277 return 0; 5278 } 5279 5280 lockdep_init_map_type(lock, name, key, 0, 5281 lock->wait_type_inner, 5282 lock->wait_type_outer, 5283 lock->lock_type); 5284 class = register_lock_class(lock, subclass, 0); 5285 hlock->class_idx = class - lock_classes; 5286 5287 curr->lockdep_depth = i; 5288 curr->curr_chain_key = hlock->prev_chain_key; 5289 5290 if (reacquire_held_locks(curr, depth, i, &merged)) 5291 return 0; 5292 5293 /* 5294 * I took it apart and put it back together again, except now I have 5295 * these 'spare' parts.. where shall I put them. 5296 */ 5297 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5298 return 0; 5299 return 1; 5300 } 5301 5302 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5303 { 5304 struct task_struct *curr = current; 5305 unsigned int depth, merged = 0; 5306 struct held_lock *hlock; 5307 int i; 5308 5309 if (unlikely(!debug_locks)) 5310 return 0; 5311 5312 depth = curr->lockdep_depth; 5313 /* 5314 * This function is about (re)setting the class of a held lock, 5315 * yet we're not actually holding any locks. Naughty user! 5316 */ 5317 if (DEBUG_LOCKS_WARN_ON(!depth)) 5318 return 0; 5319 5320 hlock = find_held_lock(curr, lock, depth, &i); 5321 if (!hlock) { 5322 print_unlock_imbalance_bug(curr, lock, ip); 5323 return 0; 5324 } 5325 5326 curr->lockdep_depth = i; 5327 curr->curr_chain_key = hlock->prev_chain_key; 5328 5329 WARN(hlock->read, "downgrading a read lock"); 5330 hlock->read = 1; 5331 hlock->acquire_ip = ip; 5332 5333 if (reacquire_held_locks(curr, depth, i, &merged)) 5334 return 0; 5335 5336 /* Merging can't happen with unchanged classes.. */ 5337 if (DEBUG_LOCKS_WARN_ON(merged)) 5338 return 0; 5339 5340 /* 5341 * I took it apart and put it back together again, except now I have 5342 * these 'spare' parts.. where shall I put them. 5343 */ 5344 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5345 return 0; 5346 5347 return 1; 5348 } 5349 5350 /* 5351 * Remove the lock from the list of currently held locks - this gets 5352 * called on mutex_unlock()/spin_unlock*() (or on a failed 5353 * mutex_lock_interruptible()). 5354 */ 5355 static int 5356 __lock_release(struct lockdep_map *lock, unsigned long ip) 5357 { 5358 struct task_struct *curr = current; 5359 unsigned int depth, merged = 1; 5360 struct held_lock *hlock; 5361 int i; 5362 5363 if (unlikely(!debug_locks)) 5364 return 0; 5365 5366 depth = curr->lockdep_depth; 5367 /* 5368 * So we're all set to release this lock.. wait what lock? We don't 5369 * own any locks, you've been drinking again? 5370 */ 5371 if (depth <= 0) { 5372 print_unlock_imbalance_bug(curr, lock, ip); 5373 return 0; 5374 } 5375 5376 /* 5377 * Check whether the lock exists in the current stack 5378 * of held locks: 5379 */ 5380 hlock = find_held_lock(curr, lock, depth, &i); 5381 if (!hlock) { 5382 print_unlock_imbalance_bug(curr, lock, ip); 5383 return 0; 5384 } 5385 5386 if (hlock->instance == lock) 5387 lock_release_holdtime(hlock); 5388 5389 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5390 5391 if (hlock->references) { 5392 hlock->references--; 5393 if (hlock->references) { 5394 /* 5395 * We had, and after removing one, still have 5396 * references, the current lock stack is still 5397 * valid. We're done! 5398 */ 5399 return 1; 5400 } 5401 } 5402 5403 /* 5404 * We have the right lock to unlock, 'hlock' points to it. 5405 * Now we remove it from the stack, and add back the other 5406 * entries (if any), recalculating the hash along the way: 5407 */ 5408 5409 curr->lockdep_depth = i; 5410 curr->curr_chain_key = hlock->prev_chain_key; 5411 5412 /* 5413 * The most likely case is when the unlock is on the innermost 5414 * lock. In this case, we are done! 5415 */ 5416 if (i == depth-1) 5417 return 1; 5418 5419 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5420 return 0; 5421 5422 /* 5423 * We had N bottles of beer on the wall, we drank one, but now 5424 * there's not N-1 bottles of beer left on the wall... 5425 * Pouring two of the bottles together is acceptable. 5426 */ 5427 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5428 5429 /* 5430 * Since reacquire_held_locks() would have called check_chain_key() 5431 * indirectly via __lock_acquire(), we don't need to do it again 5432 * on return. 5433 */ 5434 return 0; 5435 } 5436 5437 static __always_inline 5438 int __lock_is_held(const struct lockdep_map *lock, int read) 5439 { 5440 struct task_struct *curr = current; 5441 int i; 5442 5443 for (i = 0; i < curr->lockdep_depth; i++) { 5444 struct held_lock *hlock = curr->held_locks + i; 5445 5446 if (match_held_lock(hlock, lock)) { 5447 if (read == -1 || !!hlock->read == read) 5448 return LOCK_STATE_HELD; 5449 5450 return LOCK_STATE_NOT_HELD; 5451 } 5452 } 5453 5454 return LOCK_STATE_NOT_HELD; 5455 } 5456 5457 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5458 { 5459 struct pin_cookie cookie = NIL_COOKIE; 5460 struct task_struct *curr = current; 5461 int i; 5462 5463 if (unlikely(!debug_locks)) 5464 return cookie; 5465 5466 for (i = 0; i < curr->lockdep_depth; i++) { 5467 struct held_lock *hlock = curr->held_locks + i; 5468 5469 if (match_held_lock(hlock, lock)) { 5470 /* 5471 * Grab 16bits of randomness; this is sufficient to not 5472 * be guessable and still allows some pin nesting in 5473 * our u32 pin_count. 5474 */ 5475 cookie.val = 1 + (sched_clock() & 0xffff); 5476 hlock->pin_count += cookie.val; 5477 return cookie; 5478 } 5479 } 5480 5481 WARN(1, "pinning an unheld lock\n"); 5482 return cookie; 5483 } 5484 5485 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5486 { 5487 struct task_struct *curr = current; 5488 int i; 5489 5490 if (unlikely(!debug_locks)) 5491 return; 5492 5493 for (i = 0; i < curr->lockdep_depth; i++) { 5494 struct held_lock *hlock = curr->held_locks + i; 5495 5496 if (match_held_lock(hlock, lock)) { 5497 hlock->pin_count += cookie.val; 5498 return; 5499 } 5500 } 5501 5502 WARN(1, "pinning an unheld lock\n"); 5503 } 5504 5505 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5506 { 5507 struct task_struct *curr = current; 5508 int i; 5509 5510 if (unlikely(!debug_locks)) 5511 return; 5512 5513 for (i = 0; i < curr->lockdep_depth; i++) { 5514 struct held_lock *hlock = curr->held_locks + i; 5515 5516 if (match_held_lock(hlock, lock)) { 5517 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5518 return; 5519 5520 hlock->pin_count -= cookie.val; 5521 5522 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5523 hlock->pin_count = 0; 5524 5525 return; 5526 } 5527 } 5528 5529 WARN(1, "unpinning an unheld lock\n"); 5530 } 5531 5532 /* 5533 * Check whether we follow the irq-flags state precisely: 5534 */ 5535 static noinstr void check_flags(unsigned long flags) 5536 { 5537 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5538 if (!debug_locks) 5539 return; 5540 5541 /* Get the warning out.. */ 5542 instrumentation_begin(); 5543 5544 if (irqs_disabled_flags(flags)) { 5545 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5546 printk("possible reason: unannotated irqs-off.\n"); 5547 } 5548 } else { 5549 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5550 printk("possible reason: unannotated irqs-on.\n"); 5551 } 5552 } 5553 5554 #ifndef CONFIG_PREEMPT_RT 5555 /* 5556 * We dont accurately track softirq state in e.g. 5557 * hardirq contexts (such as on 4KSTACKS), so only 5558 * check if not in hardirq contexts: 5559 */ 5560 if (!hardirq_count()) { 5561 if (softirq_count()) { 5562 /* like the above, but with softirqs */ 5563 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5564 } else { 5565 /* lick the above, does it taste good? */ 5566 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5567 } 5568 } 5569 #endif 5570 5571 if (!debug_locks) 5572 print_irqtrace_events(current); 5573 5574 instrumentation_end(); 5575 #endif 5576 } 5577 5578 void lock_set_class(struct lockdep_map *lock, const char *name, 5579 struct lock_class_key *key, unsigned int subclass, 5580 unsigned long ip) 5581 { 5582 unsigned long flags; 5583 5584 if (unlikely(!lockdep_enabled())) 5585 return; 5586 5587 raw_local_irq_save(flags); 5588 lockdep_recursion_inc(); 5589 check_flags(flags); 5590 if (__lock_set_class(lock, name, key, subclass, ip)) 5591 check_chain_key(current); 5592 lockdep_recursion_finish(); 5593 raw_local_irq_restore(flags); 5594 } 5595 EXPORT_SYMBOL_GPL(lock_set_class); 5596 5597 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5598 { 5599 unsigned long flags; 5600 5601 if (unlikely(!lockdep_enabled())) 5602 return; 5603 5604 raw_local_irq_save(flags); 5605 lockdep_recursion_inc(); 5606 check_flags(flags); 5607 if (__lock_downgrade(lock, ip)) 5608 check_chain_key(current); 5609 lockdep_recursion_finish(); 5610 raw_local_irq_restore(flags); 5611 } 5612 EXPORT_SYMBOL_GPL(lock_downgrade); 5613 5614 /* NMI context !!! */ 5615 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5616 { 5617 #ifdef CONFIG_PROVE_LOCKING 5618 struct lock_class *class = look_up_lock_class(lock, subclass); 5619 unsigned long mask = LOCKF_USED; 5620 5621 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5622 if (!class) 5623 return; 5624 5625 /* 5626 * READ locks only conflict with USED, such that if we only ever use 5627 * READ locks, there is no deadlock possible -- RCU. 5628 */ 5629 if (!hlock->read) 5630 mask |= LOCKF_USED_READ; 5631 5632 if (!(class->usage_mask & mask)) 5633 return; 5634 5635 hlock->class_idx = class - lock_classes; 5636 5637 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5638 #endif 5639 } 5640 5641 static bool lockdep_nmi(void) 5642 { 5643 if (raw_cpu_read(lockdep_recursion)) 5644 return false; 5645 5646 if (!in_nmi()) 5647 return false; 5648 5649 return true; 5650 } 5651 5652 /* 5653 * read_lock() is recursive if: 5654 * 1. We force lockdep think this way in selftests or 5655 * 2. The implementation is not queued read/write lock or 5656 * 3. The locker is at an in_interrupt() context. 5657 */ 5658 bool read_lock_is_recursive(void) 5659 { 5660 return force_read_lock_recursive || 5661 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5662 in_interrupt(); 5663 } 5664 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5665 5666 /* 5667 * We are not always called with irqs disabled - do that here, 5668 * and also avoid lockdep recursion: 5669 */ 5670 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5671 int trylock, int read, int check, 5672 struct lockdep_map *nest_lock, unsigned long ip) 5673 { 5674 unsigned long flags; 5675 5676 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5677 5678 if (!debug_locks) 5679 return; 5680 5681 if (unlikely(!lockdep_enabled())) { 5682 /* XXX allow trylock from NMI ?!? */ 5683 if (lockdep_nmi() && !trylock) { 5684 struct held_lock hlock; 5685 5686 hlock.acquire_ip = ip; 5687 hlock.instance = lock; 5688 hlock.nest_lock = nest_lock; 5689 hlock.irq_context = 2; // XXX 5690 hlock.trylock = trylock; 5691 hlock.read = read; 5692 hlock.check = check; 5693 hlock.hardirqs_off = true; 5694 hlock.references = 0; 5695 5696 verify_lock_unused(lock, &hlock, subclass); 5697 } 5698 return; 5699 } 5700 5701 raw_local_irq_save(flags); 5702 check_flags(flags); 5703 5704 lockdep_recursion_inc(); 5705 __lock_acquire(lock, subclass, trylock, read, check, 5706 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0); 5707 lockdep_recursion_finish(); 5708 raw_local_irq_restore(flags); 5709 } 5710 EXPORT_SYMBOL_GPL(lock_acquire); 5711 5712 void lock_release(struct lockdep_map *lock, unsigned long ip) 5713 { 5714 unsigned long flags; 5715 5716 trace_lock_release(lock, ip); 5717 5718 if (unlikely(!lockdep_enabled())) 5719 return; 5720 5721 raw_local_irq_save(flags); 5722 check_flags(flags); 5723 5724 lockdep_recursion_inc(); 5725 if (__lock_release(lock, ip)) 5726 check_chain_key(current); 5727 lockdep_recursion_finish(); 5728 raw_local_irq_restore(flags); 5729 } 5730 EXPORT_SYMBOL_GPL(lock_release); 5731 5732 /* 5733 * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API. 5734 * 5735 * No actual critical section is created by the APIs annotated with this: these 5736 * APIs are used to wait for one or multiple critical sections (on other CPUs 5737 * or threads), and it means that calling these APIs inside these critical 5738 * sections is potential deadlock. 5739 */ 5740 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read, 5741 int check, struct lockdep_map *nest_lock, unsigned long ip) 5742 { 5743 unsigned long flags; 5744 5745 if (unlikely(!lockdep_enabled())) 5746 return; 5747 5748 raw_local_irq_save(flags); 5749 check_flags(flags); 5750 5751 lockdep_recursion_inc(); 5752 __lock_acquire(lock, subclass, 0, read, check, 5753 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1); 5754 check_chain_key(current); 5755 lockdep_recursion_finish(); 5756 raw_local_irq_restore(flags); 5757 } 5758 EXPORT_SYMBOL_GPL(lock_sync); 5759 5760 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5761 { 5762 unsigned long flags; 5763 int ret = LOCK_STATE_NOT_HELD; 5764 5765 /* 5766 * Avoid false negative lockdep_assert_held() and 5767 * lockdep_assert_not_held(). 5768 */ 5769 if (unlikely(!lockdep_enabled())) 5770 return LOCK_STATE_UNKNOWN; 5771 5772 raw_local_irq_save(flags); 5773 check_flags(flags); 5774 5775 lockdep_recursion_inc(); 5776 ret = __lock_is_held(lock, read); 5777 lockdep_recursion_finish(); 5778 raw_local_irq_restore(flags); 5779 5780 return ret; 5781 } 5782 EXPORT_SYMBOL_GPL(lock_is_held_type); 5783 NOKPROBE_SYMBOL(lock_is_held_type); 5784 5785 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5786 { 5787 struct pin_cookie cookie = NIL_COOKIE; 5788 unsigned long flags; 5789 5790 if (unlikely(!lockdep_enabled())) 5791 return cookie; 5792 5793 raw_local_irq_save(flags); 5794 check_flags(flags); 5795 5796 lockdep_recursion_inc(); 5797 cookie = __lock_pin_lock(lock); 5798 lockdep_recursion_finish(); 5799 raw_local_irq_restore(flags); 5800 5801 return cookie; 5802 } 5803 EXPORT_SYMBOL_GPL(lock_pin_lock); 5804 5805 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5806 { 5807 unsigned long flags; 5808 5809 if (unlikely(!lockdep_enabled())) 5810 return; 5811 5812 raw_local_irq_save(flags); 5813 check_flags(flags); 5814 5815 lockdep_recursion_inc(); 5816 __lock_repin_lock(lock, cookie); 5817 lockdep_recursion_finish(); 5818 raw_local_irq_restore(flags); 5819 } 5820 EXPORT_SYMBOL_GPL(lock_repin_lock); 5821 5822 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5823 { 5824 unsigned long flags; 5825 5826 if (unlikely(!lockdep_enabled())) 5827 return; 5828 5829 raw_local_irq_save(flags); 5830 check_flags(flags); 5831 5832 lockdep_recursion_inc(); 5833 __lock_unpin_lock(lock, cookie); 5834 lockdep_recursion_finish(); 5835 raw_local_irq_restore(flags); 5836 } 5837 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5838 5839 #ifdef CONFIG_LOCK_STAT 5840 static void print_lock_contention_bug(struct task_struct *curr, 5841 struct lockdep_map *lock, 5842 unsigned long ip) 5843 { 5844 if (!debug_locks_off()) 5845 return; 5846 if (debug_locks_silent) 5847 return; 5848 5849 pr_warn("\n"); 5850 pr_warn("=================================\n"); 5851 pr_warn("WARNING: bad contention detected!\n"); 5852 print_kernel_ident(); 5853 pr_warn("---------------------------------\n"); 5854 pr_warn("%s/%d is trying to contend lock (", 5855 curr->comm, task_pid_nr(curr)); 5856 print_lockdep_cache(lock); 5857 pr_cont(") at:\n"); 5858 print_ip_sym(KERN_WARNING, ip); 5859 pr_warn("but there are no locks held!\n"); 5860 pr_warn("\nother info that might help us debug this:\n"); 5861 lockdep_print_held_locks(curr); 5862 5863 pr_warn("\nstack backtrace:\n"); 5864 dump_stack(); 5865 } 5866 5867 static void 5868 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5869 { 5870 struct task_struct *curr = current; 5871 struct held_lock *hlock; 5872 struct lock_class_stats *stats; 5873 unsigned int depth; 5874 int i, contention_point, contending_point; 5875 5876 depth = curr->lockdep_depth; 5877 /* 5878 * Whee, we contended on this lock, except it seems we're not 5879 * actually trying to acquire anything much at all.. 5880 */ 5881 if (DEBUG_LOCKS_WARN_ON(!depth)) 5882 return; 5883 5884 hlock = find_held_lock(curr, lock, depth, &i); 5885 if (!hlock) { 5886 print_lock_contention_bug(curr, lock, ip); 5887 return; 5888 } 5889 5890 if (hlock->instance != lock) 5891 return; 5892 5893 hlock->waittime_stamp = lockstat_clock(); 5894 5895 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5896 contending_point = lock_point(hlock_class(hlock)->contending_point, 5897 lock->ip); 5898 5899 stats = get_lock_stats(hlock_class(hlock)); 5900 if (contention_point < LOCKSTAT_POINTS) 5901 stats->contention_point[contention_point]++; 5902 if (contending_point < LOCKSTAT_POINTS) 5903 stats->contending_point[contending_point]++; 5904 if (lock->cpu != smp_processor_id()) 5905 stats->bounces[bounce_contended + !!hlock->read]++; 5906 } 5907 5908 static void 5909 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5910 { 5911 struct task_struct *curr = current; 5912 struct held_lock *hlock; 5913 struct lock_class_stats *stats; 5914 unsigned int depth; 5915 u64 now, waittime = 0; 5916 int i, cpu; 5917 5918 depth = curr->lockdep_depth; 5919 /* 5920 * Yay, we acquired ownership of this lock we didn't try to 5921 * acquire, how the heck did that happen? 5922 */ 5923 if (DEBUG_LOCKS_WARN_ON(!depth)) 5924 return; 5925 5926 hlock = find_held_lock(curr, lock, depth, &i); 5927 if (!hlock) { 5928 print_lock_contention_bug(curr, lock, _RET_IP_); 5929 return; 5930 } 5931 5932 if (hlock->instance != lock) 5933 return; 5934 5935 cpu = smp_processor_id(); 5936 if (hlock->waittime_stamp) { 5937 now = lockstat_clock(); 5938 waittime = now - hlock->waittime_stamp; 5939 hlock->holdtime_stamp = now; 5940 } 5941 5942 stats = get_lock_stats(hlock_class(hlock)); 5943 if (waittime) { 5944 if (hlock->read) 5945 lock_time_inc(&stats->read_waittime, waittime); 5946 else 5947 lock_time_inc(&stats->write_waittime, waittime); 5948 } 5949 if (lock->cpu != cpu) 5950 stats->bounces[bounce_acquired + !!hlock->read]++; 5951 5952 lock->cpu = cpu; 5953 lock->ip = ip; 5954 } 5955 5956 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5957 { 5958 unsigned long flags; 5959 5960 trace_lock_contended(lock, ip); 5961 5962 if (unlikely(!lock_stat || !lockdep_enabled())) 5963 return; 5964 5965 raw_local_irq_save(flags); 5966 check_flags(flags); 5967 lockdep_recursion_inc(); 5968 __lock_contended(lock, ip); 5969 lockdep_recursion_finish(); 5970 raw_local_irq_restore(flags); 5971 } 5972 EXPORT_SYMBOL_GPL(lock_contended); 5973 5974 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5975 { 5976 unsigned long flags; 5977 5978 trace_lock_acquired(lock, ip); 5979 5980 if (unlikely(!lock_stat || !lockdep_enabled())) 5981 return; 5982 5983 raw_local_irq_save(flags); 5984 check_flags(flags); 5985 lockdep_recursion_inc(); 5986 __lock_acquired(lock, ip); 5987 lockdep_recursion_finish(); 5988 raw_local_irq_restore(flags); 5989 } 5990 EXPORT_SYMBOL_GPL(lock_acquired); 5991 #endif 5992 5993 /* 5994 * Used by the testsuite, sanitize the validator state 5995 * after a simulated failure: 5996 */ 5997 5998 void lockdep_reset(void) 5999 { 6000 unsigned long flags; 6001 int i; 6002 6003 raw_local_irq_save(flags); 6004 lockdep_init_task(current); 6005 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 6006 nr_hardirq_chains = 0; 6007 nr_softirq_chains = 0; 6008 nr_process_chains = 0; 6009 debug_locks = 1; 6010 for (i = 0; i < CHAINHASH_SIZE; i++) 6011 INIT_HLIST_HEAD(chainhash_table + i); 6012 raw_local_irq_restore(flags); 6013 } 6014 6015 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 6016 static void remove_class_from_lock_chain(struct pending_free *pf, 6017 struct lock_chain *chain, 6018 struct lock_class *class) 6019 { 6020 #ifdef CONFIG_PROVE_LOCKING 6021 int i; 6022 6023 for (i = chain->base; i < chain->base + chain->depth; i++) { 6024 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 6025 continue; 6026 /* 6027 * Each lock class occurs at most once in a lock chain so once 6028 * we found a match we can break out of this loop. 6029 */ 6030 goto free_lock_chain; 6031 } 6032 /* Since the chain has not been modified, return. */ 6033 return; 6034 6035 free_lock_chain: 6036 free_chain_hlocks(chain->base, chain->depth); 6037 /* Overwrite the chain key for concurrent RCU readers. */ 6038 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 6039 dec_chains(chain->irq_context); 6040 6041 /* 6042 * Note: calling hlist_del_rcu() from inside a 6043 * hlist_for_each_entry_rcu() loop is safe. 6044 */ 6045 hlist_del_rcu(&chain->entry); 6046 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 6047 nr_zapped_lock_chains++; 6048 #endif 6049 } 6050 6051 /* Must be called with the graph lock held. */ 6052 static void remove_class_from_lock_chains(struct pending_free *pf, 6053 struct lock_class *class) 6054 { 6055 struct lock_chain *chain; 6056 struct hlist_head *head; 6057 int i; 6058 6059 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 6060 head = chainhash_table + i; 6061 hlist_for_each_entry_rcu(chain, head, entry) { 6062 remove_class_from_lock_chain(pf, chain, class); 6063 } 6064 } 6065 } 6066 6067 /* 6068 * Remove all references to a lock class. The caller must hold the graph lock. 6069 */ 6070 static void zap_class(struct pending_free *pf, struct lock_class *class) 6071 { 6072 struct lock_list *entry; 6073 int i; 6074 6075 WARN_ON_ONCE(!class->key); 6076 6077 /* 6078 * Remove all dependencies this lock is 6079 * involved in: 6080 */ 6081 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 6082 entry = list_entries + i; 6083 if (entry->class != class && entry->links_to != class) 6084 continue; 6085 __clear_bit(i, list_entries_in_use); 6086 nr_list_entries--; 6087 list_del_rcu(&entry->entry); 6088 } 6089 if (list_empty(&class->locks_after) && 6090 list_empty(&class->locks_before)) { 6091 list_move_tail(&class->lock_entry, &pf->zapped); 6092 hlist_del_rcu(&class->hash_entry); 6093 WRITE_ONCE(class->key, NULL); 6094 WRITE_ONCE(class->name, NULL); 6095 nr_lock_classes--; 6096 __clear_bit(class - lock_classes, lock_classes_in_use); 6097 if (class - lock_classes == max_lock_class_idx) 6098 max_lock_class_idx--; 6099 } else { 6100 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6101 class->name); 6102 } 6103 6104 remove_class_from_lock_chains(pf, class); 6105 nr_zapped_classes++; 6106 } 6107 6108 static void reinit_class(struct lock_class *class) 6109 { 6110 WARN_ON_ONCE(!class->lock_entry.next); 6111 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6112 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6113 memset_startat(class, 0, key); 6114 WARN_ON_ONCE(!class->lock_entry.next); 6115 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6116 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6117 } 6118 6119 static inline int within(const void *addr, void *start, unsigned long size) 6120 { 6121 return addr >= start && addr < start + size; 6122 } 6123 6124 static bool inside_selftest(void) 6125 { 6126 return current == lockdep_selftest_task_struct; 6127 } 6128 6129 /* The caller must hold the graph lock. */ 6130 static struct pending_free *get_pending_free(void) 6131 { 6132 return delayed_free.pf + delayed_free.index; 6133 } 6134 6135 static void free_zapped_rcu(struct rcu_head *cb); 6136 6137 /* 6138 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6139 * the graph lock held. 6140 */ 6141 static void call_rcu_zapped(struct pending_free *pf) 6142 { 6143 WARN_ON_ONCE(inside_selftest()); 6144 6145 if (list_empty(&pf->zapped)) 6146 return; 6147 6148 if (delayed_free.scheduled) 6149 return; 6150 6151 delayed_free.scheduled = true; 6152 6153 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6154 delayed_free.index ^= 1; 6155 6156 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6157 } 6158 6159 /* The caller must hold the graph lock. May be called from RCU context. */ 6160 static void __free_zapped_classes(struct pending_free *pf) 6161 { 6162 struct lock_class *class; 6163 6164 check_data_structures(); 6165 6166 list_for_each_entry(class, &pf->zapped, lock_entry) 6167 reinit_class(class); 6168 6169 list_splice_init(&pf->zapped, &free_lock_classes); 6170 6171 #ifdef CONFIG_PROVE_LOCKING 6172 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6173 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6174 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6175 #endif 6176 } 6177 6178 static void free_zapped_rcu(struct rcu_head *ch) 6179 { 6180 struct pending_free *pf; 6181 unsigned long flags; 6182 6183 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6184 return; 6185 6186 raw_local_irq_save(flags); 6187 lockdep_lock(); 6188 6189 /* closed head */ 6190 pf = delayed_free.pf + (delayed_free.index ^ 1); 6191 __free_zapped_classes(pf); 6192 delayed_free.scheduled = false; 6193 6194 /* 6195 * If there's anything on the open list, close and start a new callback. 6196 */ 6197 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6198 6199 lockdep_unlock(); 6200 raw_local_irq_restore(flags); 6201 } 6202 6203 /* 6204 * Remove all lock classes from the class hash table and from the 6205 * all_lock_classes list whose key or name is in the address range [start, 6206 * start + size). Move these lock classes to the zapped_classes list. Must 6207 * be called with the graph lock held. 6208 */ 6209 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6210 unsigned long size) 6211 { 6212 struct lock_class *class; 6213 struct hlist_head *head; 6214 int i; 6215 6216 /* Unhash all classes that were created by a module. */ 6217 for (i = 0; i < CLASSHASH_SIZE; i++) { 6218 head = classhash_table + i; 6219 hlist_for_each_entry_rcu(class, head, hash_entry) { 6220 if (!within(class->key, start, size) && 6221 !within(class->name, start, size)) 6222 continue; 6223 zap_class(pf, class); 6224 } 6225 } 6226 } 6227 6228 /* 6229 * Used in module.c to remove lock classes from memory that is going to be 6230 * freed; and possibly re-used by other modules. 6231 * 6232 * We will have had one synchronize_rcu() before getting here, so we're 6233 * guaranteed nobody will look up these exact classes -- they're properly dead 6234 * but still allocated. 6235 */ 6236 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6237 { 6238 struct pending_free *pf; 6239 unsigned long flags; 6240 6241 init_data_structures_once(); 6242 6243 raw_local_irq_save(flags); 6244 lockdep_lock(); 6245 pf = get_pending_free(); 6246 __lockdep_free_key_range(pf, start, size); 6247 call_rcu_zapped(pf); 6248 lockdep_unlock(); 6249 raw_local_irq_restore(flags); 6250 6251 /* 6252 * Wait for any possible iterators from look_up_lock_class() to pass 6253 * before continuing to free the memory they refer to. 6254 */ 6255 synchronize_rcu(); 6256 } 6257 6258 /* 6259 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6260 * Ignores debug_locks. Must only be used by the lockdep selftests. 6261 */ 6262 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6263 { 6264 struct pending_free *pf = delayed_free.pf; 6265 unsigned long flags; 6266 6267 init_data_structures_once(); 6268 6269 raw_local_irq_save(flags); 6270 lockdep_lock(); 6271 __lockdep_free_key_range(pf, start, size); 6272 __free_zapped_classes(pf); 6273 lockdep_unlock(); 6274 raw_local_irq_restore(flags); 6275 } 6276 6277 void lockdep_free_key_range(void *start, unsigned long size) 6278 { 6279 init_data_structures_once(); 6280 6281 if (inside_selftest()) 6282 lockdep_free_key_range_imm(start, size); 6283 else 6284 lockdep_free_key_range_reg(start, size); 6285 } 6286 6287 /* 6288 * Check whether any element of the @lock->class_cache[] array refers to a 6289 * registered lock class. The caller must hold either the graph lock or the 6290 * RCU read lock. 6291 */ 6292 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6293 { 6294 struct lock_class *class; 6295 struct hlist_head *head; 6296 int i, j; 6297 6298 for (i = 0; i < CLASSHASH_SIZE; i++) { 6299 head = classhash_table + i; 6300 hlist_for_each_entry_rcu(class, head, hash_entry) { 6301 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6302 if (lock->class_cache[j] == class) 6303 return true; 6304 } 6305 } 6306 return false; 6307 } 6308 6309 /* The caller must hold the graph lock. Does not sleep. */ 6310 static void __lockdep_reset_lock(struct pending_free *pf, 6311 struct lockdep_map *lock) 6312 { 6313 struct lock_class *class; 6314 int j; 6315 6316 /* 6317 * Remove all classes this lock might have: 6318 */ 6319 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6320 /* 6321 * If the class exists we look it up and zap it: 6322 */ 6323 class = look_up_lock_class(lock, j); 6324 if (class) 6325 zap_class(pf, class); 6326 } 6327 /* 6328 * Debug check: in the end all mapped classes should 6329 * be gone. 6330 */ 6331 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6332 debug_locks_off(); 6333 } 6334 6335 /* 6336 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6337 * released data structures from RCU context. 6338 */ 6339 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6340 { 6341 struct pending_free *pf; 6342 unsigned long flags; 6343 int locked; 6344 6345 raw_local_irq_save(flags); 6346 locked = graph_lock(); 6347 if (!locked) 6348 goto out_irq; 6349 6350 pf = get_pending_free(); 6351 __lockdep_reset_lock(pf, lock); 6352 call_rcu_zapped(pf); 6353 6354 graph_unlock(); 6355 out_irq: 6356 raw_local_irq_restore(flags); 6357 } 6358 6359 /* 6360 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6361 * lockdep selftests. 6362 */ 6363 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6364 { 6365 struct pending_free *pf = delayed_free.pf; 6366 unsigned long flags; 6367 6368 raw_local_irq_save(flags); 6369 lockdep_lock(); 6370 __lockdep_reset_lock(pf, lock); 6371 __free_zapped_classes(pf); 6372 lockdep_unlock(); 6373 raw_local_irq_restore(flags); 6374 } 6375 6376 void lockdep_reset_lock(struct lockdep_map *lock) 6377 { 6378 init_data_structures_once(); 6379 6380 if (inside_selftest()) 6381 lockdep_reset_lock_imm(lock); 6382 else 6383 lockdep_reset_lock_reg(lock); 6384 } 6385 6386 /* 6387 * Unregister a dynamically allocated key. 6388 * 6389 * Unlike lockdep_register_key(), a search is always done to find a matching 6390 * key irrespective of debug_locks to avoid potential invalid access to freed 6391 * memory in lock_class entry. 6392 */ 6393 void lockdep_unregister_key(struct lock_class_key *key) 6394 { 6395 struct hlist_head *hash_head = keyhashentry(key); 6396 struct lock_class_key *k; 6397 struct pending_free *pf; 6398 unsigned long flags; 6399 bool found = false; 6400 6401 might_sleep(); 6402 6403 if (WARN_ON_ONCE(static_obj(key))) 6404 return; 6405 6406 raw_local_irq_save(flags); 6407 lockdep_lock(); 6408 6409 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6410 if (k == key) { 6411 hlist_del_rcu(&k->hash_entry); 6412 found = true; 6413 break; 6414 } 6415 } 6416 WARN_ON_ONCE(!found && debug_locks); 6417 if (found) { 6418 pf = get_pending_free(); 6419 __lockdep_free_key_range(pf, key, 1); 6420 call_rcu_zapped(pf); 6421 } 6422 lockdep_unlock(); 6423 raw_local_irq_restore(flags); 6424 6425 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6426 synchronize_rcu(); 6427 } 6428 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6429 6430 void __init lockdep_init(void) 6431 { 6432 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6433 6434 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6435 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6436 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6437 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6438 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6439 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6440 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6441 6442 printk(" memory used by lock dependency info: %zu kB\n", 6443 (sizeof(lock_classes) + 6444 sizeof(lock_classes_in_use) + 6445 sizeof(classhash_table) + 6446 sizeof(list_entries) + 6447 sizeof(list_entries_in_use) + 6448 sizeof(chainhash_table) + 6449 sizeof(delayed_free) 6450 #ifdef CONFIG_PROVE_LOCKING 6451 + sizeof(lock_cq) 6452 + sizeof(lock_chains) 6453 + sizeof(lock_chains_in_use) 6454 + sizeof(chain_hlocks) 6455 #endif 6456 ) / 1024 6457 ); 6458 6459 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6460 printk(" memory used for stack traces: %zu kB\n", 6461 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6462 ); 6463 #endif 6464 6465 printk(" per task-struct memory footprint: %zu bytes\n", 6466 sizeof(((struct task_struct *)NULL)->held_locks)); 6467 } 6468 6469 static void 6470 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6471 const void *mem_to, struct held_lock *hlock) 6472 { 6473 if (!debug_locks_off()) 6474 return; 6475 if (debug_locks_silent) 6476 return; 6477 6478 pr_warn("\n"); 6479 pr_warn("=========================\n"); 6480 pr_warn("WARNING: held lock freed!\n"); 6481 print_kernel_ident(); 6482 pr_warn("-------------------------\n"); 6483 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6484 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6485 print_lock(hlock); 6486 lockdep_print_held_locks(curr); 6487 6488 pr_warn("\nstack backtrace:\n"); 6489 dump_stack(); 6490 } 6491 6492 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6493 const void* lock_from, unsigned long lock_len) 6494 { 6495 return lock_from + lock_len <= mem_from || 6496 mem_from + mem_len <= lock_from; 6497 } 6498 6499 /* 6500 * Called when kernel memory is freed (or unmapped), or if a lock 6501 * is destroyed or reinitialized - this code checks whether there is 6502 * any held lock in the memory range of <from> to <to>: 6503 */ 6504 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6505 { 6506 struct task_struct *curr = current; 6507 struct held_lock *hlock; 6508 unsigned long flags; 6509 int i; 6510 6511 if (unlikely(!debug_locks)) 6512 return; 6513 6514 raw_local_irq_save(flags); 6515 for (i = 0; i < curr->lockdep_depth; i++) { 6516 hlock = curr->held_locks + i; 6517 6518 if (not_in_range(mem_from, mem_len, hlock->instance, 6519 sizeof(*hlock->instance))) 6520 continue; 6521 6522 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6523 break; 6524 } 6525 raw_local_irq_restore(flags); 6526 } 6527 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6528 6529 static void print_held_locks_bug(void) 6530 { 6531 if (!debug_locks_off()) 6532 return; 6533 if (debug_locks_silent) 6534 return; 6535 6536 pr_warn("\n"); 6537 pr_warn("====================================\n"); 6538 pr_warn("WARNING: %s/%d still has locks held!\n", 6539 current->comm, task_pid_nr(current)); 6540 print_kernel_ident(); 6541 pr_warn("------------------------------------\n"); 6542 lockdep_print_held_locks(current); 6543 pr_warn("\nstack backtrace:\n"); 6544 dump_stack(); 6545 } 6546 6547 void debug_check_no_locks_held(void) 6548 { 6549 if (unlikely(current->lockdep_depth > 0)) 6550 print_held_locks_bug(); 6551 } 6552 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6553 6554 #ifdef __KERNEL__ 6555 void debug_show_all_locks(void) 6556 { 6557 struct task_struct *g, *p; 6558 6559 if (unlikely(!debug_locks)) { 6560 pr_warn("INFO: lockdep is turned off.\n"); 6561 return; 6562 } 6563 pr_warn("\nShowing all locks held in the system:\n"); 6564 6565 rcu_read_lock(); 6566 for_each_process_thread(g, p) { 6567 if (!p->lockdep_depth) 6568 continue; 6569 lockdep_print_held_locks(p); 6570 touch_nmi_watchdog(); 6571 touch_all_softlockup_watchdogs(); 6572 } 6573 rcu_read_unlock(); 6574 6575 pr_warn("\n"); 6576 pr_warn("=============================================\n\n"); 6577 } 6578 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6579 #endif 6580 6581 /* 6582 * Careful: only use this function if you are sure that 6583 * the task cannot run in parallel! 6584 */ 6585 void debug_show_held_locks(struct task_struct *task) 6586 { 6587 if (unlikely(!debug_locks)) { 6588 printk("INFO: lockdep is turned off.\n"); 6589 return; 6590 } 6591 lockdep_print_held_locks(task); 6592 } 6593 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6594 6595 asmlinkage __visible void lockdep_sys_exit(void) 6596 { 6597 struct task_struct *curr = current; 6598 6599 if (unlikely(curr->lockdep_depth)) { 6600 if (!debug_locks_off()) 6601 return; 6602 pr_warn("\n"); 6603 pr_warn("================================================\n"); 6604 pr_warn("WARNING: lock held when returning to user space!\n"); 6605 print_kernel_ident(); 6606 pr_warn("------------------------------------------------\n"); 6607 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6608 curr->comm, curr->pid); 6609 lockdep_print_held_locks(curr); 6610 } 6611 6612 /* 6613 * The lock history for each syscall should be independent. So wipe the 6614 * slate clean on return to userspace. 6615 */ 6616 lockdep_invariant_state(false); 6617 } 6618 6619 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6620 { 6621 struct task_struct *curr = current; 6622 int dl = READ_ONCE(debug_locks); 6623 bool rcu = warn_rcu_enter(); 6624 6625 /* Note: the following can be executed concurrently, so be careful. */ 6626 pr_warn("\n"); 6627 pr_warn("=============================\n"); 6628 pr_warn("WARNING: suspicious RCU usage\n"); 6629 print_kernel_ident(); 6630 pr_warn("-----------------------------\n"); 6631 pr_warn("%s:%d %s!\n", file, line, s); 6632 pr_warn("\nother info that might help us debug this:\n\n"); 6633 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6634 !rcu_lockdep_current_cpu_online() 6635 ? "RCU used illegally from offline CPU!\n" 6636 : "", 6637 rcu_scheduler_active, dl, 6638 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6639 6640 /* 6641 * If a CPU is in the RCU-free window in idle (ie: in the section 6642 * between ct_idle_enter() and ct_idle_exit(), then RCU 6643 * considers that CPU to be in an "extended quiescent state", 6644 * which means that RCU will be completely ignoring that CPU. 6645 * Therefore, rcu_read_lock() and friends have absolutely no 6646 * effect on a CPU running in that state. In other words, even if 6647 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6648 * delete data structures out from under it. RCU really has no 6649 * choice here: we need to keep an RCU-free window in idle where 6650 * the CPU may possibly enter into low power mode. This way we can 6651 * notice an extended quiescent state to other CPUs that started a grace 6652 * period. Otherwise we would delay any grace period as long as we run 6653 * in the idle task. 6654 * 6655 * So complain bitterly if someone does call rcu_read_lock(), 6656 * rcu_read_lock_bh() and so on from extended quiescent states. 6657 */ 6658 if (!rcu_is_watching()) 6659 pr_warn("RCU used illegally from extended quiescent state!\n"); 6660 6661 lockdep_print_held_locks(curr); 6662 pr_warn("\nstack backtrace:\n"); 6663 dump_stack(); 6664 warn_rcu_exit(rcu); 6665 } 6666 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6667