1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 #include <linux/context_tracking.h> 59 60 #include <asm/sections.h> 61 62 #include "lockdep_internals.h" 63 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 static int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 static int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 #ifdef CONFIG_SYSCTL 81 static struct ctl_table kern_lockdep_table[] = { 82 #ifdef CONFIG_PROVE_LOCKING 83 { 84 .procname = "prove_locking", 85 .data = &prove_locking, 86 .maxlen = sizeof(int), 87 .mode = 0644, 88 .proc_handler = proc_dointvec, 89 }, 90 #endif /* CONFIG_PROVE_LOCKING */ 91 #ifdef CONFIG_LOCK_STAT 92 { 93 .procname = "lock_stat", 94 .data = &lock_stat, 95 .maxlen = sizeof(int), 96 .mode = 0644, 97 .proc_handler = proc_dointvec, 98 }, 99 #endif /* CONFIG_LOCK_STAT */ 100 { } 101 }; 102 103 static __init int kernel_lockdep_sysctls_init(void) 104 { 105 register_sysctl_init("kernel", kern_lockdep_table); 106 return 0; 107 } 108 late_initcall(kernel_lockdep_sysctls_init); 109 #endif /* CONFIG_SYSCTL */ 110 111 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 113 114 static __always_inline bool lockdep_enabled(void) 115 { 116 if (!debug_locks) 117 return false; 118 119 if (this_cpu_read(lockdep_recursion)) 120 return false; 121 122 if (current->lockdep_recursion) 123 return false; 124 125 return true; 126 } 127 128 /* 129 * lockdep_lock: protects the lockdep graph, the hashes and the 130 * class/list/hash allocators. 131 * 132 * This is one of the rare exceptions where it's justified 133 * to use a raw spinlock - we really dont want the spinlock 134 * code to recurse back into the lockdep code... 135 */ 136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 137 static struct task_struct *__owner; 138 139 static inline void lockdep_lock(void) 140 { 141 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 142 143 __this_cpu_inc(lockdep_recursion); 144 arch_spin_lock(&__lock); 145 __owner = current; 146 } 147 148 static inline void lockdep_unlock(void) 149 { 150 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 151 152 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 153 return; 154 155 __owner = NULL; 156 arch_spin_unlock(&__lock); 157 __this_cpu_dec(lockdep_recursion); 158 } 159 160 static inline bool lockdep_assert_locked(void) 161 { 162 return DEBUG_LOCKS_WARN_ON(__owner != current); 163 } 164 165 static struct task_struct *lockdep_selftest_task_struct; 166 167 168 static int graph_lock(void) 169 { 170 lockdep_lock(); 171 /* 172 * Make sure that if another CPU detected a bug while 173 * walking the graph we dont change it (while the other 174 * CPU is busy printing out stuff with the graph lock 175 * dropped already) 176 */ 177 if (!debug_locks) { 178 lockdep_unlock(); 179 return 0; 180 } 181 return 1; 182 } 183 184 static inline void graph_unlock(void) 185 { 186 lockdep_unlock(); 187 } 188 189 /* 190 * Turn lock debugging off and return with 0 if it was off already, 191 * and also release the graph lock: 192 */ 193 static inline int debug_locks_off_graph_unlock(void) 194 { 195 int ret = debug_locks_off(); 196 197 lockdep_unlock(); 198 199 return ret; 200 } 201 202 unsigned long nr_list_entries; 203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 205 206 /* 207 * All data structures here are protected by the global debug_lock. 208 * 209 * nr_lock_classes is the number of elements of lock_classes[] that is 210 * in use. 211 */ 212 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 213 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 215 unsigned long nr_lock_classes; 216 unsigned long nr_zapped_classes; 217 unsigned long max_lock_class_idx; 218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 220 221 static inline struct lock_class *hlock_class(struct held_lock *hlock) 222 { 223 unsigned int class_idx = hlock->class_idx; 224 225 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 226 barrier(); 227 228 if (!test_bit(class_idx, lock_classes_in_use)) { 229 /* 230 * Someone passed in garbage, we give up. 231 */ 232 DEBUG_LOCKS_WARN_ON(1); 233 return NULL; 234 } 235 236 /* 237 * At this point, if the passed hlock->class_idx is still garbage, 238 * we just have to live with it 239 */ 240 return lock_classes + class_idx; 241 } 242 243 #ifdef CONFIG_LOCK_STAT 244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 245 246 static inline u64 lockstat_clock(void) 247 { 248 return local_clock(); 249 } 250 251 static int lock_point(unsigned long points[], unsigned long ip) 252 { 253 int i; 254 255 for (i = 0; i < LOCKSTAT_POINTS; i++) { 256 if (points[i] == 0) { 257 points[i] = ip; 258 break; 259 } 260 if (points[i] == ip) 261 break; 262 } 263 264 return i; 265 } 266 267 static void lock_time_inc(struct lock_time *lt, u64 time) 268 { 269 if (time > lt->max) 270 lt->max = time; 271 272 if (time < lt->min || !lt->nr) 273 lt->min = time; 274 275 lt->total += time; 276 lt->nr++; 277 } 278 279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 280 { 281 if (!src->nr) 282 return; 283 284 if (src->max > dst->max) 285 dst->max = src->max; 286 287 if (src->min < dst->min || !dst->nr) 288 dst->min = src->min; 289 290 dst->total += src->total; 291 dst->nr += src->nr; 292 } 293 294 struct lock_class_stats lock_stats(struct lock_class *class) 295 { 296 struct lock_class_stats stats; 297 int cpu, i; 298 299 memset(&stats, 0, sizeof(struct lock_class_stats)); 300 for_each_possible_cpu(cpu) { 301 struct lock_class_stats *pcs = 302 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 303 304 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 305 stats.contention_point[i] += pcs->contention_point[i]; 306 307 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 308 stats.contending_point[i] += pcs->contending_point[i]; 309 310 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 311 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 312 313 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 314 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 315 316 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 317 stats.bounces[i] += pcs->bounces[i]; 318 } 319 320 return stats; 321 } 322 323 void clear_lock_stats(struct lock_class *class) 324 { 325 int cpu; 326 327 for_each_possible_cpu(cpu) { 328 struct lock_class_stats *cpu_stats = 329 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 330 331 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 332 } 333 memset(class->contention_point, 0, sizeof(class->contention_point)); 334 memset(class->contending_point, 0, sizeof(class->contending_point)); 335 } 336 337 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 338 { 339 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 340 } 341 342 static void lock_release_holdtime(struct held_lock *hlock) 343 { 344 struct lock_class_stats *stats; 345 u64 holdtime; 346 347 if (!lock_stat) 348 return; 349 350 holdtime = lockstat_clock() - hlock->holdtime_stamp; 351 352 stats = get_lock_stats(hlock_class(hlock)); 353 if (hlock->read) 354 lock_time_inc(&stats->read_holdtime, holdtime); 355 else 356 lock_time_inc(&stats->write_holdtime, holdtime); 357 } 358 #else 359 static inline void lock_release_holdtime(struct held_lock *hlock) 360 { 361 } 362 #endif 363 364 /* 365 * We keep a global list of all lock classes. The list is only accessed with 366 * the lockdep spinlock lock held. free_lock_classes is a list with free 367 * elements. These elements are linked together by the lock_entry member in 368 * struct lock_class. 369 */ 370 static LIST_HEAD(all_lock_classes); 371 static LIST_HEAD(free_lock_classes); 372 373 /** 374 * struct pending_free - information about data structures about to be freed 375 * @zapped: Head of a list with struct lock_class elements. 376 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 377 * are about to be freed. 378 */ 379 struct pending_free { 380 struct list_head zapped; 381 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 382 }; 383 384 /** 385 * struct delayed_free - data structures used for delayed freeing 386 * 387 * A data structure for delayed freeing of data structures that may be 388 * accessed by RCU readers at the time these were freed. 389 * 390 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 391 * @index: Index of @pf to which freed data structures are added. 392 * @scheduled: Whether or not an RCU callback has been scheduled. 393 * @pf: Array with information about data structures about to be freed. 394 */ 395 static struct delayed_free { 396 struct rcu_head rcu_head; 397 int index; 398 int scheduled; 399 struct pending_free pf[2]; 400 } delayed_free; 401 402 /* 403 * The lockdep classes are in a hash-table as well, for fast lookup: 404 */ 405 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 406 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 407 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 408 #define classhashentry(key) (classhash_table + __classhashfn((key))) 409 410 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 411 412 /* 413 * We put the lock dependency chains into a hash-table as well, to cache 414 * their existence: 415 */ 416 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 417 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 418 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 419 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 420 421 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 422 423 /* 424 * the id of held_lock 425 */ 426 static inline u16 hlock_id(struct held_lock *hlock) 427 { 428 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 429 430 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 431 } 432 433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 434 { 435 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 436 } 437 438 /* 439 * The hash key of the lock dependency chains is a hash itself too: 440 * it's a hash of all locks taken up to that lock, including that lock. 441 * It's a 64-bit hash, because it's important for the keys to be 442 * unique. 443 */ 444 static inline u64 iterate_chain_key(u64 key, u32 idx) 445 { 446 u32 k0 = key, k1 = key >> 32; 447 448 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 449 450 return k0 | (u64)k1 << 32; 451 } 452 453 void lockdep_init_task(struct task_struct *task) 454 { 455 task->lockdep_depth = 0; /* no locks held yet */ 456 task->curr_chain_key = INITIAL_CHAIN_KEY; 457 task->lockdep_recursion = 0; 458 } 459 460 static __always_inline void lockdep_recursion_inc(void) 461 { 462 __this_cpu_inc(lockdep_recursion); 463 } 464 465 static __always_inline void lockdep_recursion_finish(void) 466 { 467 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 468 __this_cpu_write(lockdep_recursion, 0); 469 } 470 471 void lockdep_set_selftest_task(struct task_struct *task) 472 { 473 lockdep_selftest_task_struct = task; 474 } 475 476 /* 477 * Debugging switches: 478 */ 479 480 #define VERBOSE 0 481 #define VERY_VERBOSE 0 482 483 #if VERBOSE 484 # define HARDIRQ_VERBOSE 1 485 # define SOFTIRQ_VERBOSE 1 486 #else 487 # define HARDIRQ_VERBOSE 0 488 # define SOFTIRQ_VERBOSE 0 489 #endif 490 491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 492 /* 493 * Quick filtering for interesting events: 494 */ 495 static int class_filter(struct lock_class *class) 496 { 497 #if 0 498 /* Example */ 499 if (class->name_version == 1 && 500 !strcmp(class->name, "lockname")) 501 return 1; 502 if (class->name_version == 1 && 503 !strcmp(class->name, "&struct->lockfield")) 504 return 1; 505 #endif 506 /* Filter everything else. 1 would be to allow everything else */ 507 return 0; 508 } 509 #endif 510 511 static int verbose(struct lock_class *class) 512 { 513 #if VERBOSE 514 return class_filter(class); 515 #endif 516 return 0; 517 } 518 519 static void print_lockdep_off(const char *bug_msg) 520 { 521 printk(KERN_DEBUG "%s\n", bug_msg); 522 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 523 #ifdef CONFIG_LOCK_STAT 524 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 525 #endif 526 } 527 528 unsigned long nr_stack_trace_entries; 529 530 #ifdef CONFIG_PROVE_LOCKING 531 /** 532 * struct lock_trace - single stack backtrace 533 * @hash_entry: Entry in a stack_trace_hash[] list. 534 * @hash: jhash() of @entries. 535 * @nr_entries: Number of entries in @entries. 536 * @entries: Actual stack backtrace. 537 */ 538 struct lock_trace { 539 struct hlist_node hash_entry; 540 u32 hash; 541 u32 nr_entries; 542 unsigned long entries[] __aligned(sizeof(unsigned long)); 543 }; 544 #define LOCK_TRACE_SIZE_IN_LONGS \ 545 (sizeof(struct lock_trace) / sizeof(unsigned long)) 546 /* 547 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 548 */ 549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 551 552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 553 { 554 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 555 memcmp(t1->entries, t2->entries, 556 t1->nr_entries * sizeof(t1->entries[0])) == 0; 557 } 558 559 static struct lock_trace *save_trace(void) 560 { 561 struct lock_trace *trace, *t2; 562 struct hlist_head *hash_head; 563 u32 hash; 564 int max_entries; 565 566 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 567 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 568 569 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 570 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 571 LOCK_TRACE_SIZE_IN_LONGS; 572 573 if (max_entries <= 0) { 574 if (!debug_locks_off_graph_unlock()) 575 return NULL; 576 577 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 578 dump_stack(); 579 580 return NULL; 581 } 582 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 583 584 hash = jhash(trace->entries, trace->nr_entries * 585 sizeof(trace->entries[0]), 0); 586 trace->hash = hash; 587 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 588 hlist_for_each_entry(t2, hash_head, hash_entry) { 589 if (traces_identical(trace, t2)) 590 return t2; 591 } 592 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 593 hlist_add_head(&trace->hash_entry, hash_head); 594 595 return trace; 596 } 597 598 /* Return the number of stack traces in the stack_trace[] array. */ 599 u64 lockdep_stack_trace_count(void) 600 { 601 struct lock_trace *trace; 602 u64 c = 0; 603 int i; 604 605 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 606 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 607 c++; 608 } 609 } 610 611 return c; 612 } 613 614 /* Return the number of stack hash chains that have at least one stack trace. */ 615 u64 lockdep_stack_hash_count(void) 616 { 617 u64 c = 0; 618 int i; 619 620 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 621 if (!hlist_empty(&stack_trace_hash[i])) 622 c++; 623 624 return c; 625 } 626 #endif 627 628 unsigned int nr_hardirq_chains; 629 unsigned int nr_softirq_chains; 630 unsigned int nr_process_chains; 631 unsigned int max_lockdep_depth; 632 633 #ifdef CONFIG_DEBUG_LOCKDEP 634 /* 635 * Various lockdep statistics: 636 */ 637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 638 #endif 639 640 #ifdef CONFIG_PROVE_LOCKING 641 /* 642 * Locking printouts: 643 */ 644 645 #define __USAGE(__STATE) \ 646 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 647 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 648 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 649 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 650 651 static const char *usage_str[] = 652 { 653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 654 #include "lockdep_states.h" 655 #undef LOCKDEP_STATE 656 [LOCK_USED] = "INITIAL USE", 657 [LOCK_USED_READ] = "INITIAL READ USE", 658 /* abused as string storage for verify_lock_unused() */ 659 [LOCK_USAGE_STATES] = "IN-NMI", 660 }; 661 #endif 662 663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 664 { 665 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 666 } 667 668 static inline unsigned long lock_flag(enum lock_usage_bit bit) 669 { 670 return 1UL << bit; 671 } 672 673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 674 { 675 /* 676 * The usage character defaults to '.' (i.e., irqs disabled and not in 677 * irq context), which is the safest usage category. 678 */ 679 char c = '.'; 680 681 /* 682 * The order of the following usage checks matters, which will 683 * result in the outcome character as follows: 684 * 685 * - '+': irq is enabled and not in irq context 686 * - '-': in irq context and irq is disabled 687 * - '?': in irq context and irq is enabled 688 */ 689 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 690 c = '+'; 691 if (class->usage_mask & lock_flag(bit)) 692 c = '?'; 693 } else if (class->usage_mask & lock_flag(bit)) 694 c = '-'; 695 696 return c; 697 } 698 699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 700 { 701 int i = 0; 702 703 #define LOCKDEP_STATE(__STATE) \ 704 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 705 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 706 #include "lockdep_states.h" 707 #undef LOCKDEP_STATE 708 709 usage[i] = '\0'; 710 } 711 712 static void __print_lock_name(struct lock_class *class) 713 { 714 char str[KSYM_NAME_LEN]; 715 const char *name; 716 717 name = class->name; 718 if (!name) { 719 name = __get_key_name(class->key, str); 720 printk(KERN_CONT "%s", name); 721 } else { 722 printk(KERN_CONT "%s", name); 723 if (class->name_version > 1) 724 printk(KERN_CONT "#%d", class->name_version); 725 if (class->subclass) 726 printk(KERN_CONT "/%d", class->subclass); 727 } 728 } 729 730 static void print_lock_name(struct lock_class *class) 731 { 732 char usage[LOCK_USAGE_CHARS]; 733 734 get_usage_chars(class, usage); 735 736 printk(KERN_CONT " ("); 737 __print_lock_name(class); 738 printk(KERN_CONT "){%s}-{%d:%d}", usage, 739 class->wait_type_outer ?: class->wait_type_inner, 740 class->wait_type_inner); 741 } 742 743 static void print_lockdep_cache(struct lockdep_map *lock) 744 { 745 const char *name; 746 char str[KSYM_NAME_LEN]; 747 748 name = lock->name; 749 if (!name) 750 name = __get_key_name(lock->key->subkeys, str); 751 752 printk(KERN_CONT "%s", name); 753 } 754 755 static void print_lock(struct held_lock *hlock) 756 { 757 /* 758 * We can be called locklessly through debug_show_all_locks() so be 759 * extra careful, the hlock might have been released and cleared. 760 * 761 * If this indeed happens, lets pretend it does not hurt to continue 762 * to print the lock unless the hlock class_idx does not point to a 763 * registered class. The rationale here is: since we don't attempt 764 * to distinguish whether we are in this situation, if it just 765 * happened we can't count on class_idx to tell either. 766 */ 767 struct lock_class *lock = hlock_class(hlock); 768 769 if (!lock) { 770 printk(KERN_CONT "<RELEASED>\n"); 771 return; 772 } 773 774 printk(KERN_CONT "%px", hlock->instance); 775 print_lock_name(lock); 776 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 777 } 778 779 static void lockdep_print_held_locks(struct task_struct *p) 780 { 781 int i, depth = READ_ONCE(p->lockdep_depth); 782 783 if (!depth) 784 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 785 else 786 printk("%d lock%s held by %s/%d:\n", depth, 787 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 788 /* 789 * It's not reliable to print a task's held locks if it's not sleeping 790 * and it's not the current task. 791 */ 792 if (p != current && task_is_running(p)) 793 return; 794 for (i = 0; i < depth; i++) { 795 printk(" #%d: ", i); 796 print_lock(p->held_locks + i); 797 } 798 } 799 800 static void print_kernel_ident(void) 801 { 802 printk("%s %.*s %s\n", init_utsname()->release, 803 (int)strcspn(init_utsname()->version, " "), 804 init_utsname()->version, 805 print_tainted()); 806 } 807 808 static int very_verbose(struct lock_class *class) 809 { 810 #if VERY_VERBOSE 811 return class_filter(class); 812 #endif 813 return 0; 814 } 815 816 /* 817 * Is this the address of a static object: 818 */ 819 #ifdef __KERNEL__ 820 /* 821 * Check if an address is part of freed initmem. After initmem is freed, 822 * memory can be allocated from it, and such allocations would then have 823 * addresses within the range [_stext, _end]. 824 */ 825 #ifndef arch_is_kernel_initmem_freed 826 static int arch_is_kernel_initmem_freed(unsigned long addr) 827 { 828 if (system_state < SYSTEM_FREEING_INITMEM) 829 return 0; 830 831 return init_section_contains((void *)addr, 1); 832 } 833 #endif 834 835 static int static_obj(const void *obj) 836 { 837 unsigned long start = (unsigned long) &_stext, 838 end = (unsigned long) &_end, 839 addr = (unsigned long) obj; 840 841 if (arch_is_kernel_initmem_freed(addr)) 842 return 0; 843 844 /* 845 * static variable? 846 */ 847 if ((addr >= start) && (addr < end)) 848 return 1; 849 850 /* 851 * in-kernel percpu var? 852 */ 853 if (is_kernel_percpu_address(addr)) 854 return 1; 855 856 /* 857 * module static or percpu var? 858 */ 859 return is_module_address(addr) || is_module_percpu_address(addr); 860 } 861 #endif 862 863 /* 864 * To make lock name printouts unique, we calculate a unique 865 * class->name_version generation counter. The caller must hold the graph 866 * lock. 867 */ 868 static int count_matching_names(struct lock_class *new_class) 869 { 870 struct lock_class *class; 871 int count = 0; 872 873 if (!new_class->name) 874 return 0; 875 876 list_for_each_entry(class, &all_lock_classes, lock_entry) { 877 if (new_class->key - new_class->subclass == class->key) 878 return class->name_version; 879 if (class->name && !strcmp(class->name, new_class->name)) 880 count = max(count, class->name_version); 881 } 882 883 return count + 1; 884 } 885 886 /* used from NMI context -- must be lockless */ 887 static noinstr struct lock_class * 888 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 889 { 890 struct lockdep_subclass_key *key; 891 struct hlist_head *hash_head; 892 struct lock_class *class; 893 894 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 895 instrumentation_begin(); 896 debug_locks_off(); 897 printk(KERN_ERR 898 "BUG: looking up invalid subclass: %u\n", subclass); 899 printk(KERN_ERR 900 "turning off the locking correctness validator.\n"); 901 dump_stack(); 902 instrumentation_end(); 903 return NULL; 904 } 905 906 /* 907 * If it is not initialised then it has never been locked, 908 * so it won't be present in the hash table. 909 */ 910 if (unlikely(!lock->key)) 911 return NULL; 912 913 /* 914 * NOTE: the class-key must be unique. For dynamic locks, a static 915 * lock_class_key variable is passed in through the mutex_init() 916 * (or spin_lock_init()) call - which acts as the key. For static 917 * locks we use the lock object itself as the key. 918 */ 919 BUILD_BUG_ON(sizeof(struct lock_class_key) > 920 sizeof(struct lockdep_map)); 921 922 key = lock->key->subkeys + subclass; 923 924 hash_head = classhashentry(key); 925 926 /* 927 * We do an RCU walk of the hash, see lockdep_free_key_range(). 928 */ 929 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 930 return NULL; 931 932 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 933 if (class->key == key) { 934 /* 935 * Huh! same key, different name? Did someone trample 936 * on some memory? We're most confused. 937 */ 938 WARN_ONCE(class->name != lock->name && 939 lock->key != &__lockdep_no_validate__, 940 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", 941 lock->name, lock->key, class->name); 942 return class; 943 } 944 } 945 946 return NULL; 947 } 948 949 /* 950 * Static locks do not have their class-keys yet - for them the key is 951 * the lock object itself. If the lock is in the per cpu area, the 952 * canonical address of the lock (per cpu offset removed) is used. 953 */ 954 static bool assign_lock_key(struct lockdep_map *lock) 955 { 956 unsigned long can_addr, addr = (unsigned long)lock; 957 958 #ifdef __KERNEL__ 959 /* 960 * lockdep_free_key_range() assumes that struct lock_class_key 961 * objects do not overlap. Since we use the address of lock 962 * objects as class key for static objects, check whether the 963 * size of lock_class_key objects does not exceed the size of 964 * the smallest lock object. 965 */ 966 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 967 #endif 968 969 if (__is_kernel_percpu_address(addr, &can_addr)) 970 lock->key = (void *)can_addr; 971 else if (__is_module_percpu_address(addr, &can_addr)) 972 lock->key = (void *)can_addr; 973 else if (static_obj(lock)) 974 lock->key = (void *)lock; 975 else { 976 /* Debug-check: all keys must be persistent! */ 977 debug_locks_off(); 978 pr_err("INFO: trying to register non-static key.\n"); 979 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 980 pr_err("you didn't initialize this object before use?\n"); 981 pr_err("turning off the locking correctness validator.\n"); 982 dump_stack(); 983 return false; 984 } 985 986 return true; 987 } 988 989 #ifdef CONFIG_DEBUG_LOCKDEP 990 991 /* Check whether element @e occurs in list @h */ 992 static bool in_list(struct list_head *e, struct list_head *h) 993 { 994 struct list_head *f; 995 996 list_for_each(f, h) { 997 if (e == f) 998 return true; 999 } 1000 1001 return false; 1002 } 1003 1004 /* 1005 * Check whether entry @e occurs in any of the locks_after or locks_before 1006 * lists. 1007 */ 1008 static bool in_any_class_list(struct list_head *e) 1009 { 1010 struct lock_class *class; 1011 int i; 1012 1013 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1014 class = &lock_classes[i]; 1015 if (in_list(e, &class->locks_after) || 1016 in_list(e, &class->locks_before)) 1017 return true; 1018 } 1019 return false; 1020 } 1021 1022 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 1023 { 1024 struct lock_list *e; 1025 1026 list_for_each_entry(e, h, entry) { 1027 if (e->links_to != c) { 1028 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1029 c->name ? : "(?)", 1030 (unsigned long)(e - list_entries), 1031 e->links_to && e->links_to->name ? 1032 e->links_to->name : "(?)", 1033 e->class && e->class->name ? e->class->name : 1034 "(?)"); 1035 return false; 1036 } 1037 } 1038 return true; 1039 } 1040 1041 #ifdef CONFIG_PROVE_LOCKING 1042 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1043 #endif 1044 1045 static bool check_lock_chain_key(struct lock_chain *chain) 1046 { 1047 #ifdef CONFIG_PROVE_LOCKING 1048 u64 chain_key = INITIAL_CHAIN_KEY; 1049 int i; 1050 1051 for (i = chain->base; i < chain->base + chain->depth; i++) 1052 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1053 /* 1054 * The 'unsigned long long' casts avoid that a compiler warning 1055 * is reported when building tools/lib/lockdep. 1056 */ 1057 if (chain->chain_key != chain_key) { 1058 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1059 (unsigned long long)(chain - lock_chains), 1060 (unsigned long long)chain->chain_key, 1061 (unsigned long long)chain_key); 1062 return false; 1063 } 1064 #endif 1065 return true; 1066 } 1067 1068 static bool in_any_zapped_class_list(struct lock_class *class) 1069 { 1070 struct pending_free *pf; 1071 int i; 1072 1073 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1074 if (in_list(&class->lock_entry, &pf->zapped)) 1075 return true; 1076 } 1077 1078 return false; 1079 } 1080 1081 static bool __check_data_structures(void) 1082 { 1083 struct lock_class *class; 1084 struct lock_chain *chain; 1085 struct hlist_head *head; 1086 struct lock_list *e; 1087 int i; 1088 1089 /* Check whether all classes occur in a lock list. */ 1090 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1091 class = &lock_classes[i]; 1092 if (!in_list(&class->lock_entry, &all_lock_classes) && 1093 !in_list(&class->lock_entry, &free_lock_classes) && 1094 !in_any_zapped_class_list(class)) { 1095 printk(KERN_INFO "class %px/%s is not in any class list\n", 1096 class, class->name ? : "(?)"); 1097 return false; 1098 } 1099 } 1100 1101 /* Check whether all classes have valid lock lists. */ 1102 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1103 class = &lock_classes[i]; 1104 if (!class_lock_list_valid(class, &class->locks_before)) 1105 return false; 1106 if (!class_lock_list_valid(class, &class->locks_after)) 1107 return false; 1108 } 1109 1110 /* Check the chain_key of all lock chains. */ 1111 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1112 head = chainhash_table + i; 1113 hlist_for_each_entry_rcu(chain, head, entry) { 1114 if (!check_lock_chain_key(chain)) 1115 return false; 1116 } 1117 } 1118 1119 /* 1120 * Check whether all list entries that are in use occur in a class 1121 * lock list. 1122 */ 1123 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1124 e = list_entries + i; 1125 if (!in_any_class_list(&e->entry)) { 1126 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1127 (unsigned int)(e - list_entries), 1128 e->class->name ? : "(?)", 1129 e->links_to->name ? : "(?)"); 1130 return false; 1131 } 1132 } 1133 1134 /* 1135 * Check whether all list entries that are not in use do not occur in 1136 * a class lock list. 1137 */ 1138 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1139 e = list_entries + i; 1140 if (in_any_class_list(&e->entry)) { 1141 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1142 (unsigned int)(e - list_entries), 1143 e->class && e->class->name ? e->class->name : 1144 "(?)", 1145 e->links_to && e->links_to->name ? 1146 e->links_to->name : "(?)"); 1147 return false; 1148 } 1149 } 1150 1151 return true; 1152 } 1153 1154 int check_consistency = 0; 1155 module_param(check_consistency, int, 0644); 1156 1157 static void check_data_structures(void) 1158 { 1159 static bool once = false; 1160 1161 if (check_consistency && !once) { 1162 if (!__check_data_structures()) { 1163 once = true; 1164 WARN_ON(once); 1165 } 1166 } 1167 } 1168 1169 #else /* CONFIG_DEBUG_LOCKDEP */ 1170 1171 static inline void check_data_structures(void) { } 1172 1173 #endif /* CONFIG_DEBUG_LOCKDEP */ 1174 1175 static void init_chain_block_buckets(void); 1176 1177 /* 1178 * Initialize the lock_classes[] array elements, the free_lock_classes list 1179 * and also the delayed_free structure. 1180 */ 1181 static void init_data_structures_once(void) 1182 { 1183 static bool __read_mostly ds_initialized, rcu_head_initialized; 1184 int i; 1185 1186 if (likely(rcu_head_initialized)) 1187 return; 1188 1189 if (system_state >= SYSTEM_SCHEDULING) { 1190 init_rcu_head(&delayed_free.rcu_head); 1191 rcu_head_initialized = true; 1192 } 1193 1194 if (ds_initialized) 1195 return; 1196 1197 ds_initialized = true; 1198 1199 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1200 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1201 1202 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1203 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1204 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1205 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1206 } 1207 init_chain_block_buckets(); 1208 } 1209 1210 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1211 { 1212 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1213 1214 return lock_keys_hash + hash; 1215 } 1216 1217 /* Register a dynamically allocated key. */ 1218 void lockdep_register_key(struct lock_class_key *key) 1219 { 1220 struct hlist_head *hash_head; 1221 struct lock_class_key *k; 1222 unsigned long flags; 1223 1224 if (WARN_ON_ONCE(static_obj(key))) 1225 return; 1226 hash_head = keyhashentry(key); 1227 1228 raw_local_irq_save(flags); 1229 if (!graph_lock()) 1230 goto restore_irqs; 1231 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1232 if (WARN_ON_ONCE(k == key)) 1233 goto out_unlock; 1234 } 1235 hlist_add_head_rcu(&key->hash_entry, hash_head); 1236 out_unlock: 1237 graph_unlock(); 1238 restore_irqs: 1239 raw_local_irq_restore(flags); 1240 } 1241 EXPORT_SYMBOL_GPL(lockdep_register_key); 1242 1243 /* Check whether a key has been registered as a dynamic key. */ 1244 static bool is_dynamic_key(const struct lock_class_key *key) 1245 { 1246 struct hlist_head *hash_head; 1247 struct lock_class_key *k; 1248 bool found = false; 1249 1250 if (WARN_ON_ONCE(static_obj(key))) 1251 return false; 1252 1253 /* 1254 * If lock debugging is disabled lock_keys_hash[] may contain 1255 * pointers to memory that has already been freed. Avoid triggering 1256 * a use-after-free in that case by returning early. 1257 */ 1258 if (!debug_locks) 1259 return true; 1260 1261 hash_head = keyhashentry(key); 1262 1263 rcu_read_lock(); 1264 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1265 if (k == key) { 1266 found = true; 1267 break; 1268 } 1269 } 1270 rcu_read_unlock(); 1271 1272 return found; 1273 } 1274 1275 /* 1276 * Register a lock's class in the hash-table, if the class is not present 1277 * yet. Otherwise we look it up. We cache the result in the lock object 1278 * itself, so actual lookup of the hash should be once per lock object. 1279 */ 1280 static struct lock_class * 1281 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1282 { 1283 struct lockdep_subclass_key *key; 1284 struct hlist_head *hash_head; 1285 struct lock_class *class; 1286 int idx; 1287 1288 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1289 1290 class = look_up_lock_class(lock, subclass); 1291 if (likely(class)) 1292 goto out_set_class_cache; 1293 1294 if (!lock->key) { 1295 if (!assign_lock_key(lock)) 1296 return NULL; 1297 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1298 return NULL; 1299 } 1300 1301 key = lock->key->subkeys + subclass; 1302 hash_head = classhashentry(key); 1303 1304 if (!graph_lock()) { 1305 return NULL; 1306 } 1307 /* 1308 * We have to do the hash-walk again, to avoid races 1309 * with another CPU: 1310 */ 1311 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1312 if (class->key == key) 1313 goto out_unlock_set; 1314 } 1315 1316 init_data_structures_once(); 1317 1318 /* Allocate a new lock class and add it to the hash. */ 1319 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1320 lock_entry); 1321 if (!class) { 1322 if (!debug_locks_off_graph_unlock()) { 1323 return NULL; 1324 } 1325 1326 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1327 dump_stack(); 1328 return NULL; 1329 } 1330 nr_lock_classes++; 1331 __set_bit(class - lock_classes, lock_classes_in_use); 1332 debug_atomic_inc(nr_unused_locks); 1333 class->key = key; 1334 class->name = lock->name; 1335 class->subclass = subclass; 1336 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1337 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1338 class->name_version = count_matching_names(class); 1339 class->wait_type_inner = lock->wait_type_inner; 1340 class->wait_type_outer = lock->wait_type_outer; 1341 class->lock_type = lock->lock_type; 1342 /* 1343 * We use RCU's safe list-add method to make 1344 * parallel walking of the hash-list safe: 1345 */ 1346 hlist_add_head_rcu(&class->hash_entry, hash_head); 1347 /* 1348 * Remove the class from the free list and add it to the global list 1349 * of classes. 1350 */ 1351 list_move_tail(&class->lock_entry, &all_lock_classes); 1352 idx = class - lock_classes; 1353 if (idx > max_lock_class_idx) 1354 max_lock_class_idx = idx; 1355 1356 if (verbose(class)) { 1357 graph_unlock(); 1358 1359 printk("\nnew class %px: %s", class->key, class->name); 1360 if (class->name_version > 1) 1361 printk(KERN_CONT "#%d", class->name_version); 1362 printk(KERN_CONT "\n"); 1363 dump_stack(); 1364 1365 if (!graph_lock()) { 1366 return NULL; 1367 } 1368 } 1369 out_unlock_set: 1370 graph_unlock(); 1371 1372 out_set_class_cache: 1373 if (!subclass || force) 1374 lock->class_cache[0] = class; 1375 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1376 lock->class_cache[subclass] = class; 1377 1378 /* 1379 * Hash collision, did we smoke some? We found a class with a matching 1380 * hash but the subclass -- which is hashed in -- didn't match. 1381 */ 1382 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1383 return NULL; 1384 1385 return class; 1386 } 1387 1388 #ifdef CONFIG_PROVE_LOCKING 1389 /* 1390 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1391 * with NULL on failure) 1392 */ 1393 static struct lock_list *alloc_list_entry(void) 1394 { 1395 int idx = find_first_zero_bit(list_entries_in_use, 1396 ARRAY_SIZE(list_entries)); 1397 1398 if (idx >= ARRAY_SIZE(list_entries)) { 1399 if (!debug_locks_off_graph_unlock()) 1400 return NULL; 1401 1402 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1403 dump_stack(); 1404 return NULL; 1405 } 1406 nr_list_entries++; 1407 __set_bit(idx, list_entries_in_use); 1408 return list_entries + idx; 1409 } 1410 1411 /* 1412 * Add a new dependency to the head of the list: 1413 */ 1414 static int add_lock_to_list(struct lock_class *this, 1415 struct lock_class *links_to, struct list_head *head, 1416 u16 distance, u8 dep, 1417 const struct lock_trace *trace) 1418 { 1419 struct lock_list *entry; 1420 /* 1421 * Lock not present yet - get a new dependency struct and 1422 * add it to the list: 1423 */ 1424 entry = alloc_list_entry(); 1425 if (!entry) 1426 return 0; 1427 1428 entry->class = this; 1429 entry->links_to = links_to; 1430 entry->dep = dep; 1431 entry->distance = distance; 1432 entry->trace = trace; 1433 /* 1434 * Both allocation and removal are done under the graph lock; but 1435 * iteration is under RCU-sched; see look_up_lock_class() and 1436 * lockdep_free_key_range(). 1437 */ 1438 list_add_tail_rcu(&entry->entry, head); 1439 1440 return 1; 1441 } 1442 1443 /* 1444 * For good efficiency of modular, we use power of 2 1445 */ 1446 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1447 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1448 1449 /* 1450 * The circular_queue and helpers are used to implement graph 1451 * breadth-first search (BFS) algorithm, by which we can determine 1452 * whether there is a path from a lock to another. In deadlock checks, 1453 * a path from the next lock to be acquired to a previous held lock 1454 * indicates that adding the <prev> -> <next> lock dependency will 1455 * produce a circle in the graph. Breadth-first search instead of 1456 * depth-first search is used in order to find the shortest (circular) 1457 * path. 1458 */ 1459 struct circular_queue { 1460 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1461 unsigned int front, rear; 1462 }; 1463 1464 static struct circular_queue lock_cq; 1465 1466 unsigned int max_bfs_queue_depth; 1467 1468 static unsigned int lockdep_dependency_gen_id; 1469 1470 static inline void __cq_init(struct circular_queue *cq) 1471 { 1472 cq->front = cq->rear = 0; 1473 lockdep_dependency_gen_id++; 1474 } 1475 1476 static inline int __cq_empty(struct circular_queue *cq) 1477 { 1478 return (cq->front == cq->rear); 1479 } 1480 1481 static inline int __cq_full(struct circular_queue *cq) 1482 { 1483 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1484 } 1485 1486 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1487 { 1488 if (__cq_full(cq)) 1489 return -1; 1490 1491 cq->element[cq->rear] = elem; 1492 cq->rear = (cq->rear + 1) & CQ_MASK; 1493 return 0; 1494 } 1495 1496 /* 1497 * Dequeue an element from the circular_queue, return a lock_list if 1498 * the queue is not empty, or NULL if otherwise. 1499 */ 1500 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1501 { 1502 struct lock_list * lock; 1503 1504 if (__cq_empty(cq)) 1505 return NULL; 1506 1507 lock = cq->element[cq->front]; 1508 cq->front = (cq->front + 1) & CQ_MASK; 1509 1510 return lock; 1511 } 1512 1513 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1514 { 1515 return (cq->rear - cq->front) & CQ_MASK; 1516 } 1517 1518 static inline void mark_lock_accessed(struct lock_list *lock) 1519 { 1520 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1521 } 1522 1523 static inline void visit_lock_entry(struct lock_list *lock, 1524 struct lock_list *parent) 1525 { 1526 lock->parent = parent; 1527 } 1528 1529 static inline unsigned long lock_accessed(struct lock_list *lock) 1530 { 1531 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1532 } 1533 1534 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1535 { 1536 return child->parent; 1537 } 1538 1539 static inline int get_lock_depth(struct lock_list *child) 1540 { 1541 int depth = 0; 1542 struct lock_list *parent; 1543 1544 while ((parent = get_lock_parent(child))) { 1545 child = parent; 1546 depth++; 1547 } 1548 return depth; 1549 } 1550 1551 /* 1552 * Return the forward or backward dependency list. 1553 * 1554 * @lock: the lock_list to get its class's dependency list 1555 * @offset: the offset to struct lock_class to determine whether it is 1556 * locks_after or locks_before 1557 */ 1558 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1559 { 1560 void *lock_class = lock->class; 1561 1562 return lock_class + offset; 1563 } 1564 /* 1565 * Return values of a bfs search: 1566 * 1567 * BFS_E* indicates an error 1568 * BFS_R* indicates a result (match or not) 1569 * 1570 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1571 * 1572 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1573 * 1574 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1575 * *@target_entry. 1576 * 1577 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1578 * _unchanged_. 1579 */ 1580 enum bfs_result { 1581 BFS_EINVALIDNODE = -2, 1582 BFS_EQUEUEFULL = -1, 1583 BFS_RMATCH = 0, 1584 BFS_RNOMATCH = 1, 1585 }; 1586 1587 /* 1588 * bfs_result < 0 means error 1589 */ 1590 static inline bool bfs_error(enum bfs_result res) 1591 { 1592 return res < 0; 1593 } 1594 1595 /* 1596 * DEP_*_BIT in lock_list::dep 1597 * 1598 * For dependency @prev -> @next: 1599 * 1600 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1601 * (->read == 2) 1602 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1603 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1604 * EN: @prev is exclusive locker and @next is non-recursive locker 1605 * 1606 * Note that we define the value of DEP_*_BITs so that: 1607 * bit0 is prev->read == 0 1608 * bit1 is next->read != 2 1609 */ 1610 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1611 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1612 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1613 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1614 1615 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1616 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1617 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1618 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1619 1620 static inline unsigned int 1621 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1622 { 1623 return (prev->read == 0) + ((next->read != 2) << 1); 1624 } 1625 1626 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1627 { 1628 return 1U << __calc_dep_bit(prev, next); 1629 } 1630 1631 /* 1632 * calculate the dep_bit for backwards edges. We care about whether @prev is 1633 * shared and whether @next is recursive. 1634 */ 1635 static inline unsigned int 1636 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1637 { 1638 return (next->read != 2) + ((prev->read == 0) << 1); 1639 } 1640 1641 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1642 { 1643 return 1U << __calc_dep_bitb(prev, next); 1644 } 1645 1646 /* 1647 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1648 * search. 1649 */ 1650 static inline void __bfs_init_root(struct lock_list *lock, 1651 struct lock_class *class) 1652 { 1653 lock->class = class; 1654 lock->parent = NULL; 1655 lock->only_xr = 0; 1656 } 1657 1658 /* 1659 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1660 * root for a BFS search. 1661 * 1662 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1663 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1664 * and -(S*)->. 1665 */ 1666 static inline void bfs_init_root(struct lock_list *lock, 1667 struct held_lock *hlock) 1668 { 1669 __bfs_init_root(lock, hlock_class(hlock)); 1670 lock->only_xr = (hlock->read == 2); 1671 } 1672 1673 /* 1674 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1675 * 1676 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1677 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1678 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1679 */ 1680 static inline void bfs_init_rootb(struct lock_list *lock, 1681 struct held_lock *hlock) 1682 { 1683 __bfs_init_root(lock, hlock_class(hlock)); 1684 lock->only_xr = (hlock->read != 0); 1685 } 1686 1687 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1688 { 1689 if (!lock || !lock->parent) 1690 return NULL; 1691 1692 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1693 &lock->entry, struct lock_list, entry); 1694 } 1695 1696 /* 1697 * Breadth-First Search to find a strong path in the dependency graph. 1698 * 1699 * @source_entry: the source of the path we are searching for. 1700 * @data: data used for the second parameter of @match function 1701 * @match: match function for the search 1702 * @target_entry: pointer to the target of a matched path 1703 * @offset: the offset to struct lock_class to determine whether it is 1704 * locks_after or locks_before 1705 * 1706 * We may have multiple edges (considering different kinds of dependencies, 1707 * e.g. ER and SN) between two nodes in the dependency graph. But 1708 * only the strong dependency path in the graph is relevant to deadlocks. A 1709 * strong dependency path is a dependency path that doesn't have two adjacent 1710 * dependencies as -(*R)-> -(S*)->, please see: 1711 * 1712 * Documentation/locking/lockdep-design.rst 1713 * 1714 * for more explanation of the definition of strong dependency paths 1715 * 1716 * In __bfs(), we only traverse in the strong dependency path: 1717 * 1718 * In lock_list::only_xr, we record whether the previous dependency only 1719 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1720 * filter out any -(S*)-> in the current dependency and after that, the 1721 * ->only_xr is set according to whether we only have -(*R)-> left. 1722 */ 1723 static enum bfs_result __bfs(struct lock_list *source_entry, 1724 void *data, 1725 bool (*match)(struct lock_list *entry, void *data), 1726 bool (*skip)(struct lock_list *entry, void *data), 1727 struct lock_list **target_entry, 1728 int offset) 1729 { 1730 struct circular_queue *cq = &lock_cq; 1731 struct lock_list *lock = NULL; 1732 struct lock_list *entry; 1733 struct list_head *head; 1734 unsigned int cq_depth; 1735 bool first; 1736 1737 lockdep_assert_locked(); 1738 1739 __cq_init(cq); 1740 __cq_enqueue(cq, source_entry); 1741 1742 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1743 if (!lock->class) 1744 return BFS_EINVALIDNODE; 1745 1746 /* 1747 * Step 1: check whether we already finish on this one. 1748 * 1749 * If we have visited all the dependencies from this @lock to 1750 * others (iow, if we have visited all lock_list entries in 1751 * @lock->class->locks_{after,before}) we skip, otherwise go 1752 * and visit all the dependencies in the list and mark this 1753 * list accessed. 1754 */ 1755 if (lock_accessed(lock)) 1756 continue; 1757 else 1758 mark_lock_accessed(lock); 1759 1760 /* 1761 * Step 2: check whether prev dependency and this form a strong 1762 * dependency path. 1763 */ 1764 if (lock->parent) { /* Parent exists, check prev dependency */ 1765 u8 dep = lock->dep; 1766 bool prev_only_xr = lock->parent->only_xr; 1767 1768 /* 1769 * Mask out all -(S*)-> if we only have *R in previous 1770 * step, because -(*R)-> -(S*)-> don't make up a strong 1771 * dependency. 1772 */ 1773 if (prev_only_xr) 1774 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1775 1776 /* If nothing left, we skip */ 1777 if (!dep) 1778 continue; 1779 1780 /* If there are only -(*R)-> left, set that for the next step */ 1781 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1782 } 1783 1784 /* 1785 * Step 3: we haven't visited this and there is a strong 1786 * dependency path to this, so check with @match. 1787 * If @skip is provide and returns true, we skip this 1788 * lock (and any path this lock is in). 1789 */ 1790 if (skip && skip(lock, data)) 1791 continue; 1792 1793 if (match(lock, data)) { 1794 *target_entry = lock; 1795 return BFS_RMATCH; 1796 } 1797 1798 /* 1799 * Step 4: if not match, expand the path by adding the 1800 * forward or backwards dependencies in the search 1801 * 1802 */ 1803 first = true; 1804 head = get_dep_list(lock, offset); 1805 list_for_each_entry_rcu(entry, head, entry) { 1806 visit_lock_entry(entry, lock); 1807 1808 /* 1809 * Note we only enqueue the first of the list into the 1810 * queue, because we can always find a sibling 1811 * dependency from one (see __bfs_next()), as a result 1812 * the space of queue is saved. 1813 */ 1814 if (!first) 1815 continue; 1816 1817 first = false; 1818 1819 if (__cq_enqueue(cq, entry)) 1820 return BFS_EQUEUEFULL; 1821 1822 cq_depth = __cq_get_elem_count(cq); 1823 if (max_bfs_queue_depth < cq_depth) 1824 max_bfs_queue_depth = cq_depth; 1825 } 1826 } 1827 1828 return BFS_RNOMATCH; 1829 } 1830 1831 static inline enum bfs_result 1832 __bfs_forwards(struct lock_list *src_entry, 1833 void *data, 1834 bool (*match)(struct lock_list *entry, void *data), 1835 bool (*skip)(struct lock_list *entry, void *data), 1836 struct lock_list **target_entry) 1837 { 1838 return __bfs(src_entry, data, match, skip, target_entry, 1839 offsetof(struct lock_class, locks_after)); 1840 1841 } 1842 1843 static inline enum bfs_result 1844 __bfs_backwards(struct lock_list *src_entry, 1845 void *data, 1846 bool (*match)(struct lock_list *entry, void *data), 1847 bool (*skip)(struct lock_list *entry, void *data), 1848 struct lock_list **target_entry) 1849 { 1850 return __bfs(src_entry, data, match, skip, target_entry, 1851 offsetof(struct lock_class, locks_before)); 1852 1853 } 1854 1855 static void print_lock_trace(const struct lock_trace *trace, 1856 unsigned int spaces) 1857 { 1858 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1859 } 1860 1861 /* 1862 * Print a dependency chain entry (this is only done when a deadlock 1863 * has been detected): 1864 */ 1865 static noinline void 1866 print_circular_bug_entry(struct lock_list *target, int depth) 1867 { 1868 if (debug_locks_silent) 1869 return; 1870 printk("\n-> #%u", depth); 1871 print_lock_name(target->class); 1872 printk(KERN_CONT ":\n"); 1873 print_lock_trace(target->trace, 6); 1874 } 1875 1876 static void 1877 print_circular_lock_scenario(struct held_lock *src, 1878 struct held_lock *tgt, 1879 struct lock_list *prt) 1880 { 1881 struct lock_class *source = hlock_class(src); 1882 struct lock_class *target = hlock_class(tgt); 1883 struct lock_class *parent = prt->class; 1884 1885 /* 1886 * A direct locking problem where unsafe_class lock is taken 1887 * directly by safe_class lock, then all we need to show 1888 * is the deadlock scenario, as it is obvious that the 1889 * unsafe lock is taken under the safe lock. 1890 * 1891 * But if there is a chain instead, where the safe lock takes 1892 * an intermediate lock (middle_class) where this lock is 1893 * not the same as the safe lock, then the lock chain is 1894 * used to describe the problem. Otherwise we would need 1895 * to show a different CPU case for each link in the chain 1896 * from the safe_class lock to the unsafe_class lock. 1897 */ 1898 if (parent != source) { 1899 printk("Chain exists of:\n "); 1900 __print_lock_name(source); 1901 printk(KERN_CONT " --> "); 1902 __print_lock_name(parent); 1903 printk(KERN_CONT " --> "); 1904 __print_lock_name(target); 1905 printk(KERN_CONT "\n\n"); 1906 } 1907 1908 printk(" Possible unsafe locking scenario:\n\n"); 1909 printk(" CPU0 CPU1\n"); 1910 printk(" ---- ----\n"); 1911 printk(" lock("); 1912 __print_lock_name(target); 1913 printk(KERN_CONT ");\n"); 1914 printk(" lock("); 1915 __print_lock_name(parent); 1916 printk(KERN_CONT ");\n"); 1917 printk(" lock("); 1918 __print_lock_name(target); 1919 printk(KERN_CONT ");\n"); 1920 printk(" lock("); 1921 __print_lock_name(source); 1922 printk(KERN_CONT ");\n"); 1923 printk("\n *** DEADLOCK ***\n\n"); 1924 } 1925 1926 /* 1927 * When a circular dependency is detected, print the 1928 * header first: 1929 */ 1930 static noinline void 1931 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1932 struct held_lock *check_src, 1933 struct held_lock *check_tgt) 1934 { 1935 struct task_struct *curr = current; 1936 1937 if (debug_locks_silent) 1938 return; 1939 1940 pr_warn("\n"); 1941 pr_warn("======================================================\n"); 1942 pr_warn("WARNING: possible circular locking dependency detected\n"); 1943 print_kernel_ident(); 1944 pr_warn("------------------------------------------------------\n"); 1945 pr_warn("%s/%d is trying to acquire lock:\n", 1946 curr->comm, task_pid_nr(curr)); 1947 print_lock(check_src); 1948 1949 pr_warn("\nbut task is already holding lock:\n"); 1950 1951 print_lock(check_tgt); 1952 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1953 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1954 1955 print_circular_bug_entry(entry, depth); 1956 } 1957 1958 /* 1959 * We are about to add A -> B into the dependency graph, and in __bfs() a 1960 * strong dependency path A -> .. -> B is found: hlock_class equals 1961 * entry->class. 1962 * 1963 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1964 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1965 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1966 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1967 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1968 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1969 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1970 * 1971 * We need to make sure both the start and the end of A -> .. -> B is not 1972 * weaker than A -> B. For the start part, please see the comment in 1973 * check_redundant(). For the end part, we need: 1974 * 1975 * Either 1976 * 1977 * a) A -> B is -(*R)-> (everything is not weaker than that) 1978 * 1979 * or 1980 * 1981 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1982 * 1983 */ 1984 static inline bool hlock_equal(struct lock_list *entry, void *data) 1985 { 1986 struct held_lock *hlock = (struct held_lock *)data; 1987 1988 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1989 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1990 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1991 } 1992 1993 /* 1994 * We are about to add B -> A into the dependency graph, and in __bfs() a 1995 * strong dependency path A -> .. -> B is found: hlock_class equals 1996 * entry->class. 1997 * 1998 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1999 * dependency cycle, that means: 2000 * 2001 * Either 2002 * 2003 * a) B -> A is -(E*)-> 2004 * 2005 * or 2006 * 2007 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 2008 * 2009 * as then we don't have -(*R)-> -(S*)-> in the cycle. 2010 */ 2011 static inline bool hlock_conflict(struct lock_list *entry, void *data) 2012 { 2013 struct held_lock *hlock = (struct held_lock *)data; 2014 2015 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2016 (hlock->read == 0 || /* B -> A is -(E*)-> */ 2017 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2018 } 2019 2020 static noinline void print_circular_bug(struct lock_list *this, 2021 struct lock_list *target, 2022 struct held_lock *check_src, 2023 struct held_lock *check_tgt) 2024 { 2025 struct task_struct *curr = current; 2026 struct lock_list *parent; 2027 struct lock_list *first_parent; 2028 int depth; 2029 2030 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2031 return; 2032 2033 this->trace = save_trace(); 2034 if (!this->trace) 2035 return; 2036 2037 depth = get_lock_depth(target); 2038 2039 print_circular_bug_header(target, depth, check_src, check_tgt); 2040 2041 parent = get_lock_parent(target); 2042 first_parent = parent; 2043 2044 while (parent) { 2045 print_circular_bug_entry(parent, --depth); 2046 parent = get_lock_parent(parent); 2047 } 2048 2049 printk("\nother info that might help us debug this:\n\n"); 2050 print_circular_lock_scenario(check_src, check_tgt, 2051 first_parent); 2052 2053 lockdep_print_held_locks(curr); 2054 2055 printk("\nstack backtrace:\n"); 2056 dump_stack(); 2057 } 2058 2059 static noinline void print_bfs_bug(int ret) 2060 { 2061 if (!debug_locks_off_graph_unlock()) 2062 return; 2063 2064 /* 2065 * Breadth-first-search failed, graph got corrupted? 2066 */ 2067 WARN(1, "lockdep bfs error:%d\n", ret); 2068 } 2069 2070 static bool noop_count(struct lock_list *entry, void *data) 2071 { 2072 (*(unsigned long *)data)++; 2073 return false; 2074 } 2075 2076 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2077 { 2078 unsigned long count = 0; 2079 struct lock_list *target_entry; 2080 2081 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2082 2083 return count; 2084 } 2085 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2086 { 2087 unsigned long ret, flags; 2088 struct lock_list this; 2089 2090 __bfs_init_root(&this, class); 2091 2092 raw_local_irq_save(flags); 2093 lockdep_lock(); 2094 ret = __lockdep_count_forward_deps(&this); 2095 lockdep_unlock(); 2096 raw_local_irq_restore(flags); 2097 2098 return ret; 2099 } 2100 2101 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2102 { 2103 unsigned long count = 0; 2104 struct lock_list *target_entry; 2105 2106 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2107 2108 return count; 2109 } 2110 2111 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2112 { 2113 unsigned long ret, flags; 2114 struct lock_list this; 2115 2116 __bfs_init_root(&this, class); 2117 2118 raw_local_irq_save(flags); 2119 lockdep_lock(); 2120 ret = __lockdep_count_backward_deps(&this); 2121 lockdep_unlock(); 2122 raw_local_irq_restore(flags); 2123 2124 return ret; 2125 } 2126 2127 /* 2128 * Check that the dependency graph starting at <src> can lead to 2129 * <target> or not. 2130 */ 2131 static noinline enum bfs_result 2132 check_path(struct held_lock *target, struct lock_list *src_entry, 2133 bool (*match)(struct lock_list *entry, void *data), 2134 bool (*skip)(struct lock_list *entry, void *data), 2135 struct lock_list **target_entry) 2136 { 2137 enum bfs_result ret; 2138 2139 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2140 2141 if (unlikely(bfs_error(ret))) 2142 print_bfs_bug(ret); 2143 2144 return ret; 2145 } 2146 2147 /* 2148 * Prove that the dependency graph starting at <src> can not 2149 * lead to <target>. If it can, there is a circle when adding 2150 * <target> -> <src> dependency. 2151 * 2152 * Print an error and return BFS_RMATCH if it does. 2153 */ 2154 static noinline enum bfs_result 2155 check_noncircular(struct held_lock *src, struct held_lock *target, 2156 struct lock_trace **const trace) 2157 { 2158 enum bfs_result ret; 2159 struct lock_list *target_entry; 2160 struct lock_list src_entry; 2161 2162 bfs_init_root(&src_entry, src); 2163 2164 debug_atomic_inc(nr_cyclic_checks); 2165 2166 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2167 2168 if (unlikely(ret == BFS_RMATCH)) { 2169 if (!*trace) { 2170 /* 2171 * If save_trace fails here, the printing might 2172 * trigger a WARN but because of the !nr_entries it 2173 * should not do bad things. 2174 */ 2175 *trace = save_trace(); 2176 } 2177 2178 print_circular_bug(&src_entry, target_entry, src, target); 2179 } 2180 2181 return ret; 2182 } 2183 2184 #ifdef CONFIG_TRACE_IRQFLAGS 2185 2186 /* 2187 * Forwards and backwards subgraph searching, for the purposes of 2188 * proving that two subgraphs can be connected by a new dependency 2189 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2190 * 2191 * A irq safe->unsafe deadlock happens with the following conditions: 2192 * 2193 * 1) We have a strong dependency path A -> ... -> B 2194 * 2195 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2196 * irq can create a new dependency B -> A (consider the case that a holder 2197 * of B gets interrupted by an irq whose handler will try to acquire A). 2198 * 2199 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2200 * strong circle: 2201 * 2202 * For the usage bits of B: 2203 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2204 * ENABLED_IRQ usage suffices. 2205 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2206 * ENABLED_IRQ_*_READ usage suffices. 2207 * 2208 * For the usage bits of A: 2209 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2210 * USED_IN_IRQ usage suffices. 2211 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2212 * USED_IN_IRQ_*_READ usage suffices. 2213 */ 2214 2215 /* 2216 * There is a strong dependency path in the dependency graph: A -> B, and now 2217 * we need to decide which usage bit of A should be accumulated to detect 2218 * safe->unsafe bugs. 2219 * 2220 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2221 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2222 * 2223 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2224 * path, any usage of A should be considered. Otherwise, we should only 2225 * consider _READ usage. 2226 */ 2227 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2228 { 2229 if (!entry->only_xr) 2230 *(unsigned long *)mask |= entry->class->usage_mask; 2231 else /* Mask out _READ usage bits */ 2232 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2233 2234 return false; 2235 } 2236 2237 /* 2238 * There is a strong dependency path in the dependency graph: A -> B, and now 2239 * we need to decide which usage bit of B conflicts with the usage bits of A, 2240 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2241 * 2242 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2243 * path, any usage of B should be considered. Otherwise, we should only 2244 * consider _READ usage. 2245 */ 2246 static inline bool usage_match(struct lock_list *entry, void *mask) 2247 { 2248 if (!entry->only_xr) 2249 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2250 else /* Mask out _READ usage bits */ 2251 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2252 } 2253 2254 static inline bool usage_skip(struct lock_list *entry, void *mask) 2255 { 2256 /* 2257 * Skip local_lock() for irq inversion detection. 2258 * 2259 * For !RT, local_lock() is not a real lock, so it won't carry any 2260 * dependency. 2261 * 2262 * For RT, an irq inversion happens when we have lock A and B, and on 2263 * some CPU we can have: 2264 * 2265 * lock(A); 2266 * <interrupted> 2267 * lock(B); 2268 * 2269 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2270 * 2271 * Now we prove local_lock() cannot exist in that dependency. First we 2272 * have the observation for any lock chain L1 -> ... -> Ln, for any 2273 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2274 * wait context check will complain. And since B is not a sleep lock, 2275 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2276 * local_lock() is 3, which is greater than 2, therefore there is no 2277 * way the local_lock() exists in the dependency B -> ... -> A. 2278 * 2279 * As a result, we will skip local_lock(), when we search for irq 2280 * inversion bugs. 2281 */ 2282 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2283 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2284 return false; 2285 2286 return true; 2287 } 2288 2289 return false; 2290 } 2291 2292 /* 2293 * Find a node in the forwards-direction dependency sub-graph starting 2294 * at @root->class that matches @bit. 2295 * 2296 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2297 * into *@target_entry. 2298 */ 2299 static enum bfs_result 2300 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2301 struct lock_list **target_entry) 2302 { 2303 enum bfs_result result; 2304 2305 debug_atomic_inc(nr_find_usage_forwards_checks); 2306 2307 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2308 2309 return result; 2310 } 2311 2312 /* 2313 * Find a node in the backwards-direction dependency sub-graph starting 2314 * at @root->class that matches @bit. 2315 */ 2316 static enum bfs_result 2317 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2318 struct lock_list **target_entry) 2319 { 2320 enum bfs_result result; 2321 2322 debug_atomic_inc(nr_find_usage_backwards_checks); 2323 2324 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2325 2326 return result; 2327 } 2328 2329 static void print_lock_class_header(struct lock_class *class, int depth) 2330 { 2331 int bit; 2332 2333 printk("%*s->", depth, ""); 2334 print_lock_name(class); 2335 #ifdef CONFIG_DEBUG_LOCKDEP 2336 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2337 #endif 2338 printk(KERN_CONT " {\n"); 2339 2340 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2341 if (class->usage_mask & (1 << bit)) { 2342 int len = depth; 2343 2344 len += printk("%*s %s", depth, "", usage_str[bit]); 2345 len += printk(KERN_CONT " at:\n"); 2346 print_lock_trace(class->usage_traces[bit], len); 2347 } 2348 } 2349 printk("%*s }\n", depth, ""); 2350 2351 printk("%*s ... key at: [<%px>] %pS\n", 2352 depth, "", class->key, class->key); 2353 } 2354 2355 /* 2356 * Dependency path printing: 2357 * 2358 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2359 * printing out each lock in the dependency path will help on understanding how 2360 * the deadlock could happen. Here are some details about dependency path 2361 * printing: 2362 * 2363 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2364 * for a lock dependency A -> B, there are two lock_lists: 2365 * 2366 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2367 * ->links_to is A. In this case, we can say the lock_list is 2368 * "A -> B" (forwards case). 2369 * 2370 * b) lock_list in the ->locks_before list of B, whose ->class is A 2371 * and ->links_to is B. In this case, we can say the lock_list is 2372 * "B <- A" (bacwards case). 2373 * 2374 * The ->trace of both a) and b) point to the call trace where B was 2375 * acquired with A held. 2376 * 2377 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2378 * represent a certain lock dependency, it only provides an initial entry 2379 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2380 * ->class is A, as a result BFS will search all dependencies starting with 2381 * A, e.g. A -> B or A -> C. 2382 * 2383 * The notation of a forwards helper lock_list is like "-> A", which means 2384 * we should search the forwards dependencies starting with "A", e.g A -> B 2385 * or A -> C. 2386 * 2387 * The notation of a bacwards helper lock_list is like "<- B", which means 2388 * we should search the backwards dependencies ending with "B", e.g. 2389 * B <- A or B <- C. 2390 */ 2391 2392 /* 2393 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2394 * 2395 * We have a lock dependency path as follow: 2396 * 2397 * @root @leaf 2398 * | | 2399 * V V 2400 * ->parent ->parent 2401 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2402 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2403 * 2404 * , so it's natural that we start from @leaf and print every ->class and 2405 * ->trace until we reach the @root. 2406 */ 2407 static void __used 2408 print_shortest_lock_dependencies(struct lock_list *leaf, 2409 struct lock_list *root) 2410 { 2411 struct lock_list *entry = leaf; 2412 int depth; 2413 2414 /*compute depth from generated tree by BFS*/ 2415 depth = get_lock_depth(leaf); 2416 2417 do { 2418 print_lock_class_header(entry->class, depth); 2419 printk("%*s ... acquired at:\n", depth, ""); 2420 print_lock_trace(entry->trace, 2); 2421 printk("\n"); 2422 2423 if (depth == 0 && (entry != root)) { 2424 printk("lockdep:%s bad path found in chain graph\n", __func__); 2425 break; 2426 } 2427 2428 entry = get_lock_parent(entry); 2429 depth--; 2430 } while (entry && (depth >= 0)); 2431 } 2432 2433 /* 2434 * printk the shortest lock dependencies from @leaf to @root. 2435 * 2436 * We have a lock dependency path (from a backwards search) as follow: 2437 * 2438 * @leaf @root 2439 * | | 2440 * V V 2441 * ->parent ->parent 2442 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2443 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2444 * 2445 * , so when we iterate from @leaf to @root, we actually print the lock 2446 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2447 * 2448 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2449 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2450 * trace of L1 in the dependency path, which is alright, because most of the 2451 * time we can figure out where L1 is held from the call trace of L2. 2452 */ 2453 static void __used 2454 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2455 struct lock_list *root) 2456 { 2457 struct lock_list *entry = leaf; 2458 const struct lock_trace *trace = NULL; 2459 int depth; 2460 2461 /*compute depth from generated tree by BFS*/ 2462 depth = get_lock_depth(leaf); 2463 2464 do { 2465 print_lock_class_header(entry->class, depth); 2466 if (trace) { 2467 printk("%*s ... acquired at:\n", depth, ""); 2468 print_lock_trace(trace, 2); 2469 printk("\n"); 2470 } 2471 2472 /* 2473 * Record the pointer to the trace for the next lock_list 2474 * entry, see the comments for the function. 2475 */ 2476 trace = entry->trace; 2477 2478 if (depth == 0 && (entry != root)) { 2479 printk("lockdep:%s bad path found in chain graph\n", __func__); 2480 break; 2481 } 2482 2483 entry = get_lock_parent(entry); 2484 depth--; 2485 } while (entry && (depth >= 0)); 2486 } 2487 2488 static void 2489 print_irq_lock_scenario(struct lock_list *safe_entry, 2490 struct lock_list *unsafe_entry, 2491 struct lock_class *prev_class, 2492 struct lock_class *next_class) 2493 { 2494 struct lock_class *safe_class = safe_entry->class; 2495 struct lock_class *unsafe_class = unsafe_entry->class; 2496 struct lock_class *middle_class = prev_class; 2497 2498 if (middle_class == safe_class) 2499 middle_class = next_class; 2500 2501 /* 2502 * A direct locking problem where unsafe_class lock is taken 2503 * directly by safe_class lock, then all we need to show 2504 * is the deadlock scenario, as it is obvious that the 2505 * unsafe lock is taken under the safe lock. 2506 * 2507 * But if there is a chain instead, where the safe lock takes 2508 * an intermediate lock (middle_class) where this lock is 2509 * not the same as the safe lock, then the lock chain is 2510 * used to describe the problem. Otherwise we would need 2511 * to show a different CPU case for each link in the chain 2512 * from the safe_class lock to the unsafe_class lock. 2513 */ 2514 if (middle_class != unsafe_class) { 2515 printk("Chain exists of:\n "); 2516 __print_lock_name(safe_class); 2517 printk(KERN_CONT " --> "); 2518 __print_lock_name(middle_class); 2519 printk(KERN_CONT " --> "); 2520 __print_lock_name(unsafe_class); 2521 printk(KERN_CONT "\n\n"); 2522 } 2523 2524 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2525 printk(" CPU0 CPU1\n"); 2526 printk(" ---- ----\n"); 2527 printk(" lock("); 2528 __print_lock_name(unsafe_class); 2529 printk(KERN_CONT ");\n"); 2530 printk(" local_irq_disable();\n"); 2531 printk(" lock("); 2532 __print_lock_name(safe_class); 2533 printk(KERN_CONT ");\n"); 2534 printk(" lock("); 2535 __print_lock_name(middle_class); 2536 printk(KERN_CONT ");\n"); 2537 printk(" <Interrupt>\n"); 2538 printk(" lock("); 2539 __print_lock_name(safe_class); 2540 printk(KERN_CONT ");\n"); 2541 printk("\n *** DEADLOCK ***\n\n"); 2542 } 2543 2544 static void 2545 print_bad_irq_dependency(struct task_struct *curr, 2546 struct lock_list *prev_root, 2547 struct lock_list *next_root, 2548 struct lock_list *backwards_entry, 2549 struct lock_list *forwards_entry, 2550 struct held_lock *prev, 2551 struct held_lock *next, 2552 enum lock_usage_bit bit1, 2553 enum lock_usage_bit bit2, 2554 const char *irqclass) 2555 { 2556 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2557 return; 2558 2559 pr_warn("\n"); 2560 pr_warn("=====================================================\n"); 2561 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2562 irqclass, irqclass); 2563 print_kernel_ident(); 2564 pr_warn("-----------------------------------------------------\n"); 2565 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2566 curr->comm, task_pid_nr(curr), 2567 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2568 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2569 lockdep_hardirqs_enabled(), 2570 curr->softirqs_enabled); 2571 print_lock(next); 2572 2573 pr_warn("\nand this task is already holding:\n"); 2574 print_lock(prev); 2575 pr_warn("which would create a new lock dependency:\n"); 2576 print_lock_name(hlock_class(prev)); 2577 pr_cont(" ->"); 2578 print_lock_name(hlock_class(next)); 2579 pr_cont("\n"); 2580 2581 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2582 irqclass); 2583 print_lock_name(backwards_entry->class); 2584 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2585 2586 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2587 2588 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2589 print_lock_name(forwards_entry->class); 2590 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2591 pr_warn("..."); 2592 2593 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2594 2595 pr_warn("\nother info that might help us debug this:\n\n"); 2596 print_irq_lock_scenario(backwards_entry, forwards_entry, 2597 hlock_class(prev), hlock_class(next)); 2598 2599 lockdep_print_held_locks(curr); 2600 2601 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2602 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2603 2604 pr_warn("\nthe dependencies between the lock to be acquired"); 2605 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2606 next_root->trace = save_trace(); 2607 if (!next_root->trace) 2608 return; 2609 print_shortest_lock_dependencies(forwards_entry, next_root); 2610 2611 pr_warn("\nstack backtrace:\n"); 2612 dump_stack(); 2613 } 2614 2615 static const char *state_names[] = { 2616 #define LOCKDEP_STATE(__STATE) \ 2617 __stringify(__STATE), 2618 #include "lockdep_states.h" 2619 #undef LOCKDEP_STATE 2620 }; 2621 2622 static const char *state_rnames[] = { 2623 #define LOCKDEP_STATE(__STATE) \ 2624 __stringify(__STATE)"-READ", 2625 #include "lockdep_states.h" 2626 #undef LOCKDEP_STATE 2627 }; 2628 2629 static inline const char *state_name(enum lock_usage_bit bit) 2630 { 2631 if (bit & LOCK_USAGE_READ_MASK) 2632 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2633 else 2634 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2635 } 2636 2637 /* 2638 * The bit number is encoded like: 2639 * 2640 * bit0: 0 exclusive, 1 read lock 2641 * bit1: 0 used in irq, 1 irq enabled 2642 * bit2-n: state 2643 */ 2644 static int exclusive_bit(int new_bit) 2645 { 2646 int state = new_bit & LOCK_USAGE_STATE_MASK; 2647 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2648 2649 /* 2650 * keep state, bit flip the direction and strip read. 2651 */ 2652 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2653 } 2654 2655 /* 2656 * Observe that when given a bitmask where each bitnr is encoded as above, a 2657 * right shift of the mask transforms the individual bitnrs as -1 and 2658 * conversely, a left shift transforms into +1 for the individual bitnrs. 2659 * 2660 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2661 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2662 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2663 * 2664 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2665 * 2666 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2667 * all bits set) and recompose with bitnr1 flipped. 2668 */ 2669 static unsigned long invert_dir_mask(unsigned long mask) 2670 { 2671 unsigned long excl = 0; 2672 2673 /* Invert dir */ 2674 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2675 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2676 2677 return excl; 2678 } 2679 2680 /* 2681 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2682 * usage may cause deadlock too, for example: 2683 * 2684 * P1 P2 2685 * <irq disabled> 2686 * write_lock(l1); <irq enabled> 2687 * read_lock(l2); 2688 * write_lock(l2); 2689 * <in irq> 2690 * read_lock(l1); 2691 * 2692 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2693 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2694 * deadlock. 2695 * 2696 * In fact, all of the following cases may cause deadlocks: 2697 * 2698 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2699 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2700 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2701 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2702 * 2703 * As a result, to calculate the "exclusive mask", first we invert the 2704 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2705 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2706 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2707 */ 2708 static unsigned long exclusive_mask(unsigned long mask) 2709 { 2710 unsigned long excl = invert_dir_mask(mask); 2711 2712 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2713 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2714 2715 return excl; 2716 } 2717 2718 /* 2719 * Retrieve the _possible_ original mask to which @mask is 2720 * exclusive. Ie: this is the opposite of exclusive_mask(). 2721 * Note that 2 possible original bits can match an exclusive 2722 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2723 * cleared. So both are returned for each exclusive bit. 2724 */ 2725 static unsigned long original_mask(unsigned long mask) 2726 { 2727 unsigned long excl = invert_dir_mask(mask); 2728 2729 /* Include read in existing usages */ 2730 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2731 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2732 2733 return excl; 2734 } 2735 2736 /* 2737 * Find the first pair of bit match between an original 2738 * usage mask and an exclusive usage mask. 2739 */ 2740 static int find_exclusive_match(unsigned long mask, 2741 unsigned long excl_mask, 2742 enum lock_usage_bit *bitp, 2743 enum lock_usage_bit *excl_bitp) 2744 { 2745 int bit, excl, excl_read; 2746 2747 for_each_set_bit(bit, &mask, LOCK_USED) { 2748 /* 2749 * exclusive_bit() strips the read bit, however, 2750 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2751 * to search excl | LOCK_USAGE_READ_MASK as well. 2752 */ 2753 excl = exclusive_bit(bit); 2754 excl_read = excl | LOCK_USAGE_READ_MASK; 2755 if (excl_mask & lock_flag(excl)) { 2756 *bitp = bit; 2757 *excl_bitp = excl; 2758 return 0; 2759 } else if (excl_mask & lock_flag(excl_read)) { 2760 *bitp = bit; 2761 *excl_bitp = excl_read; 2762 return 0; 2763 } 2764 } 2765 return -1; 2766 } 2767 2768 /* 2769 * Prove that the new dependency does not connect a hardirq-safe(-read) 2770 * lock with a hardirq-unsafe lock - to achieve this we search 2771 * the backwards-subgraph starting at <prev>, and the 2772 * forwards-subgraph starting at <next>: 2773 */ 2774 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2775 struct held_lock *next) 2776 { 2777 unsigned long usage_mask = 0, forward_mask, backward_mask; 2778 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2779 struct lock_list *target_entry1; 2780 struct lock_list *target_entry; 2781 struct lock_list this, that; 2782 enum bfs_result ret; 2783 2784 /* 2785 * Step 1: gather all hard/soft IRQs usages backward in an 2786 * accumulated usage mask. 2787 */ 2788 bfs_init_rootb(&this, prev); 2789 2790 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2791 if (bfs_error(ret)) { 2792 print_bfs_bug(ret); 2793 return 0; 2794 } 2795 2796 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2797 if (!usage_mask) 2798 return 1; 2799 2800 /* 2801 * Step 2: find exclusive uses forward that match the previous 2802 * backward accumulated mask. 2803 */ 2804 forward_mask = exclusive_mask(usage_mask); 2805 2806 bfs_init_root(&that, next); 2807 2808 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2809 if (bfs_error(ret)) { 2810 print_bfs_bug(ret); 2811 return 0; 2812 } 2813 if (ret == BFS_RNOMATCH) 2814 return 1; 2815 2816 /* 2817 * Step 3: we found a bad match! Now retrieve a lock from the backward 2818 * list whose usage mask matches the exclusive usage mask from the 2819 * lock found on the forward list. 2820 * 2821 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2822 * the follow case: 2823 * 2824 * When trying to add A -> B to the graph, we find that there is a 2825 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2826 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2827 * invert bits of M's usage_mask, we will find another lock N that is 2828 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2829 * cause a inversion deadlock. 2830 */ 2831 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2832 2833 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2834 if (bfs_error(ret)) { 2835 print_bfs_bug(ret); 2836 return 0; 2837 } 2838 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2839 return 1; 2840 2841 /* 2842 * Step 4: narrow down to a pair of incompatible usage bits 2843 * and report it. 2844 */ 2845 ret = find_exclusive_match(target_entry->class->usage_mask, 2846 target_entry1->class->usage_mask, 2847 &backward_bit, &forward_bit); 2848 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2849 return 1; 2850 2851 print_bad_irq_dependency(curr, &this, &that, 2852 target_entry, target_entry1, 2853 prev, next, 2854 backward_bit, forward_bit, 2855 state_name(backward_bit)); 2856 2857 return 0; 2858 } 2859 2860 #else 2861 2862 static inline int check_irq_usage(struct task_struct *curr, 2863 struct held_lock *prev, struct held_lock *next) 2864 { 2865 return 1; 2866 } 2867 2868 static inline bool usage_skip(struct lock_list *entry, void *mask) 2869 { 2870 return false; 2871 } 2872 2873 #endif /* CONFIG_TRACE_IRQFLAGS */ 2874 2875 #ifdef CONFIG_LOCKDEP_SMALL 2876 /* 2877 * Check that the dependency graph starting at <src> can lead to 2878 * <target> or not. If it can, <src> -> <target> dependency is already 2879 * in the graph. 2880 * 2881 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2882 * any error appears in the bfs search. 2883 */ 2884 static noinline enum bfs_result 2885 check_redundant(struct held_lock *src, struct held_lock *target) 2886 { 2887 enum bfs_result ret; 2888 struct lock_list *target_entry; 2889 struct lock_list src_entry; 2890 2891 bfs_init_root(&src_entry, src); 2892 /* 2893 * Special setup for check_redundant(). 2894 * 2895 * To report redundant, we need to find a strong dependency path that 2896 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2897 * we need to let __bfs() only search for a path starting at a -(E*)->, 2898 * we achieve this by setting the initial node's ->only_xr to true in 2899 * that case. And if <prev> is S, we set initial ->only_xr to false 2900 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2901 */ 2902 src_entry.only_xr = src->read == 0; 2903 2904 debug_atomic_inc(nr_redundant_checks); 2905 2906 /* 2907 * Note: we skip local_lock() for redundant check, because as the 2908 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2909 * the same. 2910 */ 2911 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2912 2913 if (ret == BFS_RMATCH) 2914 debug_atomic_inc(nr_redundant); 2915 2916 return ret; 2917 } 2918 2919 #else 2920 2921 static inline enum bfs_result 2922 check_redundant(struct held_lock *src, struct held_lock *target) 2923 { 2924 return BFS_RNOMATCH; 2925 } 2926 2927 #endif 2928 2929 static void inc_chains(int irq_context) 2930 { 2931 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2932 nr_hardirq_chains++; 2933 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2934 nr_softirq_chains++; 2935 else 2936 nr_process_chains++; 2937 } 2938 2939 static void dec_chains(int irq_context) 2940 { 2941 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2942 nr_hardirq_chains--; 2943 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2944 nr_softirq_chains--; 2945 else 2946 nr_process_chains--; 2947 } 2948 2949 static void 2950 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2951 { 2952 struct lock_class *next = hlock_class(nxt); 2953 struct lock_class *prev = hlock_class(prv); 2954 2955 printk(" Possible unsafe locking scenario:\n\n"); 2956 printk(" CPU0\n"); 2957 printk(" ----\n"); 2958 printk(" lock("); 2959 __print_lock_name(prev); 2960 printk(KERN_CONT ");\n"); 2961 printk(" lock("); 2962 __print_lock_name(next); 2963 printk(KERN_CONT ");\n"); 2964 printk("\n *** DEADLOCK ***\n\n"); 2965 printk(" May be due to missing lock nesting notation\n\n"); 2966 } 2967 2968 static void 2969 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2970 struct held_lock *next) 2971 { 2972 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2973 return; 2974 2975 pr_warn("\n"); 2976 pr_warn("============================================\n"); 2977 pr_warn("WARNING: possible recursive locking detected\n"); 2978 print_kernel_ident(); 2979 pr_warn("--------------------------------------------\n"); 2980 pr_warn("%s/%d is trying to acquire lock:\n", 2981 curr->comm, task_pid_nr(curr)); 2982 print_lock(next); 2983 pr_warn("\nbut task is already holding lock:\n"); 2984 print_lock(prev); 2985 2986 pr_warn("\nother info that might help us debug this:\n"); 2987 print_deadlock_scenario(next, prev); 2988 lockdep_print_held_locks(curr); 2989 2990 pr_warn("\nstack backtrace:\n"); 2991 dump_stack(); 2992 } 2993 2994 /* 2995 * Check whether we are holding such a class already. 2996 * 2997 * (Note that this has to be done separately, because the graph cannot 2998 * detect such classes of deadlocks.) 2999 * 3000 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 3001 * lock class is held but nest_lock is also held, i.e. we rely on the 3002 * nest_lock to avoid the deadlock. 3003 */ 3004 static int 3005 check_deadlock(struct task_struct *curr, struct held_lock *next) 3006 { 3007 struct held_lock *prev; 3008 struct held_lock *nest = NULL; 3009 int i; 3010 3011 for (i = 0; i < curr->lockdep_depth; i++) { 3012 prev = curr->held_locks + i; 3013 3014 if (prev->instance == next->nest_lock) 3015 nest = prev; 3016 3017 if (hlock_class(prev) != hlock_class(next)) 3018 continue; 3019 3020 /* 3021 * Allow read-after-read recursion of the same 3022 * lock class (i.e. read_lock(lock)+read_lock(lock)): 3023 */ 3024 if ((next->read == 2) && prev->read) 3025 continue; 3026 3027 /* 3028 * We're holding the nest_lock, which serializes this lock's 3029 * nesting behaviour. 3030 */ 3031 if (nest) 3032 return 2; 3033 3034 print_deadlock_bug(curr, prev, next); 3035 return 0; 3036 } 3037 return 1; 3038 } 3039 3040 /* 3041 * There was a chain-cache miss, and we are about to add a new dependency 3042 * to a previous lock. We validate the following rules: 3043 * 3044 * - would the adding of the <prev> -> <next> dependency create a 3045 * circular dependency in the graph? [== circular deadlock] 3046 * 3047 * - does the new prev->next dependency connect any hardirq-safe lock 3048 * (in the full backwards-subgraph starting at <prev>) with any 3049 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3050 * <next>)? [== illegal lock inversion with hardirq contexts] 3051 * 3052 * - does the new prev->next dependency connect any softirq-safe lock 3053 * (in the full backwards-subgraph starting at <prev>) with any 3054 * softirq-unsafe lock (in the full forwards-subgraph starting at 3055 * <next>)? [== illegal lock inversion with softirq contexts] 3056 * 3057 * any of these scenarios could lead to a deadlock. 3058 * 3059 * Then if all the validations pass, we add the forwards and backwards 3060 * dependency. 3061 */ 3062 static int 3063 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3064 struct held_lock *next, u16 distance, 3065 struct lock_trace **const trace) 3066 { 3067 struct lock_list *entry; 3068 enum bfs_result ret; 3069 3070 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3071 /* 3072 * The warning statements below may trigger a use-after-free 3073 * of the class name. It is better to trigger a use-after free 3074 * and to have the class name most of the time instead of not 3075 * having the class name available. 3076 */ 3077 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3078 "Detected use-after-free of lock class %px/%s\n", 3079 hlock_class(prev), 3080 hlock_class(prev)->name); 3081 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3082 "Detected use-after-free of lock class %px/%s\n", 3083 hlock_class(next), 3084 hlock_class(next)->name); 3085 return 2; 3086 } 3087 3088 /* 3089 * Prove that the new <prev> -> <next> dependency would not 3090 * create a circular dependency in the graph. (We do this by 3091 * a breadth-first search into the graph starting at <next>, 3092 * and check whether we can reach <prev>.) 3093 * 3094 * The search is limited by the size of the circular queue (i.e., 3095 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3096 * in the graph whose neighbours are to be checked. 3097 */ 3098 ret = check_noncircular(next, prev, trace); 3099 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3100 return 0; 3101 3102 if (!check_irq_usage(curr, prev, next)) 3103 return 0; 3104 3105 /* 3106 * Is the <prev> -> <next> dependency already present? 3107 * 3108 * (this may occur even though this is a new chain: consider 3109 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3110 * chains - the second one will be new, but L1 already has 3111 * L2 added to its dependency list, due to the first chain.) 3112 */ 3113 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3114 if (entry->class == hlock_class(next)) { 3115 if (distance == 1) 3116 entry->distance = 1; 3117 entry->dep |= calc_dep(prev, next); 3118 3119 /* 3120 * Also, update the reverse dependency in @next's 3121 * ->locks_before list. 3122 * 3123 * Here we reuse @entry as the cursor, which is fine 3124 * because we won't go to the next iteration of the 3125 * outer loop: 3126 * 3127 * For normal cases, we return in the inner loop. 3128 * 3129 * If we fail to return, we have inconsistency, i.e. 3130 * <prev>::locks_after contains <next> while 3131 * <next>::locks_before doesn't contain <prev>. In 3132 * that case, we return after the inner and indicate 3133 * something is wrong. 3134 */ 3135 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3136 if (entry->class == hlock_class(prev)) { 3137 if (distance == 1) 3138 entry->distance = 1; 3139 entry->dep |= calc_depb(prev, next); 3140 return 1; 3141 } 3142 } 3143 3144 /* <prev> is not found in <next>::locks_before */ 3145 return 0; 3146 } 3147 } 3148 3149 /* 3150 * Is the <prev> -> <next> link redundant? 3151 */ 3152 ret = check_redundant(prev, next); 3153 if (bfs_error(ret)) 3154 return 0; 3155 else if (ret == BFS_RMATCH) 3156 return 2; 3157 3158 if (!*trace) { 3159 *trace = save_trace(); 3160 if (!*trace) 3161 return 0; 3162 } 3163 3164 /* 3165 * Ok, all validations passed, add the new lock 3166 * to the previous lock's dependency list: 3167 */ 3168 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3169 &hlock_class(prev)->locks_after, distance, 3170 calc_dep(prev, next), *trace); 3171 3172 if (!ret) 3173 return 0; 3174 3175 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3176 &hlock_class(next)->locks_before, distance, 3177 calc_depb(prev, next), *trace); 3178 if (!ret) 3179 return 0; 3180 3181 return 2; 3182 } 3183 3184 /* 3185 * Add the dependency to all directly-previous locks that are 'relevant'. 3186 * The ones that are relevant are (in increasing distance from curr): 3187 * all consecutive trylock entries and the final non-trylock entry - or 3188 * the end of this context's lock-chain - whichever comes first. 3189 */ 3190 static int 3191 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3192 { 3193 struct lock_trace *trace = NULL; 3194 int depth = curr->lockdep_depth; 3195 struct held_lock *hlock; 3196 3197 /* 3198 * Debugging checks. 3199 * 3200 * Depth must not be zero for a non-head lock: 3201 */ 3202 if (!depth) 3203 goto out_bug; 3204 /* 3205 * At least two relevant locks must exist for this 3206 * to be a head: 3207 */ 3208 if (curr->held_locks[depth].irq_context != 3209 curr->held_locks[depth-1].irq_context) 3210 goto out_bug; 3211 3212 for (;;) { 3213 u16 distance = curr->lockdep_depth - depth + 1; 3214 hlock = curr->held_locks + depth - 1; 3215 3216 if (hlock->check) { 3217 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3218 if (!ret) 3219 return 0; 3220 3221 /* 3222 * Stop after the first non-trylock entry, 3223 * as non-trylock entries have added their 3224 * own direct dependencies already, so this 3225 * lock is connected to them indirectly: 3226 */ 3227 if (!hlock->trylock) 3228 break; 3229 } 3230 3231 depth--; 3232 /* 3233 * End of lock-stack? 3234 */ 3235 if (!depth) 3236 break; 3237 /* 3238 * Stop the search if we cross into another context: 3239 */ 3240 if (curr->held_locks[depth].irq_context != 3241 curr->held_locks[depth-1].irq_context) 3242 break; 3243 } 3244 return 1; 3245 out_bug: 3246 if (!debug_locks_off_graph_unlock()) 3247 return 0; 3248 3249 /* 3250 * Clearly we all shouldn't be here, but since we made it we 3251 * can reliable say we messed up our state. See the above two 3252 * gotos for reasons why we could possibly end up here. 3253 */ 3254 WARN_ON(1); 3255 3256 return 0; 3257 } 3258 3259 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3260 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3261 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3262 unsigned long nr_zapped_lock_chains; 3263 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3264 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3265 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3266 3267 /* 3268 * The first 2 chain_hlocks entries in the chain block in the bucket 3269 * list contains the following meta data: 3270 * 3271 * entry[0]: 3272 * Bit 15 - always set to 1 (it is not a class index) 3273 * Bits 0-14 - upper 15 bits of the next block index 3274 * entry[1] - lower 16 bits of next block index 3275 * 3276 * A next block index of all 1 bits means it is the end of the list. 3277 * 3278 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3279 * the chain block size: 3280 * 3281 * entry[2] - upper 16 bits of the chain block size 3282 * entry[3] - lower 16 bits of the chain block size 3283 */ 3284 #define MAX_CHAIN_BUCKETS 16 3285 #define CHAIN_BLK_FLAG (1U << 15) 3286 #define CHAIN_BLK_LIST_END 0xFFFFU 3287 3288 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3289 3290 static inline int size_to_bucket(int size) 3291 { 3292 if (size > MAX_CHAIN_BUCKETS) 3293 return 0; 3294 3295 return size - 1; 3296 } 3297 3298 /* 3299 * Iterate all the chain blocks in a bucket. 3300 */ 3301 #define for_each_chain_block(bucket, prev, curr) \ 3302 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3303 (curr) >= 0; \ 3304 (prev) = (curr), (curr) = chain_block_next(curr)) 3305 3306 /* 3307 * next block or -1 3308 */ 3309 static inline int chain_block_next(int offset) 3310 { 3311 int next = chain_hlocks[offset]; 3312 3313 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3314 3315 if (next == CHAIN_BLK_LIST_END) 3316 return -1; 3317 3318 next &= ~CHAIN_BLK_FLAG; 3319 next <<= 16; 3320 next |= chain_hlocks[offset + 1]; 3321 3322 return next; 3323 } 3324 3325 /* 3326 * bucket-0 only 3327 */ 3328 static inline int chain_block_size(int offset) 3329 { 3330 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3331 } 3332 3333 static inline void init_chain_block(int offset, int next, int bucket, int size) 3334 { 3335 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3336 chain_hlocks[offset + 1] = (u16)next; 3337 3338 if (size && !bucket) { 3339 chain_hlocks[offset + 2] = size >> 16; 3340 chain_hlocks[offset + 3] = (u16)size; 3341 } 3342 } 3343 3344 static inline void add_chain_block(int offset, int size) 3345 { 3346 int bucket = size_to_bucket(size); 3347 int next = chain_block_buckets[bucket]; 3348 int prev, curr; 3349 3350 if (unlikely(size < 2)) { 3351 /* 3352 * We can't store single entries on the freelist. Leak them. 3353 * 3354 * One possible way out would be to uniquely mark them, other 3355 * than with CHAIN_BLK_FLAG, such that we can recover them when 3356 * the block before it is re-added. 3357 */ 3358 if (size) 3359 nr_lost_chain_hlocks++; 3360 return; 3361 } 3362 3363 nr_free_chain_hlocks += size; 3364 if (!bucket) { 3365 nr_large_chain_blocks++; 3366 3367 /* 3368 * Variable sized, sort large to small. 3369 */ 3370 for_each_chain_block(0, prev, curr) { 3371 if (size >= chain_block_size(curr)) 3372 break; 3373 } 3374 init_chain_block(offset, curr, 0, size); 3375 if (prev < 0) 3376 chain_block_buckets[0] = offset; 3377 else 3378 init_chain_block(prev, offset, 0, 0); 3379 return; 3380 } 3381 /* 3382 * Fixed size, add to head. 3383 */ 3384 init_chain_block(offset, next, bucket, size); 3385 chain_block_buckets[bucket] = offset; 3386 } 3387 3388 /* 3389 * Only the first block in the list can be deleted. 3390 * 3391 * For the variable size bucket[0], the first block (the largest one) is 3392 * returned, broken up and put back into the pool. So if a chain block of 3393 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3394 * queued up after the primordial chain block and never be used until the 3395 * hlock entries in the primordial chain block is almost used up. That 3396 * causes fragmentation and reduce allocation efficiency. That can be 3397 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3398 */ 3399 static inline void del_chain_block(int bucket, int size, int next) 3400 { 3401 nr_free_chain_hlocks -= size; 3402 chain_block_buckets[bucket] = next; 3403 3404 if (!bucket) 3405 nr_large_chain_blocks--; 3406 } 3407 3408 static void init_chain_block_buckets(void) 3409 { 3410 int i; 3411 3412 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3413 chain_block_buckets[i] = -1; 3414 3415 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3416 } 3417 3418 /* 3419 * Return offset of a chain block of the right size or -1 if not found. 3420 * 3421 * Fairly simple worst-fit allocator with the addition of a number of size 3422 * specific free lists. 3423 */ 3424 static int alloc_chain_hlocks(int req) 3425 { 3426 int bucket, curr, size; 3427 3428 /* 3429 * We rely on the MSB to act as an escape bit to denote freelist 3430 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3431 */ 3432 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3433 3434 init_data_structures_once(); 3435 3436 if (nr_free_chain_hlocks < req) 3437 return -1; 3438 3439 /* 3440 * We require a minimum of 2 (u16) entries to encode a freelist 3441 * 'pointer'. 3442 */ 3443 req = max(req, 2); 3444 bucket = size_to_bucket(req); 3445 curr = chain_block_buckets[bucket]; 3446 3447 if (bucket) { 3448 if (curr >= 0) { 3449 del_chain_block(bucket, req, chain_block_next(curr)); 3450 return curr; 3451 } 3452 /* Try bucket 0 */ 3453 curr = chain_block_buckets[0]; 3454 } 3455 3456 /* 3457 * The variable sized freelist is sorted by size; the first entry is 3458 * the largest. Use it if it fits. 3459 */ 3460 if (curr >= 0) { 3461 size = chain_block_size(curr); 3462 if (likely(size >= req)) { 3463 del_chain_block(0, size, chain_block_next(curr)); 3464 add_chain_block(curr + req, size - req); 3465 return curr; 3466 } 3467 } 3468 3469 /* 3470 * Last resort, split a block in a larger sized bucket. 3471 */ 3472 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3473 bucket = size_to_bucket(size); 3474 curr = chain_block_buckets[bucket]; 3475 if (curr < 0) 3476 continue; 3477 3478 del_chain_block(bucket, size, chain_block_next(curr)); 3479 add_chain_block(curr + req, size - req); 3480 return curr; 3481 } 3482 3483 return -1; 3484 } 3485 3486 static inline void free_chain_hlocks(int base, int size) 3487 { 3488 add_chain_block(base, max(size, 2)); 3489 } 3490 3491 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3492 { 3493 u16 chain_hlock = chain_hlocks[chain->base + i]; 3494 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3495 3496 return lock_classes + class_idx; 3497 } 3498 3499 /* 3500 * Returns the index of the first held_lock of the current chain 3501 */ 3502 static inline int get_first_held_lock(struct task_struct *curr, 3503 struct held_lock *hlock) 3504 { 3505 int i; 3506 struct held_lock *hlock_curr; 3507 3508 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3509 hlock_curr = curr->held_locks + i; 3510 if (hlock_curr->irq_context != hlock->irq_context) 3511 break; 3512 3513 } 3514 3515 return ++i; 3516 } 3517 3518 #ifdef CONFIG_DEBUG_LOCKDEP 3519 /* 3520 * Returns the next chain_key iteration 3521 */ 3522 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3523 { 3524 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3525 3526 printk(" hlock_id:%d -> chain_key:%016Lx", 3527 (unsigned int)hlock_id, 3528 (unsigned long long)new_chain_key); 3529 return new_chain_key; 3530 } 3531 3532 static void 3533 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3534 { 3535 struct held_lock *hlock; 3536 u64 chain_key = INITIAL_CHAIN_KEY; 3537 int depth = curr->lockdep_depth; 3538 int i = get_first_held_lock(curr, hlock_next); 3539 3540 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3541 hlock_next->irq_context); 3542 for (; i < depth; i++) { 3543 hlock = curr->held_locks + i; 3544 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3545 3546 print_lock(hlock); 3547 } 3548 3549 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3550 print_lock(hlock_next); 3551 } 3552 3553 static void print_chain_keys_chain(struct lock_chain *chain) 3554 { 3555 int i; 3556 u64 chain_key = INITIAL_CHAIN_KEY; 3557 u16 hlock_id; 3558 3559 printk("depth: %u\n", chain->depth); 3560 for (i = 0; i < chain->depth; i++) { 3561 hlock_id = chain_hlocks[chain->base + i]; 3562 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3563 3564 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id)); 3565 printk("\n"); 3566 } 3567 } 3568 3569 static void print_collision(struct task_struct *curr, 3570 struct held_lock *hlock_next, 3571 struct lock_chain *chain) 3572 { 3573 pr_warn("\n"); 3574 pr_warn("============================\n"); 3575 pr_warn("WARNING: chain_key collision\n"); 3576 print_kernel_ident(); 3577 pr_warn("----------------------------\n"); 3578 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3579 pr_warn("Hash chain already cached but the contents don't match!\n"); 3580 3581 pr_warn("Held locks:"); 3582 print_chain_keys_held_locks(curr, hlock_next); 3583 3584 pr_warn("Locks in cached chain:"); 3585 print_chain_keys_chain(chain); 3586 3587 pr_warn("\nstack backtrace:\n"); 3588 dump_stack(); 3589 } 3590 #endif 3591 3592 /* 3593 * Checks whether the chain and the current held locks are consistent 3594 * in depth and also in content. If they are not it most likely means 3595 * that there was a collision during the calculation of the chain_key. 3596 * Returns: 0 not passed, 1 passed 3597 */ 3598 static int check_no_collision(struct task_struct *curr, 3599 struct held_lock *hlock, 3600 struct lock_chain *chain) 3601 { 3602 #ifdef CONFIG_DEBUG_LOCKDEP 3603 int i, j, id; 3604 3605 i = get_first_held_lock(curr, hlock); 3606 3607 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3608 print_collision(curr, hlock, chain); 3609 return 0; 3610 } 3611 3612 for (j = 0; j < chain->depth - 1; j++, i++) { 3613 id = hlock_id(&curr->held_locks[i]); 3614 3615 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3616 print_collision(curr, hlock, chain); 3617 return 0; 3618 } 3619 } 3620 #endif 3621 return 1; 3622 } 3623 3624 /* 3625 * Given an index that is >= -1, return the index of the next lock chain. 3626 * Return -2 if there is no next lock chain. 3627 */ 3628 long lockdep_next_lockchain(long i) 3629 { 3630 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3631 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3632 } 3633 3634 unsigned long lock_chain_count(void) 3635 { 3636 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3637 } 3638 3639 /* Must be called with the graph lock held. */ 3640 static struct lock_chain *alloc_lock_chain(void) 3641 { 3642 int idx = find_first_zero_bit(lock_chains_in_use, 3643 ARRAY_SIZE(lock_chains)); 3644 3645 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3646 return NULL; 3647 __set_bit(idx, lock_chains_in_use); 3648 return lock_chains + idx; 3649 } 3650 3651 /* 3652 * Adds a dependency chain into chain hashtable. And must be called with 3653 * graph_lock held. 3654 * 3655 * Return 0 if fail, and graph_lock is released. 3656 * Return 1 if succeed, with graph_lock held. 3657 */ 3658 static inline int add_chain_cache(struct task_struct *curr, 3659 struct held_lock *hlock, 3660 u64 chain_key) 3661 { 3662 struct hlist_head *hash_head = chainhashentry(chain_key); 3663 struct lock_chain *chain; 3664 int i, j; 3665 3666 /* 3667 * The caller must hold the graph lock, ensure we've got IRQs 3668 * disabled to make this an IRQ-safe lock.. for recursion reasons 3669 * lockdep won't complain about its own locking errors. 3670 */ 3671 if (lockdep_assert_locked()) 3672 return 0; 3673 3674 chain = alloc_lock_chain(); 3675 if (!chain) { 3676 if (!debug_locks_off_graph_unlock()) 3677 return 0; 3678 3679 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3680 dump_stack(); 3681 return 0; 3682 } 3683 chain->chain_key = chain_key; 3684 chain->irq_context = hlock->irq_context; 3685 i = get_first_held_lock(curr, hlock); 3686 chain->depth = curr->lockdep_depth + 1 - i; 3687 3688 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3689 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3690 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3691 3692 j = alloc_chain_hlocks(chain->depth); 3693 if (j < 0) { 3694 if (!debug_locks_off_graph_unlock()) 3695 return 0; 3696 3697 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3698 dump_stack(); 3699 return 0; 3700 } 3701 3702 chain->base = j; 3703 for (j = 0; j < chain->depth - 1; j++, i++) { 3704 int lock_id = hlock_id(curr->held_locks + i); 3705 3706 chain_hlocks[chain->base + j] = lock_id; 3707 } 3708 chain_hlocks[chain->base + j] = hlock_id(hlock); 3709 hlist_add_head_rcu(&chain->entry, hash_head); 3710 debug_atomic_inc(chain_lookup_misses); 3711 inc_chains(chain->irq_context); 3712 3713 return 1; 3714 } 3715 3716 /* 3717 * Look up a dependency chain. Must be called with either the graph lock or 3718 * the RCU read lock held. 3719 */ 3720 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3721 { 3722 struct hlist_head *hash_head = chainhashentry(chain_key); 3723 struct lock_chain *chain; 3724 3725 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3726 if (READ_ONCE(chain->chain_key) == chain_key) { 3727 debug_atomic_inc(chain_lookup_hits); 3728 return chain; 3729 } 3730 } 3731 return NULL; 3732 } 3733 3734 /* 3735 * If the key is not present yet in dependency chain cache then 3736 * add it and return 1 - in this case the new dependency chain is 3737 * validated. If the key is already hashed, return 0. 3738 * (On return with 1 graph_lock is held.) 3739 */ 3740 static inline int lookup_chain_cache_add(struct task_struct *curr, 3741 struct held_lock *hlock, 3742 u64 chain_key) 3743 { 3744 struct lock_class *class = hlock_class(hlock); 3745 struct lock_chain *chain = lookup_chain_cache(chain_key); 3746 3747 if (chain) { 3748 cache_hit: 3749 if (!check_no_collision(curr, hlock, chain)) 3750 return 0; 3751 3752 if (very_verbose(class)) { 3753 printk("\nhash chain already cached, key: " 3754 "%016Lx tail class: [%px] %s\n", 3755 (unsigned long long)chain_key, 3756 class->key, class->name); 3757 } 3758 3759 return 0; 3760 } 3761 3762 if (very_verbose(class)) { 3763 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3764 (unsigned long long)chain_key, class->key, class->name); 3765 } 3766 3767 if (!graph_lock()) 3768 return 0; 3769 3770 /* 3771 * We have to walk the chain again locked - to avoid duplicates: 3772 */ 3773 chain = lookup_chain_cache(chain_key); 3774 if (chain) { 3775 graph_unlock(); 3776 goto cache_hit; 3777 } 3778 3779 if (!add_chain_cache(curr, hlock, chain_key)) 3780 return 0; 3781 3782 return 1; 3783 } 3784 3785 static int validate_chain(struct task_struct *curr, 3786 struct held_lock *hlock, 3787 int chain_head, u64 chain_key) 3788 { 3789 /* 3790 * Trylock needs to maintain the stack of held locks, but it 3791 * does not add new dependencies, because trylock can be done 3792 * in any order. 3793 * 3794 * We look up the chain_key and do the O(N^2) check and update of 3795 * the dependencies only if this is a new dependency chain. 3796 * (If lookup_chain_cache_add() return with 1 it acquires 3797 * graph_lock for us) 3798 */ 3799 if (!hlock->trylock && hlock->check && 3800 lookup_chain_cache_add(curr, hlock, chain_key)) { 3801 /* 3802 * Check whether last held lock: 3803 * 3804 * - is irq-safe, if this lock is irq-unsafe 3805 * - is softirq-safe, if this lock is hardirq-unsafe 3806 * 3807 * And check whether the new lock's dependency graph 3808 * could lead back to the previous lock: 3809 * 3810 * - within the current held-lock stack 3811 * - across our accumulated lock dependency records 3812 * 3813 * any of these scenarios could lead to a deadlock. 3814 */ 3815 /* 3816 * The simple case: does the current hold the same lock 3817 * already? 3818 */ 3819 int ret = check_deadlock(curr, hlock); 3820 3821 if (!ret) 3822 return 0; 3823 /* 3824 * Add dependency only if this lock is not the head 3825 * of the chain, and if the new lock introduces no more 3826 * lock dependency (because we already hold a lock with the 3827 * same lock class) nor deadlock (because the nest_lock 3828 * serializes nesting locks), see the comments for 3829 * check_deadlock(). 3830 */ 3831 if (!chain_head && ret != 2) { 3832 if (!check_prevs_add(curr, hlock)) 3833 return 0; 3834 } 3835 3836 graph_unlock(); 3837 } else { 3838 /* after lookup_chain_cache_add(): */ 3839 if (unlikely(!debug_locks)) 3840 return 0; 3841 } 3842 3843 return 1; 3844 } 3845 #else 3846 static inline int validate_chain(struct task_struct *curr, 3847 struct held_lock *hlock, 3848 int chain_head, u64 chain_key) 3849 { 3850 return 1; 3851 } 3852 3853 static void init_chain_block_buckets(void) { } 3854 #endif /* CONFIG_PROVE_LOCKING */ 3855 3856 /* 3857 * We are building curr_chain_key incrementally, so double-check 3858 * it from scratch, to make sure that it's done correctly: 3859 */ 3860 static void check_chain_key(struct task_struct *curr) 3861 { 3862 #ifdef CONFIG_DEBUG_LOCKDEP 3863 struct held_lock *hlock, *prev_hlock = NULL; 3864 unsigned int i; 3865 u64 chain_key = INITIAL_CHAIN_KEY; 3866 3867 for (i = 0; i < curr->lockdep_depth; i++) { 3868 hlock = curr->held_locks + i; 3869 if (chain_key != hlock->prev_chain_key) { 3870 debug_locks_off(); 3871 /* 3872 * We got mighty confused, our chain keys don't match 3873 * with what we expect, someone trample on our task state? 3874 */ 3875 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3876 curr->lockdep_depth, i, 3877 (unsigned long long)chain_key, 3878 (unsigned long long)hlock->prev_chain_key); 3879 return; 3880 } 3881 3882 /* 3883 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3884 * it registered lock class index? 3885 */ 3886 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3887 return; 3888 3889 if (prev_hlock && (prev_hlock->irq_context != 3890 hlock->irq_context)) 3891 chain_key = INITIAL_CHAIN_KEY; 3892 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3893 prev_hlock = hlock; 3894 } 3895 if (chain_key != curr->curr_chain_key) { 3896 debug_locks_off(); 3897 /* 3898 * More smoking hash instead of calculating it, damn see these 3899 * numbers float.. I bet that a pink elephant stepped on my memory. 3900 */ 3901 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3902 curr->lockdep_depth, i, 3903 (unsigned long long)chain_key, 3904 (unsigned long long)curr->curr_chain_key); 3905 } 3906 #endif 3907 } 3908 3909 #ifdef CONFIG_PROVE_LOCKING 3910 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3911 enum lock_usage_bit new_bit); 3912 3913 static void print_usage_bug_scenario(struct held_lock *lock) 3914 { 3915 struct lock_class *class = hlock_class(lock); 3916 3917 printk(" Possible unsafe locking scenario:\n\n"); 3918 printk(" CPU0\n"); 3919 printk(" ----\n"); 3920 printk(" lock("); 3921 __print_lock_name(class); 3922 printk(KERN_CONT ");\n"); 3923 printk(" <Interrupt>\n"); 3924 printk(" lock("); 3925 __print_lock_name(class); 3926 printk(KERN_CONT ");\n"); 3927 printk("\n *** DEADLOCK ***\n\n"); 3928 } 3929 3930 static void 3931 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3932 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3933 { 3934 if (!debug_locks_off() || debug_locks_silent) 3935 return; 3936 3937 pr_warn("\n"); 3938 pr_warn("================================\n"); 3939 pr_warn("WARNING: inconsistent lock state\n"); 3940 print_kernel_ident(); 3941 pr_warn("--------------------------------\n"); 3942 3943 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3944 usage_str[prev_bit], usage_str[new_bit]); 3945 3946 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3947 curr->comm, task_pid_nr(curr), 3948 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3949 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3950 lockdep_hardirqs_enabled(), 3951 lockdep_softirqs_enabled(curr)); 3952 print_lock(this); 3953 3954 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3955 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3956 3957 print_irqtrace_events(curr); 3958 pr_warn("\nother info that might help us debug this:\n"); 3959 print_usage_bug_scenario(this); 3960 3961 lockdep_print_held_locks(curr); 3962 3963 pr_warn("\nstack backtrace:\n"); 3964 dump_stack(); 3965 } 3966 3967 /* 3968 * Print out an error if an invalid bit is set: 3969 */ 3970 static inline int 3971 valid_state(struct task_struct *curr, struct held_lock *this, 3972 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3973 { 3974 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3975 graph_unlock(); 3976 print_usage_bug(curr, this, bad_bit, new_bit); 3977 return 0; 3978 } 3979 return 1; 3980 } 3981 3982 3983 /* 3984 * print irq inversion bug: 3985 */ 3986 static void 3987 print_irq_inversion_bug(struct task_struct *curr, 3988 struct lock_list *root, struct lock_list *other, 3989 struct held_lock *this, int forwards, 3990 const char *irqclass) 3991 { 3992 struct lock_list *entry = other; 3993 struct lock_list *middle = NULL; 3994 int depth; 3995 3996 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3997 return; 3998 3999 pr_warn("\n"); 4000 pr_warn("========================================================\n"); 4001 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 4002 print_kernel_ident(); 4003 pr_warn("--------------------------------------------------------\n"); 4004 pr_warn("%s/%d just changed the state of lock:\n", 4005 curr->comm, task_pid_nr(curr)); 4006 print_lock(this); 4007 if (forwards) 4008 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 4009 else 4010 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 4011 print_lock_name(other->class); 4012 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 4013 4014 pr_warn("\nother info that might help us debug this:\n"); 4015 4016 /* Find a middle lock (if one exists) */ 4017 depth = get_lock_depth(other); 4018 do { 4019 if (depth == 0 && (entry != root)) { 4020 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 4021 break; 4022 } 4023 middle = entry; 4024 entry = get_lock_parent(entry); 4025 depth--; 4026 } while (entry && entry != root && (depth >= 0)); 4027 if (forwards) 4028 print_irq_lock_scenario(root, other, 4029 middle ? middle->class : root->class, other->class); 4030 else 4031 print_irq_lock_scenario(other, root, 4032 middle ? middle->class : other->class, root->class); 4033 4034 lockdep_print_held_locks(curr); 4035 4036 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4037 root->trace = save_trace(); 4038 if (!root->trace) 4039 return; 4040 print_shortest_lock_dependencies(other, root); 4041 4042 pr_warn("\nstack backtrace:\n"); 4043 dump_stack(); 4044 } 4045 4046 /* 4047 * Prove that in the forwards-direction subgraph starting at <this> 4048 * there is no lock matching <mask>: 4049 */ 4050 static int 4051 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4052 enum lock_usage_bit bit) 4053 { 4054 enum bfs_result ret; 4055 struct lock_list root; 4056 struct lock_list *target_entry; 4057 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4058 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4059 4060 bfs_init_root(&root, this); 4061 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4062 if (bfs_error(ret)) { 4063 print_bfs_bug(ret); 4064 return 0; 4065 } 4066 if (ret == BFS_RNOMATCH) 4067 return 1; 4068 4069 /* Check whether write or read usage is the match */ 4070 if (target_entry->class->usage_mask & lock_flag(bit)) { 4071 print_irq_inversion_bug(curr, &root, target_entry, 4072 this, 1, state_name(bit)); 4073 } else { 4074 print_irq_inversion_bug(curr, &root, target_entry, 4075 this, 1, state_name(read_bit)); 4076 } 4077 4078 return 0; 4079 } 4080 4081 /* 4082 * Prove that in the backwards-direction subgraph starting at <this> 4083 * there is no lock matching <mask>: 4084 */ 4085 static int 4086 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4087 enum lock_usage_bit bit) 4088 { 4089 enum bfs_result ret; 4090 struct lock_list root; 4091 struct lock_list *target_entry; 4092 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4093 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4094 4095 bfs_init_rootb(&root, this); 4096 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4097 if (bfs_error(ret)) { 4098 print_bfs_bug(ret); 4099 return 0; 4100 } 4101 if (ret == BFS_RNOMATCH) 4102 return 1; 4103 4104 /* Check whether write or read usage is the match */ 4105 if (target_entry->class->usage_mask & lock_flag(bit)) { 4106 print_irq_inversion_bug(curr, &root, target_entry, 4107 this, 0, state_name(bit)); 4108 } else { 4109 print_irq_inversion_bug(curr, &root, target_entry, 4110 this, 0, state_name(read_bit)); 4111 } 4112 4113 return 0; 4114 } 4115 4116 void print_irqtrace_events(struct task_struct *curr) 4117 { 4118 const struct irqtrace_events *trace = &curr->irqtrace; 4119 4120 printk("irq event stamp: %u\n", trace->irq_events); 4121 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4122 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4123 (void *)trace->hardirq_enable_ip); 4124 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4125 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4126 (void *)trace->hardirq_disable_ip); 4127 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4128 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4129 (void *)trace->softirq_enable_ip); 4130 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4131 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4132 (void *)trace->softirq_disable_ip); 4133 } 4134 4135 static int HARDIRQ_verbose(struct lock_class *class) 4136 { 4137 #if HARDIRQ_VERBOSE 4138 return class_filter(class); 4139 #endif 4140 return 0; 4141 } 4142 4143 static int SOFTIRQ_verbose(struct lock_class *class) 4144 { 4145 #if SOFTIRQ_VERBOSE 4146 return class_filter(class); 4147 #endif 4148 return 0; 4149 } 4150 4151 static int (*state_verbose_f[])(struct lock_class *class) = { 4152 #define LOCKDEP_STATE(__STATE) \ 4153 __STATE##_verbose, 4154 #include "lockdep_states.h" 4155 #undef LOCKDEP_STATE 4156 }; 4157 4158 static inline int state_verbose(enum lock_usage_bit bit, 4159 struct lock_class *class) 4160 { 4161 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4162 } 4163 4164 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4165 enum lock_usage_bit bit, const char *name); 4166 4167 static int 4168 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4169 enum lock_usage_bit new_bit) 4170 { 4171 int excl_bit = exclusive_bit(new_bit); 4172 int read = new_bit & LOCK_USAGE_READ_MASK; 4173 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4174 4175 /* 4176 * Validate that this particular lock does not have conflicting 4177 * usage states. 4178 */ 4179 if (!valid_state(curr, this, new_bit, excl_bit)) 4180 return 0; 4181 4182 /* 4183 * Check for read in write conflicts 4184 */ 4185 if (!read && !valid_state(curr, this, new_bit, 4186 excl_bit + LOCK_USAGE_READ_MASK)) 4187 return 0; 4188 4189 4190 /* 4191 * Validate that the lock dependencies don't have conflicting usage 4192 * states. 4193 */ 4194 if (dir) { 4195 /* 4196 * mark ENABLED has to look backwards -- to ensure no dependee 4197 * has USED_IN state, which, again, would allow recursion deadlocks. 4198 */ 4199 if (!check_usage_backwards(curr, this, excl_bit)) 4200 return 0; 4201 } else { 4202 /* 4203 * mark USED_IN has to look forwards -- to ensure no dependency 4204 * has ENABLED state, which would allow recursion deadlocks. 4205 */ 4206 if (!check_usage_forwards(curr, this, excl_bit)) 4207 return 0; 4208 } 4209 4210 if (state_verbose(new_bit, hlock_class(this))) 4211 return 2; 4212 4213 return 1; 4214 } 4215 4216 /* 4217 * Mark all held locks with a usage bit: 4218 */ 4219 static int 4220 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4221 { 4222 struct held_lock *hlock; 4223 int i; 4224 4225 for (i = 0; i < curr->lockdep_depth; i++) { 4226 enum lock_usage_bit hlock_bit = base_bit; 4227 hlock = curr->held_locks + i; 4228 4229 if (hlock->read) 4230 hlock_bit += LOCK_USAGE_READ_MASK; 4231 4232 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4233 4234 if (!hlock->check) 4235 continue; 4236 4237 if (!mark_lock(curr, hlock, hlock_bit)) 4238 return 0; 4239 } 4240 4241 return 1; 4242 } 4243 4244 /* 4245 * Hardirqs will be enabled: 4246 */ 4247 static void __trace_hardirqs_on_caller(void) 4248 { 4249 struct task_struct *curr = current; 4250 4251 /* 4252 * We are going to turn hardirqs on, so set the 4253 * usage bit for all held locks: 4254 */ 4255 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4256 return; 4257 /* 4258 * If we have softirqs enabled, then set the usage 4259 * bit for all held locks. (disabled hardirqs prevented 4260 * this bit from being set before) 4261 */ 4262 if (curr->softirqs_enabled) 4263 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4264 } 4265 4266 /** 4267 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4268 * 4269 * Invoked before a possible transition to RCU idle from exit to user or 4270 * guest mode. This ensures that all RCU operations are done before RCU 4271 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4272 * invoked to set the final state. 4273 */ 4274 void lockdep_hardirqs_on_prepare(void) 4275 { 4276 if (unlikely(!debug_locks)) 4277 return; 4278 4279 /* 4280 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4281 */ 4282 if (unlikely(in_nmi())) 4283 return; 4284 4285 if (unlikely(this_cpu_read(lockdep_recursion))) 4286 return; 4287 4288 if (unlikely(lockdep_hardirqs_enabled())) { 4289 /* 4290 * Neither irq nor preemption are disabled here 4291 * so this is racy by nature but losing one hit 4292 * in a stat is not a big deal. 4293 */ 4294 __debug_atomic_inc(redundant_hardirqs_on); 4295 return; 4296 } 4297 4298 /* 4299 * We're enabling irqs and according to our state above irqs weren't 4300 * already enabled, yet we find the hardware thinks they are in fact 4301 * enabled.. someone messed up their IRQ state tracing. 4302 */ 4303 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4304 return; 4305 4306 /* 4307 * See the fine text that goes along with this variable definition. 4308 */ 4309 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4310 return; 4311 4312 /* 4313 * Can't allow enabling interrupts while in an interrupt handler, 4314 * that's general bad form and such. Recursion, limited stack etc.. 4315 */ 4316 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4317 return; 4318 4319 current->hardirq_chain_key = current->curr_chain_key; 4320 4321 lockdep_recursion_inc(); 4322 __trace_hardirqs_on_caller(); 4323 lockdep_recursion_finish(); 4324 } 4325 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4326 4327 void noinstr lockdep_hardirqs_on(unsigned long ip) 4328 { 4329 struct irqtrace_events *trace = ¤t->irqtrace; 4330 4331 if (unlikely(!debug_locks)) 4332 return; 4333 4334 /* 4335 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4336 * tracking state and hardware state are out of sync. 4337 * 4338 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4339 * and not rely on hardware state like normal interrupts. 4340 */ 4341 if (unlikely(in_nmi())) { 4342 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4343 return; 4344 4345 /* 4346 * Skip: 4347 * - recursion check, because NMI can hit lockdep; 4348 * - hardware state check, because above; 4349 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4350 */ 4351 goto skip_checks; 4352 } 4353 4354 if (unlikely(this_cpu_read(lockdep_recursion))) 4355 return; 4356 4357 if (lockdep_hardirqs_enabled()) { 4358 /* 4359 * Neither irq nor preemption are disabled here 4360 * so this is racy by nature but losing one hit 4361 * in a stat is not a big deal. 4362 */ 4363 __debug_atomic_inc(redundant_hardirqs_on); 4364 return; 4365 } 4366 4367 /* 4368 * We're enabling irqs and according to our state above irqs weren't 4369 * already enabled, yet we find the hardware thinks they are in fact 4370 * enabled.. someone messed up their IRQ state tracing. 4371 */ 4372 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4373 return; 4374 4375 /* 4376 * Ensure the lock stack remained unchanged between 4377 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4378 */ 4379 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4380 current->curr_chain_key); 4381 4382 skip_checks: 4383 /* we'll do an OFF -> ON transition: */ 4384 __this_cpu_write(hardirqs_enabled, 1); 4385 trace->hardirq_enable_ip = ip; 4386 trace->hardirq_enable_event = ++trace->irq_events; 4387 debug_atomic_inc(hardirqs_on_events); 4388 } 4389 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4390 4391 /* 4392 * Hardirqs were disabled: 4393 */ 4394 void noinstr lockdep_hardirqs_off(unsigned long ip) 4395 { 4396 if (unlikely(!debug_locks)) 4397 return; 4398 4399 /* 4400 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4401 * they will restore the software state. This ensures the software 4402 * state is consistent inside NMIs as well. 4403 */ 4404 if (in_nmi()) { 4405 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4406 return; 4407 } else if (__this_cpu_read(lockdep_recursion)) 4408 return; 4409 4410 /* 4411 * So we're supposed to get called after you mask local IRQs, but for 4412 * some reason the hardware doesn't quite think you did a proper job. 4413 */ 4414 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4415 return; 4416 4417 if (lockdep_hardirqs_enabled()) { 4418 struct irqtrace_events *trace = ¤t->irqtrace; 4419 4420 /* 4421 * We have done an ON -> OFF transition: 4422 */ 4423 __this_cpu_write(hardirqs_enabled, 0); 4424 trace->hardirq_disable_ip = ip; 4425 trace->hardirq_disable_event = ++trace->irq_events; 4426 debug_atomic_inc(hardirqs_off_events); 4427 } else { 4428 debug_atomic_inc(redundant_hardirqs_off); 4429 } 4430 } 4431 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4432 4433 /* 4434 * Softirqs will be enabled: 4435 */ 4436 void lockdep_softirqs_on(unsigned long ip) 4437 { 4438 struct irqtrace_events *trace = ¤t->irqtrace; 4439 4440 if (unlikely(!lockdep_enabled())) 4441 return; 4442 4443 /* 4444 * We fancy IRQs being disabled here, see softirq.c, avoids 4445 * funny state and nesting things. 4446 */ 4447 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4448 return; 4449 4450 if (current->softirqs_enabled) { 4451 debug_atomic_inc(redundant_softirqs_on); 4452 return; 4453 } 4454 4455 lockdep_recursion_inc(); 4456 /* 4457 * We'll do an OFF -> ON transition: 4458 */ 4459 current->softirqs_enabled = 1; 4460 trace->softirq_enable_ip = ip; 4461 trace->softirq_enable_event = ++trace->irq_events; 4462 debug_atomic_inc(softirqs_on_events); 4463 /* 4464 * We are going to turn softirqs on, so set the 4465 * usage bit for all held locks, if hardirqs are 4466 * enabled too: 4467 */ 4468 if (lockdep_hardirqs_enabled()) 4469 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4470 lockdep_recursion_finish(); 4471 } 4472 4473 /* 4474 * Softirqs were disabled: 4475 */ 4476 void lockdep_softirqs_off(unsigned long ip) 4477 { 4478 if (unlikely(!lockdep_enabled())) 4479 return; 4480 4481 /* 4482 * We fancy IRQs being disabled here, see softirq.c 4483 */ 4484 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4485 return; 4486 4487 if (current->softirqs_enabled) { 4488 struct irqtrace_events *trace = ¤t->irqtrace; 4489 4490 /* 4491 * We have done an ON -> OFF transition: 4492 */ 4493 current->softirqs_enabled = 0; 4494 trace->softirq_disable_ip = ip; 4495 trace->softirq_disable_event = ++trace->irq_events; 4496 debug_atomic_inc(softirqs_off_events); 4497 /* 4498 * Whoops, we wanted softirqs off, so why aren't they? 4499 */ 4500 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4501 } else 4502 debug_atomic_inc(redundant_softirqs_off); 4503 } 4504 4505 static int 4506 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4507 { 4508 if (!check) 4509 goto lock_used; 4510 4511 /* 4512 * If non-trylock use in a hardirq or softirq context, then 4513 * mark the lock as used in these contexts: 4514 */ 4515 if (!hlock->trylock) { 4516 if (hlock->read) { 4517 if (lockdep_hardirq_context()) 4518 if (!mark_lock(curr, hlock, 4519 LOCK_USED_IN_HARDIRQ_READ)) 4520 return 0; 4521 if (curr->softirq_context) 4522 if (!mark_lock(curr, hlock, 4523 LOCK_USED_IN_SOFTIRQ_READ)) 4524 return 0; 4525 } else { 4526 if (lockdep_hardirq_context()) 4527 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4528 return 0; 4529 if (curr->softirq_context) 4530 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4531 return 0; 4532 } 4533 } 4534 if (!hlock->hardirqs_off) { 4535 if (hlock->read) { 4536 if (!mark_lock(curr, hlock, 4537 LOCK_ENABLED_HARDIRQ_READ)) 4538 return 0; 4539 if (curr->softirqs_enabled) 4540 if (!mark_lock(curr, hlock, 4541 LOCK_ENABLED_SOFTIRQ_READ)) 4542 return 0; 4543 } else { 4544 if (!mark_lock(curr, hlock, 4545 LOCK_ENABLED_HARDIRQ)) 4546 return 0; 4547 if (curr->softirqs_enabled) 4548 if (!mark_lock(curr, hlock, 4549 LOCK_ENABLED_SOFTIRQ)) 4550 return 0; 4551 } 4552 } 4553 4554 lock_used: 4555 /* mark it as used: */ 4556 if (!mark_lock(curr, hlock, LOCK_USED)) 4557 return 0; 4558 4559 return 1; 4560 } 4561 4562 static inline unsigned int task_irq_context(struct task_struct *task) 4563 { 4564 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4565 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4566 } 4567 4568 static int separate_irq_context(struct task_struct *curr, 4569 struct held_lock *hlock) 4570 { 4571 unsigned int depth = curr->lockdep_depth; 4572 4573 /* 4574 * Keep track of points where we cross into an interrupt context: 4575 */ 4576 if (depth) { 4577 struct held_lock *prev_hlock; 4578 4579 prev_hlock = curr->held_locks + depth-1; 4580 /* 4581 * If we cross into another context, reset the 4582 * hash key (this also prevents the checking and the 4583 * adding of the dependency to 'prev'): 4584 */ 4585 if (prev_hlock->irq_context != hlock->irq_context) 4586 return 1; 4587 } 4588 return 0; 4589 } 4590 4591 /* 4592 * Mark a lock with a usage bit, and validate the state transition: 4593 */ 4594 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4595 enum lock_usage_bit new_bit) 4596 { 4597 unsigned int new_mask, ret = 1; 4598 4599 if (new_bit >= LOCK_USAGE_STATES) { 4600 DEBUG_LOCKS_WARN_ON(1); 4601 return 0; 4602 } 4603 4604 if (new_bit == LOCK_USED && this->read) 4605 new_bit = LOCK_USED_READ; 4606 4607 new_mask = 1 << new_bit; 4608 4609 /* 4610 * If already set then do not dirty the cacheline, 4611 * nor do any checks: 4612 */ 4613 if (likely(hlock_class(this)->usage_mask & new_mask)) 4614 return 1; 4615 4616 if (!graph_lock()) 4617 return 0; 4618 /* 4619 * Make sure we didn't race: 4620 */ 4621 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4622 goto unlock; 4623 4624 if (!hlock_class(this)->usage_mask) 4625 debug_atomic_dec(nr_unused_locks); 4626 4627 hlock_class(this)->usage_mask |= new_mask; 4628 4629 if (new_bit < LOCK_TRACE_STATES) { 4630 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4631 return 0; 4632 } 4633 4634 if (new_bit < LOCK_USED) { 4635 ret = mark_lock_irq(curr, this, new_bit); 4636 if (!ret) 4637 return 0; 4638 } 4639 4640 unlock: 4641 graph_unlock(); 4642 4643 /* 4644 * We must printk outside of the graph_lock: 4645 */ 4646 if (ret == 2) { 4647 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4648 print_lock(this); 4649 print_irqtrace_events(curr); 4650 dump_stack(); 4651 } 4652 4653 return ret; 4654 } 4655 4656 static inline short task_wait_context(struct task_struct *curr) 4657 { 4658 /* 4659 * Set appropriate wait type for the context; for IRQs we have to take 4660 * into account force_irqthread as that is implied by PREEMPT_RT. 4661 */ 4662 if (lockdep_hardirq_context()) { 4663 /* 4664 * Check if force_irqthreads will run us threaded. 4665 */ 4666 if (curr->hardirq_threaded || curr->irq_config) 4667 return LD_WAIT_CONFIG; 4668 4669 return LD_WAIT_SPIN; 4670 } else if (curr->softirq_context) { 4671 /* 4672 * Softirqs are always threaded. 4673 */ 4674 return LD_WAIT_CONFIG; 4675 } 4676 4677 return LD_WAIT_MAX; 4678 } 4679 4680 static int 4681 print_lock_invalid_wait_context(struct task_struct *curr, 4682 struct held_lock *hlock) 4683 { 4684 short curr_inner; 4685 4686 if (!debug_locks_off()) 4687 return 0; 4688 if (debug_locks_silent) 4689 return 0; 4690 4691 pr_warn("\n"); 4692 pr_warn("=============================\n"); 4693 pr_warn("[ BUG: Invalid wait context ]\n"); 4694 print_kernel_ident(); 4695 pr_warn("-----------------------------\n"); 4696 4697 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4698 print_lock(hlock); 4699 4700 pr_warn("other info that might help us debug this:\n"); 4701 4702 curr_inner = task_wait_context(curr); 4703 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4704 4705 lockdep_print_held_locks(curr); 4706 4707 pr_warn("stack backtrace:\n"); 4708 dump_stack(); 4709 4710 return 0; 4711 } 4712 4713 /* 4714 * Verify the wait_type context. 4715 * 4716 * This check validates we take locks in the right wait-type order; that is it 4717 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4718 * acquire spinlocks inside raw_spinlocks and the sort. 4719 * 4720 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4721 * can be taken from (pretty much) any context but also has constraints. 4722 * However when taken in a stricter environment the RCU lock does not loosen 4723 * the constraints. 4724 * 4725 * Therefore we must look for the strictest environment in the lock stack and 4726 * compare that to the lock we're trying to acquire. 4727 */ 4728 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4729 { 4730 u8 next_inner = hlock_class(next)->wait_type_inner; 4731 u8 next_outer = hlock_class(next)->wait_type_outer; 4732 u8 curr_inner; 4733 int depth; 4734 4735 if (!next_inner || next->trylock) 4736 return 0; 4737 4738 if (!next_outer) 4739 next_outer = next_inner; 4740 4741 /* 4742 * Find start of current irq_context.. 4743 */ 4744 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4745 struct held_lock *prev = curr->held_locks + depth; 4746 if (prev->irq_context != next->irq_context) 4747 break; 4748 } 4749 depth++; 4750 4751 curr_inner = task_wait_context(curr); 4752 4753 for (; depth < curr->lockdep_depth; depth++) { 4754 struct held_lock *prev = curr->held_locks + depth; 4755 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4756 4757 if (prev_inner) { 4758 /* 4759 * We can have a bigger inner than a previous one 4760 * when outer is smaller than inner, as with RCU. 4761 * 4762 * Also due to trylocks. 4763 */ 4764 curr_inner = min(curr_inner, prev_inner); 4765 } 4766 } 4767 4768 if (next_outer > curr_inner) 4769 return print_lock_invalid_wait_context(curr, next); 4770 4771 return 0; 4772 } 4773 4774 #else /* CONFIG_PROVE_LOCKING */ 4775 4776 static inline int 4777 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4778 { 4779 return 1; 4780 } 4781 4782 static inline unsigned int task_irq_context(struct task_struct *task) 4783 { 4784 return 0; 4785 } 4786 4787 static inline int separate_irq_context(struct task_struct *curr, 4788 struct held_lock *hlock) 4789 { 4790 return 0; 4791 } 4792 4793 static inline int check_wait_context(struct task_struct *curr, 4794 struct held_lock *next) 4795 { 4796 return 0; 4797 } 4798 4799 #endif /* CONFIG_PROVE_LOCKING */ 4800 4801 /* 4802 * Initialize a lock instance's lock-class mapping info: 4803 */ 4804 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4805 struct lock_class_key *key, int subclass, 4806 u8 inner, u8 outer, u8 lock_type) 4807 { 4808 int i; 4809 4810 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4811 lock->class_cache[i] = NULL; 4812 4813 #ifdef CONFIG_LOCK_STAT 4814 lock->cpu = raw_smp_processor_id(); 4815 #endif 4816 4817 /* 4818 * Can't be having no nameless bastards around this place! 4819 */ 4820 if (DEBUG_LOCKS_WARN_ON(!name)) { 4821 lock->name = "NULL"; 4822 return; 4823 } 4824 4825 lock->name = name; 4826 4827 lock->wait_type_outer = outer; 4828 lock->wait_type_inner = inner; 4829 lock->lock_type = lock_type; 4830 4831 /* 4832 * No key, no joy, we need to hash something. 4833 */ 4834 if (DEBUG_LOCKS_WARN_ON(!key)) 4835 return; 4836 /* 4837 * Sanity check, the lock-class key must either have been allocated 4838 * statically or must have been registered as a dynamic key. 4839 */ 4840 if (!static_obj(key) && !is_dynamic_key(key)) { 4841 if (debug_locks) 4842 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4843 DEBUG_LOCKS_WARN_ON(1); 4844 return; 4845 } 4846 lock->key = key; 4847 4848 if (unlikely(!debug_locks)) 4849 return; 4850 4851 if (subclass) { 4852 unsigned long flags; 4853 4854 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4855 return; 4856 4857 raw_local_irq_save(flags); 4858 lockdep_recursion_inc(); 4859 register_lock_class(lock, subclass, 1); 4860 lockdep_recursion_finish(); 4861 raw_local_irq_restore(flags); 4862 } 4863 } 4864 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4865 4866 struct lock_class_key __lockdep_no_validate__; 4867 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4868 4869 static void 4870 print_lock_nested_lock_not_held(struct task_struct *curr, 4871 struct held_lock *hlock) 4872 { 4873 if (!debug_locks_off()) 4874 return; 4875 if (debug_locks_silent) 4876 return; 4877 4878 pr_warn("\n"); 4879 pr_warn("==================================\n"); 4880 pr_warn("WARNING: Nested lock was not taken\n"); 4881 print_kernel_ident(); 4882 pr_warn("----------------------------------\n"); 4883 4884 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4885 print_lock(hlock); 4886 4887 pr_warn("\nbut this task is not holding:\n"); 4888 pr_warn("%s\n", hlock->nest_lock->name); 4889 4890 pr_warn("\nstack backtrace:\n"); 4891 dump_stack(); 4892 4893 pr_warn("\nother info that might help us debug this:\n"); 4894 lockdep_print_held_locks(curr); 4895 4896 pr_warn("\nstack backtrace:\n"); 4897 dump_stack(); 4898 } 4899 4900 static int __lock_is_held(const struct lockdep_map *lock, int read); 4901 4902 /* 4903 * This gets called for every mutex_lock*()/spin_lock*() operation. 4904 * We maintain the dependency maps and validate the locking attempt: 4905 * 4906 * The callers must make sure that IRQs are disabled before calling it, 4907 * otherwise we could get an interrupt which would want to take locks, 4908 * which would end up in lockdep again. 4909 */ 4910 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4911 int trylock, int read, int check, int hardirqs_off, 4912 struct lockdep_map *nest_lock, unsigned long ip, 4913 int references, int pin_count) 4914 { 4915 struct task_struct *curr = current; 4916 struct lock_class *class = NULL; 4917 struct held_lock *hlock; 4918 unsigned int depth; 4919 int chain_head = 0; 4920 int class_idx; 4921 u64 chain_key; 4922 4923 if (unlikely(!debug_locks)) 4924 return 0; 4925 4926 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4927 check = 0; 4928 4929 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4930 class = lock->class_cache[subclass]; 4931 /* 4932 * Not cached? 4933 */ 4934 if (unlikely(!class)) { 4935 class = register_lock_class(lock, subclass, 0); 4936 if (!class) 4937 return 0; 4938 } 4939 4940 debug_class_ops_inc(class); 4941 4942 if (very_verbose(class)) { 4943 printk("\nacquire class [%px] %s", class->key, class->name); 4944 if (class->name_version > 1) 4945 printk(KERN_CONT "#%d", class->name_version); 4946 printk(KERN_CONT "\n"); 4947 dump_stack(); 4948 } 4949 4950 /* 4951 * Add the lock to the list of currently held locks. 4952 * (we dont increase the depth just yet, up until the 4953 * dependency checks are done) 4954 */ 4955 depth = curr->lockdep_depth; 4956 /* 4957 * Ran out of static storage for our per-task lock stack again have we? 4958 */ 4959 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4960 return 0; 4961 4962 class_idx = class - lock_classes; 4963 4964 if (depth) { /* we're holding locks */ 4965 hlock = curr->held_locks + depth - 1; 4966 if (hlock->class_idx == class_idx && nest_lock) { 4967 if (!references) 4968 references++; 4969 4970 if (!hlock->references) 4971 hlock->references++; 4972 4973 hlock->references += references; 4974 4975 /* Overflow */ 4976 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4977 return 0; 4978 4979 return 2; 4980 } 4981 } 4982 4983 hlock = curr->held_locks + depth; 4984 /* 4985 * Plain impossible, we just registered it and checked it weren't no 4986 * NULL like.. I bet this mushroom I ate was good! 4987 */ 4988 if (DEBUG_LOCKS_WARN_ON(!class)) 4989 return 0; 4990 hlock->class_idx = class_idx; 4991 hlock->acquire_ip = ip; 4992 hlock->instance = lock; 4993 hlock->nest_lock = nest_lock; 4994 hlock->irq_context = task_irq_context(curr); 4995 hlock->trylock = trylock; 4996 hlock->read = read; 4997 hlock->check = check; 4998 hlock->hardirqs_off = !!hardirqs_off; 4999 hlock->references = references; 5000 #ifdef CONFIG_LOCK_STAT 5001 hlock->waittime_stamp = 0; 5002 hlock->holdtime_stamp = lockstat_clock(); 5003 #endif 5004 hlock->pin_count = pin_count; 5005 5006 if (check_wait_context(curr, hlock)) 5007 return 0; 5008 5009 /* Initialize the lock usage bit */ 5010 if (!mark_usage(curr, hlock, check)) 5011 return 0; 5012 5013 /* 5014 * Calculate the chain hash: it's the combined hash of all the 5015 * lock keys along the dependency chain. We save the hash value 5016 * at every step so that we can get the current hash easily 5017 * after unlock. The chain hash is then used to cache dependency 5018 * results. 5019 * 5020 * The 'key ID' is what is the most compact key value to drive 5021 * the hash, not class->key. 5022 */ 5023 /* 5024 * Whoops, we did it again.. class_idx is invalid. 5025 */ 5026 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5027 return 0; 5028 5029 chain_key = curr->curr_chain_key; 5030 if (!depth) { 5031 /* 5032 * How can we have a chain hash when we ain't got no keys?! 5033 */ 5034 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5035 return 0; 5036 chain_head = 1; 5037 } 5038 5039 hlock->prev_chain_key = chain_key; 5040 if (separate_irq_context(curr, hlock)) { 5041 chain_key = INITIAL_CHAIN_KEY; 5042 chain_head = 1; 5043 } 5044 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5045 5046 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5047 print_lock_nested_lock_not_held(curr, hlock); 5048 return 0; 5049 } 5050 5051 if (!debug_locks_silent) { 5052 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5053 WARN_ON_ONCE(!hlock_class(hlock)->key); 5054 } 5055 5056 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5057 return 0; 5058 5059 curr->curr_chain_key = chain_key; 5060 curr->lockdep_depth++; 5061 check_chain_key(curr); 5062 #ifdef CONFIG_DEBUG_LOCKDEP 5063 if (unlikely(!debug_locks)) 5064 return 0; 5065 #endif 5066 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5067 debug_locks_off(); 5068 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5069 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5070 curr->lockdep_depth, MAX_LOCK_DEPTH); 5071 5072 lockdep_print_held_locks(current); 5073 debug_show_all_locks(); 5074 dump_stack(); 5075 5076 return 0; 5077 } 5078 5079 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5080 max_lockdep_depth = curr->lockdep_depth; 5081 5082 return 1; 5083 } 5084 5085 static void print_unlock_imbalance_bug(struct task_struct *curr, 5086 struct lockdep_map *lock, 5087 unsigned long ip) 5088 { 5089 if (!debug_locks_off()) 5090 return; 5091 if (debug_locks_silent) 5092 return; 5093 5094 pr_warn("\n"); 5095 pr_warn("=====================================\n"); 5096 pr_warn("WARNING: bad unlock balance detected!\n"); 5097 print_kernel_ident(); 5098 pr_warn("-------------------------------------\n"); 5099 pr_warn("%s/%d is trying to release lock (", 5100 curr->comm, task_pid_nr(curr)); 5101 print_lockdep_cache(lock); 5102 pr_cont(") at:\n"); 5103 print_ip_sym(KERN_WARNING, ip); 5104 pr_warn("but there are no more locks to release!\n"); 5105 pr_warn("\nother info that might help us debug this:\n"); 5106 lockdep_print_held_locks(curr); 5107 5108 pr_warn("\nstack backtrace:\n"); 5109 dump_stack(); 5110 } 5111 5112 static noinstr int match_held_lock(const struct held_lock *hlock, 5113 const struct lockdep_map *lock) 5114 { 5115 if (hlock->instance == lock) 5116 return 1; 5117 5118 if (hlock->references) { 5119 const struct lock_class *class = lock->class_cache[0]; 5120 5121 if (!class) 5122 class = look_up_lock_class(lock, 0); 5123 5124 /* 5125 * If look_up_lock_class() failed to find a class, we're trying 5126 * to test if we hold a lock that has never yet been acquired. 5127 * Clearly if the lock hasn't been acquired _ever_, we're not 5128 * holding it either, so report failure. 5129 */ 5130 if (!class) 5131 return 0; 5132 5133 /* 5134 * References, but not a lock we're actually ref-counting? 5135 * State got messed up, follow the sites that change ->references 5136 * and try to make sense of it. 5137 */ 5138 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5139 return 0; 5140 5141 if (hlock->class_idx == class - lock_classes) 5142 return 1; 5143 } 5144 5145 return 0; 5146 } 5147 5148 /* @depth must not be zero */ 5149 static struct held_lock *find_held_lock(struct task_struct *curr, 5150 struct lockdep_map *lock, 5151 unsigned int depth, int *idx) 5152 { 5153 struct held_lock *ret, *hlock, *prev_hlock; 5154 int i; 5155 5156 i = depth - 1; 5157 hlock = curr->held_locks + i; 5158 ret = hlock; 5159 if (match_held_lock(hlock, lock)) 5160 goto out; 5161 5162 ret = NULL; 5163 for (i--, prev_hlock = hlock--; 5164 i >= 0; 5165 i--, prev_hlock = hlock--) { 5166 /* 5167 * We must not cross into another context: 5168 */ 5169 if (prev_hlock->irq_context != hlock->irq_context) { 5170 ret = NULL; 5171 break; 5172 } 5173 if (match_held_lock(hlock, lock)) { 5174 ret = hlock; 5175 break; 5176 } 5177 } 5178 5179 out: 5180 *idx = i; 5181 return ret; 5182 } 5183 5184 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5185 int idx, unsigned int *merged) 5186 { 5187 struct held_lock *hlock; 5188 int first_idx = idx; 5189 5190 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5191 return 0; 5192 5193 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5194 switch (__lock_acquire(hlock->instance, 5195 hlock_class(hlock)->subclass, 5196 hlock->trylock, 5197 hlock->read, hlock->check, 5198 hlock->hardirqs_off, 5199 hlock->nest_lock, hlock->acquire_ip, 5200 hlock->references, hlock->pin_count)) { 5201 case 0: 5202 return 1; 5203 case 1: 5204 break; 5205 case 2: 5206 *merged += (idx == first_idx); 5207 break; 5208 default: 5209 WARN_ON(1); 5210 return 0; 5211 } 5212 } 5213 return 0; 5214 } 5215 5216 static int 5217 __lock_set_class(struct lockdep_map *lock, const char *name, 5218 struct lock_class_key *key, unsigned int subclass, 5219 unsigned long ip) 5220 { 5221 struct task_struct *curr = current; 5222 unsigned int depth, merged = 0; 5223 struct held_lock *hlock; 5224 struct lock_class *class; 5225 int i; 5226 5227 if (unlikely(!debug_locks)) 5228 return 0; 5229 5230 depth = curr->lockdep_depth; 5231 /* 5232 * This function is about (re)setting the class of a held lock, 5233 * yet we're not actually holding any locks. Naughty user! 5234 */ 5235 if (DEBUG_LOCKS_WARN_ON(!depth)) 5236 return 0; 5237 5238 hlock = find_held_lock(curr, lock, depth, &i); 5239 if (!hlock) { 5240 print_unlock_imbalance_bug(curr, lock, ip); 5241 return 0; 5242 } 5243 5244 lockdep_init_map_type(lock, name, key, 0, 5245 lock->wait_type_inner, 5246 lock->wait_type_outer, 5247 lock->lock_type); 5248 class = register_lock_class(lock, subclass, 0); 5249 hlock->class_idx = class - lock_classes; 5250 5251 curr->lockdep_depth = i; 5252 curr->curr_chain_key = hlock->prev_chain_key; 5253 5254 if (reacquire_held_locks(curr, depth, i, &merged)) 5255 return 0; 5256 5257 /* 5258 * I took it apart and put it back together again, except now I have 5259 * these 'spare' parts.. where shall I put them. 5260 */ 5261 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5262 return 0; 5263 return 1; 5264 } 5265 5266 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5267 { 5268 struct task_struct *curr = current; 5269 unsigned int depth, merged = 0; 5270 struct held_lock *hlock; 5271 int i; 5272 5273 if (unlikely(!debug_locks)) 5274 return 0; 5275 5276 depth = curr->lockdep_depth; 5277 /* 5278 * This function is about (re)setting the class of a held lock, 5279 * yet we're not actually holding any locks. Naughty user! 5280 */ 5281 if (DEBUG_LOCKS_WARN_ON(!depth)) 5282 return 0; 5283 5284 hlock = find_held_lock(curr, lock, depth, &i); 5285 if (!hlock) { 5286 print_unlock_imbalance_bug(curr, lock, ip); 5287 return 0; 5288 } 5289 5290 curr->lockdep_depth = i; 5291 curr->curr_chain_key = hlock->prev_chain_key; 5292 5293 WARN(hlock->read, "downgrading a read lock"); 5294 hlock->read = 1; 5295 hlock->acquire_ip = ip; 5296 5297 if (reacquire_held_locks(curr, depth, i, &merged)) 5298 return 0; 5299 5300 /* Merging can't happen with unchanged classes.. */ 5301 if (DEBUG_LOCKS_WARN_ON(merged)) 5302 return 0; 5303 5304 /* 5305 * I took it apart and put it back together again, except now I have 5306 * these 'spare' parts.. where shall I put them. 5307 */ 5308 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5309 return 0; 5310 5311 return 1; 5312 } 5313 5314 /* 5315 * Remove the lock from the list of currently held locks - this gets 5316 * called on mutex_unlock()/spin_unlock*() (or on a failed 5317 * mutex_lock_interruptible()). 5318 */ 5319 static int 5320 __lock_release(struct lockdep_map *lock, unsigned long ip) 5321 { 5322 struct task_struct *curr = current; 5323 unsigned int depth, merged = 1; 5324 struct held_lock *hlock; 5325 int i; 5326 5327 if (unlikely(!debug_locks)) 5328 return 0; 5329 5330 depth = curr->lockdep_depth; 5331 /* 5332 * So we're all set to release this lock.. wait what lock? We don't 5333 * own any locks, you've been drinking again? 5334 */ 5335 if (depth <= 0) { 5336 print_unlock_imbalance_bug(curr, lock, ip); 5337 return 0; 5338 } 5339 5340 /* 5341 * Check whether the lock exists in the current stack 5342 * of held locks: 5343 */ 5344 hlock = find_held_lock(curr, lock, depth, &i); 5345 if (!hlock) { 5346 print_unlock_imbalance_bug(curr, lock, ip); 5347 return 0; 5348 } 5349 5350 if (hlock->instance == lock) 5351 lock_release_holdtime(hlock); 5352 5353 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5354 5355 if (hlock->references) { 5356 hlock->references--; 5357 if (hlock->references) { 5358 /* 5359 * We had, and after removing one, still have 5360 * references, the current lock stack is still 5361 * valid. We're done! 5362 */ 5363 return 1; 5364 } 5365 } 5366 5367 /* 5368 * We have the right lock to unlock, 'hlock' points to it. 5369 * Now we remove it from the stack, and add back the other 5370 * entries (if any), recalculating the hash along the way: 5371 */ 5372 5373 curr->lockdep_depth = i; 5374 curr->curr_chain_key = hlock->prev_chain_key; 5375 5376 /* 5377 * The most likely case is when the unlock is on the innermost 5378 * lock. In this case, we are done! 5379 */ 5380 if (i == depth-1) 5381 return 1; 5382 5383 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5384 return 0; 5385 5386 /* 5387 * We had N bottles of beer on the wall, we drank one, but now 5388 * there's not N-1 bottles of beer left on the wall... 5389 * Pouring two of the bottles together is acceptable. 5390 */ 5391 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5392 5393 /* 5394 * Since reacquire_held_locks() would have called check_chain_key() 5395 * indirectly via __lock_acquire(), we don't need to do it again 5396 * on return. 5397 */ 5398 return 0; 5399 } 5400 5401 static __always_inline 5402 int __lock_is_held(const struct lockdep_map *lock, int read) 5403 { 5404 struct task_struct *curr = current; 5405 int i; 5406 5407 for (i = 0; i < curr->lockdep_depth; i++) { 5408 struct held_lock *hlock = curr->held_locks + i; 5409 5410 if (match_held_lock(hlock, lock)) { 5411 if (read == -1 || !!hlock->read == read) 5412 return LOCK_STATE_HELD; 5413 5414 return LOCK_STATE_NOT_HELD; 5415 } 5416 } 5417 5418 return LOCK_STATE_NOT_HELD; 5419 } 5420 5421 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5422 { 5423 struct pin_cookie cookie = NIL_COOKIE; 5424 struct task_struct *curr = current; 5425 int i; 5426 5427 if (unlikely(!debug_locks)) 5428 return cookie; 5429 5430 for (i = 0; i < curr->lockdep_depth; i++) { 5431 struct held_lock *hlock = curr->held_locks + i; 5432 5433 if (match_held_lock(hlock, lock)) { 5434 /* 5435 * Grab 16bits of randomness; this is sufficient to not 5436 * be guessable and still allows some pin nesting in 5437 * our u32 pin_count. 5438 */ 5439 cookie.val = 1 + (sched_clock() & 0xffff); 5440 hlock->pin_count += cookie.val; 5441 return cookie; 5442 } 5443 } 5444 5445 WARN(1, "pinning an unheld lock\n"); 5446 return cookie; 5447 } 5448 5449 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5450 { 5451 struct task_struct *curr = current; 5452 int i; 5453 5454 if (unlikely(!debug_locks)) 5455 return; 5456 5457 for (i = 0; i < curr->lockdep_depth; i++) { 5458 struct held_lock *hlock = curr->held_locks + i; 5459 5460 if (match_held_lock(hlock, lock)) { 5461 hlock->pin_count += cookie.val; 5462 return; 5463 } 5464 } 5465 5466 WARN(1, "pinning an unheld lock\n"); 5467 } 5468 5469 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5470 { 5471 struct task_struct *curr = current; 5472 int i; 5473 5474 if (unlikely(!debug_locks)) 5475 return; 5476 5477 for (i = 0; i < curr->lockdep_depth; i++) { 5478 struct held_lock *hlock = curr->held_locks + i; 5479 5480 if (match_held_lock(hlock, lock)) { 5481 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5482 return; 5483 5484 hlock->pin_count -= cookie.val; 5485 5486 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5487 hlock->pin_count = 0; 5488 5489 return; 5490 } 5491 } 5492 5493 WARN(1, "unpinning an unheld lock\n"); 5494 } 5495 5496 /* 5497 * Check whether we follow the irq-flags state precisely: 5498 */ 5499 static noinstr void check_flags(unsigned long flags) 5500 { 5501 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5502 if (!debug_locks) 5503 return; 5504 5505 /* Get the warning out.. */ 5506 instrumentation_begin(); 5507 5508 if (irqs_disabled_flags(flags)) { 5509 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5510 printk("possible reason: unannotated irqs-off.\n"); 5511 } 5512 } else { 5513 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5514 printk("possible reason: unannotated irqs-on.\n"); 5515 } 5516 } 5517 5518 #ifndef CONFIG_PREEMPT_RT 5519 /* 5520 * We dont accurately track softirq state in e.g. 5521 * hardirq contexts (such as on 4KSTACKS), so only 5522 * check if not in hardirq contexts: 5523 */ 5524 if (!hardirq_count()) { 5525 if (softirq_count()) { 5526 /* like the above, but with softirqs */ 5527 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5528 } else { 5529 /* lick the above, does it taste good? */ 5530 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5531 } 5532 } 5533 #endif 5534 5535 if (!debug_locks) 5536 print_irqtrace_events(current); 5537 5538 instrumentation_end(); 5539 #endif 5540 } 5541 5542 void lock_set_class(struct lockdep_map *lock, const char *name, 5543 struct lock_class_key *key, unsigned int subclass, 5544 unsigned long ip) 5545 { 5546 unsigned long flags; 5547 5548 if (unlikely(!lockdep_enabled())) 5549 return; 5550 5551 raw_local_irq_save(flags); 5552 lockdep_recursion_inc(); 5553 check_flags(flags); 5554 if (__lock_set_class(lock, name, key, subclass, ip)) 5555 check_chain_key(current); 5556 lockdep_recursion_finish(); 5557 raw_local_irq_restore(flags); 5558 } 5559 EXPORT_SYMBOL_GPL(lock_set_class); 5560 5561 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5562 { 5563 unsigned long flags; 5564 5565 if (unlikely(!lockdep_enabled())) 5566 return; 5567 5568 raw_local_irq_save(flags); 5569 lockdep_recursion_inc(); 5570 check_flags(flags); 5571 if (__lock_downgrade(lock, ip)) 5572 check_chain_key(current); 5573 lockdep_recursion_finish(); 5574 raw_local_irq_restore(flags); 5575 } 5576 EXPORT_SYMBOL_GPL(lock_downgrade); 5577 5578 /* NMI context !!! */ 5579 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5580 { 5581 #ifdef CONFIG_PROVE_LOCKING 5582 struct lock_class *class = look_up_lock_class(lock, subclass); 5583 unsigned long mask = LOCKF_USED; 5584 5585 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5586 if (!class) 5587 return; 5588 5589 /* 5590 * READ locks only conflict with USED, such that if we only ever use 5591 * READ locks, there is no deadlock possible -- RCU. 5592 */ 5593 if (!hlock->read) 5594 mask |= LOCKF_USED_READ; 5595 5596 if (!(class->usage_mask & mask)) 5597 return; 5598 5599 hlock->class_idx = class - lock_classes; 5600 5601 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5602 #endif 5603 } 5604 5605 static bool lockdep_nmi(void) 5606 { 5607 if (raw_cpu_read(lockdep_recursion)) 5608 return false; 5609 5610 if (!in_nmi()) 5611 return false; 5612 5613 return true; 5614 } 5615 5616 /* 5617 * read_lock() is recursive if: 5618 * 1. We force lockdep think this way in selftests or 5619 * 2. The implementation is not queued read/write lock or 5620 * 3. The locker is at an in_interrupt() context. 5621 */ 5622 bool read_lock_is_recursive(void) 5623 { 5624 return force_read_lock_recursive || 5625 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5626 in_interrupt(); 5627 } 5628 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5629 5630 /* 5631 * We are not always called with irqs disabled - do that here, 5632 * and also avoid lockdep recursion: 5633 */ 5634 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5635 int trylock, int read, int check, 5636 struct lockdep_map *nest_lock, unsigned long ip) 5637 { 5638 unsigned long flags; 5639 5640 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5641 5642 if (!debug_locks) 5643 return; 5644 5645 if (unlikely(!lockdep_enabled())) { 5646 /* XXX allow trylock from NMI ?!? */ 5647 if (lockdep_nmi() && !trylock) { 5648 struct held_lock hlock; 5649 5650 hlock.acquire_ip = ip; 5651 hlock.instance = lock; 5652 hlock.nest_lock = nest_lock; 5653 hlock.irq_context = 2; // XXX 5654 hlock.trylock = trylock; 5655 hlock.read = read; 5656 hlock.check = check; 5657 hlock.hardirqs_off = true; 5658 hlock.references = 0; 5659 5660 verify_lock_unused(lock, &hlock, subclass); 5661 } 5662 return; 5663 } 5664 5665 raw_local_irq_save(flags); 5666 check_flags(flags); 5667 5668 lockdep_recursion_inc(); 5669 __lock_acquire(lock, subclass, trylock, read, check, 5670 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5671 lockdep_recursion_finish(); 5672 raw_local_irq_restore(flags); 5673 } 5674 EXPORT_SYMBOL_GPL(lock_acquire); 5675 5676 void lock_release(struct lockdep_map *lock, unsigned long ip) 5677 { 5678 unsigned long flags; 5679 5680 trace_lock_release(lock, ip); 5681 5682 if (unlikely(!lockdep_enabled())) 5683 return; 5684 5685 raw_local_irq_save(flags); 5686 check_flags(flags); 5687 5688 lockdep_recursion_inc(); 5689 if (__lock_release(lock, ip)) 5690 check_chain_key(current); 5691 lockdep_recursion_finish(); 5692 raw_local_irq_restore(flags); 5693 } 5694 EXPORT_SYMBOL_GPL(lock_release); 5695 5696 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5697 { 5698 unsigned long flags; 5699 int ret = LOCK_STATE_NOT_HELD; 5700 5701 /* 5702 * Avoid false negative lockdep_assert_held() and 5703 * lockdep_assert_not_held(). 5704 */ 5705 if (unlikely(!lockdep_enabled())) 5706 return LOCK_STATE_UNKNOWN; 5707 5708 raw_local_irq_save(flags); 5709 check_flags(flags); 5710 5711 lockdep_recursion_inc(); 5712 ret = __lock_is_held(lock, read); 5713 lockdep_recursion_finish(); 5714 raw_local_irq_restore(flags); 5715 5716 return ret; 5717 } 5718 EXPORT_SYMBOL_GPL(lock_is_held_type); 5719 NOKPROBE_SYMBOL(lock_is_held_type); 5720 5721 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5722 { 5723 struct pin_cookie cookie = NIL_COOKIE; 5724 unsigned long flags; 5725 5726 if (unlikely(!lockdep_enabled())) 5727 return cookie; 5728 5729 raw_local_irq_save(flags); 5730 check_flags(flags); 5731 5732 lockdep_recursion_inc(); 5733 cookie = __lock_pin_lock(lock); 5734 lockdep_recursion_finish(); 5735 raw_local_irq_restore(flags); 5736 5737 return cookie; 5738 } 5739 EXPORT_SYMBOL_GPL(lock_pin_lock); 5740 5741 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5742 { 5743 unsigned long flags; 5744 5745 if (unlikely(!lockdep_enabled())) 5746 return; 5747 5748 raw_local_irq_save(flags); 5749 check_flags(flags); 5750 5751 lockdep_recursion_inc(); 5752 __lock_repin_lock(lock, cookie); 5753 lockdep_recursion_finish(); 5754 raw_local_irq_restore(flags); 5755 } 5756 EXPORT_SYMBOL_GPL(lock_repin_lock); 5757 5758 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5759 { 5760 unsigned long flags; 5761 5762 if (unlikely(!lockdep_enabled())) 5763 return; 5764 5765 raw_local_irq_save(flags); 5766 check_flags(flags); 5767 5768 lockdep_recursion_inc(); 5769 __lock_unpin_lock(lock, cookie); 5770 lockdep_recursion_finish(); 5771 raw_local_irq_restore(flags); 5772 } 5773 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5774 5775 #ifdef CONFIG_LOCK_STAT 5776 static void print_lock_contention_bug(struct task_struct *curr, 5777 struct lockdep_map *lock, 5778 unsigned long ip) 5779 { 5780 if (!debug_locks_off()) 5781 return; 5782 if (debug_locks_silent) 5783 return; 5784 5785 pr_warn("\n"); 5786 pr_warn("=================================\n"); 5787 pr_warn("WARNING: bad contention detected!\n"); 5788 print_kernel_ident(); 5789 pr_warn("---------------------------------\n"); 5790 pr_warn("%s/%d is trying to contend lock (", 5791 curr->comm, task_pid_nr(curr)); 5792 print_lockdep_cache(lock); 5793 pr_cont(") at:\n"); 5794 print_ip_sym(KERN_WARNING, ip); 5795 pr_warn("but there are no locks held!\n"); 5796 pr_warn("\nother info that might help us debug this:\n"); 5797 lockdep_print_held_locks(curr); 5798 5799 pr_warn("\nstack backtrace:\n"); 5800 dump_stack(); 5801 } 5802 5803 static void 5804 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5805 { 5806 struct task_struct *curr = current; 5807 struct held_lock *hlock; 5808 struct lock_class_stats *stats; 5809 unsigned int depth; 5810 int i, contention_point, contending_point; 5811 5812 depth = curr->lockdep_depth; 5813 /* 5814 * Whee, we contended on this lock, except it seems we're not 5815 * actually trying to acquire anything much at all.. 5816 */ 5817 if (DEBUG_LOCKS_WARN_ON(!depth)) 5818 return; 5819 5820 hlock = find_held_lock(curr, lock, depth, &i); 5821 if (!hlock) { 5822 print_lock_contention_bug(curr, lock, ip); 5823 return; 5824 } 5825 5826 if (hlock->instance != lock) 5827 return; 5828 5829 hlock->waittime_stamp = lockstat_clock(); 5830 5831 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5832 contending_point = lock_point(hlock_class(hlock)->contending_point, 5833 lock->ip); 5834 5835 stats = get_lock_stats(hlock_class(hlock)); 5836 if (contention_point < LOCKSTAT_POINTS) 5837 stats->contention_point[contention_point]++; 5838 if (contending_point < LOCKSTAT_POINTS) 5839 stats->contending_point[contending_point]++; 5840 if (lock->cpu != smp_processor_id()) 5841 stats->bounces[bounce_contended + !!hlock->read]++; 5842 } 5843 5844 static void 5845 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5846 { 5847 struct task_struct *curr = current; 5848 struct held_lock *hlock; 5849 struct lock_class_stats *stats; 5850 unsigned int depth; 5851 u64 now, waittime = 0; 5852 int i, cpu; 5853 5854 depth = curr->lockdep_depth; 5855 /* 5856 * Yay, we acquired ownership of this lock we didn't try to 5857 * acquire, how the heck did that happen? 5858 */ 5859 if (DEBUG_LOCKS_WARN_ON(!depth)) 5860 return; 5861 5862 hlock = find_held_lock(curr, lock, depth, &i); 5863 if (!hlock) { 5864 print_lock_contention_bug(curr, lock, _RET_IP_); 5865 return; 5866 } 5867 5868 if (hlock->instance != lock) 5869 return; 5870 5871 cpu = smp_processor_id(); 5872 if (hlock->waittime_stamp) { 5873 now = lockstat_clock(); 5874 waittime = now - hlock->waittime_stamp; 5875 hlock->holdtime_stamp = now; 5876 } 5877 5878 stats = get_lock_stats(hlock_class(hlock)); 5879 if (waittime) { 5880 if (hlock->read) 5881 lock_time_inc(&stats->read_waittime, waittime); 5882 else 5883 lock_time_inc(&stats->write_waittime, waittime); 5884 } 5885 if (lock->cpu != cpu) 5886 stats->bounces[bounce_acquired + !!hlock->read]++; 5887 5888 lock->cpu = cpu; 5889 lock->ip = ip; 5890 } 5891 5892 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5893 { 5894 unsigned long flags; 5895 5896 trace_lock_contended(lock, ip); 5897 5898 if (unlikely(!lock_stat || !lockdep_enabled())) 5899 return; 5900 5901 raw_local_irq_save(flags); 5902 check_flags(flags); 5903 lockdep_recursion_inc(); 5904 __lock_contended(lock, ip); 5905 lockdep_recursion_finish(); 5906 raw_local_irq_restore(flags); 5907 } 5908 EXPORT_SYMBOL_GPL(lock_contended); 5909 5910 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5911 { 5912 unsigned long flags; 5913 5914 trace_lock_acquired(lock, ip); 5915 5916 if (unlikely(!lock_stat || !lockdep_enabled())) 5917 return; 5918 5919 raw_local_irq_save(flags); 5920 check_flags(flags); 5921 lockdep_recursion_inc(); 5922 __lock_acquired(lock, ip); 5923 lockdep_recursion_finish(); 5924 raw_local_irq_restore(flags); 5925 } 5926 EXPORT_SYMBOL_GPL(lock_acquired); 5927 #endif 5928 5929 /* 5930 * Used by the testsuite, sanitize the validator state 5931 * after a simulated failure: 5932 */ 5933 5934 void lockdep_reset(void) 5935 { 5936 unsigned long flags; 5937 int i; 5938 5939 raw_local_irq_save(flags); 5940 lockdep_init_task(current); 5941 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5942 nr_hardirq_chains = 0; 5943 nr_softirq_chains = 0; 5944 nr_process_chains = 0; 5945 debug_locks = 1; 5946 for (i = 0; i < CHAINHASH_SIZE; i++) 5947 INIT_HLIST_HEAD(chainhash_table + i); 5948 raw_local_irq_restore(flags); 5949 } 5950 5951 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5952 static void remove_class_from_lock_chain(struct pending_free *pf, 5953 struct lock_chain *chain, 5954 struct lock_class *class) 5955 { 5956 #ifdef CONFIG_PROVE_LOCKING 5957 int i; 5958 5959 for (i = chain->base; i < chain->base + chain->depth; i++) { 5960 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5961 continue; 5962 /* 5963 * Each lock class occurs at most once in a lock chain so once 5964 * we found a match we can break out of this loop. 5965 */ 5966 goto free_lock_chain; 5967 } 5968 /* Since the chain has not been modified, return. */ 5969 return; 5970 5971 free_lock_chain: 5972 free_chain_hlocks(chain->base, chain->depth); 5973 /* Overwrite the chain key for concurrent RCU readers. */ 5974 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5975 dec_chains(chain->irq_context); 5976 5977 /* 5978 * Note: calling hlist_del_rcu() from inside a 5979 * hlist_for_each_entry_rcu() loop is safe. 5980 */ 5981 hlist_del_rcu(&chain->entry); 5982 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5983 nr_zapped_lock_chains++; 5984 #endif 5985 } 5986 5987 /* Must be called with the graph lock held. */ 5988 static void remove_class_from_lock_chains(struct pending_free *pf, 5989 struct lock_class *class) 5990 { 5991 struct lock_chain *chain; 5992 struct hlist_head *head; 5993 int i; 5994 5995 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5996 head = chainhash_table + i; 5997 hlist_for_each_entry_rcu(chain, head, entry) { 5998 remove_class_from_lock_chain(pf, chain, class); 5999 } 6000 } 6001 } 6002 6003 /* 6004 * Remove all references to a lock class. The caller must hold the graph lock. 6005 */ 6006 static void zap_class(struct pending_free *pf, struct lock_class *class) 6007 { 6008 struct lock_list *entry; 6009 int i; 6010 6011 WARN_ON_ONCE(!class->key); 6012 6013 /* 6014 * Remove all dependencies this lock is 6015 * involved in: 6016 */ 6017 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 6018 entry = list_entries + i; 6019 if (entry->class != class && entry->links_to != class) 6020 continue; 6021 __clear_bit(i, list_entries_in_use); 6022 nr_list_entries--; 6023 list_del_rcu(&entry->entry); 6024 } 6025 if (list_empty(&class->locks_after) && 6026 list_empty(&class->locks_before)) { 6027 list_move_tail(&class->lock_entry, &pf->zapped); 6028 hlist_del_rcu(&class->hash_entry); 6029 WRITE_ONCE(class->key, NULL); 6030 WRITE_ONCE(class->name, NULL); 6031 nr_lock_classes--; 6032 __clear_bit(class - lock_classes, lock_classes_in_use); 6033 if (class - lock_classes == max_lock_class_idx) 6034 max_lock_class_idx--; 6035 } else { 6036 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6037 class->name); 6038 } 6039 6040 remove_class_from_lock_chains(pf, class); 6041 nr_zapped_classes++; 6042 } 6043 6044 static void reinit_class(struct lock_class *class) 6045 { 6046 WARN_ON_ONCE(!class->lock_entry.next); 6047 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6048 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6049 memset_startat(class, 0, key); 6050 WARN_ON_ONCE(!class->lock_entry.next); 6051 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6052 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6053 } 6054 6055 static inline int within(const void *addr, void *start, unsigned long size) 6056 { 6057 return addr >= start && addr < start + size; 6058 } 6059 6060 static bool inside_selftest(void) 6061 { 6062 return current == lockdep_selftest_task_struct; 6063 } 6064 6065 /* The caller must hold the graph lock. */ 6066 static struct pending_free *get_pending_free(void) 6067 { 6068 return delayed_free.pf + delayed_free.index; 6069 } 6070 6071 static void free_zapped_rcu(struct rcu_head *cb); 6072 6073 /* 6074 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6075 * the graph lock held. 6076 */ 6077 static void call_rcu_zapped(struct pending_free *pf) 6078 { 6079 WARN_ON_ONCE(inside_selftest()); 6080 6081 if (list_empty(&pf->zapped)) 6082 return; 6083 6084 if (delayed_free.scheduled) 6085 return; 6086 6087 delayed_free.scheduled = true; 6088 6089 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6090 delayed_free.index ^= 1; 6091 6092 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6093 } 6094 6095 /* The caller must hold the graph lock. May be called from RCU context. */ 6096 static void __free_zapped_classes(struct pending_free *pf) 6097 { 6098 struct lock_class *class; 6099 6100 check_data_structures(); 6101 6102 list_for_each_entry(class, &pf->zapped, lock_entry) 6103 reinit_class(class); 6104 6105 list_splice_init(&pf->zapped, &free_lock_classes); 6106 6107 #ifdef CONFIG_PROVE_LOCKING 6108 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6109 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6110 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6111 #endif 6112 } 6113 6114 static void free_zapped_rcu(struct rcu_head *ch) 6115 { 6116 struct pending_free *pf; 6117 unsigned long flags; 6118 6119 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6120 return; 6121 6122 raw_local_irq_save(flags); 6123 lockdep_lock(); 6124 6125 /* closed head */ 6126 pf = delayed_free.pf + (delayed_free.index ^ 1); 6127 __free_zapped_classes(pf); 6128 delayed_free.scheduled = false; 6129 6130 /* 6131 * If there's anything on the open list, close and start a new callback. 6132 */ 6133 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6134 6135 lockdep_unlock(); 6136 raw_local_irq_restore(flags); 6137 } 6138 6139 /* 6140 * Remove all lock classes from the class hash table and from the 6141 * all_lock_classes list whose key or name is in the address range [start, 6142 * start + size). Move these lock classes to the zapped_classes list. Must 6143 * be called with the graph lock held. 6144 */ 6145 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6146 unsigned long size) 6147 { 6148 struct lock_class *class; 6149 struct hlist_head *head; 6150 int i; 6151 6152 /* Unhash all classes that were created by a module. */ 6153 for (i = 0; i < CLASSHASH_SIZE; i++) { 6154 head = classhash_table + i; 6155 hlist_for_each_entry_rcu(class, head, hash_entry) { 6156 if (!within(class->key, start, size) && 6157 !within(class->name, start, size)) 6158 continue; 6159 zap_class(pf, class); 6160 } 6161 } 6162 } 6163 6164 /* 6165 * Used in module.c to remove lock classes from memory that is going to be 6166 * freed; and possibly re-used by other modules. 6167 * 6168 * We will have had one synchronize_rcu() before getting here, so we're 6169 * guaranteed nobody will look up these exact classes -- they're properly dead 6170 * but still allocated. 6171 */ 6172 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6173 { 6174 struct pending_free *pf; 6175 unsigned long flags; 6176 6177 init_data_structures_once(); 6178 6179 raw_local_irq_save(flags); 6180 lockdep_lock(); 6181 pf = get_pending_free(); 6182 __lockdep_free_key_range(pf, start, size); 6183 call_rcu_zapped(pf); 6184 lockdep_unlock(); 6185 raw_local_irq_restore(flags); 6186 6187 /* 6188 * Wait for any possible iterators from look_up_lock_class() to pass 6189 * before continuing to free the memory they refer to. 6190 */ 6191 synchronize_rcu(); 6192 } 6193 6194 /* 6195 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6196 * Ignores debug_locks. Must only be used by the lockdep selftests. 6197 */ 6198 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6199 { 6200 struct pending_free *pf = delayed_free.pf; 6201 unsigned long flags; 6202 6203 init_data_structures_once(); 6204 6205 raw_local_irq_save(flags); 6206 lockdep_lock(); 6207 __lockdep_free_key_range(pf, start, size); 6208 __free_zapped_classes(pf); 6209 lockdep_unlock(); 6210 raw_local_irq_restore(flags); 6211 } 6212 6213 void lockdep_free_key_range(void *start, unsigned long size) 6214 { 6215 init_data_structures_once(); 6216 6217 if (inside_selftest()) 6218 lockdep_free_key_range_imm(start, size); 6219 else 6220 lockdep_free_key_range_reg(start, size); 6221 } 6222 6223 /* 6224 * Check whether any element of the @lock->class_cache[] array refers to a 6225 * registered lock class. The caller must hold either the graph lock or the 6226 * RCU read lock. 6227 */ 6228 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6229 { 6230 struct lock_class *class; 6231 struct hlist_head *head; 6232 int i, j; 6233 6234 for (i = 0; i < CLASSHASH_SIZE; i++) { 6235 head = classhash_table + i; 6236 hlist_for_each_entry_rcu(class, head, hash_entry) { 6237 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6238 if (lock->class_cache[j] == class) 6239 return true; 6240 } 6241 } 6242 return false; 6243 } 6244 6245 /* The caller must hold the graph lock. Does not sleep. */ 6246 static void __lockdep_reset_lock(struct pending_free *pf, 6247 struct lockdep_map *lock) 6248 { 6249 struct lock_class *class; 6250 int j; 6251 6252 /* 6253 * Remove all classes this lock might have: 6254 */ 6255 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6256 /* 6257 * If the class exists we look it up and zap it: 6258 */ 6259 class = look_up_lock_class(lock, j); 6260 if (class) 6261 zap_class(pf, class); 6262 } 6263 /* 6264 * Debug check: in the end all mapped classes should 6265 * be gone. 6266 */ 6267 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6268 debug_locks_off(); 6269 } 6270 6271 /* 6272 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6273 * released data structures from RCU context. 6274 */ 6275 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6276 { 6277 struct pending_free *pf; 6278 unsigned long flags; 6279 int locked; 6280 6281 raw_local_irq_save(flags); 6282 locked = graph_lock(); 6283 if (!locked) 6284 goto out_irq; 6285 6286 pf = get_pending_free(); 6287 __lockdep_reset_lock(pf, lock); 6288 call_rcu_zapped(pf); 6289 6290 graph_unlock(); 6291 out_irq: 6292 raw_local_irq_restore(flags); 6293 } 6294 6295 /* 6296 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6297 * lockdep selftests. 6298 */ 6299 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6300 { 6301 struct pending_free *pf = delayed_free.pf; 6302 unsigned long flags; 6303 6304 raw_local_irq_save(flags); 6305 lockdep_lock(); 6306 __lockdep_reset_lock(pf, lock); 6307 __free_zapped_classes(pf); 6308 lockdep_unlock(); 6309 raw_local_irq_restore(flags); 6310 } 6311 6312 void lockdep_reset_lock(struct lockdep_map *lock) 6313 { 6314 init_data_structures_once(); 6315 6316 if (inside_selftest()) 6317 lockdep_reset_lock_imm(lock); 6318 else 6319 lockdep_reset_lock_reg(lock); 6320 } 6321 6322 /* 6323 * Unregister a dynamically allocated key. 6324 * 6325 * Unlike lockdep_register_key(), a search is always done to find a matching 6326 * key irrespective of debug_locks to avoid potential invalid access to freed 6327 * memory in lock_class entry. 6328 */ 6329 void lockdep_unregister_key(struct lock_class_key *key) 6330 { 6331 struct hlist_head *hash_head = keyhashentry(key); 6332 struct lock_class_key *k; 6333 struct pending_free *pf; 6334 unsigned long flags; 6335 bool found = false; 6336 6337 might_sleep(); 6338 6339 if (WARN_ON_ONCE(static_obj(key))) 6340 return; 6341 6342 raw_local_irq_save(flags); 6343 lockdep_lock(); 6344 6345 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6346 if (k == key) { 6347 hlist_del_rcu(&k->hash_entry); 6348 found = true; 6349 break; 6350 } 6351 } 6352 WARN_ON_ONCE(!found && debug_locks); 6353 if (found) { 6354 pf = get_pending_free(); 6355 __lockdep_free_key_range(pf, key, 1); 6356 call_rcu_zapped(pf); 6357 } 6358 lockdep_unlock(); 6359 raw_local_irq_restore(flags); 6360 6361 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6362 synchronize_rcu(); 6363 } 6364 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6365 6366 void __init lockdep_init(void) 6367 { 6368 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6369 6370 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6371 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6372 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6373 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6374 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6375 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6376 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6377 6378 printk(" memory used by lock dependency info: %zu kB\n", 6379 (sizeof(lock_classes) + 6380 sizeof(lock_classes_in_use) + 6381 sizeof(classhash_table) + 6382 sizeof(list_entries) + 6383 sizeof(list_entries_in_use) + 6384 sizeof(chainhash_table) + 6385 sizeof(delayed_free) 6386 #ifdef CONFIG_PROVE_LOCKING 6387 + sizeof(lock_cq) 6388 + sizeof(lock_chains) 6389 + sizeof(lock_chains_in_use) 6390 + sizeof(chain_hlocks) 6391 #endif 6392 ) / 1024 6393 ); 6394 6395 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6396 printk(" memory used for stack traces: %zu kB\n", 6397 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6398 ); 6399 #endif 6400 6401 printk(" per task-struct memory footprint: %zu bytes\n", 6402 sizeof(((struct task_struct *)NULL)->held_locks)); 6403 } 6404 6405 static void 6406 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6407 const void *mem_to, struct held_lock *hlock) 6408 { 6409 if (!debug_locks_off()) 6410 return; 6411 if (debug_locks_silent) 6412 return; 6413 6414 pr_warn("\n"); 6415 pr_warn("=========================\n"); 6416 pr_warn("WARNING: held lock freed!\n"); 6417 print_kernel_ident(); 6418 pr_warn("-------------------------\n"); 6419 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6420 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6421 print_lock(hlock); 6422 lockdep_print_held_locks(curr); 6423 6424 pr_warn("\nstack backtrace:\n"); 6425 dump_stack(); 6426 } 6427 6428 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6429 const void* lock_from, unsigned long lock_len) 6430 { 6431 return lock_from + lock_len <= mem_from || 6432 mem_from + mem_len <= lock_from; 6433 } 6434 6435 /* 6436 * Called when kernel memory is freed (or unmapped), or if a lock 6437 * is destroyed or reinitialized - this code checks whether there is 6438 * any held lock in the memory range of <from> to <to>: 6439 */ 6440 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6441 { 6442 struct task_struct *curr = current; 6443 struct held_lock *hlock; 6444 unsigned long flags; 6445 int i; 6446 6447 if (unlikely(!debug_locks)) 6448 return; 6449 6450 raw_local_irq_save(flags); 6451 for (i = 0; i < curr->lockdep_depth; i++) { 6452 hlock = curr->held_locks + i; 6453 6454 if (not_in_range(mem_from, mem_len, hlock->instance, 6455 sizeof(*hlock->instance))) 6456 continue; 6457 6458 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6459 break; 6460 } 6461 raw_local_irq_restore(flags); 6462 } 6463 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6464 6465 static void print_held_locks_bug(void) 6466 { 6467 if (!debug_locks_off()) 6468 return; 6469 if (debug_locks_silent) 6470 return; 6471 6472 pr_warn("\n"); 6473 pr_warn("====================================\n"); 6474 pr_warn("WARNING: %s/%d still has locks held!\n", 6475 current->comm, task_pid_nr(current)); 6476 print_kernel_ident(); 6477 pr_warn("------------------------------------\n"); 6478 lockdep_print_held_locks(current); 6479 pr_warn("\nstack backtrace:\n"); 6480 dump_stack(); 6481 } 6482 6483 void debug_check_no_locks_held(void) 6484 { 6485 if (unlikely(current->lockdep_depth > 0)) 6486 print_held_locks_bug(); 6487 } 6488 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6489 6490 #ifdef __KERNEL__ 6491 void debug_show_all_locks(void) 6492 { 6493 struct task_struct *g, *p; 6494 6495 if (unlikely(!debug_locks)) { 6496 pr_warn("INFO: lockdep is turned off.\n"); 6497 return; 6498 } 6499 pr_warn("\nShowing all locks held in the system:\n"); 6500 6501 rcu_read_lock(); 6502 for_each_process_thread(g, p) { 6503 if (!p->lockdep_depth) 6504 continue; 6505 lockdep_print_held_locks(p); 6506 touch_nmi_watchdog(); 6507 touch_all_softlockup_watchdogs(); 6508 } 6509 rcu_read_unlock(); 6510 6511 pr_warn("\n"); 6512 pr_warn("=============================================\n\n"); 6513 } 6514 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6515 #endif 6516 6517 /* 6518 * Careful: only use this function if you are sure that 6519 * the task cannot run in parallel! 6520 */ 6521 void debug_show_held_locks(struct task_struct *task) 6522 { 6523 if (unlikely(!debug_locks)) { 6524 printk("INFO: lockdep is turned off.\n"); 6525 return; 6526 } 6527 lockdep_print_held_locks(task); 6528 } 6529 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6530 6531 asmlinkage __visible void lockdep_sys_exit(void) 6532 { 6533 struct task_struct *curr = current; 6534 6535 if (unlikely(curr->lockdep_depth)) { 6536 if (!debug_locks_off()) 6537 return; 6538 pr_warn("\n"); 6539 pr_warn("================================================\n"); 6540 pr_warn("WARNING: lock held when returning to user space!\n"); 6541 print_kernel_ident(); 6542 pr_warn("------------------------------------------------\n"); 6543 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6544 curr->comm, curr->pid); 6545 lockdep_print_held_locks(curr); 6546 } 6547 6548 /* 6549 * The lock history for each syscall should be independent. So wipe the 6550 * slate clean on return to userspace. 6551 */ 6552 lockdep_invariant_state(false); 6553 } 6554 6555 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6556 { 6557 struct task_struct *curr = current; 6558 int dl = READ_ONCE(debug_locks); 6559 bool rcu = warn_rcu_enter(); 6560 6561 /* Note: the following can be executed concurrently, so be careful. */ 6562 pr_warn("\n"); 6563 pr_warn("=============================\n"); 6564 pr_warn("WARNING: suspicious RCU usage\n"); 6565 print_kernel_ident(); 6566 pr_warn("-----------------------------\n"); 6567 pr_warn("%s:%d %s!\n", file, line, s); 6568 pr_warn("\nother info that might help us debug this:\n\n"); 6569 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6570 !rcu_lockdep_current_cpu_online() 6571 ? "RCU used illegally from offline CPU!\n" 6572 : "", 6573 rcu_scheduler_active, dl, 6574 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6575 6576 /* 6577 * If a CPU is in the RCU-free window in idle (ie: in the section 6578 * between ct_idle_enter() and ct_idle_exit(), then RCU 6579 * considers that CPU to be in an "extended quiescent state", 6580 * which means that RCU will be completely ignoring that CPU. 6581 * Therefore, rcu_read_lock() and friends have absolutely no 6582 * effect on a CPU running in that state. In other words, even if 6583 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6584 * delete data structures out from under it. RCU really has no 6585 * choice here: we need to keep an RCU-free window in idle where 6586 * the CPU may possibly enter into low power mode. This way we can 6587 * notice an extended quiescent state to other CPUs that started a grace 6588 * period. Otherwise we would delay any grace period as long as we run 6589 * in the idle task. 6590 * 6591 * So complain bitterly if someone does call rcu_read_lock(), 6592 * rcu_read_lock_bh() and so on from extended quiescent states. 6593 */ 6594 if (!rcu_is_watching()) 6595 pr_warn("RCU used illegally from extended quiescent state!\n"); 6596 6597 lockdep_print_held_locks(curr); 6598 pr_warn("\nstack backtrace:\n"); 6599 dump_stack(); 6600 warn_rcu_exit(rcu); 6601 } 6602 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6603