1 /* 2 * kernel/lockdep.c 3 * 4 * Runtime locking correctness validator 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 10 * 11 * this code maps all the lock dependencies as they occur in a live kernel 12 * and will warn about the following classes of locking bugs: 13 * 14 * - lock inversion scenarios 15 * - circular lock dependencies 16 * - hardirq/softirq safe/unsafe locking bugs 17 * 18 * Bugs are reported even if the current locking scenario does not cause 19 * any deadlock at this point. 20 * 21 * I.e. if anytime in the past two locks were taken in a different order, 22 * even if it happened for another task, even if those were different 23 * locks (but of the same class as this lock), this code will detect it. 24 * 25 * Thanks to Arjan van de Ven for coming up with the initial idea of 26 * mapping lock dependencies runtime. 27 */ 28 #define DISABLE_BRANCH_PROFILING 29 #include <linux/mutex.h> 30 #include <linux/sched.h> 31 #include <linux/sched/clock.h> 32 #include <linux/sched/task.h> 33 #include <linux/sched/mm.h> 34 #include <linux/delay.h> 35 #include <linux/module.h> 36 #include <linux/proc_fs.h> 37 #include <linux/seq_file.h> 38 #include <linux/spinlock.h> 39 #include <linux/kallsyms.h> 40 #include <linux/interrupt.h> 41 #include <linux/stacktrace.h> 42 #include <linux/debug_locks.h> 43 #include <linux/irqflags.h> 44 #include <linux/utsname.h> 45 #include <linux/hash.h> 46 #include <linux/ftrace.h> 47 #include <linux/stringify.h> 48 #include <linux/bitops.h> 49 #include <linux/gfp.h> 50 #include <linux/random.h> 51 #include <linux/jhash.h> 52 53 #include <asm/sections.h> 54 55 #include "lockdep_internals.h" 56 57 #define CREATE_TRACE_POINTS 58 #include <trace/events/lock.h> 59 60 #ifdef CONFIG_LOCKDEP_CROSSRELEASE 61 #include <linux/slab.h> 62 #endif 63 64 #ifdef CONFIG_PROVE_LOCKING 65 int prove_locking = 1; 66 module_param(prove_locking, int, 0644); 67 #else 68 #define prove_locking 0 69 #endif 70 71 #ifdef CONFIG_LOCK_STAT 72 int lock_stat = 1; 73 module_param(lock_stat, int, 0644); 74 #else 75 #define lock_stat 0 76 #endif 77 78 #ifdef CONFIG_BOOTPARAM_LOCKDEP_CROSSRELEASE_FULLSTACK 79 static int crossrelease_fullstack = 1; 80 #else 81 static int crossrelease_fullstack; 82 #endif 83 static int __init allow_crossrelease_fullstack(char *str) 84 { 85 crossrelease_fullstack = 1; 86 return 0; 87 } 88 89 early_param("crossrelease_fullstack", allow_crossrelease_fullstack); 90 91 /* 92 * lockdep_lock: protects the lockdep graph, the hashes and the 93 * class/list/hash allocators. 94 * 95 * This is one of the rare exceptions where it's justified 96 * to use a raw spinlock - we really dont want the spinlock 97 * code to recurse back into the lockdep code... 98 */ 99 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 100 101 static int graph_lock(void) 102 { 103 arch_spin_lock(&lockdep_lock); 104 /* 105 * Make sure that if another CPU detected a bug while 106 * walking the graph we dont change it (while the other 107 * CPU is busy printing out stuff with the graph lock 108 * dropped already) 109 */ 110 if (!debug_locks) { 111 arch_spin_unlock(&lockdep_lock); 112 return 0; 113 } 114 /* prevent any recursions within lockdep from causing deadlocks */ 115 current->lockdep_recursion++; 116 return 1; 117 } 118 119 static inline int graph_unlock(void) 120 { 121 if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) { 122 /* 123 * The lockdep graph lock isn't locked while we expect it to 124 * be, we're confused now, bye! 125 */ 126 return DEBUG_LOCKS_WARN_ON(1); 127 } 128 129 current->lockdep_recursion--; 130 arch_spin_unlock(&lockdep_lock); 131 return 0; 132 } 133 134 /* 135 * Turn lock debugging off and return with 0 if it was off already, 136 * and also release the graph lock: 137 */ 138 static inline int debug_locks_off_graph_unlock(void) 139 { 140 int ret = debug_locks_off(); 141 142 arch_spin_unlock(&lockdep_lock); 143 144 return ret; 145 } 146 147 unsigned long nr_list_entries; 148 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 149 150 /* 151 * All data structures here are protected by the global debug_lock. 152 * 153 * Mutex key structs only get allocated, once during bootup, and never 154 * get freed - this significantly simplifies the debugging code. 155 */ 156 unsigned long nr_lock_classes; 157 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 158 159 static inline struct lock_class *hlock_class(struct held_lock *hlock) 160 { 161 if (!hlock->class_idx) { 162 /* 163 * Someone passed in garbage, we give up. 164 */ 165 DEBUG_LOCKS_WARN_ON(1); 166 return NULL; 167 } 168 return lock_classes + hlock->class_idx - 1; 169 } 170 171 #ifdef CONFIG_LOCK_STAT 172 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 173 174 static inline u64 lockstat_clock(void) 175 { 176 return local_clock(); 177 } 178 179 static int lock_point(unsigned long points[], unsigned long ip) 180 { 181 int i; 182 183 for (i = 0; i < LOCKSTAT_POINTS; i++) { 184 if (points[i] == 0) { 185 points[i] = ip; 186 break; 187 } 188 if (points[i] == ip) 189 break; 190 } 191 192 return i; 193 } 194 195 static void lock_time_inc(struct lock_time *lt, u64 time) 196 { 197 if (time > lt->max) 198 lt->max = time; 199 200 if (time < lt->min || !lt->nr) 201 lt->min = time; 202 203 lt->total += time; 204 lt->nr++; 205 } 206 207 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 208 { 209 if (!src->nr) 210 return; 211 212 if (src->max > dst->max) 213 dst->max = src->max; 214 215 if (src->min < dst->min || !dst->nr) 216 dst->min = src->min; 217 218 dst->total += src->total; 219 dst->nr += src->nr; 220 } 221 222 struct lock_class_stats lock_stats(struct lock_class *class) 223 { 224 struct lock_class_stats stats; 225 int cpu, i; 226 227 memset(&stats, 0, sizeof(struct lock_class_stats)); 228 for_each_possible_cpu(cpu) { 229 struct lock_class_stats *pcs = 230 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 231 232 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 233 stats.contention_point[i] += pcs->contention_point[i]; 234 235 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 236 stats.contending_point[i] += pcs->contending_point[i]; 237 238 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 239 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 240 241 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 242 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 243 244 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 245 stats.bounces[i] += pcs->bounces[i]; 246 } 247 248 return stats; 249 } 250 251 void clear_lock_stats(struct lock_class *class) 252 { 253 int cpu; 254 255 for_each_possible_cpu(cpu) { 256 struct lock_class_stats *cpu_stats = 257 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 258 259 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 260 } 261 memset(class->contention_point, 0, sizeof(class->contention_point)); 262 memset(class->contending_point, 0, sizeof(class->contending_point)); 263 } 264 265 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 266 { 267 return &get_cpu_var(cpu_lock_stats)[class - lock_classes]; 268 } 269 270 static void put_lock_stats(struct lock_class_stats *stats) 271 { 272 put_cpu_var(cpu_lock_stats); 273 } 274 275 static void lock_release_holdtime(struct held_lock *hlock) 276 { 277 struct lock_class_stats *stats; 278 u64 holdtime; 279 280 if (!lock_stat) 281 return; 282 283 holdtime = lockstat_clock() - hlock->holdtime_stamp; 284 285 stats = get_lock_stats(hlock_class(hlock)); 286 if (hlock->read) 287 lock_time_inc(&stats->read_holdtime, holdtime); 288 else 289 lock_time_inc(&stats->write_holdtime, holdtime); 290 put_lock_stats(stats); 291 } 292 #else 293 static inline void lock_release_holdtime(struct held_lock *hlock) 294 { 295 } 296 #endif 297 298 /* 299 * We keep a global list of all lock classes. The list only grows, 300 * never shrinks. The list is only accessed with the lockdep 301 * spinlock lock held. 302 */ 303 LIST_HEAD(all_lock_classes); 304 305 /* 306 * The lockdep classes are in a hash-table as well, for fast lookup: 307 */ 308 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 309 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 310 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 311 #define classhashentry(key) (classhash_table + __classhashfn((key))) 312 313 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 314 315 /* 316 * We put the lock dependency chains into a hash-table as well, to cache 317 * their existence: 318 */ 319 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 320 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 321 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 322 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 323 324 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 325 326 /* 327 * The hash key of the lock dependency chains is a hash itself too: 328 * it's a hash of all locks taken up to that lock, including that lock. 329 * It's a 64-bit hash, because it's important for the keys to be 330 * unique. 331 */ 332 static inline u64 iterate_chain_key(u64 key, u32 idx) 333 { 334 u32 k0 = key, k1 = key >> 32; 335 336 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 337 338 return k0 | (u64)k1 << 32; 339 } 340 341 void lockdep_off(void) 342 { 343 current->lockdep_recursion++; 344 } 345 EXPORT_SYMBOL(lockdep_off); 346 347 void lockdep_on(void) 348 { 349 current->lockdep_recursion--; 350 } 351 EXPORT_SYMBOL(lockdep_on); 352 353 /* 354 * Debugging switches: 355 */ 356 357 #define VERBOSE 0 358 #define VERY_VERBOSE 0 359 360 #if VERBOSE 361 # define HARDIRQ_VERBOSE 1 362 # define SOFTIRQ_VERBOSE 1 363 #else 364 # define HARDIRQ_VERBOSE 0 365 # define SOFTIRQ_VERBOSE 0 366 #endif 367 368 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 369 /* 370 * Quick filtering for interesting events: 371 */ 372 static int class_filter(struct lock_class *class) 373 { 374 #if 0 375 /* Example */ 376 if (class->name_version == 1 && 377 !strcmp(class->name, "lockname")) 378 return 1; 379 if (class->name_version == 1 && 380 !strcmp(class->name, "&struct->lockfield")) 381 return 1; 382 #endif 383 /* Filter everything else. 1 would be to allow everything else */ 384 return 0; 385 } 386 #endif 387 388 static int verbose(struct lock_class *class) 389 { 390 #if VERBOSE 391 return class_filter(class); 392 #endif 393 return 0; 394 } 395 396 /* 397 * Stack-trace: tightly packed array of stack backtrace 398 * addresses. Protected by the graph_lock. 399 */ 400 unsigned long nr_stack_trace_entries; 401 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 402 403 static void print_lockdep_off(const char *bug_msg) 404 { 405 printk(KERN_DEBUG "%s\n", bug_msg); 406 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 407 #ifdef CONFIG_LOCK_STAT 408 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 409 #endif 410 } 411 412 static int save_trace(struct stack_trace *trace) 413 { 414 trace->nr_entries = 0; 415 trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries; 416 trace->entries = stack_trace + nr_stack_trace_entries; 417 418 trace->skip = 3; 419 420 save_stack_trace(trace); 421 422 /* 423 * Some daft arches put -1 at the end to indicate its a full trace. 424 * 425 * <rant> this is buggy anyway, since it takes a whole extra entry so a 426 * complete trace that maxes out the entries provided will be reported 427 * as incomplete, friggin useless </rant> 428 */ 429 if (trace->nr_entries != 0 && 430 trace->entries[trace->nr_entries-1] == ULONG_MAX) 431 trace->nr_entries--; 432 433 trace->max_entries = trace->nr_entries; 434 435 nr_stack_trace_entries += trace->nr_entries; 436 437 if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) { 438 if (!debug_locks_off_graph_unlock()) 439 return 0; 440 441 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 442 dump_stack(); 443 444 return 0; 445 } 446 447 return 1; 448 } 449 450 unsigned int nr_hardirq_chains; 451 unsigned int nr_softirq_chains; 452 unsigned int nr_process_chains; 453 unsigned int max_lockdep_depth; 454 455 #ifdef CONFIG_DEBUG_LOCKDEP 456 /* 457 * Various lockdep statistics: 458 */ 459 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 460 #endif 461 462 /* 463 * Locking printouts: 464 */ 465 466 #define __USAGE(__STATE) \ 467 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 468 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 469 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 470 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 471 472 static const char *usage_str[] = 473 { 474 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 475 #include "lockdep_states.h" 476 #undef LOCKDEP_STATE 477 [LOCK_USED] = "INITIAL USE", 478 }; 479 480 const char * __get_key_name(struct lockdep_subclass_key *key, char *str) 481 { 482 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 483 } 484 485 static inline unsigned long lock_flag(enum lock_usage_bit bit) 486 { 487 return 1UL << bit; 488 } 489 490 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 491 { 492 char c = '.'; 493 494 if (class->usage_mask & lock_flag(bit + 2)) 495 c = '+'; 496 if (class->usage_mask & lock_flag(bit)) { 497 c = '-'; 498 if (class->usage_mask & lock_flag(bit + 2)) 499 c = '?'; 500 } 501 502 return c; 503 } 504 505 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 506 { 507 int i = 0; 508 509 #define LOCKDEP_STATE(__STATE) \ 510 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 511 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 512 #include "lockdep_states.h" 513 #undef LOCKDEP_STATE 514 515 usage[i] = '\0'; 516 } 517 518 static void __print_lock_name(struct lock_class *class) 519 { 520 char str[KSYM_NAME_LEN]; 521 const char *name; 522 523 name = class->name; 524 if (!name) { 525 name = __get_key_name(class->key, str); 526 printk(KERN_CONT "%s", name); 527 } else { 528 printk(KERN_CONT "%s", name); 529 if (class->name_version > 1) 530 printk(KERN_CONT "#%d", class->name_version); 531 if (class->subclass) 532 printk(KERN_CONT "/%d", class->subclass); 533 } 534 } 535 536 static void print_lock_name(struct lock_class *class) 537 { 538 char usage[LOCK_USAGE_CHARS]; 539 540 get_usage_chars(class, usage); 541 542 printk(KERN_CONT " ("); 543 __print_lock_name(class); 544 printk(KERN_CONT "){%s}", usage); 545 } 546 547 static void print_lockdep_cache(struct lockdep_map *lock) 548 { 549 const char *name; 550 char str[KSYM_NAME_LEN]; 551 552 name = lock->name; 553 if (!name) 554 name = __get_key_name(lock->key->subkeys, str); 555 556 printk(KERN_CONT "%s", name); 557 } 558 559 static void print_lock(struct held_lock *hlock) 560 { 561 /* 562 * We can be called locklessly through debug_show_all_locks() so be 563 * extra careful, the hlock might have been released and cleared. 564 */ 565 unsigned int class_idx = hlock->class_idx; 566 567 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfields: */ 568 barrier(); 569 570 if (!class_idx || (class_idx - 1) >= MAX_LOCKDEP_KEYS) { 571 printk(KERN_CONT "<RELEASED>\n"); 572 return; 573 } 574 575 print_lock_name(lock_classes + class_idx - 1); 576 printk(KERN_CONT ", at: [<%p>] %pS\n", 577 (void *)hlock->acquire_ip, (void *)hlock->acquire_ip); 578 } 579 580 static void lockdep_print_held_locks(struct task_struct *curr) 581 { 582 int i, depth = curr->lockdep_depth; 583 584 if (!depth) { 585 printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr)); 586 return; 587 } 588 printk("%d lock%s held by %s/%d:\n", 589 depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr)); 590 591 for (i = 0; i < depth; i++) { 592 printk(" #%d: ", i); 593 print_lock(curr->held_locks + i); 594 } 595 } 596 597 static void print_kernel_ident(void) 598 { 599 printk("%s %.*s %s\n", init_utsname()->release, 600 (int)strcspn(init_utsname()->version, " "), 601 init_utsname()->version, 602 print_tainted()); 603 } 604 605 static int very_verbose(struct lock_class *class) 606 { 607 #if VERY_VERBOSE 608 return class_filter(class); 609 #endif 610 return 0; 611 } 612 613 /* 614 * Is this the address of a static object: 615 */ 616 #ifdef __KERNEL__ 617 static int static_obj(void *obj) 618 { 619 unsigned long start = (unsigned long) &_stext, 620 end = (unsigned long) &_end, 621 addr = (unsigned long) obj; 622 623 /* 624 * static variable? 625 */ 626 if ((addr >= start) && (addr < end)) 627 return 1; 628 629 if (arch_is_kernel_data(addr)) 630 return 1; 631 632 /* 633 * in-kernel percpu var? 634 */ 635 if (is_kernel_percpu_address(addr)) 636 return 1; 637 638 /* 639 * module static or percpu var? 640 */ 641 return is_module_address(addr) || is_module_percpu_address(addr); 642 } 643 #endif 644 645 /* 646 * To make lock name printouts unique, we calculate a unique 647 * class->name_version generation counter: 648 */ 649 static int count_matching_names(struct lock_class *new_class) 650 { 651 struct lock_class *class; 652 int count = 0; 653 654 if (!new_class->name) 655 return 0; 656 657 list_for_each_entry_rcu(class, &all_lock_classes, lock_entry) { 658 if (new_class->key - new_class->subclass == class->key) 659 return class->name_version; 660 if (class->name && !strcmp(class->name, new_class->name)) 661 count = max(count, class->name_version); 662 } 663 664 return count + 1; 665 } 666 667 /* 668 * Register a lock's class in the hash-table, if the class is not present 669 * yet. Otherwise we look it up. We cache the result in the lock object 670 * itself, so actual lookup of the hash should be once per lock object. 671 */ 672 static inline struct lock_class * 673 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass) 674 { 675 struct lockdep_subclass_key *key; 676 struct hlist_head *hash_head; 677 struct lock_class *class; 678 bool is_static = false; 679 680 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 681 debug_locks_off(); 682 printk(KERN_ERR 683 "BUG: looking up invalid subclass: %u\n", subclass); 684 printk(KERN_ERR 685 "turning off the locking correctness validator.\n"); 686 dump_stack(); 687 return NULL; 688 } 689 690 /* 691 * Static locks do not have their class-keys yet - for them the key 692 * is the lock object itself. If the lock is in the per cpu area, 693 * the canonical address of the lock (per cpu offset removed) is 694 * used. 695 */ 696 if (unlikely(!lock->key)) { 697 unsigned long can_addr, addr = (unsigned long)lock; 698 699 if (__is_kernel_percpu_address(addr, &can_addr)) 700 lock->key = (void *)can_addr; 701 else if (__is_module_percpu_address(addr, &can_addr)) 702 lock->key = (void *)can_addr; 703 else if (static_obj(lock)) 704 lock->key = (void *)lock; 705 else 706 return ERR_PTR(-EINVAL); 707 is_static = true; 708 } 709 710 /* 711 * NOTE: the class-key must be unique. For dynamic locks, a static 712 * lock_class_key variable is passed in through the mutex_init() 713 * (or spin_lock_init()) call - which acts as the key. For static 714 * locks we use the lock object itself as the key. 715 */ 716 BUILD_BUG_ON(sizeof(struct lock_class_key) > 717 sizeof(struct lockdep_map)); 718 719 key = lock->key->subkeys + subclass; 720 721 hash_head = classhashentry(key); 722 723 /* 724 * We do an RCU walk of the hash, see lockdep_free_key_range(). 725 */ 726 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 727 return NULL; 728 729 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 730 if (class->key == key) { 731 /* 732 * Huh! same key, different name? Did someone trample 733 * on some memory? We're most confused. 734 */ 735 WARN_ON_ONCE(class->name != lock->name); 736 return class; 737 } 738 } 739 740 return is_static || static_obj(lock->key) ? NULL : ERR_PTR(-EINVAL); 741 } 742 743 #ifdef CONFIG_LOCKDEP_CROSSRELEASE 744 static void cross_init(struct lockdep_map *lock, int cross); 745 static int cross_lock(struct lockdep_map *lock); 746 static int lock_acquire_crosslock(struct held_lock *hlock); 747 static int lock_release_crosslock(struct lockdep_map *lock); 748 #else 749 static inline void cross_init(struct lockdep_map *lock, int cross) {} 750 static inline int cross_lock(struct lockdep_map *lock) { return 0; } 751 static inline int lock_acquire_crosslock(struct held_lock *hlock) { return 2; } 752 static inline int lock_release_crosslock(struct lockdep_map *lock) { return 2; } 753 #endif 754 755 /* 756 * Register a lock's class in the hash-table, if the class is not present 757 * yet. Otherwise we look it up. We cache the result in the lock object 758 * itself, so actual lookup of the hash should be once per lock object. 759 */ 760 static struct lock_class * 761 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 762 { 763 struct lockdep_subclass_key *key; 764 struct hlist_head *hash_head; 765 struct lock_class *class; 766 767 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 768 769 class = look_up_lock_class(lock, subclass); 770 if (likely(!IS_ERR_OR_NULL(class))) 771 goto out_set_class_cache; 772 773 /* 774 * Debug-check: all keys must be persistent! 775 */ 776 if (IS_ERR(class)) { 777 debug_locks_off(); 778 printk("INFO: trying to register non-static key.\n"); 779 printk("the code is fine but needs lockdep annotation.\n"); 780 printk("turning off the locking correctness validator.\n"); 781 dump_stack(); 782 return NULL; 783 } 784 785 key = lock->key->subkeys + subclass; 786 hash_head = classhashentry(key); 787 788 if (!graph_lock()) { 789 return NULL; 790 } 791 /* 792 * We have to do the hash-walk again, to avoid races 793 * with another CPU: 794 */ 795 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 796 if (class->key == key) 797 goto out_unlock_set; 798 } 799 800 /* 801 * Allocate a new key from the static array, and add it to 802 * the hash: 803 */ 804 if (nr_lock_classes >= MAX_LOCKDEP_KEYS) { 805 if (!debug_locks_off_graph_unlock()) { 806 return NULL; 807 } 808 809 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 810 dump_stack(); 811 return NULL; 812 } 813 class = lock_classes + nr_lock_classes++; 814 debug_atomic_inc(nr_unused_locks); 815 class->key = key; 816 class->name = lock->name; 817 class->subclass = subclass; 818 INIT_LIST_HEAD(&class->lock_entry); 819 INIT_LIST_HEAD(&class->locks_before); 820 INIT_LIST_HEAD(&class->locks_after); 821 class->name_version = count_matching_names(class); 822 /* 823 * We use RCU's safe list-add method to make 824 * parallel walking of the hash-list safe: 825 */ 826 hlist_add_head_rcu(&class->hash_entry, hash_head); 827 /* 828 * Add it to the global list of classes: 829 */ 830 list_add_tail_rcu(&class->lock_entry, &all_lock_classes); 831 832 if (verbose(class)) { 833 graph_unlock(); 834 835 printk("\nnew class %p: %s", class->key, class->name); 836 if (class->name_version > 1) 837 printk(KERN_CONT "#%d", class->name_version); 838 printk(KERN_CONT "\n"); 839 dump_stack(); 840 841 if (!graph_lock()) { 842 return NULL; 843 } 844 } 845 out_unlock_set: 846 graph_unlock(); 847 848 out_set_class_cache: 849 if (!subclass || force) 850 lock->class_cache[0] = class; 851 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 852 lock->class_cache[subclass] = class; 853 854 /* 855 * Hash collision, did we smoke some? We found a class with a matching 856 * hash but the subclass -- which is hashed in -- didn't match. 857 */ 858 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 859 return NULL; 860 861 return class; 862 } 863 864 #ifdef CONFIG_PROVE_LOCKING 865 /* 866 * Allocate a lockdep entry. (assumes the graph_lock held, returns 867 * with NULL on failure) 868 */ 869 static struct lock_list *alloc_list_entry(void) 870 { 871 if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) { 872 if (!debug_locks_off_graph_unlock()) 873 return NULL; 874 875 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 876 dump_stack(); 877 return NULL; 878 } 879 return list_entries + nr_list_entries++; 880 } 881 882 /* 883 * Add a new dependency to the head of the list: 884 */ 885 static int add_lock_to_list(struct lock_class *this, struct list_head *head, 886 unsigned long ip, int distance, 887 struct stack_trace *trace) 888 { 889 struct lock_list *entry; 890 /* 891 * Lock not present yet - get a new dependency struct and 892 * add it to the list: 893 */ 894 entry = alloc_list_entry(); 895 if (!entry) 896 return 0; 897 898 entry->class = this; 899 entry->distance = distance; 900 entry->trace = *trace; 901 /* 902 * Both allocation and removal are done under the graph lock; but 903 * iteration is under RCU-sched; see look_up_lock_class() and 904 * lockdep_free_key_range(). 905 */ 906 list_add_tail_rcu(&entry->entry, head); 907 908 return 1; 909 } 910 911 /* 912 * For good efficiency of modular, we use power of 2 913 */ 914 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL 915 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 916 917 /* 918 * The circular_queue and helpers is used to implement the 919 * breadth-first search(BFS)algorithem, by which we can build 920 * the shortest path from the next lock to be acquired to the 921 * previous held lock if there is a circular between them. 922 */ 923 struct circular_queue { 924 unsigned long element[MAX_CIRCULAR_QUEUE_SIZE]; 925 unsigned int front, rear; 926 }; 927 928 static struct circular_queue lock_cq; 929 930 unsigned int max_bfs_queue_depth; 931 932 static unsigned int lockdep_dependency_gen_id; 933 934 static inline void __cq_init(struct circular_queue *cq) 935 { 936 cq->front = cq->rear = 0; 937 lockdep_dependency_gen_id++; 938 } 939 940 static inline int __cq_empty(struct circular_queue *cq) 941 { 942 return (cq->front == cq->rear); 943 } 944 945 static inline int __cq_full(struct circular_queue *cq) 946 { 947 return ((cq->rear + 1) & CQ_MASK) == cq->front; 948 } 949 950 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem) 951 { 952 if (__cq_full(cq)) 953 return -1; 954 955 cq->element[cq->rear] = elem; 956 cq->rear = (cq->rear + 1) & CQ_MASK; 957 return 0; 958 } 959 960 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem) 961 { 962 if (__cq_empty(cq)) 963 return -1; 964 965 *elem = cq->element[cq->front]; 966 cq->front = (cq->front + 1) & CQ_MASK; 967 return 0; 968 } 969 970 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 971 { 972 return (cq->rear - cq->front) & CQ_MASK; 973 } 974 975 static inline void mark_lock_accessed(struct lock_list *lock, 976 struct lock_list *parent) 977 { 978 unsigned long nr; 979 980 nr = lock - list_entries; 981 WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */ 982 lock->parent = parent; 983 lock->class->dep_gen_id = lockdep_dependency_gen_id; 984 } 985 986 static inline unsigned long lock_accessed(struct lock_list *lock) 987 { 988 unsigned long nr; 989 990 nr = lock - list_entries; 991 WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */ 992 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 993 } 994 995 static inline struct lock_list *get_lock_parent(struct lock_list *child) 996 { 997 return child->parent; 998 } 999 1000 static inline int get_lock_depth(struct lock_list *child) 1001 { 1002 int depth = 0; 1003 struct lock_list *parent; 1004 1005 while ((parent = get_lock_parent(child))) { 1006 child = parent; 1007 depth++; 1008 } 1009 return depth; 1010 } 1011 1012 static int __bfs(struct lock_list *source_entry, 1013 void *data, 1014 int (*match)(struct lock_list *entry, void *data), 1015 struct lock_list **target_entry, 1016 int forward) 1017 { 1018 struct lock_list *entry; 1019 struct list_head *head; 1020 struct circular_queue *cq = &lock_cq; 1021 int ret = 1; 1022 1023 if (match(source_entry, data)) { 1024 *target_entry = source_entry; 1025 ret = 0; 1026 goto exit; 1027 } 1028 1029 if (forward) 1030 head = &source_entry->class->locks_after; 1031 else 1032 head = &source_entry->class->locks_before; 1033 1034 if (list_empty(head)) 1035 goto exit; 1036 1037 __cq_init(cq); 1038 __cq_enqueue(cq, (unsigned long)source_entry); 1039 1040 while (!__cq_empty(cq)) { 1041 struct lock_list *lock; 1042 1043 __cq_dequeue(cq, (unsigned long *)&lock); 1044 1045 if (!lock->class) { 1046 ret = -2; 1047 goto exit; 1048 } 1049 1050 if (forward) 1051 head = &lock->class->locks_after; 1052 else 1053 head = &lock->class->locks_before; 1054 1055 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1056 1057 list_for_each_entry_rcu(entry, head, entry) { 1058 if (!lock_accessed(entry)) { 1059 unsigned int cq_depth; 1060 mark_lock_accessed(entry, lock); 1061 if (match(entry, data)) { 1062 *target_entry = entry; 1063 ret = 0; 1064 goto exit; 1065 } 1066 1067 if (__cq_enqueue(cq, (unsigned long)entry)) { 1068 ret = -1; 1069 goto exit; 1070 } 1071 cq_depth = __cq_get_elem_count(cq); 1072 if (max_bfs_queue_depth < cq_depth) 1073 max_bfs_queue_depth = cq_depth; 1074 } 1075 } 1076 } 1077 exit: 1078 return ret; 1079 } 1080 1081 static inline int __bfs_forwards(struct lock_list *src_entry, 1082 void *data, 1083 int (*match)(struct lock_list *entry, void *data), 1084 struct lock_list **target_entry) 1085 { 1086 return __bfs(src_entry, data, match, target_entry, 1); 1087 1088 } 1089 1090 static inline int __bfs_backwards(struct lock_list *src_entry, 1091 void *data, 1092 int (*match)(struct lock_list *entry, void *data), 1093 struct lock_list **target_entry) 1094 { 1095 return __bfs(src_entry, data, match, target_entry, 0); 1096 1097 } 1098 1099 /* 1100 * Recursive, forwards-direction lock-dependency checking, used for 1101 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe 1102 * checking. 1103 */ 1104 1105 /* 1106 * Print a dependency chain entry (this is only done when a deadlock 1107 * has been detected): 1108 */ 1109 static noinline int 1110 print_circular_bug_entry(struct lock_list *target, int depth) 1111 { 1112 if (debug_locks_silent) 1113 return 0; 1114 printk("\n-> #%u", depth); 1115 print_lock_name(target->class); 1116 printk(KERN_CONT ":\n"); 1117 print_stack_trace(&target->trace, 6); 1118 1119 return 0; 1120 } 1121 1122 static void 1123 print_circular_lock_scenario(struct held_lock *src, 1124 struct held_lock *tgt, 1125 struct lock_list *prt) 1126 { 1127 struct lock_class *source = hlock_class(src); 1128 struct lock_class *target = hlock_class(tgt); 1129 struct lock_class *parent = prt->class; 1130 1131 /* 1132 * A direct locking problem where unsafe_class lock is taken 1133 * directly by safe_class lock, then all we need to show 1134 * is the deadlock scenario, as it is obvious that the 1135 * unsafe lock is taken under the safe lock. 1136 * 1137 * But if there is a chain instead, where the safe lock takes 1138 * an intermediate lock (middle_class) where this lock is 1139 * not the same as the safe lock, then the lock chain is 1140 * used to describe the problem. Otherwise we would need 1141 * to show a different CPU case for each link in the chain 1142 * from the safe_class lock to the unsafe_class lock. 1143 */ 1144 if (parent != source) { 1145 printk("Chain exists of:\n "); 1146 __print_lock_name(source); 1147 printk(KERN_CONT " --> "); 1148 __print_lock_name(parent); 1149 printk(KERN_CONT " --> "); 1150 __print_lock_name(target); 1151 printk(KERN_CONT "\n\n"); 1152 } 1153 1154 if (cross_lock(tgt->instance)) { 1155 printk(" Possible unsafe locking scenario by crosslock:\n\n"); 1156 printk(" CPU0 CPU1\n"); 1157 printk(" ---- ----\n"); 1158 printk(" lock("); 1159 __print_lock_name(parent); 1160 printk(KERN_CONT ");\n"); 1161 printk(" lock("); 1162 __print_lock_name(target); 1163 printk(KERN_CONT ");\n"); 1164 printk(" lock("); 1165 __print_lock_name(source); 1166 printk(KERN_CONT ");\n"); 1167 printk(" unlock("); 1168 __print_lock_name(target); 1169 printk(KERN_CONT ");\n"); 1170 printk("\n *** DEADLOCK ***\n\n"); 1171 } else { 1172 printk(" Possible unsafe locking scenario:\n\n"); 1173 printk(" CPU0 CPU1\n"); 1174 printk(" ---- ----\n"); 1175 printk(" lock("); 1176 __print_lock_name(target); 1177 printk(KERN_CONT ");\n"); 1178 printk(" lock("); 1179 __print_lock_name(parent); 1180 printk(KERN_CONT ");\n"); 1181 printk(" lock("); 1182 __print_lock_name(target); 1183 printk(KERN_CONT ");\n"); 1184 printk(" lock("); 1185 __print_lock_name(source); 1186 printk(KERN_CONT ");\n"); 1187 printk("\n *** DEADLOCK ***\n\n"); 1188 } 1189 } 1190 1191 /* 1192 * When a circular dependency is detected, print the 1193 * header first: 1194 */ 1195 static noinline int 1196 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1197 struct held_lock *check_src, 1198 struct held_lock *check_tgt) 1199 { 1200 struct task_struct *curr = current; 1201 1202 if (debug_locks_silent) 1203 return 0; 1204 1205 pr_warn("\n"); 1206 pr_warn("======================================================\n"); 1207 pr_warn("WARNING: possible circular locking dependency detected\n"); 1208 print_kernel_ident(); 1209 pr_warn("------------------------------------------------------\n"); 1210 pr_warn("%s/%d is trying to acquire lock:\n", 1211 curr->comm, task_pid_nr(curr)); 1212 print_lock(check_src); 1213 1214 if (cross_lock(check_tgt->instance)) 1215 pr_warn("\nbut now in release context of a crosslock acquired at the following:\n"); 1216 else 1217 pr_warn("\nbut task is already holding lock:\n"); 1218 1219 print_lock(check_tgt); 1220 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1221 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1222 1223 print_circular_bug_entry(entry, depth); 1224 1225 return 0; 1226 } 1227 1228 static inline int class_equal(struct lock_list *entry, void *data) 1229 { 1230 return entry->class == data; 1231 } 1232 1233 static noinline int print_circular_bug(struct lock_list *this, 1234 struct lock_list *target, 1235 struct held_lock *check_src, 1236 struct held_lock *check_tgt, 1237 struct stack_trace *trace) 1238 { 1239 struct task_struct *curr = current; 1240 struct lock_list *parent; 1241 struct lock_list *first_parent; 1242 int depth; 1243 1244 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1245 return 0; 1246 1247 if (cross_lock(check_tgt->instance)) 1248 this->trace = *trace; 1249 else if (!save_trace(&this->trace)) 1250 return 0; 1251 1252 depth = get_lock_depth(target); 1253 1254 print_circular_bug_header(target, depth, check_src, check_tgt); 1255 1256 parent = get_lock_parent(target); 1257 first_parent = parent; 1258 1259 while (parent) { 1260 print_circular_bug_entry(parent, --depth); 1261 parent = get_lock_parent(parent); 1262 } 1263 1264 printk("\nother info that might help us debug this:\n\n"); 1265 print_circular_lock_scenario(check_src, check_tgt, 1266 first_parent); 1267 1268 lockdep_print_held_locks(curr); 1269 1270 printk("\nstack backtrace:\n"); 1271 dump_stack(); 1272 1273 return 0; 1274 } 1275 1276 static noinline int print_bfs_bug(int ret) 1277 { 1278 if (!debug_locks_off_graph_unlock()) 1279 return 0; 1280 1281 /* 1282 * Breadth-first-search failed, graph got corrupted? 1283 */ 1284 WARN(1, "lockdep bfs error:%d\n", ret); 1285 1286 return 0; 1287 } 1288 1289 static int noop_count(struct lock_list *entry, void *data) 1290 { 1291 (*(unsigned long *)data)++; 1292 return 0; 1293 } 1294 1295 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 1296 { 1297 unsigned long count = 0; 1298 struct lock_list *uninitialized_var(target_entry); 1299 1300 __bfs_forwards(this, (void *)&count, noop_count, &target_entry); 1301 1302 return count; 1303 } 1304 unsigned long lockdep_count_forward_deps(struct lock_class *class) 1305 { 1306 unsigned long ret, flags; 1307 struct lock_list this; 1308 1309 this.parent = NULL; 1310 this.class = class; 1311 1312 local_irq_save(flags); 1313 arch_spin_lock(&lockdep_lock); 1314 ret = __lockdep_count_forward_deps(&this); 1315 arch_spin_unlock(&lockdep_lock); 1316 local_irq_restore(flags); 1317 1318 return ret; 1319 } 1320 1321 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 1322 { 1323 unsigned long count = 0; 1324 struct lock_list *uninitialized_var(target_entry); 1325 1326 __bfs_backwards(this, (void *)&count, noop_count, &target_entry); 1327 1328 return count; 1329 } 1330 1331 unsigned long lockdep_count_backward_deps(struct lock_class *class) 1332 { 1333 unsigned long ret, flags; 1334 struct lock_list this; 1335 1336 this.parent = NULL; 1337 this.class = class; 1338 1339 local_irq_save(flags); 1340 arch_spin_lock(&lockdep_lock); 1341 ret = __lockdep_count_backward_deps(&this); 1342 arch_spin_unlock(&lockdep_lock); 1343 local_irq_restore(flags); 1344 1345 return ret; 1346 } 1347 1348 /* 1349 * Prove that the dependency graph starting at <entry> can not 1350 * lead to <target>. Print an error and return 0 if it does. 1351 */ 1352 static noinline int 1353 check_noncircular(struct lock_list *root, struct lock_class *target, 1354 struct lock_list **target_entry) 1355 { 1356 int result; 1357 1358 debug_atomic_inc(nr_cyclic_checks); 1359 1360 result = __bfs_forwards(root, target, class_equal, target_entry); 1361 1362 return result; 1363 } 1364 1365 static noinline int 1366 check_redundant(struct lock_list *root, struct lock_class *target, 1367 struct lock_list **target_entry) 1368 { 1369 int result; 1370 1371 debug_atomic_inc(nr_redundant_checks); 1372 1373 result = __bfs_forwards(root, target, class_equal, target_entry); 1374 1375 return result; 1376 } 1377 1378 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 1379 /* 1380 * Forwards and backwards subgraph searching, for the purposes of 1381 * proving that two subgraphs can be connected by a new dependency 1382 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 1383 */ 1384 1385 static inline int usage_match(struct lock_list *entry, void *bit) 1386 { 1387 return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit); 1388 } 1389 1390 1391 1392 /* 1393 * Find a node in the forwards-direction dependency sub-graph starting 1394 * at @root->class that matches @bit. 1395 * 1396 * Return 0 if such a node exists in the subgraph, and put that node 1397 * into *@target_entry. 1398 * 1399 * Return 1 otherwise and keep *@target_entry unchanged. 1400 * Return <0 on error. 1401 */ 1402 static int 1403 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit, 1404 struct lock_list **target_entry) 1405 { 1406 int result; 1407 1408 debug_atomic_inc(nr_find_usage_forwards_checks); 1409 1410 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry); 1411 1412 return result; 1413 } 1414 1415 /* 1416 * Find a node in the backwards-direction dependency sub-graph starting 1417 * at @root->class that matches @bit. 1418 * 1419 * Return 0 if such a node exists in the subgraph, and put that node 1420 * into *@target_entry. 1421 * 1422 * Return 1 otherwise and keep *@target_entry unchanged. 1423 * Return <0 on error. 1424 */ 1425 static int 1426 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit, 1427 struct lock_list **target_entry) 1428 { 1429 int result; 1430 1431 debug_atomic_inc(nr_find_usage_backwards_checks); 1432 1433 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry); 1434 1435 return result; 1436 } 1437 1438 static void print_lock_class_header(struct lock_class *class, int depth) 1439 { 1440 int bit; 1441 1442 printk("%*s->", depth, ""); 1443 print_lock_name(class); 1444 printk(KERN_CONT " ops: %lu", class->ops); 1445 printk(KERN_CONT " {\n"); 1446 1447 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { 1448 if (class->usage_mask & (1 << bit)) { 1449 int len = depth; 1450 1451 len += printk("%*s %s", depth, "", usage_str[bit]); 1452 len += printk(KERN_CONT " at:\n"); 1453 print_stack_trace(class->usage_traces + bit, len); 1454 } 1455 } 1456 printk("%*s }\n", depth, ""); 1457 1458 printk("%*s ... key at: [<%p>] %pS\n", 1459 depth, "", class->key, class->key); 1460 } 1461 1462 /* 1463 * printk the shortest lock dependencies from @start to @end in reverse order: 1464 */ 1465 static void __used 1466 print_shortest_lock_dependencies(struct lock_list *leaf, 1467 struct lock_list *root) 1468 { 1469 struct lock_list *entry = leaf; 1470 int depth; 1471 1472 /*compute depth from generated tree by BFS*/ 1473 depth = get_lock_depth(leaf); 1474 1475 do { 1476 print_lock_class_header(entry->class, depth); 1477 printk("%*s ... acquired at:\n", depth, ""); 1478 print_stack_trace(&entry->trace, 2); 1479 printk("\n"); 1480 1481 if (depth == 0 && (entry != root)) { 1482 printk("lockdep:%s bad path found in chain graph\n", __func__); 1483 break; 1484 } 1485 1486 entry = get_lock_parent(entry); 1487 depth--; 1488 } while (entry && (depth >= 0)); 1489 1490 return; 1491 } 1492 1493 static void 1494 print_irq_lock_scenario(struct lock_list *safe_entry, 1495 struct lock_list *unsafe_entry, 1496 struct lock_class *prev_class, 1497 struct lock_class *next_class) 1498 { 1499 struct lock_class *safe_class = safe_entry->class; 1500 struct lock_class *unsafe_class = unsafe_entry->class; 1501 struct lock_class *middle_class = prev_class; 1502 1503 if (middle_class == safe_class) 1504 middle_class = next_class; 1505 1506 /* 1507 * A direct locking problem where unsafe_class lock is taken 1508 * directly by safe_class lock, then all we need to show 1509 * is the deadlock scenario, as it is obvious that the 1510 * unsafe lock is taken under the safe lock. 1511 * 1512 * But if there is a chain instead, where the safe lock takes 1513 * an intermediate lock (middle_class) where this lock is 1514 * not the same as the safe lock, then the lock chain is 1515 * used to describe the problem. Otherwise we would need 1516 * to show a different CPU case for each link in the chain 1517 * from the safe_class lock to the unsafe_class lock. 1518 */ 1519 if (middle_class != unsafe_class) { 1520 printk("Chain exists of:\n "); 1521 __print_lock_name(safe_class); 1522 printk(KERN_CONT " --> "); 1523 __print_lock_name(middle_class); 1524 printk(KERN_CONT " --> "); 1525 __print_lock_name(unsafe_class); 1526 printk(KERN_CONT "\n\n"); 1527 } 1528 1529 printk(" Possible interrupt unsafe locking scenario:\n\n"); 1530 printk(" CPU0 CPU1\n"); 1531 printk(" ---- ----\n"); 1532 printk(" lock("); 1533 __print_lock_name(unsafe_class); 1534 printk(KERN_CONT ");\n"); 1535 printk(" local_irq_disable();\n"); 1536 printk(" lock("); 1537 __print_lock_name(safe_class); 1538 printk(KERN_CONT ");\n"); 1539 printk(" lock("); 1540 __print_lock_name(middle_class); 1541 printk(KERN_CONT ");\n"); 1542 printk(" <Interrupt>\n"); 1543 printk(" lock("); 1544 __print_lock_name(safe_class); 1545 printk(KERN_CONT ");\n"); 1546 printk("\n *** DEADLOCK ***\n\n"); 1547 } 1548 1549 static int 1550 print_bad_irq_dependency(struct task_struct *curr, 1551 struct lock_list *prev_root, 1552 struct lock_list *next_root, 1553 struct lock_list *backwards_entry, 1554 struct lock_list *forwards_entry, 1555 struct held_lock *prev, 1556 struct held_lock *next, 1557 enum lock_usage_bit bit1, 1558 enum lock_usage_bit bit2, 1559 const char *irqclass) 1560 { 1561 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1562 return 0; 1563 1564 pr_warn("\n"); 1565 pr_warn("=====================================================\n"); 1566 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 1567 irqclass, irqclass); 1568 print_kernel_ident(); 1569 pr_warn("-----------------------------------------------------\n"); 1570 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 1571 curr->comm, task_pid_nr(curr), 1572 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT, 1573 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 1574 curr->hardirqs_enabled, 1575 curr->softirqs_enabled); 1576 print_lock(next); 1577 1578 pr_warn("\nand this task is already holding:\n"); 1579 print_lock(prev); 1580 pr_warn("which would create a new lock dependency:\n"); 1581 print_lock_name(hlock_class(prev)); 1582 pr_cont(" ->"); 1583 print_lock_name(hlock_class(next)); 1584 pr_cont("\n"); 1585 1586 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 1587 irqclass); 1588 print_lock_name(backwards_entry->class); 1589 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 1590 1591 print_stack_trace(backwards_entry->class->usage_traces + bit1, 1); 1592 1593 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 1594 print_lock_name(forwards_entry->class); 1595 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 1596 pr_warn("..."); 1597 1598 print_stack_trace(forwards_entry->class->usage_traces + bit2, 1); 1599 1600 pr_warn("\nother info that might help us debug this:\n\n"); 1601 print_irq_lock_scenario(backwards_entry, forwards_entry, 1602 hlock_class(prev), hlock_class(next)); 1603 1604 lockdep_print_held_locks(curr); 1605 1606 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 1607 if (!save_trace(&prev_root->trace)) 1608 return 0; 1609 print_shortest_lock_dependencies(backwards_entry, prev_root); 1610 1611 pr_warn("\nthe dependencies between the lock to be acquired"); 1612 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 1613 if (!save_trace(&next_root->trace)) 1614 return 0; 1615 print_shortest_lock_dependencies(forwards_entry, next_root); 1616 1617 pr_warn("\nstack backtrace:\n"); 1618 dump_stack(); 1619 1620 return 0; 1621 } 1622 1623 static int 1624 check_usage(struct task_struct *curr, struct held_lock *prev, 1625 struct held_lock *next, enum lock_usage_bit bit_backwards, 1626 enum lock_usage_bit bit_forwards, const char *irqclass) 1627 { 1628 int ret; 1629 struct lock_list this, that; 1630 struct lock_list *uninitialized_var(target_entry); 1631 struct lock_list *uninitialized_var(target_entry1); 1632 1633 this.parent = NULL; 1634 1635 this.class = hlock_class(prev); 1636 ret = find_usage_backwards(&this, bit_backwards, &target_entry); 1637 if (ret < 0) 1638 return print_bfs_bug(ret); 1639 if (ret == 1) 1640 return ret; 1641 1642 that.parent = NULL; 1643 that.class = hlock_class(next); 1644 ret = find_usage_forwards(&that, bit_forwards, &target_entry1); 1645 if (ret < 0) 1646 return print_bfs_bug(ret); 1647 if (ret == 1) 1648 return ret; 1649 1650 return print_bad_irq_dependency(curr, &this, &that, 1651 target_entry, target_entry1, 1652 prev, next, 1653 bit_backwards, bit_forwards, irqclass); 1654 } 1655 1656 static const char *state_names[] = { 1657 #define LOCKDEP_STATE(__STATE) \ 1658 __stringify(__STATE), 1659 #include "lockdep_states.h" 1660 #undef LOCKDEP_STATE 1661 }; 1662 1663 static const char *state_rnames[] = { 1664 #define LOCKDEP_STATE(__STATE) \ 1665 __stringify(__STATE)"-READ", 1666 #include "lockdep_states.h" 1667 #undef LOCKDEP_STATE 1668 }; 1669 1670 static inline const char *state_name(enum lock_usage_bit bit) 1671 { 1672 return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2]; 1673 } 1674 1675 static int exclusive_bit(int new_bit) 1676 { 1677 /* 1678 * USED_IN 1679 * USED_IN_READ 1680 * ENABLED 1681 * ENABLED_READ 1682 * 1683 * bit 0 - write/read 1684 * bit 1 - used_in/enabled 1685 * bit 2+ state 1686 */ 1687 1688 int state = new_bit & ~3; 1689 int dir = new_bit & 2; 1690 1691 /* 1692 * keep state, bit flip the direction and strip read. 1693 */ 1694 return state | (dir ^ 2); 1695 } 1696 1697 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 1698 struct held_lock *next, enum lock_usage_bit bit) 1699 { 1700 /* 1701 * Prove that the new dependency does not connect a hardirq-safe 1702 * lock with a hardirq-unsafe lock - to achieve this we search 1703 * the backwards-subgraph starting at <prev>, and the 1704 * forwards-subgraph starting at <next>: 1705 */ 1706 if (!check_usage(curr, prev, next, bit, 1707 exclusive_bit(bit), state_name(bit))) 1708 return 0; 1709 1710 bit++; /* _READ */ 1711 1712 /* 1713 * Prove that the new dependency does not connect a hardirq-safe-read 1714 * lock with a hardirq-unsafe lock - to achieve this we search 1715 * the backwards-subgraph starting at <prev>, and the 1716 * forwards-subgraph starting at <next>: 1717 */ 1718 if (!check_usage(curr, prev, next, bit, 1719 exclusive_bit(bit), state_name(bit))) 1720 return 0; 1721 1722 return 1; 1723 } 1724 1725 static int 1726 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, 1727 struct held_lock *next) 1728 { 1729 #define LOCKDEP_STATE(__STATE) \ 1730 if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE)) \ 1731 return 0; 1732 #include "lockdep_states.h" 1733 #undef LOCKDEP_STATE 1734 1735 return 1; 1736 } 1737 1738 static void inc_chains(void) 1739 { 1740 if (current->hardirq_context) 1741 nr_hardirq_chains++; 1742 else { 1743 if (current->softirq_context) 1744 nr_softirq_chains++; 1745 else 1746 nr_process_chains++; 1747 } 1748 } 1749 1750 #else 1751 1752 static inline int 1753 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, 1754 struct held_lock *next) 1755 { 1756 return 1; 1757 } 1758 1759 static inline void inc_chains(void) 1760 { 1761 nr_process_chains++; 1762 } 1763 1764 #endif 1765 1766 static void 1767 print_deadlock_scenario(struct held_lock *nxt, 1768 struct held_lock *prv) 1769 { 1770 struct lock_class *next = hlock_class(nxt); 1771 struct lock_class *prev = hlock_class(prv); 1772 1773 printk(" Possible unsafe locking scenario:\n\n"); 1774 printk(" CPU0\n"); 1775 printk(" ----\n"); 1776 printk(" lock("); 1777 __print_lock_name(prev); 1778 printk(KERN_CONT ");\n"); 1779 printk(" lock("); 1780 __print_lock_name(next); 1781 printk(KERN_CONT ");\n"); 1782 printk("\n *** DEADLOCK ***\n\n"); 1783 printk(" May be due to missing lock nesting notation\n\n"); 1784 } 1785 1786 static int 1787 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 1788 struct held_lock *next) 1789 { 1790 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1791 return 0; 1792 1793 pr_warn("\n"); 1794 pr_warn("============================================\n"); 1795 pr_warn("WARNING: possible recursive locking detected\n"); 1796 print_kernel_ident(); 1797 pr_warn("--------------------------------------------\n"); 1798 pr_warn("%s/%d is trying to acquire lock:\n", 1799 curr->comm, task_pid_nr(curr)); 1800 print_lock(next); 1801 pr_warn("\nbut task is already holding lock:\n"); 1802 print_lock(prev); 1803 1804 pr_warn("\nother info that might help us debug this:\n"); 1805 print_deadlock_scenario(next, prev); 1806 lockdep_print_held_locks(curr); 1807 1808 pr_warn("\nstack backtrace:\n"); 1809 dump_stack(); 1810 1811 return 0; 1812 } 1813 1814 /* 1815 * Check whether we are holding such a class already. 1816 * 1817 * (Note that this has to be done separately, because the graph cannot 1818 * detect such classes of deadlocks.) 1819 * 1820 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read 1821 */ 1822 static int 1823 check_deadlock(struct task_struct *curr, struct held_lock *next, 1824 struct lockdep_map *next_instance, int read) 1825 { 1826 struct held_lock *prev; 1827 struct held_lock *nest = NULL; 1828 int i; 1829 1830 for (i = 0; i < curr->lockdep_depth; i++) { 1831 prev = curr->held_locks + i; 1832 1833 if (prev->instance == next->nest_lock) 1834 nest = prev; 1835 1836 if (hlock_class(prev) != hlock_class(next)) 1837 continue; 1838 1839 /* 1840 * Allow read-after-read recursion of the same 1841 * lock class (i.e. read_lock(lock)+read_lock(lock)): 1842 */ 1843 if ((read == 2) && prev->read) 1844 return 2; 1845 1846 /* 1847 * We're holding the nest_lock, which serializes this lock's 1848 * nesting behaviour. 1849 */ 1850 if (nest) 1851 return 2; 1852 1853 if (cross_lock(prev->instance)) 1854 continue; 1855 1856 return print_deadlock_bug(curr, prev, next); 1857 } 1858 return 1; 1859 } 1860 1861 /* 1862 * There was a chain-cache miss, and we are about to add a new dependency 1863 * to a previous lock. We recursively validate the following rules: 1864 * 1865 * - would the adding of the <prev> -> <next> dependency create a 1866 * circular dependency in the graph? [== circular deadlock] 1867 * 1868 * - does the new prev->next dependency connect any hardirq-safe lock 1869 * (in the full backwards-subgraph starting at <prev>) with any 1870 * hardirq-unsafe lock (in the full forwards-subgraph starting at 1871 * <next>)? [== illegal lock inversion with hardirq contexts] 1872 * 1873 * - does the new prev->next dependency connect any softirq-safe lock 1874 * (in the full backwards-subgraph starting at <prev>) with any 1875 * softirq-unsafe lock (in the full forwards-subgraph starting at 1876 * <next>)? [== illegal lock inversion with softirq contexts] 1877 * 1878 * any of these scenarios could lead to a deadlock. 1879 * 1880 * Then if all the validations pass, we add the forwards and backwards 1881 * dependency. 1882 */ 1883 static int 1884 check_prev_add(struct task_struct *curr, struct held_lock *prev, 1885 struct held_lock *next, int distance, struct stack_trace *trace, 1886 int (*save)(struct stack_trace *trace)) 1887 { 1888 struct lock_list *uninitialized_var(target_entry); 1889 struct lock_list *entry; 1890 struct lock_list this; 1891 int ret; 1892 1893 /* 1894 * Prove that the new <prev> -> <next> dependency would not 1895 * create a circular dependency in the graph. (We do this by 1896 * forward-recursing into the graph starting at <next>, and 1897 * checking whether we can reach <prev>.) 1898 * 1899 * We are using global variables to control the recursion, to 1900 * keep the stackframe size of the recursive functions low: 1901 */ 1902 this.class = hlock_class(next); 1903 this.parent = NULL; 1904 ret = check_noncircular(&this, hlock_class(prev), &target_entry); 1905 if (unlikely(!ret)) { 1906 if (!trace->entries) { 1907 /* 1908 * If @save fails here, the printing might trigger 1909 * a WARN but because of the !nr_entries it should 1910 * not do bad things. 1911 */ 1912 save(trace); 1913 } 1914 return print_circular_bug(&this, target_entry, next, prev, trace); 1915 } 1916 else if (unlikely(ret < 0)) 1917 return print_bfs_bug(ret); 1918 1919 if (!check_prev_add_irq(curr, prev, next)) 1920 return 0; 1921 1922 /* 1923 * For recursive read-locks we do all the dependency checks, 1924 * but we dont store read-triggered dependencies (only 1925 * write-triggered dependencies). This ensures that only the 1926 * write-side dependencies matter, and that if for example a 1927 * write-lock never takes any other locks, then the reads are 1928 * equivalent to a NOP. 1929 */ 1930 if (next->read == 2 || prev->read == 2) 1931 return 1; 1932 /* 1933 * Is the <prev> -> <next> dependency already present? 1934 * 1935 * (this may occur even though this is a new chain: consider 1936 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 1937 * chains - the second one will be new, but L1 already has 1938 * L2 added to its dependency list, due to the first chain.) 1939 */ 1940 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 1941 if (entry->class == hlock_class(next)) { 1942 if (distance == 1) 1943 entry->distance = 1; 1944 return 1; 1945 } 1946 } 1947 1948 /* 1949 * Is the <prev> -> <next> link redundant? 1950 */ 1951 this.class = hlock_class(prev); 1952 this.parent = NULL; 1953 ret = check_redundant(&this, hlock_class(next), &target_entry); 1954 if (!ret) { 1955 debug_atomic_inc(nr_redundant); 1956 return 2; 1957 } 1958 if (ret < 0) 1959 return print_bfs_bug(ret); 1960 1961 1962 if (!trace->entries && !save(trace)) 1963 return 0; 1964 1965 /* 1966 * Ok, all validations passed, add the new lock 1967 * to the previous lock's dependency list: 1968 */ 1969 ret = add_lock_to_list(hlock_class(next), 1970 &hlock_class(prev)->locks_after, 1971 next->acquire_ip, distance, trace); 1972 1973 if (!ret) 1974 return 0; 1975 1976 ret = add_lock_to_list(hlock_class(prev), 1977 &hlock_class(next)->locks_before, 1978 next->acquire_ip, distance, trace); 1979 if (!ret) 1980 return 0; 1981 1982 return 2; 1983 } 1984 1985 /* 1986 * Add the dependency to all directly-previous locks that are 'relevant'. 1987 * The ones that are relevant are (in increasing distance from curr): 1988 * all consecutive trylock entries and the final non-trylock entry - or 1989 * the end of this context's lock-chain - whichever comes first. 1990 */ 1991 static int 1992 check_prevs_add(struct task_struct *curr, struct held_lock *next) 1993 { 1994 int depth = curr->lockdep_depth; 1995 struct held_lock *hlock; 1996 struct stack_trace trace = { 1997 .nr_entries = 0, 1998 .max_entries = 0, 1999 .entries = NULL, 2000 .skip = 0, 2001 }; 2002 2003 /* 2004 * Debugging checks. 2005 * 2006 * Depth must not be zero for a non-head lock: 2007 */ 2008 if (!depth) 2009 goto out_bug; 2010 /* 2011 * At least two relevant locks must exist for this 2012 * to be a head: 2013 */ 2014 if (curr->held_locks[depth].irq_context != 2015 curr->held_locks[depth-1].irq_context) 2016 goto out_bug; 2017 2018 for (;;) { 2019 int distance = curr->lockdep_depth - depth + 1; 2020 hlock = curr->held_locks + depth - 1; 2021 /* 2022 * Only non-crosslock entries get new dependencies added. 2023 * Crosslock entries will be added by commit later: 2024 */ 2025 if (!cross_lock(hlock->instance)) { 2026 /* 2027 * Only non-recursive-read entries get new dependencies 2028 * added: 2029 */ 2030 if (hlock->read != 2 && hlock->check) { 2031 int ret = check_prev_add(curr, hlock, next, 2032 distance, &trace, save_trace); 2033 if (!ret) 2034 return 0; 2035 2036 /* 2037 * Stop after the first non-trylock entry, 2038 * as non-trylock entries have added their 2039 * own direct dependencies already, so this 2040 * lock is connected to them indirectly: 2041 */ 2042 if (!hlock->trylock) 2043 break; 2044 } 2045 } 2046 depth--; 2047 /* 2048 * End of lock-stack? 2049 */ 2050 if (!depth) 2051 break; 2052 /* 2053 * Stop the search if we cross into another context: 2054 */ 2055 if (curr->held_locks[depth].irq_context != 2056 curr->held_locks[depth-1].irq_context) 2057 break; 2058 } 2059 return 1; 2060 out_bug: 2061 if (!debug_locks_off_graph_unlock()) 2062 return 0; 2063 2064 /* 2065 * Clearly we all shouldn't be here, but since we made it we 2066 * can reliable say we messed up our state. See the above two 2067 * gotos for reasons why we could possibly end up here. 2068 */ 2069 WARN_ON(1); 2070 2071 return 0; 2072 } 2073 2074 unsigned long nr_lock_chains; 2075 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 2076 int nr_chain_hlocks; 2077 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 2078 2079 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 2080 { 2081 return lock_classes + chain_hlocks[chain->base + i]; 2082 } 2083 2084 /* 2085 * Returns the index of the first held_lock of the current chain 2086 */ 2087 static inline int get_first_held_lock(struct task_struct *curr, 2088 struct held_lock *hlock) 2089 { 2090 int i; 2091 struct held_lock *hlock_curr; 2092 2093 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 2094 hlock_curr = curr->held_locks + i; 2095 if (hlock_curr->irq_context != hlock->irq_context) 2096 break; 2097 2098 } 2099 2100 return ++i; 2101 } 2102 2103 #ifdef CONFIG_DEBUG_LOCKDEP 2104 /* 2105 * Returns the next chain_key iteration 2106 */ 2107 static u64 print_chain_key_iteration(int class_idx, u64 chain_key) 2108 { 2109 u64 new_chain_key = iterate_chain_key(chain_key, class_idx); 2110 2111 printk(" class_idx:%d -> chain_key:%016Lx", 2112 class_idx, 2113 (unsigned long long)new_chain_key); 2114 return new_chain_key; 2115 } 2116 2117 static void 2118 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 2119 { 2120 struct held_lock *hlock; 2121 u64 chain_key = 0; 2122 int depth = curr->lockdep_depth; 2123 int i; 2124 2125 printk("depth: %u\n", depth + 1); 2126 for (i = get_first_held_lock(curr, hlock_next); i < depth; i++) { 2127 hlock = curr->held_locks + i; 2128 chain_key = print_chain_key_iteration(hlock->class_idx, chain_key); 2129 2130 print_lock(hlock); 2131 } 2132 2133 print_chain_key_iteration(hlock_next->class_idx, chain_key); 2134 print_lock(hlock_next); 2135 } 2136 2137 static void print_chain_keys_chain(struct lock_chain *chain) 2138 { 2139 int i; 2140 u64 chain_key = 0; 2141 int class_id; 2142 2143 printk("depth: %u\n", chain->depth); 2144 for (i = 0; i < chain->depth; i++) { 2145 class_id = chain_hlocks[chain->base + i]; 2146 chain_key = print_chain_key_iteration(class_id + 1, chain_key); 2147 2148 print_lock_name(lock_classes + class_id); 2149 printk("\n"); 2150 } 2151 } 2152 2153 static void print_collision(struct task_struct *curr, 2154 struct held_lock *hlock_next, 2155 struct lock_chain *chain) 2156 { 2157 pr_warn("\n"); 2158 pr_warn("============================\n"); 2159 pr_warn("WARNING: chain_key collision\n"); 2160 print_kernel_ident(); 2161 pr_warn("----------------------------\n"); 2162 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 2163 pr_warn("Hash chain already cached but the contents don't match!\n"); 2164 2165 pr_warn("Held locks:"); 2166 print_chain_keys_held_locks(curr, hlock_next); 2167 2168 pr_warn("Locks in cached chain:"); 2169 print_chain_keys_chain(chain); 2170 2171 pr_warn("\nstack backtrace:\n"); 2172 dump_stack(); 2173 } 2174 #endif 2175 2176 /* 2177 * Checks whether the chain and the current held locks are consistent 2178 * in depth and also in content. If they are not it most likely means 2179 * that there was a collision during the calculation of the chain_key. 2180 * Returns: 0 not passed, 1 passed 2181 */ 2182 static int check_no_collision(struct task_struct *curr, 2183 struct held_lock *hlock, 2184 struct lock_chain *chain) 2185 { 2186 #ifdef CONFIG_DEBUG_LOCKDEP 2187 int i, j, id; 2188 2189 i = get_first_held_lock(curr, hlock); 2190 2191 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 2192 print_collision(curr, hlock, chain); 2193 return 0; 2194 } 2195 2196 for (j = 0; j < chain->depth - 1; j++, i++) { 2197 id = curr->held_locks[i].class_idx - 1; 2198 2199 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 2200 print_collision(curr, hlock, chain); 2201 return 0; 2202 } 2203 } 2204 #endif 2205 return 1; 2206 } 2207 2208 /* 2209 * This is for building a chain between just two different classes, 2210 * instead of adding a new hlock upon current, which is done by 2211 * add_chain_cache(). 2212 * 2213 * This can be called in any context with two classes, while 2214 * add_chain_cache() must be done within the lock owener's context 2215 * since it uses hlock which might be racy in another context. 2216 */ 2217 static inline int add_chain_cache_classes(unsigned int prev, 2218 unsigned int next, 2219 unsigned int irq_context, 2220 u64 chain_key) 2221 { 2222 struct hlist_head *hash_head = chainhashentry(chain_key); 2223 struct lock_chain *chain; 2224 2225 /* 2226 * Allocate a new chain entry from the static array, and add 2227 * it to the hash: 2228 */ 2229 2230 /* 2231 * We might need to take the graph lock, ensure we've got IRQs 2232 * disabled to make this an IRQ-safe lock.. for recursion reasons 2233 * lockdep won't complain about its own locking errors. 2234 */ 2235 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2236 return 0; 2237 2238 if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) { 2239 if (!debug_locks_off_graph_unlock()) 2240 return 0; 2241 2242 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 2243 dump_stack(); 2244 return 0; 2245 } 2246 2247 chain = lock_chains + nr_lock_chains++; 2248 chain->chain_key = chain_key; 2249 chain->irq_context = irq_context; 2250 chain->depth = 2; 2251 if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) { 2252 chain->base = nr_chain_hlocks; 2253 nr_chain_hlocks += chain->depth; 2254 chain_hlocks[chain->base] = prev - 1; 2255 chain_hlocks[chain->base + 1] = next -1; 2256 } 2257 #ifdef CONFIG_DEBUG_LOCKDEP 2258 /* 2259 * Important for check_no_collision(). 2260 */ 2261 else { 2262 if (!debug_locks_off_graph_unlock()) 2263 return 0; 2264 2265 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 2266 dump_stack(); 2267 return 0; 2268 } 2269 #endif 2270 2271 hlist_add_head_rcu(&chain->entry, hash_head); 2272 debug_atomic_inc(chain_lookup_misses); 2273 inc_chains(); 2274 2275 return 1; 2276 } 2277 2278 /* 2279 * Adds a dependency chain into chain hashtable. And must be called with 2280 * graph_lock held. 2281 * 2282 * Return 0 if fail, and graph_lock is released. 2283 * Return 1 if succeed, with graph_lock held. 2284 */ 2285 static inline int add_chain_cache(struct task_struct *curr, 2286 struct held_lock *hlock, 2287 u64 chain_key) 2288 { 2289 struct lock_class *class = hlock_class(hlock); 2290 struct hlist_head *hash_head = chainhashentry(chain_key); 2291 struct lock_chain *chain; 2292 int i, j; 2293 2294 /* 2295 * Allocate a new chain entry from the static array, and add 2296 * it to the hash: 2297 */ 2298 2299 /* 2300 * We might need to take the graph lock, ensure we've got IRQs 2301 * disabled to make this an IRQ-safe lock.. for recursion reasons 2302 * lockdep won't complain about its own locking errors. 2303 */ 2304 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2305 return 0; 2306 2307 if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) { 2308 if (!debug_locks_off_graph_unlock()) 2309 return 0; 2310 2311 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 2312 dump_stack(); 2313 return 0; 2314 } 2315 chain = lock_chains + nr_lock_chains++; 2316 chain->chain_key = chain_key; 2317 chain->irq_context = hlock->irq_context; 2318 i = get_first_held_lock(curr, hlock); 2319 chain->depth = curr->lockdep_depth + 1 - i; 2320 2321 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 2322 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 2323 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 2324 2325 if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) { 2326 chain->base = nr_chain_hlocks; 2327 for (j = 0; j < chain->depth - 1; j++, i++) { 2328 int lock_id = curr->held_locks[i].class_idx - 1; 2329 chain_hlocks[chain->base + j] = lock_id; 2330 } 2331 chain_hlocks[chain->base + j] = class - lock_classes; 2332 } 2333 2334 if (nr_chain_hlocks < MAX_LOCKDEP_CHAIN_HLOCKS) 2335 nr_chain_hlocks += chain->depth; 2336 2337 #ifdef CONFIG_DEBUG_LOCKDEP 2338 /* 2339 * Important for check_no_collision(). 2340 */ 2341 if (unlikely(nr_chain_hlocks > MAX_LOCKDEP_CHAIN_HLOCKS)) { 2342 if (!debug_locks_off_graph_unlock()) 2343 return 0; 2344 2345 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 2346 dump_stack(); 2347 return 0; 2348 } 2349 #endif 2350 2351 hlist_add_head_rcu(&chain->entry, hash_head); 2352 debug_atomic_inc(chain_lookup_misses); 2353 inc_chains(); 2354 2355 return 1; 2356 } 2357 2358 /* 2359 * Look up a dependency chain. 2360 */ 2361 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 2362 { 2363 struct hlist_head *hash_head = chainhashentry(chain_key); 2364 struct lock_chain *chain; 2365 2366 /* 2367 * We can walk it lock-free, because entries only get added 2368 * to the hash: 2369 */ 2370 hlist_for_each_entry_rcu(chain, hash_head, entry) { 2371 if (chain->chain_key == chain_key) { 2372 debug_atomic_inc(chain_lookup_hits); 2373 return chain; 2374 } 2375 } 2376 return NULL; 2377 } 2378 2379 /* 2380 * If the key is not present yet in dependency chain cache then 2381 * add it and return 1 - in this case the new dependency chain is 2382 * validated. If the key is already hashed, return 0. 2383 * (On return with 1 graph_lock is held.) 2384 */ 2385 static inline int lookup_chain_cache_add(struct task_struct *curr, 2386 struct held_lock *hlock, 2387 u64 chain_key) 2388 { 2389 struct lock_class *class = hlock_class(hlock); 2390 struct lock_chain *chain = lookup_chain_cache(chain_key); 2391 2392 if (chain) { 2393 cache_hit: 2394 if (!check_no_collision(curr, hlock, chain)) 2395 return 0; 2396 2397 if (very_verbose(class)) { 2398 printk("\nhash chain already cached, key: " 2399 "%016Lx tail class: [%p] %s\n", 2400 (unsigned long long)chain_key, 2401 class->key, class->name); 2402 } 2403 2404 return 0; 2405 } 2406 2407 if (very_verbose(class)) { 2408 printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n", 2409 (unsigned long long)chain_key, class->key, class->name); 2410 } 2411 2412 if (!graph_lock()) 2413 return 0; 2414 2415 /* 2416 * We have to walk the chain again locked - to avoid duplicates: 2417 */ 2418 chain = lookup_chain_cache(chain_key); 2419 if (chain) { 2420 graph_unlock(); 2421 goto cache_hit; 2422 } 2423 2424 if (!add_chain_cache(curr, hlock, chain_key)) 2425 return 0; 2426 2427 return 1; 2428 } 2429 2430 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock, 2431 struct held_lock *hlock, int chain_head, u64 chain_key) 2432 { 2433 /* 2434 * Trylock needs to maintain the stack of held locks, but it 2435 * does not add new dependencies, because trylock can be done 2436 * in any order. 2437 * 2438 * We look up the chain_key and do the O(N^2) check and update of 2439 * the dependencies only if this is a new dependency chain. 2440 * (If lookup_chain_cache_add() return with 1 it acquires 2441 * graph_lock for us) 2442 */ 2443 if (!hlock->trylock && hlock->check && 2444 lookup_chain_cache_add(curr, hlock, chain_key)) { 2445 /* 2446 * Check whether last held lock: 2447 * 2448 * - is irq-safe, if this lock is irq-unsafe 2449 * - is softirq-safe, if this lock is hardirq-unsafe 2450 * 2451 * And check whether the new lock's dependency graph 2452 * could lead back to the previous lock. 2453 * 2454 * any of these scenarios could lead to a deadlock. If 2455 * All validations 2456 */ 2457 int ret = check_deadlock(curr, hlock, lock, hlock->read); 2458 2459 if (!ret) 2460 return 0; 2461 /* 2462 * Mark recursive read, as we jump over it when 2463 * building dependencies (just like we jump over 2464 * trylock entries): 2465 */ 2466 if (ret == 2) 2467 hlock->read = 2; 2468 /* 2469 * Add dependency only if this lock is not the head 2470 * of the chain, and if it's not a secondary read-lock: 2471 */ 2472 if (!chain_head && ret != 2) { 2473 if (!check_prevs_add(curr, hlock)) 2474 return 0; 2475 } 2476 2477 graph_unlock(); 2478 } else { 2479 /* after lookup_chain_cache_add(): */ 2480 if (unlikely(!debug_locks)) 2481 return 0; 2482 } 2483 2484 return 1; 2485 } 2486 #else 2487 static inline int validate_chain(struct task_struct *curr, 2488 struct lockdep_map *lock, struct held_lock *hlock, 2489 int chain_head, u64 chain_key) 2490 { 2491 return 1; 2492 } 2493 #endif 2494 2495 /* 2496 * We are building curr_chain_key incrementally, so double-check 2497 * it from scratch, to make sure that it's done correctly: 2498 */ 2499 static void check_chain_key(struct task_struct *curr) 2500 { 2501 #ifdef CONFIG_DEBUG_LOCKDEP 2502 struct held_lock *hlock, *prev_hlock = NULL; 2503 unsigned int i; 2504 u64 chain_key = 0; 2505 2506 for (i = 0; i < curr->lockdep_depth; i++) { 2507 hlock = curr->held_locks + i; 2508 if (chain_key != hlock->prev_chain_key) { 2509 debug_locks_off(); 2510 /* 2511 * We got mighty confused, our chain keys don't match 2512 * with what we expect, someone trample on our task state? 2513 */ 2514 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 2515 curr->lockdep_depth, i, 2516 (unsigned long long)chain_key, 2517 (unsigned long long)hlock->prev_chain_key); 2518 return; 2519 } 2520 /* 2521 * Whoops ran out of static storage again? 2522 */ 2523 if (DEBUG_LOCKS_WARN_ON(hlock->class_idx > MAX_LOCKDEP_KEYS)) 2524 return; 2525 2526 if (prev_hlock && (prev_hlock->irq_context != 2527 hlock->irq_context)) 2528 chain_key = 0; 2529 chain_key = iterate_chain_key(chain_key, hlock->class_idx); 2530 prev_hlock = hlock; 2531 } 2532 if (chain_key != curr->curr_chain_key) { 2533 debug_locks_off(); 2534 /* 2535 * More smoking hash instead of calculating it, damn see these 2536 * numbers float.. I bet that a pink elephant stepped on my memory. 2537 */ 2538 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 2539 curr->lockdep_depth, i, 2540 (unsigned long long)chain_key, 2541 (unsigned long long)curr->curr_chain_key); 2542 } 2543 #endif 2544 } 2545 2546 static void 2547 print_usage_bug_scenario(struct held_lock *lock) 2548 { 2549 struct lock_class *class = hlock_class(lock); 2550 2551 printk(" Possible unsafe locking scenario:\n\n"); 2552 printk(" CPU0\n"); 2553 printk(" ----\n"); 2554 printk(" lock("); 2555 __print_lock_name(class); 2556 printk(KERN_CONT ");\n"); 2557 printk(" <Interrupt>\n"); 2558 printk(" lock("); 2559 __print_lock_name(class); 2560 printk(KERN_CONT ");\n"); 2561 printk("\n *** DEADLOCK ***\n\n"); 2562 } 2563 2564 static int 2565 print_usage_bug(struct task_struct *curr, struct held_lock *this, 2566 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 2567 { 2568 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2569 return 0; 2570 2571 pr_warn("\n"); 2572 pr_warn("================================\n"); 2573 pr_warn("WARNING: inconsistent lock state\n"); 2574 print_kernel_ident(); 2575 pr_warn("--------------------------------\n"); 2576 2577 pr_warn("inconsistent {%s} -> {%s} usage.\n", 2578 usage_str[prev_bit], usage_str[new_bit]); 2579 2580 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 2581 curr->comm, task_pid_nr(curr), 2582 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT, 2583 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 2584 trace_hardirqs_enabled(curr), 2585 trace_softirqs_enabled(curr)); 2586 print_lock(this); 2587 2588 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 2589 print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1); 2590 2591 print_irqtrace_events(curr); 2592 pr_warn("\nother info that might help us debug this:\n"); 2593 print_usage_bug_scenario(this); 2594 2595 lockdep_print_held_locks(curr); 2596 2597 pr_warn("\nstack backtrace:\n"); 2598 dump_stack(); 2599 2600 return 0; 2601 } 2602 2603 /* 2604 * Print out an error if an invalid bit is set: 2605 */ 2606 static inline int 2607 valid_state(struct task_struct *curr, struct held_lock *this, 2608 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 2609 { 2610 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) 2611 return print_usage_bug(curr, this, bad_bit, new_bit); 2612 return 1; 2613 } 2614 2615 static int mark_lock(struct task_struct *curr, struct held_lock *this, 2616 enum lock_usage_bit new_bit); 2617 2618 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 2619 2620 /* 2621 * print irq inversion bug: 2622 */ 2623 static int 2624 print_irq_inversion_bug(struct task_struct *curr, 2625 struct lock_list *root, struct lock_list *other, 2626 struct held_lock *this, int forwards, 2627 const char *irqclass) 2628 { 2629 struct lock_list *entry = other; 2630 struct lock_list *middle = NULL; 2631 int depth; 2632 2633 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2634 return 0; 2635 2636 pr_warn("\n"); 2637 pr_warn("========================================================\n"); 2638 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 2639 print_kernel_ident(); 2640 pr_warn("--------------------------------------------------------\n"); 2641 pr_warn("%s/%d just changed the state of lock:\n", 2642 curr->comm, task_pid_nr(curr)); 2643 print_lock(this); 2644 if (forwards) 2645 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 2646 else 2647 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 2648 print_lock_name(other->class); 2649 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 2650 2651 pr_warn("\nother info that might help us debug this:\n"); 2652 2653 /* Find a middle lock (if one exists) */ 2654 depth = get_lock_depth(other); 2655 do { 2656 if (depth == 0 && (entry != root)) { 2657 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 2658 break; 2659 } 2660 middle = entry; 2661 entry = get_lock_parent(entry); 2662 depth--; 2663 } while (entry && entry != root && (depth >= 0)); 2664 if (forwards) 2665 print_irq_lock_scenario(root, other, 2666 middle ? middle->class : root->class, other->class); 2667 else 2668 print_irq_lock_scenario(other, root, 2669 middle ? middle->class : other->class, root->class); 2670 2671 lockdep_print_held_locks(curr); 2672 2673 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 2674 if (!save_trace(&root->trace)) 2675 return 0; 2676 print_shortest_lock_dependencies(other, root); 2677 2678 pr_warn("\nstack backtrace:\n"); 2679 dump_stack(); 2680 2681 return 0; 2682 } 2683 2684 /* 2685 * Prove that in the forwards-direction subgraph starting at <this> 2686 * there is no lock matching <mask>: 2687 */ 2688 static int 2689 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 2690 enum lock_usage_bit bit, const char *irqclass) 2691 { 2692 int ret; 2693 struct lock_list root; 2694 struct lock_list *uninitialized_var(target_entry); 2695 2696 root.parent = NULL; 2697 root.class = hlock_class(this); 2698 ret = find_usage_forwards(&root, bit, &target_entry); 2699 if (ret < 0) 2700 return print_bfs_bug(ret); 2701 if (ret == 1) 2702 return ret; 2703 2704 return print_irq_inversion_bug(curr, &root, target_entry, 2705 this, 1, irqclass); 2706 } 2707 2708 /* 2709 * Prove that in the backwards-direction subgraph starting at <this> 2710 * there is no lock matching <mask>: 2711 */ 2712 static int 2713 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 2714 enum lock_usage_bit bit, const char *irqclass) 2715 { 2716 int ret; 2717 struct lock_list root; 2718 struct lock_list *uninitialized_var(target_entry); 2719 2720 root.parent = NULL; 2721 root.class = hlock_class(this); 2722 ret = find_usage_backwards(&root, bit, &target_entry); 2723 if (ret < 0) 2724 return print_bfs_bug(ret); 2725 if (ret == 1) 2726 return ret; 2727 2728 return print_irq_inversion_bug(curr, &root, target_entry, 2729 this, 0, irqclass); 2730 } 2731 2732 void print_irqtrace_events(struct task_struct *curr) 2733 { 2734 printk("irq event stamp: %u\n", curr->irq_events); 2735 printk("hardirqs last enabled at (%u): [<%p>] %pS\n", 2736 curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip, 2737 (void *)curr->hardirq_enable_ip); 2738 printk("hardirqs last disabled at (%u): [<%p>] %pS\n", 2739 curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip, 2740 (void *)curr->hardirq_disable_ip); 2741 printk("softirqs last enabled at (%u): [<%p>] %pS\n", 2742 curr->softirq_enable_event, (void *)curr->softirq_enable_ip, 2743 (void *)curr->softirq_enable_ip); 2744 printk("softirqs last disabled at (%u): [<%p>] %pS\n", 2745 curr->softirq_disable_event, (void *)curr->softirq_disable_ip, 2746 (void *)curr->softirq_disable_ip); 2747 } 2748 2749 static int HARDIRQ_verbose(struct lock_class *class) 2750 { 2751 #if HARDIRQ_VERBOSE 2752 return class_filter(class); 2753 #endif 2754 return 0; 2755 } 2756 2757 static int SOFTIRQ_verbose(struct lock_class *class) 2758 { 2759 #if SOFTIRQ_VERBOSE 2760 return class_filter(class); 2761 #endif 2762 return 0; 2763 } 2764 2765 #define STRICT_READ_CHECKS 1 2766 2767 static int (*state_verbose_f[])(struct lock_class *class) = { 2768 #define LOCKDEP_STATE(__STATE) \ 2769 __STATE##_verbose, 2770 #include "lockdep_states.h" 2771 #undef LOCKDEP_STATE 2772 }; 2773 2774 static inline int state_verbose(enum lock_usage_bit bit, 2775 struct lock_class *class) 2776 { 2777 return state_verbose_f[bit >> 2](class); 2778 } 2779 2780 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 2781 enum lock_usage_bit bit, const char *name); 2782 2783 static int 2784 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 2785 enum lock_usage_bit new_bit) 2786 { 2787 int excl_bit = exclusive_bit(new_bit); 2788 int read = new_bit & 1; 2789 int dir = new_bit & 2; 2790 2791 /* 2792 * mark USED_IN has to look forwards -- to ensure no dependency 2793 * has ENABLED state, which would allow recursion deadlocks. 2794 * 2795 * mark ENABLED has to look backwards -- to ensure no dependee 2796 * has USED_IN state, which, again, would allow recursion deadlocks. 2797 */ 2798 check_usage_f usage = dir ? 2799 check_usage_backwards : check_usage_forwards; 2800 2801 /* 2802 * Validate that this particular lock does not have conflicting 2803 * usage states. 2804 */ 2805 if (!valid_state(curr, this, new_bit, excl_bit)) 2806 return 0; 2807 2808 /* 2809 * Validate that the lock dependencies don't have conflicting usage 2810 * states. 2811 */ 2812 if ((!read || !dir || STRICT_READ_CHECKS) && 2813 !usage(curr, this, excl_bit, state_name(new_bit & ~1))) 2814 return 0; 2815 2816 /* 2817 * Check for read in write conflicts 2818 */ 2819 if (!read) { 2820 if (!valid_state(curr, this, new_bit, excl_bit + 1)) 2821 return 0; 2822 2823 if (STRICT_READ_CHECKS && 2824 !usage(curr, this, excl_bit + 1, 2825 state_name(new_bit + 1))) 2826 return 0; 2827 } 2828 2829 if (state_verbose(new_bit, hlock_class(this))) 2830 return 2; 2831 2832 return 1; 2833 } 2834 2835 enum mark_type { 2836 #define LOCKDEP_STATE(__STATE) __STATE, 2837 #include "lockdep_states.h" 2838 #undef LOCKDEP_STATE 2839 }; 2840 2841 /* 2842 * Mark all held locks with a usage bit: 2843 */ 2844 static int 2845 mark_held_locks(struct task_struct *curr, enum mark_type mark) 2846 { 2847 enum lock_usage_bit usage_bit; 2848 struct held_lock *hlock; 2849 int i; 2850 2851 for (i = 0; i < curr->lockdep_depth; i++) { 2852 hlock = curr->held_locks + i; 2853 2854 usage_bit = 2 + (mark << 2); /* ENABLED */ 2855 if (hlock->read) 2856 usage_bit += 1; /* READ */ 2857 2858 BUG_ON(usage_bit >= LOCK_USAGE_STATES); 2859 2860 if (!hlock->check) 2861 continue; 2862 2863 if (!mark_lock(curr, hlock, usage_bit)) 2864 return 0; 2865 } 2866 2867 return 1; 2868 } 2869 2870 /* 2871 * Hardirqs will be enabled: 2872 */ 2873 static void __trace_hardirqs_on_caller(unsigned long ip) 2874 { 2875 struct task_struct *curr = current; 2876 2877 /* we'll do an OFF -> ON transition: */ 2878 curr->hardirqs_enabled = 1; 2879 2880 /* 2881 * We are going to turn hardirqs on, so set the 2882 * usage bit for all held locks: 2883 */ 2884 if (!mark_held_locks(curr, HARDIRQ)) 2885 return; 2886 /* 2887 * If we have softirqs enabled, then set the usage 2888 * bit for all held locks. (disabled hardirqs prevented 2889 * this bit from being set before) 2890 */ 2891 if (curr->softirqs_enabled) 2892 if (!mark_held_locks(curr, SOFTIRQ)) 2893 return; 2894 2895 curr->hardirq_enable_ip = ip; 2896 curr->hardirq_enable_event = ++curr->irq_events; 2897 debug_atomic_inc(hardirqs_on_events); 2898 } 2899 2900 __visible void trace_hardirqs_on_caller(unsigned long ip) 2901 { 2902 time_hardirqs_on(CALLER_ADDR0, ip); 2903 2904 if (unlikely(!debug_locks || current->lockdep_recursion)) 2905 return; 2906 2907 if (unlikely(current->hardirqs_enabled)) { 2908 /* 2909 * Neither irq nor preemption are disabled here 2910 * so this is racy by nature but losing one hit 2911 * in a stat is not a big deal. 2912 */ 2913 __debug_atomic_inc(redundant_hardirqs_on); 2914 return; 2915 } 2916 2917 /* 2918 * We're enabling irqs and according to our state above irqs weren't 2919 * already enabled, yet we find the hardware thinks they are in fact 2920 * enabled.. someone messed up their IRQ state tracing. 2921 */ 2922 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2923 return; 2924 2925 /* 2926 * See the fine text that goes along with this variable definition. 2927 */ 2928 if (DEBUG_LOCKS_WARN_ON(unlikely(early_boot_irqs_disabled))) 2929 return; 2930 2931 /* 2932 * Can't allow enabling interrupts while in an interrupt handler, 2933 * that's general bad form and such. Recursion, limited stack etc.. 2934 */ 2935 if (DEBUG_LOCKS_WARN_ON(current->hardirq_context)) 2936 return; 2937 2938 current->lockdep_recursion = 1; 2939 __trace_hardirqs_on_caller(ip); 2940 current->lockdep_recursion = 0; 2941 } 2942 EXPORT_SYMBOL(trace_hardirqs_on_caller); 2943 2944 void trace_hardirqs_on(void) 2945 { 2946 trace_hardirqs_on_caller(CALLER_ADDR0); 2947 } 2948 EXPORT_SYMBOL(trace_hardirqs_on); 2949 2950 /* 2951 * Hardirqs were disabled: 2952 */ 2953 __visible void trace_hardirqs_off_caller(unsigned long ip) 2954 { 2955 struct task_struct *curr = current; 2956 2957 time_hardirqs_off(CALLER_ADDR0, ip); 2958 2959 if (unlikely(!debug_locks || current->lockdep_recursion)) 2960 return; 2961 2962 /* 2963 * So we're supposed to get called after you mask local IRQs, but for 2964 * some reason the hardware doesn't quite think you did a proper job. 2965 */ 2966 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2967 return; 2968 2969 if (curr->hardirqs_enabled) { 2970 /* 2971 * We have done an ON -> OFF transition: 2972 */ 2973 curr->hardirqs_enabled = 0; 2974 curr->hardirq_disable_ip = ip; 2975 curr->hardirq_disable_event = ++curr->irq_events; 2976 debug_atomic_inc(hardirqs_off_events); 2977 } else 2978 debug_atomic_inc(redundant_hardirqs_off); 2979 } 2980 EXPORT_SYMBOL(trace_hardirqs_off_caller); 2981 2982 void trace_hardirqs_off(void) 2983 { 2984 trace_hardirqs_off_caller(CALLER_ADDR0); 2985 } 2986 EXPORT_SYMBOL(trace_hardirqs_off); 2987 2988 /* 2989 * Softirqs will be enabled: 2990 */ 2991 void trace_softirqs_on(unsigned long ip) 2992 { 2993 struct task_struct *curr = current; 2994 2995 if (unlikely(!debug_locks || current->lockdep_recursion)) 2996 return; 2997 2998 /* 2999 * We fancy IRQs being disabled here, see softirq.c, avoids 3000 * funny state and nesting things. 3001 */ 3002 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3003 return; 3004 3005 if (curr->softirqs_enabled) { 3006 debug_atomic_inc(redundant_softirqs_on); 3007 return; 3008 } 3009 3010 current->lockdep_recursion = 1; 3011 /* 3012 * We'll do an OFF -> ON transition: 3013 */ 3014 curr->softirqs_enabled = 1; 3015 curr->softirq_enable_ip = ip; 3016 curr->softirq_enable_event = ++curr->irq_events; 3017 debug_atomic_inc(softirqs_on_events); 3018 /* 3019 * We are going to turn softirqs on, so set the 3020 * usage bit for all held locks, if hardirqs are 3021 * enabled too: 3022 */ 3023 if (curr->hardirqs_enabled) 3024 mark_held_locks(curr, SOFTIRQ); 3025 current->lockdep_recursion = 0; 3026 } 3027 3028 /* 3029 * Softirqs were disabled: 3030 */ 3031 void trace_softirqs_off(unsigned long ip) 3032 { 3033 struct task_struct *curr = current; 3034 3035 if (unlikely(!debug_locks || current->lockdep_recursion)) 3036 return; 3037 3038 /* 3039 * We fancy IRQs being disabled here, see softirq.c 3040 */ 3041 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3042 return; 3043 3044 if (curr->softirqs_enabled) { 3045 /* 3046 * We have done an ON -> OFF transition: 3047 */ 3048 curr->softirqs_enabled = 0; 3049 curr->softirq_disable_ip = ip; 3050 curr->softirq_disable_event = ++curr->irq_events; 3051 debug_atomic_inc(softirqs_off_events); 3052 /* 3053 * Whoops, we wanted softirqs off, so why aren't they? 3054 */ 3055 DEBUG_LOCKS_WARN_ON(!softirq_count()); 3056 } else 3057 debug_atomic_inc(redundant_softirqs_off); 3058 } 3059 3060 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock) 3061 { 3062 /* 3063 * If non-trylock use in a hardirq or softirq context, then 3064 * mark the lock as used in these contexts: 3065 */ 3066 if (!hlock->trylock) { 3067 if (hlock->read) { 3068 if (curr->hardirq_context) 3069 if (!mark_lock(curr, hlock, 3070 LOCK_USED_IN_HARDIRQ_READ)) 3071 return 0; 3072 if (curr->softirq_context) 3073 if (!mark_lock(curr, hlock, 3074 LOCK_USED_IN_SOFTIRQ_READ)) 3075 return 0; 3076 } else { 3077 if (curr->hardirq_context) 3078 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 3079 return 0; 3080 if (curr->softirq_context) 3081 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 3082 return 0; 3083 } 3084 } 3085 if (!hlock->hardirqs_off) { 3086 if (hlock->read) { 3087 if (!mark_lock(curr, hlock, 3088 LOCK_ENABLED_HARDIRQ_READ)) 3089 return 0; 3090 if (curr->softirqs_enabled) 3091 if (!mark_lock(curr, hlock, 3092 LOCK_ENABLED_SOFTIRQ_READ)) 3093 return 0; 3094 } else { 3095 if (!mark_lock(curr, hlock, 3096 LOCK_ENABLED_HARDIRQ)) 3097 return 0; 3098 if (curr->softirqs_enabled) 3099 if (!mark_lock(curr, hlock, 3100 LOCK_ENABLED_SOFTIRQ)) 3101 return 0; 3102 } 3103 } 3104 3105 return 1; 3106 } 3107 3108 static inline unsigned int task_irq_context(struct task_struct *task) 3109 { 3110 return 2 * !!task->hardirq_context + !!task->softirq_context; 3111 } 3112 3113 static int separate_irq_context(struct task_struct *curr, 3114 struct held_lock *hlock) 3115 { 3116 unsigned int depth = curr->lockdep_depth; 3117 3118 /* 3119 * Keep track of points where we cross into an interrupt context: 3120 */ 3121 if (depth) { 3122 struct held_lock *prev_hlock; 3123 3124 prev_hlock = curr->held_locks + depth-1; 3125 /* 3126 * If we cross into another context, reset the 3127 * hash key (this also prevents the checking and the 3128 * adding of the dependency to 'prev'): 3129 */ 3130 if (prev_hlock->irq_context != hlock->irq_context) 3131 return 1; 3132 } 3133 return 0; 3134 } 3135 3136 #else /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */ 3137 3138 static inline 3139 int mark_lock_irq(struct task_struct *curr, struct held_lock *this, 3140 enum lock_usage_bit new_bit) 3141 { 3142 WARN_ON(1); /* Impossible innit? when we don't have TRACE_IRQFLAG */ 3143 return 1; 3144 } 3145 3146 static inline int mark_irqflags(struct task_struct *curr, 3147 struct held_lock *hlock) 3148 { 3149 return 1; 3150 } 3151 3152 static inline unsigned int task_irq_context(struct task_struct *task) 3153 { 3154 return 0; 3155 } 3156 3157 static inline int separate_irq_context(struct task_struct *curr, 3158 struct held_lock *hlock) 3159 { 3160 return 0; 3161 } 3162 3163 #endif /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */ 3164 3165 /* 3166 * Mark a lock with a usage bit, and validate the state transition: 3167 */ 3168 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3169 enum lock_usage_bit new_bit) 3170 { 3171 unsigned int new_mask = 1 << new_bit, ret = 1; 3172 3173 /* 3174 * If already set then do not dirty the cacheline, 3175 * nor do any checks: 3176 */ 3177 if (likely(hlock_class(this)->usage_mask & new_mask)) 3178 return 1; 3179 3180 if (!graph_lock()) 3181 return 0; 3182 /* 3183 * Make sure we didn't race: 3184 */ 3185 if (unlikely(hlock_class(this)->usage_mask & new_mask)) { 3186 graph_unlock(); 3187 return 1; 3188 } 3189 3190 hlock_class(this)->usage_mask |= new_mask; 3191 3192 if (!save_trace(hlock_class(this)->usage_traces + new_bit)) 3193 return 0; 3194 3195 switch (new_bit) { 3196 #define LOCKDEP_STATE(__STATE) \ 3197 case LOCK_USED_IN_##__STATE: \ 3198 case LOCK_USED_IN_##__STATE##_READ: \ 3199 case LOCK_ENABLED_##__STATE: \ 3200 case LOCK_ENABLED_##__STATE##_READ: 3201 #include "lockdep_states.h" 3202 #undef LOCKDEP_STATE 3203 ret = mark_lock_irq(curr, this, new_bit); 3204 if (!ret) 3205 return 0; 3206 break; 3207 case LOCK_USED: 3208 debug_atomic_dec(nr_unused_locks); 3209 break; 3210 default: 3211 if (!debug_locks_off_graph_unlock()) 3212 return 0; 3213 WARN_ON(1); 3214 return 0; 3215 } 3216 3217 graph_unlock(); 3218 3219 /* 3220 * We must printk outside of the graph_lock: 3221 */ 3222 if (ret == 2) { 3223 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 3224 print_lock(this); 3225 print_irqtrace_events(curr); 3226 dump_stack(); 3227 } 3228 3229 return ret; 3230 } 3231 3232 /* 3233 * Initialize a lock instance's lock-class mapping info: 3234 */ 3235 static void __lockdep_init_map(struct lockdep_map *lock, const char *name, 3236 struct lock_class_key *key, int subclass) 3237 { 3238 int i; 3239 3240 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 3241 lock->class_cache[i] = NULL; 3242 3243 #ifdef CONFIG_LOCK_STAT 3244 lock->cpu = raw_smp_processor_id(); 3245 #endif 3246 3247 /* 3248 * Can't be having no nameless bastards around this place! 3249 */ 3250 if (DEBUG_LOCKS_WARN_ON(!name)) { 3251 lock->name = "NULL"; 3252 return; 3253 } 3254 3255 lock->name = name; 3256 3257 /* 3258 * No key, no joy, we need to hash something. 3259 */ 3260 if (DEBUG_LOCKS_WARN_ON(!key)) 3261 return; 3262 /* 3263 * Sanity check, the lock-class key must be persistent: 3264 */ 3265 if (!static_obj(key)) { 3266 printk("BUG: key %p not in .data!\n", key); 3267 /* 3268 * What it says above ^^^^^, I suggest you read it. 3269 */ 3270 DEBUG_LOCKS_WARN_ON(1); 3271 return; 3272 } 3273 lock->key = key; 3274 3275 if (unlikely(!debug_locks)) 3276 return; 3277 3278 if (subclass) { 3279 unsigned long flags; 3280 3281 if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion)) 3282 return; 3283 3284 raw_local_irq_save(flags); 3285 current->lockdep_recursion = 1; 3286 register_lock_class(lock, subclass, 1); 3287 current->lockdep_recursion = 0; 3288 raw_local_irq_restore(flags); 3289 } 3290 } 3291 3292 void lockdep_init_map(struct lockdep_map *lock, const char *name, 3293 struct lock_class_key *key, int subclass) 3294 { 3295 cross_init(lock, 0); 3296 __lockdep_init_map(lock, name, key, subclass); 3297 } 3298 EXPORT_SYMBOL_GPL(lockdep_init_map); 3299 3300 #ifdef CONFIG_LOCKDEP_CROSSRELEASE 3301 void lockdep_init_map_crosslock(struct lockdep_map *lock, const char *name, 3302 struct lock_class_key *key, int subclass) 3303 { 3304 cross_init(lock, 1); 3305 __lockdep_init_map(lock, name, key, subclass); 3306 } 3307 EXPORT_SYMBOL_GPL(lockdep_init_map_crosslock); 3308 #endif 3309 3310 struct lock_class_key __lockdep_no_validate__; 3311 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 3312 3313 static int 3314 print_lock_nested_lock_not_held(struct task_struct *curr, 3315 struct held_lock *hlock, 3316 unsigned long ip) 3317 { 3318 if (!debug_locks_off()) 3319 return 0; 3320 if (debug_locks_silent) 3321 return 0; 3322 3323 pr_warn("\n"); 3324 pr_warn("==================================\n"); 3325 pr_warn("WARNING: Nested lock was not taken\n"); 3326 print_kernel_ident(); 3327 pr_warn("----------------------------------\n"); 3328 3329 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 3330 print_lock(hlock); 3331 3332 pr_warn("\nbut this task is not holding:\n"); 3333 pr_warn("%s\n", hlock->nest_lock->name); 3334 3335 pr_warn("\nstack backtrace:\n"); 3336 dump_stack(); 3337 3338 pr_warn("\nother info that might help us debug this:\n"); 3339 lockdep_print_held_locks(curr); 3340 3341 pr_warn("\nstack backtrace:\n"); 3342 dump_stack(); 3343 3344 return 0; 3345 } 3346 3347 static int __lock_is_held(struct lockdep_map *lock, int read); 3348 3349 /* 3350 * This gets called for every mutex_lock*()/spin_lock*() operation. 3351 * We maintain the dependency maps and validate the locking attempt: 3352 */ 3353 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 3354 int trylock, int read, int check, int hardirqs_off, 3355 struct lockdep_map *nest_lock, unsigned long ip, 3356 int references, int pin_count) 3357 { 3358 struct task_struct *curr = current; 3359 struct lock_class *class = NULL; 3360 struct held_lock *hlock; 3361 unsigned int depth; 3362 int chain_head = 0; 3363 int class_idx; 3364 u64 chain_key; 3365 int ret; 3366 3367 if (unlikely(!debug_locks)) 3368 return 0; 3369 3370 /* 3371 * Lockdep should run with IRQs disabled, otherwise we could 3372 * get an interrupt which would want to take locks, which would 3373 * end up in lockdep and have you got a head-ache already? 3374 */ 3375 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3376 return 0; 3377 3378 if (!prove_locking || lock->key == &__lockdep_no_validate__) 3379 check = 0; 3380 3381 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 3382 class = lock->class_cache[subclass]; 3383 /* 3384 * Not cached? 3385 */ 3386 if (unlikely(!class)) { 3387 class = register_lock_class(lock, subclass, 0); 3388 if (!class) 3389 return 0; 3390 } 3391 atomic_inc((atomic_t *)&class->ops); 3392 if (very_verbose(class)) { 3393 printk("\nacquire class [%p] %s", class->key, class->name); 3394 if (class->name_version > 1) 3395 printk(KERN_CONT "#%d", class->name_version); 3396 printk(KERN_CONT "\n"); 3397 dump_stack(); 3398 } 3399 3400 /* 3401 * Add the lock to the list of currently held locks. 3402 * (we dont increase the depth just yet, up until the 3403 * dependency checks are done) 3404 */ 3405 depth = curr->lockdep_depth; 3406 /* 3407 * Ran out of static storage for our per-task lock stack again have we? 3408 */ 3409 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 3410 return 0; 3411 3412 class_idx = class - lock_classes + 1; 3413 3414 /* TODO: nest_lock is not implemented for crosslock yet. */ 3415 if (depth && !cross_lock(lock)) { 3416 hlock = curr->held_locks + depth - 1; 3417 if (hlock->class_idx == class_idx && nest_lock) { 3418 if (hlock->references) { 3419 /* 3420 * Check: unsigned int references:12, overflow. 3421 */ 3422 if (DEBUG_LOCKS_WARN_ON(hlock->references == (1 << 12)-1)) 3423 return 0; 3424 3425 hlock->references++; 3426 } else { 3427 hlock->references = 2; 3428 } 3429 3430 return 1; 3431 } 3432 } 3433 3434 hlock = curr->held_locks + depth; 3435 /* 3436 * Plain impossible, we just registered it and checked it weren't no 3437 * NULL like.. I bet this mushroom I ate was good! 3438 */ 3439 if (DEBUG_LOCKS_WARN_ON(!class)) 3440 return 0; 3441 hlock->class_idx = class_idx; 3442 hlock->acquire_ip = ip; 3443 hlock->instance = lock; 3444 hlock->nest_lock = nest_lock; 3445 hlock->irq_context = task_irq_context(curr); 3446 hlock->trylock = trylock; 3447 hlock->read = read; 3448 hlock->check = check; 3449 hlock->hardirqs_off = !!hardirqs_off; 3450 hlock->references = references; 3451 #ifdef CONFIG_LOCK_STAT 3452 hlock->waittime_stamp = 0; 3453 hlock->holdtime_stamp = lockstat_clock(); 3454 #endif 3455 hlock->pin_count = pin_count; 3456 3457 if (check && !mark_irqflags(curr, hlock)) 3458 return 0; 3459 3460 /* mark it as used: */ 3461 if (!mark_lock(curr, hlock, LOCK_USED)) 3462 return 0; 3463 3464 /* 3465 * Calculate the chain hash: it's the combined hash of all the 3466 * lock keys along the dependency chain. We save the hash value 3467 * at every step so that we can get the current hash easily 3468 * after unlock. The chain hash is then used to cache dependency 3469 * results. 3470 * 3471 * The 'key ID' is what is the most compact key value to drive 3472 * the hash, not class->key. 3473 */ 3474 /* 3475 * Whoops, we did it again.. ran straight out of our static allocation. 3476 */ 3477 if (DEBUG_LOCKS_WARN_ON(class_idx > MAX_LOCKDEP_KEYS)) 3478 return 0; 3479 3480 chain_key = curr->curr_chain_key; 3481 if (!depth) { 3482 /* 3483 * How can we have a chain hash when we ain't got no keys?! 3484 */ 3485 if (DEBUG_LOCKS_WARN_ON(chain_key != 0)) 3486 return 0; 3487 chain_head = 1; 3488 } 3489 3490 hlock->prev_chain_key = chain_key; 3491 if (separate_irq_context(curr, hlock)) { 3492 chain_key = 0; 3493 chain_head = 1; 3494 } 3495 chain_key = iterate_chain_key(chain_key, class_idx); 3496 3497 if (nest_lock && !__lock_is_held(nest_lock, -1)) 3498 return print_lock_nested_lock_not_held(curr, hlock, ip); 3499 3500 if (!validate_chain(curr, lock, hlock, chain_head, chain_key)) 3501 return 0; 3502 3503 ret = lock_acquire_crosslock(hlock); 3504 /* 3505 * 2 means normal acquire operations are needed. Otherwise, it's 3506 * ok just to return with '0:fail, 1:success'. 3507 */ 3508 if (ret != 2) 3509 return ret; 3510 3511 curr->curr_chain_key = chain_key; 3512 curr->lockdep_depth++; 3513 check_chain_key(curr); 3514 #ifdef CONFIG_DEBUG_LOCKDEP 3515 if (unlikely(!debug_locks)) 3516 return 0; 3517 #endif 3518 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 3519 debug_locks_off(); 3520 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 3521 printk(KERN_DEBUG "depth: %i max: %lu!\n", 3522 curr->lockdep_depth, MAX_LOCK_DEPTH); 3523 3524 lockdep_print_held_locks(current); 3525 debug_show_all_locks(); 3526 dump_stack(); 3527 3528 return 0; 3529 } 3530 3531 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 3532 max_lockdep_depth = curr->lockdep_depth; 3533 3534 return 1; 3535 } 3536 3537 static int 3538 print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock, 3539 unsigned long ip) 3540 { 3541 if (!debug_locks_off()) 3542 return 0; 3543 if (debug_locks_silent) 3544 return 0; 3545 3546 pr_warn("\n"); 3547 pr_warn("=====================================\n"); 3548 pr_warn("WARNING: bad unlock balance detected!\n"); 3549 print_kernel_ident(); 3550 pr_warn("-------------------------------------\n"); 3551 pr_warn("%s/%d is trying to release lock (", 3552 curr->comm, task_pid_nr(curr)); 3553 print_lockdep_cache(lock); 3554 pr_cont(") at:\n"); 3555 print_ip_sym(ip); 3556 pr_warn("but there are no more locks to release!\n"); 3557 pr_warn("\nother info that might help us debug this:\n"); 3558 lockdep_print_held_locks(curr); 3559 3560 pr_warn("\nstack backtrace:\n"); 3561 dump_stack(); 3562 3563 return 0; 3564 } 3565 3566 static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock) 3567 { 3568 if (hlock->instance == lock) 3569 return 1; 3570 3571 if (hlock->references) { 3572 struct lock_class *class = lock->class_cache[0]; 3573 3574 if (!class) 3575 class = look_up_lock_class(lock, 0); 3576 3577 /* 3578 * If look_up_lock_class() failed to find a class, we're trying 3579 * to test if we hold a lock that has never yet been acquired. 3580 * Clearly if the lock hasn't been acquired _ever_, we're not 3581 * holding it either, so report failure. 3582 */ 3583 if (IS_ERR_OR_NULL(class)) 3584 return 0; 3585 3586 /* 3587 * References, but not a lock we're actually ref-counting? 3588 * State got messed up, follow the sites that change ->references 3589 * and try to make sense of it. 3590 */ 3591 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 3592 return 0; 3593 3594 if (hlock->class_idx == class - lock_classes + 1) 3595 return 1; 3596 } 3597 3598 return 0; 3599 } 3600 3601 /* @depth must not be zero */ 3602 static struct held_lock *find_held_lock(struct task_struct *curr, 3603 struct lockdep_map *lock, 3604 unsigned int depth, int *idx) 3605 { 3606 struct held_lock *ret, *hlock, *prev_hlock; 3607 int i; 3608 3609 i = depth - 1; 3610 hlock = curr->held_locks + i; 3611 ret = hlock; 3612 if (match_held_lock(hlock, lock)) 3613 goto out; 3614 3615 ret = NULL; 3616 for (i--, prev_hlock = hlock--; 3617 i >= 0; 3618 i--, prev_hlock = hlock--) { 3619 /* 3620 * We must not cross into another context: 3621 */ 3622 if (prev_hlock->irq_context != hlock->irq_context) { 3623 ret = NULL; 3624 break; 3625 } 3626 if (match_held_lock(hlock, lock)) { 3627 ret = hlock; 3628 break; 3629 } 3630 } 3631 3632 out: 3633 *idx = i; 3634 return ret; 3635 } 3636 3637 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 3638 int idx) 3639 { 3640 struct held_lock *hlock; 3641 3642 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 3643 if (!__lock_acquire(hlock->instance, 3644 hlock_class(hlock)->subclass, 3645 hlock->trylock, 3646 hlock->read, hlock->check, 3647 hlock->hardirqs_off, 3648 hlock->nest_lock, hlock->acquire_ip, 3649 hlock->references, hlock->pin_count)) 3650 return 1; 3651 } 3652 return 0; 3653 } 3654 3655 static int 3656 __lock_set_class(struct lockdep_map *lock, const char *name, 3657 struct lock_class_key *key, unsigned int subclass, 3658 unsigned long ip) 3659 { 3660 struct task_struct *curr = current; 3661 struct held_lock *hlock; 3662 struct lock_class *class; 3663 unsigned int depth; 3664 int i; 3665 3666 depth = curr->lockdep_depth; 3667 /* 3668 * This function is about (re)setting the class of a held lock, 3669 * yet we're not actually holding any locks. Naughty user! 3670 */ 3671 if (DEBUG_LOCKS_WARN_ON(!depth)) 3672 return 0; 3673 3674 hlock = find_held_lock(curr, lock, depth, &i); 3675 if (!hlock) 3676 return print_unlock_imbalance_bug(curr, lock, ip); 3677 3678 lockdep_init_map(lock, name, key, 0); 3679 class = register_lock_class(lock, subclass, 0); 3680 hlock->class_idx = class - lock_classes + 1; 3681 3682 curr->lockdep_depth = i; 3683 curr->curr_chain_key = hlock->prev_chain_key; 3684 3685 if (reacquire_held_locks(curr, depth, i)) 3686 return 0; 3687 3688 /* 3689 * I took it apart and put it back together again, except now I have 3690 * these 'spare' parts.. where shall I put them. 3691 */ 3692 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 3693 return 0; 3694 return 1; 3695 } 3696 3697 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 3698 { 3699 struct task_struct *curr = current; 3700 struct held_lock *hlock; 3701 unsigned int depth; 3702 int i; 3703 3704 depth = curr->lockdep_depth; 3705 /* 3706 * This function is about (re)setting the class of a held lock, 3707 * yet we're not actually holding any locks. Naughty user! 3708 */ 3709 if (DEBUG_LOCKS_WARN_ON(!depth)) 3710 return 0; 3711 3712 hlock = find_held_lock(curr, lock, depth, &i); 3713 if (!hlock) 3714 return print_unlock_imbalance_bug(curr, lock, ip); 3715 3716 curr->lockdep_depth = i; 3717 curr->curr_chain_key = hlock->prev_chain_key; 3718 3719 WARN(hlock->read, "downgrading a read lock"); 3720 hlock->read = 1; 3721 hlock->acquire_ip = ip; 3722 3723 if (reacquire_held_locks(curr, depth, i)) 3724 return 0; 3725 3726 /* 3727 * I took it apart and put it back together again, except now I have 3728 * these 'spare' parts.. where shall I put them. 3729 */ 3730 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 3731 return 0; 3732 return 1; 3733 } 3734 3735 /* 3736 * Remove the lock to the list of currently held locks - this gets 3737 * called on mutex_unlock()/spin_unlock*() (or on a failed 3738 * mutex_lock_interruptible()). 3739 * 3740 * @nested is an hysterical artifact, needs a tree wide cleanup. 3741 */ 3742 static int 3743 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip) 3744 { 3745 struct task_struct *curr = current; 3746 struct held_lock *hlock; 3747 unsigned int depth; 3748 int ret, i; 3749 3750 if (unlikely(!debug_locks)) 3751 return 0; 3752 3753 ret = lock_release_crosslock(lock); 3754 /* 3755 * 2 means normal release operations are needed. Otherwise, it's 3756 * ok just to return with '0:fail, 1:success'. 3757 */ 3758 if (ret != 2) 3759 return ret; 3760 3761 depth = curr->lockdep_depth; 3762 /* 3763 * So we're all set to release this lock.. wait what lock? We don't 3764 * own any locks, you've been drinking again? 3765 */ 3766 if (DEBUG_LOCKS_WARN_ON(depth <= 0)) 3767 return print_unlock_imbalance_bug(curr, lock, ip); 3768 3769 /* 3770 * Check whether the lock exists in the current stack 3771 * of held locks: 3772 */ 3773 hlock = find_held_lock(curr, lock, depth, &i); 3774 if (!hlock) 3775 return print_unlock_imbalance_bug(curr, lock, ip); 3776 3777 if (hlock->instance == lock) 3778 lock_release_holdtime(hlock); 3779 3780 WARN(hlock->pin_count, "releasing a pinned lock\n"); 3781 3782 if (hlock->references) { 3783 hlock->references--; 3784 if (hlock->references) { 3785 /* 3786 * We had, and after removing one, still have 3787 * references, the current lock stack is still 3788 * valid. We're done! 3789 */ 3790 return 1; 3791 } 3792 } 3793 3794 /* 3795 * We have the right lock to unlock, 'hlock' points to it. 3796 * Now we remove it from the stack, and add back the other 3797 * entries (if any), recalculating the hash along the way: 3798 */ 3799 3800 curr->lockdep_depth = i; 3801 curr->curr_chain_key = hlock->prev_chain_key; 3802 3803 if (reacquire_held_locks(curr, depth, i + 1)) 3804 return 0; 3805 3806 /* 3807 * We had N bottles of beer on the wall, we drank one, but now 3808 * there's not N-1 bottles of beer left on the wall... 3809 */ 3810 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1)) 3811 return 0; 3812 3813 return 1; 3814 } 3815 3816 static int __lock_is_held(struct lockdep_map *lock, int read) 3817 { 3818 struct task_struct *curr = current; 3819 int i; 3820 3821 for (i = 0; i < curr->lockdep_depth; i++) { 3822 struct held_lock *hlock = curr->held_locks + i; 3823 3824 if (match_held_lock(hlock, lock)) { 3825 if (read == -1 || hlock->read == read) 3826 return 1; 3827 3828 return 0; 3829 } 3830 } 3831 3832 return 0; 3833 } 3834 3835 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 3836 { 3837 struct pin_cookie cookie = NIL_COOKIE; 3838 struct task_struct *curr = current; 3839 int i; 3840 3841 if (unlikely(!debug_locks)) 3842 return cookie; 3843 3844 for (i = 0; i < curr->lockdep_depth; i++) { 3845 struct held_lock *hlock = curr->held_locks + i; 3846 3847 if (match_held_lock(hlock, lock)) { 3848 /* 3849 * Grab 16bits of randomness; this is sufficient to not 3850 * be guessable and still allows some pin nesting in 3851 * our u32 pin_count. 3852 */ 3853 cookie.val = 1 + (prandom_u32() >> 16); 3854 hlock->pin_count += cookie.val; 3855 return cookie; 3856 } 3857 } 3858 3859 WARN(1, "pinning an unheld lock\n"); 3860 return cookie; 3861 } 3862 3863 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3864 { 3865 struct task_struct *curr = current; 3866 int i; 3867 3868 if (unlikely(!debug_locks)) 3869 return; 3870 3871 for (i = 0; i < curr->lockdep_depth; i++) { 3872 struct held_lock *hlock = curr->held_locks + i; 3873 3874 if (match_held_lock(hlock, lock)) { 3875 hlock->pin_count += cookie.val; 3876 return; 3877 } 3878 } 3879 3880 WARN(1, "pinning an unheld lock\n"); 3881 } 3882 3883 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3884 { 3885 struct task_struct *curr = current; 3886 int i; 3887 3888 if (unlikely(!debug_locks)) 3889 return; 3890 3891 for (i = 0; i < curr->lockdep_depth; i++) { 3892 struct held_lock *hlock = curr->held_locks + i; 3893 3894 if (match_held_lock(hlock, lock)) { 3895 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 3896 return; 3897 3898 hlock->pin_count -= cookie.val; 3899 3900 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 3901 hlock->pin_count = 0; 3902 3903 return; 3904 } 3905 } 3906 3907 WARN(1, "unpinning an unheld lock\n"); 3908 } 3909 3910 /* 3911 * Check whether we follow the irq-flags state precisely: 3912 */ 3913 static void check_flags(unsigned long flags) 3914 { 3915 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \ 3916 defined(CONFIG_TRACE_IRQFLAGS) 3917 if (!debug_locks) 3918 return; 3919 3920 if (irqs_disabled_flags(flags)) { 3921 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) { 3922 printk("possible reason: unannotated irqs-off.\n"); 3923 } 3924 } else { 3925 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) { 3926 printk("possible reason: unannotated irqs-on.\n"); 3927 } 3928 } 3929 3930 /* 3931 * We dont accurately track softirq state in e.g. 3932 * hardirq contexts (such as on 4KSTACKS), so only 3933 * check if not in hardirq contexts: 3934 */ 3935 if (!hardirq_count()) { 3936 if (softirq_count()) { 3937 /* like the above, but with softirqs */ 3938 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 3939 } else { 3940 /* lick the above, does it taste good? */ 3941 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 3942 } 3943 } 3944 3945 if (!debug_locks) 3946 print_irqtrace_events(current); 3947 #endif 3948 } 3949 3950 void lock_set_class(struct lockdep_map *lock, const char *name, 3951 struct lock_class_key *key, unsigned int subclass, 3952 unsigned long ip) 3953 { 3954 unsigned long flags; 3955 3956 if (unlikely(current->lockdep_recursion)) 3957 return; 3958 3959 raw_local_irq_save(flags); 3960 current->lockdep_recursion = 1; 3961 check_flags(flags); 3962 if (__lock_set_class(lock, name, key, subclass, ip)) 3963 check_chain_key(current); 3964 current->lockdep_recursion = 0; 3965 raw_local_irq_restore(flags); 3966 } 3967 EXPORT_SYMBOL_GPL(lock_set_class); 3968 3969 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 3970 { 3971 unsigned long flags; 3972 3973 if (unlikely(current->lockdep_recursion)) 3974 return; 3975 3976 raw_local_irq_save(flags); 3977 current->lockdep_recursion = 1; 3978 check_flags(flags); 3979 if (__lock_downgrade(lock, ip)) 3980 check_chain_key(current); 3981 current->lockdep_recursion = 0; 3982 raw_local_irq_restore(flags); 3983 } 3984 EXPORT_SYMBOL_GPL(lock_downgrade); 3985 3986 /* 3987 * We are not always called with irqs disabled - do that here, 3988 * and also avoid lockdep recursion: 3989 */ 3990 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 3991 int trylock, int read, int check, 3992 struct lockdep_map *nest_lock, unsigned long ip) 3993 { 3994 unsigned long flags; 3995 3996 if (unlikely(current->lockdep_recursion)) 3997 return; 3998 3999 raw_local_irq_save(flags); 4000 check_flags(flags); 4001 4002 current->lockdep_recursion = 1; 4003 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 4004 __lock_acquire(lock, subclass, trylock, read, check, 4005 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 4006 current->lockdep_recursion = 0; 4007 raw_local_irq_restore(flags); 4008 } 4009 EXPORT_SYMBOL_GPL(lock_acquire); 4010 4011 void lock_release(struct lockdep_map *lock, int nested, 4012 unsigned long ip) 4013 { 4014 unsigned long flags; 4015 4016 if (unlikely(current->lockdep_recursion)) 4017 return; 4018 4019 raw_local_irq_save(flags); 4020 check_flags(flags); 4021 current->lockdep_recursion = 1; 4022 trace_lock_release(lock, ip); 4023 if (__lock_release(lock, nested, ip)) 4024 check_chain_key(current); 4025 current->lockdep_recursion = 0; 4026 raw_local_irq_restore(flags); 4027 } 4028 EXPORT_SYMBOL_GPL(lock_release); 4029 4030 int lock_is_held_type(struct lockdep_map *lock, int read) 4031 { 4032 unsigned long flags; 4033 int ret = 0; 4034 4035 if (unlikely(current->lockdep_recursion)) 4036 return 1; /* avoid false negative lockdep_assert_held() */ 4037 4038 raw_local_irq_save(flags); 4039 check_flags(flags); 4040 4041 current->lockdep_recursion = 1; 4042 ret = __lock_is_held(lock, read); 4043 current->lockdep_recursion = 0; 4044 raw_local_irq_restore(flags); 4045 4046 return ret; 4047 } 4048 EXPORT_SYMBOL_GPL(lock_is_held_type); 4049 4050 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 4051 { 4052 struct pin_cookie cookie = NIL_COOKIE; 4053 unsigned long flags; 4054 4055 if (unlikely(current->lockdep_recursion)) 4056 return cookie; 4057 4058 raw_local_irq_save(flags); 4059 check_flags(flags); 4060 4061 current->lockdep_recursion = 1; 4062 cookie = __lock_pin_lock(lock); 4063 current->lockdep_recursion = 0; 4064 raw_local_irq_restore(flags); 4065 4066 return cookie; 4067 } 4068 EXPORT_SYMBOL_GPL(lock_pin_lock); 4069 4070 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 4071 { 4072 unsigned long flags; 4073 4074 if (unlikely(current->lockdep_recursion)) 4075 return; 4076 4077 raw_local_irq_save(flags); 4078 check_flags(flags); 4079 4080 current->lockdep_recursion = 1; 4081 __lock_repin_lock(lock, cookie); 4082 current->lockdep_recursion = 0; 4083 raw_local_irq_restore(flags); 4084 } 4085 EXPORT_SYMBOL_GPL(lock_repin_lock); 4086 4087 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 4088 { 4089 unsigned long flags; 4090 4091 if (unlikely(current->lockdep_recursion)) 4092 return; 4093 4094 raw_local_irq_save(flags); 4095 check_flags(flags); 4096 4097 current->lockdep_recursion = 1; 4098 __lock_unpin_lock(lock, cookie); 4099 current->lockdep_recursion = 0; 4100 raw_local_irq_restore(flags); 4101 } 4102 EXPORT_SYMBOL_GPL(lock_unpin_lock); 4103 4104 #ifdef CONFIG_LOCK_STAT 4105 static int 4106 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock, 4107 unsigned long ip) 4108 { 4109 if (!debug_locks_off()) 4110 return 0; 4111 if (debug_locks_silent) 4112 return 0; 4113 4114 pr_warn("\n"); 4115 pr_warn("=================================\n"); 4116 pr_warn("WARNING: bad contention detected!\n"); 4117 print_kernel_ident(); 4118 pr_warn("---------------------------------\n"); 4119 pr_warn("%s/%d is trying to contend lock (", 4120 curr->comm, task_pid_nr(curr)); 4121 print_lockdep_cache(lock); 4122 pr_cont(") at:\n"); 4123 print_ip_sym(ip); 4124 pr_warn("but there are no locks held!\n"); 4125 pr_warn("\nother info that might help us debug this:\n"); 4126 lockdep_print_held_locks(curr); 4127 4128 pr_warn("\nstack backtrace:\n"); 4129 dump_stack(); 4130 4131 return 0; 4132 } 4133 4134 static void 4135 __lock_contended(struct lockdep_map *lock, unsigned long ip) 4136 { 4137 struct task_struct *curr = current; 4138 struct held_lock *hlock; 4139 struct lock_class_stats *stats; 4140 unsigned int depth; 4141 int i, contention_point, contending_point; 4142 4143 depth = curr->lockdep_depth; 4144 /* 4145 * Whee, we contended on this lock, except it seems we're not 4146 * actually trying to acquire anything much at all.. 4147 */ 4148 if (DEBUG_LOCKS_WARN_ON(!depth)) 4149 return; 4150 4151 hlock = find_held_lock(curr, lock, depth, &i); 4152 if (!hlock) { 4153 print_lock_contention_bug(curr, lock, ip); 4154 return; 4155 } 4156 4157 if (hlock->instance != lock) 4158 return; 4159 4160 hlock->waittime_stamp = lockstat_clock(); 4161 4162 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 4163 contending_point = lock_point(hlock_class(hlock)->contending_point, 4164 lock->ip); 4165 4166 stats = get_lock_stats(hlock_class(hlock)); 4167 if (contention_point < LOCKSTAT_POINTS) 4168 stats->contention_point[contention_point]++; 4169 if (contending_point < LOCKSTAT_POINTS) 4170 stats->contending_point[contending_point]++; 4171 if (lock->cpu != smp_processor_id()) 4172 stats->bounces[bounce_contended + !!hlock->read]++; 4173 put_lock_stats(stats); 4174 } 4175 4176 static void 4177 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 4178 { 4179 struct task_struct *curr = current; 4180 struct held_lock *hlock; 4181 struct lock_class_stats *stats; 4182 unsigned int depth; 4183 u64 now, waittime = 0; 4184 int i, cpu; 4185 4186 depth = curr->lockdep_depth; 4187 /* 4188 * Yay, we acquired ownership of this lock we didn't try to 4189 * acquire, how the heck did that happen? 4190 */ 4191 if (DEBUG_LOCKS_WARN_ON(!depth)) 4192 return; 4193 4194 hlock = find_held_lock(curr, lock, depth, &i); 4195 if (!hlock) { 4196 print_lock_contention_bug(curr, lock, _RET_IP_); 4197 return; 4198 } 4199 4200 if (hlock->instance != lock) 4201 return; 4202 4203 cpu = smp_processor_id(); 4204 if (hlock->waittime_stamp) { 4205 now = lockstat_clock(); 4206 waittime = now - hlock->waittime_stamp; 4207 hlock->holdtime_stamp = now; 4208 } 4209 4210 trace_lock_acquired(lock, ip); 4211 4212 stats = get_lock_stats(hlock_class(hlock)); 4213 if (waittime) { 4214 if (hlock->read) 4215 lock_time_inc(&stats->read_waittime, waittime); 4216 else 4217 lock_time_inc(&stats->write_waittime, waittime); 4218 } 4219 if (lock->cpu != cpu) 4220 stats->bounces[bounce_acquired + !!hlock->read]++; 4221 put_lock_stats(stats); 4222 4223 lock->cpu = cpu; 4224 lock->ip = ip; 4225 } 4226 4227 void lock_contended(struct lockdep_map *lock, unsigned long ip) 4228 { 4229 unsigned long flags; 4230 4231 if (unlikely(!lock_stat)) 4232 return; 4233 4234 if (unlikely(current->lockdep_recursion)) 4235 return; 4236 4237 raw_local_irq_save(flags); 4238 check_flags(flags); 4239 current->lockdep_recursion = 1; 4240 trace_lock_contended(lock, ip); 4241 __lock_contended(lock, ip); 4242 current->lockdep_recursion = 0; 4243 raw_local_irq_restore(flags); 4244 } 4245 EXPORT_SYMBOL_GPL(lock_contended); 4246 4247 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 4248 { 4249 unsigned long flags; 4250 4251 if (unlikely(!lock_stat)) 4252 return; 4253 4254 if (unlikely(current->lockdep_recursion)) 4255 return; 4256 4257 raw_local_irq_save(flags); 4258 check_flags(flags); 4259 current->lockdep_recursion = 1; 4260 __lock_acquired(lock, ip); 4261 current->lockdep_recursion = 0; 4262 raw_local_irq_restore(flags); 4263 } 4264 EXPORT_SYMBOL_GPL(lock_acquired); 4265 #endif 4266 4267 /* 4268 * Used by the testsuite, sanitize the validator state 4269 * after a simulated failure: 4270 */ 4271 4272 void lockdep_reset(void) 4273 { 4274 unsigned long flags; 4275 int i; 4276 4277 raw_local_irq_save(flags); 4278 current->curr_chain_key = 0; 4279 current->lockdep_depth = 0; 4280 current->lockdep_recursion = 0; 4281 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 4282 nr_hardirq_chains = 0; 4283 nr_softirq_chains = 0; 4284 nr_process_chains = 0; 4285 debug_locks = 1; 4286 for (i = 0; i < CHAINHASH_SIZE; i++) 4287 INIT_HLIST_HEAD(chainhash_table + i); 4288 raw_local_irq_restore(flags); 4289 } 4290 4291 static void zap_class(struct lock_class *class) 4292 { 4293 int i; 4294 4295 /* 4296 * Remove all dependencies this lock is 4297 * involved in: 4298 */ 4299 for (i = 0; i < nr_list_entries; i++) { 4300 if (list_entries[i].class == class) 4301 list_del_rcu(&list_entries[i].entry); 4302 } 4303 /* 4304 * Unhash the class and remove it from the all_lock_classes list: 4305 */ 4306 hlist_del_rcu(&class->hash_entry); 4307 list_del_rcu(&class->lock_entry); 4308 4309 RCU_INIT_POINTER(class->key, NULL); 4310 RCU_INIT_POINTER(class->name, NULL); 4311 } 4312 4313 static inline int within(const void *addr, void *start, unsigned long size) 4314 { 4315 return addr >= start && addr < start + size; 4316 } 4317 4318 /* 4319 * Used in module.c to remove lock classes from memory that is going to be 4320 * freed; and possibly re-used by other modules. 4321 * 4322 * We will have had one sync_sched() before getting here, so we're guaranteed 4323 * nobody will look up these exact classes -- they're properly dead but still 4324 * allocated. 4325 */ 4326 void lockdep_free_key_range(void *start, unsigned long size) 4327 { 4328 struct lock_class *class; 4329 struct hlist_head *head; 4330 unsigned long flags; 4331 int i; 4332 int locked; 4333 4334 raw_local_irq_save(flags); 4335 locked = graph_lock(); 4336 4337 /* 4338 * Unhash all classes that were created by this module: 4339 */ 4340 for (i = 0; i < CLASSHASH_SIZE; i++) { 4341 head = classhash_table + i; 4342 hlist_for_each_entry_rcu(class, head, hash_entry) { 4343 if (within(class->key, start, size)) 4344 zap_class(class); 4345 else if (within(class->name, start, size)) 4346 zap_class(class); 4347 } 4348 } 4349 4350 if (locked) 4351 graph_unlock(); 4352 raw_local_irq_restore(flags); 4353 4354 /* 4355 * Wait for any possible iterators from look_up_lock_class() to pass 4356 * before continuing to free the memory they refer to. 4357 * 4358 * sync_sched() is sufficient because the read-side is IRQ disable. 4359 */ 4360 synchronize_sched(); 4361 4362 /* 4363 * XXX at this point we could return the resources to the pool; 4364 * instead we leak them. We would need to change to bitmap allocators 4365 * instead of the linear allocators we have now. 4366 */ 4367 } 4368 4369 void lockdep_reset_lock(struct lockdep_map *lock) 4370 { 4371 struct lock_class *class; 4372 struct hlist_head *head; 4373 unsigned long flags; 4374 int i, j; 4375 int locked; 4376 4377 raw_local_irq_save(flags); 4378 4379 /* 4380 * Remove all classes this lock might have: 4381 */ 4382 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 4383 /* 4384 * If the class exists we look it up and zap it: 4385 */ 4386 class = look_up_lock_class(lock, j); 4387 if (!IS_ERR_OR_NULL(class)) 4388 zap_class(class); 4389 } 4390 /* 4391 * Debug check: in the end all mapped classes should 4392 * be gone. 4393 */ 4394 locked = graph_lock(); 4395 for (i = 0; i < CLASSHASH_SIZE; i++) { 4396 head = classhash_table + i; 4397 hlist_for_each_entry_rcu(class, head, hash_entry) { 4398 int match = 0; 4399 4400 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 4401 match |= class == lock->class_cache[j]; 4402 4403 if (unlikely(match)) { 4404 if (debug_locks_off_graph_unlock()) { 4405 /* 4406 * We all just reset everything, how did it match? 4407 */ 4408 WARN_ON(1); 4409 } 4410 goto out_restore; 4411 } 4412 } 4413 } 4414 if (locked) 4415 graph_unlock(); 4416 4417 out_restore: 4418 raw_local_irq_restore(flags); 4419 } 4420 4421 void __init lockdep_info(void) 4422 { 4423 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 4424 4425 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 4426 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 4427 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 4428 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 4429 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 4430 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 4431 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 4432 4433 printk(" memory used by lock dependency info: %lu kB\n", 4434 (sizeof(struct lock_class) * MAX_LOCKDEP_KEYS + 4435 sizeof(struct list_head) * CLASSHASH_SIZE + 4436 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + 4437 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + 4438 sizeof(struct list_head) * CHAINHASH_SIZE 4439 #ifdef CONFIG_PROVE_LOCKING 4440 + sizeof(struct circular_queue) 4441 #endif 4442 ) / 1024 4443 ); 4444 4445 printk(" per task-struct memory footprint: %lu bytes\n", 4446 sizeof(struct held_lock) * MAX_LOCK_DEPTH); 4447 } 4448 4449 static void 4450 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 4451 const void *mem_to, struct held_lock *hlock) 4452 { 4453 if (!debug_locks_off()) 4454 return; 4455 if (debug_locks_silent) 4456 return; 4457 4458 pr_warn("\n"); 4459 pr_warn("=========================\n"); 4460 pr_warn("WARNING: held lock freed!\n"); 4461 print_kernel_ident(); 4462 pr_warn("-------------------------\n"); 4463 pr_warn("%s/%d is freeing memory %p-%p, with a lock still held there!\n", 4464 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 4465 print_lock(hlock); 4466 lockdep_print_held_locks(curr); 4467 4468 pr_warn("\nstack backtrace:\n"); 4469 dump_stack(); 4470 } 4471 4472 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 4473 const void* lock_from, unsigned long lock_len) 4474 { 4475 return lock_from + lock_len <= mem_from || 4476 mem_from + mem_len <= lock_from; 4477 } 4478 4479 /* 4480 * Called when kernel memory is freed (or unmapped), or if a lock 4481 * is destroyed or reinitialized - this code checks whether there is 4482 * any held lock in the memory range of <from> to <to>: 4483 */ 4484 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 4485 { 4486 struct task_struct *curr = current; 4487 struct held_lock *hlock; 4488 unsigned long flags; 4489 int i; 4490 4491 if (unlikely(!debug_locks)) 4492 return; 4493 4494 local_irq_save(flags); 4495 for (i = 0; i < curr->lockdep_depth; i++) { 4496 hlock = curr->held_locks + i; 4497 4498 if (not_in_range(mem_from, mem_len, hlock->instance, 4499 sizeof(*hlock->instance))) 4500 continue; 4501 4502 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 4503 break; 4504 } 4505 local_irq_restore(flags); 4506 } 4507 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 4508 4509 static void print_held_locks_bug(void) 4510 { 4511 if (!debug_locks_off()) 4512 return; 4513 if (debug_locks_silent) 4514 return; 4515 4516 pr_warn("\n"); 4517 pr_warn("====================================\n"); 4518 pr_warn("WARNING: %s/%d still has locks held!\n", 4519 current->comm, task_pid_nr(current)); 4520 print_kernel_ident(); 4521 pr_warn("------------------------------------\n"); 4522 lockdep_print_held_locks(current); 4523 pr_warn("\nstack backtrace:\n"); 4524 dump_stack(); 4525 } 4526 4527 void debug_check_no_locks_held(void) 4528 { 4529 if (unlikely(current->lockdep_depth > 0)) 4530 print_held_locks_bug(); 4531 } 4532 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 4533 4534 #ifdef __KERNEL__ 4535 void debug_show_all_locks(void) 4536 { 4537 struct task_struct *g, *p; 4538 int count = 10; 4539 int unlock = 1; 4540 4541 if (unlikely(!debug_locks)) { 4542 pr_warn("INFO: lockdep is turned off.\n"); 4543 return; 4544 } 4545 pr_warn("\nShowing all locks held in the system:\n"); 4546 4547 /* 4548 * Here we try to get the tasklist_lock as hard as possible, 4549 * if not successful after 2 seconds we ignore it (but keep 4550 * trying). This is to enable a debug printout even if a 4551 * tasklist_lock-holding task deadlocks or crashes. 4552 */ 4553 retry: 4554 if (!read_trylock(&tasklist_lock)) { 4555 if (count == 10) 4556 pr_warn("hm, tasklist_lock locked, retrying... "); 4557 if (count) { 4558 count--; 4559 pr_cont(" #%d", 10-count); 4560 mdelay(200); 4561 goto retry; 4562 } 4563 pr_cont(" ignoring it.\n"); 4564 unlock = 0; 4565 } else { 4566 if (count != 10) 4567 pr_cont(" locked it.\n"); 4568 } 4569 4570 do_each_thread(g, p) { 4571 /* 4572 * It's not reliable to print a task's held locks 4573 * if it's not sleeping (or if it's not the current 4574 * task): 4575 */ 4576 if (p->state == TASK_RUNNING && p != current) 4577 continue; 4578 if (p->lockdep_depth) 4579 lockdep_print_held_locks(p); 4580 if (!unlock) 4581 if (read_trylock(&tasklist_lock)) 4582 unlock = 1; 4583 } while_each_thread(g, p); 4584 4585 pr_warn("\n"); 4586 pr_warn("=============================================\n\n"); 4587 4588 if (unlock) 4589 read_unlock(&tasklist_lock); 4590 } 4591 EXPORT_SYMBOL_GPL(debug_show_all_locks); 4592 #endif 4593 4594 /* 4595 * Careful: only use this function if you are sure that 4596 * the task cannot run in parallel! 4597 */ 4598 void debug_show_held_locks(struct task_struct *task) 4599 { 4600 if (unlikely(!debug_locks)) { 4601 printk("INFO: lockdep is turned off.\n"); 4602 return; 4603 } 4604 lockdep_print_held_locks(task); 4605 } 4606 EXPORT_SYMBOL_GPL(debug_show_held_locks); 4607 4608 asmlinkage __visible void lockdep_sys_exit(void) 4609 { 4610 struct task_struct *curr = current; 4611 4612 if (unlikely(curr->lockdep_depth)) { 4613 if (!debug_locks_off()) 4614 return; 4615 pr_warn("\n"); 4616 pr_warn("================================================\n"); 4617 pr_warn("WARNING: lock held when returning to user space!\n"); 4618 print_kernel_ident(); 4619 pr_warn("------------------------------------------------\n"); 4620 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 4621 curr->comm, curr->pid); 4622 lockdep_print_held_locks(curr); 4623 } 4624 4625 /* 4626 * The lock history for each syscall should be independent. So wipe the 4627 * slate clean on return to userspace. 4628 */ 4629 lockdep_invariant_state(false); 4630 } 4631 4632 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 4633 { 4634 struct task_struct *curr = current; 4635 4636 /* Note: the following can be executed concurrently, so be careful. */ 4637 pr_warn("\n"); 4638 pr_warn("=============================\n"); 4639 pr_warn("WARNING: suspicious RCU usage\n"); 4640 print_kernel_ident(); 4641 pr_warn("-----------------------------\n"); 4642 pr_warn("%s:%d %s!\n", file, line, s); 4643 pr_warn("\nother info that might help us debug this:\n\n"); 4644 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 4645 !rcu_lockdep_current_cpu_online() 4646 ? "RCU used illegally from offline CPU!\n" 4647 : !rcu_is_watching() 4648 ? "RCU used illegally from idle CPU!\n" 4649 : "", 4650 rcu_scheduler_active, debug_locks); 4651 4652 /* 4653 * If a CPU is in the RCU-free window in idle (ie: in the section 4654 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 4655 * considers that CPU to be in an "extended quiescent state", 4656 * which means that RCU will be completely ignoring that CPU. 4657 * Therefore, rcu_read_lock() and friends have absolutely no 4658 * effect on a CPU running in that state. In other words, even if 4659 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 4660 * delete data structures out from under it. RCU really has no 4661 * choice here: we need to keep an RCU-free window in idle where 4662 * the CPU may possibly enter into low power mode. This way we can 4663 * notice an extended quiescent state to other CPUs that started a grace 4664 * period. Otherwise we would delay any grace period as long as we run 4665 * in the idle task. 4666 * 4667 * So complain bitterly if someone does call rcu_read_lock(), 4668 * rcu_read_lock_bh() and so on from extended quiescent states. 4669 */ 4670 if (!rcu_is_watching()) 4671 pr_warn("RCU used illegally from extended quiescent state!\n"); 4672 4673 lockdep_print_held_locks(curr); 4674 pr_warn("\nstack backtrace:\n"); 4675 dump_stack(); 4676 } 4677 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 4678 4679 #ifdef CONFIG_LOCKDEP_CROSSRELEASE 4680 4681 /* 4682 * Crossrelease works by recording a lock history for each thread and 4683 * connecting those historic locks that were taken after the 4684 * wait_for_completion() in the complete() context. 4685 * 4686 * Task-A Task-B 4687 * 4688 * mutex_lock(&A); 4689 * mutex_unlock(&A); 4690 * 4691 * wait_for_completion(&C); 4692 * lock_acquire_crosslock(); 4693 * atomic_inc_return(&cross_gen_id); 4694 * | 4695 * | mutex_lock(&B); 4696 * | mutex_unlock(&B); 4697 * | 4698 * | complete(&C); 4699 * `-- lock_commit_crosslock(); 4700 * 4701 * Which will then add a dependency between B and C. 4702 */ 4703 4704 #define xhlock(i) (current->xhlocks[(i) % MAX_XHLOCKS_NR]) 4705 4706 /* 4707 * Whenever a crosslock is held, cross_gen_id will be increased. 4708 */ 4709 static atomic_t cross_gen_id; /* Can be wrapped */ 4710 4711 /* 4712 * Make an entry of the ring buffer invalid. 4713 */ 4714 static inline void invalidate_xhlock(struct hist_lock *xhlock) 4715 { 4716 /* 4717 * Normally, xhlock->hlock.instance must be !NULL. 4718 */ 4719 xhlock->hlock.instance = NULL; 4720 } 4721 4722 /* 4723 * Lock history stacks; we have 2 nested lock history stacks: 4724 * 4725 * HARD(IRQ) 4726 * SOFT(IRQ) 4727 * 4728 * The thing is that once we complete a HARD/SOFT IRQ the future task locks 4729 * should not depend on any of the locks observed while running the IRQ. So 4730 * what we do is rewind the history buffer and erase all our knowledge of that 4731 * temporal event. 4732 */ 4733 4734 void crossrelease_hist_start(enum xhlock_context_t c) 4735 { 4736 struct task_struct *cur = current; 4737 4738 if (!cur->xhlocks) 4739 return; 4740 4741 cur->xhlock_idx_hist[c] = cur->xhlock_idx; 4742 cur->hist_id_save[c] = cur->hist_id; 4743 } 4744 4745 void crossrelease_hist_end(enum xhlock_context_t c) 4746 { 4747 struct task_struct *cur = current; 4748 4749 if (cur->xhlocks) { 4750 unsigned int idx = cur->xhlock_idx_hist[c]; 4751 struct hist_lock *h = &xhlock(idx); 4752 4753 cur->xhlock_idx = idx; 4754 4755 /* Check if the ring was overwritten. */ 4756 if (h->hist_id != cur->hist_id_save[c]) 4757 invalidate_xhlock(h); 4758 } 4759 } 4760 4761 /* 4762 * lockdep_invariant_state() is used to annotate independence inside a task, to 4763 * make one task look like multiple independent 'tasks'. 4764 * 4765 * Take for instance workqueues; each work is independent of the last. The 4766 * completion of a future work does not depend on the completion of a past work 4767 * (in general). Therefore we must not carry that (lock) dependency across 4768 * works. 4769 * 4770 * This is true for many things; pretty much all kthreads fall into this 4771 * pattern, where they have an invariant state and future completions do not 4772 * depend on past completions. Its just that since they all have the 'same' 4773 * form -- the kthread does the same over and over -- it doesn't typically 4774 * matter. 4775 * 4776 * The same is true for system-calls, once a system call is completed (we've 4777 * returned to userspace) the next system call does not depend on the lock 4778 * history of the previous system call. 4779 * 4780 * They key property for independence, this invariant state, is that it must be 4781 * a point where we hold no locks and have no history. Because if we were to 4782 * hold locks, the restore at _end() would not necessarily recover it's history 4783 * entry. Similarly, independence per-definition means it does not depend on 4784 * prior state. 4785 */ 4786 void lockdep_invariant_state(bool force) 4787 { 4788 /* 4789 * We call this at an invariant point, no current state, no history. 4790 * Verify the former, enforce the latter. 4791 */ 4792 WARN_ON_ONCE(!force && current->lockdep_depth); 4793 if (current->xhlocks) 4794 invalidate_xhlock(&xhlock(current->xhlock_idx)); 4795 } 4796 4797 static int cross_lock(struct lockdep_map *lock) 4798 { 4799 return lock ? lock->cross : 0; 4800 } 4801 4802 /* 4803 * This is needed to decide the relationship between wrapable variables. 4804 */ 4805 static inline int before(unsigned int a, unsigned int b) 4806 { 4807 return (int)(a - b) < 0; 4808 } 4809 4810 static inline struct lock_class *xhlock_class(struct hist_lock *xhlock) 4811 { 4812 return hlock_class(&xhlock->hlock); 4813 } 4814 4815 static inline struct lock_class *xlock_class(struct cross_lock *xlock) 4816 { 4817 return hlock_class(&xlock->hlock); 4818 } 4819 4820 /* 4821 * Should we check a dependency with previous one? 4822 */ 4823 static inline int depend_before(struct held_lock *hlock) 4824 { 4825 return hlock->read != 2 && hlock->check && !hlock->trylock; 4826 } 4827 4828 /* 4829 * Should we check a dependency with next one? 4830 */ 4831 static inline int depend_after(struct held_lock *hlock) 4832 { 4833 return hlock->read != 2 && hlock->check; 4834 } 4835 4836 /* 4837 * Check if the xhlock is valid, which would be false if, 4838 * 4839 * 1. Has not used after initializaion yet. 4840 * 2. Got invalidated. 4841 * 4842 * Remind hist_lock is implemented as a ring buffer. 4843 */ 4844 static inline int xhlock_valid(struct hist_lock *xhlock) 4845 { 4846 /* 4847 * xhlock->hlock.instance must be !NULL. 4848 */ 4849 return !!xhlock->hlock.instance; 4850 } 4851 4852 /* 4853 * Record a hist_lock entry. 4854 * 4855 * Irq disable is only required. 4856 */ 4857 static void add_xhlock(struct held_lock *hlock) 4858 { 4859 unsigned int idx = ++current->xhlock_idx; 4860 struct hist_lock *xhlock = &xhlock(idx); 4861 4862 #ifdef CONFIG_DEBUG_LOCKDEP 4863 /* 4864 * This can be done locklessly because they are all task-local 4865 * state, we must however ensure IRQs are disabled. 4866 */ 4867 WARN_ON_ONCE(!irqs_disabled()); 4868 #endif 4869 4870 /* Initialize hist_lock's members */ 4871 xhlock->hlock = *hlock; 4872 xhlock->hist_id = ++current->hist_id; 4873 4874 xhlock->trace.nr_entries = 0; 4875 xhlock->trace.max_entries = MAX_XHLOCK_TRACE_ENTRIES; 4876 xhlock->trace.entries = xhlock->trace_entries; 4877 4878 if (crossrelease_fullstack) { 4879 xhlock->trace.skip = 3; 4880 save_stack_trace(&xhlock->trace); 4881 } else { 4882 xhlock->trace.nr_entries = 1; 4883 xhlock->trace.entries[0] = hlock->acquire_ip; 4884 } 4885 } 4886 4887 static inline int same_context_xhlock(struct hist_lock *xhlock) 4888 { 4889 return xhlock->hlock.irq_context == task_irq_context(current); 4890 } 4891 4892 /* 4893 * This should be lockless as far as possible because this would be 4894 * called very frequently. 4895 */ 4896 static void check_add_xhlock(struct held_lock *hlock) 4897 { 4898 /* 4899 * Record a hist_lock, only in case that acquisitions ahead 4900 * could depend on the held_lock. For example, if the held_lock 4901 * is trylock then acquisitions ahead never depends on that. 4902 * In that case, we don't need to record it. Just return. 4903 */ 4904 if (!current->xhlocks || !depend_before(hlock)) 4905 return; 4906 4907 add_xhlock(hlock); 4908 } 4909 4910 /* 4911 * For crosslock. 4912 */ 4913 static int add_xlock(struct held_lock *hlock) 4914 { 4915 struct cross_lock *xlock; 4916 unsigned int gen_id; 4917 4918 if (!graph_lock()) 4919 return 0; 4920 4921 xlock = &((struct lockdep_map_cross *)hlock->instance)->xlock; 4922 4923 /* 4924 * When acquisitions for a crosslock are overlapped, we use 4925 * nr_acquire to perform commit for them, based on cross_gen_id 4926 * of the first acquisition, which allows to add additional 4927 * dependencies. 4928 * 4929 * Moreover, when no acquisition of a crosslock is in progress, 4930 * we should not perform commit because the lock might not exist 4931 * any more, which might cause incorrect memory access. So we 4932 * have to track the number of acquisitions of a crosslock. 4933 * 4934 * depend_after() is necessary to initialize only the first 4935 * valid xlock so that the xlock can be used on its commit. 4936 */ 4937 if (xlock->nr_acquire++ && depend_after(&xlock->hlock)) 4938 goto unlock; 4939 4940 gen_id = (unsigned int)atomic_inc_return(&cross_gen_id); 4941 xlock->hlock = *hlock; 4942 xlock->hlock.gen_id = gen_id; 4943 unlock: 4944 graph_unlock(); 4945 return 1; 4946 } 4947 4948 /* 4949 * Called for both normal and crosslock acquires. Normal locks will be 4950 * pushed on the hist_lock queue. Cross locks will record state and 4951 * stop regular lock_acquire() to avoid being placed on the held_lock 4952 * stack. 4953 * 4954 * Return: 0 - failure; 4955 * 1 - crosslock, done; 4956 * 2 - normal lock, continue to held_lock[] ops. 4957 */ 4958 static int lock_acquire_crosslock(struct held_lock *hlock) 4959 { 4960 /* 4961 * CONTEXT 1 CONTEXT 2 4962 * --------- --------- 4963 * lock A (cross) 4964 * X = atomic_inc_return(&cross_gen_id) 4965 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 4966 * Y = atomic_read_acquire(&cross_gen_id) 4967 * lock B 4968 * 4969 * atomic_read_acquire() is for ordering between A and B, 4970 * IOW, A happens before B, when CONTEXT 2 see Y >= X. 4971 * 4972 * Pairs with atomic_inc_return() in add_xlock(). 4973 */ 4974 hlock->gen_id = (unsigned int)atomic_read_acquire(&cross_gen_id); 4975 4976 if (cross_lock(hlock->instance)) 4977 return add_xlock(hlock); 4978 4979 check_add_xhlock(hlock); 4980 return 2; 4981 } 4982 4983 static int copy_trace(struct stack_trace *trace) 4984 { 4985 unsigned long *buf = stack_trace + nr_stack_trace_entries; 4986 unsigned int max_nr = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries; 4987 unsigned int nr = min(max_nr, trace->nr_entries); 4988 4989 trace->nr_entries = nr; 4990 memcpy(buf, trace->entries, nr * sizeof(trace->entries[0])); 4991 trace->entries = buf; 4992 nr_stack_trace_entries += nr; 4993 4994 if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) { 4995 if (!debug_locks_off_graph_unlock()) 4996 return 0; 4997 4998 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 4999 dump_stack(); 5000 5001 return 0; 5002 } 5003 5004 return 1; 5005 } 5006 5007 static int commit_xhlock(struct cross_lock *xlock, struct hist_lock *xhlock) 5008 { 5009 unsigned int xid, pid; 5010 u64 chain_key; 5011 5012 xid = xlock_class(xlock) - lock_classes; 5013 chain_key = iterate_chain_key((u64)0, xid); 5014 pid = xhlock_class(xhlock) - lock_classes; 5015 chain_key = iterate_chain_key(chain_key, pid); 5016 5017 if (lookup_chain_cache(chain_key)) 5018 return 1; 5019 5020 if (!add_chain_cache_classes(xid, pid, xhlock->hlock.irq_context, 5021 chain_key)) 5022 return 0; 5023 5024 if (!check_prev_add(current, &xlock->hlock, &xhlock->hlock, 1, 5025 &xhlock->trace, copy_trace)) 5026 return 0; 5027 5028 return 1; 5029 } 5030 5031 static void commit_xhlocks(struct cross_lock *xlock) 5032 { 5033 unsigned int cur = current->xhlock_idx; 5034 unsigned int prev_hist_id = xhlock(cur).hist_id; 5035 unsigned int i; 5036 5037 if (!graph_lock()) 5038 return; 5039 5040 if (xlock->nr_acquire) { 5041 for (i = 0; i < MAX_XHLOCKS_NR; i++) { 5042 struct hist_lock *xhlock = &xhlock(cur - i); 5043 5044 if (!xhlock_valid(xhlock)) 5045 break; 5046 5047 if (before(xhlock->hlock.gen_id, xlock->hlock.gen_id)) 5048 break; 5049 5050 if (!same_context_xhlock(xhlock)) 5051 break; 5052 5053 /* 5054 * Filter out the cases where the ring buffer was 5055 * overwritten and the current entry has a bigger 5056 * hist_id than the previous one, which is impossible 5057 * otherwise: 5058 */ 5059 if (unlikely(before(prev_hist_id, xhlock->hist_id))) 5060 break; 5061 5062 prev_hist_id = xhlock->hist_id; 5063 5064 /* 5065 * commit_xhlock() returns 0 with graph_lock already 5066 * released if fail. 5067 */ 5068 if (!commit_xhlock(xlock, xhlock)) 5069 return; 5070 } 5071 } 5072 5073 graph_unlock(); 5074 } 5075 5076 void lock_commit_crosslock(struct lockdep_map *lock) 5077 { 5078 struct cross_lock *xlock; 5079 unsigned long flags; 5080 5081 if (unlikely(!debug_locks || current->lockdep_recursion)) 5082 return; 5083 5084 if (!current->xhlocks) 5085 return; 5086 5087 /* 5088 * Do commit hist_locks with the cross_lock, only in case that 5089 * the cross_lock could depend on acquisitions after that. 5090 * 5091 * For example, if the cross_lock does not have the 'check' flag 5092 * then we don't need to check dependencies and commit for that. 5093 * Just skip it. In that case, of course, the cross_lock does 5094 * not depend on acquisitions ahead, either. 5095 * 5096 * WARNING: Don't do that in add_xlock() in advance. When an 5097 * acquisition context is different from the commit context, 5098 * invalid(skipped) cross_lock might be accessed. 5099 */ 5100 if (!depend_after(&((struct lockdep_map_cross *)lock)->xlock.hlock)) 5101 return; 5102 5103 raw_local_irq_save(flags); 5104 check_flags(flags); 5105 current->lockdep_recursion = 1; 5106 xlock = &((struct lockdep_map_cross *)lock)->xlock; 5107 commit_xhlocks(xlock); 5108 current->lockdep_recursion = 0; 5109 raw_local_irq_restore(flags); 5110 } 5111 EXPORT_SYMBOL_GPL(lock_commit_crosslock); 5112 5113 /* 5114 * Return: 0 - failure; 5115 * 1 - crosslock, done; 5116 * 2 - normal lock, continue to held_lock[] ops. 5117 */ 5118 static int lock_release_crosslock(struct lockdep_map *lock) 5119 { 5120 if (cross_lock(lock)) { 5121 if (!graph_lock()) 5122 return 0; 5123 ((struct lockdep_map_cross *)lock)->xlock.nr_acquire--; 5124 graph_unlock(); 5125 return 1; 5126 } 5127 return 2; 5128 } 5129 5130 static void cross_init(struct lockdep_map *lock, int cross) 5131 { 5132 if (cross) 5133 ((struct lockdep_map_cross *)lock)->xlock.nr_acquire = 0; 5134 5135 lock->cross = cross; 5136 5137 /* 5138 * Crossrelease assumes that the ring buffer size of xhlocks 5139 * is aligned with power of 2. So force it on build. 5140 */ 5141 BUILD_BUG_ON(MAX_XHLOCKS_NR & (MAX_XHLOCKS_NR - 1)); 5142 } 5143 5144 void lockdep_init_task(struct task_struct *task) 5145 { 5146 int i; 5147 5148 task->xhlock_idx = UINT_MAX; 5149 task->hist_id = 0; 5150 5151 for (i = 0; i < XHLOCK_CTX_NR; i++) { 5152 task->xhlock_idx_hist[i] = UINT_MAX; 5153 task->hist_id_save[i] = 0; 5154 } 5155 5156 task->xhlocks = kzalloc(sizeof(struct hist_lock) * MAX_XHLOCKS_NR, 5157 GFP_KERNEL); 5158 } 5159 5160 void lockdep_free_task(struct task_struct *task) 5161 { 5162 if (task->xhlocks) { 5163 void *tmp = task->xhlocks; 5164 /* Diable crossrelease for current */ 5165 task->xhlocks = NULL; 5166 kfree(tmp); 5167 } 5168 } 5169 #endif 5170