xref: /openbmc/linux/kernel/locking/lockdep.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 
59 #include <asm/sections.h>
60 
61 #include "lockdep_internals.h"
62 
63 #include <trace/events/lock.h>
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 static int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 static int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 #ifdef CONFIG_SYSCTL
80 static struct ctl_table kern_lockdep_table[] = {
81 #ifdef CONFIG_PROVE_LOCKING
82 	{
83 		.procname       = "prove_locking",
84 		.data           = &prove_locking,
85 		.maxlen         = sizeof(int),
86 		.mode           = 0644,
87 		.proc_handler   = proc_dointvec,
88 	},
89 #endif /* CONFIG_PROVE_LOCKING */
90 #ifdef CONFIG_LOCK_STAT
91 	{
92 		.procname       = "lock_stat",
93 		.data           = &lock_stat,
94 		.maxlen         = sizeof(int),
95 		.mode           = 0644,
96 		.proc_handler   = proc_dointvec,
97 	},
98 #endif /* CONFIG_LOCK_STAT */
99 	{ }
100 };
101 
102 static __init int kernel_lockdep_sysctls_init(void)
103 {
104 	register_sysctl_init("kernel", kern_lockdep_table);
105 	return 0;
106 }
107 late_initcall(kernel_lockdep_sysctls_init);
108 #endif /* CONFIG_SYSCTL */
109 
110 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
111 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
112 
113 static __always_inline bool lockdep_enabled(void)
114 {
115 	if (!debug_locks)
116 		return false;
117 
118 	if (this_cpu_read(lockdep_recursion))
119 		return false;
120 
121 	if (current->lockdep_recursion)
122 		return false;
123 
124 	return true;
125 }
126 
127 /*
128  * lockdep_lock: protects the lockdep graph, the hashes and the
129  *               class/list/hash allocators.
130  *
131  * This is one of the rare exceptions where it's justified
132  * to use a raw spinlock - we really dont want the spinlock
133  * code to recurse back into the lockdep code...
134  */
135 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
136 static struct task_struct *__owner;
137 
138 static inline void lockdep_lock(void)
139 {
140 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
141 
142 	__this_cpu_inc(lockdep_recursion);
143 	arch_spin_lock(&__lock);
144 	__owner = current;
145 }
146 
147 static inline void lockdep_unlock(void)
148 {
149 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
150 
151 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
152 		return;
153 
154 	__owner = NULL;
155 	arch_spin_unlock(&__lock);
156 	__this_cpu_dec(lockdep_recursion);
157 }
158 
159 static inline bool lockdep_assert_locked(void)
160 {
161 	return DEBUG_LOCKS_WARN_ON(__owner != current);
162 }
163 
164 static struct task_struct *lockdep_selftest_task_struct;
165 
166 
167 static int graph_lock(void)
168 {
169 	lockdep_lock();
170 	/*
171 	 * Make sure that if another CPU detected a bug while
172 	 * walking the graph we dont change it (while the other
173 	 * CPU is busy printing out stuff with the graph lock
174 	 * dropped already)
175 	 */
176 	if (!debug_locks) {
177 		lockdep_unlock();
178 		return 0;
179 	}
180 	return 1;
181 }
182 
183 static inline void graph_unlock(void)
184 {
185 	lockdep_unlock();
186 }
187 
188 /*
189  * Turn lock debugging off and return with 0 if it was off already,
190  * and also release the graph lock:
191  */
192 static inline int debug_locks_off_graph_unlock(void)
193 {
194 	int ret = debug_locks_off();
195 
196 	lockdep_unlock();
197 
198 	return ret;
199 }
200 
201 unsigned long nr_list_entries;
202 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
203 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
204 
205 /*
206  * All data structures here are protected by the global debug_lock.
207  *
208  * nr_lock_classes is the number of elements of lock_classes[] that is
209  * in use.
210  */
211 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
212 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
213 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
214 unsigned long nr_lock_classes;
215 unsigned long nr_zapped_classes;
216 unsigned long max_lock_class_idx;
217 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
218 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
219 
220 static inline struct lock_class *hlock_class(struct held_lock *hlock)
221 {
222 	unsigned int class_idx = hlock->class_idx;
223 
224 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
225 	barrier();
226 
227 	if (!test_bit(class_idx, lock_classes_in_use)) {
228 		/*
229 		 * Someone passed in garbage, we give up.
230 		 */
231 		DEBUG_LOCKS_WARN_ON(1);
232 		return NULL;
233 	}
234 
235 	/*
236 	 * At this point, if the passed hlock->class_idx is still garbage,
237 	 * we just have to live with it
238 	 */
239 	return lock_classes + class_idx;
240 }
241 
242 #ifdef CONFIG_LOCK_STAT
243 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
244 
245 static inline u64 lockstat_clock(void)
246 {
247 	return local_clock();
248 }
249 
250 static int lock_point(unsigned long points[], unsigned long ip)
251 {
252 	int i;
253 
254 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
255 		if (points[i] == 0) {
256 			points[i] = ip;
257 			break;
258 		}
259 		if (points[i] == ip)
260 			break;
261 	}
262 
263 	return i;
264 }
265 
266 static void lock_time_inc(struct lock_time *lt, u64 time)
267 {
268 	if (time > lt->max)
269 		lt->max = time;
270 
271 	if (time < lt->min || !lt->nr)
272 		lt->min = time;
273 
274 	lt->total += time;
275 	lt->nr++;
276 }
277 
278 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
279 {
280 	if (!src->nr)
281 		return;
282 
283 	if (src->max > dst->max)
284 		dst->max = src->max;
285 
286 	if (src->min < dst->min || !dst->nr)
287 		dst->min = src->min;
288 
289 	dst->total += src->total;
290 	dst->nr += src->nr;
291 }
292 
293 struct lock_class_stats lock_stats(struct lock_class *class)
294 {
295 	struct lock_class_stats stats;
296 	int cpu, i;
297 
298 	memset(&stats, 0, sizeof(struct lock_class_stats));
299 	for_each_possible_cpu(cpu) {
300 		struct lock_class_stats *pcs =
301 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
302 
303 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
304 			stats.contention_point[i] += pcs->contention_point[i];
305 
306 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
307 			stats.contending_point[i] += pcs->contending_point[i];
308 
309 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
310 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
311 
312 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
313 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
314 
315 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
316 			stats.bounces[i] += pcs->bounces[i];
317 	}
318 
319 	return stats;
320 }
321 
322 void clear_lock_stats(struct lock_class *class)
323 {
324 	int cpu;
325 
326 	for_each_possible_cpu(cpu) {
327 		struct lock_class_stats *cpu_stats =
328 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
329 
330 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
331 	}
332 	memset(class->contention_point, 0, sizeof(class->contention_point));
333 	memset(class->contending_point, 0, sizeof(class->contending_point));
334 }
335 
336 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
337 {
338 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
339 }
340 
341 static void lock_release_holdtime(struct held_lock *hlock)
342 {
343 	struct lock_class_stats *stats;
344 	u64 holdtime;
345 
346 	if (!lock_stat)
347 		return;
348 
349 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
350 
351 	stats = get_lock_stats(hlock_class(hlock));
352 	if (hlock->read)
353 		lock_time_inc(&stats->read_holdtime, holdtime);
354 	else
355 		lock_time_inc(&stats->write_holdtime, holdtime);
356 }
357 #else
358 static inline void lock_release_holdtime(struct held_lock *hlock)
359 {
360 }
361 #endif
362 
363 /*
364  * We keep a global list of all lock classes. The list is only accessed with
365  * the lockdep spinlock lock held. free_lock_classes is a list with free
366  * elements. These elements are linked together by the lock_entry member in
367  * struct lock_class.
368  */
369 static LIST_HEAD(all_lock_classes);
370 static LIST_HEAD(free_lock_classes);
371 
372 /**
373  * struct pending_free - information about data structures about to be freed
374  * @zapped: Head of a list with struct lock_class elements.
375  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
376  *	are about to be freed.
377  */
378 struct pending_free {
379 	struct list_head zapped;
380 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
381 };
382 
383 /**
384  * struct delayed_free - data structures used for delayed freeing
385  *
386  * A data structure for delayed freeing of data structures that may be
387  * accessed by RCU readers at the time these were freed.
388  *
389  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
390  * @index:     Index of @pf to which freed data structures are added.
391  * @scheduled: Whether or not an RCU callback has been scheduled.
392  * @pf:        Array with information about data structures about to be freed.
393  */
394 static struct delayed_free {
395 	struct rcu_head		rcu_head;
396 	int			index;
397 	int			scheduled;
398 	struct pending_free	pf[2];
399 } delayed_free;
400 
401 /*
402  * The lockdep classes are in a hash-table as well, for fast lookup:
403  */
404 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
405 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
406 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
407 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
408 
409 static struct hlist_head classhash_table[CLASSHASH_SIZE];
410 
411 /*
412  * We put the lock dependency chains into a hash-table as well, to cache
413  * their existence:
414  */
415 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
416 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
417 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
418 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
419 
420 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
421 
422 /*
423  * the id of held_lock
424  */
425 static inline u16 hlock_id(struct held_lock *hlock)
426 {
427 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
428 
429 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
430 }
431 
432 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
433 {
434 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
435 }
436 
437 /*
438  * The hash key of the lock dependency chains is a hash itself too:
439  * it's a hash of all locks taken up to that lock, including that lock.
440  * It's a 64-bit hash, because it's important for the keys to be
441  * unique.
442  */
443 static inline u64 iterate_chain_key(u64 key, u32 idx)
444 {
445 	u32 k0 = key, k1 = key >> 32;
446 
447 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
448 
449 	return k0 | (u64)k1 << 32;
450 }
451 
452 void lockdep_init_task(struct task_struct *task)
453 {
454 	task->lockdep_depth = 0; /* no locks held yet */
455 	task->curr_chain_key = INITIAL_CHAIN_KEY;
456 	task->lockdep_recursion = 0;
457 }
458 
459 static __always_inline void lockdep_recursion_inc(void)
460 {
461 	__this_cpu_inc(lockdep_recursion);
462 }
463 
464 static __always_inline void lockdep_recursion_finish(void)
465 {
466 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
467 		__this_cpu_write(lockdep_recursion, 0);
468 }
469 
470 void lockdep_set_selftest_task(struct task_struct *task)
471 {
472 	lockdep_selftest_task_struct = task;
473 }
474 
475 /*
476  * Debugging switches:
477  */
478 
479 #define VERBOSE			0
480 #define VERY_VERBOSE		0
481 
482 #if VERBOSE
483 # define HARDIRQ_VERBOSE	1
484 # define SOFTIRQ_VERBOSE	1
485 #else
486 # define HARDIRQ_VERBOSE	0
487 # define SOFTIRQ_VERBOSE	0
488 #endif
489 
490 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
491 /*
492  * Quick filtering for interesting events:
493  */
494 static int class_filter(struct lock_class *class)
495 {
496 #if 0
497 	/* Example */
498 	if (class->name_version == 1 &&
499 			!strcmp(class->name, "lockname"))
500 		return 1;
501 	if (class->name_version == 1 &&
502 			!strcmp(class->name, "&struct->lockfield"))
503 		return 1;
504 #endif
505 	/* Filter everything else. 1 would be to allow everything else */
506 	return 0;
507 }
508 #endif
509 
510 static int verbose(struct lock_class *class)
511 {
512 #if VERBOSE
513 	return class_filter(class);
514 #endif
515 	return 0;
516 }
517 
518 static void print_lockdep_off(const char *bug_msg)
519 {
520 	printk(KERN_DEBUG "%s\n", bug_msg);
521 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
522 #ifdef CONFIG_LOCK_STAT
523 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
524 #endif
525 }
526 
527 unsigned long nr_stack_trace_entries;
528 
529 #ifdef CONFIG_PROVE_LOCKING
530 /**
531  * struct lock_trace - single stack backtrace
532  * @hash_entry:	Entry in a stack_trace_hash[] list.
533  * @hash:	jhash() of @entries.
534  * @nr_entries:	Number of entries in @entries.
535  * @entries:	Actual stack backtrace.
536  */
537 struct lock_trace {
538 	struct hlist_node	hash_entry;
539 	u32			hash;
540 	u32			nr_entries;
541 	unsigned long		entries[] __aligned(sizeof(unsigned long));
542 };
543 #define LOCK_TRACE_SIZE_IN_LONGS				\
544 	(sizeof(struct lock_trace) / sizeof(unsigned long))
545 /*
546  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
547  */
548 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
549 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
550 
551 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
552 {
553 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
554 		memcmp(t1->entries, t2->entries,
555 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
556 }
557 
558 static struct lock_trace *save_trace(void)
559 {
560 	struct lock_trace *trace, *t2;
561 	struct hlist_head *hash_head;
562 	u32 hash;
563 	int max_entries;
564 
565 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
566 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
567 
568 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
569 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
570 		LOCK_TRACE_SIZE_IN_LONGS;
571 
572 	if (max_entries <= 0) {
573 		if (!debug_locks_off_graph_unlock())
574 			return NULL;
575 
576 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
577 		dump_stack();
578 
579 		return NULL;
580 	}
581 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
582 
583 	hash = jhash(trace->entries, trace->nr_entries *
584 		     sizeof(trace->entries[0]), 0);
585 	trace->hash = hash;
586 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
587 	hlist_for_each_entry(t2, hash_head, hash_entry) {
588 		if (traces_identical(trace, t2))
589 			return t2;
590 	}
591 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
592 	hlist_add_head(&trace->hash_entry, hash_head);
593 
594 	return trace;
595 }
596 
597 /* Return the number of stack traces in the stack_trace[] array. */
598 u64 lockdep_stack_trace_count(void)
599 {
600 	struct lock_trace *trace;
601 	u64 c = 0;
602 	int i;
603 
604 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
605 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
606 			c++;
607 		}
608 	}
609 
610 	return c;
611 }
612 
613 /* Return the number of stack hash chains that have at least one stack trace. */
614 u64 lockdep_stack_hash_count(void)
615 {
616 	u64 c = 0;
617 	int i;
618 
619 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
620 		if (!hlist_empty(&stack_trace_hash[i]))
621 			c++;
622 
623 	return c;
624 }
625 #endif
626 
627 unsigned int nr_hardirq_chains;
628 unsigned int nr_softirq_chains;
629 unsigned int nr_process_chains;
630 unsigned int max_lockdep_depth;
631 
632 #ifdef CONFIG_DEBUG_LOCKDEP
633 /*
634  * Various lockdep statistics:
635  */
636 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
637 #endif
638 
639 #ifdef CONFIG_PROVE_LOCKING
640 /*
641  * Locking printouts:
642  */
643 
644 #define __USAGE(__STATE)						\
645 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
646 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
647 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
648 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
649 
650 static const char *usage_str[] =
651 {
652 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
653 #include "lockdep_states.h"
654 #undef LOCKDEP_STATE
655 	[LOCK_USED] = "INITIAL USE",
656 	[LOCK_USED_READ] = "INITIAL READ USE",
657 	/* abused as string storage for verify_lock_unused() */
658 	[LOCK_USAGE_STATES] = "IN-NMI",
659 };
660 #endif
661 
662 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
663 {
664 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
665 }
666 
667 static inline unsigned long lock_flag(enum lock_usage_bit bit)
668 {
669 	return 1UL << bit;
670 }
671 
672 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
673 {
674 	/*
675 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
676 	 * irq context), which is the safest usage category.
677 	 */
678 	char c = '.';
679 
680 	/*
681 	 * The order of the following usage checks matters, which will
682 	 * result in the outcome character as follows:
683 	 *
684 	 * - '+': irq is enabled and not in irq context
685 	 * - '-': in irq context and irq is disabled
686 	 * - '?': in irq context and irq is enabled
687 	 */
688 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
689 		c = '+';
690 		if (class->usage_mask & lock_flag(bit))
691 			c = '?';
692 	} else if (class->usage_mask & lock_flag(bit))
693 		c = '-';
694 
695 	return c;
696 }
697 
698 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
699 {
700 	int i = 0;
701 
702 #define LOCKDEP_STATE(__STATE) 						\
703 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
704 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
705 #include "lockdep_states.h"
706 #undef LOCKDEP_STATE
707 
708 	usage[i] = '\0';
709 }
710 
711 static void __print_lock_name(struct lock_class *class)
712 {
713 	char str[KSYM_NAME_LEN];
714 	const char *name;
715 
716 	name = class->name;
717 	if (!name) {
718 		name = __get_key_name(class->key, str);
719 		printk(KERN_CONT "%s", name);
720 	} else {
721 		printk(KERN_CONT "%s", name);
722 		if (class->name_version > 1)
723 			printk(KERN_CONT "#%d", class->name_version);
724 		if (class->subclass)
725 			printk(KERN_CONT "/%d", class->subclass);
726 	}
727 }
728 
729 static void print_lock_name(struct lock_class *class)
730 {
731 	char usage[LOCK_USAGE_CHARS];
732 
733 	get_usage_chars(class, usage);
734 
735 	printk(KERN_CONT " (");
736 	__print_lock_name(class);
737 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
738 			class->wait_type_outer ?: class->wait_type_inner,
739 			class->wait_type_inner);
740 }
741 
742 static void print_lockdep_cache(struct lockdep_map *lock)
743 {
744 	const char *name;
745 	char str[KSYM_NAME_LEN];
746 
747 	name = lock->name;
748 	if (!name)
749 		name = __get_key_name(lock->key->subkeys, str);
750 
751 	printk(KERN_CONT "%s", name);
752 }
753 
754 static void print_lock(struct held_lock *hlock)
755 {
756 	/*
757 	 * We can be called locklessly through debug_show_all_locks() so be
758 	 * extra careful, the hlock might have been released and cleared.
759 	 *
760 	 * If this indeed happens, lets pretend it does not hurt to continue
761 	 * to print the lock unless the hlock class_idx does not point to a
762 	 * registered class. The rationale here is: since we don't attempt
763 	 * to distinguish whether we are in this situation, if it just
764 	 * happened we can't count on class_idx to tell either.
765 	 */
766 	struct lock_class *lock = hlock_class(hlock);
767 
768 	if (!lock) {
769 		printk(KERN_CONT "<RELEASED>\n");
770 		return;
771 	}
772 
773 	printk(KERN_CONT "%px", hlock->instance);
774 	print_lock_name(lock);
775 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
776 }
777 
778 static void lockdep_print_held_locks(struct task_struct *p)
779 {
780 	int i, depth = READ_ONCE(p->lockdep_depth);
781 
782 	if (!depth)
783 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
784 	else
785 		printk("%d lock%s held by %s/%d:\n", depth,
786 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
787 	/*
788 	 * It's not reliable to print a task's held locks if it's not sleeping
789 	 * and it's not the current task.
790 	 */
791 	if (p != current && task_is_running(p))
792 		return;
793 	for (i = 0; i < depth; i++) {
794 		printk(" #%d: ", i);
795 		print_lock(p->held_locks + i);
796 	}
797 }
798 
799 static void print_kernel_ident(void)
800 {
801 	printk("%s %.*s %s\n", init_utsname()->release,
802 		(int)strcspn(init_utsname()->version, " "),
803 		init_utsname()->version,
804 		print_tainted());
805 }
806 
807 static int very_verbose(struct lock_class *class)
808 {
809 #if VERY_VERBOSE
810 	return class_filter(class);
811 #endif
812 	return 0;
813 }
814 
815 /*
816  * Is this the address of a static object:
817  */
818 #ifdef __KERNEL__
819 /*
820  * Check if an address is part of freed initmem. After initmem is freed,
821  * memory can be allocated from it, and such allocations would then have
822  * addresses within the range [_stext, _end].
823  */
824 #ifndef arch_is_kernel_initmem_freed
825 static int arch_is_kernel_initmem_freed(unsigned long addr)
826 {
827 	if (system_state < SYSTEM_FREEING_INITMEM)
828 		return 0;
829 
830 	return init_section_contains((void *)addr, 1);
831 }
832 #endif
833 
834 static int static_obj(const void *obj)
835 {
836 	unsigned long start = (unsigned long) &_stext,
837 		      end   = (unsigned long) &_end,
838 		      addr  = (unsigned long) obj;
839 
840 	if (arch_is_kernel_initmem_freed(addr))
841 		return 0;
842 
843 	/*
844 	 * static variable?
845 	 */
846 	if ((addr >= start) && (addr < end))
847 		return 1;
848 
849 	/*
850 	 * in-kernel percpu var?
851 	 */
852 	if (is_kernel_percpu_address(addr))
853 		return 1;
854 
855 	/*
856 	 * module static or percpu var?
857 	 */
858 	return is_module_address(addr) || is_module_percpu_address(addr);
859 }
860 #endif
861 
862 /*
863  * To make lock name printouts unique, we calculate a unique
864  * class->name_version generation counter. The caller must hold the graph
865  * lock.
866  */
867 static int count_matching_names(struct lock_class *new_class)
868 {
869 	struct lock_class *class;
870 	int count = 0;
871 
872 	if (!new_class->name)
873 		return 0;
874 
875 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
876 		if (new_class->key - new_class->subclass == class->key)
877 			return class->name_version;
878 		if (class->name && !strcmp(class->name, new_class->name))
879 			count = max(count, class->name_version);
880 	}
881 
882 	return count + 1;
883 }
884 
885 /* used from NMI context -- must be lockless */
886 static noinstr struct lock_class *
887 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
888 {
889 	struct lockdep_subclass_key *key;
890 	struct hlist_head *hash_head;
891 	struct lock_class *class;
892 
893 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
894 		instrumentation_begin();
895 		debug_locks_off();
896 		printk(KERN_ERR
897 			"BUG: looking up invalid subclass: %u\n", subclass);
898 		printk(KERN_ERR
899 			"turning off the locking correctness validator.\n");
900 		dump_stack();
901 		instrumentation_end();
902 		return NULL;
903 	}
904 
905 	/*
906 	 * If it is not initialised then it has never been locked,
907 	 * so it won't be present in the hash table.
908 	 */
909 	if (unlikely(!lock->key))
910 		return NULL;
911 
912 	/*
913 	 * NOTE: the class-key must be unique. For dynamic locks, a static
914 	 * lock_class_key variable is passed in through the mutex_init()
915 	 * (or spin_lock_init()) call - which acts as the key. For static
916 	 * locks we use the lock object itself as the key.
917 	 */
918 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
919 			sizeof(struct lockdep_map));
920 
921 	key = lock->key->subkeys + subclass;
922 
923 	hash_head = classhashentry(key);
924 
925 	/*
926 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
927 	 */
928 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
929 		return NULL;
930 
931 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
932 		if (class->key == key) {
933 			/*
934 			 * Huh! same key, different name? Did someone trample
935 			 * on some memory? We're most confused.
936 			 */
937 			WARN_ONCE(class->name != lock->name &&
938 				  lock->key != &__lockdep_no_validate__,
939 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
940 				  lock->name, lock->key, class->name);
941 			return class;
942 		}
943 	}
944 
945 	return NULL;
946 }
947 
948 /*
949  * Static locks do not have their class-keys yet - for them the key is
950  * the lock object itself. If the lock is in the per cpu area, the
951  * canonical address of the lock (per cpu offset removed) is used.
952  */
953 static bool assign_lock_key(struct lockdep_map *lock)
954 {
955 	unsigned long can_addr, addr = (unsigned long)lock;
956 
957 #ifdef __KERNEL__
958 	/*
959 	 * lockdep_free_key_range() assumes that struct lock_class_key
960 	 * objects do not overlap. Since we use the address of lock
961 	 * objects as class key for static objects, check whether the
962 	 * size of lock_class_key objects does not exceed the size of
963 	 * the smallest lock object.
964 	 */
965 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
966 #endif
967 
968 	if (__is_kernel_percpu_address(addr, &can_addr))
969 		lock->key = (void *)can_addr;
970 	else if (__is_module_percpu_address(addr, &can_addr))
971 		lock->key = (void *)can_addr;
972 	else if (static_obj(lock))
973 		lock->key = (void *)lock;
974 	else {
975 		/* Debug-check: all keys must be persistent! */
976 		debug_locks_off();
977 		pr_err("INFO: trying to register non-static key.\n");
978 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
979 		pr_err("you didn't initialize this object before use?\n");
980 		pr_err("turning off the locking correctness validator.\n");
981 		dump_stack();
982 		return false;
983 	}
984 
985 	return true;
986 }
987 
988 #ifdef CONFIG_DEBUG_LOCKDEP
989 
990 /* Check whether element @e occurs in list @h */
991 static bool in_list(struct list_head *e, struct list_head *h)
992 {
993 	struct list_head *f;
994 
995 	list_for_each(f, h) {
996 		if (e == f)
997 			return true;
998 	}
999 
1000 	return false;
1001 }
1002 
1003 /*
1004  * Check whether entry @e occurs in any of the locks_after or locks_before
1005  * lists.
1006  */
1007 static bool in_any_class_list(struct list_head *e)
1008 {
1009 	struct lock_class *class;
1010 	int i;
1011 
1012 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1013 		class = &lock_classes[i];
1014 		if (in_list(e, &class->locks_after) ||
1015 		    in_list(e, &class->locks_before))
1016 			return true;
1017 	}
1018 	return false;
1019 }
1020 
1021 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1022 {
1023 	struct lock_list *e;
1024 
1025 	list_for_each_entry(e, h, entry) {
1026 		if (e->links_to != c) {
1027 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1028 			       c->name ? : "(?)",
1029 			       (unsigned long)(e - list_entries),
1030 			       e->links_to && e->links_to->name ?
1031 			       e->links_to->name : "(?)",
1032 			       e->class && e->class->name ? e->class->name :
1033 			       "(?)");
1034 			return false;
1035 		}
1036 	}
1037 	return true;
1038 }
1039 
1040 #ifdef CONFIG_PROVE_LOCKING
1041 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1042 #endif
1043 
1044 static bool check_lock_chain_key(struct lock_chain *chain)
1045 {
1046 #ifdef CONFIG_PROVE_LOCKING
1047 	u64 chain_key = INITIAL_CHAIN_KEY;
1048 	int i;
1049 
1050 	for (i = chain->base; i < chain->base + chain->depth; i++)
1051 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1052 	/*
1053 	 * The 'unsigned long long' casts avoid that a compiler warning
1054 	 * is reported when building tools/lib/lockdep.
1055 	 */
1056 	if (chain->chain_key != chain_key) {
1057 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1058 		       (unsigned long long)(chain - lock_chains),
1059 		       (unsigned long long)chain->chain_key,
1060 		       (unsigned long long)chain_key);
1061 		return false;
1062 	}
1063 #endif
1064 	return true;
1065 }
1066 
1067 static bool in_any_zapped_class_list(struct lock_class *class)
1068 {
1069 	struct pending_free *pf;
1070 	int i;
1071 
1072 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1073 		if (in_list(&class->lock_entry, &pf->zapped))
1074 			return true;
1075 	}
1076 
1077 	return false;
1078 }
1079 
1080 static bool __check_data_structures(void)
1081 {
1082 	struct lock_class *class;
1083 	struct lock_chain *chain;
1084 	struct hlist_head *head;
1085 	struct lock_list *e;
1086 	int i;
1087 
1088 	/* Check whether all classes occur in a lock list. */
1089 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1090 		class = &lock_classes[i];
1091 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1092 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1093 		    !in_any_zapped_class_list(class)) {
1094 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1095 			       class, class->name ? : "(?)");
1096 			return false;
1097 		}
1098 	}
1099 
1100 	/* Check whether all classes have valid lock lists. */
1101 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1102 		class = &lock_classes[i];
1103 		if (!class_lock_list_valid(class, &class->locks_before))
1104 			return false;
1105 		if (!class_lock_list_valid(class, &class->locks_after))
1106 			return false;
1107 	}
1108 
1109 	/* Check the chain_key of all lock chains. */
1110 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1111 		head = chainhash_table + i;
1112 		hlist_for_each_entry_rcu(chain, head, entry) {
1113 			if (!check_lock_chain_key(chain))
1114 				return false;
1115 		}
1116 	}
1117 
1118 	/*
1119 	 * Check whether all list entries that are in use occur in a class
1120 	 * lock list.
1121 	 */
1122 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1123 		e = list_entries + i;
1124 		if (!in_any_class_list(&e->entry)) {
1125 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1126 			       (unsigned int)(e - list_entries),
1127 			       e->class->name ? : "(?)",
1128 			       e->links_to->name ? : "(?)");
1129 			return false;
1130 		}
1131 	}
1132 
1133 	/*
1134 	 * Check whether all list entries that are not in use do not occur in
1135 	 * a class lock list.
1136 	 */
1137 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1138 		e = list_entries + i;
1139 		if (in_any_class_list(&e->entry)) {
1140 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1141 			       (unsigned int)(e - list_entries),
1142 			       e->class && e->class->name ? e->class->name :
1143 			       "(?)",
1144 			       e->links_to && e->links_to->name ?
1145 			       e->links_to->name : "(?)");
1146 			return false;
1147 		}
1148 	}
1149 
1150 	return true;
1151 }
1152 
1153 int check_consistency = 0;
1154 module_param(check_consistency, int, 0644);
1155 
1156 static void check_data_structures(void)
1157 {
1158 	static bool once = false;
1159 
1160 	if (check_consistency && !once) {
1161 		if (!__check_data_structures()) {
1162 			once = true;
1163 			WARN_ON(once);
1164 		}
1165 	}
1166 }
1167 
1168 #else /* CONFIG_DEBUG_LOCKDEP */
1169 
1170 static inline void check_data_structures(void) { }
1171 
1172 #endif /* CONFIG_DEBUG_LOCKDEP */
1173 
1174 static void init_chain_block_buckets(void);
1175 
1176 /*
1177  * Initialize the lock_classes[] array elements, the free_lock_classes list
1178  * and also the delayed_free structure.
1179  */
1180 static void init_data_structures_once(void)
1181 {
1182 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1183 	int i;
1184 
1185 	if (likely(rcu_head_initialized))
1186 		return;
1187 
1188 	if (system_state >= SYSTEM_SCHEDULING) {
1189 		init_rcu_head(&delayed_free.rcu_head);
1190 		rcu_head_initialized = true;
1191 	}
1192 
1193 	if (ds_initialized)
1194 		return;
1195 
1196 	ds_initialized = true;
1197 
1198 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1199 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1200 
1201 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1202 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1203 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1204 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1205 	}
1206 	init_chain_block_buckets();
1207 }
1208 
1209 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1210 {
1211 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1212 
1213 	return lock_keys_hash + hash;
1214 }
1215 
1216 /* Register a dynamically allocated key. */
1217 void lockdep_register_key(struct lock_class_key *key)
1218 {
1219 	struct hlist_head *hash_head;
1220 	struct lock_class_key *k;
1221 	unsigned long flags;
1222 
1223 	if (WARN_ON_ONCE(static_obj(key)))
1224 		return;
1225 	hash_head = keyhashentry(key);
1226 
1227 	raw_local_irq_save(flags);
1228 	if (!graph_lock())
1229 		goto restore_irqs;
1230 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1231 		if (WARN_ON_ONCE(k == key))
1232 			goto out_unlock;
1233 	}
1234 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1235 out_unlock:
1236 	graph_unlock();
1237 restore_irqs:
1238 	raw_local_irq_restore(flags);
1239 }
1240 EXPORT_SYMBOL_GPL(lockdep_register_key);
1241 
1242 /* Check whether a key has been registered as a dynamic key. */
1243 static bool is_dynamic_key(const struct lock_class_key *key)
1244 {
1245 	struct hlist_head *hash_head;
1246 	struct lock_class_key *k;
1247 	bool found = false;
1248 
1249 	if (WARN_ON_ONCE(static_obj(key)))
1250 		return false;
1251 
1252 	/*
1253 	 * If lock debugging is disabled lock_keys_hash[] may contain
1254 	 * pointers to memory that has already been freed. Avoid triggering
1255 	 * a use-after-free in that case by returning early.
1256 	 */
1257 	if (!debug_locks)
1258 		return true;
1259 
1260 	hash_head = keyhashentry(key);
1261 
1262 	rcu_read_lock();
1263 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1264 		if (k == key) {
1265 			found = true;
1266 			break;
1267 		}
1268 	}
1269 	rcu_read_unlock();
1270 
1271 	return found;
1272 }
1273 
1274 /*
1275  * Register a lock's class in the hash-table, if the class is not present
1276  * yet. Otherwise we look it up. We cache the result in the lock object
1277  * itself, so actual lookup of the hash should be once per lock object.
1278  */
1279 static struct lock_class *
1280 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1281 {
1282 	struct lockdep_subclass_key *key;
1283 	struct hlist_head *hash_head;
1284 	struct lock_class *class;
1285 	int idx;
1286 
1287 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1288 
1289 	class = look_up_lock_class(lock, subclass);
1290 	if (likely(class))
1291 		goto out_set_class_cache;
1292 
1293 	if (!lock->key) {
1294 		if (!assign_lock_key(lock))
1295 			return NULL;
1296 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1297 		return NULL;
1298 	}
1299 
1300 	key = lock->key->subkeys + subclass;
1301 	hash_head = classhashentry(key);
1302 
1303 	if (!graph_lock()) {
1304 		return NULL;
1305 	}
1306 	/*
1307 	 * We have to do the hash-walk again, to avoid races
1308 	 * with another CPU:
1309 	 */
1310 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1311 		if (class->key == key)
1312 			goto out_unlock_set;
1313 	}
1314 
1315 	init_data_structures_once();
1316 
1317 	/* Allocate a new lock class and add it to the hash. */
1318 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1319 					 lock_entry);
1320 	if (!class) {
1321 		if (!debug_locks_off_graph_unlock()) {
1322 			return NULL;
1323 		}
1324 
1325 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1326 		dump_stack();
1327 		return NULL;
1328 	}
1329 	nr_lock_classes++;
1330 	__set_bit(class - lock_classes, lock_classes_in_use);
1331 	debug_atomic_inc(nr_unused_locks);
1332 	class->key = key;
1333 	class->name = lock->name;
1334 	class->subclass = subclass;
1335 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1336 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1337 	class->name_version = count_matching_names(class);
1338 	class->wait_type_inner = lock->wait_type_inner;
1339 	class->wait_type_outer = lock->wait_type_outer;
1340 	class->lock_type = lock->lock_type;
1341 	/*
1342 	 * We use RCU's safe list-add method to make
1343 	 * parallel walking of the hash-list safe:
1344 	 */
1345 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1346 	/*
1347 	 * Remove the class from the free list and add it to the global list
1348 	 * of classes.
1349 	 */
1350 	list_move_tail(&class->lock_entry, &all_lock_classes);
1351 	idx = class - lock_classes;
1352 	if (idx > max_lock_class_idx)
1353 		max_lock_class_idx = idx;
1354 
1355 	if (verbose(class)) {
1356 		graph_unlock();
1357 
1358 		printk("\nnew class %px: %s", class->key, class->name);
1359 		if (class->name_version > 1)
1360 			printk(KERN_CONT "#%d", class->name_version);
1361 		printk(KERN_CONT "\n");
1362 		dump_stack();
1363 
1364 		if (!graph_lock()) {
1365 			return NULL;
1366 		}
1367 	}
1368 out_unlock_set:
1369 	graph_unlock();
1370 
1371 out_set_class_cache:
1372 	if (!subclass || force)
1373 		lock->class_cache[0] = class;
1374 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1375 		lock->class_cache[subclass] = class;
1376 
1377 	/*
1378 	 * Hash collision, did we smoke some? We found a class with a matching
1379 	 * hash but the subclass -- which is hashed in -- didn't match.
1380 	 */
1381 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1382 		return NULL;
1383 
1384 	return class;
1385 }
1386 
1387 #ifdef CONFIG_PROVE_LOCKING
1388 /*
1389  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1390  * with NULL on failure)
1391  */
1392 static struct lock_list *alloc_list_entry(void)
1393 {
1394 	int idx = find_first_zero_bit(list_entries_in_use,
1395 				      ARRAY_SIZE(list_entries));
1396 
1397 	if (idx >= ARRAY_SIZE(list_entries)) {
1398 		if (!debug_locks_off_graph_unlock())
1399 			return NULL;
1400 
1401 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1402 		dump_stack();
1403 		return NULL;
1404 	}
1405 	nr_list_entries++;
1406 	__set_bit(idx, list_entries_in_use);
1407 	return list_entries + idx;
1408 }
1409 
1410 /*
1411  * Add a new dependency to the head of the list:
1412  */
1413 static int add_lock_to_list(struct lock_class *this,
1414 			    struct lock_class *links_to, struct list_head *head,
1415 			    u16 distance, u8 dep,
1416 			    const struct lock_trace *trace)
1417 {
1418 	struct lock_list *entry;
1419 	/*
1420 	 * Lock not present yet - get a new dependency struct and
1421 	 * add it to the list:
1422 	 */
1423 	entry = alloc_list_entry();
1424 	if (!entry)
1425 		return 0;
1426 
1427 	entry->class = this;
1428 	entry->links_to = links_to;
1429 	entry->dep = dep;
1430 	entry->distance = distance;
1431 	entry->trace = trace;
1432 	/*
1433 	 * Both allocation and removal are done under the graph lock; but
1434 	 * iteration is under RCU-sched; see look_up_lock_class() and
1435 	 * lockdep_free_key_range().
1436 	 */
1437 	list_add_tail_rcu(&entry->entry, head);
1438 
1439 	return 1;
1440 }
1441 
1442 /*
1443  * For good efficiency of modular, we use power of 2
1444  */
1445 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1446 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1447 
1448 /*
1449  * The circular_queue and helpers are used to implement graph
1450  * breadth-first search (BFS) algorithm, by which we can determine
1451  * whether there is a path from a lock to another. In deadlock checks,
1452  * a path from the next lock to be acquired to a previous held lock
1453  * indicates that adding the <prev> -> <next> lock dependency will
1454  * produce a circle in the graph. Breadth-first search instead of
1455  * depth-first search is used in order to find the shortest (circular)
1456  * path.
1457  */
1458 struct circular_queue {
1459 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1460 	unsigned int  front, rear;
1461 };
1462 
1463 static struct circular_queue lock_cq;
1464 
1465 unsigned int max_bfs_queue_depth;
1466 
1467 static unsigned int lockdep_dependency_gen_id;
1468 
1469 static inline void __cq_init(struct circular_queue *cq)
1470 {
1471 	cq->front = cq->rear = 0;
1472 	lockdep_dependency_gen_id++;
1473 }
1474 
1475 static inline int __cq_empty(struct circular_queue *cq)
1476 {
1477 	return (cq->front == cq->rear);
1478 }
1479 
1480 static inline int __cq_full(struct circular_queue *cq)
1481 {
1482 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1483 }
1484 
1485 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1486 {
1487 	if (__cq_full(cq))
1488 		return -1;
1489 
1490 	cq->element[cq->rear] = elem;
1491 	cq->rear = (cq->rear + 1) & CQ_MASK;
1492 	return 0;
1493 }
1494 
1495 /*
1496  * Dequeue an element from the circular_queue, return a lock_list if
1497  * the queue is not empty, or NULL if otherwise.
1498  */
1499 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1500 {
1501 	struct lock_list * lock;
1502 
1503 	if (__cq_empty(cq))
1504 		return NULL;
1505 
1506 	lock = cq->element[cq->front];
1507 	cq->front = (cq->front + 1) & CQ_MASK;
1508 
1509 	return lock;
1510 }
1511 
1512 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1513 {
1514 	return (cq->rear - cq->front) & CQ_MASK;
1515 }
1516 
1517 static inline void mark_lock_accessed(struct lock_list *lock)
1518 {
1519 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1520 }
1521 
1522 static inline void visit_lock_entry(struct lock_list *lock,
1523 				    struct lock_list *parent)
1524 {
1525 	lock->parent = parent;
1526 }
1527 
1528 static inline unsigned long lock_accessed(struct lock_list *lock)
1529 {
1530 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1531 }
1532 
1533 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1534 {
1535 	return child->parent;
1536 }
1537 
1538 static inline int get_lock_depth(struct lock_list *child)
1539 {
1540 	int depth = 0;
1541 	struct lock_list *parent;
1542 
1543 	while ((parent = get_lock_parent(child))) {
1544 		child = parent;
1545 		depth++;
1546 	}
1547 	return depth;
1548 }
1549 
1550 /*
1551  * Return the forward or backward dependency list.
1552  *
1553  * @lock:   the lock_list to get its class's dependency list
1554  * @offset: the offset to struct lock_class to determine whether it is
1555  *          locks_after or locks_before
1556  */
1557 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1558 {
1559 	void *lock_class = lock->class;
1560 
1561 	return lock_class + offset;
1562 }
1563 /*
1564  * Return values of a bfs search:
1565  *
1566  * BFS_E* indicates an error
1567  * BFS_R* indicates a result (match or not)
1568  *
1569  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1570  *
1571  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1572  *
1573  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1574  *             *@target_entry.
1575  *
1576  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1577  *               _unchanged_.
1578  */
1579 enum bfs_result {
1580 	BFS_EINVALIDNODE = -2,
1581 	BFS_EQUEUEFULL = -1,
1582 	BFS_RMATCH = 0,
1583 	BFS_RNOMATCH = 1,
1584 };
1585 
1586 /*
1587  * bfs_result < 0 means error
1588  */
1589 static inline bool bfs_error(enum bfs_result res)
1590 {
1591 	return res < 0;
1592 }
1593 
1594 /*
1595  * DEP_*_BIT in lock_list::dep
1596  *
1597  * For dependency @prev -> @next:
1598  *
1599  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1600  *       (->read == 2)
1601  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1602  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1603  *   EN: @prev is exclusive locker and @next is non-recursive locker
1604  *
1605  * Note that we define the value of DEP_*_BITs so that:
1606  *   bit0 is prev->read == 0
1607  *   bit1 is next->read != 2
1608  */
1609 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1610 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1611 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1612 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1613 
1614 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1615 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1616 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1617 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1618 
1619 static inline unsigned int
1620 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1621 {
1622 	return (prev->read == 0) + ((next->read != 2) << 1);
1623 }
1624 
1625 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1626 {
1627 	return 1U << __calc_dep_bit(prev, next);
1628 }
1629 
1630 /*
1631  * calculate the dep_bit for backwards edges. We care about whether @prev is
1632  * shared and whether @next is recursive.
1633  */
1634 static inline unsigned int
1635 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1636 {
1637 	return (next->read != 2) + ((prev->read == 0) << 1);
1638 }
1639 
1640 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1641 {
1642 	return 1U << __calc_dep_bitb(prev, next);
1643 }
1644 
1645 /*
1646  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1647  * search.
1648  */
1649 static inline void __bfs_init_root(struct lock_list *lock,
1650 				   struct lock_class *class)
1651 {
1652 	lock->class = class;
1653 	lock->parent = NULL;
1654 	lock->only_xr = 0;
1655 }
1656 
1657 /*
1658  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1659  * root for a BFS search.
1660  *
1661  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1662  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1663  * and -(S*)->.
1664  */
1665 static inline void bfs_init_root(struct lock_list *lock,
1666 				 struct held_lock *hlock)
1667 {
1668 	__bfs_init_root(lock, hlock_class(hlock));
1669 	lock->only_xr = (hlock->read == 2);
1670 }
1671 
1672 /*
1673  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1674  *
1675  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1676  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1677  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1678  */
1679 static inline void bfs_init_rootb(struct lock_list *lock,
1680 				  struct held_lock *hlock)
1681 {
1682 	__bfs_init_root(lock, hlock_class(hlock));
1683 	lock->only_xr = (hlock->read != 0);
1684 }
1685 
1686 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1687 {
1688 	if (!lock || !lock->parent)
1689 		return NULL;
1690 
1691 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1692 				     &lock->entry, struct lock_list, entry);
1693 }
1694 
1695 /*
1696  * Breadth-First Search to find a strong path in the dependency graph.
1697  *
1698  * @source_entry: the source of the path we are searching for.
1699  * @data: data used for the second parameter of @match function
1700  * @match: match function for the search
1701  * @target_entry: pointer to the target of a matched path
1702  * @offset: the offset to struct lock_class to determine whether it is
1703  *          locks_after or locks_before
1704  *
1705  * We may have multiple edges (considering different kinds of dependencies,
1706  * e.g. ER and SN) between two nodes in the dependency graph. But
1707  * only the strong dependency path in the graph is relevant to deadlocks. A
1708  * strong dependency path is a dependency path that doesn't have two adjacent
1709  * dependencies as -(*R)-> -(S*)->, please see:
1710  *
1711  *         Documentation/locking/lockdep-design.rst
1712  *
1713  * for more explanation of the definition of strong dependency paths
1714  *
1715  * In __bfs(), we only traverse in the strong dependency path:
1716  *
1717  *     In lock_list::only_xr, we record whether the previous dependency only
1718  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1719  *     filter out any -(S*)-> in the current dependency and after that, the
1720  *     ->only_xr is set according to whether we only have -(*R)-> left.
1721  */
1722 static enum bfs_result __bfs(struct lock_list *source_entry,
1723 			     void *data,
1724 			     bool (*match)(struct lock_list *entry, void *data),
1725 			     bool (*skip)(struct lock_list *entry, void *data),
1726 			     struct lock_list **target_entry,
1727 			     int offset)
1728 {
1729 	struct circular_queue *cq = &lock_cq;
1730 	struct lock_list *lock = NULL;
1731 	struct lock_list *entry;
1732 	struct list_head *head;
1733 	unsigned int cq_depth;
1734 	bool first;
1735 
1736 	lockdep_assert_locked();
1737 
1738 	__cq_init(cq);
1739 	__cq_enqueue(cq, source_entry);
1740 
1741 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1742 		if (!lock->class)
1743 			return BFS_EINVALIDNODE;
1744 
1745 		/*
1746 		 * Step 1: check whether we already finish on this one.
1747 		 *
1748 		 * If we have visited all the dependencies from this @lock to
1749 		 * others (iow, if we have visited all lock_list entries in
1750 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1751 		 * and visit all the dependencies in the list and mark this
1752 		 * list accessed.
1753 		 */
1754 		if (lock_accessed(lock))
1755 			continue;
1756 		else
1757 			mark_lock_accessed(lock);
1758 
1759 		/*
1760 		 * Step 2: check whether prev dependency and this form a strong
1761 		 *         dependency path.
1762 		 */
1763 		if (lock->parent) { /* Parent exists, check prev dependency */
1764 			u8 dep = lock->dep;
1765 			bool prev_only_xr = lock->parent->only_xr;
1766 
1767 			/*
1768 			 * Mask out all -(S*)-> if we only have *R in previous
1769 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1770 			 * dependency.
1771 			 */
1772 			if (prev_only_xr)
1773 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1774 
1775 			/* If nothing left, we skip */
1776 			if (!dep)
1777 				continue;
1778 
1779 			/* If there are only -(*R)-> left, set that for the next step */
1780 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1781 		}
1782 
1783 		/*
1784 		 * Step 3: we haven't visited this and there is a strong
1785 		 *         dependency path to this, so check with @match.
1786 		 *         If @skip is provide and returns true, we skip this
1787 		 *         lock (and any path this lock is in).
1788 		 */
1789 		if (skip && skip(lock, data))
1790 			continue;
1791 
1792 		if (match(lock, data)) {
1793 			*target_entry = lock;
1794 			return BFS_RMATCH;
1795 		}
1796 
1797 		/*
1798 		 * Step 4: if not match, expand the path by adding the
1799 		 *         forward or backwards dependencies in the search
1800 		 *
1801 		 */
1802 		first = true;
1803 		head = get_dep_list(lock, offset);
1804 		list_for_each_entry_rcu(entry, head, entry) {
1805 			visit_lock_entry(entry, lock);
1806 
1807 			/*
1808 			 * Note we only enqueue the first of the list into the
1809 			 * queue, because we can always find a sibling
1810 			 * dependency from one (see __bfs_next()), as a result
1811 			 * the space of queue is saved.
1812 			 */
1813 			if (!first)
1814 				continue;
1815 
1816 			first = false;
1817 
1818 			if (__cq_enqueue(cq, entry))
1819 				return BFS_EQUEUEFULL;
1820 
1821 			cq_depth = __cq_get_elem_count(cq);
1822 			if (max_bfs_queue_depth < cq_depth)
1823 				max_bfs_queue_depth = cq_depth;
1824 		}
1825 	}
1826 
1827 	return BFS_RNOMATCH;
1828 }
1829 
1830 static inline enum bfs_result
1831 __bfs_forwards(struct lock_list *src_entry,
1832 	       void *data,
1833 	       bool (*match)(struct lock_list *entry, void *data),
1834 	       bool (*skip)(struct lock_list *entry, void *data),
1835 	       struct lock_list **target_entry)
1836 {
1837 	return __bfs(src_entry, data, match, skip, target_entry,
1838 		     offsetof(struct lock_class, locks_after));
1839 
1840 }
1841 
1842 static inline enum bfs_result
1843 __bfs_backwards(struct lock_list *src_entry,
1844 		void *data,
1845 		bool (*match)(struct lock_list *entry, void *data),
1846 	       bool (*skip)(struct lock_list *entry, void *data),
1847 		struct lock_list **target_entry)
1848 {
1849 	return __bfs(src_entry, data, match, skip, target_entry,
1850 		     offsetof(struct lock_class, locks_before));
1851 
1852 }
1853 
1854 static void print_lock_trace(const struct lock_trace *trace,
1855 			     unsigned int spaces)
1856 {
1857 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1858 }
1859 
1860 /*
1861  * Print a dependency chain entry (this is only done when a deadlock
1862  * has been detected):
1863  */
1864 static noinline void
1865 print_circular_bug_entry(struct lock_list *target, int depth)
1866 {
1867 	if (debug_locks_silent)
1868 		return;
1869 	printk("\n-> #%u", depth);
1870 	print_lock_name(target->class);
1871 	printk(KERN_CONT ":\n");
1872 	print_lock_trace(target->trace, 6);
1873 }
1874 
1875 static void
1876 print_circular_lock_scenario(struct held_lock *src,
1877 			     struct held_lock *tgt,
1878 			     struct lock_list *prt)
1879 {
1880 	struct lock_class *source = hlock_class(src);
1881 	struct lock_class *target = hlock_class(tgt);
1882 	struct lock_class *parent = prt->class;
1883 
1884 	/*
1885 	 * A direct locking problem where unsafe_class lock is taken
1886 	 * directly by safe_class lock, then all we need to show
1887 	 * is the deadlock scenario, as it is obvious that the
1888 	 * unsafe lock is taken under the safe lock.
1889 	 *
1890 	 * But if there is a chain instead, where the safe lock takes
1891 	 * an intermediate lock (middle_class) where this lock is
1892 	 * not the same as the safe lock, then the lock chain is
1893 	 * used to describe the problem. Otherwise we would need
1894 	 * to show a different CPU case for each link in the chain
1895 	 * from the safe_class lock to the unsafe_class lock.
1896 	 */
1897 	if (parent != source) {
1898 		printk("Chain exists of:\n  ");
1899 		__print_lock_name(source);
1900 		printk(KERN_CONT " --> ");
1901 		__print_lock_name(parent);
1902 		printk(KERN_CONT " --> ");
1903 		__print_lock_name(target);
1904 		printk(KERN_CONT "\n\n");
1905 	}
1906 
1907 	printk(" Possible unsafe locking scenario:\n\n");
1908 	printk("       CPU0                    CPU1\n");
1909 	printk("       ----                    ----\n");
1910 	printk("  lock(");
1911 	__print_lock_name(target);
1912 	printk(KERN_CONT ");\n");
1913 	printk("                               lock(");
1914 	__print_lock_name(parent);
1915 	printk(KERN_CONT ");\n");
1916 	printk("                               lock(");
1917 	__print_lock_name(target);
1918 	printk(KERN_CONT ");\n");
1919 	printk("  lock(");
1920 	__print_lock_name(source);
1921 	printk(KERN_CONT ");\n");
1922 	printk("\n *** DEADLOCK ***\n\n");
1923 }
1924 
1925 /*
1926  * When a circular dependency is detected, print the
1927  * header first:
1928  */
1929 static noinline void
1930 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1931 			struct held_lock *check_src,
1932 			struct held_lock *check_tgt)
1933 {
1934 	struct task_struct *curr = current;
1935 
1936 	if (debug_locks_silent)
1937 		return;
1938 
1939 	pr_warn("\n");
1940 	pr_warn("======================================================\n");
1941 	pr_warn("WARNING: possible circular locking dependency detected\n");
1942 	print_kernel_ident();
1943 	pr_warn("------------------------------------------------------\n");
1944 	pr_warn("%s/%d is trying to acquire lock:\n",
1945 		curr->comm, task_pid_nr(curr));
1946 	print_lock(check_src);
1947 
1948 	pr_warn("\nbut task is already holding lock:\n");
1949 
1950 	print_lock(check_tgt);
1951 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1952 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1953 
1954 	print_circular_bug_entry(entry, depth);
1955 }
1956 
1957 /*
1958  * We are about to add A -> B into the dependency graph, and in __bfs() a
1959  * strong dependency path A -> .. -> B is found: hlock_class equals
1960  * entry->class.
1961  *
1962  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1963  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1964  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1965  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1966  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1967  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1968  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1969  *
1970  * We need to make sure both the start and the end of A -> .. -> B is not
1971  * weaker than A -> B. For the start part, please see the comment in
1972  * check_redundant(). For the end part, we need:
1973  *
1974  * Either
1975  *
1976  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1977  *
1978  * or
1979  *
1980  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1981  *
1982  */
1983 static inline bool hlock_equal(struct lock_list *entry, void *data)
1984 {
1985 	struct held_lock *hlock = (struct held_lock *)data;
1986 
1987 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1988 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1989 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1990 }
1991 
1992 /*
1993  * We are about to add B -> A into the dependency graph, and in __bfs() a
1994  * strong dependency path A -> .. -> B is found: hlock_class equals
1995  * entry->class.
1996  *
1997  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1998  * dependency cycle, that means:
1999  *
2000  * Either
2001  *
2002  *     a) B -> A is -(E*)->
2003  *
2004  * or
2005  *
2006  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2007  *
2008  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2009  */
2010 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2011 {
2012 	struct held_lock *hlock = (struct held_lock *)data;
2013 
2014 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2015 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2016 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2017 }
2018 
2019 static noinline void print_circular_bug(struct lock_list *this,
2020 				struct lock_list *target,
2021 				struct held_lock *check_src,
2022 				struct held_lock *check_tgt)
2023 {
2024 	struct task_struct *curr = current;
2025 	struct lock_list *parent;
2026 	struct lock_list *first_parent;
2027 	int depth;
2028 
2029 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2030 		return;
2031 
2032 	this->trace = save_trace();
2033 	if (!this->trace)
2034 		return;
2035 
2036 	depth = get_lock_depth(target);
2037 
2038 	print_circular_bug_header(target, depth, check_src, check_tgt);
2039 
2040 	parent = get_lock_parent(target);
2041 	first_parent = parent;
2042 
2043 	while (parent) {
2044 		print_circular_bug_entry(parent, --depth);
2045 		parent = get_lock_parent(parent);
2046 	}
2047 
2048 	printk("\nother info that might help us debug this:\n\n");
2049 	print_circular_lock_scenario(check_src, check_tgt,
2050 				     first_parent);
2051 
2052 	lockdep_print_held_locks(curr);
2053 
2054 	printk("\nstack backtrace:\n");
2055 	dump_stack();
2056 }
2057 
2058 static noinline void print_bfs_bug(int ret)
2059 {
2060 	if (!debug_locks_off_graph_unlock())
2061 		return;
2062 
2063 	/*
2064 	 * Breadth-first-search failed, graph got corrupted?
2065 	 */
2066 	WARN(1, "lockdep bfs error:%d\n", ret);
2067 }
2068 
2069 static bool noop_count(struct lock_list *entry, void *data)
2070 {
2071 	(*(unsigned long *)data)++;
2072 	return false;
2073 }
2074 
2075 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2076 {
2077 	unsigned long  count = 0;
2078 	struct lock_list *target_entry;
2079 
2080 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2081 
2082 	return count;
2083 }
2084 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2085 {
2086 	unsigned long ret, flags;
2087 	struct lock_list this;
2088 
2089 	__bfs_init_root(&this, class);
2090 
2091 	raw_local_irq_save(flags);
2092 	lockdep_lock();
2093 	ret = __lockdep_count_forward_deps(&this);
2094 	lockdep_unlock();
2095 	raw_local_irq_restore(flags);
2096 
2097 	return ret;
2098 }
2099 
2100 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2101 {
2102 	unsigned long  count = 0;
2103 	struct lock_list *target_entry;
2104 
2105 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2106 
2107 	return count;
2108 }
2109 
2110 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2111 {
2112 	unsigned long ret, flags;
2113 	struct lock_list this;
2114 
2115 	__bfs_init_root(&this, class);
2116 
2117 	raw_local_irq_save(flags);
2118 	lockdep_lock();
2119 	ret = __lockdep_count_backward_deps(&this);
2120 	lockdep_unlock();
2121 	raw_local_irq_restore(flags);
2122 
2123 	return ret;
2124 }
2125 
2126 /*
2127  * Check that the dependency graph starting at <src> can lead to
2128  * <target> or not.
2129  */
2130 static noinline enum bfs_result
2131 check_path(struct held_lock *target, struct lock_list *src_entry,
2132 	   bool (*match)(struct lock_list *entry, void *data),
2133 	   bool (*skip)(struct lock_list *entry, void *data),
2134 	   struct lock_list **target_entry)
2135 {
2136 	enum bfs_result ret;
2137 
2138 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2139 
2140 	if (unlikely(bfs_error(ret)))
2141 		print_bfs_bug(ret);
2142 
2143 	return ret;
2144 }
2145 
2146 /*
2147  * Prove that the dependency graph starting at <src> can not
2148  * lead to <target>. If it can, there is a circle when adding
2149  * <target> -> <src> dependency.
2150  *
2151  * Print an error and return BFS_RMATCH if it does.
2152  */
2153 static noinline enum bfs_result
2154 check_noncircular(struct held_lock *src, struct held_lock *target,
2155 		  struct lock_trace **const trace)
2156 {
2157 	enum bfs_result ret;
2158 	struct lock_list *target_entry;
2159 	struct lock_list src_entry;
2160 
2161 	bfs_init_root(&src_entry, src);
2162 
2163 	debug_atomic_inc(nr_cyclic_checks);
2164 
2165 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2166 
2167 	if (unlikely(ret == BFS_RMATCH)) {
2168 		if (!*trace) {
2169 			/*
2170 			 * If save_trace fails here, the printing might
2171 			 * trigger a WARN but because of the !nr_entries it
2172 			 * should not do bad things.
2173 			 */
2174 			*trace = save_trace();
2175 		}
2176 
2177 		print_circular_bug(&src_entry, target_entry, src, target);
2178 	}
2179 
2180 	return ret;
2181 }
2182 
2183 #ifdef CONFIG_TRACE_IRQFLAGS
2184 
2185 /*
2186  * Forwards and backwards subgraph searching, for the purposes of
2187  * proving that two subgraphs can be connected by a new dependency
2188  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2189  *
2190  * A irq safe->unsafe deadlock happens with the following conditions:
2191  *
2192  * 1) We have a strong dependency path A -> ... -> B
2193  *
2194  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2195  *    irq can create a new dependency B -> A (consider the case that a holder
2196  *    of B gets interrupted by an irq whose handler will try to acquire A).
2197  *
2198  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2199  *    strong circle:
2200  *
2201  *      For the usage bits of B:
2202  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2203  *           ENABLED_IRQ usage suffices.
2204  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2205  *           ENABLED_IRQ_*_READ usage suffices.
2206  *
2207  *      For the usage bits of A:
2208  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2209  *           USED_IN_IRQ usage suffices.
2210  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2211  *           USED_IN_IRQ_*_READ usage suffices.
2212  */
2213 
2214 /*
2215  * There is a strong dependency path in the dependency graph: A -> B, and now
2216  * we need to decide which usage bit of A should be accumulated to detect
2217  * safe->unsafe bugs.
2218  *
2219  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2220  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2221  *
2222  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2223  * path, any usage of A should be considered. Otherwise, we should only
2224  * consider _READ usage.
2225  */
2226 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2227 {
2228 	if (!entry->only_xr)
2229 		*(unsigned long *)mask |= entry->class->usage_mask;
2230 	else /* Mask out _READ usage bits */
2231 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2232 
2233 	return false;
2234 }
2235 
2236 /*
2237  * There is a strong dependency path in the dependency graph: A -> B, and now
2238  * we need to decide which usage bit of B conflicts with the usage bits of A,
2239  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2240  *
2241  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2242  * path, any usage of B should be considered. Otherwise, we should only
2243  * consider _READ usage.
2244  */
2245 static inline bool usage_match(struct lock_list *entry, void *mask)
2246 {
2247 	if (!entry->only_xr)
2248 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2249 	else /* Mask out _READ usage bits */
2250 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2251 }
2252 
2253 static inline bool usage_skip(struct lock_list *entry, void *mask)
2254 {
2255 	/*
2256 	 * Skip local_lock() for irq inversion detection.
2257 	 *
2258 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2259 	 * dependency.
2260 	 *
2261 	 * For RT, an irq inversion happens when we have lock A and B, and on
2262 	 * some CPU we can have:
2263 	 *
2264 	 *	lock(A);
2265 	 *	<interrupted>
2266 	 *	  lock(B);
2267 	 *
2268 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2269 	 *
2270 	 * Now we prove local_lock() cannot exist in that dependency. First we
2271 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2272 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2273 	 * wait context check will complain. And since B is not a sleep lock,
2274 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2275 	 * local_lock() is 3, which is greater than 2, therefore there is no
2276 	 * way the local_lock() exists in the dependency B -> ... -> A.
2277 	 *
2278 	 * As a result, we will skip local_lock(), when we search for irq
2279 	 * inversion bugs.
2280 	 */
2281 	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2282 		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2283 			return false;
2284 
2285 		return true;
2286 	}
2287 
2288 	return false;
2289 }
2290 
2291 /*
2292  * Find a node in the forwards-direction dependency sub-graph starting
2293  * at @root->class that matches @bit.
2294  *
2295  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2296  * into *@target_entry.
2297  */
2298 static enum bfs_result
2299 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2300 			struct lock_list **target_entry)
2301 {
2302 	enum bfs_result result;
2303 
2304 	debug_atomic_inc(nr_find_usage_forwards_checks);
2305 
2306 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2307 
2308 	return result;
2309 }
2310 
2311 /*
2312  * Find a node in the backwards-direction dependency sub-graph starting
2313  * at @root->class that matches @bit.
2314  */
2315 static enum bfs_result
2316 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2317 			struct lock_list **target_entry)
2318 {
2319 	enum bfs_result result;
2320 
2321 	debug_atomic_inc(nr_find_usage_backwards_checks);
2322 
2323 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2324 
2325 	return result;
2326 }
2327 
2328 static void print_lock_class_header(struct lock_class *class, int depth)
2329 {
2330 	int bit;
2331 
2332 	printk("%*s->", depth, "");
2333 	print_lock_name(class);
2334 #ifdef CONFIG_DEBUG_LOCKDEP
2335 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2336 #endif
2337 	printk(KERN_CONT " {\n");
2338 
2339 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2340 		if (class->usage_mask & (1 << bit)) {
2341 			int len = depth;
2342 
2343 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2344 			len += printk(KERN_CONT " at:\n");
2345 			print_lock_trace(class->usage_traces[bit], len);
2346 		}
2347 	}
2348 	printk("%*s }\n", depth, "");
2349 
2350 	printk("%*s ... key      at: [<%px>] %pS\n",
2351 		depth, "", class->key, class->key);
2352 }
2353 
2354 /*
2355  * Dependency path printing:
2356  *
2357  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2358  * printing out each lock in the dependency path will help on understanding how
2359  * the deadlock could happen. Here are some details about dependency path
2360  * printing:
2361  *
2362  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2363  * 	for a lock dependency A -> B, there are two lock_lists:
2364  *
2365  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2366  * 		->links_to is A. In this case, we can say the lock_list is
2367  * 		"A -> B" (forwards case).
2368  *
2369  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2370  * 		and ->links_to is B. In this case, we can say the lock_list is
2371  * 		"B <- A" (bacwards case).
2372  *
2373  * 	The ->trace of both a) and b) point to the call trace where B was
2374  * 	acquired with A held.
2375  *
2376  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2377  * 	represent a certain lock dependency, it only provides an initial entry
2378  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2379  * 	->class is A, as a result BFS will search all dependencies starting with
2380  * 	A, e.g. A -> B or A -> C.
2381  *
2382  * 	The notation of a forwards helper lock_list is like "-> A", which means
2383  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2384  * 	or A -> C.
2385  *
2386  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2387  * 	we should search the backwards dependencies ending with "B", e.g.
2388  * 	B <- A or B <- C.
2389  */
2390 
2391 /*
2392  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2393  *
2394  * We have a lock dependency path as follow:
2395  *
2396  *    @root                                                                 @leaf
2397  *      |                                                                     |
2398  *      V                                                                     V
2399  *	          ->parent                                   ->parent
2400  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2401  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2402  *
2403  * , so it's natural that we start from @leaf and print every ->class and
2404  * ->trace until we reach the @root.
2405  */
2406 static void __used
2407 print_shortest_lock_dependencies(struct lock_list *leaf,
2408 				 struct lock_list *root)
2409 {
2410 	struct lock_list *entry = leaf;
2411 	int depth;
2412 
2413 	/*compute depth from generated tree by BFS*/
2414 	depth = get_lock_depth(leaf);
2415 
2416 	do {
2417 		print_lock_class_header(entry->class, depth);
2418 		printk("%*s ... acquired at:\n", depth, "");
2419 		print_lock_trace(entry->trace, 2);
2420 		printk("\n");
2421 
2422 		if (depth == 0 && (entry != root)) {
2423 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2424 			break;
2425 		}
2426 
2427 		entry = get_lock_parent(entry);
2428 		depth--;
2429 	} while (entry && (depth >= 0));
2430 }
2431 
2432 /*
2433  * printk the shortest lock dependencies from @leaf to @root.
2434  *
2435  * We have a lock dependency path (from a backwards search) as follow:
2436  *
2437  *    @leaf                                                                 @root
2438  *      |                                                                     |
2439  *      V                                                                     V
2440  *	          ->parent                                   ->parent
2441  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2442  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2443  *
2444  * , so when we iterate from @leaf to @root, we actually print the lock
2445  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2446  *
2447  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2448  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2449  * trace of L1 in the dependency path, which is alright, because most of the
2450  * time we can figure out where L1 is held from the call trace of L2.
2451  */
2452 static void __used
2453 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2454 					   struct lock_list *root)
2455 {
2456 	struct lock_list *entry = leaf;
2457 	const struct lock_trace *trace = NULL;
2458 	int depth;
2459 
2460 	/*compute depth from generated tree by BFS*/
2461 	depth = get_lock_depth(leaf);
2462 
2463 	do {
2464 		print_lock_class_header(entry->class, depth);
2465 		if (trace) {
2466 			printk("%*s ... acquired at:\n", depth, "");
2467 			print_lock_trace(trace, 2);
2468 			printk("\n");
2469 		}
2470 
2471 		/*
2472 		 * Record the pointer to the trace for the next lock_list
2473 		 * entry, see the comments for the function.
2474 		 */
2475 		trace = entry->trace;
2476 
2477 		if (depth == 0 && (entry != root)) {
2478 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2479 			break;
2480 		}
2481 
2482 		entry = get_lock_parent(entry);
2483 		depth--;
2484 	} while (entry && (depth >= 0));
2485 }
2486 
2487 static void
2488 print_irq_lock_scenario(struct lock_list *safe_entry,
2489 			struct lock_list *unsafe_entry,
2490 			struct lock_class *prev_class,
2491 			struct lock_class *next_class)
2492 {
2493 	struct lock_class *safe_class = safe_entry->class;
2494 	struct lock_class *unsafe_class = unsafe_entry->class;
2495 	struct lock_class *middle_class = prev_class;
2496 
2497 	if (middle_class == safe_class)
2498 		middle_class = next_class;
2499 
2500 	/*
2501 	 * A direct locking problem where unsafe_class lock is taken
2502 	 * directly by safe_class lock, then all we need to show
2503 	 * is the deadlock scenario, as it is obvious that the
2504 	 * unsafe lock is taken under the safe lock.
2505 	 *
2506 	 * But if there is a chain instead, where the safe lock takes
2507 	 * an intermediate lock (middle_class) where this lock is
2508 	 * not the same as the safe lock, then the lock chain is
2509 	 * used to describe the problem. Otherwise we would need
2510 	 * to show a different CPU case for each link in the chain
2511 	 * from the safe_class lock to the unsafe_class lock.
2512 	 */
2513 	if (middle_class != unsafe_class) {
2514 		printk("Chain exists of:\n  ");
2515 		__print_lock_name(safe_class);
2516 		printk(KERN_CONT " --> ");
2517 		__print_lock_name(middle_class);
2518 		printk(KERN_CONT " --> ");
2519 		__print_lock_name(unsafe_class);
2520 		printk(KERN_CONT "\n\n");
2521 	}
2522 
2523 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2524 	printk("       CPU0                    CPU1\n");
2525 	printk("       ----                    ----\n");
2526 	printk("  lock(");
2527 	__print_lock_name(unsafe_class);
2528 	printk(KERN_CONT ");\n");
2529 	printk("                               local_irq_disable();\n");
2530 	printk("                               lock(");
2531 	__print_lock_name(safe_class);
2532 	printk(KERN_CONT ");\n");
2533 	printk("                               lock(");
2534 	__print_lock_name(middle_class);
2535 	printk(KERN_CONT ");\n");
2536 	printk("  <Interrupt>\n");
2537 	printk("    lock(");
2538 	__print_lock_name(safe_class);
2539 	printk(KERN_CONT ");\n");
2540 	printk("\n *** DEADLOCK ***\n\n");
2541 }
2542 
2543 static void
2544 print_bad_irq_dependency(struct task_struct *curr,
2545 			 struct lock_list *prev_root,
2546 			 struct lock_list *next_root,
2547 			 struct lock_list *backwards_entry,
2548 			 struct lock_list *forwards_entry,
2549 			 struct held_lock *prev,
2550 			 struct held_lock *next,
2551 			 enum lock_usage_bit bit1,
2552 			 enum lock_usage_bit bit2,
2553 			 const char *irqclass)
2554 {
2555 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2556 		return;
2557 
2558 	pr_warn("\n");
2559 	pr_warn("=====================================================\n");
2560 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2561 		irqclass, irqclass);
2562 	print_kernel_ident();
2563 	pr_warn("-----------------------------------------------------\n");
2564 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2565 		curr->comm, task_pid_nr(curr),
2566 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2567 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2568 		lockdep_hardirqs_enabled(),
2569 		curr->softirqs_enabled);
2570 	print_lock(next);
2571 
2572 	pr_warn("\nand this task is already holding:\n");
2573 	print_lock(prev);
2574 	pr_warn("which would create a new lock dependency:\n");
2575 	print_lock_name(hlock_class(prev));
2576 	pr_cont(" ->");
2577 	print_lock_name(hlock_class(next));
2578 	pr_cont("\n");
2579 
2580 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2581 		irqclass);
2582 	print_lock_name(backwards_entry->class);
2583 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2584 
2585 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2586 
2587 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2588 	print_lock_name(forwards_entry->class);
2589 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2590 	pr_warn("...");
2591 
2592 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2593 
2594 	pr_warn("\nother info that might help us debug this:\n\n");
2595 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2596 				hlock_class(prev), hlock_class(next));
2597 
2598 	lockdep_print_held_locks(curr);
2599 
2600 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2601 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2602 
2603 	pr_warn("\nthe dependencies between the lock to be acquired");
2604 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2605 	next_root->trace = save_trace();
2606 	if (!next_root->trace)
2607 		return;
2608 	print_shortest_lock_dependencies(forwards_entry, next_root);
2609 
2610 	pr_warn("\nstack backtrace:\n");
2611 	dump_stack();
2612 }
2613 
2614 static const char *state_names[] = {
2615 #define LOCKDEP_STATE(__STATE) \
2616 	__stringify(__STATE),
2617 #include "lockdep_states.h"
2618 #undef LOCKDEP_STATE
2619 };
2620 
2621 static const char *state_rnames[] = {
2622 #define LOCKDEP_STATE(__STATE) \
2623 	__stringify(__STATE)"-READ",
2624 #include "lockdep_states.h"
2625 #undef LOCKDEP_STATE
2626 };
2627 
2628 static inline const char *state_name(enum lock_usage_bit bit)
2629 {
2630 	if (bit & LOCK_USAGE_READ_MASK)
2631 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2632 	else
2633 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2634 }
2635 
2636 /*
2637  * The bit number is encoded like:
2638  *
2639  *  bit0: 0 exclusive, 1 read lock
2640  *  bit1: 0 used in irq, 1 irq enabled
2641  *  bit2-n: state
2642  */
2643 static int exclusive_bit(int new_bit)
2644 {
2645 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2646 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2647 
2648 	/*
2649 	 * keep state, bit flip the direction and strip read.
2650 	 */
2651 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2652 }
2653 
2654 /*
2655  * Observe that when given a bitmask where each bitnr is encoded as above, a
2656  * right shift of the mask transforms the individual bitnrs as -1 and
2657  * conversely, a left shift transforms into +1 for the individual bitnrs.
2658  *
2659  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2660  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2661  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2662  *
2663  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2664  *
2665  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2666  * all bits set) and recompose with bitnr1 flipped.
2667  */
2668 static unsigned long invert_dir_mask(unsigned long mask)
2669 {
2670 	unsigned long excl = 0;
2671 
2672 	/* Invert dir */
2673 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2674 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2675 
2676 	return excl;
2677 }
2678 
2679 /*
2680  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2681  * usage may cause deadlock too, for example:
2682  *
2683  * P1				P2
2684  * <irq disabled>
2685  * write_lock(l1);		<irq enabled>
2686  *				read_lock(l2);
2687  * write_lock(l2);
2688  * 				<in irq>
2689  * 				read_lock(l1);
2690  *
2691  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2692  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2693  * deadlock.
2694  *
2695  * In fact, all of the following cases may cause deadlocks:
2696  *
2697  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2698  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2699  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2700  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2701  *
2702  * As a result, to calculate the "exclusive mask", first we invert the
2703  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2704  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2705  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2706  */
2707 static unsigned long exclusive_mask(unsigned long mask)
2708 {
2709 	unsigned long excl = invert_dir_mask(mask);
2710 
2711 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2712 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2713 
2714 	return excl;
2715 }
2716 
2717 /*
2718  * Retrieve the _possible_ original mask to which @mask is
2719  * exclusive. Ie: this is the opposite of exclusive_mask().
2720  * Note that 2 possible original bits can match an exclusive
2721  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2722  * cleared. So both are returned for each exclusive bit.
2723  */
2724 static unsigned long original_mask(unsigned long mask)
2725 {
2726 	unsigned long excl = invert_dir_mask(mask);
2727 
2728 	/* Include read in existing usages */
2729 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2730 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2731 
2732 	return excl;
2733 }
2734 
2735 /*
2736  * Find the first pair of bit match between an original
2737  * usage mask and an exclusive usage mask.
2738  */
2739 static int find_exclusive_match(unsigned long mask,
2740 				unsigned long excl_mask,
2741 				enum lock_usage_bit *bitp,
2742 				enum lock_usage_bit *excl_bitp)
2743 {
2744 	int bit, excl, excl_read;
2745 
2746 	for_each_set_bit(bit, &mask, LOCK_USED) {
2747 		/*
2748 		 * exclusive_bit() strips the read bit, however,
2749 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2750 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2751 		 */
2752 		excl = exclusive_bit(bit);
2753 		excl_read = excl | LOCK_USAGE_READ_MASK;
2754 		if (excl_mask & lock_flag(excl)) {
2755 			*bitp = bit;
2756 			*excl_bitp = excl;
2757 			return 0;
2758 		} else if (excl_mask & lock_flag(excl_read)) {
2759 			*bitp = bit;
2760 			*excl_bitp = excl_read;
2761 			return 0;
2762 		}
2763 	}
2764 	return -1;
2765 }
2766 
2767 /*
2768  * Prove that the new dependency does not connect a hardirq-safe(-read)
2769  * lock with a hardirq-unsafe lock - to achieve this we search
2770  * the backwards-subgraph starting at <prev>, and the
2771  * forwards-subgraph starting at <next>:
2772  */
2773 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2774 			   struct held_lock *next)
2775 {
2776 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2777 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2778 	struct lock_list *target_entry1;
2779 	struct lock_list *target_entry;
2780 	struct lock_list this, that;
2781 	enum bfs_result ret;
2782 
2783 	/*
2784 	 * Step 1: gather all hard/soft IRQs usages backward in an
2785 	 * accumulated usage mask.
2786 	 */
2787 	bfs_init_rootb(&this, prev);
2788 
2789 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2790 	if (bfs_error(ret)) {
2791 		print_bfs_bug(ret);
2792 		return 0;
2793 	}
2794 
2795 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2796 	if (!usage_mask)
2797 		return 1;
2798 
2799 	/*
2800 	 * Step 2: find exclusive uses forward that match the previous
2801 	 * backward accumulated mask.
2802 	 */
2803 	forward_mask = exclusive_mask(usage_mask);
2804 
2805 	bfs_init_root(&that, next);
2806 
2807 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2808 	if (bfs_error(ret)) {
2809 		print_bfs_bug(ret);
2810 		return 0;
2811 	}
2812 	if (ret == BFS_RNOMATCH)
2813 		return 1;
2814 
2815 	/*
2816 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2817 	 * list whose usage mask matches the exclusive usage mask from the
2818 	 * lock found on the forward list.
2819 	 *
2820 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2821 	 * the follow case:
2822 	 *
2823 	 * When trying to add A -> B to the graph, we find that there is a
2824 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2825 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2826 	 * invert bits of M's usage_mask, we will find another lock N that is
2827 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2828 	 * cause a inversion deadlock.
2829 	 */
2830 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2831 
2832 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2833 	if (bfs_error(ret)) {
2834 		print_bfs_bug(ret);
2835 		return 0;
2836 	}
2837 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2838 		return 1;
2839 
2840 	/*
2841 	 * Step 4: narrow down to a pair of incompatible usage bits
2842 	 * and report it.
2843 	 */
2844 	ret = find_exclusive_match(target_entry->class->usage_mask,
2845 				   target_entry1->class->usage_mask,
2846 				   &backward_bit, &forward_bit);
2847 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2848 		return 1;
2849 
2850 	print_bad_irq_dependency(curr, &this, &that,
2851 				 target_entry, target_entry1,
2852 				 prev, next,
2853 				 backward_bit, forward_bit,
2854 				 state_name(backward_bit));
2855 
2856 	return 0;
2857 }
2858 
2859 #else
2860 
2861 static inline int check_irq_usage(struct task_struct *curr,
2862 				  struct held_lock *prev, struct held_lock *next)
2863 {
2864 	return 1;
2865 }
2866 
2867 static inline bool usage_skip(struct lock_list *entry, void *mask)
2868 {
2869 	return false;
2870 }
2871 
2872 #endif /* CONFIG_TRACE_IRQFLAGS */
2873 
2874 #ifdef CONFIG_LOCKDEP_SMALL
2875 /*
2876  * Check that the dependency graph starting at <src> can lead to
2877  * <target> or not. If it can, <src> -> <target> dependency is already
2878  * in the graph.
2879  *
2880  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2881  * any error appears in the bfs search.
2882  */
2883 static noinline enum bfs_result
2884 check_redundant(struct held_lock *src, struct held_lock *target)
2885 {
2886 	enum bfs_result ret;
2887 	struct lock_list *target_entry;
2888 	struct lock_list src_entry;
2889 
2890 	bfs_init_root(&src_entry, src);
2891 	/*
2892 	 * Special setup for check_redundant().
2893 	 *
2894 	 * To report redundant, we need to find a strong dependency path that
2895 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2896 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2897 	 * we achieve this by setting the initial node's ->only_xr to true in
2898 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2899 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2900 	 */
2901 	src_entry.only_xr = src->read == 0;
2902 
2903 	debug_atomic_inc(nr_redundant_checks);
2904 
2905 	/*
2906 	 * Note: we skip local_lock() for redundant check, because as the
2907 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2908 	 * the same.
2909 	 */
2910 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2911 
2912 	if (ret == BFS_RMATCH)
2913 		debug_atomic_inc(nr_redundant);
2914 
2915 	return ret;
2916 }
2917 
2918 #else
2919 
2920 static inline enum bfs_result
2921 check_redundant(struct held_lock *src, struct held_lock *target)
2922 {
2923 	return BFS_RNOMATCH;
2924 }
2925 
2926 #endif
2927 
2928 static void inc_chains(int irq_context)
2929 {
2930 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2931 		nr_hardirq_chains++;
2932 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2933 		nr_softirq_chains++;
2934 	else
2935 		nr_process_chains++;
2936 }
2937 
2938 static void dec_chains(int irq_context)
2939 {
2940 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2941 		nr_hardirq_chains--;
2942 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2943 		nr_softirq_chains--;
2944 	else
2945 		nr_process_chains--;
2946 }
2947 
2948 static void
2949 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2950 {
2951 	struct lock_class *next = hlock_class(nxt);
2952 	struct lock_class *prev = hlock_class(prv);
2953 
2954 	printk(" Possible unsafe locking scenario:\n\n");
2955 	printk("       CPU0\n");
2956 	printk("       ----\n");
2957 	printk("  lock(");
2958 	__print_lock_name(prev);
2959 	printk(KERN_CONT ");\n");
2960 	printk("  lock(");
2961 	__print_lock_name(next);
2962 	printk(KERN_CONT ");\n");
2963 	printk("\n *** DEADLOCK ***\n\n");
2964 	printk(" May be due to missing lock nesting notation\n\n");
2965 }
2966 
2967 static void
2968 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2969 		   struct held_lock *next)
2970 {
2971 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2972 		return;
2973 
2974 	pr_warn("\n");
2975 	pr_warn("============================================\n");
2976 	pr_warn("WARNING: possible recursive locking detected\n");
2977 	print_kernel_ident();
2978 	pr_warn("--------------------------------------------\n");
2979 	pr_warn("%s/%d is trying to acquire lock:\n",
2980 		curr->comm, task_pid_nr(curr));
2981 	print_lock(next);
2982 	pr_warn("\nbut task is already holding lock:\n");
2983 	print_lock(prev);
2984 
2985 	pr_warn("\nother info that might help us debug this:\n");
2986 	print_deadlock_scenario(next, prev);
2987 	lockdep_print_held_locks(curr);
2988 
2989 	pr_warn("\nstack backtrace:\n");
2990 	dump_stack();
2991 }
2992 
2993 /*
2994  * Check whether we are holding such a class already.
2995  *
2996  * (Note that this has to be done separately, because the graph cannot
2997  * detect such classes of deadlocks.)
2998  *
2999  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3000  * lock class is held but nest_lock is also held, i.e. we rely on the
3001  * nest_lock to avoid the deadlock.
3002  */
3003 static int
3004 check_deadlock(struct task_struct *curr, struct held_lock *next)
3005 {
3006 	struct held_lock *prev;
3007 	struct held_lock *nest = NULL;
3008 	int i;
3009 
3010 	for (i = 0; i < curr->lockdep_depth; i++) {
3011 		prev = curr->held_locks + i;
3012 
3013 		if (prev->instance == next->nest_lock)
3014 			nest = prev;
3015 
3016 		if (hlock_class(prev) != hlock_class(next))
3017 			continue;
3018 
3019 		/*
3020 		 * Allow read-after-read recursion of the same
3021 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3022 		 */
3023 		if ((next->read == 2) && prev->read)
3024 			continue;
3025 
3026 		/*
3027 		 * We're holding the nest_lock, which serializes this lock's
3028 		 * nesting behaviour.
3029 		 */
3030 		if (nest)
3031 			return 2;
3032 
3033 		print_deadlock_bug(curr, prev, next);
3034 		return 0;
3035 	}
3036 	return 1;
3037 }
3038 
3039 /*
3040  * There was a chain-cache miss, and we are about to add a new dependency
3041  * to a previous lock. We validate the following rules:
3042  *
3043  *  - would the adding of the <prev> -> <next> dependency create a
3044  *    circular dependency in the graph? [== circular deadlock]
3045  *
3046  *  - does the new prev->next dependency connect any hardirq-safe lock
3047  *    (in the full backwards-subgraph starting at <prev>) with any
3048  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3049  *    <next>)? [== illegal lock inversion with hardirq contexts]
3050  *
3051  *  - does the new prev->next dependency connect any softirq-safe lock
3052  *    (in the full backwards-subgraph starting at <prev>) with any
3053  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3054  *    <next>)? [== illegal lock inversion with softirq contexts]
3055  *
3056  * any of these scenarios could lead to a deadlock.
3057  *
3058  * Then if all the validations pass, we add the forwards and backwards
3059  * dependency.
3060  */
3061 static int
3062 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3063 	       struct held_lock *next, u16 distance,
3064 	       struct lock_trace **const trace)
3065 {
3066 	struct lock_list *entry;
3067 	enum bfs_result ret;
3068 
3069 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3070 		/*
3071 		 * The warning statements below may trigger a use-after-free
3072 		 * of the class name. It is better to trigger a use-after free
3073 		 * and to have the class name most of the time instead of not
3074 		 * having the class name available.
3075 		 */
3076 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3077 			  "Detected use-after-free of lock class %px/%s\n",
3078 			  hlock_class(prev),
3079 			  hlock_class(prev)->name);
3080 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3081 			  "Detected use-after-free of lock class %px/%s\n",
3082 			  hlock_class(next),
3083 			  hlock_class(next)->name);
3084 		return 2;
3085 	}
3086 
3087 	/*
3088 	 * Prove that the new <prev> -> <next> dependency would not
3089 	 * create a circular dependency in the graph. (We do this by
3090 	 * a breadth-first search into the graph starting at <next>,
3091 	 * and check whether we can reach <prev>.)
3092 	 *
3093 	 * The search is limited by the size of the circular queue (i.e.,
3094 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3095 	 * in the graph whose neighbours are to be checked.
3096 	 */
3097 	ret = check_noncircular(next, prev, trace);
3098 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3099 		return 0;
3100 
3101 	if (!check_irq_usage(curr, prev, next))
3102 		return 0;
3103 
3104 	/*
3105 	 * Is the <prev> -> <next> dependency already present?
3106 	 *
3107 	 * (this may occur even though this is a new chain: consider
3108 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3109 	 *  chains - the second one will be new, but L1 already has
3110 	 *  L2 added to its dependency list, due to the first chain.)
3111 	 */
3112 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3113 		if (entry->class == hlock_class(next)) {
3114 			if (distance == 1)
3115 				entry->distance = 1;
3116 			entry->dep |= calc_dep(prev, next);
3117 
3118 			/*
3119 			 * Also, update the reverse dependency in @next's
3120 			 * ->locks_before list.
3121 			 *
3122 			 *  Here we reuse @entry as the cursor, which is fine
3123 			 *  because we won't go to the next iteration of the
3124 			 *  outer loop:
3125 			 *
3126 			 *  For normal cases, we return in the inner loop.
3127 			 *
3128 			 *  If we fail to return, we have inconsistency, i.e.
3129 			 *  <prev>::locks_after contains <next> while
3130 			 *  <next>::locks_before doesn't contain <prev>. In
3131 			 *  that case, we return after the inner and indicate
3132 			 *  something is wrong.
3133 			 */
3134 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3135 				if (entry->class == hlock_class(prev)) {
3136 					if (distance == 1)
3137 						entry->distance = 1;
3138 					entry->dep |= calc_depb(prev, next);
3139 					return 1;
3140 				}
3141 			}
3142 
3143 			/* <prev> is not found in <next>::locks_before */
3144 			return 0;
3145 		}
3146 	}
3147 
3148 	/*
3149 	 * Is the <prev> -> <next> link redundant?
3150 	 */
3151 	ret = check_redundant(prev, next);
3152 	if (bfs_error(ret))
3153 		return 0;
3154 	else if (ret == BFS_RMATCH)
3155 		return 2;
3156 
3157 	if (!*trace) {
3158 		*trace = save_trace();
3159 		if (!*trace)
3160 			return 0;
3161 	}
3162 
3163 	/*
3164 	 * Ok, all validations passed, add the new lock
3165 	 * to the previous lock's dependency list:
3166 	 */
3167 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3168 			       &hlock_class(prev)->locks_after, distance,
3169 			       calc_dep(prev, next), *trace);
3170 
3171 	if (!ret)
3172 		return 0;
3173 
3174 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3175 			       &hlock_class(next)->locks_before, distance,
3176 			       calc_depb(prev, next), *trace);
3177 	if (!ret)
3178 		return 0;
3179 
3180 	return 2;
3181 }
3182 
3183 /*
3184  * Add the dependency to all directly-previous locks that are 'relevant'.
3185  * The ones that are relevant are (in increasing distance from curr):
3186  * all consecutive trylock entries and the final non-trylock entry - or
3187  * the end of this context's lock-chain - whichever comes first.
3188  */
3189 static int
3190 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3191 {
3192 	struct lock_trace *trace = NULL;
3193 	int depth = curr->lockdep_depth;
3194 	struct held_lock *hlock;
3195 
3196 	/*
3197 	 * Debugging checks.
3198 	 *
3199 	 * Depth must not be zero for a non-head lock:
3200 	 */
3201 	if (!depth)
3202 		goto out_bug;
3203 	/*
3204 	 * At least two relevant locks must exist for this
3205 	 * to be a head:
3206 	 */
3207 	if (curr->held_locks[depth].irq_context !=
3208 			curr->held_locks[depth-1].irq_context)
3209 		goto out_bug;
3210 
3211 	for (;;) {
3212 		u16 distance = curr->lockdep_depth - depth + 1;
3213 		hlock = curr->held_locks + depth - 1;
3214 
3215 		if (hlock->check) {
3216 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3217 			if (!ret)
3218 				return 0;
3219 
3220 			/*
3221 			 * Stop after the first non-trylock entry,
3222 			 * as non-trylock entries have added their
3223 			 * own direct dependencies already, so this
3224 			 * lock is connected to them indirectly:
3225 			 */
3226 			if (!hlock->trylock)
3227 				break;
3228 		}
3229 
3230 		depth--;
3231 		/*
3232 		 * End of lock-stack?
3233 		 */
3234 		if (!depth)
3235 			break;
3236 		/*
3237 		 * Stop the search if we cross into another context:
3238 		 */
3239 		if (curr->held_locks[depth].irq_context !=
3240 				curr->held_locks[depth-1].irq_context)
3241 			break;
3242 	}
3243 	return 1;
3244 out_bug:
3245 	if (!debug_locks_off_graph_unlock())
3246 		return 0;
3247 
3248 	/*
3249 	 * Clearly we all shouldn't be here, but since we made it we
3250 	 * can reliable say we messed up our state. See the above two
3251 	 * gotos for reasons why we could possibly end up here.
3252 	 */
3253 	WARN_ON(1);
3254 
3255 	return 0;
3256 }
3257 
3258 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3259 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3260 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3261 unsigned long nr_zapped_lock_chains;
3262 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3263 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3264 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3265 
3266 /*
3267  * The first 2 chain_hlocks entries in the chain block in the bucket
3268  * list contains the following meta data:
3269  *
3270  *   entry[0]:
3271  *     Bit    15 - always set to 1 (it is not a class index)
3272  *     Bits 0-14 - upper 15 bits of the next block index
3273  *   entry[1]    - lower 16 bits of next block index
3274  *
3275  * A next block index of all 1 bits means it is the end of the list.
3276  *
3277  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3278  * the chain block size:
3279  *
3280  *   entry[2] - upper 16 bits of the chain block size
3281  *   entry[3] - lower 16 bits of the chain block size
3282  */
3283 #define MAX_CHAIN_BUCKETS	16
3284 #define CHAIN_BLK_FLAG		(1U << 15)
3285 #define CHAIN_BLK_LIST_END	0xFFFFU
3286 
3287 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3288 
3289 static inline int size_to_bucket(int size)
3290 {
3291 	if (size > MAX_CHAIN_BUCKETS)
3292 		return 0;
3293 
3294 	return size - 1;
3295 }
3296 
3297 /*
3298  * Iterate all the chain blocks in a bucket.
3299  */
3300 #define for_each_chain_block(bucket, prev, curr)		\
3301 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3302 	     (curr) >= 0;					\
3303 	     (prev) = (curr), (curr) = chain_block_next(curr))
3304 
3305 /*
3306  * next block or -1
3307  */
3308 static inline int chain_block_next(int offset)
3309 {
3310 	int next = chain_hlocks[offset];
3311 
3312 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3313 
3314 	if (next == CHAIN_BLK_LIST_END)
3315 		return -1;
3316 
3317 	next &= ~CHAIN_BLK_FLAG;
3318 	next <<= 16;
3319 	next |= chain_hlocks[offset + 1];
3320 
3321 	return next;
3322 }
3323 
3324 /*
3325  * bucket-0 only
3326  */
3327 static inline int chain_block_size(int offset)
3328 {
3329 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3330 }
3331 
3332 static inline void init_chain_block(int offset, int next, int bucket, int size)
3333 {
3334 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3335 	chain_hlocks[offset + 1] = (u16)next;
3336 
3337 	if (size && !bucket) {
3338 		chain_hlocks[offset + 2] = size >> 16;
3339 		chain_hlocks[offset + 3] = (u16)size;
3340 	}
3341 }
3342 
3343 static inline void add_chain_block(int offset, int size)
3344 {
3345 	int bucket = size_to_bucket(size);
3346 	int next = chain_block_buckets[bucket];
3347 	int prev, curr;
3348 
3349 	if (unlikely(size < 2)) {
3350 		/*
3351 		 * We can't store single entries on the freelist. Leak them.
3352 		 *
3353 		 * One possible way out would be to uniquely mark them, other
3354 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3355 		 * the block before it is re-added.
3356 		 */
3357 		if (size)
3358 			nr_lost_chain_hlocks++;
3359 		return;
3360 	}
3361 
3362 	nr_free_chain_hlocks += size;
3363 	if (!bucket) {
3364 		nr_large_chain_blocks++;
3365 
3366 		/*
3367 		 * Variable sized, sort large to small.
3368 		 */
3369 		for_each_chain_block(0, prev, curr) {
3370 			if (size >= chain_block_size(curr))
3371 				break;
3372 		}
3373 		init_chain_block(offset, curr, 0, size);
3374 		if (prev < 0)
3375 			chain_block_buckets[0] = offset;
3376 		else
3377 			init_chain_block(prev, offset, 0, 0);
3378 		return;
3379 	}
3380 	/*
3381 	 * Fixed size, add to head.
3382 	 */
3383 	init_chain_block(offset, next, bucket, size);
3384 	chain_block_buckets[bucket] = offset;
3385 }
3386 
3387 /*
3388  * Only the first block in the list can be deleted.
3389  *
3390  * For the variable size bucket[0], the first block (the largest one) is
3391  * returned, broken up and put back into the pool. So if a chain block of
3392  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3393  * queued up after the primordial chain block and never be used until the
3394  * hlock entries in the primordial chain block is almost used up. That
3395  * causes fragmentation and reduce allocation efficiency. That can be
3396  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3397  */
3398 static inline void del_chain_block(int bucket, int size, int next)
3399 {
3400 	nr_free_chain_hlocks -= size;
3401 	chain_block_buckets[bucket] = next;
3402 
3403 	if (!bucket)
3404 		nr_large_chain_blocks--;
3405 }
3406 
3407 static void init_chain_block_buckets(void)
3408 {
3409 	int i;
3410 
3411 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3412 		chain_block_buckets[i] = -1;
3413 
3414 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3415 }
3416 
3417 /*
3418  * Return offset of a chain block of the right size or -1 if not found.
3419  *
3420  * Fairly simple worst-fit allocator with the addition of a number of size
3421  * specific free lists.
3422  */
3423 static int alloc_chain_hlocks(int req)
3424 {
3425 	int bucket, curr, size;
3426 
3427 	/*
3428 	 * We rely on the MSB to act as an escape bit to denote freelist
3429 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3430 	 */
3431 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3432 
3433 	init_data_structures_once();
3434 
3435 	if (nr_free_chain_hlocks < req)
3436 		return -1;
3437 
3438 	/*
3439 	 * We require a minimum of 2 (u16) entries to encode a freelist
3440 	 * 'pointer'.
3441 	 */
3442 	req = max(req, 2);
3443 	bucket = size_to_bucket(req);
3444 	curr = chain_block_buckets[bucket];
3445 
3446 	if (bucket) {
3447 		if (curr >= 0) {
3448 			del_chain_block(bucket, req, chain_block_next(curr));
3449 			return curr;
3450 		}
3451 		/* Try bucket 0 */
3452 		curr = chain_block_buckets[0];
3453 	}
3454 
3455 	/*
3456 	 * The variable sized freelist is sorted by size; the first entry is
3457 	 * the largest. Use it if it fits.
3458 	 */
3459 	if (curr >= 0) {
3460 		size = chain_block_size(curr);
3461 		if (likely(size >= req)) {
3462 			del_chain_block(0, size, chain_block_next(curr));
3463 			add_chain_block(curr + req, size - req);
3464 			return curr;
3465 		}
3466 	}
3467 
3468 	/*
3469 	 * Last resort, split a block in a larger sized bucket.
3470 	 */
3471 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3472 		bucket = size_to_bucket(size);
3473 		curr = chain_block_buckets[bucket];
3474 		if (curr < 0)
3475 			continue;
3476 
3477 		del_chain_block(bucket, size, chain_block_next(curr));
3478 		add_chain_block(curr + req, size - req);
3479 		return curr;
3480 	}
3481 
3482 	return -1;
3483 }
3484 
3485 static inline void free_chain_hlocks(int base, int size)
3486 {
3487 	add_chain_block(base, max(size, 2));
3488 }
3489 
3490 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3491 {
3492 	u16 chain_hlock = chain_hlocks[chain->base + i];
3493 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3494 
3495 	return lock_classes + class_idx;
3496 }
3497 
3498 /*
3499  * Returns the index of the first held_lock of the current chain
3500  */
3501 static inline int get_first_held_lock(struct task_struct *curr,
3502 					struct held_lock *hlock)
3503 {
3504 	int i;
3505 	struct held_lock *hlock_curr;
3506 
3507 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3508 		hlock_curr = curr->held_locks + i;
3509 		if (hlock_curr->irq_context != hlock->irq_context)
3510 			break;
3511 
3512 	}
3513 
3514 	return ++i;
3515 }
3516 
3517 #ifdef CONFIG_DEBUG_LOCKDEP
3518 /*
3519  * Returns the next chain_key iteration
3520  */
3521 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3522 {
3523 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3524 
3525 	printk(" hlock_id:%d -> chain_key:%016Lx",
3526 		(unsigned int)hlock_id,
3527 		(unsigned long long)new_chain_key);
3528 	return new_chain_key;
3529 }
3530 
3531 static void
3532 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3533 {
3534 	struct held_lock *hlock;
3535 	u64 chain_key = INITIAL_CHAIN_KEY;
3536 	int depth = curr->lockdep_depth;
3537 	int i = get_first_held_lock(curr, hlock_next);
3538 
3539 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3540 		hlock_next->irq_context);
3541 	for (; i < depth; i++) {
3542 		hlock = curr->held_locks + i;
3543 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3544 
3545 		print_lock(hlock);
3546 	}
3547 
3548 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3549 	print_lock(hlock_next);
3550 }
3551 
3552 static void print_chain_keys_chain(struct lock_chain *chain)
3553 {
3554 	int i;
3555 	u64 chain_key = INITIAL_CHAIN_KEY;
3556 	u16 hlock_id;
3557 
3558 	printk("depth: %u\n", chain->depth);
3559 	for (i = 0; i < chain->depth; i++) {
3560 		hlock_id = chain_hlocks[chain->base + i];
3561 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3562 
3563 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3564 		printk("\n");
3565 	}
3566 }
3567 
3568 static void print_collision(struct task_struct *curr,
3569 			struct held_lock *hlock_next,
3570 			struct lock_chain *chain)
3571 {
3572 	pr_warn("\n");
3573 	pr_warn("============================\n");
3574 	pr_warn("WARNING: chain_key collision\n");
3575 	print_kernel_ident();
3576 	pr_warn("----------------------------\n");
3577 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3578 	pr_warn("Hash chain already cached but the contents don't match!\n");
3579 
3580 	pr_warn("Held locks:");
3581 	print_chain_keys_held_locks(curr, hlock_next);
3582 
3583 	pr_warn("Locks in cached chain:");
3584 	print_chain_keys_chain(chain);
3585 
3586 	pr_warn("\nstack backtrace:\n");
3587 	dump_stack();
3588 }
3589 #endif
3590 
3591 /*
3592  * Checks whether the chain and the current held locks are consistent
3593  * in depth and also in content. If they are not it most likely means
3594  * that there was a collision during the calculation of the chain_key.
3595  * Returns: 0 not passed, 1 passed
3596  */
3597 static int check_no_collision(struct task_struct *curr,
3598 			struct held_lock *hlock,
3599 			struct lock_chain *chain)
3600 {
3601 #ifdef CONFIG_DEBUG_LOCKDEP
3602 	int i, j, id;
3603 
3604 	i = get_first_held_lock(curr, hlock);
3605 
3606 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3607 		print_collision(curr, hlock, chain);
3608 		return 0;
3609 	}
3610 
3611 	for (j = 0; j < chain->depth - 1; j++, i++) {
3612 		id = hlock_id(&curr->held_locks[i]);
3613 
3614 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3615 			print_collision(curr, hlock, chain);
3616 			return 0;
3617 		}
3618 	}
3619 #endif
3620 	return 1;
3621 }
3622 
3623 /*
3624  * Given an index that is >= -1, return the index of the next lock chain.
3625  * Return -2 if there is no next lock chain.
3626  */
3627 long lockdep_next_lockchain(long i)
3628 {
3629 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3630 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3631 }
3632 
3633 unsigned long lock_chain_count(void)
3634 {
3635 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3636 }
3637 
3638 /* Must be called with the graph lock held. */
3639 static struct lock_chain *alloc_lock_chain(void)
3640 {
3641 	int idx = find_first_zero_bit(lock_chains_in_use,
3642 				      ARRAY_SIZE(lock_chains));
3643 
3644 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3645 		return NULL;
3646 	__set_bit(idx, lock_chains_in_use);
3647 	return lock_chains + idx;
3648 }
3649 
3650 /*
3651  * Adds a dependency chain into chain hashtable. And must be called with
3652  * graph_lock held.
3653  *
3654  * Return 0 if fail, and graph_lock is released.
3655  * Return 1 if succeed, with graph_lock held.
3656  */
3657 static inline int add_chain_cache(struct task_struct *curr,
3658 				  struct held_lock *hlock,
3659 				  u64 chain_key)
3660 {
3661 	struct hlist_head *hash_head = chainhashentry(chain_key);
3662 	struct lock_chain *chain;
3663 	int i, j;
3664 
3665 	/*
3666 	 * The caller must hold the graph lock, ensure we've got IRQs
3667 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3668 	 * lockdep won't complain about its own locking errors.
3669 	 */
3670 	if (lockdep_assert_locked())
3671 		return 0;
3672 
3673 	chain = alloc_lock_chain();
3674 	if (!chain) {
3675 		if (!debug_locks_off_graph_unlock())
3676 			return 0;
3677 
3678 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3679 		dump_stack();
3680 		return 0;
3681 	}
3682 	chain->chain_key = chain_key;
3683 	chain->irq_context = hlock->irq_context;
3684 	i = get_first_held_lock(curr, hlock);
3685 	chain->depth = curr->lockdep_depth + 1 - i;
3686 
3687 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3688 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3689 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3690 
3691 	j = alloc_chain_hlocks(chain->depth);
3692 	if (j < 0) {
3693 		if (!debug_locks_off_graph_unlock())
3694 			return 0;
3695 
3696 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3697 		dump_stack();
3698 		return 0;
3699 	}
3700 
3701 	chain->base = j;
3702 	for (j = 0; j < chain->depth - 1; j++, i++) {
3703 		int lock_id = hlock_id(curr->held_locks + i);
3704 
3705 		chain_hlocks[chain->base + j] = lock_id;
3706 	}
3707 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3708 	hlist_add_head_rcu(&chain->entry, hash_head);
3709 	debug_atomic_inc(chain_lookup_misses);
3710 	inc_chains(chain->irq_context);
3711 
3712 	return 1;
3713 }
3714 
3715 /*
3716  * Look up a dependency chain. Must be called with either the graph lock or
3717  * the RCU read lock held.
3718  */
3719 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3720 {
3721 	struct hlist_head *hash_head = chainhashentry(chain_key);
3722 	struct lock_chain *chain;
3723 
3724 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3725 		if (READ_ONCE(chain->chain_key) == chain_key) {
3726 			debug_atomic_inc(chain_lookup_hits);
3727 			return chain;
3728 		}
3729 	}
3730 	return NULL;
3731 }
3732 
3733 /*
3734  * If the key is not present yet in dependency chain cache then
3735  * add it and return 1 - in this case the new dependency chain is
3736  * validated. If the key is already hashed, return 0.
3737  * (On return with 1 graph_lock is held.)
3738  */
3739 static inline int lookup_chain_cache_add(struct task_struct *curr,
3740 					 struct held_lock *hlock,
3741 					 u64 chain_key)
3742 {
3743 	struct lock_class *class = hlock_class(hlock);
3744 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3745 
3746 	if (chain) {
3747 cache_hit:
3748 		if (!check_no_collision(curr, hlock, chain))
3749 			return 0;
3750 
3751 		if (very_verbose(class)) {
3752 			printk("\nhash chain already cached, key: "
3753 					"%016Lx tail class: [%px] %s\n",
3754 					(unsigned long long)chain_key,
3755 					class->key, class->name);
3756 		}
3757 
3758 		return 0;
3759 	}
3760 
3761 	if (very_verbose(class)) {
3762 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3763 			(unsigned long long)chain_key, class->key, class->name);
3764 	}
3765 
3766 	if (!graph_lock())
3767 		return 0;
3768 
3769 	/*
3770 	 * We have to walk the chain again locked - to avoid duplicates:
3771 	 */
3772 	chain = lookup_chain_cache(chain_key);
3773 	if (chain) {
3774 		graph_unlock();
3775 		goto cache_hit;
3776 	}
3777 
3778 	if (!add_chain_cache(curr, hlock, chain_key))
3779 		return 0;
3780 
3781 	return 1;
3782 }
3783 
3784 static int validate_chain(struct task_struct *curr,
3785 			  struct held_lock *hlock,
3786 			  int chain_head, u64 chain_key)
3787 {
3788 	/*
3789 	 * Trylock needs to maintain the stack of held locks, but it
3790 	 * does not add new dependencies, because trylock can be done
3791 	 * in any order.
3792 	 *
3793 	 * We look up the chain_key and do the O(N^2) check and update of
3794 	 * the dependencies only if this is a new dependency chain.
3795 	 * (If lookup_chain_cache_add() return with 1 it acquires
3796 	 * graph_lock for us)
3797 	 */
3798 	if (!hlock->trylock && hlock->check &&
3799 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3800 		/*
3801 		 * Check whether last held lock:
3802 		 *
3803 		 * - is irq-safe, if this lock is irq-unsafe
3804 		 * - is softirq-safe, if this lock is hardirq-unsafe
3805 		 *
3806 		 * And check whether the new lock's dependency graph
3807 		 * could lead back to the previous lock:
3808 		 *
3809 		 * - within the current held-lock stack
3810 		 * - across our accumulated lock dependency records
3811 		 *
3812 		 * any of these scenarios could lead to a deadlock.
3813 		 */
3814 		/*
3815 		 * The simple case: does the current hold the same lock
3816 		 * already?
3817 		 */
3818 		int ret = check_deadlock(curr, hlock);
3819 
3820 		if (!ret)
3821 			return 0;
3822 		/*
3823 		 * Add dependency only if this lock is not the head
3824 		 * of the chain, and if the new lock introduces no more
3825 		 * lock dependency (because we already hold a lock with the
3826 		 * same lock class) nor deadlock (because the nest_lock
3827 		 * serializes nesting locks), see the comments for
3828 		 * check_deadlock().
3829 		 */
3830 		if (!chain_head && ret != 2) {
3831 			if (!check_prevs_add(curr, hlock))
3832 				return 0;
3833 		}
3834 
3835 		graph_unlock();
3836 	} else {
3837 		/* after lookup_chain_cache_add(): */
3838 		if (unlikely(!debug_locks))
3839 			return 0;
3840 	}
3841 
3842 	return 1;
3843 }
3844 #else
3845 static inline int validate_chain(struct task_struct *curr,
3846 				 struct held_lock *hlock,
3847 				 int chain_head, u64 chain_key)
3848 {
3849 	return 1;
3850 }
3851 
3852 static void init_chain_block_buckets(void)	{ }
3853 #endif /* CONFIG_PROVE_LOCKING */
3854 
3855 /*
3856  * We are building curr_chain_key incrementally, so double-check
3857  * it from scratch, to make sure that it's done correctly:
3858  */
3859 static void check_chain_key(struct task_struct *curr)
3860 {
3861 #ifdef CONFIG_DEBUG_LOCKDEP
3862 	struct held_lock *hlock, *prev_hlock = NULL;
3863 	unsigned int i;
3864 	u64 chain_key = INITIAL_CHAIN_KEY;
3865 
3866 	for (i = 0; i < curr->lockdep_depth; i++) {
3867 		hlock = curr->held_locks + i;
3868 		if (chain_key != hlock->prev_chain_key) {
3869 			debug_locks_off();
3870 			/*
3871 			 * We got mighty confused, our chain keys don't match
3872 			 * with what we expect, someone trample on our task state?
3873 			 */
3874 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3875 				curr->lockdep_depth, i,
3876 				(unsigned long long)chain_key,
3877 				(unsigned long long)hlock->prev_chain_key);
3878 			return;
3879 		}
3880 
3881 		/*
3882 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3883 		 * it registered lock class index?
3884 		 */
3885 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3886 			return;
3887 
3888 		if (prev_hlock && (prev_hlock->irq_context !=
3889 							hlock->irq_context))
3890 			chain_key = INITIAL_CHAIN_KEY;
3891 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3892 		prev_hlock = hlock;
3893 	}
3894 	if (chain_key != curr->curr_chain_key) {
3895 		debug_locks_off();
3896 		/*
3897 		 * More smoking hash instead of calculating it, damn see these
3898 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3899 		 */
3900 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3901 			curr->lockdep_depth, i,
3902 			(unsigned long long)chain_key,
3903 			(unsigned long long)curr->curr_chain_key);
3904 	}
3905 #endif
3906 }
3907 
3908 #ifdef CONFIG_PROVE_LOCKING
3909 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3910 		     enum lock_usage_bit new_bit);
3911 
3912 static void print_usage_bug_scenario(struct held_lock *lock)
3913 {
3914 	struct lock_class *class = hlock_class(lock);
3915 
3916 	printk(" Possible unsafe locking scenario:\n\n");
3917 	printk("       CPU0\n");
3918 	printk("       ----\n");
3919 	printk("  lock(");
3920 	__print_lock_name(class);
3921 	printk(KERN_CONT ");\n");
3922 	printk("  <Interrupt>\n");
3923 	printk("    lock(");
3924 	__print_lock_name(class);
3925 	printk(KERN_CONT ");\n");
3926 	printk("\n *** DEADLOCK ***\n\n");
3927 }
3928 
3929 static void
3930 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3931 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3932 {
3933 	if (!debug_locks_off() || debug_locks_silent)
3934 		return;
3935 
3936 	pr_warn("\n");
3937 	pr_warn("================================\n");
3938 	pr_warn("WARNING: inconsistent lock state\n");
3939 	print_kernel_ident();
3940 	pr_warn("--------------------------------\n");
3941 
3942 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3943 		usage_str[prev_bit], usage_str[new_bit]);
3944 
3945 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3946 		curr->comm, task_pid_nr(curr),
3947 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3948 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3949 		lockdep_hardirqs_enabled(),
3950 		lockdep_softirqs_enabled(curr));
3951 	print_lock(this);
3952 
3953 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3954 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3955 
3956 	print_irqtrace_events(curr);
3957 	pr_warn("\nother info that might help us debug this:\n");
3958 	print_usage_bug_scenario(this);
3959 
3960 	lockdep_print_held_locks(curr);
3961 
3962 	pr_warn("\nstack backtrace:\n");
3963 	dump_stack();
3964 }
3965 
3966 /*
3967  * Print out an error if an invalid bit is set:
3968  */
3969 static inline int
3970 valid_state(struct task_struct *curr, struct held_lock *this,
3971 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3972 {
3973 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3974 		graph_unlock();
3975 		print_usage_bug(curr, this, bad_bit, new_bit);
3976 		return 0;
3977 	}
3978 	return 1;
3979 }
3980 
3981 
3982 /*
3983  * print irq inversion bug:
3984  */
3985 static void
3986 print_irq_inversion_bug(struct task_struct *curr,
3987 			struct lock_list *root, struct lock_list *other,
3988 			struct held_lock *this, int forwards,
3989 			const char *irqclass)
3990 {
3991 	struct lock_list *entry = other;
3992 	struct lock_list *middle = NULL;
3993 	int depth;
3994 
3995 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3996 		return;
3997 
3998 	pr_warn("\n");
3999 	pr_warn("========================================================\n");
4000 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4001 	print_kernel_ident();
4002 	pr_warn("--------------------------------------------------------\n");
4003 	pr_warn("%s/%d just changed the state of lock:\n",
4004 		curr->comm, task_pid_nr(curr));
4005 	print_lock(this);
4006 	if (forwards)
4007 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4008 	else
4009 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4010 	print_lock_name(other->class);
4011 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4012 
4013 	pr_warn("\nother info that might help us debug this:\n");
4014 
4015 	/* Find a middle lock (if one exists) */
4016 	depth = get_lock_depth(other);
4017 	do {
4018 		if (depth == 0 && (entry != root)) {
4019 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4020 			break;
4021 		}
4022 		middle = entry;
4023 		entry = get_lock_parent(entry);
4024 		depth--;
4025 	} while (entry && entry != root && (depth >= 0));
4026 	if (forwards)
4027 		print_irq_lock_scenario(root, other,
4028 			middle ? middle->class : root->class, other->class);
4029 	else
4030 		print_irq_lock_scenario(other, root,
4031 			middle ? middle->class : other->class, root->class);
4032 
4033 	lockdep_print_held_locks(curr);
4034 
4035 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4036 	root->trace = save_trace();
4037 	if (!root->trace)
4038 		return;
4039 	print_shortest_lock_dependencies(other, root);
4040 
4041 	pr_warn("\nstack backtrace:\n");
4042 	dump_stack();
4043 }
4044 
4045 /*
4046  * Prove that in the forwards-direction subgraph starting at <this>
4047  * there is no lock matching <mask>:
4048  */
4049 static int
4050 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4051 		     enum lock_usage_bit bit)
4052 {
4053 	enum bfs_result ret;
4054 	struct lock_list root;
4055 	struct lock_list *target_entry;
4056 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4057 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4058 
4059 	bfs_init_root(&root, this);
4060 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4061 	if (bfs_error(ret)) {
4062 		print_bfs_bug(ret);
4063 		return 0;
4064 	}
4065 	if (ret == BFS_RNOMATCH)
4066 		return 1;
4067 
4068 	/* Check whether write or read usage is the match */
4069 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4070 		print_irq_inversion_bug(curr, &root, target_entry,
4071 					this, 1, state_name(bit));
4072 	} else {
4073 		print_irq_inversion_bug(curr, &root, target_entry,
4074 					this, 1, state_name(read_bit));
4075 	}
4076 
4077 	return 0;
4078 }
4079 
4080 /*
4081  * Prove that in the backwards-direction subgraph starting at <this>
4082  * there is no lock matching <mask>:
4083  */
4084 static int
4085 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4086 		      enum lock_usage_bit bit)
4087 {
4088 	enum bfs_result ret;
4089 	struct lock_list root;
4090 	struct lock_list *target_entry;
4091 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4092 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4093 
4094 	bfs_init_rootb(&root, this);
4095 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4096 	if (bfs_error(ret)) {
4097 		print_bfs_bug(ret);
4098 		return 0;
4099 	}
4100 	if (ret == BFS_RNOMATCH)
4101 		return 1;
4102 
4103 	/* Check whether write or read usage is the match */
4104 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4105 		print_irq_inversion_bug(curr, &root, target_entry,
4106 					this, 0, state_name(bit));
4107 	} else {
4108 		print_irq_inversion_bug(curr, &root, target_entry,
4109 					this, 0, state_name(read_bit));
4110 	}
4111 
4112 	return 0;
4113 }
4114 
4115 void print_irqtrace_events(struct task_struct *curr)
4116 {
4117 	const struct irqtrace_events *trace = &curr->irqtrace;
4118 
4119 	printk("irq event stamp: %u\n", trace->irq_events);
4120 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4121 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4122 		(void *)trace->hardirq_enable_ip);
4123 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4124 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4125 		(void *)trace->hardirq_disable_ip);
4126 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4127 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4128 		(void *)trace->softirq_enable_ip);
4129 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4130 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4131 		(void *)trace->softirq_disable_ip);
4132 }
4133 
4134 static int HARDIRQ_verbose(struct lock_class *class)
4135 {
4136 #if HARDIRQ_VERBOSE
4137 	return class_filter(class);
4138 #endif
4139 	return 0;
4140 }
4141 
4142 static int SOFTIRQ_verbose(struct lock_class *class)
4143 {
4144 #if SOFTIRQ_VERBOSE
4145 	return class_filter(class);
4146 #endif
4147 	return 0;
4148 }
4149 
4150 static int (*state_verbose_f[])(struct lock_class *class) = {
4151 #define LOCKDEP_STATE(__STATE) \
4152 	__STATE##_verbose,
4153 #include "lockdep_states.h"
4154 #undef LOCKDEP_STATE
4155 };
4156 
4157 static inline int state_verbose(enum lock_usage_bit bit,
4158 				struct lock_class *class)
4159 {
4160 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4161 }
4162 
4163 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4164 			     enum lock_usage_bit bit, const char *name);
4165 
4166 static int
4167 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4168 		enum lock_usage_bit new_bit)
4169 {
4170 	int excl_bit = exclusive_bit(new_bit);
4171 	int read = new_bit & LOCK_USAGE_READ_MASK;
4172 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4173 
4174 	/*
4175 	 * Validate that this particular lock does not have conflicting
4176 	 * usage states.
4177 	 */
4178 	if (!valid_state(curr, this, new_bit, excl_bit))
4179 		return 0;
4180 
4181 	/*
4182 	 * Check for read in write conflicts
4183 	 */
4184 	if (!read && !valid_state(curr, this, new_bit,
4185 				  excl_bit + LOCK_USAGE_READ_MASK))
4186 		return 0;
4187 
4188 
4189 	/*
4190 	 * Validate that the lock dependencies don't have conflicting usage
4191 	 * states.
4192 	 */
4193 	if (dir) {
4194 		/*
4195 		 * mark ENABLED has to look backwards -- to ensure no dependee
4196 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4197 		 */
4198 		if (!check_usage_backwards(curr, this, excl_bit))
4199 			return 0;
4200 	} else {
4201 		/*
4202 		 * mark USED_IN has to look forwards -- to ensure no dependency
4203 		 * has ENABLED state, which would allow recursion deadlocks.
4204 		 */
4205 		if (!check_usage_forwards(curr, this, excl_bit))
4206 			return 0;
4207 	}
4208 
4209 	if (state_verbose(new_bit, hlock_class(this)))
4210 		return 2;
4211 
4212 	return 1;
4213 }
4214 
4215 /*
4216  * Mark all held locks with a usage bit:
4217  */
4218 static int
4219 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4220 {
4221 	struct held_lock *hlock;
4222 	int i;
4223 
4224 	for (i = 0; i < curr->lockdep_depth; i++) {
4225 		enum lock_usage_bit hlock_bit = base_bit;
4226 		hlock = curr->held_locks + i;
4227 
4228 		if (hlock->read)
4229 			hlock_bit += LOCK_USAGE_READ_MASK;
4230 
4231 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4232 
4233 		if (!hlock->check)
4234 			continue;
4235 
4236 		if (!mark_lock(curr, hlock, hlock_bit))
4237 			return 0;
4238 	}
4239 
4240 	return 1;
4241 }
4242 
4243 /*
4244  * Hardirqs will be enabled:
4245  */
4246 static void __trace_hardirqs_on_caller(void)
4247 {
4248 	struct task_struct *curr = current;
4249 
4250 	/*
4251 	 * We are going to turn hardirqs on, so set the
4252 	 * usage bit for all held locks:
4253 	 */
4254 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4255 		return;
4256 	/*
4257 	 * If we have softirqs enabled, then set the usage
4258 	 * bit for all held locks. (disabled hardirqs prevented
4259 	 * this bit from being set before)
4260 	 */
4261 	if (curr->softirqs_enabled)
4262 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4263 }
4264 
4265 /**
4266  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4267  *
4268  * Invoked before a possible transition to RCU idle from exit to user or
4269  * guest mode. This ensures that all RCU operations are done before RCU
4270  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4271  * invoked to set the final state.
4272  */
4273 void lockdep_hardirqs_on_prepare(void)
4274 {
4275 	if (unlikely(!debug_locks))
4276 		return;
4277 
4278 	/*
4279 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4280 	 */
4281 	if (unlikely(in_nmi()))
4282 		return;
4283 
4284 	if (unlikely(this_cpu_read(lockdep_recursion)))
4285 		return;
4286 
4287 	if (unlikely(lockdep_hardirqs_enabled())) {
4288 		/*
4289 		 * Neither irq nor preemption are disabled here
4290 		 * so this is racy by nature but losing one hit
4291 		 * in a stat is not a big deal.
4292 		 */
4293 		__debug_atomic_inc(redundant_hardirqs_on);
4294 		return;
4295 	}
4296 
4297 	/*
4298 	 * We're enabling irqs and according to our state above irqs weren't
4299 	 * already enabled, yet we find the hardware thinks they are in fact
4300 	 * enabled.. someone messed up their IRQ state tracing.
4301 	 */
4302 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4303 		return;
4304 
4305 	/*
4306 	 * See the fine text that goes along with this variable definition.
4307 	 */
4308 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4309 		return;
4310 
4311 	/*
4312 	 * Can't allow enabling interrupts while in an interrupt handler,
4313 	 * that's general bad form and such. Recursion, limited stack etc..
4314 	 */
4315 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4316 		return;
4317 
4318 	current->hardirq_chain_key = current->curr_chain_key;
4319 
4320 	lockdep_recursion_inc();
4321 	__trace_hardirqs_on_caller();
4322 	lockdep_recursion_finish();
4323 }
4324 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4325 
4326 void noinstr lockdep_hardirqs_on(unsigned long ip)
4327 {
4328 	struct irqtrace_events *trace = &current->irqtrace;
4329 
4330 	if (unlikely(!debug_locks))
4331 		return;
4332 
4333 	/*
4334 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4335 	 * tracking state and hardware state are out of sync.
4336 	 *
4337 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4338 	 * and not rely on hardware state like normal interrupts.
4339 	 */
4340 	if (unlikely(in_nmi())) {
4341 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4342 			return;
4343 
4344 		/*
4345 		 * Skip:
4346 		 *  - recursion check, because NMI can hit lockdep;
4347 		 *  - hardware state check, because above;
4348 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4349 		 */
4350 		goto skip_checks;
4351 	}
4352 
4353 	if (unlikely(this_cpu_read(lockdep_recursion)))
4354 		return;
4355 
4356 	if (lockdep_hardirqs_enabled()) {
4357 		/*
4358 		 * Neither irq nor preemption are disabled here
4359 		 * so this is racy by nature but losing one hit
4360 		 * in a stat is not a big deal.
4361 		 */
4362 		__debug_atomic_inc(redundant_hardirqs_on);
4363 		return;
4364 	}
4365 
4366 	/*
4367 	 * We're enabling irqs and according to our state above irqs weren't
4368 	 * already enabled, yet we find the hardware thinks they are in fact
4369 	 * enabled.. someone messed up their IRQ state tracing.
4370 	 */
4371 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4372 		return;
4373 
4374 	/*
4375 	 * Ensure the lock stack remained unchanged between
4376 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4377 	 */
4378 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4379 			    current->curr_chain_key);
4380 
4381 skip_checks:
4382 	/* we'll do an OFF -> ON transition: */
4383 	__this_cpu_write(hardirqs_enabled, 1);
4384 	trace->hardirq_enable_ip = ip;
4385 	trace->hardirq_enable_event = ++trace->irq_events;
4386 	debug_atomic_inc(hardirqs_on_events);
4387 }
4388 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4389 
4390 /*
4391  * Hardirqs were disabled:
4392  */
4393 void noinstr lockdep_hardirqs_off(unsigned long ip)
4394 {
4395 	if (unlikely(!debug_locks))
4396 		return;
4397 
4398 	/*
4399 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4400 	 * they will restore the software state. This ensures the software
4401 	 * state is consistent inside NMIs as well.
4402 	 */
4403 	if (in_nmi()) {
4404 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4405 			return;
4406 	} else if (__this_cpu_read(lockdep_recursion))
4407 		return;
4408 
4409 	/*
4410 	 * So we're supposed to get called after you mask local IRQs, but for
4411 	 * some reason the hardware doesn't quite think you did a proper job.
4412 	 */
4413 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4414 		return;
4415 
4416 	if (lockdep_hardirqs_enabled()) {
4417 		struct irqtrace_events *trace = &current->irqtrace;
4418 
4419 		/*
4420 		 * We have done an ON -> OFF transition:
4421 		 */
4422 		__this_cpu_write(hardirqs_enabled, 0);
4423 		trace->hardirq_disable_ip = ip;
4424 		trace->hardirq_disable_event = ++trace->irq_events;
4425 		debug_atomic_inc(hardirqs_off_events);
4426 	} else {
4427 		debug_atomic_inc(redundant_hardirqs_off);
4428 	}
4429 }
4430 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4431 
4432 /*
4433  * Softirqs will be enabled:
4434  */
4435 void lockdep_softirqs_on(unsigned long ip)
4436 {
4437 	struct irqtrace_events *trace = &current->irqtrace;
4438 
4439 	if (unlikely(!lockdep_enabled()))
4440 		return;
4441 
4442 	/*
4443 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4444 	 * funny state and nesting things.
4445 	 */
4446 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4447 		return;
4448 
4449 	if (current->softirqs_enabled) {
4450 		debug_atomic_inc(redundant_softirqs_on);
4451 		return;
4452 	}
4453 
4454 	lockdep_recursion_inc();
4455 	/*
4456 	 * We'll do an OFF -> ON transition:
4457 	 */
4458 	current->softirqs_enabled = 1;
4459 	trace->softirq_enable_ip = ip;
4460 	trace->softirq_enable_event = ++trace->irq_events;
4461 	debug_atomic_inc(softirqs_on_events);
4462 	/*
4463 	 * We are going to turn softirqs on, so set the
4464 	 * usage bit for all held locks, if hardirqs are
4465 	 * enabled too:
4466 	 */
4467 	if (lockdep_hardirqs_enabled())
4468 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4469 	lockdep_recursion_finish();
4470 }
4471 
4472 /*
4473  * Softirqs were disabled:
4474  */
4475 void lockdep_softirqs_off(unsigned long ip)
4476 {
4477 	if (unlikely(!lockdep_enabled()))
4478 		return;
4479 
4480 	/*
4481 	 * We fancy IRQs being disabled here, see softirq.c
4482 	 */
4483 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4484 		return;
4485 
4486 	if (current->softirqs_enabled) {
4487 		struct irqtrace_events *trace = &current->irqtrace;
4488 
4489 		/*
4490 		 * We have done an ON -> OFF transition:
4491 		 */
4492 		current->softirqs_enabled = 0;
4493 		trace->softirq_disable_ip = ip;
4494 		trace->softirq_disable_event = ++trace->irq_events;
4495 		debug_atomic_inc(softirqs_off_events);
4496 		/*
4497 		 * Whoops, we wanted softirqs off, so why aren't they?
4498 		 */
4499 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4500 	} else
4501 		debug_atomic_inc(redundant_softirqs_off);
4502 }
4503 
4504 static int
4505 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4506 {
4507 	if (!check)
4508 		goto lock_used;
4509 
4510 	/*
4511 	 * If non-trylock use in a hardirq or softirq context, then
4512 	 * mark the lock as used in these contexts:
4513 	 */
4514 	if (!hlock->trylock) {
4515 		if (hlock->read) {
4516 			if (lockdep_hardirq_context())
4517 				if (!mark_lock(curr, hlock,
4518 						LOCK_USED_IN_HARDIRQ_READ))
4519 					return 0;
4520 			if (curr->softirq_context)
4521 				if (!mark_lock(curr, hlock,
4522 						LOCK_USED_IN_SOFTIRQ_READ))
4523 					return 0;
4524 		} else {
4525 			if (lockdep_hardirq_context())
4526 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4527 					return 0;
4528 			if (curr->softirq_context)
4529 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4530 					return 0;
4531 		}
4532 	}
4533 	if (!hlock->hardirqs_off) {
4534 		if (hlock->read) {
4535 			if (!mark_lock(curr, hlock,
4536 					LOCK_ENABLED_HARDIRQ_READ))
4537 				return 0;
4538 			if (curr->softirqs_enabled)
4539 				if (!mark_lock(curr, hlock,
4540 						LOCK_ENABLED_SOFTIRQ_READ))
4541 					return 0;
4542 		} else {
4543 			if (!mark_lock(curr, hlock,
4544 					LOCK_ENABLED_HARDIRQ))
4545 				return 0;
4546 			if (curr->softirqs_enabled)
4547 				if (!mark_lock(curr, hlock,
4548 						LOCK_ENABLED_SOFTIRQ))
4549 					return 0;
4550 		}
4551 	}
4552 
4553 lock_used:
4554 	/* mark it as used: */
4555 	if (!mark_lock(curr, hlock, LOCK_USED))
4556 		return 0;
4557 
4558 	return 1;
4559 }
4560 
4561 static inline unsigned int task_irq_context(struct task_struct *task)
4562 {
4563 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4564 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4565 }
4566 
4567 static int separate_irq_context(struct task_struct *curr,
4568 		struct held_lock *hlock)
4569 {
4570 	unsigned int depth = curr->lockdep_depth;
4571 
4572 	/*
4573 	 * Keep track of points where we cross into an interrupt context:
4574 	 */
4575 	if (depth) {
4576 		struct held_lock *prev_hlock;
4577 
4578 		prev_hlock = curr->held_locks + depth-1;
4579 		/*
4580 		 * If we cross into another context, reset the
4581 		 * hash key (this also prevents the checking and the
4582 		 * adding of the dependency to 'prev'):
4583 		 */
4584 		if (prev_hlock->irq_context != hlock->irq_context)
4585 			return 1;
4586 	}
4587 	return 0;
4588 }
4589 
4590 /*
4591  * Mark a lock with a usage bit, and validate the state transition:
4592  */
4593 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4594 			     enum lock_usage_bit new_bit)
4595 {
4596 	unsigned int new_mask, ret = 1;
4597 
4598 	if (new_bit >= LOCK_USAGE_STATES) {
4599 		DEBUG_LOCKS_WARN_ON(1);
4600 		return 0;
4601 	}
4602 
4603 	if (new_bit == LOCK_USED && this->read)
4604 		new_bit = LOCK_USED_READ;
4605 
4606 	new_mask = 1 << new_bit;
4607 
4608 	/*
4609 	 * If already set then do not dirty the cacheline,
4610 	 * nor do any checks:
4611 	 */
4612 	if (likely(hlock_class(this)->usage_mask & new_mask))
4613 		return 1;
4614 
4615 	if (!graph_lock())
4616 		return 0;
4617 	/*
4618 	 * Make sure we didn't race:
4619 	 */
4620 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4621 		goto unlock;
4622 
4623 	if (!hlock_class(this)->usage_mask)
4624 		debug_atomic_dec(nr_unused_locks);
4625 
4626 	hlock_class(this)->usage_mask |= new_mask;
4627 
4628 	if (new_bit < LOCK_TRACE_STATES) {
4629 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4630 			return 0;
4631 	}
4632 
4633 	if (new_bit < LOCK_USED) {
4634 		ret = mark_lock_irq(curr, this, new_bit);
4635 		if (!ret)
4636 			return 0;
4637 	}
4638 
4639 unlock:
4640 	graph_unlock();
4641 
4642 	/*
4643 	 * We must printk outside of the graph_lock:
4644 	 */
4645 	if (ret == 2) {
4646 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4647 		print_lock(this);
4648 		print_irqtrace_events(curr);
4649 		dump_stack();
4650 	}
4651 
4652 	return ret;
4653 }
4654 
4655 static inline short task_wait_context(struct task_struct *curr)
4656 {
4657 	/*
4658 	 * Set appropriate wait type for the context; for IRQs we have to take
4659 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4660 	 */
4661 	if (lockdep_hardirq_context()) {
4662 		/*
4663 		 * Check if force_irqthreads will run us threaded.
4664 		 */
4665 		if (curr->hardirq_threaded || curr->irq_config)
4666 			return LD_WAIT_CONFIG;
4667 
4668 		return LD_WAIT_SPIN;
4669 	} else if (curr->softirq_context) {
4670 		/*
4671 		 * Softirqs are always threaded.
4672 		 */
4673 		return LD_WAIT_CONFIG;
4674 	}
4675 
4676 	return LD_WAIT_MAX;
4677 }
4678 
4679 static int
4680 print_lock_invalid_wait_context(struct task_struct *curr,
4681 				struct held_lock *hlock)
4682 {
4683 	short curr_inner;
4684 
4685 	if (!debug_locks_off())
4686 		return 0;
4687 	if (debug_locks_silent)
4688 		return 0;
4689 
4690 	pr_warn("\n");
4691 	pr_warn("=============================\n");
4692 	pr_warn("[ BUG: Invalid wait context ]\n");
4693 	print_kernel_ident();
4694 	pr_warn("-----------------------------\n");
4695 
4696 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4697 	print_lock(hlock);
4698 
4699 	pr_warn("other info that might help us debug this:\n");
4700 
4701 	curr_inner = task_wait_context(curr);
4702 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4703 
4704 	lockdep_print_held_locks(curr);
4705 
4706 	pr_warn("stack backtrace:\n");
4707 	dump_stack();
4708 
4709 	return 0;
4710 }
4711 
4712 /*
4713  * Verify the wait_type context.
4714  *
4715  * This check validates we take locks in the right wait-type order; that is it
4716  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4717  * acquire spinlocks inside raw_spinlocks and the sort.
4718  *
4719  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4720  * can be taken from (pretty much) any context but also has constraints.
4721  * However when taken in a stricter environment the RCU lock does not loosen
4722  * the constraints.
4723  *
4724  * Therefore we must look for the strictest environment in the lock stack and
4725  * compare that to the lock we're trying to acquire.
4726  */
4727 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4728 {
4729 	u8 next_inner = hlock_class(next)->wait_type_inner;
4730 	u8 next_outer = hlock_class(next)->wait_type_outer;
4731 	u8 curr_inner;
4732 	int depth;
4733 
4734 	if (!next_inner || next->trylock)
4735 		return 0;
4736 
4737 	if (!next_outer)
4738 		next_outer = next_inner;
4739 
4740 	/*
4741 	 * Find start of current irq_context..
4742 	 */
4743 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4744 		struct held_lock *prev = curr->held_locks + depth;
4745 		if (prev->irq_context != next->irq_context)
4746 			break;
4747 	}
4748 	depth++;
4749 
4750 	curr_inner = task_wait_context(curr);
4751 
4752 	for (; depth < curr->lockdep_depth; depth++) {
4753 		struct held_lock *prev = curr->held_locks + depth;
4754 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4755 
4756 		if (prev_inner) {
4757 			/*
4758 			 * We can have a bigger inner than a previous one
4759 			 * when outer is smaller than inner, as with RCU.
4760 			 *
4761 			 * Also due to trylocks.
4762 			 */
4763 			curr_inner = min(curr_inner, prev_inner);
4764 		}
4765 	}
4766 
4767 	if (next_outer > curr_inner)
4768 		return print_lock_invalid_wait_context(curr, next);
4769 
4770 	return 0;
4771 }
4772 
4773 #else /* CONFIG_PROVE_LOCKING */
4774 
4775 static inline int
4776 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4777 {
4778 	return 1;
4779 }
4780 
4781 static inline unsigned int task_irq_context(struct task_struct *task)
4782 {
4783 	return 0;
4784 }
4785 
4786 static inline int separate_irq_context(struct task_struct *curr,
4787 		struct held_lock *hlock)
4788 {
4789 	return 0;
4790 }
4791 
4792 static inline int check_wait_context(struct task_struct *curr,
4793 				     struct held_lock *next)
4794 {
4795 	return 0;
4796 }
4797 
4798 #endif /* CONFIG_PROVE_LOCKING */
4799 
4800 /*
4801  * Initialize a lock instance's lock-class mapping info:
4802  */
4803 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4804 			    struct lock_class_key *key, int subclass,
4805 			    u8 inner, u8 outer, u8 lock_type)
4806 {
4807 	int i;
4808 
4809 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4810 		lock->class_cache[i] = NULL;
4811 
4812 #ifdef CONFIG_LOCK_STAT
4813 	lock->cpu = raw_smp_processor_id();
4814 #endif
4815 
4816 	/*
4817 	 * Can't be having no nameless bastards around this place!
4818 	 */
4819 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4820 		lock->name = "NULL";
4821 		return;
4822 	}
4823 
4824 	lock->name = name;
4825 
4826 	lock->wait_type_outer = outer;
4827 	lock->wait_type_inner = inner;
4828 	lock->lock_type = lock_type;
4829 
4830 	/*
4831 	 * No key, no joy, we need to hash something.
4832 	 */
4833 	if (DEBUG_LOCKS_WARN_ON(!key))
4834 		return;
4835 	/*
4836 	 * Sanity check, the lock-class key must either have been allocated
4837 	 * statically or must have been registered as a dynamic key.
4838 	 */
4839 	if (!static_obj(key) && !is_dynamic_key(key)) {
4840 		if (debug_locks)
4841 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4842 		DEBUG_LOCKS_WARN_ON(1);
4843 		return;
4844 	}
4845 	lock->key = key;
4846 
4847 	if (unlikely(!debug_locks))
4848 		return;
4849 
4850 	if (subclass) {
4851 		unsigned long flags;
4852 
4853 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4854 			return;
4855 
4856 		raw_local_irq_save(flags);
4857 		lockdep_recursion_inc();
4858 		register_lock_class(lock, subclass, 1);
4859 		lockdep_recursion_finish();
4860 		raw_local_irq_restore(flags);
4861 	}
4862 }
4863 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4864 
4865 struct lock_class_key __lockdep_no_validate__;
4866 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4867 
4868 static void
4869 print_lock_nested_lock_not_held(struct task_struct *curr,
4870 				struct held_lock *hlock)
4871 {
4872 	if (!debug_locks_off())
4873 		return;
4874 	if (debug_locks_silent)
4875 		return;
4876 
4877 	pr_warn("\n");
4878 	pr_warn("==================================\n");
4879 	pr_warn("WARNING: Nested lock was not taken\n");
4880 	print_kernel_ident();
4881 	pr_warn("----------------------------------\n");
4882 
4883 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4884 	print_lock(hlock);
4885 
4886 	pr_warn("\nbut this task is not holding:\n");
4887 	pr_warn("%s\n", hlock->nest_lock->name);
4888 
4889 	pr_warn("\nstack backtrace:\n");
4890 	dump_stack();
4891 
4892 	pr_warn("\nother info that might help us debug this:\n");
4893 	lockdep_print_held_locks(curr);
4894 
4895 	pr_warn("\nstack backtrace:\n");
4896 	dump_stack();
4897 }
4898 
4899 static int __lock_is_held(const struct lockdep_map *lock, int read);
4900 
4901 /*
4902  * This gets called for every mutex_lock*()/spin_lock*() operation.
4903  * We maintain the dependency maps and validate the locking attempt:
4904  *
4905  * The callers must make sure that IRQs are disabled before calling it,
4906  * otherwise we could get an interrupt which would want to take locks,
4907  * which would end up in lockdep again.
4908  */
4909 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4910 			  int trylock, int read, int check, int hardirqs_off,
4911 			  struct lockdep_map *nest_lock, unsigned long ip,
4912 			  int references, int pin_count)
4913 {
4914 	struct task_struct *curr = current;
4915 	struct lock_class *class = NULL;
4916 	struct held_lock *hlock;
4917 	unsigned int depth;
4918 	int chain_head = 0;
4919 	int class_idx;
4920 	u64 chain_key;
4921 
4922 	if (unlikely(!debug_locks))
4923 		return 0;
4924 
4925 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4926 		check = 0;
4927 
4928 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4929 		class = lock->class_cache[subclass];
4930 	/*
4931 	 * Not cached?
4932 	 */
4933 	if (unlikely(!class)) {
4934 		class = register_lock_class(lock, subclass, 0);
4935 		if (!class)
4936 			return 0;
4937 	}
4938 
4939 	debug_class_ops_inc(class);
4940 
4941 	if (very_verbose(class)) {
4942 		printk("\nacquire class [%px] %s", class->key, class->name);
4943 		if (class->name_version > 1)
4944 			printk(KERN_CONT "#%d", class->name_version);
4945 		printk(KERN_CONT "\n");
4946 		dump_stack();
4947 	}
4948 
4949 	/*
4950 	 * Add the lock to the list of currently held locks.
4951 	 * (we dont increase the depth just yet, up until the
4952 	 * dependency checks are done)
4953 	 */
4954 	depth = curr->lockdep_depth;
4955 	/*
4956 	 * Ran out of static storage for our per-task lock stack again have we?
4957 	 */
4958 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4959 		return 0;
4960 
4961 	class_idx = class - lock_classes;
4962 
4963 	if (depth) { /* we're holding locks */
4964 		hlock = curr->held_locks + depth - 1;
4965 		if (hlock->class_idx == class_idx && nest_lock) {
4966 			if (!references)
4967 				references++;
4968 
4969 			if (!hlock->references)
4970 				hlock->references++;
4971 
4972 			hlock->references += references;
4973 
4974 			/* Overflow */
4975 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4976 				return 0;
4977 
4978 			return 2;
4979 		}
4980 	}
4981 
4982 	hlock = curr->held_locks + depth;
4983 	/*
4984 	 * Plain impossible, we just registered it and checked it weren't no
4985 	 * NULL like.. I bet this mushroom I ate was good!
4986 	 */
4987 	if (DEBUG_LOCKS_WARN_ON(!class))
4988 		return 0;
4989 	hlock->class_idx = class_idx;
4990 	hlock->acquire_ip = ip;
4991 	hlock->instance = lock;
4992 	hlock->nest_lock = nest_lock;
4993 	hlock->irq_context = task_irq_context(curr);
4994 	hlock->trylock = trylock;
4995 	hlock->read = read;
4996 	hlock->check = check;
4997 	hlock->hardirqs_off = !!hardirqs_off;
4998 	hlock->references = references;
4999 #ifdef CONFIG_LOCK_STAT
5000 	hlock->waittime_stamp = 0;
5001 	hlock->holdtime_stamp = lockstat_clock();
5002 #endif
5003 	hlock->pin_count = pin_count;
5004 
5005 	if (check_wait_context(curr, hlock))
5006 		return 0;
5007 
5008 	/* Initialize the lock usage bit */
5009 	if (!mark_usage(curr, hlock, check))
5010 		return 0;
5011 
5012 	/*
5013 	 * Calculate the chain hash: it's the combined hash of all the
5014 	 * lock keys along the dependency chain. We save the hash value
5015 	 * at every step so that we can get the current hash easily
5016 	 * after unlock. The chain hash is then used to cache dependency
5017 	 * results.
5018 	 *
5019 	 * The 'key ID' is what is the most compact key value to drive
5020 	 * the hash, not class->key.
5021 	 */
5022 	/*
5023 	 * Whoops, we did it again.. class_idx is invalid.
5024 	 */
5025 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5026 		return 0;
5027 
5028 	chain_key = curr->curr_chain_key;
5029 	if (!depth) {
5030 		/*
5031 		 * How can we have a chain hash when we ain't got no keys?!
5032 		 */
5033 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5034 			return 0;
5035 		chain_head = 1;
5036 	}
5037 
5038 	hlock->prev_chain_key = chain_key;
5039 	if (separate_irq_context(curr, hlock)) {
5040 		chain_key = INITIAL_CHAIN_KEY;
5041 		chain_head = 1;
5042 	}
5043 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5044 
5045 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5046 		print_lock_nested_lock_not_held(curr, hlock);
5047 		return 0;
5048 	}
5049 
5050 	if (!debug_locks_silent) {
5051 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5052 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5053 	}
5054 
5055 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5056 		return 0;
5057 
5058 	curr->curr_chain_key = chain_key;
5059 	curr->lockdep_depth++;
5060 	check_chain_key(curr);
5061 #ifdef CONFIG_DEBUG_LOCKDEP
5062 	if (unlikely(!debug_locks))
5063 		return 0;
5064 #endif
5065 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5066 		debug_locks_off();
5067 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5068 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5069 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5070 
5071 		lockdep_print_held_locks(current);
5072 		debug_show_all_locks();
5073 		dump_stack();
5074 
5075 		return 0;
5076 	}
5077 
5078 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5079 		max_lockdep_depth = curr->lockdep_depth;
5080 
5081 	return 1;
5082 }
5083 
5084 static void print_unlock_imbalance_bug(struct task_struct *curr,
5085 				       struct lockdep_map *lock,
5086 				       unsigned long ip)
5087 {
5088 	if (!debug_locks_off())
5089 		return;
5090 	if (debug_locks_silent)
5091 		return;
5092 
5093 	pr_warn("\n");
5094 	pr_warn("=====================================\n");
5095 	pr_warn("WARNING: bad unlock balance detected!\n");
5096 	print_kernel_ident();
5097 	pr_warn("-------------------------------------\n");
5098 	pr_warn("%s/%d is trying to release lock (",
5099 		curr->comm, task_pid_nr(curr));
5100 	print_lockdep_cache(lock);
5101 	pr_cont(") at:\n");
5102 	print_ip_sym(KERN_WARNING, ip);
5103 	pr_warn("but there are no more locks to release!\n");
5104 	pr_warn("\nother info that might help us debug this:\n");
5105 	lockdep_print_held_locks(curr);
5106 
5107 	pr_warn("\nstack backtrace:\n");
5108 	dump_stack();
5109 }
5110 
5111 static noinstr int match_held_lock(const struct held_lock *hlock,
5112 				   const struct lockdep_map *lock)
5113 {
5114 	if (hlock->instance == lock)
5115 		return 1;
5116 
5117 	if (hlock->references) {
5118 		const struct lock_class *class = lock->class_cache[0];
5119 
5120 		if (!class)
5121 			class = look_up_lock_class(lock, 0);
5122 
5123 		/*
5124 		 * If look_up_lock_class() failed to find a class, we're trying
5125 		 * to test if we hold a lock that has never yet been acquired.
5126 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5127 		 * holding it either, so report failure.
5128 		 */
5129 		if (!class)
5130 			return 0;
5131 
5132 		/*
5133 		 * References, but not a lock we're actually ref-counting?
5134 		 * State got messed up, follow the sites that change ->references
5135 		 * and try to make sense of it.
5136 		 */
5137 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5138 			return 0;
5139 
5140 		if (hlock->class_idx == class - lock_classes)
5141 			return 1;
5142 	}
5143 
5144 	return 0;
5145 }
5146 
5147 /* @depth must not be zero */
5148 static struct held_lock *find_held_lock(struct task_struct *curr,
5149 					struct lockdep_map *lock,
5150 					unsigned int depth, int *idx)
5151 {
5152 	struct held_lock *ret, *hlock, *prev_hlock;
5153 	int i;
5154 
5155 	i = depth - 1;
5156 	hlock = curr->held_locks + i;
5157 	ret = hlock;
5158 	if (match_held_lock(hlock, lock))
5159 		goto out;
5160 
5161 	ret = NULL;
5162 	for (i--, prev_hlock = hlock--;
5163 	     i >= 0;
5164 	     i--, prev_hlock = hlock--) {
5165 		/*
5166 		 * We must not cross into another context:
5167 		 */
5168 		if (prev_hlock->irq_context != hlock->irq_context) {
5169 			ret = NULL;
5170 			break;
5171 		}
5172 		if (match_held_lock(hlock, lock)) {
5173 			ret = hlock;
5174 			break;
5175 		}
5176 	}
5177 
5178 out:
5179 	*idx = i;
5180 	return ret;
5181 }
5182 
5183 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5184 				int idx, unsigned int *merged)
5185 {
5186 	struct held_lock *hlock;
5187 	int first_idx = idx;
5188 
5189 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5190 		return 0;
5191 
5192 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5193 		switch (__lock_acquire(hlock->instance,
5194 				    hlock_class(hlock)->subclass,
5195 				    hlock->trylock,
5196 				    hlock->read, hlock->check,
5197 				    hlock->hardirqs_off,
5198 				    hlock->nest_lock, hlock->acquire_ip,
5199 				    hlock->references, hlock->pin_count)) {
5200 		case 0:
5201 			return 1;
5202 		case 1:
5203 			break;
5204 		case 2:
5205 			*merged += (idx == first_idx);
5206 			break;
5207 		default:
5208 			WARN_ON(1);
5209 			return 0;
5210 		}
5211 	}
5212 	return 0;
5213 }
5214 
5215 static int
5216 __lock_set_class(struct lockdep_map *lock, const char *name,
5217 		 struct lock_class_key *key, unsigned int subclass,
5218 		 unsigned long ip)
5219 {
5220 	struct task_struct *curr = current;
5221 	unsigned int depth, merged = 0;
5222 	struct held_lock *hlock;
5223 	struct lock_class *class;
5224 	int i;
5225 
5226 	if (unlikely(!debug_locks))
5227 		return 0;
5228 
5229 	depth = curr->lockdep_depth;
5230 	/*
5231 	 * This function is about (re)setting the class of a held lock,
5232 	 * yet we're not actually holding any locks. Naughty user!
5233 	 */
5234 	if (DEBUG_LOCKS_WARN_ON(!depth))
5235 		return 0;
5236 
5237 	hlock = find_held_lock(curr, lock, depth, &i);
5238 	if (!hlock) {
5239 		print_unlock_imbalance_bug(curr, lock, ip);
5240 		return 0;
5241 	}
5242 
5243 	lockdep_init_map_type(lock, name, key, 0,
5244 			      lock->wait_type_inner,
5245 			      lock->wait_type_outer,
5246 			      lock->lock_type);
5247 	class = register_lock_class(lock, subclass, 0);
5248 	hlock->class_idx = class - lock_classes;
5249 
5250 	curr->lockdep_depth = i;
5251 	curr->curr_chain_key = hlock->prev_chain_key;
5252 
5253 	if (reacquire_held_locks(curr, depth, i, &merged))
5254 		return 0;
5255 
5256 	/*
5257 	 * I took it apart and put it back together again, except now I have
5258 	 * these 'spare' parts.. where shall I put them.
5259 	 */
5260 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5261 		return 0;
5262 	return 1;
5263 }
5264 
5265 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5266 {
5267 	struct task_struct *curr = current;
5268 	unsigned int depth, merged = 0;
5269 	struct held_lock *hlock;
5270 	int i;
5271 
5272 	if (unlikely(!debug_locks))
5273 		return 0;
5274 
5275 	depth = curr->lockdep_depth;
5276 	/*
5277 	 * This function is about (re)setting the class of a held lock,
5278 	 * yet we're not actually holding any locks. Naughty user!
5279 	 */
5280 	if (DEBUG_LOCKS_WARN_ON(!depth))
5281 		return 0;
5282 
5283 	hlock = find_held_lock(curr, lock, depth, &i);
5284 	if (!hlock) {
5285 		print_unlock_imbalance_bug(curr, lock, ip);
5286 		return 0;
5287 	}
5288 
5289 	curr->lockdep_depth = i;
5290 	curr->curr_chain_key = hlock->prev_chain_key;
5291 
5292 	WARN(hlock->read, "downgrading a read lock");
5293 	hlock->read = 1;
5294 	hlock->acquire_ip = ip;
5295 
5296 	if (reacquire_held_locks(curr, depth, i, &merged))
5297 		return 0;
5298 
5299 	/* Merging can't happen with unchanged classes.. */
5300 	if (DEBUG_LOCKS_WARN_ON(merged))
5301 		return 0;
5302 
5303 	/*
5304 	 * I took it apart and put it back together again, except now I have
5305 	 * these 'spare' parts.. where shall I put them.
5306 	 */
5307 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5308 		return 0;
5309 
5310 	return 1;
5311 }
5312 
5313 /*
5314  * Remove the lock from the list of currently held locks - this gets
5315  * called on mutex_unlock()/spin_unlock*() (or on a failed
5316  * mutex_lock_interruptible()).
5317  */
5318 static int
5319 __lock_release(struct lockdep_map *lock, unsigned long ip)
5320 {
5321 	struct task_struct *curr = current;
5322 	unsigned int depth, merged = 1;
5323 	struct held_lock *hlock;
5324 	int i;
5325 
5326 	if (unlikely(!debug_locks))
5327 		return 0;
5328 
5329 	depth = curr->lockdep_depth;
5330 	/*
5331 	 * So we're all set to release this lock.. wait what lock? We don't
5332 	 * own any locks, you've been drinking again?
5333 	 */
5334 	if (depth <= 0) {
5335 		print_unlock_imbalance_bug(curr, lock, ip);
5336 		return 0;
5337 	}
5338 
5339 	/*
5340 	 * Check whether the lock exists in the current stack
5341 	 * of held locks:
5342 	 */
5343 	hlock = find_held_lock(curr, lock, depth, &i);
5344 	if (!hlock) {
5345 		print_unlock_imbalance_bug(curr, lock, ip);
5346 		return 0;
5347 	}
5348 
5349 	if (hlock->instance == lock)
5350 		lock_release_holdtime(hlock);
5351 
5352 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5353 
5354 	if (hlock->references) {
5355 		hlock->references--;
5356 		if (hlock->references) {
5357 			/*
5358 			 * We had, and after removing one, still have
5359 			 * references, the current lock stack is still
5360 			 * valid. We're done!
5361 			 */
5362 			return 1;
5363 		}
5364 	}
5365 
5366 	/*
5367 	 * We have the right lock to unlock, 'hlock' points to it.
5368 	 * Now we remove it from the stack, and add back the other
5369 	 * entries (if any), recalculating the hash along the way:
5370 	 */
5371 
5372 	curr->lockdep_depth = i;
5373 	curr->curr_chain_key = hlock->prev_chain_key;
5374 
5375 	/*
5376 	 * The most likely case is when the unlock is on the innermost
5377 	 * lock. In this case, we are done!
5378 	 */
5379 	if (i == depth-1)
5380 		return 1;
5381 
5382 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5383 		return 0;
5384 
5385 	/*
5386 	 * We had N bottles of beer on the wall, we drank one, but now
5387 	 * there's not N-1 bottles of beer left on the wall...
5388 	 * Pouring two of the bottles together is acceptable.
5389 	 */
5390 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5391 
5392 	/*
5393 	 * Since reacquire_held_locks() would have called check_chain_key()
5394 	 * indirectly via __lock_acquire(), we don't need to do it again
5395 	 * on return.
5396 	 */
5397 	return 0;
5398 }
5399 
5400 static __always_inline
5401 int __lock_is_held(const struct lockdep_map *lock, int read)
5402 {
5403 	struct task_struct *curr = current;
5404 	int i;
5405 
5406 	for (i = 0; i < curr->lockdep_depth; i++) {
5407 		struct held_lock *hlock = curr->held_locks + i;
5408 
5409 		if (match_held_lock(hlock, lock)) {
5410 			if (read == -1 || !!hlock->read == read)
5411 				return LOCK_STATE_HELD;
5412 
5413 			return LOCK_STATE_NOT_HELD;
5414 		}
5415 	}
5416 
5417 	return LOCK_STATE_NOT_HELD;
5418 }
5419 
5420 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5421 {
5422 	struct pin_cookie cookie = NIL_COOKIE;
5423 	struct task_struct *curr = current;
5424 	int i;
5425 
5426 	if (unlikely(!debug_locks))
5427 		return cookie;
5428 
5429 	for (i = 0; i < curr->lockdep_depth; i++) {
5430 		struct held_lock *hlock = curr->held_locks + i;
5431 
5432 		if (match_held_lock(hlock, lock)) {
5433 			/*
5434 			 * Grab 16bits of randomness; this is sufficient to not
5435 			 * be guessable and still allows some pin nesting in
5436 			 * our u32 pin_count.
5437 			 */
5438 			cookie.val = 1 + (sched_clock() & 0xffff);
5439 			hlock->pin_count += cookie.val;
5440 			return cookie;
5441 		}
5442 	}
5443 
5444 	WARN(1, "pinning an unheld lock\n");
5445 	return cookie;
5446 }
5447 
5448 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5449 {
5450 	struct task_struct *curr = current;
5451 	int i;
5452 
5453 	if (unlikely(!debug_locks))
5454 		return;
5455 
5456 	for (i = 0; i < curr->lockdep_depth; i++) {
5457 		struct held_lock *hlock = curr->held_locks + i;
5458 
5459 		if (match_held_lock(hlock, lock)) {
5460 			hlock->pin_count += cookie.val;
5461 			return;
5462 		}
5463 	}
5464 
5465 	WARN(1, "pinning an unheld lock\n");
5466 }
5467 
5468 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5469 {
5470 	struct task_struct *curr = current;
5471 	int i;
5472 
5473 	if (unlikely(!debug_locks))
5474 		return;
5475 
5476 	for (i = 0; i < curr->lockdep_depth; i++) {
5477 		struct held_lock *hlock = curr->held_locks + i;
5478 
5479 		if (match_held_lock(hlock, lock)) {
5480 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5481 				return;
5482 
5483 			hlock->pin_count -= cookie.val;
5484 
5485 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5486 				hlock->pin_count = 0;
5487 
5488 			return;
5489 		}
5490 	}
5491 
5492 	WARN(1, "unpinning an unheld lock\n");
5493 }
5494 
5495 /*
5496  * Check whether we follow the irq-flags state precisely:
5497  */
5498 static noinstr void check_flags(unsigned long flags)
5499 {
5500 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5501 	if (!debug_locks)
5502 		return;
5503 
5504 	/* Get the warning out..  */
5505 	instrumentation_begin();
5506 
5507 	if (irqs_disabled_flags(flags)) {
5508 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5509 			printk("possible reason: unannotated irqs-off.\n");
5510 		}
5511 	} else {
5512 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5513 			printk("possible reason: unannotated irqs-on.\n");
5514 		}
5515 	}
5516 
5517 #ifndef CONFIG_PREEMPT_RT
5518 	/*
5519 	 * We dont accurately track softirq state in e.g.
5520 	 * hardirq contexts (such as on 4KSTACKS), so only
5521 	 * check if not in hardirq contexts:
5522 	 */
5523 	if (!hardirq_count()) {
5524 		if (softirq_count()) {
5525 			/* like the above, but with softirqs */
5526 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5527 		} else {
5528 			/* lick the above, does it taste good? */
5529 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5530 		}
5531 	}
5532 #endif
5533 
5534 	if (!debug_locks)
5535 		print_irqtrace_events(current);
5536 
5537 	instrumentation_end();
5538 #endif
5539 }
5540 
5541 void lock_set_class(struct lockdep_map *lock, const char *name,
5542 		    struct lock_class_key *key, unsigned int subclass,
5543 		    unsigned long ip)
5544 {
5545 	unsigned long flags;
5546 
5547 	if (unlikely(!lockdep_enabled()))
5548 		return;
5549 
5550 	raw_local_irq_save(flags);
5551 	lockdep_recursion_inc();
5552 	check_flags(flags);
5553 	if (__lock_set_class(lock, name, key, subclass, ip))
5554 		check_chain_key(current);
5555 	lockdep_recursion_finish();
5556 	raw_local_irq_restore(flags);
5557 }
5558 EXPORT_SYMBOL_GPL(lock_set_class);
5559 
5560 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5561 {
5562 	unsigned long flags;
5563 
5564 	if (unlikely(!lockdep_enabled()))
5565 		return;
5566 
5567 	raw_local_irq_save(flags);
5568 	lockdep_recursion_inc();
5569 	check_flags(flags);
5570 	if (__lock_downgrade(lock, ip))
5571 		check_chain_key(current);
5572 	lockdep_recursion_finish();
5573 	raw_local_irq_restore(flags);
5574 }
5575 EXPORT_SYMBOL_GPL(lock_downgrade);
5576 
5577 /* NMI context !!! */
5578 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5579 {
5580 #ifdef CONFIG_PROVE_LOCKING
5581 	struct lock_class *class = look_up_lock_class(lock, subclass);
5582 	unsigned long mask = LOCKF_USED;
5583 
5584 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5585 	if (!class)
5586 		return;
5587 
5588 	/*
5589 	 * READ locks only conflict with USED, such that if we only ever use
5590 	 * READ locks, there is no deadlock possible -- RCU.
5591 	 */
5592 	if (!hlock->read)
5593 		mask |= LOCKF_USED_READ;
5594 
5595 	if (!(class->usage_mask & mask))
5596 		return;
5597 
5598 	hlock->class_idx = class - lock_classes;
5599 
5600 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5601 #endif
5602 }
5603 
5604 static bool lockdep_nmi(void)
5605 {
5606 	if (raw_cpu_read(lockdep_recursion))
5607 		return false;
5608 
5609 	if (!in_nmi())
5610 		return false;
5611 
5612 	return true;
5613 }
5614 
5615 /*
5616  * read_lock() is recursive if:
5617  * 1. We force lockdep think this way in selftests or
5618  * 2. The implementation is not queued read/write lock or
5619  * 3. The locker is at an in_interrupt() context.
5620  */
5621 bool read_lock_is_recursive(void)
5622 {
5623 	return force_read_lock_recursive ||
5624 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5625 	       in_interrupt();
5626 }
5627 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5628 
5629 /*
5630  * We are not always called with irqs disabled - do that here,
5631  * and also avoid lockdep recursion:
5632  */
5633 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5634 			  int trylock, int read, int check,
5635 			  struct lockdep_map *nest_lock, unsigned long ip)
5636 {
5637 	unsigned long flags;
5638 
5639 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5640 
5641 	if (!debug_locks)
5642 		return;
5643 
5644 	if (unlikely(!lockdep_enabled())) {
5645 		/* XXX allow trylock from NMI ?!? */
5646 		if (lockdep_nmi() && !trylock) {
5647 			struct held_lock hlock;
5648 
5649 			hlock.acquire_ip = ip;
5650 			hlock.instance = lock;
5651 			hlock.nest_lock = nest_lock;
5652 			hlock.irq_context = 2; // XXX
5653 			hlock.trylock = trylock;
5654 			hlock.read = read;
5655 			hlock.check = check;
5656 			hlock.hardirqs_off = true;
5657 			hlock.references = 0;
5658 
5659 			verify_lock_unused(lock, &hlock, subclass);
5660 		}
5661 		return;
5662 	}
5663 
5664 	raw_local_irq_save(flags);
5665 	check_flags(flags);
5666 
5667 	lockdep_recursion_inc();
5668 	__lock_acquire(lock, subclass, trylock, read, check,
5669 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5670 	lockdep_recursion_finish();
5671 	raw_local_irq_restore(flags);
5672 }
5673 EXPORT_SYMBOL_GPL(lock_acquire);
5674 
5675 void lock_release(struct lockdep_map *lock, unsigned long ip)
5676 {
5677 	unsigned long flags;
5678 
5679 	trace_lock_release(lock, ip);
5680 
5681 	if (unlikely(!lockdep_enabled()))
5682 		return;
5683 
5684 	raw_local_irq_save(flags);
5685 	check_flags(flags);
5686 
5687 	lockdep_recursion_inc();
5688 	if (__lock_release(lock, ip))
5689 		check_chain_key(current);
5690 	lockdep_recursion_finish();
5691 	raw_local_irq_restore(flags);
5692 }
5693 EXPORT_SYMBOL_GPL(lock_release);
5694 
5695 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5696 {
5697 	unsigned long flags;
5698 	int ret = LOCK_STATE_NOT_HELD;
5699 
5700 	/*
5701 	 * Avoid false negative lockdep_assert_held() and
5702 	 * lockdep_assert_not_held().
5703 	 */
5704 	if (unlikely(!lockdep_enabled()))
5705 		return LOCK_STATE_UNKNOWN;
5706 
5707 	raw_local_irq_save(flags);
5708 	check_flags(flags);
5709 
5710 	lockdep_recursion_inc();
5711 	ret = __lock_is_held(lock, read);
5712 	lockdep_recursion_finish();
5713 	raw_local_irq_restore(flags);
5714 
5715 	return ret;
5716 }
5717 EXPORT_SYMBOL_GPL(lock_is_held_type);
5718 NOKPROBE_SYMBOL(lock_is_held_type);
5719 
5720 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5721 {
5722 	struct pin_cookie cookie = NIL_COOKIE;
5723 	unsigned long flags;
5724 
5725 	if (unlikely(!lockdep_enabled()))
5726 		return cookie;
5727 
5728 	raw_local_irq_save(flags);
5729 	check_flags(flags);
5730 
5731 	lockdep_recursion_inc();
5732 	cookie = __lock_pin_lock(lock);
5733 	lockdep_recursion_finish();
5734 	raw_local_irq_restore(flags);
5735 
5736 	return cookie;
5737 }
5738 EXPORT_SYMBOL_GPL(lock_pin_lock);
5739 
5740 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5741 {
5742 	unsigned long flags;
5743 
5744 	if (unlikely(!lockdep_enabled()))
5745 		return;
5746 
5747 	raw_local_irq_save(flags);
5748 	check_flags(flags);
5749 
5750 	lockdep_recursion_inc();
5751 	__lock_repin_lock(lock, cookie);
5752 	lockdep_recursion_finish();
5753 	raw_local_irq_restore(flags);
5754 }
5755 EXPORT_SYMBOL_GPL(lock_repin_lock);
5756 
5757 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5758 {
5759 	unsigned long flags;
5760 
5761 	if (unlikely(!lockdep_enabled()))
5762 		return;
5763 
5764 	raw_local_irq_save(flags);
5765 	check_flags(flags);
5766 
5767 	lockdep_recursion_inc();
5768 	__lock_unpin_lock(lock, cookie);
5769 	lockdep_recursion_finish();
5770 	raw_local_irq_restore(flags);
5771 }
5772 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5773 
5774 #ifdef CONFIG_LOCK_STAT
5775 static void print_lock_contention_bug(struct task_struct *curr,
5776 				      struct lockdep_map *lock,
5777 				      unsigned long ip)
5778 {
5779 	if (!debug_locks_off())
5780 		return;
5781 	if (debug_locks_silent)
5782 		return;
5783 
5784 	pr_warn("\n");
5785 	pr_warn("=================================\n");
5786 	pr_warn("WARNING: bad contention detected!\n");
5787 	print_kernel_ident();
5788 	pr_warn("---------------------------------\n");
5789 	pr_warn("%s/%d is trying to contend lock (",
5790 		curr->comm, task_pid_nr(curr));
5791 	print_lockdep_cache(lock);
5792 	pr_cont(") at:\n");
5793 	print_ip_sym(KERN_WARNING, ip);
5794 	pr_warn("but there are no locks held!\n");
5795 	pr_warn("\nother info that might help us debug this:\n");
5796 	lockdep_print_held_locks(curr);
5797 
5798 	pr_warn("\nstack backtrace:\n");
5799 	dump_stack();
5800 }
5801 
5802 static void
5803 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5804 {
5805 	struct task_struct *curr = current;
5806 	struct held_lock *hlock;
5807 	struct lock_class_stats *stats;
5808 	unsigned int depth;
5809 	int i, contention_point, contending_point;
5810 
5811 	depth = curr->lockdep_depth;
5812 	/*
5813 	 * Whee, we contended on this lock, except it seems we're not
5814 	 * actually trying to acquire anything much at all..
5815 	 */
5816 	if (DEBUG_LOCKS_WARN_ON(!depth))
5817 		return;
5818 
5819 	hlock = find_held_lock(curr, lock, depth, &i);
5820 	if (!hlock) {
5821 		print_lock_contention_bug(curr, lock, ip);
5822 		return;
5823 	}
5824 
5825 	if (hlock->instance != lock)
5826 		return;
5827 
5828 	hlock->waittime_stamp = lockstat_clock();
5829 
5830 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5831 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5832 				      lock->ip);
5833 
5834 	stats = get_lock_stats(hlock_class(hlock));
5835 	if (contention_point < LOCKSTAT_POINTS)
5836 		stats->contention_point[contention_point]++;
5837 	if (contending_point < LOCKSTAT_POINTS)
5838 		stats->contending_point[contending_point]++;
5839 	if (lock->cpu != smp_processor_id())
5840 		stats->bounces[bounce_contended + !!hlock->read]++;
5841 }
5842 
5843 static void
5844 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5845 {
5846 	struct task_struct *curr = current;
5847 	struct held_lock *hlock;
5848 	struct lock_class_stats *stats;
5849 	unsigned int depth;
5850 	u64 now, waittime = 0;
5851 	int i, cpu;
5852 
5853 	depth = curr->lockdep_depth;
5854 	/*
5855 	 * Yay, we acquired ownership of this lock we didn't try to
5856 	 * acquire, how the heck did that happen?
5857 	 */
5858 	if (DEBUG_LOCKS_WARN_ON(!depth))
5859 		return;
5860 
5861 	hlock = find_held_lock(curr, lock, depth, &i);
5862 	if (!hlock) {
5863 		print_lock_contention_bug(curr, lock, _RET_IP_);
5864 		return;
5865 	}
5866 
5867 	if (hlock->instance != lock)
5868 		return;
5869 
5870 	cpu = smp_processor_id();
5871 	if (hlock->waittime_stamp) {
5872 		now = lockstat_clock();
5873 		waittime = now - hlock->waittime_stamp;
5874 		hlock->holdtime_stamp = now;
5875 	}
5876 
5877 	stats = get_lock_stats(hlock_class(hlock));
5878 	if (waittime) {
5879 		if (hlock->read)
5880 			lock_time_inc(&stats->read_waittime, waittime);
5881 		else
5882 			lock_time_inc(&stats->write_waittime, waittime);
5883 	}
5884 	if (lock->cpu != cpu)
5885 		stats->bounces[bounce_acquired + !!hlock->read]++;
5886 
5887 	lock->cpu = cpu;
5888 	lock->ip = ip;
5889 }
5890 
5891 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5892 {
5893 	unsigned long flags;
5894 
5895 	trace_lock_contended(lock, ip);
5896 
5897 	if (unlikely(!lock_stat || !lockdep_enabled()))
5898 		return;
5899 
5900 	raw_local_irq_save(flags);
5901 	check_flags(flags);
5902 	lockdep_recursion_inc();
5903 	__lock_contended(lock, ip);
5904 	lockdep_recursion_finish();
5905 	raw_local_irq_restore(flags);
5906 }
5907 EXPORT_SYMBOL_GPL(lock_contended);
5908 
5909 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5910 {
5911 	unsigned long flags;
5912 
5913 	trace_lock_acquired(lock, ip);
5914 
5915 	if (unlikely(!lock_stat || !lockdep_enabled()))
5916 		return;
5917 
5918 	raw_local_irq_save(flags);
5919 	check_flags(flags);
5920 	lockdep_recursion_inc();
5921 	__lock_acquired(lock, ip);
5922 	lockdep_recursion_finish();
5923 	raw_local_irq_restore(flags);
5924 }
5925 EXPORT_SYMBOL_GPL(lock_acquired);
5926 #endif
5927 
5928 /*
5929  * Used by the testsuite, sanitize the validator state
5930  * after a simulated failure:
5931  */
5932 
5933 void lockdep_reset(void)
5934 {
5935 	unsigned long flags;
5936 	int i;
5937 
5938 	raw_local_irq_save(flags);
5939 	lockdep_init_task(current);
5940 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5941 	nr_hardirq_chains = 0;
5942 	nr_softirq_chains = 0;
5943 	nr_process_chains = 0;
5944 	debug_locks = 1;
5945 	for (i = 0; i < CHAINHASH_SIZE; i++)
5946 		INIT_HLIST_HEAD(chainhash_table + i);
5947 	raw_local_irq_restore(flags);
5948 }
5949 
5950 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5951 static void remove_class_from_lock_chain(struct pending_free *pf,
5952 					 struct lock_chain *chain,
5953 					 struct lock_class *class)
5954 {
5955 #ifdef CONFIG_PROVE_LOCKING
5956 	int i;
5957 
5958 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5959 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5960 			continue;
5961 		/*
5962 		 * Each lock class occurs at most once in a lock chain so once
5963 		 * we found a match we can break out of this loop.
5964 		 */
5965 		goto free_lock_chain;
5966 	}
5967 	/* Since the chain has not been modified, return. */
5968 	return;
5969 
5970 free_lock_chain:
5971 	free_chain_hlocks(chain->base, chain->depth);
5972 	/* Overwrite the chain key for concurrent RCU readers. */
5973 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5974 	dec_chains(chain->irq_context);
5975 
5976 	/*
5977 	 * Note: calling hlist_del_rcu() from inside a
5978 	 * hlist_for_each_entry_rcu() loop is safe.
5979 	 */
5980 	hlist_del_rcu(&chain->entry);
5981 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5982 	nr_zapped_lock_chains++;
5983 #endif
5984 }
5985 
5986 /* Must be called with the graph lock held. */
5987 static void remove_class_from_lock_chains(struct pending_free *pf,
5988 					  struct lock_class *class)
5989 {
5990 	struct lock_chain *chain;
5991 	struct hlist_head *head;
5992 	int i;
5993 
5994 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5995 		head = chainhash_table + i;
5996 		hlist_for_each_entry_rcu(chain, head, entry) {
5997 			remove_class_from_lock_chain(pf, chain, class);
5998 		}
5999 	}
6000 }
6001 
6002 /*
6003  * Remove all references to a lock class. The caller must hold the graph lock.
6004  */
6005 static void zap_class(struct pending_free *pf, struct lock_class *class)
6006 {
6007 	struct lock_list *entry;
6008 	int i;
6009 
6010 	WARN_ON_ONCE(!class->key);
6011 
6012 	/*
6013 	 * Remove all dependencies this lock is
6014 	 * involved in:
6015 	 */
6016 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6017 		entry = list_entries + i;
6018 		if (entry->class != class && entry->links_to != class)
6019 			continue;
6020 		__clear_bit(i, list_entries_in_use);
6021 		nr_list_entries--;
6022 		list_del_rcu(&entry->entry);
6023 	}
6024 	if (list_empty(&class->locks_after) &&
6025 	    list_empty(&class->locks_before)) {
6026 		list_move_tail(&class->lock_entry, &pf->zapped);
6027 		hlist_del_rcu(&class->hash_entry);
6028 		WRITE_ONCE(class->key, NULL);
6029 		WRITE_ONCE(class->name, NULL);
6030 		nr_lock_classes--;
6031 		__clear_bit(class - lock_classes, lock_classes_in_use);
6032 		if (class - lock_classes == max_lock_class_idx)
6033 			max_lock_class_idx--;
6034 	} else {
6035 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6036 			  class->name);
6037 	}
6038 
6039 	remove_class_from_lock_chains(pf, class);
6040 	nr_zapped_classes++;
6041 }
6042 
6043 static void reinit_class(struct lock_class *class)
6044 {
6045 	WARN_ON_ONCE(!class->lock_entry.next);
6046 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6047 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6048 	memset_startat(class, 0, key);
6049 	WARN_ON_ONCE(!class->lock_entry.next);
6050 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6051 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6052 }
6053 
6054 static inline int within(const void *addr, void *start, unsigned long size)
6055 {
6056 	return addr >= start && addr < start + size;
6057 }
6058 
6059 static bool inside_selftest(void)
6060 {
6061 	return current == lockdep_selftest_task_struct;
6062 }
6063 
6064 /* The caller must hold the graph lock. */
6065 static struct pending_free *get_pending_free(void)
6066 {
6067 	return delayed_free.pf + delayed_free.index;
6068 }
6069 
6070 static void free_zapped_rcu(struct rcu_head *cb);
6071 
6072 /*
6073  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6074  * the graph lock held.
6075  */
6076 static void call_rcu_zapped(struct pending_free *pf)
6077 {
6078 	WARN_ON_ONCE(inside_selftest());
6079 
6080 	if (list_empty(&pf->zapped))
6081 		return;
6082 
6083 	if (delayed_free.scheduled)
6084 		return;
6085 
6086 	delayed_free.scheduled = true;
6087 
6088 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6089 	delayed_free.index ^= 1;
6090 
6091 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6092 }
6093 
6094 /* The caller must hold the graph lock. May be called from RCU context. */
6095 static void __free_zapped_classes(struct pending_free *pf)
6096 {
6097 	struct lock_class *class;
6098 
6099 	check_data_structures();
6100 
6101 	list_for_each_entry(class, &pf->zapped, lock_entry)
6102 		reinit_class(class);
6103 
6104 	list_splice_init(&pf->zapped, &free_lock_classes);
6105 
6106 #ifdef CONFIG_PROVE_LOCKING
6107 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6108 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6109 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6110 #endif
6111 }
6112 
6113 static void free_zapped_rcu(struct rcu_head *ch)
6114 {
6115 	struct pending_free *pf;
6116 	unsigned long flags;
6117 
6118 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6119 		return;
6120 
6121 	raw_local_irq_save(flags);
6122 	lockdep_lock();
6123 
6124 	/* closed head */
6125 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6126 	__free_zapped_classes(pf);
6127 	delayed_free.scheduled = false;
6128 
6129 	/*
6130 	 * If there's anything on the open list, close and start a new callback.
6131 	 */
6132 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6133 
6134 	lockdep_unlock();
6135 	raw_local_irq_restore(flags);
6136 }
6137 
6138 /*
6139  * Remove all lock classes from the class hash table and from the
6140  * all_lock_classes list whose key or name is in the address range [start,
6141  * start + size). Move these lock classes to the zapped_classes list. Must
6142  * be called with the graph lock held.
6143  */
6144 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6145 				     unsigned long size)
6146 {
6147 	struct lock_class *class;
6148 	struct hlist_head *head;
6149 	int i;
6150 
6151 	/* Unhash all classes that were created by a module. */
6152 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6153 		head = classhash_table + i;
6154 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6155 			if (!within(class->key, start, size) &&
6156 			    !within(class->name, start, size))
6157 				continue;
6158 			zap_class(pf, class);
6159 		}
6160 	}
6161 }
6162 
6163 /*
6164  * Used in module.c to remove lock classes from memory that is going to be
6165  * freed; and possibly re-used by other modules.
6166  *
6167  * We will have had one synchronize_rcu() before getting here, so we're
6168  * guaranteed nobody will look up these exact classes -- they're properly dead
6169  * but still allocated.
6170  */
6171 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6172 {
6173 	struct pending_free *pf;
6174 	unsigned long flags;
6175 
6176 	init_data_structures_once();
6177 
6178 	raw_local_irq_save(flags);
6179 	lockdep_lock();
6180 	pf = get_pending_free();
6181 	__lockdep_free_key_range(pf, start, size);
6182 	call_rcu_zapped(pf);
6183 	lockdep_unlock();
6184 	raw_local_irq_restore(flags);
6185 
6186 	/*
6187 	 * Wait for any possible iterators from look_up_lock_class() to pass
6188 	 * before continuing to free the memory they refer to.
6189 	 */
6190 	synchronize_rcu();
6191 }
6192 
6193 /*
6194  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6195  * Ignores debug_locks. Must only be used by the lockdep selftests.
6196  */
6197 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6198 {
6199 	struct pending_free *pf = delayed_free.pf;
6200 	unsigned long flags;
6201 
6202 	init_data_structures_once();
6203 
6204 	raw_local_irq_save(flags);
6205 	lockdep_lock();
6206 	__lockdep_free_key_range(pf, start, size);
6207 	__free_zapped_classes(pf);
6208 	lockdep_unlock();
6209 	raw_local_irq_restore(flags);
6210 }
6211 
6212 void lockdep_free_key_range(void *start, unsigned long size)
6213 {
6214 	init_data_structures_once();
6215 
6216 	if (inside_selftest())
6217 		lockdep_free_key_range_imm(start, size);
6218 	else
6219 		lockdep_free_key_range_reg(start, size);
6220 }
6221 
6222 /*
6223  * Check whether any element of the @lock->class_cache[] array refers to a
6224  * registered lock class. The caller must hold either the graph lock or the
6225  * RCU read lock.
6226  */
6227 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6228 {
6229 	struct lock_class *class;
6230 	struct hlist_head *head;
6231 	int i, j;
6232 
6233 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6234 		head = classhash_table + i;
6235 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6236 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6237 				if (lock->class_cache[j] == class)
6238 					return true;
6239 		}
6240 	}
6241 	return false;
6242 }
6243 
6244 /* The caller must hold the graph lock. Does not sleep. */
6245 static void __lockdep_reset_lock(struct pending_free *pf,
6246 				 struct lockdep_map *lock)
6247 {
6248 	struct lock_class *class;
6249 	int j;
6250 
6251 	/*
6252 	 * Remove all classes this lock might have:
6253 	 */
6254 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6255 		/*
6256 		 * If the class exists we look it up and zap it:
6257 		 */
6258 		class = look_up_lock_class(lock, j);
6259 		if (class)
6260 			zap_class(pf, class);
6261 	}
6262 	/*
6263 	 * Debug check: in the end all mapped classes should
6264 	 * be gone.
6265 	 */
6266 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6267 		debug_locks_off();
6268 }
6269 
6270 /*
6271  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6272  * released data structures from RCU context.
6273  */
6274 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6275 {
6276 	struct pending_free *pf;
6277 	unsigned long flags;
6278 	int locked;
6279 
6280 	raw_local_irq_save(flags);
6281 	locked = graph_lock();
6282 	if (!locked)
6283 		goto out_irq;
6284 
6285 	pf = get_pending_free();
6286 	__lockdep_reset_lock(pf, lock);
6287 	call_rcu_zapped(pf);
6288 
6289 	graph_unlock();
6290 out_irq:
6291 	raw_local_irq_restore(flags);
6292 }
6293 
6294 /*
6295  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6296  * lockdep selftests.
6297  */
6298 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6299 {
6300 	struct pending_free *pf = delayed_free.pf;
6301 	unsigned long flags;
6302 
6303 	raw_local_irq_save(flags);
6304 	lockdep_lock();
6305 	__lockdep_reset_lock(pf, lock);
6306 	__free_zapped_classes(pf);
6307 	lockdep_unlock();
6308 	raw_local_irq_restore(flags);
6309 }
6310 
6311 void lockdep_reset_lock(struct lockdep_map *lock)
6312 {
6313 	init_data_structures_once();
6314 
6315 	if (inside_selftest())
6316 		lockdep_reset_lock_imm(lock);
6317 	else
6318 		lockdep_reset_lock_reg(lock);
6319 }
6320 
6321 /*
6322  * Unregister a dynamically allocated key.
6323  *
6324  * Unlike lockdep_register_key(), a search is always done to find a matching
6325  * key irrespective of debug_locks to avoid potential invalid access to freed
6326  * memory in lock_class entry.
6327  */
6328 void lockdep_unregister_key(struct lock_class_key *key)
6329 {
6330 	struct hlist_head *hash_head = keyhashentry(key);
6331 	struct lock_class_key *k;
6332 	struct pending_free *pf;
6333 	unsigned long flags;
6334 	bool found = false;
6335 
6336 	might_sleep();
6337 
6338 	if (WARN_ON_ONCE(static_obj(key)))
6339 		return;
6340 
6341 	raw_local_irq_save(flags);
6342 	lockdep_lock();
6343 
6344 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6345 		if (k == key) {
6346 			hlist_del_rcu(&k->hash_entry);
6347 			found = true;
6348 			break;
6349 		}
6350 	}
6351 	WARN_ON_ONCE(!found && debug_locks);
6352 	if (found) {
6353 		pf = get_pending_free();
6354 		__lockdep_free_key_range(pf, key, 1);
6355 		call_rcu_zapped(pf);
6356 	}
6357 	lockdep_unlock();
6358 	raw_local_irq_restore(flags);
6359 
6360 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6361 	synchronize_rcu();
6362 }
6363 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6364 
6365 void __init lockdep_init(void)
6366 {
6367 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6368 
6369 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6370 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6371 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6372 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6373 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6374 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6375 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6376 
6377 	printk(" memory used by lock dependency info: %zu kB\n",
6378 	       (sizeof(lock_classes) +
6379 		sizeof(lock_classes_in_use) +
6380 		sizeof(classhash_table) +
6381 		sizeof(list_entries) +
6382 		sizeof(list_entries_in_use) +
6383 		sizeof(chainhash_table) +
6384 		sizeof(delayed_free)
6385 #ifdef CONFIG_PROVE_LOCKING
6386 		+ sizeof(lock_cq)
6387 		+ sizeof(lock_chains)
6388 		+ sizeof(lock_chains_in_use)
6389 		+ sizeof(chain_hlocks)
6390 #endif
6391 		) / 1024
6392 		);
6393 
6394 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6395 	printk(" memory used for stack traces: %zu kB\n",
6396 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6397 	       );
6398 #endif
6399 
6400 	printk(" per task-struct memory footprint: %zu bytes\n",
6401 	       sizeof(((struct task_struct *)NULL)->held_locks));
6402 }
6403 
6404 static void
6405 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6406 		     const void *mem_to, struct held_lock *hlock)
6407 {
6408 	if (!debug_locks_off())
6409 		return;
6410 	if (debug_locks_silent)
6411 		return;
6412 
6413 	pr_warn("\n");
6414 	pr_warn("=========================\n");
6415 	pr_warn("WARNING: held lock freed!\n");
6416 	print_kernel_ident();
6417 	pr_warn("-------------------------\n");
6418 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6419 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6420 	print_lock(hlock);
6421 	lockdep_print_held_locks(curr);
6422 
6423 	pr_warn("\nstack backtrace:\n");
6424 	dump_stack();
6425 }
6426 
6427 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6428 				const void* lock_from, unsigned long lock_len)
6429 {
6430 	return lock_from + lock_len <= mem_from ||
6431 		mem_from + mem_len <= lock_from;
6432 }
6433 
6434 /*
6435  * Called when kernel memory is freed (or unmapped), or if a lock
6436  * is destroyed or reinitialized - this code checks whether there is
6437  * any held lock in the memory range of <from> to <to>:
6438  */
6439 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6440 {
6441 	struct task_struct *curr = current;
6442 	struct held_lock *hlock;
6443 	unsigned long flags;
6444 	int i;
6445 
6446 	if (unlikely(!debug_locks))
6447 		return;
6448 
6449 	raw_local_irq_save(flags);
6450 	for (i = 0; i < curr->lockdep_depth; i++) {
6451 		hlock = curr->held_locks + i;
6452 
6453 		if (not_in_range(mem_from, mem_len, hlock->instance,
6454 					sizeof(*hlock->instance)))
6455 			continue;
6456 
6457 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6458 		break;
6459 	}
6460 	raw_local_irq_restore(flags);
6461 }
6462 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6463 
6464 static void print_held_locks_bug(void)
6465 {
6466 	if (!debug_locks_off())
6467 		return;
6468 	if (debug_locks_silent)
6469 		return;
6470 
6471 	pr_warn("\n");
6472 	pr_warn("====================================\n");
6473 	pr_warn("WARNING: %s/%d still has locks held!\n",
6474 	       current->comm, task_pid_nr(current));
6475 	print_kernel_ident();
6476 	pr_warn("------------------------------------\n");
6477 	lockdep_print_held_locks(current);
6478 	pr_warn("\nstack backtrace:\n");
6479 	dump_stack();
6480 }
6481 
6482 void debug_check_no_locks_held(void)
6483 {
6484 	if (unlikely(current->lockdep_depth > 0))
6485 		print_held_locks_bug();
6486 }
6487 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6488 
6489 #ifdef __KERNEL__
6490 void debug_show_all_locks(void)
6491 {
6492 	struct task_struct *g, *p;
6493 
6494 	if (unlikely(!debug_locks)) {
6495 		pr_warn("INFO: lockdep is turned off.\n");
6496 		return;
6497 	}
6498 	pr_warn("\nShowing all locks held in the system:\n");
6499 
6500 	rcu_read_lock();
6501 	for_each_process_thread(g, p) {
6502 		if (!p->lockdep_depth)
6503 			continue;
6504 		lockdep_print_held_locks(p);
6505 		touch_nmi_watchdog();
6506 		touch_all_softlockup_watchdogs();
6507 	}
6508 	rcu_read_unlock();
6509 
6510 	pr_warn("\n");
6511 	pr_warn("=============================================\n\n");
6512 }
6513 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6514 #endif
6515 
6516 /*
6517  * Careful: only use this function if you are sure that
6518  * the task cannot run in parallel!
6519  */
6520 void debug_show_held_locks(struct task_struct *task)
6521 {
6522 	if (unlikely(!debug_locks)) {
6523 		printk("INFO: lockdep is turned off.\n");
6524 		return;
6525 	}
6526 	lockdep_print_held_locks(task);
6527 }
6528 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6529 
6530 asmlinkage __visible void lockdep_sys_exit(void)
6531 {
6532 	struct task_struct *curr = current;
6533 
6534 	if (unlikely(curr->lockdep_depth)) {
6535 		if (!debug_locks_off())
6536 			return;
6537 		pr_warn("\n");
6538 		pr_warn("================================================\n");
6539 		pr_warn("WARNING: lock held when returning to user space!\n");
6540 		print_kernel_ident();
6541 		pr_warn("------------------------------------------------\n");
6542 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6543 				curr->comm, curr->pid);
6544 		lockdep_print_held_locks(curr);
6545 	}
6546 
6547 	/*
6548 	 * The lock history for each syscall should be independent. So wipe the
6549 	 * slate clean on return to userspace.
6550 	 */
6551 	lockdep_invariant_state(false);
6552 }
6553 
6554 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6555 {
6556 	struct task_struct *curr = current;
6557 	int dl = READ_ONCE(debug_locks);
6558 
6559 	/* Note: the following can be executed concurrently, so be careful. */
6560 	pr_warn("\n");
6561 	pr_warn("=============================\n");
6562 	pr_warn("WARNING: suspicious RCU usage\n");
6563 	print_kernel_ident();
6564 	pr_warn("-----------------------------\n");
6565 	pr_warn("%s:%d %s!\n", file, line, s);
6566 	pr_warn("\nother info that might help us debug this:\n\n");
6567 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6568 	       !rcu_lockdep_current_cpu_online()
6569 			? "RCU used illegally from offline CPU!\n"
6570 			: "",
6571 	       rcu_scheduler_active, dl,
6572 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6573 
6574 	/*
6575 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6576 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6577 	 * considers that CPU to be in an "extended quiescent state",
6578 	 * which means that RCU will be completely ignoring that CPU.
6579 	 * Therefore, rcu_read_lock() and friends have absolutely no
6580 	 * effect on a CPU running in that state. In other words, even if
6581 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6582 	 * delete data structures out from under it.  RCU really has no
6583 	 * choice here: we need to keep an RCU-free window in idle where
6584 	 * the CPU may possibly enter into low power mode. This way we can
6585 	 * notice an extended quiescent state to other CPUs that started a grace
6586 	 * period. Otherwise we would delay any grace period as long as we run
6587 	 * in the idle task.
6588 	 *
6589 	 * So complain bitterly if someone does call rcu_read_lock(),
6590 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6591 	 */
6592 	if (!rcu_is_watching())
6593 		pr_warn("RCU used illegally from extended quiescent state!\n");
6594 
6595 	lockdep_print_held_locks(curr);
6596 	pr_warn("\nstack backtrace:\n");
6597 	dump_stack();
6598 }
6599 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6600