1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 58 #include <asm/sections.h> 59 60 #include "lockdep_internals.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/lock.h> 64 65 #ifdef CONFIG_PROVE_LOCKING 66 int prove_locking = 1; 67 module_param(prove_locking, int, 0644); 68 #else 69 #define prove_locking 0 70 #endif 71 72 #ifdef CONFIG_LOCK_STAT 73 int lock_stat = 1; 74 module_param(lock_stat, int, 0644); 75 #else 76 #define lock_stat 0 77 #endif 78 79 /* 80 * lockdep_lock: protects the lockdep graph, the hashes and the 81 * class/list/hash allocators. 82 * 83 * This is one of the rare exceptions where it's justified 84 * to use a raw spinlock - we really dont want the spinlock 85 * code to recurse back into the lockdep code... 86 */ 87 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 88 static struct task_struct *__owner; 89 90 static inline void lockdep_lock(void) 91 { 92 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 93 94 arch_spin_lock(&__lock); 95 __owner = current; 96 current->lockdep_recursion++; 97 } 98 99 static inline void lockdep_unlock(void) 100 { 101 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 102 return; 103 104 current->lockdep_recursion--; 105 __owner = NULL; 106 arch_spin_unlock(&__lock); 107 } 108 109 static inline bool lockdep_assert_locked(void) 110 { 111 return DEBUG_LOCKS_WARN_ON(__owner != current); 112 } 113 114 static struct task_struct *lockdep_selftest_task_struct; 115 116 117 static int graph_lock(void) 118 { 119 lockdep_lock(); 120 /* 121 * Make sure that if another CPU detected a bug while 122 * walking the graph we dont change it (while the other 123 * CPU is busy printing out stuff with the graph lock 124 * dropped already) 125 */ 126 if (!debug_locks) { 127 lockdep_unlock(); 128 return 0; 129 } 130 return 1; 131 } 132 133 static inline void graph_unlock(void) 134 { 135 lockdep_unlock(); 136 } 137 138 /* 139 * Turn lock debugging off and return with 0 if it was off already, 140 * and also release the graph lock: 141 */ 142 static inline int debug_locks_off_graph_unlock(void) 143 { 144 int ret = debug_locks_off(); 145 146 lockdep_unlock(); 147 148 return ret; 149 } 150 151 unsigned long nr_list_entries; 152 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 153 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 154 155 /* 156 * All data structures here are protected by the global debug_lock. 157 * 158 * nr_lock_classes is the number of elements of lock_classes[] that is 159 * in use. 160 */ 161 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 162 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 163 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 164 unsigned long nr_lock_classes; 165 unsigned long nr_zapped_classes; 166 #ifndef CONFIG_DEBUG_LOCKDEP 167 static 168 #endif 169 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 170 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 171 172 static inline struct lock_class *hlock_class(struct held_lock *hlock) 173 { 174 unsigned int class_idx = hlock->class_idx; 175 176 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 177 barrier(); 178 179 if (!test_bit(class_idx, lock_classes_in_use)) { 180 /* 181 * Someone passed in garbage, we give up. 182 */ 183 DEBUG_LOCKS_WARN_ON(1); 184 return NULL; 185 } 186 187 /* 188 * At this point, if the passed hlock->class_idx is still garbage, 189 * we just have to live with it 190 */ 191 return lock_classes + class_idx; 192 } 193 194 #ifdef CONFIG_LOCK_STAT 195 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 196 197 static inline u64 lockstat_clock(void) 198 { 199 return local_clock(); 200 } 201 202 static int lock_point(unsigned long points[], unsigned long ip) 203 { 204 int i; 205 206 for (i = 0; i < LOCKSTAT_POINTS; i++) { 207 if (points[i] == 0) { 208 points[i] = ip; 209 break; 210 } 211 if (points[i] == ip) 212 break; 213 } 214 215 return i; 216 } 217 218 static void lock_time_inc(struct lock_time *lt, u64 time) 219 { 220 if (time > lt->max) 221 lt->max = time; 222 223 if (time < lt->min || !lt->nr) 224 lt->min = time; 225 226 lt->total += time; 227 lt->nr++; 228 } 229 230 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 231 { 232 if (!src->nr) 233 return; 234 235 if (src->max > dst->max) 236 dst->max = src->max; 237 238 if (src->min < dst->min || !dst->nr) 239 dst->min = src->min; 240 241 dst->total += src->total; 242 dst->nr += src->nr; 243 } 244 245 struct lock_class_stats lock_stats(struct lock_class *class) 246 { 247 struct lock_class_stats stats; 248 int cpu, i; 249 250 memset(&stats, 0, sizeof(struct lock_class_stats)); 251 for_each_possible_cpu(cpu) { 252 struct lock_class_stats *pcs = 253 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 254 255 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 256 stats.contention_point[i] += pcs->contention_point[i]; 257 258 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 259 stats.contending_point[i] += pcs->contending_point[i]; 260 261 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 262 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 263 264 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 265 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 266 267 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 268 stats.bounces[i] += pcs->bounces[i]; 269 } 270 271 return stats; 272 } 273 274 void clear_lock_stats(struct lock_class *class) 275 { 276 int cpu; 277 278 for_each_possible_cpu(cpu) { 279 struct lock_class_stats *cpu_stats = 280 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 281 282 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 283 } 284 memset(class->contention_point, 0, sizeof(class->contention_point)); 285 memset(class->contending_point, 0, sizeof(class->contending_point)); 286 } 287 288 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 289 { 290 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 291 } 292 293 static void lock_release_holdtime(struct held_lock *hlock) 294 { 295 struct lock_class_stats *stats; 296 u64 holdtime; 297 298 if (!lock_stat) 299 return; 300 301 holdtime = lockstat_clock() - hlock->holdtime_stamp; 302 303 stats = get_lock_stats(hlock_class(hlock)); 304 if (hlock->read) 305 lock_time_inc(&stats->read_holdtime, holdtime); 306 else 307 lock_time_inc(&stats->write_holdtime, holdtime); 308 } 309 #else 310 static inline void lock_release_holdtime(struct held_lock *hlock) 311 { 312 } 313 #endif 314 315 /* 316 * We keep a global list of all lock classes. The list is only accessed with 317 * the lockdep spinlock lock held. free_lock_classes is a list with free 318 * elements. These elements are linked together by the lock_entry member in 319 * struct lock_class. 320 */ 321 LIST_HEAD(all_lock_classes); 322 static LIST_HEAD(free_lock_classes); 323 324 /** 325 * struct pending_free - information about data structures about to be freed 326 * @zapped: Head of a list with struct lock_class elements. 327 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 328 * are about to be freed. 329 */ 330 struct pending_free { 331 struct list_head zapped; 332 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 333 }; 334 335 /** 336 * struct delayed_free - data structures used for delayed freeing 337 * 338 * A data structure for delayed freeing of data structures that may be 339 * accessed by RCU readers at the time these were freed. 340 * 341 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 342 * @index: Index of @pf to which freed data structures are added. 343 * @scheduled: Whether or not an RCU callback has been scheduled. 344 * @pf: Array with information about data structures about to be freed. 345 */ 346 static struct delayed_free { 347 struct rcu_head rcu_head; 348 int index; 349 int scheduled; 350 struct pending_free pf[2]; 351 } delayed_free; 352 353 /* 354 * The lockdep classes are in a hash-table as well, for fast lookup: 355 */ 356 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 357 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 358 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 359 #define classhashentry(key) (classhash_table + __classhashfn((key))) 360 361 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 362 363 /* 364 * We put the lock dependency chains into a hash-table as well, to cache 365 * their existence: 366 */ 367 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 368 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 369 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 370 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 371 372 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 373 374 /* 375 * The hash key of the lock dependency chains is a hash itself too: 376 * it's a hash of all locks taken up to that lock, including that lock. 377 * It's a 64-bit hash, because it's important for the keys to be 378 * unique. 379 */ 380 static inline u64 iterate_chain_key(u64 key, u32 idx) 381 { 382 u32 k0 = key, k1 = key >> 32; 383 384 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 385 386 return k0 | (u64)k1 << 32; 387 } 388 389 void lockdep_init_task(struct task_struct *task) 390 { 391 task->lockdep_depth = 0; /* no locks held yet */ 392 task->curr_chain_key = INITIAL_CHAIN_KEY; 393 task->lockdep_recursion = 0; 394 } 395 396 static inline void lockdep_recursion_finish(void) 397 { 398 if (WARN_ON_ONCE(--current->lockdep_recursion)) 399 current->lockdep_recursion = 0; 400 } 401 402 void lockdep_set_selftest_task(struct task_struct *task) 403 { 404 lockdep_selftest_task_struct = task; 405 } 406 407 /* 408 * Debugging switches: 409 */ 410 411 #define VERBOSE 0 412 #define VERY_VERBOSE 0 413 414 #if VERBOSE 415 # define HARDIRQ_VERBOSE 1 416 # define SOFTIRQ_VERBOSE 1 417 #else 418 # define HARDIRQ_VERBOSE 0 419 # define SOFTIRQ_VERBOSE 0 420 #endif 421 422 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 423 /* 424 * Quick filtering for interesting events: 425 */ 426 static int class_filter(struct lock_class *class) 427 { 428 #if 0 429 /* Example */ 430 if (class->name_version == 1 && 431 !strcmp(class->name, "lockname")) 432 return 1; 433 if (class->name_version == 1 && 434 !strcmp(class->name, "&struct->lockfield")) 435 return 1; 436 #endif 437 /* Filter everything else. 1 would be to allow everything else */ 438 return 0; 439 } 440 #endif 441 442 static int verbose(struct lock_class *class) 443 { 444 #if VERBOSE 445 return class_filter(class); 446 #endif 447 return 0; 448 } 449 450 static void print_lockdep_off(const char *bug_msg) 451 { 452 printk(KERN_DEBUG "%s\n", bug_msg); 453 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 454 #ifdef CONFIG_LOCK_STAT 455 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 456 #endif 457 } 458 459 unsigned long nr_stack_trace_entries; 460 461 #ifdef CONFIG_PROVE_LOCKING 462 /** 463 * struct lock_trace - single stack backtrace 464 * @hash_entry: Entry in a stack_trace_hash[] list. 465 * @hash: jhash() of @entries. 466 * @nr_entries: Number of entries in @entries. 467 * @entries: Actual stack backtrace. 468 */ 469 struct lock_trace { 470 struct hlist_node hash_entry; 471 u32 hash; 472 u32 nr_entries; 473 unsigned long entries[] __aligned(sizeof(unsigned long)); 474 }; 475 #define LOCK_TRACE_SIZE_IN_LONGS \ 476 (sizeof(struct lock_trace) / sizeof(unsigned long)) 477 /* 478 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 479 */ 480 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 481 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 482 483 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 484 { 485 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 486 memcmp(t1->entries, t2->entries, 487 t1->nr_entries * sizeof(t1->entries[0])) == 0; 488 } 489 490 static struct lock_trace *save_trace(void) 491 { 492 struct lock_trace *trace, *t2; 493 struct hlist_head *hash_head; 494 u32 hash; 495 int max_entries; 496 497 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 498 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 499 500 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 501 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 502 LOCK_TRACE_SIZE_IN_LONGS; 503 504 if (max_entries <= 0) { 505 if (!debug_locks_off_graph_unlock()) 506 return NULL; 507 508 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 509 dump_stack(); 510 511 return NULL; 512 } 513 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 514 515 hash = jhash(trace->entries, trace->nr_entries * 516 sizeof(trace->entries[0]), 0); 517 trace->hash = hash; 518 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 519 hlist_for_each_entry(t2, hash_head, hash_entry) { 520 if (traces_identical(trace, t2)) 521 return t2; 522 } 523 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 524 hlist_add_head(&trace->hash_entry, hash_head); 525 526 return trace; 527 } 528 529 /* Return the number of stack traces in the stack_trace[] array. */ 530 u64 lockdep_stack_trace_count(void) 531 { 532 struct lock_trace *trace; 533 u64 c = 0; 534 int i; 535 536 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 537 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 538 c++; 539 } 540 } 541 542 return c; 543 } 544 545 /* Return the number of stack hash chains that have at least one stack trace. */ 546 u64 lockdep_stack_hash_count(void) 547 { 548 u64 c = 0; 549 int i; 550 551 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 552 if (!hlist_empty(&stack_trace_hash[i])) 553 c++; 554 555 return c; 556 } 557 #endif 558 559 unsigned int nr_hardirq_chains; 560 unsigned int nr_softirq_chains; 561 unsigned int nr_process_chains; 562 unsigned int max_lockdep_depth; 563 564 #ifdef CONFIG_DEBUG_LOCKDEP 565 /* 566 * Various lockdep statistics: 567 */ 568 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 569 #endif 570 571 #ifdef CONFIG_PROVE_LOCKING 572 /* 573 * Locking printouts: 574 */ 575 576 #define __USAGE(__STATE) \ 577 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 578 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 579 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 580 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 581 582 static const char *usage_str[] = 583 { 584 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 585 #include "lockdep_states.h" 586 #undef LOCKDEP_STATE 587 [LOCK_USED] = "INITIAL USE", 588 [LOCK_USAGE_STATES] = "IN-NMI", 589 }; 590 #endif 591 592 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 593 { 594 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 595 } 596 597 static inline unsigned long lock_flag(enum lock_usage_bit bit) 598 { 599 return 1UL << bit; 600 } 601 602 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 603 { 604 /* 605 * The usage character defaults to '.' (i.e., irqs disabled and not in 606 * irq context), which is the safest usage category. 607 */ 608 char c = '.'; 609 610 /* 611 * The order of the following usage checks matters, which will 612 * result in the outcome character as follows: 613 * 614 * - '+': irq is enabled and not in irq context 615 * - '-': in irq context and irq is disabled 616 * - '?': in irq context and irq is enabled 617 */ 618 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 619 c = '+'; 620 if (class->usage_mask & lock_flag(bit)) 621 c = '?'; 622 } else if (class->usage_mask & lock_flag(bit)) 623 c = '-'; 624 625 return c; 626 } 627 628 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 629 { 630 int i = 0; 631 632 #define LOCKDEP_STATE(__STATE) \ 633 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 634 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 635 #include "lockdep_states.h" 636 #undef LOCKDEP_STATE 637 638 usage[i] = '\0'; 639 } 640 641 static void __print_lock_name(struct lock_class *class) 642 { 643 char str[KSYM_NAME_LEN]; 644 const char *name; 645 646 name = class->name; 647 if (!name) { 648 name = __get_key_name(class->key, str); 649 printk(KERN_CONT "%s", name); 650 } else { 651 printk(KERN_CONT "%s", name); 652 if (class->name_version > 1) 653 printk(KERN_CONT "#%d", class->name_version); 654 if (class->subclass) 655 printk(KERN_CONT "/%d", class->subclass); 656 } 657 } 658 659 static void print_lock_name(struct lock_class *class) 660 { 661 char usage[LOCK_USAGE_CHARS]; 662 663 get_usage_chars(class, usage); 664 665 printk(KERN_CONT " ("); 666 __print_lock_name(class); 667 printk(KERN_CONT "){%s}-{%hd:%hd}", usage, 668 class->wait_type_outer ?: class->wait_type_inner, 669 class->wait_type_inner); 670 } 671 672 static void print_lockdep_cache(struct lockdep_map *lock) 673 { 674 const char *name; 675 char str[KSYM_NAME_LEN]; 676 677 name = lock->name; 678 if (!name) 679 name = __get_key_name(lock->key->subkeys, str); 680 681 printk(KERN_CONT "%s", name); 682 } 683 684 static void print_lock(struct held_lock *hlock) 685 { 686 /* 687 * We can be called locklessly through debug_show_all_locks() so be 688 * extra careful, the hlock might have been released and cleared. 689 * 690 * If this indeed happens, lets pretend it does not hurt to continue 691 * to print the lock unless the hlock class_idx does not point to a 692 * registered class. The rationale here is: since we don't attempt 693 * to distinguish whether we are in this situation, if it just 694 * happened we can't count on class_idx to tell either. 695 */ 696 struct lock_class *lock = hlock_class(hlock); 697 698 if (!lock) { 699 printk(KERN_CONT "<RELEASED>\n"); 700 return; 701 } 702 703 printk(KERN_CONT "%px", hlock->instance); 704 print_lock_name(lock); 705 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 706 } 707 708 static void lockdep_print_held_locks(struct task_struct *p) 709 { 710 int i, depth = READ_ONCE(p->lockdep_depth); 711 712 if (!depth) 713 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 714 else 715 printk("%d lock%s held by %s/%d:\n", depth, 716 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 717 /* 718 * It's not reliable to print a task's held locks if it's not sleeping 719 * and it's not the current task. 720 */ 721 if (p->state == TASK_RUNNING && p != current) 722 return; 723 for (i = 0; i < depth; i++) { 724 printk(" #%d: ", i); 725 print_lock(p->held_locks + i); 726 } 727 } 728 729 static void print_kernel_ident(void) 730 { 731 printk("%s %.*s %s\n", init_utsname()->release, 732 (int)strcspn(init_utsname()->version, " "), 733 init_utsname()->version, 734 print_tainted()); 735 } 736 737 static int very_verbose(struct lock_class *class) 738 { 739 #if VERY_VERBOSE 740 return class_filter(class); 741 #endif 742 return 0; 743 } 744 745 /* 746 * Is this the address of a static object: 747 */ 748 #ifdef __KERNEL__ 749 static int static_obj(const void *obj) 750 { 751 unsigned long start = (unsigned long) &_stext, 752 end = (unsigned long) &_end, 753 addr = (unsigned long) obj; 754 755 if (arch_is_kernel_initmem_freed(addr)) 756 return 0; 757 758 /* 759 * static variable? 760 */ 761 if ((addr >= start) && (addr < end)) 762 return 1; 763 764 if (arch_is_kernel_data(addr)) 765 return 1; 766 767 /* 768 * in-kernel percpu var? 769 */ 770 if (is_kernel_percpu_address(addr)) 771 return 1; 772 773 /* 774 * module static or percpu var? 775 */ 776 return is_module_address(addr) || is_module_percpu_address(addr); 777 } 778 #endif 779 780 /* 781 * To make lock name printouts unique, we calculate a unique 782 * class->name_version generation counter. The caller must hold the graph 783 * lock. 784 */ 785 static int count_matching_names(struct lock_class *new_class) 786 { 787 struct lock_class *class; 788 int count = 0; 789 790 if (!new_class->name) 791 return 0; 792 793 list_for_each_entry(class, &all_lock_classes, lock_entry) { 794 if (new_class->key - new_class->subclass == class->key) 795 return class->name_version; 796 if (class->name && !strcmp(class->name, new_class->name)) 797 count = max(count, class->name_version); 798 } 799 800 return count + 1; 801 } 802 803 /* used from NMI context -- must be lockless */ 804 static inline struct lock_class * 805 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 806 { 807 struct lockdep_subclass_key *key; 808 struct hlist_head *hash_head; 809 struct lock_class *class; 810 811 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 812 debug_locks_off(); 813 printk(KERN_ERR 814 "BUG: looking up invalid subclass: %u\n", subclass); 815 printk(KERN_ERR 816 "turning off the locking correctness validator.\n"); 817 dump_stack(); 818 return NULL; 819 } 820 821 /* 822 * If it is not initialised then it has never been locked, 823 * so it won't be present in the hash table. 824 */ 825 if (unlikely(!lock->key)) 826 return NULL; 827 828 /* 829 * NOTE: the class-key must be unique. For dynamic locks, a static 830 * lock_class_key variable is passed in through the mutex_init() 831 * (or spin_lock_init()) call - which acts as the key. For static 832 * locks we use the lock object itself as the key. 833 */ 834 BUILD_BUG_ON(sizeof(struct lock_class_key) > 835 sizeof(struct lockdep_map)); 836 837 key = lock->key->subkeys + subclass; 838 839 hash_head = classhashentry(key); 840 841 /* 842 * We do an RCU walk of the hash, see lockdep_free_key_range(). 843 */ 844 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 845 return NULL; 846 847 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 848 if (class->key == key) { 849 /* 850 * Huh! same key, different name? Did someone trample 851 * on some memory? We're most confused. 852 */ 853 WARN_ON_ONCE(class->name != lock->name && 854 lock->key != &__lockdep_no_validate__); 855 return class; 856 } 857 } 858 859 return NULL; 860 } 861 862 /* 863 * Static locks do not have their class-keys yet - for them the key is 864 * the lock object itself. If the lock is in the per cpu area, the 865 * canonical address of the lock (per cpu offset removed) is used. 866 */ 867 static bool assign_lock_key(struct lockdep_map *lock) 868 { 869 unsigned long can_addr, addr = (unsigned long)lock; 870 871 #ifdef __KERNEL__ 872 /* 873 * lockdep_free_key_range() assumes that struct lock_class_key 874 * objects do not overlap. Since we use the address of lock 875 * objects as class key for static objects, check whether the 876 * size of lock_class_key objects does not exceed the size of 877 * the smallest lock object. 878 */ 879 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 880 #endif 881 882 if (__is_kernel_percpu_address(addr, &can_addr)) 883 lock->key = (void *)can_addr; 884 else if (__is_module_percpu_address(addr, &can_addr)) 885 lock->key = (void *)can_addr; 886 else if (static_obj(lock)) 887 lock->key = (void *)lock; 888 else { 889 /* Debug-check: all keys must be persistent! */ 890 debug_locks_off(); 891 pr_err("INFO: trying to register non-static key.\n"); 892 pr_err("the code is fine but needs lockdep annotation.\n"); 893 pr_err("turning off the locking correctness validator.\n"); 894 dump_stack(); 895 return false; 896 } 897 898 return true; 899 } 900 901 #ifdef CONFIG_DEBUG_LOCKDEP 902 903 /* Check whether element @e occurs in list @h */ 904 static bool in_list(struct list_head *e, struct list_head *h) 905 { 906 struct list_head *f; 907 908 list_for_each(f, h) { 909 if (e == f) 910 return true; 911 } 912 913 return false; 914 } 915 916 /* 917 * Check whether entry @e occurs in any of the locks_after or locks_before 918 * lists. 919 */ 920 static bool in_any_class_list(struct list_head *e) 921 { 922 struct lock_class *class; 923 int i; 924 925 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 926 class = &lock_classes[i]; 927 if (in_list(e, &class->locks_after) || 928 in_list(e, &class->locks_before)) 929 return true; 930 } 931 return false; 932 } 933 934 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 935 { 936 struct lock_list *e; 937 938 list_for_each_entry(e, h, entry) { 939 if (e->links_to != c) { 940 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 941 c->name ? : "(?)", 942 (unsigned long)(e - list_entries), 943 e->links_to && e->links_to->name ? 944 e->links_to->name : "(?)", 945 e->class && e->class->name ? e->class->name : 946 "(?)"); 947 return false; 948 } 949 } 950 return true; 951 } 952 953 #ifdef CONFIG_PROVE_LOCKING 954 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 955 #endif 956 957 static bool check_lock_chain_key(struct lock_chain *chain) 958 { 959 #ifdef CONFIG_PROVE_LOCKING 960 u64 chain_key = INITIAL_CHAIN_KEY; 961 int i; 962 963 for (i = chain->base; i < chain->base + chain->depth; i++) 964 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 965 /* 966 * The 'unsigned long long' casts avoid that a compiler warning 967 * is reported when building tools/lib/lockdep. 968 */ 969 if (chain->chain_key != chain_key) { 970 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 971 (unsigned long long)(chain - lock_chains), 972 (unsigned long long)chain->chain_key, 973 (unsigned long long)chain_key); 974 return false; 975 } 976 #endif 977 return true; 978 } 979 980 static bool in_any_zapped_class_list(struct lock_class *class) 981 { 982 struct pending_free *pf; 983 int i; 984 985 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 986 if (in_list(&class->lock_entry, &pf->zapped)) 987 return true; 988 } 989 990 return false; 991 } 992 993 static bool __check_data_structures(void) 994 { 995 struct lock_class *class; 996 struct lock_chain *chain; 997 struct hlist_head *head; 998 struct lock_list *e; 999 int i; 1000 1001 /* Check whether all classes occur in a lock list. */ 1002 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1003 class = &lock_classes[i]; 1004 if (!in_list(&class->lock_entry, &all_lock_classes) && 1005 !in_list(&class->lock_entry, &free_lock_classes) && 1006 !in_any_zapped_class_list(class)) { 1007 printk(KERN_INFO "class %px/%s is not in any class list\n", 1008 class, class->name ? : "(?)"); 1009 return false; 1010 } 1011 } 1012 1013 /* Check whether all classes have valid lock lists. */ 1014 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1015 class = &lock_classes[i]; 1016 if (!class_lock_list_valid(class, &class->locks_before)) 1017 return false; 1018 if (!class_lock_list_valid(class, &class->locks_after)) 1019 return false; 1020 } 1021 1022 /* Check the chain_key of all lock chains. */ 1023 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1024 head = chainhash_table + i; 1025 hlist_for_each_entry_rcu(chain, head, entry) { 1026 if (!check_lock_chain_key(chain)) 1027 return false; 1028 } 1029 } 1030 1031 /* 1032 * Check whether all list entries that are in use occur in a class 1033 * lock list. 1034 */ 1035 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1036 e = list_entries + i; 1037 if (!in_any_class_list(&e->entry)) { 1038 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1039 (unsigned int)(e - list_entries), 1040 e->class->name ? : "(?)", 1041 e->links_to->name ? : "(?)"); 1042 return false; 1043 } 1044 } 1045 1046 /* 1047 * Check whether all list entries that are not in use do not occur in 1048 * a class lock list. 1049 */ 1050 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1051 e = list_entries + i; 1052 if (in_any_class_list(&e->entry)) { 1053 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1054 (unsigned int)(e - list_entries), 1055 e->class && e->class->name ? e->class->name : 1056 "(?)", 1057 e->links_to && e->links_to->name ? 1058 e->links_to->name : "(?)"); 1059 return false; 1060 } 1061 } 1062 1063 return true; 1064 } 1065 1066 int check_consistency = 0; 1067 module_param(check_consistency, int, 0644); 1068 1069 static void check_data_structures(void) 1070 { 1071 static bool once = false; 1072 1073 if (check_consistency && !once) { 1074 if (!__check_data_structures()) { 1075 once = true; 1076 WARN_ON(once); 1077 } 1078 } 1079 } 1080 1081 #else /* CONFIG_DEBUG_LOCKDEP */ 1082 1083 static inline void check_data_structures(void) { } 1084 1085 #endif /* CONFIG_DEBUG_LOCKDEP */ 1086 1087 static void init_chain_block_buckets(void); 1088 1089 /* 1090 * Initialize the lock_classes[] array elements, the free_lock_classes list 1091 * and also the delayed_free structure. 1092 */ 1093 static void init_data_structures_once(void) 1094 { 1095 static bool __read_mostly ds_initialized, rcu_head_initialized; 1096 int i; 1097 1098 if (likely(rcu_head_initialized)) 1099 return; 1100 1101 if (system_state >= SYSTEM_SCHEDULING) { 1102 init_rcu_head(&delayed_free.rcu_head); 1103 rcu_head_initialized = true; 1104 } 1105 1106 if (ds_initialized) 1107 return; 1108 1109 ds_initialized = true; 1110 1111 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1112 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1113 1114 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1115 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1116 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1117 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1118 } 1119 init_chain_block_buckets(); 1120 } 1121 1122 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1123 { 1124 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1125 1126 return lock_keys_hash + hash; 1127 } 1128 1129 /* Register a dynamically allocated key. */ 1130 void lockdep_register_key(struct lock_class_key *key) 1131 { 1132 struct hlist_head *hash_head; 1133 struct lock_class_key *k; 1134 unsigned long flags; 1135 1136 if (WARN_ON_ONCE(static_obj(key))) 1137 return; 1138 hash_head = keyhashentry(key); 1139 1140 raw_local_irq_save(flags); 1141 if (!graph_lock()) 1142 goto restore_irqs; 1143 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1144 if (WARN_ON_ONCE(k == key)) 1145 goto out_unlock; 1146 } 1147 hlist_add_head_rcu(&key->hash_entry, hash_head); 1148 out_unlock: 1149 graph_unlock(); 1150 restore_irqs: 1151 raw_local_irq_restore(flags); 1152 } 1153 EXPORT_SYMBOL_GPL(lockdep_register_key); 1154 1155 /* Check whether a key has been registered as a dynamic key. */ 1156 static bool is_dynamic_key(const struct lock_class_key *key) 1157 { 1158 struct hlist_head *hash_head; 1159 struct lock_class_key *k; 1160 bool found = false; 1161 1162 if (WARN_ON_ONCE(static_obj(key))) 1163 return false; 1164 1165 /* 1166 * If lock debugging is disabled lock_keys_hash[] may contain 1167 * pointers to memory that has already been freed. Avoid triggering 1168 * a use-after-free in that case by returning early. 1169 */ 1170 if (!debug_locks) 1171 return true; 1172 1173 hash_head = keyhashentry(key); 1174 1175 rcu_read_lock(); 1176 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1177 if (k == key) { 1178 found = true; 1179 break; 1180 } 1181 } 1182 rcu_read_unlock(); 1183 1184 return found; 1185 } 1186 1187 /* 1188 * Register a lock's class in the hash-table, if the class is not present 1189 * yet. Otherwise we look it up. We cache the result in the lock object 1190 * itself, so actual lookup of the hash should be once per lock object. 1191 */ 1192 static struct lock_class * 1193 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1194 { 1195 struct lockdep_subclass_key *key; 1196 struct hlist_head *hash_head; 1197 struct lock_class *class; 1198 1199 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1200 1201 class = look_up_lock_class(lock, subclass); 1202 if (likely(class)) 1203 goto out_set_class_cache; 1204 1205 if (!lock->key) { 1206 if (!assign_lock_key(lock)) 1207 return NULL; 1208 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1209 return NULL; 1210 } 1211 1212 key = lock->key->subkeys + subclass; 1213 hash_head = classhashentry(key); 1214 1215 if (!graph_lock()) { 1216 return NULL; 1217 } 1218 /* 1219 * We have to do the hash-walk again, to avoid races 1220 * with another CPU: 1221 */ 1222 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1223 if (class->key == key) 1224 goto out_unlock_set; 1225 } 1226 1227 init_data_structures_once(); 1228 1229 /* Allocate a new lock class and add it to the hash. */ 1230 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1231 lock_entry); 1232 if (!class) { 1233 if (!debug_locks_off_graph_unlock()) { 1234 return NULL; 1235 } 1236 1237 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1238 dump_stack(); 1239 return NULL; 1240 } 1241 nr_lock_classes++; 1242 __set_bit(class - lock_classes, lock_classes_in_use); 1243 debug_atomic_inc(nr_unused_locks); 1244 class->key = key; 1245 class->name = lock->name; 1246 class->subclass = subclass; 1247 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1248 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1249 class->name_version = count_matching_names(class); 1250 class->wait_type_inner = lock->wait_type_inner; 1251 class->wait_type_outer = lock->wait_type_outer; 1252 /* 1253 * We use RCU's safe list-add method to make 1254 * parallel walking of the hash-list safe: 1255 */ 1256 hlist_add_head_rcu(&class->hash_entry, hash_head); 1257 /* 1258 * Remove the class from the free list and add it to the global list 1259 * of classes. 1260 */ 1261 list_move_tail(&class->lock_entry, &all_lock_classes); 1262 1263 if (verbose(class)) { 1264 graph_unlock(); 1265 1266 printk("\nnew class %px: %s", class->key, class->name); 1267 if (class->name_version > 1) 1268 printk(KERN_CONT "#%d", class->name_version); 1269 printk(KERN_CONT "\n"); 1270 dump_stack(); 1271 1272 if (!graph_lock()) { 1273 return NULL; 1274 } 1275 } 1276 out_unlock_set: 1277 graph_unlock(); 1278 1279 out_set_class_cache: 1280 if (!subclass || force) 1281 lock->class_cache[0] = class; 1282 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1283 lock->class_cache[subclass] = class; 1284 1285 /* 1286 * Hash collision, did we smoke some? We found a class with a matching 1287 * hash but the subclass -- which is hashed in -- didn't match. 1288 */ 1289 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1290 return NULL; 1291 1292 return class; 1293 } 1294 1295 #ifdef CONFIG_PROVE_LOCKING 1296 /* 1297 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1298 * with NULL on failure) 1299 */ 1300 static struct lock_list *alloc_list_entry(void) 1301 { 1302 int idx = find_first_zero_bit(list_entries_in_use, 1303 ARRAY_SIZE(list_entries)); 1304 1305 if (idx >= ARRAY_SIZE(list_entries)) { 1306 if (!debug_locks_off_graph_unlock()) 1307 return NULL; 1308 1309 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1310 dump_stack(); 1311 return NULL; 1312 } 1313 nr_list_entries++; 1314 __set_bit(idx, list_entries_in_use); 1315 return list_entries + idx; 1316 } 1317 1318 /* 1319 * Add a new dependency to the head of the list: 1320 */ 1321 static int add_lock_to_list(struct lock_class *this, 1322 struct lock_class *links_to, struct list_head *head, 1323 unsigned long ip, int distance, 1324 const struct lock_trace *trace) 1325 { 1326 struct lock_list *entry; 1327 /* 1328 * Lock not present yet - get a new dependency struct and 1329 * add it to the list: 1330 */ 1331 entry = alloc_list_entry(); 1332 if (!entry) 1333 return 0; 1334 1335 entry->class = this; 1336 entry->links_to = links_to; 1337 entry->distance = distance; 1338 entry->trace = trace; 1339 /* 1340 * Both allocation and removal are done under the graph lock; but 1341 * iteration is under RCU-sched; see look_up_lock_class() and 1342 * lockdep_free_key_range(). 1343 */ 1344 list_add_tail_rcu(&entry->entry, head); 1345 1346 return 1; 1347 } 1348 1349 /* 1350 * For good efficiency of modular, we use power of 2 1351 */ 1352 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL 1353 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1354 1355 /* 1356 * The circular_queue and helpers are used to implement graph 1357 * breadth-first search (BFS) algorithm, by which we can determine 1358 * whether there is a path from a lock to another. In deadlock checks, 1359 * a path from the next lock to be acquired to a previous held lock 1360 * indicates that adding the <prev> -> <next> lock dependency will 1361 * produce a circle in the graph. Breadth-first search instead of 1362 * depth-first search is used in order to find the shortest (circular) 1363 * path. 1364 */ 1365 struct circular_queue { 1366 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1367 unsigned int front, rear; 1368 }; 1369 1370 static struct circular_queue lock_cq; 1371 1372 unsigned int max_bfs_queue_depth; 1373 1374 static unsigned int lockdep_dependency_gen_id; 1375 1376 static inline void __cq_init(struct circular_queue *cq) 1377 { 1378 cq->front = cq->rear = 0; 1379 lockdep_dependency_gen_id++; 1380 } 1381 1382 static inline int __cq_empty(struct circular_queue *cq) 1383 { 1384 return (cq->front == cq->rear); 1385 } 1386 1387 static inline int __cq_full(struct circular_queue *cq) 1388 { 1389 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1390 } 1391 1392 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1393 { 1394 if (__cq_full(cq)) 1395 return -1; 1396 1397 cq->element[cq->rear] = elem; 1398 cq->rear = (cq->rear + 1) & CQ_MASK; 1399 return 0; 1400 } 1401 1402 /* 1403 * Dequeue an element from the circular_queue, return a lock_list if 1404 * the queue is not empty, or NULL if otherwise. 1405 */ 1406 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1407 { 1408 struct lock_list * lock; 1409 1410 if (__cq_empty(cq)) 1411 return NULL; 1412 1413 lock = cq->element[cq->front]; 1414 cq->front = (cq->front + 1) & CQ_MASK; 1415 1416 return lock; 1417 } 1418 1419 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1420 { 1421 return (cq->rear - cq->front) & CQ_MASK; 1422 } 1423 1424 static inline void mark_lock_accessed(struct lock_list *lock, 1425 struct lock_list *parent) 1426 { 1427 unsigned long nr; 1428 1429 nr = lock - list_entries; 1430 WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */ 1431 lock->parent = parent; 1432 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1433 } 1434 1435 static inline unsigned long lock_accessed(struct lock_list *lock) 1436 { 1437 unsigned long nr; 1438 1439 nr = lock - list_entries; 1440 WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */ 1441 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1442 } 1443 1444 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1445 { 1446 return child->parent; 1447 } 1448 1449 static inline int get_lock_depth(struct lock_list *child) 1450 { 1451 int depth = 0; 1452 struct lock_list *parent; 1453 1454 while ((parent = get_lock_parent(child))) { 1455 child = parent; 1456 depth++; 1457 } 1458 return depth; 1459 } 1460 1461 /* 1462 * Return the forward or backward dependency list. 1463 * 1464 * @lock: the lock_list to get its class's dependency list 1465 * @offset: the offset to struct lock_class to determine whether it is 1466 * locks_after or locks_before 1467 */ 1468 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1469 { 1470 void *lock_class = lock->class; 1471 1472 return lock_class + offset; 1473 } 1474 1475 /* 1476 * Forward- or backward-dependency search, used for both circular dependency 1477 * checking and hardirq-unsafe/softirq-unsafe checking. 1478 */ 1479 static int __bfs(struct lock_list *source_entry, 1480 void *data, 1481 int (*match)(struct lock_list *entry, void *data), 1482 struct lock_list **target_entry, 1483 int offset) 1484 { 1485 struct lock_list *entry; 1486 struct lock_list *lock; 1487 struct list_head *head; 1488 struct circular_queue *cq = &lock_cq; 1489 int ret = 1; 1490 1491 lockdep_assert_locked(); 1492 1493 if (match(source_entry, data)) { 1494 *target_entry = source_entry; 1495 ret = 0; 1496 goto exit; 1497 } 1498 1499 head = get_dep_list(source_entry, offset); 1500 if (list_empty(head)) 1501 goto exit; 1502 1503 __cq_init(cq); 1504 __cq_enqueue(cq, source_entry); 1505 1506 while ((lock = __cq_dequeue(cq))) { 1507 1508 if (!lock->class) { 1509 ret = -2; 1510 goto exit; 1511 } 1512 1513 head = get_dep_list(lock, offset); 1514 1515 list_for_each_entry_rcu(entry, head, entry) { 1516 if (!lock_accessed(entry)) { 1517 unsigned int cq_depth; 1518 mark_lock_accessed(entry, lock); 1519 if (match(entry, data)) { 1520 *target_entry = entry; 1521 ret = 0; 1522 goto exit; 1523 } 1524 1525 if (__cq_enqueue(cq, entry)) { 1526 ret = -1; 1527 goto exit; 1528 } 1529 cq_depth = __cq_get_elem_count(cq); 1530 if (max_bfs_queue_depth < cq_depth) 1531 max_bfs_queue_depth = cq_depth; 1532 } 1533 } 1534 } 1535 exit: 1536 return ret; 1537 } 1538 1539 static inline int __bfs_forwards(struct lock_list *src_entry, 1540 void *data, 1541 int (*match)(struct lock_list *entry, void *data), 1542 struct lock_list **target_entry) 1543 { 1544 return __bfs(src_entry, data, match, target_entry, 1545 offsetof(struct lock_class, locks_after)); 1546 1547 } 1548 1549 static inline int __bfs_backwards(struct lock_list *src_entry, 1550 void *data, 1551 int (*match)(struct lock_list *entry, void *data), 1552 struct lock_list **target_entry) 1553 { 1554 return __bfs(src_entry, data, match, target_entry, 1555 offsetof(struct lock_class, locks_before)); 1556 1557 } 1558 1559 static void print_lock_trace(const struct lock_trace *trace, 1560 unsigned int spaces) 1561 { 1562 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1563 } 1564 1565 /* 1566 * Print a dependency chain entry (this is only done when a deadlock 1567 * has been detected): 1568 */ 1569 static noinline void 1570 print_circular_bug_entry(struct lock_list *target, int depth) 1571 { 1572 if (debug_locks_silent) 1573 return; 1574 printk("\n-> #%u", depth); 1575 print_lock_name(target->class); 1576 printk(KERN_CONT ":\n"); 1577 print_lock_trace(target->trace, 6); 1578 } 1579 1580 static void 1581 print_circular_lock_scenario(struct held_lock *src, 1582 struct held_lock *tgt, 1583 struct lock_list *prt) 1584 { 1585 struct lock_class *source = hlock_class(src); 1586 struct lock_class *target = hlock_class(tgt); 1587 struct lock_class *parent = prt->class; 1588 1589 /* 1590 * A direct locking problem where unsafe_class lock is taken 1591 * directly by safe_class lock, then all we need to show 1592 * is the deadlock scenario, as it is obvious that the 1593 * unsafe lock is taken under the safe lock. 1594 * 1595 * But if there is a chain instead, where the safe lock takes 1596 * an intermediate lock (middle_class) where this lock is 1597 * not the same as the safe lock, then the lock chain is 1598 * used to describe the problem. Otherwise we would need 1599 * to show a different CPU case for each link in the chain 1600 * from the safe_class lock to the unsafe_class lock. 1601 */ 1602 if (parent != source) { 1603 printk("Chain exists of:\n "); 1604 __print_lock_name(source); 1605 printk(KERN_CONT " --> "); 1606 __print_lock_name(parent); 1607 printk(KERN_CONT " --> "); 1608 __print_lock_name(target); 1609 printk(KERN_CONT "\n\n"); 1610 } 1611 1612 printk(" Possible unsafe locking scenario:\n\n"); 1613 printk(" CPU0 CPU1\n"); 1614 printk(" ---- ----\n"); 1615 printk(" lock("); 1616 __print_lock_name(target); 1617 printk(KERN_CONT ");\n"); 1618 printk(" lock("); 1619 __print_lock_name(parent); 1620 printk(KERN_CONT ");\n"); 1621 printk(" lock("); 1622 __print_lock_name(target); 1623 printk(KERN_CONT ");\n"); 1624 printk(" lock("); 1625 __print_lock_name(source); 1626 printk(KERN_CONT ");\n"); 1627 printk("\n *** DEADLOCK ***\n\n"); 1628 } 1629 1630 /* 1631 * When a circular dependency is detected, print the 1632 * header first: 1633 */ 1634 static noinline void 1635 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1636 struct held_lock *check_src, 1637 struct held_lock *check_tgt) 1638 { 1639 struct task_struct *curr = current; 1640 1641 if (debug_locks_silent) 1642 return; 1643 1644 pr_warn("\n"); 1645 pr_warn("======================================================\n"); 1646 pr_warn("WARNING: possible circular locking dependency detected\n"); 1647 print_kernel_ident(); 1648 pr_warn("------------------------------------------------------\n"); 1649 pr_warn("%s/%d is trying to acquire lock:\n", 1650 curr->comm, task_pid_nr(curr)); 1651 print_lock(check_src); 1652 1653 pr_warn("\nbut task is already holding lock:\n"); 1654 1655 print_lock(check_tgt); 1656 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1657 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1658 1659 print_circular_bug_entry(entry, depth); 1660 } 1661 1662 static inline int class_equal(struct lock_list *entry, void *data) 1663 { 1664 return entry->class == data; 1665 } 1666 1667 static noinline void print_circular_bug(struct lock_list *this, 1668 struct lock_list *target, 1669 struct held_lock *check_src, 1670 struct held_lock *check_tgt) 1671 { 1672 struct task_struct *curr = current; 1673 struct lock_list *parent; 1674 struct lock_list *first_parent; 1675 int depth; 1676 1677 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1678 return; 1679 1680 this->trace = save_trace(); 1681 if (!this->trace) 1682 return; 1683 1684 depth = get_lock_depth(target); 1685 1686 print_circular_bug_header(target, depth, check_src, check_tgt); 1687 1688 parent = get_lock_parent(target); 1689 first_parent = parent; 1690 1691 while (parent) { 1692 print_circular_bug_entry(parent, --depth); 1693 parent = get_lock_parent(parent); 1694 } 1695 1696 printk("\nother info that might help us debug this:\n\n"); 1697 print_circular_lock_scenario(check_src, check_tgt, 1698 first_parent); 1699 1700 lockdep_print_held_locks(curr); 1701 1702 printk("\nstack backtrace:\n"); 1703 dump_stack(); 1704 } 1705 1706 static noinline void print_bfs_bug(int ret) 1707 { 1708 if (!debug_locks_off_graph_unlock()) 1709 return; 1710 1711 /* 1712 * Breadth-first-search failed, graph got corrupted? 1713 */ 1714 WARN(1, "lockdep bfs error:%d\n", ret); 1715 } 1716 1717 static int noop_count(struct lock_list *entry, void *data) 1718 { 1719 (*(unsigned long *)data)++; 1720 return 0; 1721 } 1722 1723 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 1724 { 1725 unsigned long count = 0; 1726 struct lock_list *uninitialized_var(target_entry); 1727 1728 __bfs_forwards(this, (void *)&count, noop_count, &target_entry); 1729 1730 return count; 1731 } 1732 unsigned long lockdep_count_forward_deps(struct lock_class *class) 1733 { 1734 unsigned long ret, flags; 1735 struct lock_list this; 1736 1737 this.parent = NULL; 1738 this.class = class; 1739 1740 raw_local_irq_save(flags); 1741 lockdep_lock(); 1742 ret = __lockdep_count_forward_deps(&this); 1743 lockdep_unlock(); 1744 raw_local_irq_restore(flags); 1745 1746 return ret; 1747 } 1748 1749 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 1750 { 1751 unsigned long count = 0; 1752 struct lock_list *uninitialized_var(target_entry); 1753 1754 __bfs_backwards(this, (void *)&count, noop_count, &target_entry); 1755 1756 return count; 1757 } 1758 1759 unsigned long lockdep_count_backward_deps(struct lock_class *class) 1760 { 1761 unsigned long ret, flags; 1762 struct lock_list this; 1763 1764 this.parent = NULL; 1765 this.class = class; 1766 1767 raw_local_irq_save(flags); 1768 lockdep_lock(); 1769 ret = __lockdep_count_backward_deps(&this); 1770 lockdep_unlock(); 1771 raw_local_irq_restore(flags); 1772 1773 return ret; 1774 } 1775 1776 /* 1777 * Check that the dependency graph starting at <src> can lead to 1778 * <target> or not. Print an error and return 0 if it does. 1779 */ 1780 static noinline int 1781 check_path(struct lock_class *target, struct lock_list *src_entry, 1782 struct lock_list **target_entry) 1783 { 1784 int ret; 1785 1786 ret = __bfs_forwards(src_entry, (void *)target, class_equal, 1787 target_entry); 1788 1789 if (unlikely(ret < 0)) 1790 print_bfs_bug(ret); 1791 1792 return ret; 1793 } 1794 1795 /* 1796 * Prove that the dependency graph starting at <src> can not 1797 * lead to <target>. If it can, there is a circle when adding 1798 * <target> -> <src> dependency. 1799 * 1800 * Print an error and return 0 if it does. 1801 */ 1802 static noinline int 1803 check_noncircular(struct held_lock *src, struct held_lock *target, 1804 struct lock_trace **const trace) 1805 { 1806 int ret; 1807 struct lock_list *uninitialized_var(target_entry); 1808 struct lock_list src_entry = { 1809 .class = hlock_class(src), 1810 .parent = NULL, 1811 }; 1812 1813 debug_atomic_inc(nr_cyclic_checks); 1814 1815 ret = check_path(hlock_class(target), &src_entry, &target_entry); 1816 1817 if (unlikely(!ret)) { 1818 if (!*trace) { 1819 /* 1820 * If save_trace fails here, the printing might 1821 * trigger a WARN but because of the !nr_entries it 1822 * should not do bad things. 1823 */ 1824 *trace = save_trace(); 1825 } 1826 1827 print_circular_bug(&src_entry, target_entry, src, target); 1828 } 1829 1830 return ret; 1831 } 1832 1833 #ifdef CONFIG_LOCKDEP_SMALL 1834 /* 1835 * Check that the dependency graph starting at <src> can lead to 1836 * <target> or not. If it can, <src> -> <target> dependency is already 1837 * in the graph. 1838 * 1839 * Print an error and return 2 if it does or 1 if it does not. 1840 */ 1841 static noinline int 1842 check_redundant(struct held_lock *src, struct held_lock *target) 1843 { 1844 int ret; 1845 struct lock_list *uninitialized_var(target_entry); 1846 struct lock_list src_entry = { 1847 .class = hlock_class(src), 1848 .parent = NULL, 1849 }; 1850 1851 debug_atomic_inc(nr_redundant_checks); 1852 1853 ret = check_path(hlock_class(target), &src_entry, &target_entry); 1854 1855 if (!ret) { 1856 debug_atomic_inc(nr_redundant); 1857 ret = 2; 1858 } else if (ret < 0) 1859 ret = 0; 1860 1861 return ret; 1862 } 1863 #endif 1864 1865 #ifdef CONFIG_TRACE_IRQFLAGS 1866 1867 static inline int usage_accumulate(struct lock_list *entry, void *mask) 1868 { 1869 *(unsigned long *)mask |= entry->class->usage_mask; 1870 1871 return 0; 1872 } 1873 1874 /* 1875 * Forwards and backwards subgraph searching, for the purposes of 1876 * proving that two subgraphs can be connected by a new dependency 1877 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 1878 */ 1879 1880 static inline int usage_match(struct lock_list *entry, void *mask) 1881 { 1882 return entry->class->usage_mask & *(unsigned long *)mask; 1883 } 1884 1885 /* 1886 * Find a node in the forwards-direction dependency sub-graph starting 1887 * at @root->class that matches @bit. 1888 * 1889 * Return 0 if such a node exists in the subgraph, and put that node 1890 * into *@target_entry. 1891 * 1892 * Return 1 otherwise and keep *@target_entry unchanged. 1893 * Return <0 on error. 1894 */ 1895 static int 1896 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 1897 struct lock_list **target_entry) 1898 { 1899 int result; 1900 1901 debug_atomic_inc(nr_find_usage_forwards_checks); 1902 1903 result = __bfs_forwards(root, &usage_mask, usage_match, target_entry); 1904 1905 return result; 1906 } 1907 1908 /* 1909 * Find a node in the backwards-direction dependency sub-graph starting 1910 * at @root->class that matches @bit. 1911 * 1912 * Return 0 if such a node exists in the subgraph, and put that node 1913 * into *@target_entry. 1914 * 1915 * Return 1 otherwise and keep *@target_entry unchanged. 1916 * Return <0 on error. 1917 */ 1918 static int 1919 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 1920 struct lock_list **target_entry) 1921 { 1922 int result; 1923 1924 debug_atomic_inc(nr_find_usage_backwards_checks); 1925 1926 result = __bfs_backwards(root, &usage_mask, usage_match, target_entry); 1927 1928 return result; 1929 } 1930 1931 static void print_lock_class_header(struct lock_class *class, int depth) 1932 { 1933 int bit; 1934 1935 printk("%*s->", depth, ""); 1936 print_lock_name(class); 1937 #ifdef CONFIG_DEBUG_LOCKDEP 1938 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 1939 #endif 1940 printk(KERN_CONT " {\n"); 1941 1942 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { 1943 if (class->usage_mask & (1 << bit)) { 1944 int len = depth; 1945 1946 len += printk("%*s %s", depth, "", usage_str[bit]); 1947 len += printk(KERN_CONT " at:\n"); 1948 print_lock_trace(class->usage_traces[bit], len); 1949 } 1950 } 1951 printk("%*s }\n", depth, ""); 1952 1953 printk("%*s ... key at: [<%px>] %pS\n", 1954 depth, "", class->key, class->key); 1955 } 1956 1957 /* 1958 * printk the shortest lock dependencies from @start to @end in reverse order: 1959 */ 1960 static void __used 1961 print_shortest_lock_dependencies(struct lock_list *leaf, 1962 struct lock_list *root) 1963 { 1964 struct lock_list *entry = leaf; 1965 int depth; 1966 1967 /*compute depth from generated tree by BFS*/ 1968 depth = get_lock_depth(leaf); 1969 1970 do { 1971 print_lock_class_header(entry->class, depth); 1972 printk("%*s ... acquired at:\n", depth, ""); 1973 print_lock_trace(entry->trace, 2); 1974 printk("\n"); 1975 1976 if (depth == 0 && (entry != root)) { 1977 printk("lockdep:%s bad path found in chain graph\n", __func__); 1978 break; 1979 } 1980 1981 entry = get_lock_parent(entry); 1982 depth--; 1983 } while (entry && (depth >= 0)); 1984 } 1985 1986 static void 1987 print_irq_lock_scenario(struct lock_list *safe_entry, 1988 struct lock_list *unsafe_entry, 1989 struct lock_class *prev_class, 1990 struct lock_class *next_class) 1991 { 1992 struct lock_class *safe_class = safe_entry->class; 1993 struct lock_class *unsafe_class = unsafe_entry->class; 1994 struct lock_class *middle_class = prev_class; 1995 1996 if (middle_class == safe_class) 1997 middle_class = next_class; 1998 1999 /* 2000 * A direct locking problem where unsafe_class lock is taken 2001 * directly by safe_class lock, then all we need to show 2002 * is the deadlock scenario, as it is obvious that the 2003 * unsafe lock is taken under the safe lock. 2004 * 2005 * But if there is a chain instead, where the safe lock takes 2006 * an intermediate lock (middle_class) where this lock is 2007 * not the same as the safe lock, then the lock chain is 2008 * used to describe the problem. Otherwise we would need 2009 * to show a different CPU case for each link in the chain 2010 * from the safe_class lock to the unsafe_class lock. 2011 */ 2012 if (middle_class != unsafe_class) { 2013 printk("Chain exists of:\n "); 2014 __print_lock_name(safe_class); 2015 printk(KERN_CONT " --> "); 2016 __print_lock_name(middle_class); 2017 printk(KERN_CONT " --> "); 2018 __print_lock_name(unsafe_class); 2019 printk(KERN_CONT "\n\n"); 2020 } 2021 2022 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2023 printk(" CPU0 CPU1\n"); 2024 printk(" ---- ----\n"); 2025 printk(" lock("); 2026 __print_lock_name(unsafe_class); 2027 printk(KERN_CONT ");\n"); 2028 printk(" local_irq_disable();\n"); 2029 printk(" lock("); 2030 __print_lock_name(safe_class); 2031 printk(KERN_CONT ");\n"); 2032 printk(" lock("); 2033 __print_lock_name(middle_class); 2034 printk(KERN_CONT ");\n"); 2035 printk(" <Interrupt>\n"); 2036 printk(" lock("); 2037 __print_lock_name(safe_class); 2038 printk(KERN_CONT ");\n"); 2039 printk("\n *** DEADLOCK ***\n\n"); 2040 } 2041 2042 static void 2043 print_bad_irq_dependency(struct task_struct *curr, 2044 struct lock_list *prev_root, 2045 struct lock_list *next_root, 2046 struct lock_list *backwards_entry, 2047 struct lock_list *forwards_entry, 2048 struct held_lock *prev, 2049 struct held_lock *next, 2050 enum lock_usage_bit bit1, 2051 enum lock_usage_bit bit2, 2052 const char *irqclass) 2053 { 2054 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2055 return; 2056 2057 pr_warn("\n"); 2058 pr_warn("=====================================================\n"); 2059 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2060 irqclass, irqclass); 2061 print_kernel_ident(); 2062 pr_warn("-----------------------------------------------------\n"); 2063 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2064 curr->comm, task_pid_nr(curr), 2065 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT, 2066 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2067 curr->hardirqs_enabled, 2068 curr->softirqs_enabled); 2069 print_lock(next); 2070 2071 pr_warn("\nand this task is already holding:\n"); 2072 print_lock(prev); 2073 pr_warn("which would create a new lock dependency:\n"); 2074 print_lock_name(hlock_class(prev)); 2075 pr_cont(" ->"); 2076 print_lock_name(hlock_class(next)); 2077 pr_cont("\n"); 2078 2079 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2080 irqclass); 2081 print_lock_name(backwards_entry->class); 2082 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2083 2084 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2085 2086 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2087 print_lock_name(forwards_entry->class); 2088 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2089 pr_warn("..."); 2090 2091 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2092 2093 pr_warn("\nother info that might help us debug this:\n\n"); 2094 print_irq_lock_scenario(backwards_entry, forwards_entry, 2095 hlock_class(prev), hlock_class(next)); 2096 2097 lockdep_print_held_locks(curr); 2098 2099 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2100 prev_root->trace = save_trace(); 2101 if (!prev_root->trace) 2102 return; 2103 print_shortest_lock_dependencies(backwards_entry, prev_root); 2104 2105 pr_warn("\nthe dependencies between the lock to be acquired"); 2106 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2107 next_root->trace = save_trace(); 2108 if (!next_root->trace) 2109 return; 2110 print_shortest_lock_dependencies(forwards_entry, next_root); 2111 2112 pr_warn("\nstack backtrace:\n"); 2113 dump_stack(); 2114 } 2115 2116 static const char *state_names[] = { 2117 #define LOCKDEP_STATE(__STATE) \ 2118 __stringify(__STATE), 2119 #include "lockdep_states.h" 2120 #undef LOCKDEP_STATE 2121 }; 2122 2123 static const char *state_rnames[] = { 2124 #define LOCKDEP_STATE(__STATE) \ 2125 __stringify(__STATE)"-READ", 2126 #include "lockdep_states.h" 2127 #undef LOCKDEP_STATE 2128 }; 2129 2130 static inline const char *state_name(enum lock_usage_bit bit) 2131 { 2132 if (bit & LOCK_USAGE_READ_MASK) 2133 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2134 else 2135 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2136 } 2137 2138 /* 2139 * The bit number is encoded like: 2140 * 2141 * bit0: 0 exclusive, 1 read lock 2142 * bit1: 0 used in irq, 1 irq enabled 2143 * bit2-n: state 2144 */ 2145 static int exclusive_bit(int new_bit) 2146 { 2147 int state = new_bit & LOCK_USAGE_STATE_MASK; 2148 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2149 2150 /* 2151 * keep state, bit flip the direction and strip read. 2152 */ 2153 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2154 } 2155 2156 /* 2157 * Observe that when given a bitmask where each bitnr is encoded as above, a 2158 * right shift of the mask transforms the individual bitnrs as -1 and 2159 * conversely, a left shift transforms into +1 for the individual bitnrs. 2160 * 2161 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2162 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2163 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2164 * 2165 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2166 * 2167 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2168 * all bits set) and recompose with bitnr1 flipped. 2169 */ 2170 static unsigned long invert_dir_mask(unsigned long mask) 2171 { 2172 unsigned long excl = 0; 2173 2174 /* Invert dir */ 2175 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2176 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2177 2178 return excl; 2179 } 2180 2181 /* 2182 * As above, we clear bitnr0 (LOCK_*_READ off) with bitmask ops. First, for all 2183 * bits with bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2184 * And then mask out all bitnr0. 2185 */ 2186 static unsigned long exclusive_mask(unsigned long mask) 2187 { 2188 unsigned long excl = invert_dir_mask(mask); 2189 2190 /* Strip read */ 2191 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2192 excl &= ~LOCKF_IRQ_READ; 2193 2194 return excl; 2195 } 2196 2197 /* 2198 * Retrieve the _possible_ original mask to which @mask is 2199 * exclusive. Ie: this is the opposite of exclusive_mask(). 2200 * Note that 2 possible original bits can match an exclusive 2201 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2202 * cleared. So both are returned for each exclusive bit. 2203 */ 2204 static unsigned long original_mask(unsigned long mask) 2205 { 2206 unsigned long excl = invert_dir_mask(mask); 2207 2208 /* Include read in existing usages */ 2209 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2210 2211 return excl; 2212 } 2213 2214 /* 2215 * Find the first pair of bit match between an original 2216 * usage mask and an exclusive usage mask. 2217 */ 2218 static int find_exclusive_match(unsigned long mask, 2219 unsigned long excl_mask, 2220 enum lock_usage_bit *bitp, 2221 enum lock_usage_bit *excl_bitp) 2222 { 2223 int bit, excl; 2224 2225 for_each_set_bit(bit, &mask, LOCK_USED) { 2226 excl = exclusive_bit(bit); 2227 if (excl_mask & lock_flag(excl)) { 2228 *bitp = bit; 2229 *excl_bitp = excl; 2230 return 0; 2231 } 2232 } 2233 return -1; 2234 } 2235 2236 /* 2237 * Prove that the new dependency does not connect a hardirq-safe(-read) 2238 * lock with a hardirq-unsafe lock - to achieve this we search 2239 * the backwards-subgraph starting at <prev>, and the 2240 * forwards-subgraph starting at <next>: 2241 */ 2242 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2243 struct held_lock *next) 2244 { 2245 unsigned long usage_mask = 0, forward_mask, backward_mask; 2246 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2247 struct lock_list *uninitialized_var(target_entry1); 2248 struct lock_list *uninitialized_var(target_entry); 2249 struct lock_list this, that; 2250 int ret; 2251 2252 /* 2253 * Step 1: gather all hard/soft IRQs usages backward in an 2254 * accumulated usage mask. 2255 */ 2256 this.parent = NULL; 2257 this.class = hlock_class(prev); 2258 2259 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL); 2260 if (ret < 0) { 2261 print_bfs_bug(ret); 2262 return 0; 2263 } 2264 2265 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2266 if (!usage_mask) 2267 return 1; 2268 2269 /* 2270 * Step 2: find exclusive uses forward that match the previous 2271 * backward accumulated mask. 2272 */ 2273 forward_mask = exclusive_mask(usage_mask); 2274 2275 that.parent = NULL; 2276 that.class = hlock_class(next); 2277 2278 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2279 if (ret < 0) { 2280 print_bfs_bug(ret); 2281 return 0; 2282 } 2283 if (ret == 1) 2284 return ret; 2285 2286 /* 2287 * Step 3: we found a bad match! Now retrieve a lock from the backward 2288 * list whose usage mask matches the exclusive usage mask from the 2289 * lock found on the forward list. 2290 */ 2291 backward_mask = original_mask(target_entry1->class->usage_mask); 2292 2293 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2294 if (ret < 0) { 2295 print_bfs_bug(ret); 2296 return 0; 2297 } 2298 if (DEBUG_LOCKS_WARN_ON(ret == 1)) 2299 return 1; 2300 2301 /* 2302 * Step 4: narrow down to a pair of incompatible usage bits 2303 * and report it. 2304 */ 2305 ret = find_exclusive_match(target_entry->class->usage_mask, 2306 target_entry1->class->usage_mask, 2307 &backward_bit, &forward_bit); 2308 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2309 return 1; 2310 2311 print_bad_irq_dependency(curr, &this, &that, 2312 target_entry, target_entry1, 2313 prev, next, 2314 backward_bit, forward_bit, 2315 state_name(backward_bit)); 2316 2317 return 0; 2318 } 2319 2320 #else 2321 2322 static inline int check_irq_usage(struct task_struct *curr, 2323 struct held_lock *prev, struct held_lock *next) 2324 { 2325 return 1; 2326 } 2327 #endif /* CONFIG_TRACE_IRQFLAGS */ 2328 2329 static void inc_chains(int irq_context) 2330 { 2331 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2332 nr_hardirq_chains++; 2333 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2334 nr_softirq_chains++; 2335 else 2336 nr_process_chains++; 2337 } 2338 2339 static void dec_chains(int irq_context) 2340 { 2341 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2342 nr_hardirq_chains--; 2343 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2344 nr_softirq_chains--; 2345 else 2346 nr_process_chains--; 2347 } 2348 2349 static void 2350 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2351 { 2352 struct lock_class *next = hlock_class(nxt); 2353 struct lock_class *prev = hlock_class(prv); 2354 2355 printk(" Possible unsafe locking scenario:\n\n"); 2356 printk(" CPU0\n"); 2357 printk(" ----\n"); 2358 printk(" lock("); 2359 __print_lock_name(prev); 2360 printk(KERN_CONT ");\n"); 2361 printk(" lock("); 2362 __print_lock_name(next); 2363 printk(KERN_CONT ");\n"); 2364 printk("\n *** DEADLOCK ***\n\n"); 2365 printk(" May be due to missing lock nesting notation\n\n"); 2366 } 2367 2368 static void 2369 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2370 struct held_lock *next) 2371 { 2372 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2373 return; 2374 2375 pr_warn("\n"); 2376 pr_warn("============================================\n"); 2377 pr_warn("WARNING: possible recursive locking detected\n"); 2378 print_kernel_ident(); 2379 pr_warn("--------------------------------------------\n"); 2380 pr_warn("%s/%d is trying to acquire lock:\n", 2381 curr->comm, task_pid_nr(curr)); 2382 print_lock(next); 2383 pr_warn("\nbut task is already holding lock:\n"); 2384 print_lock(prev); 2385 2386 pr_warn("\nother info that might help us debug this:\n"); 2387 print_deadlock_scenario(next, prev); 2388 lockdep_print_held_locks(curr); 2389 2390 pr_warn("\nstack backtrace:\n"); 2391 dump_stack(); 2392 } 2393 2394 /* 2395 * Check whether we are holding such a class already. 2396 * 2397 * (Note that this has to be done separately, because the graph cannot 2398 * detect such classes of deadlocks.) 2399 * 2400 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read 2401 */ 2402 static int 2403 check_deadlock(struct task_struct *curr, struct held_lock *next) 2404 { 2405 struct held_lock *prev; 2406 struct held_lock *nest = NULL; 2407 int i; 2408 2409 for (i = 0; i < curr->lockdep_depth; i++) { 2410 prev = curr->held_locks + i; 2411 2412 if (prev->instance == next->nest_lock) 2413 nest = prev; 2414 2415 if (hlock_class(prev) != hlock_class(next)) 2416 continue; 2417 2418 /* 2419 * Allow read-after-read recursion of the same 2420 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2421 */ 2422 if ((next->read == 2) && prev->read) 2423 return 2; 2424 2425 /* 2426 * We're holding the nest_lock, which serializes this lock's 2427 * nesting behaviour. 2428 */ 2429 if (nest) 2430 return 2; 2431 2432 print_deadlock_bug(curr, prev, next); 2433 return 0; 2434 } 2435 return 1; 2436 } 2437 2438 /* 2439 * There was a chain-cache miss, and we are about to add a new dependency 2440 * to a previous lock. We validate the following rules: 2441 * 2442 * - would the adding of the <prev> -> <next> dependency create a 2443 * circular dependency in the graph? [== circular deadlock] 2444 * 2445 * - does the new prev->next dependency connect any hardirq-safe lock 2446 * (in the full backwards-subgraph starting at <prev>) with any 2447 * hardirq-unsafe lock (in the full forwards-subgraph starting at 2448 * <next>)? [== illegal lock inversion with hardirq contexts] 2449 * 2450 * - does the new prev->next dependency connect any softirq-safe lock 2451 * (in the full backwards-subgraph starting at <prev>) with any 2452 * softirq-unsafe lock (in the full forwards-subgraph starting at 2453 * <next>)? [== illegal lock inversion with softirq contexts] 2454 * 2455 * any of these scenarios could lead to a deadlock. 2456 * 2457 * Then if all the validations pass, we add the forwards and backwards 2458 * dependency. 2459 */ 2460 static int 2461 check_prev_add(struct task_struct *curr, struct held_lock *prev, 2462 struct held_lock *next, int distance, 2463 struct lock_trace **const trace) 2464 { 2465 struct lock_list *entry; 2466 int ret; 2467 2468 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 2469 /* 2470 * The warning statements below may trigger a use-after-free 2471 * of the class name. It is better to trigger a use-after free 2472 * and to have the class name most of the time instead of not 2473 * having the class name available. 2474 */ 2475 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 2476 "Detected use-after-free of lock class %px/%s\n", 2477 hlock_class(prev), 2478 hlock_class(prev)->name); 2479 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 2480 "Detected use-after-free of lock class %px/%s\n", 2481 hlock_class(next), 2482 hlock_class(next)->name); 2483 return 2; 2484 } 2485 2486 /* 2487 * Prove that the new <prev> -> <next> dependency would not 2488 * create a circular dependency in the graph. (We do this by 2489 * a breadth-first search into the graph starting at <next>, 2490 * and check whether we can reach <prev>.) 2491 * 2492 * The search is limited by the size of the circular queue (i.e., 2493 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 2494 * in the graph whose neighbours are to be checked. 2495 */ 2496 ret = check_noncircular(next, prev, trace); 2497 if (unlikely(ret <= 0)) 2498 return 0; 2499 2500 if (!check_irq_usage(curr, prev, next)) 2501 return 0; 2502 2503 /* 2504 * For recursive read-locks we do all the dependency checks, 2505 * but we dont store read-triggered dependencies (only 2506 * write-triggered dependencies). This ensures that only the 2507 * write-side dependencies matter, and that if for example a 2508 * write-lock never takes any other locks, then the reads are 2509 * equivalent to a NOP. 2510 */ 2511 if (next->read == 2 || prev->read == 2) 2512 return 1; 2513 /* 2514 * Is the <prev> -> <next> dependency already present? 2515 * 2516 * (this may occur even though this is a new chain: consider 2517 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 2518 * chains - the second one will be new, but L1 already has 2519 * L2 added to its dependency list, due to the first chain.) 2520 */ 2521 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 2522 if (entry->class == hlock_class(next)) { 2523 if (distance == 1) 2524 entry->distance = 1; 2525 return 1; 2526 } 2527 } 2528 2529 #ifdef CONFIG_LOCKDEP_SMALL 2530 /* 2531 * Is the <prev> -> <next> link redundant? 2532 */ 2533 ret = check_redundant(prev, next); 2534 if (ret != 1) 2535 return ret; 2536 #endif 2537 2538 if (!*trace) { 2539 *trace = save_trace(); 2540 if (!*trace) 2541 return 0; 2542 } 2543 2544 /* 2545 * Ok, all validations passed, add the new lock 2546 * to the previous lock's dependency list: 2547 */ 2548 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 2549 &hlock_class(prev)->locks_after, 2550 next->acquire_ip, distance, *trace); 2551 2552 if (!ret) 2553 return 0; 2554 2555 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 2556 &hlock_class(next)->locks_before, 2557 next->acquire_ip, distance, *trace); 2558 if (!ret) 2559 return 0; 2560 2561 return 2; 2562 } 2563 2564 /* 2565 * Add the dependency to all directly-previous locks that are 'relevant'. 2566 * The ones that are relevant are (in increasing distance from curr): 2567 * all consecutive trylock entries and the final non-trylock entry - or 2568 * the end of this context's lock-chain - whichever comes first. 2569 */ 2570 static int 2571 check_prevs_add(struct task_struct *curr, struct held_lock *next) 2572 { 2573 struct lock_trace *trace = NULL; 2574 int depth = curr->lockdep_depth; 2575 struct held_lock *hlock; 2576 2577 /* 2578 * Debugging checks. 2579 * 2580 * Depth must not be zero for a non-head lock: 2581 */ 2582 if (!depth) 2583 goto out_bug; 2584 /* 2585 * At least two relevant locks must exist for this 2586 * to be a head: 2587 */ 2588 if (curr->held_locks[depth].irq_context != 2589 curr->held_locks[depth-1].irq_context) 2590 goto out_bug; 2591 2592 for (;;) { 2593 int distance = curr->lockdep_depth - depth + 1; 2594 hlock = curr->held_locks + depth - 1; 2595 2596 /* 2597 * Only non-recursive-read entries get new dependencies 2598 * added: 2599 */ 2600 if (hlock->read != 2 && hlock->check) { 2601 int ret = check_prev_add(curr, hlock, next, distance, 2602 &trace); 2603 if (!ret) 2604 return 0; 2605 2606 /* 2607 * Stop after the first non-trylock entry, 2608 * as non-trylock entries have added their 2609 * own direct dependencies already, so this 2610 * lock is connected to them indirectly: 2611 */ 2612 if (!hlock->trylock) 2613 break; 2614 } 2615 2616 depth--; 2617 /* 2618 * End of lock-stack? 2619 */ 2620 if (!depth) 2621 break; 2622 /* 2623 * Stop the search if we cross into another context: 2624 */ 2625 if (curr->held_locks[depth].irq_context != 2626 curr->held_locks[depth-1].irq_context) 2627 break; 2628 } 2629 return 1; 2630 out_bug: 2631 if (!debug_locks_off_graph_unlock()) 2632 return 0; 2633 2634 /* 2635 * Clearly we all shouldn't be here, but since we made it we 2636 * can reliable say we messed up our state. See the above two 2637 * gotos for reasons why we could possibly end up here. 2638 */ 2639 WARN_ON(1); 2640 2641 return 0; 2642 } 2643 2644 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 2645 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 2646 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 2647 unsigned long nr_zapped_lock_chains; 2648 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 2649 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 2650 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 2651 2652 /* 2653 * The first 2 chain_hlocks entries in the chain block in the bucket 2654 * list contains the following meta data: 2655 * 2656 * entry[0]: 2657 * Bit 15 - always set to 1 (it is not a class index) 2658 * Bits 0-14 - upper 15 bits of the next block index 2659 * entry[1] - lower 16 bits of next block index 2660 * 2661 * A next block index of all 1 bits means it is the end of the list. 2662 * 2663 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 2664 * the chain block size: 2665 * 2666 * entry[2] - upper 16 bits of the chain block size 2667 * entry[3] - lower 16 bits of the chain block size 2668 */ 2669 #define MAX_CHAIN_BUCKETS 16 2670 #define CHAIN_BLK_FLAG (1U << 15) 2671 #define CHAIN_BLK_LIST_END 0xFFFFU 2672 2673 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 2674 2675 static inline int size_to_bucket(int size) 2676 { 2677 if (size > MAX_CHAIN_BUCKETS) 2678 return 0; 2679 2680 return size - 1; 2681 } 2682 2683 /* 2684 * Iterate all the chain blocks in a bucket. 2685 */ 2686 #define for_each_chain_block(bucket, prev, curr) \ 2687 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 2688 (curr) >= 0; \ 2689 (prev) = (curr), (curr) = chain_block_next(curr)) 2690 2691 /* 2692 * next block or -1 2693 */ 2694 static inline int chain_block_next(int offset) 2695 { 2696 int next = chain_hlocks[offset]; 2697 2698 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 2699 2700 if (next == CHAIN_BLK_LIST_END) 2701 return -1; 2702 2703 next &= ~CHAIN_BLK_FLAG; 2704 next <<= 16; 2705 next |= chain_hlocks[offset + 1]; 2706 2707 return next; 2708 } 2709 2710 /* 2711 * bucket-0 only 2712 */ 2713 static inline int chain_block_size(int offset) 2714 { 2715 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 2716 } 2717 2718 static inline void init_chain_block(int offset, int next, int bucket, int size) 2719 { 2720 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 2721 chain_hlocks[offset + 1] = (u16)next; 2722 2723 if (size && !bucket) { 2724 chain_hlocks[offset + 2] = size >> 16; 2725 chain_hlocks[offset + 3] = (u16)size; 2726 } 2727 } 2728 2729 static inline void add_chain_block(int offset, int size) 2730 { 2731 int bucket = size_to_bucket(size); 2732 int next = chain_block_buckets[bucket]; 2733 int prev, curr; 2734 2735 if (unlikely(size < 2)) { 2736 /* 2737 * We can't store single entries on the freelist. Leak them. 2738 * 2739 * One possible way out would be to uniquely mark them, other 2740 * than with CHAIN_BLK_FLAG, such that we can recover them when 2741 * the block before it is re-added. 2742 */ 2743 if (size) 2744 nr_lost_chain_hlocks++; 2745 return; 2746 } 2747 2748 nr_free_chain_hlocks += size; 2749 if (!bucket) { 2750 nr_large_chain_blocks++; 2751 2752 /* 2753 * Variable sized, sort large to small. 2754 */ 2755 for_each_chain_block(0, prev, curr) { 2756 if (size >= chain_block_size(curr)) 2757 break; 2758 } 2759 init_chain_block(offset, curr, 0, size); 2760 if (prev < 0) 2761 chain_block_buckets[0] = offset; 2762 else 2763 init_chain_block(prev, offset, 0, 0); 2764 return; 2765 } 2766 /* 2767 * Fixed size, add to head. 2768 */ 2769 init_chain_block(offset, next, bucket, size); 2770 chain_block_buckets[bucket] = offset; 2771 } 2772 2773 /* 2774 * Only the first block in the list can be deleted. 2775 * 2776 * For the variable size bucket[0], the first block (the largest one) is 2777 * returned, broken up and put back into the pool. So if a chain block of 2778 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 2779 * queued up after the primordial chain block and never be used until the 2780 * hlock entries in the primordial chain block is almost used up. That 2781 * causes fragmentation and reduce allocation efficiency. That can be 2782 * monitored by looking at the "large chain blocks" number in lockdep_stats. 2783 */ 2784 static inline void del_chain_block(int bucket, int size, int next) 2785 { 2786 nr_free_chain_hlocks -= size; 2787 chain_block_buckets[bucket] = next; 2788 2789 if (!bucket) 2790 nr_large_chain_blocks--; 2791 } 2792 2793 static void init_chain_block_buckets(void) 2794 { 2795 int i; 2796 2797 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 2798 chain_block_buckets[i] = -1; 2799 2800 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 2801 } 2802 2803 /* 2804 * Return offset of a chain block of the right size or -1 if not found. 2805 * 2806 * Fairly simple worst-fit allocator with the addition of a number of size 2807 * specific free lists. 2808 */ 2809 static int alloc_chain_hlocks(int req) 2810 { 2811 int bucket, curr, size; 2812 2813 /* 2814 * We rely on the MSB to act as an escape bit to denote freelist 2815 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 2816 */ 2817 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 2818 2819 init_data_structures_once(); 2820 2821 if (nr_free_chain_hlocks < req) 2822 return -1; 2823 2824 /* 2825 * We require a minimum of 2 (u16) entries to encode a freelist 2826 * 'pointer'. 2827 */ 2828 req = max(req, 2); 2829 bucket = size_to_bucket(req); 2830 curr = chain_block_buckets[bucket]; 2831 2832 if (bucket) { 2833 if (curr >= 0) { 2834 del_chain_block(bucket, req, chain_block_next(curr)); 2835 return curr; 2836 } 2837 /* Try bucket 0 */ 2838 curr = chain_block_buckets[0]; 2839 } 2840 2841 /* 2842 * The variable sized freelist is sorted by size; the first entry is 2843 * the largest. Use it if it fits. 2844 */ 2845 if (curr >= 0) { 2846 size = chain_block_size(curr); 2847 if (likely(size >= req)) { 2848 del_chain_block(0, size, chain_block_next(curr)); 2849 add_chain_block(curr + req, size - req); 2850 return curr; 2851 } 2852 } 2853 2854 /* 2855 * Last resort, split a block in a larger sized bucket. 2856 */ 2857 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 2858 bucket = size_to_bucket(size); 2859 curr = chain_block_buckets[bucket]; 2860 if (curr < 0) 2861 continue; 2862 2863 del_chain_block(bucket, size, chain_block_next(curr)); 2864 add_chain_block(curr + req, size - req); 2865 return curr; 2866 } 2867 2868 return -1; 2869 } 2870 2871 static inline void free_chain_hlocks(int base, int size) 2872 { 2873 add_chain_block(base, max(size, 2)); 2874 } 2875 2876 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 2877 { 2878 return lock_classes + chain_hlocks[chain->base + i]; 2879 } 2880 2881 /* 2882 * Returns the index of the first held_lock of the current chain 2883 */ 2884 static inline int get_first_held_lock(struct task_struct *curr, 2885 struct held_lock *hlock) 2886 { 2887 int i; 2888 struct held_lock *hlock_curr; 2889 2890 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 2891 hlock_curr = curr->held_locks + i; 2892 if (hlock_curr->irq_context != hlock->irq_context) 2893 break; 2894 2895 } 2896 2897 return ++i; 2898 } 2899 2900 #ifdef CONFIG_DEBUG_LOCKDEP 2901 /* 2902 * Returns the next chain_key iteration 2903 */ 2904 static u64 print_chain_key_iteration(int class_idx, u64 chain_key) 2905 { 2906 u64 new_chain_key = iterate_chain_key(chain_key, class_idx); 2907 2908 printk(" class_idx:%d -> chain_key:%016Lx", 2909 class_idx, 2910 (unsigned long long)new_chain_key); 2911 return new_chain_key; 2912 } 2913 2914 static void 2915 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 2916 { 2917 struct held_lock *hlock; 2918 u64 chain_key = INITIAL_CHAIN_KEY; 2919 int depth = curr->lockdep_depth; 2920 int i = get_first_held_lock(curr, hlock_next); 2921 2922 printk("depth: %u (irq_context %u)\n", depth - i + 1, 2923 hlock_next->irq_context); 2924 for (; i < depth; i++) { 2925 hlock = curr->held_locks + i; 2926 chain_key = print_chain_key_iteration(hlock->class_idx, chain_key); 2927 2928 print_lock(hlock); 2929 } 2930 2931 print_chain_key_iteration(hlock_next->class_idx, chain_key); 2932 print_lock(hlock_next); 2933 } 2934 2935 static void print_chain_keys_chain(struct lock_chain *chain) 2936 { 2937 int i; 2938 u64 chain_key = INITIAL_CHAIN_KEY; 2939 int class_id; 2940 2941 printk("depth: %u\n", chain->depth); 2942 for (i = 0; i < chain->depth; i++) { 2943 class_id = chain_hlocks[chain->base + i]; 2944 chain_key = print_chain_key_iteration(class_id, chain_key); 2945 2946 print_lock_name(lock_classes + class_id); 2947 printk("\n"); 2948 } 2949 } 2950 2951 static void print_collision(struct task_struct *curr, 2952 struct held_lock *hlock_next, 2953 struct lock_chain *chain) 2954 { 2955 pr_warn("\n"); 2956 pr_warn("============================\n"); 2957 pr_warn("WARNING: chain_key collision\n"); 2958 print_kernel_ident(); 2959 pr_warn("----------------------------\n"); 2960 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 2961 pr_warn("Hash chain already cached but the contents don't match!\n"); 2962 2963 pr_warn("Held locks:"); 2964 print_chain_keys_held_locks(curr, hlock_next); 2965 2966 pr_warn("Locks in cached chain:"); 2967 print_chain_keys_chain(chain); 2968 2969 pr_warn("\nstack backtrace:\n"); 2970 dump_stack(); 2971 } 2972 #endif 2973 2974 /* 2975 * Checks whether the chain and the current held locks are consistent 2976 * in depth and also in content. If they are not it most likely means 2977 * that there was a collision during the calculation of the chain_key. 2978 * Returns: 0 not passed, 1 passed 2979 */ 2980 static int check_no_collision(struct task_struct *curr, 2981 struct held_lock *hlock, 2982 struct lock_chain *chain) 2983 { 2984 #ifdef CONFIG_DEBUG_LOCKDEP 2985 int i, j, id; 2986 2987 i = get_first_held_lock(curr, hlock); 2988 2989 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 2990 print_collision(curr, hlock, chain); 2991 return 0; 2992 } 2993 2994 for (j = 0; j < chain->depth - 1; j++, i++) { 2995 id = curr->held_locks[i].class_idx; 2996 2997 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 2998 print_collision(curr, hlock, chain); 2999 return 0; 3000 } 3001 } 3002 #endif 3003 return 1; 3004 } 3005 3006 /* 3007 * Given an index that is >= -1, return the index of the next lock chain. 3008 * Return -2 if there is no next lock chain. 3009 */ 3010 long lockdep_next_lockchain(long i) 3011 { 3012 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3013 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3014 } 3015 3016 unsigned long lock_chain_count(void) 3017 { 3018 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3019 } 3020 3021 /* Must be called with the graph lock held. */ 3022 static struct lock_chain *alloc_lock_chain(void) 3023 { 3024 int idx = find_first_zero_bit(lock_chains_in_use, 3025 ARRAY_SIZE(lock_chains)); 3026 3027 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3028 return NULL; 3029 __set_bit(idx, lock_chains_in_use); 3030 return lock_chains + idx; 3031 } 3032 3033 /* 3034 * Adds a dependency chain into chain hashtable. And must be called with 3035 * graph_lock held. 3036 * 3037 * Return 0 if fail, and graph_lock is released. 3038 * Return 1 if succeed, with graph_lock held. 3039 */ 3040 static inline int add_chain_cache(struct task_struct *curr, 3041 struct held_lock *hlock, 3042 u64 chain_key) 3043 { 3044 struct lock_class *class = hlock_class(hlock); 3045 struct hlist_head *hash_head = chainhashentry(chain_key); 3046 struct lock_chain *chain; 3047 int i, j; 3048 3049 /* 3050 * The caller must hold the graph lock, ensure we've got IRQs 3051 * disabled to make this an IRQ-safe lock.. for recursion reasons 3052 * lockdep won't complain about its own locking errors. 3053 */ 3054 if (lockdep_assert_locked()) 3055 return 0; 3056 3057 chain = alloc_lock_chain(); 3058 if (!chain) { 3059 if (!debug_locks_off_graph_unlock()) 3060 return 0; 3061 3062 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3063 dump_stack(); 3064 return 0; 3065 } 3066 chain->chain_key = chain_key; 3067 chain->irq_context = hlock->irq_context; 3068 i = get_first_held_lock(curr, hlock); 3069 chain->depth = curr->lockdep_depth + 1 - i; 3070 3071 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3072 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3073 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3074 3075 j = alloc_chain_hlocks(chain->depth); 3076 if (j < 0) { 3077 if (!debug_locks_off_graph_unlock()) 3078 return 0; 3079 3080 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3081 dump_stack(); 3082 return 0; 3083 } 3084 3085 chain->base = j; 3086 for (j = 0; j < chain->depth - 1; j++, i++) { 3087 int lock_id = curr->held_locks[i].class_idx; 3088 3089 chain_hlocks[chain->base + j] = lock_id; 3090 } 3091 chain_hlocks[chain->base + j] = class - lock_classes; 3092 hlist_add_head_rcu(&chain->entry, hash_head); 3093 debug_atomic_inc(chain_lookup_misses); 3094 inc_chains(chain->irq_context); 3095 3096 return 1; 3097 } 3098 3099 /* 3100 * Look up a dependency chain. Must be called with either the graph lock or 3101 * the RCU read lock held. 3102 */ 3103 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3104 { 3105 struct hlist_head *hash_head = chainhashentry(chain_key); 3106 struct lock_chain *chain; 3107 3108 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3109 if (READ_ONCE(chain->chain_key) == chain_key) { 3110 debug_atomic_inc(chain_lookup_hits); 3111 return chain; 3112 } 3113 } 3114 return NULL; 3115 } 3116 3117 /* 3118 * If the key is not present yet in dependency chain cache then 3119 * add it and return 1 - in this case the new dependency chain is 3120 * validated. If the key is already hashed, return 0. 3121 * (On return with 1 graph_lock is held.) 3122 */ 3123 static inline int lookup_chain_cache_add(struct task_struct *curr, 3124 struct held_lock *hlock, 3125 u64 chain_key) 3126 { 3127 struct lock_class *class = hlock_class(hlock); 3128 struct lock_chain *chain = lookup_chain_cache(chain_key); 3129 3130 if (chain) { 3131 cache_hit: 3132 if (!check_no_collision(curr, hlock, chain)) 3133 return 0; 3134 3135 if (very_verbose(class)) { 3136 printk("\nhash chain already cached, key: " 3137 "%016Lx tail class: [%px] %s\n", 3138 (unsigned long long)chain_key, 3139 class->key, class->name); 3140 } 3141 3142 return 0; 3143 } 3144 3145 if (very_verbose(class)) { 3146 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3147 (unsigned long long)chain_key, class->key, class->name); 3148 } 3149 3150 if (!graph_lock()) 3151 return 0; 3152 3153 /* 3154 * We have to walk the chain again locked - to avoid duplicates: 3155 */ 3156 chain = lookup_chain_cache(chain_key); 3157 if (chain) { 3158 graph_unlock(); 3159 goto cache_hit; 3160 } 3161 3162 if (!add_chain_cache(curr, hlock, chain_key)) 3163 return 0; 3164 3165 return 1; 3166 } 3167 3168 static int validate_chain(struct task_struct *curr, 3169 struct held_lock *hlock, 3170 int chain_head, u64 chain_key) 3171 { 3172 /* 3173 * Trylock needs to maintain the stack of held locks, but it 3174 * does not add new dependencies, because trylock can be done 3175 * in any order. 3176 * 3177 * We look up the chain_key and do the O(N^2) check and update of 3178 * the dependencies only if this is a new dependency chain. 3179 * (If lookup_chain_cache_add() return with 1 it acquires 3180 * graph_lock for us) 3181 */ 3182 if (!hlock->trylock && hlock->check && 3183 lookup_chain_cache_add(curr, hlock, chain_key)) { 3184 /* 3185 * Check whether last held lock: 3186 * 3187 * - is irq-safe, if this lock is irq-unsafe 3188 * - is softirq-safe, if this lock is hardirq-unsafe 3189 * 3190 * And check whether the new lock's dependency graph 3191 * could lead back to the previous lock: 3192 * 3193 * - within the current held-lock stack 3194 * - across our accumulated lock dependency records 3195 * 3196 * any of these scenarios could lead to a deadlock. 3197 */ 3198 /* 3199 * The simple case: does the current hold the same lock 3200 * already? 3201 */ 3202 int ret = check_deadlock(curr, hlock); 3203 3204 if (!ret) 3205 return 0; 3206 /* 3207 * Mark recursive read, as we jump over it when 3208 * building dependencies (just like we jump over 3209 * trylock entries): 3210 */ 3211 if (ret == 2) 3212 hlock->read = 2; 3213 /* 3214 * Add dependency only if this lock is not the head 3215 * of the chain, and if it's not a secondary read-lock: 3216 */ 3217 if (!chain_head && ret != 2) { 3218 if (!check_prevs_add(curr, hlock)) 3219 return 0; 3220 } 3221 3222 graph_unlock(); 3223 } else { 3224 /* after lookup_chain_cache_add(): */ 3225 if (unlikely(!debug_locks)) 3226 return 0; 3227 } 3228 3229 return 1; 3230 } 3231 #else 3232 static inline int validate_chain(struct task_struct *curr, 3233 struct held_lock *hlock, 3234 int chain_head, u64 chain_key) 3235 { 3236 return 1; 3237 } 3238 3239 static void init_chain_block_buckets(void) { } 3240 #endif /* CONFIG_PROVE_LOCKING */ 3241 3242 /* 3243 * We are building curr_chain_key incrementally, so double-check 3244 * it from scratch, to make sure that it's done correctly: 3245 */ 3246 static void check_chain_key(struct task_struct *curr) 3247 { 3248 #ifdef CONFIG_DEBUG_LOCKDEP 3249 struct held_lock *hlock, *prev_hlock = NULL; 3250 unsigned int i; 3251 u64 chain_key = INITIAL_CHAIN_KEY; 3252 3253 for (i = 0; i < curr->lockdep_depth; i++) { 3254 hlock = curr->held_locks + i; 3255 if (chain_key != hlock->prev_chain_key) { 3256 debug_locks_off(); 3257 /* 3258 * We got mighty confused, our chain keys don't match 3259 * with what we expect, someone trample on our task state? 3260 */ 3261 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3262 curr->lockdep_depth, i, 3263 (unsigned long long)chain_key, 3264 (unsigned long long)hlock->prev_chain_key); 3265 return; 3266 } 3267 3268 /* 3269 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3270 * it registered lock class index? 3271 */ 3272 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3273 return; 3274 3275 if (prev_hlock && (prev_hlock->irq_context != 3276 hlock->irq_context)) 3277 chain_key = INITIAL_CHAIN_KEY; 3278 chain_key = iterate_chain_key(chain_key, hlock->class_idx); 3279 prev_hlock = hlock; 3280 } 3281 if (chain_key != curr->curr_chain_key) { 3282 debug_locks_off(); 3283 /* 3284 * More smoking hash instead of calculating it, damn see these 3285 * numbers float.. I bet that a pink elephant stepped on my memory. 3286 */ 3287 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3288 curr->lockdep_depth, i, 3289 (unsigned long long)chain_key, 3290 (unsigned long long)curr->curr_chain_key); 3291 } 3292 #endif 3293 } 3294 3295 #ifdef CONFIG_PROVE_LOCKING 3296 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3297 enum lock_usage_bit new_bit); 3298 3299 static void print_usage_bug_scenario(struct held_lock *lock) 3300 { 3301 struct lock_class *class = hlock_class(lock); 3302 3303 printk(" Possible unsafe locking scenario:\n\n"); 3304 printk(" CPU0\n"); 3305 printk(" ----\n"); 3306 printk(" lock("); 3307 __print_lock_name(class); 3308 printk(KERN_CONT ");\n"); 3309 printk(" <Interrupt>\n"); 3310 printk(" lock("); 3311 __print_lock_name(class); 3312 printk(KERN_CONT ");\n"); 3313 printk("\n *** DEADLOCK ***\n\n"); 3314 } 3315 3316 static void 3317 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3318 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3319 { 3320 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3321 return; 3322 3323 pr_warn("\n"); 3324 pr_warn("================================\n"); 3325 pr_warn("WARNING: inconsistent lock state\n"); 3326 print_kernel_ident(); 3327 pr_warn("--------------------------------\n"); 3328 3329 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3330 usage_str[prev_bit], usage_str[new_bit]); 3331 3332 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3333 curr->comm, task_pid_nr(curr), 3334 lockdep_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT, 3335 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3336 lockdep_hardirqs_enabled(curr), 3337 lockdep_softirqs_enabled(curr)); 3338 print_lock(this); 3339 3340 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3341 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3342 3343 print_irqtrace_events(curr); 3344 pr_warn("\nother info that might help us debug this:\n"); 3345 print_usage_bug_scenario(this); 3346 3347 lockdep_print_held_locks(curr); 3348 3349 pr_warn("\nstack backtrace:\n"); 3350 dump_stack(); 3351 } 3352 3353 /* 3354 * Print out an error if an invalid bit is set: 3355 */ 3356 static inline int 3357 valid_state(struct task_struct *curr, struct held_lock *this, 3358 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3359 { 3360 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3361 print_usage_bug(curr, this, bad_bit, new_bit); 3362 return 0; 3363 } 3364 return 1; 3365 } 3366 3367 3368 /* 3369 * print irq inversion bug: 3370 */ 3371 static void 3372 print_irq_inversion_bug(struct task_struct *curr, 3373 struct lock_list *root, struct lock_list *other, 3374 struct held_lock *this, int forwards, 3375 const char *irqclass) 3376 { 3377 struct lock_list *entry = other; 3378 struct lock_list *middle = NULL; 3379 int depth; 3380 3381 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3382 return; 3383 3384 pr_warn("\n"); 3385 pr_warn("========================================================\n"); 3386 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3387 print_kernel_ident(); 3388 pr_warn("--------------------------------------------------------\n"); 3389 pr_warn("%s/%d just changed the state of lock:\n", 3390 curr->comm, task_pid_nr(curr)); 3391 print_lock(this); 3392 if (forwards) 3393 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3394 else 3395 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3396 print_lock_name(other->class); 3397 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3398 3399 pr_warn("\nother info that might help us debug this:\n"); 3400 3401 /* Find a middle lock (if one exists) */ 3402 depth = get_lock_depth(other); 3403 do { 3404 if (depth == 0 && (entry != root)) { 3405 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3406 break; 3407 } 3408 middle = entry; 3409 entry = get_lock_parent(entry); 3410 depth--; 3411 } while (entry && entry != root && (depth >= 0)); 3412 if (forwards) 3413 print_irq_lock_scenario(root, other, 3414 middle ? middle->class : root->class, other->class); 3415 else 3416 print_irq_lock_scenario(other, root, 3417 middle ? middle->class : other->class, root->class); 3418 3419 lockdep_print_held_locks(curr); 3420 3421 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 3422 root->trace = save_trace(); 3423 if (!root->trace) 3424 return; 3425 print_shortest_lock_dependencies(other, root); 3426 3427 pr_warn("\nstack backtrace:\n"); 3428 dump_stack(); 3429 } 3430 3431 /* 3432 * Prove that in the forwards-direction subgraph starting at <this> 3433 * there is no lock matching <mask>: 3434 */ 3435 static int 3436 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 3437 enum lock_usage_bit bit, const char *irqclass) 3438 { 3439 int ret; 3440 struct lock_list root; 3441 struct lock_list *uninitialized_var(target_entry); 3442 3443 root.parent = NULL; 3444 root.class = hlock_class(this); 3445 ret = find_usage_forwards(&root, lock_flag(bit), &target_entry); 3446 if (ret < 0) { 3447 print_bfs_bug(ret); 3448 return 0; 3449 } 3450 if (ret == 1) 3451 return ret; 3452 3453 print_irq_inversion_bug(curr, &root, target_entry, 3454 this, 1, irqclass); 3455 return 0; 3456 } 3457 3458 /* 3459 * Prove that in the backwards-direction subgraph starting at <this> 3460 * there is no lock matching <mask>: 3461 */ 3462 static int 3463 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 3464 enum lock_usage_bit bit, const char *irqclass) 3465 { 3466 int ret; 3467 struct lock_list root; 3468 struct lock_list *uninitialized_var(target_entry); 3469 3470 root.parent = NULL; 3471 root.class = hlock_class(this); 3472 ret = find_usage_backwards(&root, lock_flag(bit), &target_entry); 3473 if (ret < 0) { 3474 print_bfs_bug(ret); 3475 return 0; 3476 } 3477 if (ret == 1) 3478 return ret; 3479 3480 print_irq_inversion_bug(curr, &root, target_entry, 3481 this, 0, irqclass); 3482 return 0; 3483 } 3484 3485 void print_irqtrace_events(struct task_struct *curr) 3486 { 3487 printk("irq event stamp: %u\n", curr->irq_events); 3488 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 3489 curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip, 3490 (void *)curr->hardirq_enable_ip); 3491 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 3492 curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip, 3493 (void *)curr->hardirq_disable_ip); 3494 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 3495 curr->softirq_enable_event, (void *)curr->softirq_enable_ip, 3496 (void *)curr->softirq_enable_ip); 3497 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 3498 curr->softirq_disable_event, (void *)curr->softirq_disable_ip, 3499 (void *)curr->softirq_disable_ip); 3500 } 3501 3502 static int HARDIRQ_verbose(struct lock_class *class) 3503 { 3504 #if HARDIRQ_VERBOSE 3505 return class_filter(class); 3506 #endif 3507 return 0; 3508 } 3509 3510 static int SOFTIRQ_verbose(struct lock_class *class) 3511 { 3512 #if SOFTIRQ_VERBOSE 3513 return class_filter(class); 3514 #endif 3515 return 0; 3516 } 3517 3518 #define STRICT_READ_CHECKS 1 3519 3520 static int (*state_verbose_f[])(struct lock_class *class) = { 3521 #define LOCKDEP_STATE(__STATE) \ 3522 __STATE##_verbose, 3523 #include "lockdep_states.h" 3524 #undef LOCKDEP_STATE 3525 }; 3526 3527 static inline int state_verbose(enum lock_usage_bit bit, 3528 struct lock_class *class) 3529 { 3530 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 3531 } 3532 3533 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 3534 enum lock_usage_bit bit, const char *name); 3535 3536 static int 3537 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 3538 enum lock_usage_bit new_bit) 3539 { 3540 int excl_bit = exclusive_bit(new_bit); 3541 int read = new_bit & LOCK_USAGE_READ_MASK; 3542 int dir = new_bit & LOCK_USAGE_DIR_MASK; 3543 3544 /* 3545 * mark USED_IN has to look forwards -- to ensure no dependency 3546 * has ENABLED state, which would allow recursion deadlocks. 3547 * 3548 * mark ENABLED has to look backwards -- to ensure no dependee 3549 * has USED_IN state, which, again, would allow recursion deadlocks. 3550 */ 3551 check_usage_f usage = dir ? 3552 check_usage_backwards : check_usage_forwards; 3553 3554 /* 3555 * Validate that this particular lock does not have conflicting 3556 * usage states. 3557 */ 3558 if (!valid_state(curr, this, new_bit, excl_bit)) 3559 return 0; 3560 3561 /* 3562 * Validate that the lock dependencies don't have conflicting usage 3563 * states. 3564 */ 3565 if ((!read || STRICT_READ_CHECKS) && 3566 !usage(curr, this, excl_bit, state_name(new_bit & ~LOCK_USAGE_READ_MASK))) 3567 return 0; 3568 3569 /* 3570 * Check for read in write conflicts 3571 */ 3572 if (!read) { 3573 if (!valid_state(curr, this, new_bit, excl_bit + LOCK_USAGE_READ_MASK)) 3574 return 0; 3575 3576 if (STRICT_READ_CHECKS && 3577 !usage(curr, this, excl_bit + LOCK_USAGE_READ_MASK, 3578 state_name(new_bit + LOCK_USAGE_READ_MASK))) 3579 return 0; 3580 } 3581 3582 if (state_verbose(new_bit, hlock_class(this))) 3583 return 2; 3584 3585 return 1; 3586 } 3587 3588 /* 3589 * Mark all held locks with a usage bit: 3590 */ 3591 static int 3592 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 3593 { 3594 struct held_lock *hlock; 3595 int i; 3596 3597 for (i = 0; i < curr->lockdep_depth; i++) { 3598 enum lock_usage_bit hlock_bit = base_bit; 3599 hlock = curr->held_locks + i; 3600 3601 if (hlock->read) 3602 hlock_bit += LOCK_USAGE_READ_MASK; 3603 3604 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 3605 3606 if (!hlock->check) 3607 continue; 3608 3609 if (!mark_lock(curr, hlock, hlock_bit)) 3610 return 0; 3611 } 3612 3613 return 1; 3614 } 3615 3616 /* 3617 * Hardirqs will be enabled: 3618 */ 3619 static void __trace_hardirqs_on_caller(void) 3620 { 3621 struct task_struct *curr = current; 3622 3623 /* 3624 * We are going to turn hardirqs on, so set the 3625 * usage bit for all held locks: 3626 */ 3627 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 3628 return; 3629 /* 3630 * If we have softirqs enabled, then set the usage 3631 * bit for all held locks. (disabled hardirqs prevented 3632 * this bit from being set before) 3633 */ 3634 if (curr->softirqs_enabled) 3635 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 3636 } 3637 3638 /** 3639 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 3640 * @ip: Caller address 3641 * 3642 * Invoked before a possible transition to RCU idle from exit to user or 3643 * guest mode. This ensures that all RCU operations are done before RCU 3644 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 3645 * invoked to set the final state. 3646 */ 3647 void lockdep_hardirqs_on_prepare(unsigned long ip) 3648 { 3649 if (unlikely(!debug_locks || current->lockdep_recursion)) 3650 return; 3651 3652 if (unlikely(current->hardirqs_enabled)) { 3653 /* 3654 * Neither irq nor preemption are disabled here 3655 * so this is racy by nature but losing one hit 3656 * in a stat is not a big deal. 3657 */ 3658 __debug_atomic_inc(redundant_hardirqs_on); 3659 return; 3660 } 3661 3662 /* 3663 * We're enabling irqs and according to our state above irqs weren't 3664 * already enabled, yet we find the hardware thinks they are in fact 3665 * enabled.. someone messed up their IRQ state tracing. 3666 */ 3667 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3668 return; 3669 3670 /* 3671 * See the fine text that goes along with this variable definition. 3672 */ 3673 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 3674 return; 3675 3676 /* 3677 * Can't allow enabling interrupts while in an interrupt handler, 3678 * that's general bad form and such. Recursion, limited stack etc.. 3679 */ 3680 if (DEBUG_LOCKS_WARN_ON(current->hardirq_context)) 3681 return; 3682 3683 current->hardirq_chain_key = current->curr_chain_key; 3684 3685 current->lockdep_recursion++; 3686 __trace_hardirqs_on_caller(); 3687 lockdep_recursion_finish(); 3688 } 3689 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 3690 3691 void noinstr lockdep_hardirqs_on(unsigned long ip) 3692 { 3693 struct task_struct *curr = current; 3694 3695 if (unlikely(!debug_locks || curr->lockdep_recursion)) 3696 return; 3697 3698 if (curr->hardirqs_enabled) { 3699 /* 3700 * Neither irq nor preemption are disabled here 3701 * so this is racy by nature but losing one hit 3702 * in a stat is not a big deal. 3703 */ 3704 __debug_atomic_inc(redundant_hardirqs_on); 3705 return; 3706 } 3707 3708 /* 3709 * We're enabling irqs and according to our state above irqs weren't 3710 * already enabled, yet we find the hardware thinks they are in fact 3711 * enabled.. someone messed up their IRQ state tracing. 3712 */ 3713 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3714 return; 3715 3716 /* 3717 * Ensure the lock stack remained unchanged between 3718 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 3719 */ 3720 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 3721 current->curr_chain_key); 3722 3723 /* we'll do an OFF -> ON transition: */ 3724 curr->hardirqs_enabled = 1; 3725 curr->hardirq_enable_ip = ip; 3726 curr->hardirq_enable_event = ++curr->irq_events; 3727 debug_atomic_inc(hardirqs_on_events); 3728 } 3729 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 3730 3731 /* 3732 * Hardirqs were disabled: 3733 */ 3734 void noinstr lockdep_hardirqs_off(unsigned long ip) 3735 { 3736 struct task_struct *curr = current; 3737 3738 if (unlikely(!debug_locks || curr->lockdep_recursion)) 3739 return; 3740 3741 /* 3742 * So we're supposed to get called after you mask local IRQs, but for 3743 * some reason the hardware doesn't quite think you did a proper job. 3744 */ 3745 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3746 return; 3747 3748 if (curr->hardirqs_enabled) { 3749 /* 3750 * We have done an ON -> OFF transition: 3751 */ 3752 curr->hardirqs_enabled = 0; 3753 curr->hardirq_disable_ip = ip; 3754 curr->hardirq_disable_event = ++curr->irq_events; 3755 debug_atomic_inc(hardirqs_off_events); 3756 } else { 3757 debug_atomic_inc(redundant_hardirqs_off); 3758 } 3759 } 3760 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 3761 3762 /* 3763 * Softirqs will be enabled: 3764 */ 3765 void lockdep_softirqs_on(unsigned long ip) 3766 { 3767 struct task_struct *curr = current; 3768 3769 if (unlikely(!debug_locks || current->lockdep_recursion)) 3770 return; 3771 3772 /* 3773 * We fancy IRQs being disabled here, see softirq.c, avoids 3774 * funny state and nesting things. 3775 */ 3776 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3777 return; 3778 3779 if (curr->softirqs_enabled) { 3780 debug_atomic_inc(redundant_softirqs_on); 3781 return; 3782 } 3783 3784 current->lockdep_recursion++; 3785 /* 3786 * We'll do an OFF -> ON transition: 3787 */ 3788 curr->softirqs_enabled = 1; 3789 curr->softirq_enable_ip = ip; 3790 curr->softirq_enable_event = ++curr->irq_events; 3791 debug_atomic_inc(softirqs_on_events); 3792 /* 3793 * We are going to turn softirqs on, so set the 3794 * usage bit for all held locks, if hardirqs are 3795 * enabled too: 3796 */ 3797 if (curr->hardirqs_enabled) 3798 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 3799 lockdep_recursion_finish(); 3800 } 3801 3802 /* 3803 * Softirqs were disabled: 3804 */ 3805 void lockdep_softirqs_off(unsigned long ip) 3806 { 3807 struct task_struct *curr = current; 3808 3809 if (unlikely(!debug_locks || current->lockdep_recursion)) 3810 return; 3811 3812 /* 3813 * We fancy IRQs being disabled here, see softirq.c 3814 */ 3815 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3816 return; 3817 3818 if (curr->softirqs_enabled) { 3819 /* 3820 * We have done an ON -> OFF transition: 3821 */ 3822 curr->softirqs_enabled = 0; 3823 curr->softirq_disable_ip = ip; 3824 curr->softirq_disable_event = ++curr->irq_events; 3825 debug_atomic_inc(softirqs_off_events); 3826 /* 3827 * Whoops, we wanted softirqs off, so why aren't they? 3828 */ 3829 DEBUG_LOCKS_WARN_ON(!softirq_count()); 3830 } else 3831 debug_atomic_inc(redundant_softirqs_off); 3832 } 3833 3834 static int 3835 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 3836 { 3837 if (!check) 3838 goto lock_used; 3839 3840 /* 3841 * If non-trylock use in a hardirq or softirq context, then 3842 * mark the lock as used in these contexts: 3843 */ 3844 if (!hlock->trylock) { 3845 if (hlock->read) { 3846 if (curr->hardirq_context) 3847 if (!mark_lock(curr, hlock, 3848 LOCK_USED_IN_HARDIRQ_READ)) 3849 return 0; 3850 if (curr->softirq_context) 3851 if (!mark_lock(curr, hlock, 3852 LOCK_USED_IN_SOFTIRQ_READ)) 3853 return 0; 3854 } else { 3855 if (curr->hardirq_context) 3856 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 3857 return 0; 3858 if (curr->softirq_context) 3859 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 3860 return 0; 3861 } 3862 } 3863 if (!hlock->hardirqs_off) { 3864 if (hlock->read) { 3865 if (!mark_lock(curr, hlock, 3866 LOCK_ENABLED_HARDIRQ_READ)) 3867 return 0; 3868 if (curr->softirqs_enabled) 3869 if (!mark_lock(curr, hlock, 3870 LOCK_ENABLED_SOFTIRQ_READ)) 3871 return 0; 3872 } else { 3873 if (!mark_lock(curr, hlock, 3874 LOCK_ENABLED_HARDIRQ)) 3875 return 0; 3876 if (curr->softirqs_enabled) 3877 if (!mark_lock(curr, hlock, 3878 LOCK_ENABLED_SOFTIRQ)) 3879 return 0; 3880 } 3881 } 3882 3883 lock_used: 3884 /* mark it as used: */ 3885 if (!mark_lock(curr, hlock, LOCK_USED)) 3886 return 0; 3887 3888 return 1; 3889 } 3890 3891 static inline unsigned int task_irq_context(struct task_struct *task) 3892 { 3893 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!task->hardirq_context + 3894 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 3895 } 3896 3897 static int separate_irq_context(struct task_struct *curr, 3898 struct held_lock *hlock) 3899 { 3900 unsigned int depth = curr->lockdep_depth; 3901 3902 /* 3903 * Keep track of points where we cross into an interrupt context: 3904 */ 3905 if (depth) { 3906 struct held_lock *prev_hlock; 3907 3908 prev_hlock = curr->held_locks + depth-1; 3909 /* 3910 * If we cross into another context, reset the 3911 * hash key (this also prevents the checking and the 3912 * adding of the dependency to 'prev'): 3913 */ 3914 if (prev_hlock->irq_context != hlock->irq_context) 3915 return 1; 3916 } 3917 return 0; 3918 } 3919 3920 /* 3921 * Mark a lock with a usage bit, and validate the state transition: 3922 */ 3923 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3924 enum lock_usage_bit new_bit) 3925 { 3926 unsigned int new_mask = 1 << new_bit, ret = 1; 3927 3928 if (new_bit >= LOCK_USAGE_STATES) { 3929 DEBUG_LOCKS_WARN_ON(1); 3930 return 0; 3931 } 3932 3933 /* 3934 * If already set then do not dirty the cacheline, 3935 * nor do any checks: 3936 */ 3937 if (likely(hlock_class(this)->usage_mask & new_mask)) 3938 return 1; 3939 3940 if (!graph_lock()) 3941 return 0; 3942 /* 3943 * Make sure we didn't race: 3944 */ 3945 if (unlikely(hlock_class(this)->usage_mask & new_mask)) { 3946 graph_unlock(); 3947 return 1; 3948 } 3949 3950 hlock_class(this)->usage_mask |= new_mask; 3951 3952 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 3953 return 0; 3954 3955 switch (new_bit) { 3956 case LOCK_USED: 3957 debug_atomic_dec(nr_unused_locks); 3958 break; 3959 default: 3960 ret = mark_lock_irq(curr, this, new_bit); 3961 if (!ret) 3962 return 0; 3963 } 3964 3965 graph_unlock(); 3966 3967 /* 3968 * We must printk outside of the graph_lock: 3969 */ 3970 if (ret == 2) { 3971 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 3972 print_lock(this); 3973 print_irqtrace_events(curr); 3974 dump_stack(); 3975 } 3976 3977 return ret; 3978 } 3979 3980 static inline short task_wait_context(struct task_struct *curr) 3981 { 3982 /* 3983 * Set appropriate wait type for the context; for IRQs we have to take 3984 * into account force_irqthread as that is implied by PREEMPT_RT. 3985 */ 3986 if (curr->hardirq_context) { 3987 /* 3988 * Check if force_irqthreads will run us threaded. 3989 */ 3990 if (curr->hardirq_threaded || curr->irq_config) 3991 return LD_WAIT_CONFIG; 3992 3993 return LD_WAIT_SPIN; 3994 } else if (curr->softirq_context) { 3995 /* 3996 * Softirqs are always threaded. 3997 */ 3998 return LD_WAIT_CONFIG; 3999 } 4000 4001 return LD_WAIT_MAX; 4002 } 4003 4004 static int 4005 print_lock_invalid_wait_context(struct task_struct *curr, 4006 struct held_lock *hlock) 4007 { 4008 short curr_inner; 4009 4010 if (!debug_locks_off()) 4011 return 0; 4012 if (debug_locks_silent) 4013 return 0; 4014 4015 pr_warn("\n"); 4016 pr_warn("=============================\n"); 4017 pr_warn("[ BUG: Invalid wait context ]\n"); 4018 print_kernel_ident(); 4019 pr_warn("-----------------------------\n"); 4020 4021 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4022 print_lock(hlock); 4023 4024 pr_warn("other info that might help us debug this:\n"); 4025 4026 curr_inner = task_wait_context(curr); 4027 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4028 4029 lockdep_print_held_locks(curr); 4030 4031 pr_warn("stack backtrace:\n"); 4032 dump_stack(); 4033 4034 return 0; 4035 } 4036 4037 /* 4038 * Verify the wait_type context. 4039 * 4040 * This check validates we takes locks in the right wait-type order; that is it 4041 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4042 * acquire spinlocks inside raw_spinlocks and the sort. 4043 * 4044 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4045 * can be taken from (pretty much) any context but also has constraints. 4046 * However when taken in a stricter environment the RCU lock does not loosen 4047 * the constraints. 4048 * 4049 * Therefore we must look for the strictest environment in the lock stack and 4050 * compare that to the lock we're trying to acquire. 4051 */ 4052 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4053 { 4054 short next_inner = hlock_class(next)->wait_type_inner; 4055 short next_outer = hlock_class(next)->wait_type_outer; 4056 short curr_inner; 4057 int depth; 4058 4059 if (!curr->lockdep_depth || !next_inner || next->trylock) 4060 return 0; 4061 4062 if (!next_outer) 4063 next_outer = next_inner; 4064 4065 /* 4066 * Find start of current irq_context.. 4067 */ 4068 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4069 struct held_lock *prev = curr->held_locks + depth; 4070 if (prev->irq_context != next->irq_context) 4071 break; 4072 } 4073 depth++; 4074 4075 curr_inner = task_wait_context(curr); 4076 4077 for (; depth < curr->lockdep_depth; depth++) { 4078 struct held_lock *prev = curr->held_locks + depth; 4079 short prev_inner = hlock_class(prev)->wait_type_inner; 4080 4081 if (prev_inner) { 4082 /* 4083 * We can have a bigger inner than a previous one 4084 * when outer is smaller than inner, as with RCU. 4085 * 4086 * Also due to trylocks. 4087 */ 4088 curr_inner = min(curr_inner, prev_inner); 4089 } 4090 } 4091 4092 if (next_outer > curr_inner) 4093 return print_lock_invalid_wait_context(curr, next); 4094 4095 return 0; 4096 } 4097 4098 #else /* CONFIG_PROVE_LOCKING */ 4099 4100 static inline int 4101 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4102 { 4103 return 1; 4104 } 4105 4106 static inline unsigned int task_irq_context(struct task_struct *task) 4107 { 4108 return 0; 4109 } 4110 4111 static inline int separate_irq_context(struct task_struct *curr, 4112 struct held_lock *hlock) 4113 { 4114 return 0; 4115 } 4116 4117 static inline int check_wait_context(struct task_struct *curr, 4118 struct held_lock *next) 4119 { 4120 return 0; 4121 } 4122 4123 #endif /* CONFIG_PROVE_LOCKING */ 4124 4125 /* 4126 * Initialize a lock instance's lock-class mapping info: 4127 */ 4128 void lockdep_init_map_waits(struct lockdep_map *lock, const char *name, 4129 struct lock_class_key *key, int subclass, 4130 short inner, short outer) 4131 { 4132 int i; 4133 4134 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4135 lock->class_cache[i] = NULL; 4136 4137 #ifdef CONFIG_LOCK_STAT 4138 lock->cpu = raw_smp_processor_id(); 4139 #endif 4140 4141 /* 4142 * Can't be having no nameless bastards around this place! 4143 */ 4144 if (DEBUG_LOCKS_WARN_ON(!name)) { 4145 lock->name = "NULL"; 4146 return; 4147 } 4148 4149 lock->name = name; 4150 4151 lock->wait_type_outer = outer; 4152 lock->wait_type_inner = inner; 4153 4154 /* 4155 * No key, no joy, we need to hash something. 4156 */ 4157 if (DEBUG_LOCKS_WARN_ON(!key)) 4158 return; 4159 /* 4160 * Sanity check, the lock-class key must either have been allocated 4161 * statically or must have been registered as a dynamic key. 4162 */ 4163 if (!static_obj(key) && !is_dynamic_key(key)) { 4164 if (debug_locks) 4165 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4166 DEBUG_LOCKS_WARN_ON(1); 4167 return; 4168 } 4169 lock->key = key; 4170 4171 if (unlikely(!debug_locks)) 4172 return; 4173 4174 if (subclass) { 4175 unsigned long flags; 4176 4177 if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion)) 4178 return; 4179 4180 raw_local_irq_save(flags); 4181 current->lockdep_recursion++; 4182 register_lock_class(lock, subclass, 1); 4183 lockdep_recursion_finish(); 4184 raw_local_irq_restore(flags); 4185 } 4186 } 4187 EXPORT_SYMBOL_GPL(lockdep_init_map_waits); 4188 4189 struct lock_class_key __lockdep_no_validate__; 4190 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4191 4192 static void 4193 print_lock_nested_lock_not_held(struct task_struct *curr, 4194 struct held_lock *hlock, 4195 unsigned long ip) 4196 { 4197 if (!debug_locks_off()) 4198 return; 4199 if (debug_locks_silent) 4200 return; 4201 4202 pr_warn("\n"); 4203 pr_warn("==================================\n"); 4204 pr_warn("WARNING: Nested lock was not taken\n"); 4205 print_kernel_ident(); 4206 pr_warn("----------------------------------\n"); 4207 4208 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4209 print_lock(hlock); 4210 4211 pr_warn("\nbut this task is not holding:\n"); 4212 pr_warn("%s\n", hlock->nest_lock->name); 4213 4214 pr_warn("\nstack backtrace:\n"); 4215 dump_stack(); 4216 4217 pr_warn("\nother info that might help us debug this:\n"); 4218 lockdep_print_held_locks(curr); 4219 4220 pr_warn("\nstack backtrace:\n"); 4221 dump_stack(); 4222 } 4223 4224 static int __lock_is_held(const struct lockdep_map *lock, int read); 4225 4226 /* 4227 * This gets called for every mutex_lock*()/spin_lock*() operation. 4228 * We maintain the dependency maps and validate the locking attempt: 4229 * 4230 * The callers must make sure that IRQs are disabled before calling it, 4231 * otherwise we could get an interrupt which would want to take locks, 4232 * which would end up in lockdep again. 4233 */ 4234 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4235 int trylock, int read, int check, int hardirqs_off, 4236 struct lockdep_map *nest_lock, unsigned long ip, 4237 int references, int pin_count) 4238 { 4239 struct task_struct *curr = current; 4240 struct lock_class *class = NULL; 4241 struct held_lock *hlock; 4242 unsigned int depth; 4243 int chain_head = 0; 4244 int class_idx; 4245 u64 chain_key; 4246 4247 if (unlikely(!debug_locks)) 4248 return 0; 4249 4250 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4251 check = 0; 4252 4253 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4254 class = lock->class_cache[subclass]; 4255 /* 4256 * Not cached? 4257 */ 4258 if (unlikely(!class)) { 4259 class = register_lock_class(lock, subclass, 0); 4260 if (!class) 4261 return 0; 4262 } 4263 4264 debug_class_ops_inc(class); 4265 4266 if (very_verbose(class)) { 4267 printk("\nacquire class [%px] %s", class->key, class->name); 4268 if (class->name_version > 1) 4269 printk(KERN_CONT "#%d", class->name_version); 4270 printk(KERN_CONT "\n"); 4271 dump_stack(); 4272 } 4273 4274 /* 4275 * Add the lock to the list of currently held locks. 4276 * (we dont increase the depth just yet, up until the 4277 * dependency checks are done) 4278 */ 4279 depth = curr->lockdep_depth; 4280 /* 4281 * Ran out of static storage for our per-task lock stack again have we? 4282 */ 4283 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4284 return 0; 4285 4286 class_idx = class - lock_classes; 4287 4288 if (depth) { /* we're holding locks */ 4289 hlock = curr->held_locks + depth - 1; 4290 if (hlock->class_idx == class_idx && nest_lock) { 4291 if (!references) 4292 references++; 4293 4294 if (!hlock->references) 4295 hlock->references++; 4296 4297 hlock->references += references; 4298 4299 /* Overflow */ 4300 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4301 return 0; 4302 4303 return 2; 4304 } 4305 } 4306 4307 hlock = curr->held_locks + depth; 4308 /* 4309 * Plain impossible, we just registered it and checked it weren't no 4310 * NULL like.. I bet this mushroom I ate was good! 4311 */ 4312 if (DEBUG_LOCKS_WARN_ON(!class)) 4313 return 0; 4314 hlock->class_idx = class_idx; 4315 hlock->acquire_ip = ip; 4316 hlock->instance = lock; 4317 hlock->nest_lock = nest_lock; 4318 hlock->irq_context = task_irq_context(curr); 4319 hlock->trylock = trylock; 4320 hlock->read = read; 4321 hlock->check = check; 4322 hlock->hardirqs_off = !!hardirqs_off; 4323 hlock->references = references; 4324 #ifdef CONFIG_LOCK_STAT 4325 hlock->waittime_stamp = 0; 4326 hlock->holdtime_stamp = lockstat_clock(); 4327 #endif 4328 hlock->pin_count = pin_count; 4329 4330 if (check_wait_context(curr, hlock)) 4331 return 0; 4332 4333 /* Initialize the lock usage bit */ 4334 if (!mark_usage(curr, hlock, check)) 4335 return 0; 4336 4337 /* 4338 * Calculate the chain hash: it's the combined hash of all the 4339 * lock keys along the dependency chain. We save the hash value 4340 * at every step so that we can get the current hash easily 4341 * after unlock. The chain hash is then used to cache dependency 4342 * results. 4343 * 4344 * The 'key ID' is what is the most compact key value to drive 4345 * the hash, not class->key. 4346 */ 4347 /* 4348 * Whoops, we did it again.. class_idx is invalid. 4349 */ 4350 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 4351 return 0; 4352 4353 chain_key = curr->curr_chain_key; 4354 if (!depth) { 4355 /* 4356 * How can we have a chain hash when we ain't got no keys?! 4357 */ 4358 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 4359 return 0; 4360 chain_head = 1; 4361 } 4362 4363 hlock->prev_chain_key = chain_key; 4364 if (separate_irq_context(curr, hlock)) { 4365 chain_key = INITIAL_CHAIN_KEY; 4366 chain_head = 1; 4367 } 4368 chain_key = iterate_chain_key(chain_key, class_idx); 4369 4370 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 4371 print_lock_nested_lock_not_held(curr, hlock, ip); 4372 return 0; 4373 } 4374 4375 if (!debug_locks_silent) { 4376 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 4377 WARN_ON_ONCE(!hlock_class(hlock)->key); 4378 } 4379 4380 if (!validate_chain(curr, hlock, chain_head, chain_key)) 4381 return 0; 4382 4383 curr->curr_chain_key = chain_key; 4384 curr->lockdep_depth++; 4385 check_chain_key(curr); 4386 #ifdef CONFIG_DEBUG_LOCKDEP 4387 if (unlikely(!debug_locks)) 4388 return 0; 4389 #endif 4390 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 4391 debug_locks_off(); 4392 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 4393 printk(KERN_DEBUG "depth: %i max: %lu!\n", 4394 curr->lockdep_depth, MAX_LOCK_DEPTH); 4395 4396 lockdep_print_held_locks(current); 4397 debug_show_all_locks(); 4398 dump_stack(); 4399 4400 return 0; 4401 } 4402 4403 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 4404 max_lockdep_depth = curr->lockdep_depth; 4405 4406 return 1; 4407 } 4408 4409 static void print_unlock_imbalance_bug(struct task_struct *curr, 4410 struct lockdep_map *lock, 4411 unsigned long ip) 4412 { 4413 if (!debug_locks_off()) 4414 return; 4415 if (debug_locks_silent) 4416 return; 4417 4418 pr_warn("\n"); 4419 pr_warn("=====================================\n"); 4420 pr_warn("WARNING: bad unlock balance detected!\n"); 4421 print_kernel_ident(); 4422 pr_warn("-------------------------------------\n"); 4423 pr_warn("%s/%d is trying to release lock (", 4424 curr->comm, task_pid_nr(curr)); 4425 print_lockdep_cache(lock); 4426 pr_cont(") at:\n"); 4427 print_ip_sym(KERN_WARNING, ip); 4428 pr_warn("but there are no more locks to release!\n"); 4429 pr_warn("\nother info that might help us debug this:\n"); 4430 lockdep_print_held_locks(curr); 4431 4432 pr_warn("\nstack backtrace:\n"); 4433 dump_stack(); 4434 } 4435 4436 static noinstr int match_held_lock(const struct held_lock *hlock, 4437 const struct lockdep_map *lock) 4438 { 4439 if (hlock->instance == lock) 4440 return 1; 4441 4442 if (hlock->references) { 4443 const struct lock_class *class = lock->class_cache[0]; 4444 4445 if (!class) 4446 class = look_up_lock_class(lock, 0); 4447 4448 /* 4449 * If look_up_lock_class() failed to find a class, we're trying 4450 * to test if we hold a lock that has never yet been acquired. 4451 * Clearly if the lock hasn't been acquired _ever_, we're not 4452 * holding it either, so report failure. 4453 */ 4454 if (!class) 4455 return 0; 4456 4457 /* 4458 * References, but not a lock we're actually ref-counting? 4459 * State got messed up, follow the sites that change ->references 4460 * and try to make sense of it. 4461 */ 4462 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 4463 return 0; 4464 4465 if (hlock->class_idx == class - lock_classes) 4466 return 1; 4467 } 4468 4469 return 0; 4470 } 4471 4472 /* @depth must not be zero */ 4473 static struct held_lock *find_held_lock(struct task_struct *curr, 4474 struct lockdep_map *lock, 4475 unsigned int depth, int *idx) 4476 { 4477 struct held_lock *ret, *hlock, *prev_hlock; 4478 int i; 4479 4480 i = depth - 1; 4481 hlock = curr->held_locks + i; 4482 ret = hlock; 4483 if (match_held_lock(hlock, lock)) 4484 goto out; 4485 4486 ret = NULL; 4487 for (i--, prev_hlock = hlock--; 4488 i >= 0; 4489 i--, prev_hlock = hlock--) { 4490 /* 4491 * We must not cross into another context: 4492 */ 4493 if (prev_hlock->irq_context != hlock->irq_context) { 4494 ret = NULL; 4495 break; 4496 } 4497 if (match_held_lock(hlock, lock)) { 4498 ret = hlock; 4499 break; 4500 } 4501 } 4502 4503 out: 4504 *idx = i; 4505 return ret; 4506 } 4507 4508 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 4509 int idx, unsigned int *merged) 4510 { 4511 struct held_lock *hlock; 4512 int first_idx = idx; 4513 4514 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4515 return 0; 4516 4517 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 4518 switch (__lock_acquire(hlock->instance, 4519 hlock_class(hlock)->subclass, 4520 hlock->trylock, 4521 hlock->read, hlock->check, 4522 hlock->hardirqs_off, 4523 hlock->nest_lock, hlock->acquire_ip, 4524 hlock->references, hlock->pin_count)) { 4525 case 0: 4526 return 1; 4527 case 1: 4528 break; 4529 case 2: 4530 *merged += (idx == first_idx); 4531 break; 4532 default: 4533 WARN_ON(1); 4534 return 0; 4535 } 4536 } 4537 return 0; 4538 } 4539 4540 static int 4541 __lock_set_class(struct lockdep_map *lock, const char *name, 4542 struct lock_class_key *key, unsigned int subclass, 4543 unsigned long ip) 4544 { 4545 struct task_struct *curr = current; 4546 unsigned int depth, merged = 0; 4547 struct held_lock *hlock; 4548 struct lock_class *class; 4549 int i; 4550 4551 if (unlikely(!debug_locks)) 4552 return 0; 4553 4554 depth = curr->lockdep_depth; 4555 /* 4556 * This function is about (re)setting the class of a held lock, 4557 * yet we're not actually holding any locks. Naughty user! 4558 */ 4559 if (DEBUG_LOCKS_WARN_ON(!depth)) 4560 return 0; 4561 4562 hlock = find_held_lock(curr, lock, depth, &i); 4563 if (!hlock) { 4564 print_unlock_imbalance_bug(curr, lock, ip); 4565 return 0; 4566 } 4567 4568 lockdep_init_map_waits(lock, name, key, 0, 4569 lock->wait_type_inner, 4570 lock->wait_type_outer); 4571 class = register_lock_class(lock, subclass, 0); 4572 hlock->class_idx = class - lock_classes; 4573 4574 curr->lockdep_depth = i; 4575 curr->curr_chain_key = hlock->prev_chain_key; 4576 4577 if (reacquire_held_locks(curr, depth, i, &merged)) 4578 return 0; 4579 4580 /* 4581 * I took it apart and put it back together again, except now I have 4582 * these 'spare' parts.. where shall I put them. 4583 */ 4584 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 4585 return 0; 4586 return 1; 4587 } 4588 4589 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 4590 { 4591 struct task_struct *curr = current; 4592 unsigned int depth, merged = 0; 4593 struct held_lock *hlock; 4594 int i; 4595 4596 if (unlikely(!debug_locks)) 4597 return 0; 4598 4599 depth = curr->lockdep_depth; 4600 /* 4601 * This function is about (re)setting the class of a held lock, 4602 * yet we're not actually holding any locks. Naughty user! 4603 */ 4604 if (DEBUG_LOCKS_WARN_ON(!depth)) 4605 return 0; 4606 4607 hlock = find_held_lock(curr, lock, depth, &i); 4608 if (!hlock) { 4609 print_unlock_imbalance_bug(curr, lock, ip); 4610 return 0; 4611 } 4612 4613 curr->lockdep_depth = i; 4614 curr->curr_chain_key = hlock->prev_chain_key; 4615 4616 WARN(hlock->read, "downgrading a read lock"); 4617 hlock->read = 1; 4618 hlock->acquire_ip = ip; 4619 4620 if (reacquire_held_locks(curr, depth, i, &merged)) 4621 return 0; 4622 4623 /* Merging can't happen with unchanged classes.. */ 4624 if (DEBUG_LOCKS_WARN_ON(merged)) 4625 return 0; 4626 4627 /* 4628 * I took it apart and put it back together again, except now I have 4629 * these 'spare' parts.. where shall I put them. 4630 */ 4631 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 4632 return 0; 4633 4634 return 1; 4635 } 4636 4637 /* 4638 * Remove the lock from the list of currently held locks - this gets 4639 * called on mutex_unlock()/spin_unlock*() (or on a failed 4640 * mutex_lock_interruptible()). 4641 */ 4642 static int 4643 __lock_release(struct lockdep_map *lock, unsigned long ip) 4644 { 4645 struct task_struct *curr = current; 4646 unsigned int depth, merged = 1; 4647 struct held_lock *hlock; 4648 int i; 4649 4650 if (unlikely(!debug_locks)) 4651 return 0; 4652 4653 depth = curr->lockdep_depth; 4654 /* 4655 * So we're all set to release this lock.. wait what lock? We don't 4656 * own any locks, you've been drinking again? 4657 */ 4658 if (depth <= 0) { 4659 print_unlock_imbalance_bug(curr, lock, ip); 4660 return 0; 4661 } 4662 4663 /* 4664 * Check whether the lock exists in the current stack 4665 * of held locks: 4666 */ 4667 hlock = find_held_lock(curr, lock, depth, &i); 4668 if (!hlock) { 4669 print_unlock_imbalance_bug(curr, lock, ip); 4670 return 0; 4671 } 4672 4673 if (hlock->instance == lock) 4674 lock_release_holdtime(hlock); 4675 4676 WARN(hlock->pin_count, "releasing a pinned lock\n"); 4677 4678 if (hlock->references) { 4679 hlock->references--; 4680 if (hlock->references) { 4681 /* 4682 * We had, and after removing one, still have 4683 * references, the current lock stack is still 4684 * valid. We're done! 4685 */ 4686 return 1; 4687 } 4688 } 4689 4690 /* 4691 * We have the right lock to unlock, 'hlock' points to it. 4692 * Now we remove it from the stack, and add back the other 4693 * entries (if any), recalculating the hash along the way: 4694 */ 4695 4696 curr->lockdep_depth = i; 4697 curr->curr_chain_key = hlock->prev_chain_key; 4698 4699 /* 4700 * The most likely case is when the unlock is on the innermost 4701 * lock. In this case, we are done! 4702 */ 4703 if (i == depth-1) 4704 return 1; 4705 4706 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 4707 return 0; 4708 4709 /* 4710 * We had N bottles of beer on the wall, we drank one, but now 4711 * there's not N-1 bottles of beer left on the wall... 4712 * Pouring two of the bottles together is acceptable. 4713 */ 4714 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 4715 4716 /* 4717 * Since reacquire_held_locks() would have called check_chain_key() 4718 * indirectly via __lock_acquire(), we don't need to do it again 4719 * on return. 4720 */ 4721 return 0; 4722 } 4723 4724 static __always_inline 4725 int __lock_is_held(const struct lockdep_map *lock, int read) 4726 { 4727 struct task_struct *curr = current; 4728 int i; 4729 4730 for (i = 0; i < curr->lockdep_depth; i++) { 4731 struct held_lock *hlock = curr->held_locks + i; 4732 4733 if (match_held_lock(hlock, lock)) { 4734 if (read == -1 || hlock->read == read) 4735 return 1; 4736 4737 return 0; 4738 } 4739 } 4740 4741 return 0; 4742 } 4743 4744 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 4745 { 4746 struct pin_cookie cookie = NIL_COOKIE; 4747 struct task_struct *curr = current; 4748 int i; 4749 4750 if (unlikely(!debug_locks)) 4751 return cookie; 4752 4753 for (i = 0; i < curr->lockdep_depth; i++) { 4754 struct held_lock *hlock = curr->held_locks + i; 4755 4756 if (match_held_lock(hlock, lock)) { 4757 /* 4758 * Grab 16bits of randomness; this is sufficient to not 4759 * be guessable and still allows some pin nesting in 4760 * our u32 pin_count. 4761 */ 4762 cookie.val = 1 + (prandom_u32() >> 16); 4763 hlock->pin_count += cookie.val; 4764 return cookie; 4765 } 4766 } 4767 4768 WARN(1, "pinning an unheld lock\n"); 4769 return cookie; 4770 } 4771 4772 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 4773 { 4774 struct task_struct *curr = current; 4775 int i; 4776 4777 if (unlikely(!debug_locks)) 4778 return; 4779 4780 for (i = 0; i < curr->lockdep_depth; i++) { 4781 struct held_lock *hlock = curr->held_locks + i; 4782 4783 if (match_held_lock(hlock, lock)) { 4784 hlock->pin_count += cookie.val; 4785 return; 4786 } 4787 } 4788 4789 WARN(1, "pinning an unheld lock\n"); 4790 } 4791 4792 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 4793 { 4794 struct task_struct *curr = current; 4795 int i; 4796 4797 if (unlikely(!debug_locks)) 4798 return; 4799 4800 for (i = 0; i < curr->lockdep_depth; i++) { 4801 struct held_lock *hlock = curr->held_locks + i; 4802 4803 if (match_held_lock(hlock, lock)) { 4804 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 4805 return; 4806 4807 hlock->pin_count -= cookie.val; 4808 4809 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 4810 hlock->pin_count = 0; 4811 4812 return; 4813 } 4814 } 4815 4816 WARN(1, "unpinning an unheld lock\n"); 4817 } 4818 4819 /* 4820 * Check whether we follow the irq-flags state precisely: 4821 */ 4822 static void check_flags(unsigned long flags) 4823 { 4824 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 4825 if (!debug_locks) 4826 return; 4827 4828 if (irqs_disabled_flags(flags)) { 4829 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) { 4830 printk("possible reason: unannotated irqs-off.\n"); 4831 } 4832 } else { 4833 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) { 4834 printk("possible reason: unannotated irqs-on.\n"); 4835 } 4836 } 4837 4838 /* 4839 * We dont accurately track softirq state in e.g. 4840 * hardirq contexts (such as on 4KSTACKS), so only 4841 * check if not in hardirq contexts: 4842 */ 4843 if (!hardirq_count()) { 4844 if (softirq_count()) { 4845 /* like the above, but with softirqs */ 4846 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 4847 } else { 4848 /* lick the above, does it taste good? */ 4849 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 4850 } 4851 } 4852 4853 if (!debug_locks) 4854 print_irqtrace_events(current); 4855 #endif 4856 } 4857 4858 void lock_set_class(struct lockdep_map *lock, const char *name, 4859 struct lock_class_key *key, unsigned int subclass, 4860 unsigned long ip) 4861 { 4862 unsigned long flags; 4863 4864 if (unlikely(current->lockdep_recursion)) 4865 return; 4866 4867 raw_local_irq_save(flags); 4868 current->lockdep_recursion++; 4869 check_flags(flags); 4870 if (__lock_set_class(lock, name, key, subclass, ip)) 4871 check_chain_key(current); 4872 lockdep_recursion_finish(); 4873 raw_local_irq_restore(flags); 4874 } 4875 EXPORT_SYMBOL_GPL(lock_set_class); 4876 4877 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 4878 { 4879 unsigned long flags; 4880 4881 if (unlikely(current->lockdep_recursion)) 4882 return; 4883 4884 raw_local_irq_save(flags); 4885 current->lockdep_recursion++; 4886 check_flags(flags); 4887 if (__lock_downgrade(lock, ip)) 4888 check_chain_key(current); 4889 lockdep_recursion_finish(); 4890 raw_local_irq_restore(flags); 4891 } 4892 EXPORT_SYMBOL_GPL(lock_downgrade); 4893 4894 /* NMI context !!! */ 4895 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 4896 { 4897 #ifdef CONFIG_PROVE_LOCKING 4898 struct lock_class *class = look_up_lock_class(lock, subclass); 4899 4900 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 4901 if (!class) 4902 return; 4903 4904 if (!(class->usage_mask & LOCK_USED)) 4905 return; 4906 4907 hlock->class_idx = class - lock_classes; 4908 4909 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 4910 #endif 4911 } 4912 4913 static bool lockdep_nmi(void) 4914 { 4915 if (current->lockdep_recursion & LOCKDEP_RECURSION_MASK) 4916 return false; 4917 4918 if (!in_nmi()) 4919 return false; 4920 4921 return true; 4922 } 4923 4924 /* 4925 * We are not always called with irqs disabled - do that here, 4926 * and also avoid lockdep recursion: 4927 */ 4928 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4929 int trylock, int read, int check, 4930 struct lockdep_map *nest_lock, unsigned long ip) 4931 { 4932 unsigned long flags; 4933 4934 if (unlikely(current->lockdep_recursion)) { 4935 /* XXX allow trylock from NMI ?!? */ 4936 if (lockdep_nmi() && !trylock) { 4937 struct held_lock hlock; 4938 4939 hlock.acquire_ip = ip; 4940 hlock.instance = lock; 4941 hlock.nest_lock = nest_lock; 4942 hlock.irq_context = 2; // XXX 4943 hlock.trylock = trylock; 4944 hlock.read = read; 4945 hlock.check = check; 4946 hlock.hardirqs_off = true; 4947 hlock.references = 0; 4948 4949 verify_lock_unused(lock, &hlock, subclass); 4950 } 4951 return; 4952 } 4953 4954 raw_local_irq_save(flags); 4955 check_flags(flags); 4956 4957 current->lockdep_recursion++; 4958 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 4959 __lock_acquire(lock, subclass, trylock, read, check, 4960 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 4961 lockdep_recursion_finish(); 4962 raw_local_irq_restore(flags); 4963 } 4964 EXPORT_SYMBOL_GPL(lock_acquire); 4965 4966 void lock_release(struct lockdep_map *lock, unsigned long ip) 4967 { 4968 unsigned long flags; 4969 4970 if (unlikely(current->lockdep_recursion)) 4971 return; 4972 4973 raw_local_irq_save(flags); 4974 check_flags(flags); 4975 current->lockdep_recursion++; 4976 trace_lock_release(lock, ip); 4977 if (__lock_release(lock, ip)) 4978 check_chain_key(current); 4979 lockdep_recursion_finish(); 4980 raw_local_irq_restore(flags); 4981 } 4982 EXPORT_SYMBOL_GPL(lock_release); 4983 4984 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 4985 { 4986 unsigned long flags; 4987 int ret = 0; 4988 4989 if (unlikely(current->lockdep_recursion)) 4990 return 1; /* avoid false negative lockdep_assert_held() */ 4991 4992 raw_local_irq_save(flags); 4993 check_flags(flags); 4994 4995 current->lockdep_recursion++; 4996 ret = __lock_is_held(lock, read); 4997 lockdep_recursion_finish(); 4998 raw_local_irq_restore(flags); 4999 5000 return ret; 5001 } 5002 EXPORT_SYMBOL_GPL(lock_is_held_type); 5003 NOKPROBE_SYMBOL(lock_is_held_type); 5004 5005 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5006 { 5007 struct pin_cookie cookie = NIL_COOKIE; 5008 unsigned long flags; 5009 5010 if (unlikely(current->lockdep_recursion)) 5011 return cookie; 5012 5013 raw_local_irq_save(flags); 5014 check_flags(flags); 5015 5016 current->lockdep_recursion++; 5017 cookie = __lock_pin_lock(lock); 5018 lockdep_recursion_finish(); 5019 raw_local_irq_restore(flags); 5020 5021 return cookie; 5022 } 5023 EXPORT_SYMBOL_GPL(lock_pin_lock); 5024 5025 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5026 { 5027 unsigned long flags; 5028 5029 if (unlikely(current->lockdep_recursion)) 5030 return; 5031 5032 raw_local_irq_save(flags); 5033 check_flags(flags); 5034 5035 current->lockdep_recursion++; 5036 __lock_repin_lock(lock, cookie); 5037 lockdep_recursion_finish(); 5038 raw_local_irq_restore(flags); 5039 } 5040 EXPORT_SYMBOL_GPL(lock_repin_lock); 5041 5042 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5043 { 5044 unsigned long flags; 5045 5046 if (unlikely(current->lockdep_recursion)) 5047 return; 5048 5049 raw_local_irq_save(flags); 5050 check_flags(flags); 5051 5052 current->lockdep_recursion++; 5053 __lock_unpin_lock(lock, cookie); 5054 lockdep_recursion_finish(); 5055 raw_local_irq_restore(flags); 5056 } 5057 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5058 5059 #ifdef CONFIG_LOCK_STAT 5060 static void print_lock_contention_bug(struct task_struct *curr, 5061 struct lockdep_map *lock, 5062 unsigned long ip) 5063 { 5064 if (!debug_locks_off()) 5065 return; 5066 if (debug_locks_silent) 5067 return; 5068 5069 pr_warn("\n"); 5070 pr_warn("=================================\n"); 5071 pr_warn("WARNING: bad contention detected!\n"); 5072 print_kernel_ident(); 5073 pr_warn("---------------------------------\n"); 5074 pr_warn("%s/%d is trying to contend lock (", 5075 curr->comm, task_pid_nr(curr)); 5076 print_lockdep_cache(lock); 5077 pr_cont(") at:\n"); 5078 print_ip_sym(KERN_WARNING, ip); 5079 pr_warn("but there are no locks held!\n"); 5080 pr_warn("\nother info that might help us debug this:\n"); 5081 lockdep_print_held_locks(curr); 5082 5083 pr_warn("\nstack backtrace:\n"); 5084 dump_stack(); 5085 } 5086 5087 static void 5088 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5089 { 5090 struct task_struct *curr = current; 5091 struct held_lock *hlock; 5092 struct lock_class_stats *stats; 5093 unsigned int depth; 5094 int i, contention_point, contending_point; 5095 5096 depth = curr->lockdep_depth; 5097 /* 5098 * Whee, we contended on this lock, except it seems we're not 5099 * actually trying to acquire anything much at all.. 5100 */ 5101 if (DEBUG_LOCKS_WARN_ON(!depth)) 5102 return; 5103 5104 hlock = find_held_lock(curr, lock, depth, &i); 5105 if (!hlock) { 5106 print_lock_contention_bug(curr, lock, ip); 5107 return; 5108 } 5109 5110 if (hlock->instance != lock) 5111 return; 5112 5113 hlock->waittime_stamp = lockstat_clock(); 5114 5115 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5116 contending_point = lock_point(hlock_class(hlock)->contending_point, 5117 lock->ip); 5118 5119 stats = get_lock_stats(hlock_class(hlock)); 5120 if (contention_point < LOCKSTAT_POINTS) 5121 stats->contention_point[contention_point]++; 5122 if (contending_point < LOCKSTAT_POINTS) 5123 stats->contending_point[contending_point]++; 5124 if (lock->cpu != smp_processor_id()) 5125 stats->bounces[bounce_contended + !!hlock->read]++; 5126 } 5127 5128 static void 5129 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5130 { 5131 struct task_struct *curr = current; 5132 struct held_lock *hlock; 5133 struct lock_class_stats *stats; 5134 unsigned int depth; 5135 u64 now, waittime = 0; 5136 int i, cpu; 5137 5138 depth = curr->lockdep_depth; 5139 /* 5140 * Yay, we acquired ownership of this lock we didn't try to 5141 * acquire, how the heck did that happen? 5142 */ 5143 if (DEBUG_LOCKS_WARN_ON(!depth)) 5144 return; 5145 5146 hlock = find_held_lock(curr, lock, depth, &i); 5147 if (!hlock) { 5148 print_lock_contention_bug(curr, lock, _RET_IP_); 5149 return; 5150 } 5151 5152 if (hlock->instance != lock) 5153 return; 5154 5155 cpu = smp_processor_id(); 5156 if (hlock->waittime_stamp) { 5157 now = lockstat_clock(); 5158 waittime = now - hlock->waittime_stamp; 5159 hlock->holdtime_stamp = now; 5160 } 5161 5162 trace_lock_acquired(lock, ip); 5163 5164 stats = get_lock_stats(hlock_class(hlock)); 5165 if (waittime) { 5166 if (hlock->read) 5167 lock_time_inc(&stats->read_waittime, waittime); 5168 else 5169 lock_time_inc(&stats->write_waittime, waittime); 5170 } 5171 if (lock->cpu != cpu) 5172 stats->bounces[bounce_acquired + !!hlock->read]++; 5173 5174 lock->cpu = cpu; 5175 lock->ip = ip; 5176 } 5177 5178 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5179 { 5180 unsigned long flags; 5181 5182 if (unlikely(!lock_stat || !debug_locks)) 5183 return; 5184 5185 if (unlikely(current->lockdep_recursion)) 5186 return; 5187 5188 raw_local_irq_save(flags); 5189 check_flags(flags); 5190 current->lockdep_recursion++; 5191 trace_lock_contended(lock, ip); 5192 __lock_contended(lock, ip); 5193 lockdep_recursion_finish(); 5194 raw_local_irq_restore(flags); 5195 } 5196 EXPORT_SYMBOL_GPL(lock_contended); 5197 5198 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5199 { 5200 unsigned long flags; 5201 5202 if (unlikely(!lock_stat || !debug_locks)) 5203 return; 5204 5205 if (unlikely(current->lockdep_recursion)) 5206 return; 5207 5208 raw_local_irq_save(flags); 5209 check_flags(flags); 5210 current->lockdep_recursion++; 5211 __lock_acquired(lock, ip); 5212 lockdep_recursion_finish(); 5213 raw_local_irq_restore(flags); 5214 } 5215 EXPORT_SYMBOL_GPL(lock_acquired); 5216 #endif 5217 5218 /* 5219 * Used by the testsuite, sanitize the validator state 5220 * after a simulated failure: 5221 */ 5222 5223 void lockdep_reset(void) 5224 { 5225 unsigned long flags; 5226 int i; 5227 5228 raw_local_irq_save(flags); 5229 lockdep_init_task(current); 5230 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5231 nr_hardirq_chains = 0; 5232 nr_softirq_chains = 0; 5233 nr_process_chains = 0; 5234 debug_locks = 1; 5235 for (i = 0; i < CHAINHASH_SIZE; i++) 5236 INIT_HLIST_HEAD(chainhash_table + i); 5237 raw_local_irq_restore(flags); 5238 } 5239 5240 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5241 static void remove_class_from_lock_chain(struct pending_free *pf, 5242 struct lock_chain *chain, 5243 struct lock_class *class) 5244 { 5245 #ifdef CONFIG_PROVE_LOCKING 5246 int i; 5247 5248 for (i = chain->base; i < chain->base + chain->depth; i++) { 5249 if (chain_hlocks[i] != class - lock_classes) 5250 continue; 5251 /* 5252 * Each lock class occurs at most once in a lock chain so once 5253 * we found a match we can break out of this loop. 5254 */ 5255 goto free_lock_chain; 5256 } 5257 /* Since the chain has not been modified, return. */ 5258 return; 5259 5260 free_lock_chain: 5261 free_chain_hlocks(chain->base, chain->depth); 5262 /* Overwrite the chain key for concurrent RCU readers. */ 5263 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5264 dec_chains(chain->irq_context); 5265 5266 /* 5267 * Note: calling hlist_del_rcu() from inside a 5268 * hlist_for_each_entry_rcu() loop is safe. 5269 */ 5270 hlist_del_rcu(&chain->entry); 5271 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5272 nr_zapped_lock_chains++; 5273 #endif 5274 } 5275 5276 /* Must be called with the graph lock held. */ 5277 static void remove_class_from_lock_chains(struct pending_free *pf, 5278 struct lock_class *class) 5279 { 5280 struct lock_chain *chain; 5281 struct hlist_head *head; 5282 int i; 5283 5284 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5285 head = chainhash_table + i; 5286 hlist_for_each_entry_rcu(chain, head, entry) { 5287 remove_class_from_lock_chain(pf, chain, class); 5288 } 5289 } 5290 } 5291 5292 /* 5293 * Remove all references to a lock class. The caller must hold the graph lock. 5294 */ 5295 static void zap_class(struct pending_free *pf, struct lock_class *class) 5296 { 5297 struct lock_list *entry; 5298 int i; 5299 5300 WARN_ON_ONCE(!class->key); 5301 5302 /* 5303 * Remove all dependencies this lock is 5304 * involved in: 5305 */ 5306 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5307 entry = list_entries + i; 5308 if (entry->class != class && entry->links_to != class) 5309 continue; 5310 __clear_bit(i, list_entries_in_use); 5311 nr_list_entries--; 5312 list_del_rcu(&entry->entry); 5313 } 5314 if (list_empty(&class->locks_after) && 5315 list_empty(&class->locks_before)) { 5316 list_move_tail(&class->lock_entry, &pf->zapped); 5317 hlist_del_rcu(&class->hash_entry); 5318 WRITE_ONCE(class->key, NULL); 5319 WRITE_ONCE(class->name, NULL); 5320 nr_lock_classes--; 5321 __clear_bit(class - lock_classes, lock_classes_in_use); 5322 } else { 5323 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 5324 class->name); 5325 } 5326 5327 remove_class_from_lock_chains(pf, class); 5328 nr_zapped_classes++; 5329 } 5330 5331 static void reinit_class(struct lock_class *class) 5332 { 5333 void *const p = class; 5334 const unsigned int offset = offsetof(struct lock_class, key); 5335 5336 WARN_ON_ONCE(!class->lock_entry.next); 5337 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5338 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5339 memset(p + offset, 0, sizeof(*class) - offset); 5340 WARN_ON_ONCE(!class->lock_entry.next); 5341 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5342 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5343 } 5344 5345 static inline int within(const void *addr, void *start, unsigned long size) 5346 { 5347 return addr >= start && addr < start + size; 5348 } 5349 5350 static bool inside_selftest(void) 5351 { 5352 return current == lockdep_selftest_task_struct; 5353 } 5354 5355 /* The caller must hold the graph lock. */ 5356 static struct pending_free *get_pending_free(void) 5357 { 5358 return delayed_free.pf + delayed_free.index; 5359 } 5360 5361 static void free_zapped_rcu(struct rcu_head *cb); 5362 5363 /* 5364 * Schedule an RCU callback if no RCU callback is pending. Must be called with 5365 * the graph lock held. 5366 */ 5367 static void call_rcu_zapped(struct pending_free *pf) 5368 { 5369 WARN_ON_ONCE(inside_selftest()); 5370 5371 if (list_empty(&pf->zapped)) 5372 return; 5373 5374 if (delayed_free.scheduled) 5375 return; 5376 5377 delayed_free.scheduled = true; 5378 5379 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 5380 delayed_free.index ^= 1; 5381 5382 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 5383 } 5384 5385 /* The caller must hold the graph lock. May be called from RCU context. */ 5386 static void __free_zapped_classes(struct pending_free *pf) 5387 { 5388 struct lock_class *class; 5389 5390 check_data_structures(); 5391 5392 list_for_each_entry(class, &pf->zapped, lock_entry) 5393 reinit_class(class); 5394 5395 list_splice_init(&pf->zapped, &free_lock_classes); 5396 5397 #ifdef CONFIG_PROVE_LOCKING 5398 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 5399 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 5400 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 5401 #endif 5402 } 5403 5404 static void free_zapped_rcu(struct rcu_head *ch) 5405 { 5406 struct pending_free *pf; 5407 unsigned long flags; 5408 5409 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 5410 return; 5411 5412 raw_local_irq_save(flags); 5413 lockdep_lock(); 5414 5415 /* closed head */ 5416 pf = delayed_free.pf + (delayed_free.index ^ 1); 5417 __free_zapped_classes(pf); 5418 delayed_free.scheduled = false; 5419 5420 /* 5421 * If there's anything on the open list, close and start a new callback. 5422 */ 5423 call_rcu_zapped(delayed_free.pf + delayed_free.index); 5424 5425 lockdep_unlock(); 5426 raw_local_irq_restore(flags); 5427 } 5428 5429 /* 5430 * Remove all lock classes from the class hash table and from the 5431 * all_lock_classes list whose key or name is in the address range [start, 5432 * start + size). Move these lock classes to the zapped_classes list. Must 5433 * be called with the graph lock held. 5434 */ 5435 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 5436 unsigned long size) 5437 { 5438 struct lock_class *class; 5439 struct hlist_head *head; 5440 int i; 5441 5442 /* Unhash all classes that were created by a module. */ 5443 for (i = 0; i < CLASSHASH_SIZE; i++) { 5444 head = classhash_table + i; 5445 hlist_for_each_entry_rcu(class, head, hash_entry) { 5446 if (!within(class->key, start, size) && 5447 !within(class->name, start, size)) 5448 continue; 5449 zap_class(pf, class); 5450 } 5451 } 5452 } 5453 5454 /* 5455 * Used in module.c to remove lock classes from memory that is going to be 5456 * freed; and possibly re-used by other modules. 5457 * 5458 * We will have had one synchronize_rcu() before getting here, so we're 5459 * guaranteed nobody will look up these exact classes -- they're properly dead 5460 * but still allocated. 5461 */ 5462 static void lockdep_free_key_range_reg(void *start, unsigned long size) 5463 { 5464 struct pending_free *pf; 5465 unsigned long flags; 5466 5467 init_data_structures_once(); 5468 5469 raw_local_irq_save(flags); 5470 lockdep_lock(); 5471 pf = get_pending_free(); 5472 __lockdep_free_key_range(pf, start, size); 5473 call_rcu_zapped(pf); 5474 lockdep_unlock(); 5475 raw_local_irq_restore(flags); 5476 5477 /* 5478 * Wait for any possible iterators from look_up_lock_class() to pass 5479 * before continuing to free the memory they refer to. 5480 */ 5481 synchronize_rcu(); 5482 } 5483 5484 /* 5485 * Free all lockdep keys in the range [start, start+size). Does not sleep. 5486 * Ignores debug_locks. Must only be used by the lockdep selftests. 5487 */ 5488 static void lockdep_free_key_range_imm(void *start, unsigned long size) 5489 { 5490 struct pending_free *pf = delayed_free.pf; 5491 unsigned long flags; 5492 5493 init_data_structures_once(); 5494 5495 raw_local_irq_save(flags); 5496 lockdep_lock(); 5497 __lockdep_free_key_range(pf, start, size); 5498 __free_zapped_classes(pf); 5499 lockdep_unlock(); 5500 raw_local_irq_restore(flags); 5501 } 5502 5503 void lockdep_free_key_range(void *start, unsigned long size) 5504 { 5505 init_data_structures_once(); 5506 5507 if (inside_selftest()) 5508 lockdep_free_key_range_imm(start, size); 5509 else 5510 lockdep_free_key_range_reg(start, size); 5511 } 5512 5513 /* 5514 * Check whether any element of the @lock->class_cache[] array refers to a 5515 * registered lock class. The caller must hold either the graph lock or the 5516 * RCU read lock. 5517 */ 5518 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 5519 { 5520 struct lock_class *class; 5521 struct hlist_head *head; 5522 int i, j; 5523 5524 for (i = 0; i < CLASSHASH_SIZE; i++) { 5525 head = classhash_table + i; 5526 hlist_for_each_entry_rcu(class, head, hash_entry) { 5527 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 5528 if (lock->class_cache[j] == class) 5529 return true; 5530 } 5531 } 5532 return false; 5533 } 5534 5535 /* The caller must hold the graph lock. Does not sleep. */ 5536 static void __lockdep_reset_lock(struct pending_free *pf, 5537 struct lockdep_map *lock) 5538 { 5539 struct lock_class *class; 5540 int j; 5541 5542 /* 5543 * Remove all classes this lock might have: 5544 */ 5545 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 5546 /* 5547 * If the class exists we look it up and zap it: 5548 */ 5549 class = look_up_lock_class(lock, j); 5550 if (class) 5551 zap_class(pf, class); 5552 } 5553 /* 5554 * Debug check: in the end all mapped classes should 5555 * be gone. 5556 */ 5557 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 5558 debug_locks_off(); 5559 } 5560 5561 /* 5562 * Remove all information lockdep has about a lock if debug_locks == 1. Free 5563 * released data structures from RCU context. 5564 */ 5565 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 5566 { 5567 struct pending_free *pf; 5568 unsigned long flags; 5569 int locked; 5570 5571 raw_local_irq_save(flags); 5572 locked = graph_lock(); 5573 if (!locked) 5574 goto out_irq; 5575 5576 pf = get_pending_free(); 5577 __lockdep_reset_lock(pf, lock); 5578 call_rcu_zapped(pf); 5579 5580 graph_unlock(); 5581 out_irq: 5582 raw_local_irq_restore(flags); 5583 } 5584 5585 /* 5586 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 5587 * lockdep selftests. 5588 */ 5589 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 5590 { 5591 struct pending_free *pf = delayed_free.pf; 5592 unsigned long flags; 5593 5594 raw_local_irq_save(flags); 5595 lockdep_lock(); 5596 __lockdep_reset_lock(pf, lock); 5597 __free_zapped_classes(pf); 5598 lockdep_unlock(); 5599 raw_local_irq_restore(flags); 5600 } 5601 5602 void lockdep_reset_lock(struct lockdep_map *lock) 5603 { 5604 init_data_structures_once(); 5605 5606 if (inside_selftest()) 5607 lockdep_reset_lock_imm(lock); 5608 else 5609 lockdep_reset_lock_reg(lock); 5610 } 5611 5612 /* Unregister a dynamically allocated key. */ 5613 void lockdep_unregister_key(struct lock_class_key *key) 5614 { 5615 struct hlist_head *hash_head = keyhashentry(key); 5616 struct lock_class_key *k; 5617 struct pending_free *pf; 5618 unsigned long flags; 5619 bool found = false; 5620 5621 might_sleep(); 5622 5623 if (WARN_ON_ONCE(static_obj(key))) 5624 return; 5625 5626 raw_local_irq_save(flags); 5627 if (!graph_lock()) 5628 goto out_irq; 5629 5630 pf = get_pending_free(); 5631 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 5632 if (k == key) { 5633 hlist_del_rcu(&k->hash_entry); 5634 found = true; 5635 break; 5636 } 5637 } 5638 WARN_ON_ONCE(!found); 5639 __lockdep_free_key_range(pf, key, 1); 5640 call_rcu_zapped(pf); 5641 graph_unlock(); 5642 out_irq: 5643 raw_local_irq_restore(flags); 5644 5645 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 5646 synchronize_rcu(); 5647 } 5648 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 5649 5650 void __init lockdep_init(void) 5651 { 5652 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 5653 5654 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 5655 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 5656 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 5657 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 5658 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 5659 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 5660 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 5661 5662 printk(" memory used by lock dependency info: %zu kB\n", 5663 (sizeof(lock_classes) + 5664 sizeof(lock_classes_in_use) + 5665 sizeof(classhash_table) + 5666 sizeof(list_entries) + 5667 sizeof(list_entries_in_use) + 5668 sizeof(chainhash_table) + 5669 sizeof(delayed_free) 5670 #ifdef CONFIG_PROVE_LOCKING 5671 + sizeof(lock_cq) 5672 + sizeof(lock_chains) 5673 + sizeof(lock_chains_in_use) 5674 + sizeof(chain_hlocks) 5675 #endif 5676 ) / 1024 5677 ); 5678 5679 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 5680 printk(" memory used for stack traces: %zu kB\n", 5681 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 5682 ); 5683 #endif 5684 5685 printk(" per task-struct memory footprint: %zu bytes\n", 5686 sizeof(((struct task_struct *)NULL)->held_locks)); 5687 } 5688 5689 static void 5690 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 5691 const void *mem_to, struct held_lock *hlock) 5692 { 5693 if (!debug_locks_off()) 5694 return; 5695 if (debug_locks_silent) 5696 return; 5697 5698 pr_warn("\n"); 5699 pr_warn("=========================\n"); 5700 pr_warn("WARNING: held lock freed!\n"); 5701 print_kernel_ident(); 5702 pr_warn("-------------------------\n"); 5703 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 5704 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 5705 print_lock(hlock); 5706 lockdep_print_held_locks(curr); 5707 5708 pr_warn("\nstack backtrace:\n"); 5709 dump_stack(); 5710 } 5711 5712 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 5713 const void* lock_from, unsigned long lock_len) 5714 { 5715 return lock_from + lock_len <= mem_from || 5716 mem_from + mem_len <= lock_from; 5717 } 5718 5719 /* 5720 * Called when kernel memory is freed (or unmapped), or if a lock 5721 * is destroyed or reinitialized - this code checks whether there is 5722 * any held lock in the memory range of <from> to <to>: 5723 */ 5724 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 5725 { 5726 struct task_struct *curr = current; 5727 struct held_lock *hlock; 5728 unsigned long flags; 5729 int i; 5730 5731 if (unlikely(!debug_locks)) 5732 return; 5733 5734 raw_local_irq_save(flags); 5735 for (i = 0; i < curr->lockdep_depth; i++) { 5736 hlock = curr->held_locks + i; 5737 5738 if (not_in_range(mem_from, mem_len, hlock->instance, 5739 sizeof(*hlock->instance))) 5740 continue; 5741 5742 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 5743 break; 5744 } 5745 raw_local_irq_restore(flags); 5746 } 5747 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 5748 5749 static void print_held_locks_bug(void) 5750 { 5751 if (!debug_locks_off()) 5752 return; 5753 if (debug_locks_silent) 5754 return; 5755 5756 pr_warn("\n"); 5757 pr_warn("====================================\n"); 5758 pr_warn("WARNING: %s/%d still has locks held!\n", 5759 current->comm, task_pid_nr(current)); 5760 print_kernel_ident(); 5761 pr_warn("------------------------------------\n"); 5762 lockdep_print_held_locks(current); 5763 pr_warn("\nstack backtrace:\n"); 5764 dump_stack(); 5765 } 5766 5767 void debug_check_no_locks_held(void) 5768 { 5769 if (unlikely(current->lockdep_depth > 0)) 5770 print_held_locks_bug(); 5771 } 5772 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 5773 5774 #ifdef __KERNEL__ 5775 void debug_show_all_locks(void) 5776 { 5777 struct task_struct *g, *p; 5778 5779 if (unlikely(!debug_locks)) { 5780 pr_warn("INFO: lockdep is turned off.\n"); 5781 return; 5782 } 5783 pr_warn("\nShowing all locks held in the system:\n"); 5784 5785 rcu_read_lock(); 5786 for_each_process_thread(g, p) { 5787 if (!p->lockdep_depth) 5788 continue; 5789 lockdep_print_held_locks(p); 5790 touch_nmi_watchdog(); 5791 touch_all_softlockup_watchdogs(); 5792 } 5793 rcu_read_unlock(); 5794 5795 pr_warn("\n"); 5796 pr_warn("=============================================\n\n"); 5797 } 5798 EXPORT_SYMBOL_GPL(debug_show_all_locks); 5799 #endif 5800 5801 /* 5802 * Careful: only use this function if you are sure that 5803 * the task cannot run in parallel! 5804 */ 5805 void debug_show_held_locks(struct task_struct *task) 5806 { 5807 if (unlikely(!debug_locks)) { 5808 printk("INFO: lockdep is turned off.\n"); 5809 return; 5810 } 5811 lockdep_print_held_locks(task); 5812 } 5813 EXPORT_SYMBOL_GPL(debug_show_held_locks); 5814 5815 asmlinkage __visible void lockdep_sys_exit(void) 5816 { 5817 struct task_struct *curr = current; 5818 5819 if (unlikely(curr->lockdep_depth)) { 5820 if (!debug_locks_off()) 5821 return; 5822 pr_warn("\n"); 5823 pr_warn("================================================\n"); 5824 pr_warn("WARNING: lock held when returning to user space!\n"); 5825 print_kernel_ident(); 5826 pr_warn("------------------------------------------------\n"); 5827 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 5828 curr->comm, curr->pid); 5829 lockdep_print_held_locks(curr); 5830 } 5831 5832 /* 5833 * The lock history for each syscall should be independent. So wipe the 5834 * slate clean on return to userspace. 5835 */ 5836 lockdep_invariant_state(false); 5837 } 5838 5839 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 5840 { 5841 struct task_struct *curr = current; 5842 5843 /* Note: the following can be executed concurrently, so be careful. */ 5844 pr_warn("\n"); 5845 pr_warn("=============================\n"); 5846 pr_warn("WARNING: suspicious RCU usage\n"); 5847 print_kernel_ident(); 5848 pr_warn("-----------------------------\n"); 5849 pr_warn("%s:%d %s!\n", file, line, s); 5850 pr_warn("\nother info that might help us debug this:\n\n"); 5851 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 5852 !rcu_lockdep_current_cpu_online() 5853 ? "RCU used illegally from offline CPU!\n" 5854 : !rcu_is_watching() 5855 ? "RCU used illegally from idle CPU!\n" 5856 : "", 5857 rcu_scheduler_active, debug_locks); 5858 5859 /* 5860 * If a CPU is in the RCU-free window in idle (ie: in the section 5861 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 5862 * considers that CPU to be in an "extended quiescent state", 5863 * which means that RCU will be completely ignoring that CPU. 5864 * Therefore, rcu_read_lock() and friends have absolutely no 5865 * effect on a CPU running in that state. In other words, even if 5866 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 5867 * delete data structures out from under it. RCU really has no 5868 * choice here: we need to keep an RCU-free window in idle where 5869 * the CPU may possibly enter into low power mode. This way we can 5870 * notice an extended quiescent state to other CPUs that started a grace 5871 * period. Otherwise we would delay any grace period as long as we run 5872 * in the idle task. 5873 * 5874 * So complain bitterly if someone does call rcu_read_lock(), 5875 * rcu_read_lock_bh() and so on from extended quiescent states. 5876 */ 5877 if (!rcu_is_watching()) 5878 pr_warn("RCU used illegally from extended quiescent state!\n"); 5879 5880 lockdep_print_held_locks(curr); 5881 pr_warn("\nstack backtrace:\n"); 5882 dump_stack(); 5883 } 5884 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 5885