xref: /openbmc/linux/kernel/locking/lockdep.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 
59 #include <asm/sections.h>
60 
61 #include "lockdep_internals.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65 
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72 
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79 
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82 
83 static __always_inline bool lockdep_enabled(void)
84 {
85 	if (!debug_locks)
86 		return false;
87 
88 	if (this_cpu_read(lockdep_recursion))
89 		return false;
90 
91 	if (current->lockdep_recursion)
92 		return false;
93 
94 	return true;
95 }
96 
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107 
108 static inline void lockdep_lock(void)
109 {
110 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111 
112 	__this_cpu_inc(lockdep_recursion);
113 	arch_spin_lock(&__lock);
114 	__owner = current;
115 }
116 
117 static inline void lockdep_unlock(void)
118 {
119 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120 
121 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122 		return;
123 
124 	__owner = NULL;
125 	arch_spin_unlock(&__lock);
126 	__this_cpu_dec(lockdep_recursion);
127 }
128 
129 static inline bool lockdep_assert_locked(void)
130 {
131 	return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133 
134 static struct task_struct *lockdep_selftest_task_struct;
135 
136 
137 static int graph_lock(void)
138 {
139 	lockdep_lock();
140 	/*
141 	 * Make sure that if another CPU detected a bug while
142 	 * walking the graph we dont change it (while the other
143 	 * CPU is busy printing out stuff with the graph lock
144 	 * dropped already)
145 	 */
146 	if (!debug_locks) {
147 		lockdep_unlock();
148 		return 0;
149 	}
150 	return 1;
151 }
152 
153 static inline void graph_unlock(void)
154 {
155 	lockdep_unlock();
156 }
157 
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164 	int ret = debug_locks_off();
165 
166 	lockdep_unlock();
167 
168 	return ret;
169 }
170 
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174 
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 #ifndef CONFIG_DEBUG_LOCKDEP
187 static
188 #endif
189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
191 
192 static inline struct lock_class *hlock_class(struct held_lock *hlock)
193 {
194 	unsigned int class_idx = hlock->class_idx;
195 
196 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
197 	barrier();
198 
199 	if (!test_bit(class_idx, lock_classes_in_use)) {
200 		/*
201 		 * Someone passed in garbage, we give up.
202 		 */
203 		DEBUG_LOCKS_WARN_ON(1);
204 		return NULL;
205 	}
206 
207 	/*
208 	 * At this point, if the passed hlock->class_idx is still garbage,
209 	 * we just have to live with it
210 	 */
211 	return lock_classes + class_idx;
212 }
213 
214 #ifdef CONFIG_LOCK_STAT
215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
216 
217 static inline u64 lockstat_clock(void)
218 {
219 	return local_clock();
220 }
221 
222 static int lock_point(unsigned long points[], unsigned long ip)
223 {
224 	int i;
225 
226 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
227 		if (points[i] == 0) {
228 			points[i] = ip;
229 			break;
230 		}
231 		if (points[i] == ip)
232 			break;
233 	}
234 
235 	return i;
236 }
237 
238 static void lock_time_inc(struct lock_time *lt, u64 time)
239 {
240 	if (time > lt->max)
241 		lt->max = time;
242 
243 	if (time < lt->min || !lt->nr)
244 		lt->min = time;
245 
246 	lt->total += time;
247 	lt->nr++;
248 }
249 
250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
251 {
252 	if (!src->nr)
253 		return;
254 
255 	if (src->max > dst->max)
256 		dst->max = src->max;
257 
258 	if (src->min < dst->min || !dst->nr)
259 		dst->min = src->min;
260 
261 	dst->total += src->total;
262 	dst->nr += src->nr;
263 }
264 
265 struct lock_class_stats lock_stats(struct lock_class *class)
266 {
267 	struct lock_class_stats stats;
268 	int cpu, i;
269 
270 	memset(&stats, 0, sizeof(struct lock_class_stats));
271 	for_each_possible_cpu(cpu) {
272 		struct lock_class_stats *pcs =
273 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
274 
275 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
276 			stats.contention_point[i] += pcs->contention_point[i];
277 
278 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
279 			stats.contending_point[i] += pcs->contending_point[i];
280 
281 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
282 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
283 
284 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
285 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
286 
287 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
288 			stats.bounces[i] += pcs->bounces[i];
289 	}
290 
291 	return stats;
292 }
293 
294 void clear_lock_stats(struct lock_class *class)
295 {
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		struct lock_class_stats *cpu_stats =
300 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
301 
302 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
303 	}
304 	memset(class->contention_point, 0, sizeof(class->contention_point));
305 	memset(class->contending_point, 0, sizeof(class->contending_point));
306 }
307 
308 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
309 {
310 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
311 }
312 
313 static void lock_release_holdtime(struct held_lock *hlock)
314 {
315 	struct lock_class_stats *stats;
316 	u64 holdtime;
317 
318 	if (!lock_stat)
319 		return;
320 
321 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
322 
323 	stats = get_lock_stats(hlock_class(hlock));
324 	if (hlock->read)
325 		lock_time_inc(&stats->read_holdtime, holdtime);
326 	else
327 		lock_time_inc(&stats->write_holdtime, holdtime);
328 }
329 #else
330 static inline void lock_release_holdtime(struct held_lock *hlock)
331 {
332 }
333 #endif
334 
335 /*
336  * We keep a global list of all lock classes. The list is only accessed with
337  * the lockdep spinlock lock held. free_lock_classes is a list with free
338  * elements. These elements are linked together by the lock_entry member in
339  * struct lock_class.
340  */
341 LIST_HEAD(all_lock_classes);
342 static LIST_HEAD(free_lock_classes);
343 
344 /**
345  * struct pending_free - information about data structures about to be freed
346  * @zapped: Head of a list with struct lock_class elements.
347  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
348  *	are about to be freed.
349  */
350 struct pending_free {
351 	struct list_head zapped;
352 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
353 };
354 
355 /**
356  * struct delayed_free - data structures used for delayed freeing
357  *
358  * A data structure for delayed freeing of data structures that may be
359  * accessed by RCU readers at the time these were freed.
360  *
361  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
362  * @index:     Index of @pf to which freed data structures are added.
363  * @scheduled: Whether or not an RCU callback has been scheduled.
364  * @pf:        Array with information about data structures about to be freed.
365  */
366 static struct delayed_free {
367 	struct rcu_head		rcu_head;
368 	int			index;
369 	int			scheduled;
370 	struct pending_free	pf[2];
371 } delayed_free;
372 
373 /*
374  * The lockdep classes are in a hash-table as well, for fast lookup:
375  */
376 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
377 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
378 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
379 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
380 
381 static struct hlist_head classhash_table[CLASSHASH_SIZE];
382 
383 /*
384  * We put the lock dependency chains into a hash-table as well, to cache
385  * their existence:
386  */
387 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
388 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
389 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
390 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
391 
392 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
393 
394 /*
395  * the id of held_lock
396  */
397 static inline u16 hlock_id(struct held_lock *hlock)
398 {
399 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
400 
401 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
402 }
403 
404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
405 {
406 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
407 }
408 
409 /*
410  * The hash key of the lock dependency chains is a hash itself too:
411  * it's a hash of all locks taken up to that lock, including that lock.
412  * It's a 64-bit hash, because it's important for the keys to be
413  * unique.
414  */
415 static inline u64 iterate_chain_key(u64 key, u32 idx)
416 {
417 	u32 k0 = key, k1 = key >> 32;
418 
419 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
420 
421 	return k0 | (u64)k1 << 32;
422 }
423 
424 void lockdep_init_task(struct task_struct *task)
425 {
426 	task->lockdep_depth = 0; /* no locks held yet */
427 	task->curr_chain_key = INITIAL_CHAIN_KEY;
428 	task->lockdep_recursion = 0;
429 }
430 
431 static __always_inline void lockdep_recursion_inc(void)
432 {
433 	__this_cpu_inc(lockdep_recursion);
434 }
435 
436 static __always_inline void lockdep_recursion_finish(void)
437 {
438 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
439 		__this_cpu_write(lockdep_recursion, 0);
440 }
441 
442 void lockdep_set_selftest_task(struct task_struct *task)
443 {
444 	lockdep_selftest_task_struct = task;
445 }
446 
447 /*
448  * Debugging switches:
449  */
450 
451 #define VERBOSE			0
452 #define VERY_VERBOSE		0
453 
454 #if VERBOSE
455 # define HARDIRQ_VERBOSE	1
456 # define SOFTIRQ_VERBOSE	1
457 #else
458 # define HARDIRQ_VERBOSE	0
459 # define SOFTIRQ_VERBOSE	0
460 #endif
461 
462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
463 /*
464  * Quick filtering for interesting events:
465  */
466 static int class_filter(struct lock_class *class)
467 {
468 #if 0
469 	/* Example */
470 	if (class->name_version == 1 &&
471 			!strcmp(class->name, "lockname"))
472 		return 1;
473 	if (class->name_version == 1 &&
474 			!strcmp(class->name, "&struct->lockfield"))
475 		return 1;
476 #endif
477 	/* Filter everything else. 1 would be to allow everything else */
478 	return 0;
479 }
480 #endif
481 
482 static int verbose(struct lock_class *class)
483 {
484 #if VERBOSE
485 	return class_filter(class);
486 #endif
487 	return 0;
488 }
489 
490 static void print_lockdep_off(const char *bug_msg)
491 {
492 	printk(KERN_DEBUG "%s\n", bug_msg);
493 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
494 #ifdef CONFIG_LOCK_STAT
495 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
496 #endif
497 }
498 
499 unsigned long nr_stack_trace_entries;
500 
501 #ifdef CONFIG_PROVE_LOCKING
502 /**
503  * struct lock_trace - single stack backtrace
504  * @hash_entry:	Entry in a stack_trace_hash[] list.
505  * @hash:	jhash() of @entries.
506  * @nr_entries:	Number of entries in @entries.
507  * @entries:	Actual stack backtrace.
508  */
509 struct lock_trace {
510 	struct hlist_node	hash_entry;
511 	u32			hash;
512 	u32			nr_entries;
513 	unsigned long		entries[] __aligned(sizeof(unsigned long));
514 };
515 #define LOCK_TRACE_SIZE_IN_LONGS				\
516 	(sizeof(struct lock_trace) / sizeof(unsigned long))
517 /*
518  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
519  */
520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
522 
523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
524 {
525 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
526 		memcmp(t1->entries, t2->entries,
527 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
528 }
529 
530 static struct lock_trace *save_trace(void)
531 {
532 	struct lock_trace *trace, *t2;
533 	struct hlist_head *hash_head;
534 	u32 hash;
535 	int max_entries;
536 
537 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
538 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
539 
540 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
541 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
542 		LOCK_TRACE_SIZE_IN_LONGS;
543 
544 	if (max_entries <= 0) {
545 		if (!debug_locks_off_graph_unlock())
546 			return NULL;
547 
548 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
549 		dump_stack();
550 
551 		return NULL;
552 	}
553 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
554 
555 	hash = jhash(trace->entries, trace->nr_entries *
556 		     sizeof(trace->entries[0]), 0);
557 	trace->hash = hash;
558 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
559 	hlist_for_each_entry(t2, hash_head, hash_entry) {
560 		if (traces_identical(trace, t2))
561 			return t2;
562 	}
563 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
564 	hlist_add_head(&trace->hash_entry, hash_head);
565 
566 	return trace;
567 }
568 
569 /* Return the number of stack traces in the stack_trace[] array. */
570 u64 lockdep_stack_trace_count(void)
571 {
572 	struct lock_trace *trace;
573 	u64 c = 0;
574 	int i;
575 
576 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
577 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
578 			c++;
579 		}
580 	}
581 
582 	return c;
583 }
584 
585 /* Return the number of stack hash chains that have at least one stack trace. */
586 u64 lockdep_stack_hash_count(void)
587 {
588 	u64 c = 0;
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
592 		if (!hlist_empty(&stack_trace_hash[i]))
593 			c++;
594 
595 	return c;
596 }
597 #endif
598 
599 unsigned int nr_hardirq_chains;
600 unsigned int nr_softirq_chains;
601 unsigned int nr_process_chains;
602 unsigned int max_lockdep_depth;
603 
604 #ifdef CONFIG_DEBUG_LOCKDEP
605 /*
606  * Various lockdep statistics:
607  */
608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
609 #endif
610 
611 #ifdef CONFIG_PROVE_LOCKING
612 /*
613  * Locking printouts:
614  */
615 
616 #define __USAGE(__STATE)						\
617 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
618 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
619 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
620 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
621 
622 static const char *usage_str[] =
623 {
624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
625 #include "lockdep_states.h"
626 #undef LOCKDEP_STATE
627 	[LOCK_USED] = "INITIAL USE",
628 	[LOCK_USED_READ] = "INITIAL READ USE",
629 	/* abused as string storage for verify_lock_unused() */
630 	[LOCK_USAGE_STATES] = "IN-NMI",
631 };
632 #endif
633 
634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
635 {
636 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
637 }
638 
639 static inline unsigned long lock_flag(enum lock_usage_bit bit)
640 {
641 	return 1UL << bit;
642 }
643 
644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
645 {
646 	/*
647 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
648 	 * irq context), which is the safest usage category.
649 	 */
650 	char c = '.';
651 
652 	/*
653 	 * The order of the following usage checks matters, which will
654 	 * result in the outcome character as follows:
655 	 *
656 	 * - '+': irq is enabled and not in irq context
657 	 * - '-': in irq context and irq is disabled
658 	 * - '?': in irq context and irq is enabled
659 	 */
660 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
661 		c = '+';
662 		if (class->usage_mask & lock_flag(bit))
663 			c = '?';
664 	} else if (class->usage_mask & lock_flag(bit))
665 		c = '-';
666 
667 	return c;
668 }
669 
670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
671 {
672 	int i = 0;
673 
674 #define LOCKDEP_STATE(__STATE) 						\
675 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
676 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
677 #include "lockdep_states.h"
678 #undef LOCKDEP_STATE
679 
680 	usage[i] = '\0';
681 }
682 
683 static void __print_lock_name(struct lock_class *class)
684 {
685 	char str[KSYM_NAME_LEN];
686 	const char *name;
687 
688 	name = class->name;
689 	if (!name) {
690 		name = __get_key_name(class->key, str);
691 		printk(KERN_CONT "%s", name);
692 	} else {
693 		printk(KERN_CONT "%s", name);
694 		if (class->name_version > 1)
695 			printk(KERN_CONT "#%d", class->name_version);
696 		if (class->subclass)
697 			printk(KERN_CONT "/%d", class->subclass);
698 	}
699 }
700 
701 static void print_lock_name(struct lock_class *class)
702 {
703 	char usage[LOCK_USAGE_CHARS];
704 
705 	get_usage_chars(class, usage);
706 
707 	printk(KERN_CONT " (");
708 	__print_lock_name(class);
709 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
710 			class->wait_type_outer ?: class->wait_type_inner,
711 			class->wait_type_inner);
712 }
713 
714 static void print_lockdep_cache(struct lockdep_map *lock)
715 {
716 	const char *name;
717 	char str[KSYM_NAME_LEN];
718 
719 	name = lock->name;
720 	if (!name)
721 		name = __get_key_name(lock->key->subkeys, str);
722 
723 	printk(KERN_CONT "%s", name);
724 }
725 
726 static void print_lock(struct held_lock *hlock)
727 {
728 	/*
729 	 * We can be called locklessly through debug_show_all_locks() so be
730 	 * extra careful, the hlock might have been released and cleared.
731 	 *
732 	 * If this indeed happens, lets pretend it does not hurt to continue
733 	 * to print the lock unless the hlock class_idx does not point to a
734 	 * registered class. The rationale here is: since we don't attempt
735 	 * to distinguish whether we are in this situation, if it just
736 	 * happened we can't count on class_idx to tell either.
737 	 */
738 	struct lock_class *lock = hlock_class(hlock);
739 
740 	if (!lock) {
741 		printk(KERN_CONT "<RELEASED>\n");
742 		return;
743 	}
744 
745 	printk(KERN_CONT "%px", hlock->instance);
746 	print_lock_name(lock);
747 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
748 }
749 
750 static void lockdep_print_held_locks(struct task_struct *p)
751 {
752 	int i, depth = READ_ONCE(p->lockdep_depth);
753 
754 	if (!depth)
755 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
756 	else
757 		printk("%d lock%s held by %s/%d:\n", depth,
758 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
759 	/*
760 	 * It's not reliable to print a task's held locks if it's not sleeping
761 	 * and it's not the current task.
762 	 */
763 	if (p != current && task_is_running(p))
764 		return;
765 	for (i = 0; i < depth; i++) {
766 		printk(" #%d: ", i);
767 		print_lock(p->held_locks + i);
768 	}
769 }
770 
771 static void print_kernel_ident(void)
772 {
773 	printk("%s %.*s %s\n", init_utsname()->release,
774 		(int)strcspn(init_utsname()->version, " "),
775 		init_utsname()->version,
776 		print_tainted());
777 }
778 
779 static int very_verbose(struct lock_class *class)
780 {
781 #if VERY_VERBOSE
782 	return class_filter(class);
783 #endif
784 	return 0;
785 }
786 
787 /*
788  * Is this the address of a static object:
789  */
790 #ifdef __KERNEL__
791 static int static_obj(const void *obj)
792 {
793 	unsigned long start = (unsigned long) &_stext,
794 		      end   = (unsigned long) &_end,
795 		      addr  = (unsigned long) obj;
796 
797 	if (arch_is_kernel_initmem_freed(addr))
798 		return 0;
799 
800 	/*
801 	 * static variable?
802 	 */
803 	if ((addr >= start) && (addr < end))
804 		return 1;
805 
806 	if (arch_is_kernel_data(addr))
807 		return 1;
808 
809 	/*
810 	 * in-kernel percpu var?
811 	 */
812 	if (is_kernel_percpu_address(addr))
813 		return 1;
814 
815 	/*
816 	 * module static or percpu var?
817 	 */
818 	return is_module_address(addr) || is_module_percpu_address(addr);
819 }
820 #endif
821 
822 /*
823  * To make lock name printouts unique, we calculate a unique
824  * class->name_version generation counter. The caller must hold the graph
825  * lock.
826  */
827 static int count_matching_names(struct lock_class *new_class)
828 {
829 	struct lock_class *class;
830 	int count = 0;
831 
832 	if (!new_class->name)
833 		return 0;
834 
835 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
836 		if (new_class->key - new_class->subclass == class->key)
837 			return class->name_version;
838 		if (class->name && !strcmp(class->name, new_class->name))
839 			count = max(count, class->name_version);
840 	}
841 
842 	return count + 1;
843 }
844 
845 /* used from NMI context -- must be lockless */
846 static noinstr struct lock_class *
847 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
848 {
849 	struct lockdep_subclass_key *key;
850 	struct hlist_head *hash_head;
851 	struct lock_class *class;
852 
853 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
854 		instrumentation_begin();
855 		debug_locks_off();
856 		printk(KERN_ERR
857 			"BUG: looking up invalid subclass: %u\n", subclass);
858 		printk(KERN_ERR
859 			"turning off the locking correctness validator.\n");
860 		dump_stack();
861 		instrumentation_end();
862 		return NULL;
863 	}
864 
865 	/*
866 	 * If it is not initialised then it has never been locked,
867 	 * so it won't be present in the hash table.
868 	 */
869 	if (unlikely(!lock->key))
870 		return NULL;
871 
872 	/*
873 	 * NOTE: the class-key must be unique. For dynamic locks, a static
874 	 * lock_class_key variable is passed in through the mutex_init()
875 	 * (or spin_lock_init()) call - which acts as the key. For static
876 	 * locks we use the lock object itself as the key.
877 	 */
878 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
879 			sizeof(struct lockdep_map));
880 
881 	key = lock->key->subkeys + subclass;
882 
883 	hash_head = classhashentry(key);
884 
885 	/*
886 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
887 	 */
888 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
889 		return NULL;
890 
891 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
892 		if (class->key == key) {
893 			/*
894 			 * Huh! same key, different name? Did someone trample
895 			 * on some memory? We're most confused.
896 			 */
897 			WARN_ON_ONCE(class->name != lock->name &&
898 				     lock->key != &__lockdep_no_validate__);
899 			return class;
900 		}
901 	}
902 
903 	return NULL;
904 }
905 
906 /*
907  * Static locks do not have their class-keys yet - for them the key is
908  * the lock object itself. If the lock is in the per cpu area, the
909  * canonical address of the lock (per cpu offset removed) is used.
910  */
911 static bool assign_lock_key(struct lockdep_map *lock)
912 {
913 	unsigned long can_addr, addr = (unsigned long)lock;
914 
915 #ifdef __KERNEL__
916 	/*
917 	 * lockdep_free_key_range() assumes that struct lock_class_key
918 	 * objects do not overlap. Since we use the address of lock
919 	 * objects as class key for static objects, check whether the
920 	 * size of lock_class_key objects does not exceed the size of
921 	 * the smallest lock object.
922 	 */
923 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
924 #endif
925 
926 	if (__is_kernel_percpu_address(addr, &can_addr))
927 		lock->key = (void *)can_addr;
928 	else if (__is_module_percpu_address(addr, &can_addr))
929 		lock->key = (void *)can_addr;
930 	else if (static_obj(lock))
931 		lock->key = (void *)lock;
932 	else {
933 		/* Debug-check: all keys must be persistent! */
934 		debug_locks_off();
935 		pr_err("INFO: trying to register non-static key.\n");
936 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
937 		pr_err("you didn't initialize this object before use?\n");
938 		pr_err("turning off the locking correctness validator.\n");
939 		dump_stack();
940 		return false;
941 	}
942 
943 	return true;
944 }
945 
946 #ifdef CONFIG_DEBUG_LOCKDEP
947 
948 /* Check whether element @e occurs in list @h */
949 static bool in_list(struct list_head *e, struct list_head *h)
950 {
951 	struct list_head *f;
952 
953 	list_for_each(f, h) {
954 		if (e == f)
955 			return true;
956 	}
957 
958 	return false;
959 }
960 
961 /*
962  * Check whether entry @e occurs in any of the locks_after or locks_before
963  * lists.
964  */
965 static bool in_any_class_list(struct list_head *e)
966 {
967 	struct lock_class *class;
968 	int i;
969 
970 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
971 		class = &lock_classes[i];
972 		if (in_list(e, &class->locks_after) ||
973 		    in_list(e, &class->locks_before))
974 			return true;
975 	}
976 	return false;
977 }
978 
979 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
980 {
981 	struct lock_list *e;
982 
983 	list_for_each_entry(e, h, entry) {
984 		if (e->links_to != c) {
985 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
986 			       c->name ? : "(?)",
987 			       (unsigned long)(e - list_entries),
988 			       e->links_to && e->links_to->name ?
989 			       e->links_to->name : "(?)",
990 			       e->class && e->class->name ? e->class->name :
991 			       "(?)");
992 			return false;
993 		}
994 	}
995 	return true;
996 }
997 
998 #ifdef CONFIG_PROVE_LOCKING
999 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1000 #endif
1001 
1002 static bool check_lock_chain_key(struct lock_chain *chain)
1003 {
1004 #ifdef CONFIG_PROVE_LOCKING
1005 	u64 chain_key = INITIAL_CHAIN_KEY;
1006 	int i;
1007 
1008 	for (i = chain->base; i < chain->base + chain->depth; i++)
1009 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1010 	/*
1011 	 * The 'unsigned long long' casts avoid that a compiler warning
1012 	 * is reported when building tools/lib/lockdep.
1013 	 */
1014 	if (chain->chain_key != chain_key) {
1015 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1016 		       (unsigned long long)(chain - lock_chains),
1017 		       (unsigned long long)chain->chain_key,
1018 		       (unsigned long long)chain_key);
1019 		return false;
1020 	}
1021 #endif
1022 	return true;
1023 }
1024 
1025 static bool in_any_zapped_class_list(struct lock_class *class)
1026 {
1027 	struct pending_free *pf;
1028 	int i;
1029 
1030 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1031 		if (in_list(&class->lock_entry, &pf->zapped))
1032 			return true;
1033 	}
1034 
1035 	return false;
1036 }
1037 
1038 static bool __check_data_structures(void)
1039 {
1040 	struct lock_class *class;
1041 	struct lock_chain *chain;
1042 	struct hlist_head *head;
1043 	struct lock_list *e;
1044 	int i;
1045 
1046 	/* Check whether all classes occur in a lock list. */
1047 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1048 		class = &lock_classes[i];
1049 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1050 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1051 		    !in_any_zapped_class_list(class)) {
1052 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1053 			       class, class->name ? : "(?)");
1054 			return false;
1055 		}
1056 	}
1057 
1058 	/* Check whether all classes have valid lock lists. */
1059 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1060 		class = &lock_classes[i];
1061 		if (!class_lock_list_valid(class, &class->locks_before))
1062 			return false;
1063 		if (!class_lock_list_valid(class, &class->locks_after))
1064 			return false;
1065 	}
1066 
1067 	/* Check the chain_key of all lock chains. */
1068 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1069 		head = chainhash_table + i;
1070 		hlist_for_each_entry_rcu(chain, head, entry) {
1071 			if (!check_lock_chain_key(chain))
1072 				return false;
1073 		}
1074 	}
1075 
1076 	/*
1077 	 * Check whether all list entries that are in use occur in a class
1078 	 * lock list.
1079 	 */
1080 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1081 		e = list_entries + i;
1082 		if (!in_any_class_list(&e->entry)) {
1083 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1084 			       (unsigned int)(e - list_entries),
1085 			       e->class->name ? : "(?)",
1086 			       e->links_to->name ? : "(?)");
1087 			return false;
1088 		}
1089 	}
1090 
1091 	/*
1092 	 * Check whether all list entries that are not in use do not occur in
1093 	 * a class lock list.
1094 	 */
1095 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1096 		e = list_entries + i;
1097 		if (in_any_class_list(&e->entry)) {
1098 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1099 			       (unsigned int)(e - list_entries),
1100 			       e->class && e->class->name ? e->class->name :
1101 			       "(?)",
1102 			       e->links_to && e->links_to->name ?
1103 			       e->links_to->name : "(?)");
1104 			return false;
1105 		}
1106 	}
1107 
1108 	return true;
1109 }
1110 
1111 int check_consistency = 0;
1112 module_param(check_consistency, int, 0644);
1113 
1114 static void check_data_structures(void)
1115 {
1116 	static bool once = false;
1117 
1118 	if (check_consistency && !once) {
1119 		if (!__check_data_structures()) {
1120 			once = true;
1121 			WARN_ON(once);
1122 		}
1123 	}
1124 }
1125 
1126 #else /* CONFIG_DEBUG_LOCKDEP */
1127 
1128 static inline void check_data_structures(void) { }
1129 
1130 #endif /* CONFIG_DEBUG_LOCKDEP */
1131 
1132 static void init_chain_block_buckets(void);
1133 
1134 /*
1135  * Initialize the lock_classes[] array elements, the free_lock_classes list
1136  * and also the delayed_free structure.
1137  */
1138 static void init_data_structures_once(void)
1139 {
1140 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1141 	int i;
1142 
1143 	if (likely(rcu_head_initialized))
1144 		return;
1145 
1146 	if (system_state >= SYSTEM_SCHEDULING) {
1147 		init_rcu_head(&delayed_free.rcu_head);
1148 		rcu_head_initialized = true;
1149 	}
1150 
1151 	if (ds_initialized)
1152 		return;
1153 
1154 	ds_initialized = true;
1155 
1156 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1157 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1158 
1159 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1160 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1161 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1162 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1163 	}
1164 	init_chain_block_buckets();
1165 }
1166 
1167 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1168 {
1169 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1170 
1171 	return lock_keys_hash + hash;
1172 }
1173 
1174 /* Register a dynamically allocated key. */
1175 void lockdep_register_key(struct lock_class_key *key)
1176 {
1177 	struct hlist_head *hash_head;
1178 	struct lock_class_key *k;
1179 	unsigned long flags;
1180 
1181 	if (WARN_ON_ONCE(static_obj(key)))
1182 		return;
1183 	hash_head = keyhashentry(key);
1184 
1185 	raw_local_irq_save(flags);
1186 	if (!graph_lock())
1187 		goto restore_irqs;
1188 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1189 		if (WARN_ON_ONCE(k == key))
1190 			goto out_unlock;
1191 	}
1192 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1193 out_unlock:
1194 	graph_unlock();
1195 restore_irqs:
1196 	raw_local_irq_restore(flags);
1197 }
1198 EXPORT_SYMBOL_GPL(lockdep_register_key);
1199 
1200 /* Check whether a key has been registered as a dynamic key. */
1201 static bool is_dynamic_key(const struct lock_class_key *key)
1202 {
1203 	struct hlist_head *hash_head;
1204 	struct lock_class_key *k;
1205 	bool found = false;
1206 
1207 	if (WARN_ON_ONCE(static_obj(key)))
1208 		return false;
1209 
1210 	/*
1211 	 * If lock debugging is disabled lock_keys_hash[] may contain
1212 	 * pointers to memory that has already been freed. Avoid triggering
1213 	 * a use-after-free in that case by returning early.
1214 	 */
1215 	if (!debug_locks)
1216 		return true;
1217 
1218 	hash_head = keyhashentry(key);
1219 
1220 	rcu_read_lock();
1221 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1222 		if (k == key) {
1223 			found = true;
1224 			break;
1225 		}
1226 	}
1227 	rcu_read_unlock();
1228 
1229 	return found;
1230 }
1231 
1232 /*
1233  * Register a lock's class in the hash-table, if the class is not present
1234  * yet. Otherwise we look it up. We cache the result in the lock object
1235  * itself, so actual lookup of the hash should be once per lock object.
1236  */
1237 static struct lock_class *
1238 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1239 {
1240 	struct lockdep_subclass_key *key;
1241 	struct hlist_head *hash_head;
1242 	struct lock_class *class;
1243 
1244 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1245 
1246 	class = look_up_lock_class(lock, subclass);
1247 	if (likely(class))
1248 		goto out_set_class_cache;
1249 
1250 	if (!lock->key) {
1251 		if (!assign_lock_key(lock))
1252 			return NULL;
1253 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1254 		return NULL;
1255 	}
1256 
1257 	key = lock->key->subkeys + subclass;
1258 	hash_head = classhashentry(key);
1259 
1260 	if (!graph_lock()) {
1261 		return NULL;
1262 	}
1263 	/*
1264 	 * We have to do the hash-walk again, to avoid races
1265 	 * with another CPU:
1266 	 */
1267 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1268 		if (class->key == key)
1269 			goto out_unlock_set;
1270 	}
1271 
1272 	init_data_structures_once();
1273 
1274 	/* Allocate a new lock class and add it to the hash. */
1275 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1276 					 lock_entry);
1277 	if (!class) {
1278 		if (!debug_locks_off_graph_unlock()) {
1279 			return NULL;
1280 		}
1281 
1282 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1283 		dump_stack();
1284 		return NULL;
1285 	}
1286 	nr_lock_classes++;
1287 	__set_bit(class - lock_classes, lock_classes_in_use);
1288 	debug_atomic_inc(nr_unused_locks);
1289 	class->key = key;
1290 	class->name = lock->name;
1291 	class->subclass = subclass;
1292 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1293 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1294 	class->name_version = count_matching_names(class);
1295 	class->wait_type_inner = lock->wait_type_inner;
1296 	class->wait_type_outer = lock->wait_type_outer;
1297 	class->lock_type = lock->lock_type;
1298 	/*
1299 	 * We use RCU's safe list-add method to make
1300 	 * parallel walking of the hash-list safe:
1301 	 */
1302 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1303 	/*
1304 	 * Remove the class from the free list and add it to the global list
1305 	 * of classes.
1306 	 */
1307 	list_move_tail(&class->lock_entry, &all_lock_classes);
1308 
1309 	if (verbose(class)) {
1310 		graph_unlock();
1311 
1312 		printk("\nnew class %px: %s", class->key, class->name);
1313 		if (class->name_version > 1)
1314 			printk(KERN_CONT "#%d", class->name_version);
1315 		printk(KERN_CONT "\n");
1316 		dump_stack();
1317 
1318 		if (!graph_lock()) {
1319 			return NULL;
1320 		}
1321 	}
1322 out_unlock_set:
1323 	graph_unlock();
1324 
1325 out_set_class_cache:
1326 	if (!subclass || force)
1327 		lock->class_cache[0] = class;
1328 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1329 		lock->class_cache[subclass] = class;
1330 
1331 	/*
1332 	 * Hash collision, did we smoke some? We found a class with a matching
1333 	 * hash but the subclass -- which is hashed in -- didn't match.
1334 	 */
1335 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1336 		return NULL;
1337 
1338 	return class;
1339 }
1340 
1341 #ifdef CONFIG_PROVE_LOCKING
1342 /*
1343  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1344  * with NULL on failure)
1345  */
1346 static struct lock_list *alloc_list_entry(void)
1347 {
1348 	int idx = find_first_zero_bit(list_entries_in_use,
1349 				      ARRAY_SIZE(list_entries));
1350 
1351 	if (idx >= ARRAY_SIZE(list_entries)) {
1352 		if (!debug_locks_off_graph_unlock())
1353 			return NULL;
1354 
1355 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1356 		dump_stack();
1357 		return NULL;
1358 	}
1359 	nr_list_entries++;
1360 	__set_bit(idx, list_entries_in_use);
1361 	return list_entries + idx;
1362 }
1363 
1364 /*
1365  * Add a new dependency to the head of the list:
1366  */
1367 static int add_lock_to_list(struct lock_class *this,
1368 			    struct lock_class *links_to, struct list_head *head,
1369 			    unsigned long ip, u16 distance, u8 dep,
1370 			    const struct lock_trace *trace)
1371 {
1372 	struct lock_list *entry;
1373 	/*
1374 	 * Lock not present yet - get a new dependency struct and
1375 	 * add it to the list:
1376 	 */
1377 	entry = alloc_list_entry();
1378 	if (!entry)
1379 		return 0;
1380 
1381 	entry->class = this;
1382 	entry->links_to = links_to;
1383 	entry->dep = dep;
1384 	entry->distance = distance;
1385 	entry->trace = trace;
1386 	/*
1387 	 * Both allocation and removal are done under the graph lock; but
1388 	 * iteration is under RCU-sched; see look_up_lock_class() and
1389 	 * lockdep_free_key_range().
1390 	 */
1391 	list_add_tail_rcu(&entry->entry, head);
1392 
1393 	return 1;
1394 }
1395 
1396 /*
1397  * For good efficiency of modular, we use power of 2
1398  */
1399 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1400 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1401 
1402 /*
1403  * The circular_queue and helpers are used to implement graph
1404  * breadth-first search (BFS) algorithm, by which we can determine
1405  * whether there is a path from a lock to another. In deadlock checks,
1406  * a path from the next lock to be acquired to a previous held lock
1407  * indicates that adding the <prev> -> <next> lock dependency will
1408  * produce a circle in the graph. Breadth-first search instead of
1409  * depth-first search is used in order to find the shortest (circular)
1410  * path.
1411  */
1412 struct circular_queue {
1413 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1414 	unsigned int  front, rear;
1415 };
1416 
1417 static struct circular_queue lock_cq;
1418 
1419 unsigned int max_bfs_queue_depth;
1420 
1421 static unsigned int lockdep_dependency_gen_id;
1422 
1423 static inline void __cq_init(struct circular_queue *cq)
1424 {
1425 	cq->front = cq->rear = 0;
1426 	lockdep_dependency_gen_id++;
1427 }
1428 
1429 static inline int __cq_empty(struct circular_queue *cq)
1430 {
1431 	return (cq->front == cq->rear);
1432 }
1433 
1434 static inline int __cq_full(struct circular_queue *cq)
1435 {
1436 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1437 }
1438 
1439 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1440 {
1441 	if (__cq_full(cq))
1442 		return -1;
1443 
1444 	cq->element[cq->rear] = elem;
1445 	cq->rear = (cq->rear + 1) & CQ_MASK;
1446 	return 0;
1447 }
1448 
1449 /*
1450  * Dequeue an element from the circular_queue, return a lock_list if
1451  * the queue is not empty, or NULL if otherwise.
1452  */
1453 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1454 {
1455 	struct lock_list * lock;
1456 
1457 	if (__cq_empty(cq))
1458 		return NULL;
1459 
1460 	lock = cq->element[cq->front];
1461 	cq->front = (cq->front + 1) & CQ_MASK;
1462 
1463 	return lock;
1464 }
1465 
1466 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1467 {
1468 	return (cq->rear - cq->front) & CQ_MASK;
1469 }
1470 
1471 static inline void mark_lock_accessed(struct lock_list *lock)
1472 {
1473 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1474 }
1475 
1476 static inline void visit_lock_entry(struct lock_list *lock,
1477 				    struct lock_list *parent)
1478 {
1479 	lock->parent = parent;
1480 }
1481 
1482 static inline unsigned long lock_accessed(struct lock_list *lock)
1483 {
1484 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1485 }
1486 
1487 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1488 {
1489 	return child->parent;
1490 }
1491 
1492 static inline int get_lock_depth(struct lock_list *child)
1493 {
1494 	int depth = 0;
1495 	struct lock_list *parent;
1496 
1497 	while ((parent = get_lock_parent(child))) {
1498 		child = parent;
1499 		depth++;
1500 	}
1501 	return depth;
1502 }
1503 
1504 /*
1505  * Return the forward or backward dependency list.
1506  *
1507  * @lock:   the lock_list to get its class's dependency list
1508  * @offset: the offset to struct lock_class to determine whether it is
1509  *          locks_after or locks_before
1510  */
1511 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1512 {
1513 	void *lock_class = lock->class;
1514 
1515 	return lock_class + offset;
1516 }
1517 /*
1518  * Return values of a bfs search:
1519  *
1520  * BFS_E* indicates an error
1521  * BFS_R* indicates a result (match or not)
1522  *
1523  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1524  *
1525  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1526  *
1527  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1528  *             *@target_entry.
1529  *
1530  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1531  *               _unchanged_.
1532  */
1533 enum bfs_result {
1534 	BFS_EINVALIDNODE = -2,
1535 	BFS_EQUEUEFULL = -1,
1536 	BFS_RMATCH = 0,
1537 	BFS_RNOMATCH = 1,
1538 };
1539 
1540 /*
1541  * bfs_result < 0 means error
1542  */
1543 static inline bool bfs_error(enum bfs_result res)
1544 {
1545 	return res < 0;
1546 }
1547 
1548 /*
1549  * DEP_*_BIT in lock_list::dep
1550  *
1551  * For dependency @prev -> @next:
1552  *
1553  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1554  *       (->read == 2)
1555  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1556  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1557  *   EN: @prev is exclusive locker and @next is non-recursive locker
1558  *
1559  * Note that we define the value of DEP_*_BITs so that:
1560  *   bit0 is prev->read == 0
1561  *   bit1 is next->read != 2
1562  */
1563 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1564 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1565 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1566 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1567 
1568 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1569 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1570 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1571 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1572 
1573 static inline unsigned int
1574 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1575 {
1576 	return (prev->read == 0) + ((next->read != 2) << 1);
1577 }
1578 
1579 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1580 {
1581 	return 1U << __calc_dep_bit(prev, next);
1582 }
1583 
1584 /*
1585  * calculate the dep_bit for backwards edges. We care about whether @prev is
1586  * shared and whether @next is recursive.
1587  */
1588 static inline unsigned int
1589 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1590 {
1591 	return (next->read != 2) + ((prev->read == 0) << 1);
1592 }
1593 
1594 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1595 {
1596 	return 1U << __calc_dep_bitb(prev, next);
1597 }
1598 
1599 /*
1600  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1601  * search.
1602  */
1603 static inline void __bfs_init_root(struct lock_list *lock,
1604 				   struct lock_class *class)
1605 {
1606 	lock->class = class;
1607 	lock->parent = NULL;
1608 	lock->only_xr = 0;
1609 }
1610 
1611 /*
1612  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1613  * root for a BFS search.
1614  *
1615  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1616  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1617  * and -(S*)->.
1618  */
1619 static inline void bfs_init_root(struct lock_list *lock,
1620 				 struct held_lock *hlock)
1621 {
1622 	__bfs_init_root(lock, hlock_class(hlock));
1623 	lock->only_xr = (hlock->read == 2);
1624 }
1625 
1626 /*
1627  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1628  *
1629  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1630  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1631  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1632  */
1633 static inline void bfs_init_rootb(struct lock_list *lock,
1634 				  struct held_lock *hlock)
1635 {
1636 	__bfs_init_root(lock, hlock_class(hlock));
1637 	lock->only_xr = (hlock->read != 0);
1638 }
1639 
1640 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1641 {
1642 	if (!lock || !lock->parent)
1643 		return NULL;
1644 
1645 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1646 				     &lock->entry, struct lock_list, entry);
1647 }
1648 
1649 /*
1650  * Breadth-First Search to find a strong path in the dependency graph.
1651  *
1652  * @source_entry: the source of the path we are searching for.
1653  * @data: data used for the second parameter of @match function
1654  * @match: match function for the search
1655  * @target_entry: pointer to the target of a matched path
1656  * @offset: the offset to struct lock_class to determine whether it is
1657  *          locks_after or locks_before
1658  *
1659  * We may have multiple edges (considering different kinds of dependencies,
1660  * e.g. ER and SN) between two nodes in the dependency graph. But
1661  * only the strong dependency path in the graph is relevant to deadlocks. A
1662  * strong dependency path is a dependency path that doesn't have two adjacent
1663  * dependencies as -(*R)-> -(S*)->, please see:
1664  *
1665  *         Documentation/locking/lockdep-design.rst
1666  *
1667  * for more explanation of the definition of strong dependency paths
1668  *
1669  * In __bfs(), we only traverse in the strong dependency path:
1670  *
1671  *     In lock_list::only_xr, we record whether the previous dependency only
1672  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1673  *     filter out any -(S*)-> in the current dependency and after that, the
1674  *     ->only_xr is set according to whether we only have -(*R)-> left.
1675  */
1676 static enum bfs_result __bfs(struct lock_list *source_entry,
1677 			     void *data,
1678 			     bool (*match)(struct lock_list *entry, void *data),
1679 			     bool (*skip)(struct lock_list *entry, void *data),
1680 			     struct lock_list **target_entry,
1681 			     int offset)
1682 {
1683 	struct circular_queue *cq = &lock_cq;
1684 	struct lock_list *lock = NULL;
1685 	struct lock_list *entry;
1686 	struct list_head *head;
1687 	unsigned int cq_depth;
1688 	bool first;
1689 
1690 	lockdep_assert_locked();
1691 
1692 	__cq_init(cq);
1693 	__cq_enqueue(cq, source_entry);
1694 
1695 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696 		if (!lock->class)
1697 			return BFS_EINVALIDNODE;
1698 
1699 		/*
1700 		 * Step 1: check whether we already finish on this one.
1701 		 *
1702 		 * If we have visited all the dependencies from this @lock to
1703 		 * others (iow, if we have visited all lock_list entries in
1704 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1705 		 * and visit all the dependencies in the list and mark this
1706 		 * list accessed.
1707 		 */
1708 		if (lock_accessed(lock))
1709 			continue;
1710 		else
1711 			mark_lock_accessed(lock);
1712 
1713 		/*
1714 		 * Step 2: check whether prev dependency and this form a strong
1715 		 *         dependency path.
1716 		 */
1717 		if (lock->parent) { /* Parent exists, check prev dependency */
1718 			u8 dep = lock->dep;
1719 			bool prev_only_xr = lock->parent->only_xr;
1720 
1721 			/*
1722 			 * Mask out all -(S*)-> if we only have *R in previous
1723 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1724 			 * dependency.
1725 			 */
1726 			if (prev_only_xr)
1727 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728 
1729 			/* If nothing left, we skip */
1730 			if (!dep)
1731 				continue;
1732 
1733 			/* If there are only -(*R)-> left, set that for the next step */
1734 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1735 		}
1736 
1737 		/*
1738 		 * Step 3: we haven't visited this and there is a strong
1739 		 *         dependency path to this, so check with @match.
1740 		 *         If @skip is provide and returns true, we skip this
1741 		 *         lock (and any path this lock is in).
1742 		 */
1743 		if (skip && skip(lock, data))
1744 			continue;
1745 
1746 		if (match(lock, data)) {
1747 			*target_entry = lock;
1748 			return BFS_RMATCH;
1749 		}
1750 
1751 		/*
1752 		 * Step 4: if not match, expand the path by adding the
1753 		 *         forward or backwards dependencies in the search
1754 		 *
1755 		 */
1756 		first = true;
1757 		head = get_dep_list(lock, offset);
1758 		list_for_each_entry_rcu(entry, head, entry) {
1759 			visit_lock_entry(entry, lock);
1760 
1761 			/*
1762 			 * Note we only enqueue the first of the list into the
1763 			 * queue, because we can always find a sibling
1764 			 * dependency from one (see __bfs_next()), as a result
1765 			 * the space of queue is saved.
1766 			 */
1767 			if (!first)
1768 				continue;
1769 
1770 			first = false;
1771 
1772 			if (__cq_enqueue(cq, entry))
1773 				return BFS_EQUEUEFULL;
1774 
1775 			cq_depth = __cq_get_elem_count(cq);
1776 			if (max_bfs_queue_depth < cq_depth)
1777 				max_bfs_queue_depth = cq_depth;
1778 		}
1779 	}
1780 
1781 	return BFS_RNOMATCH;
1782 }
1783 
1784 static inline enum bfs_result
1785 __bfs_forwards(struct lock_list *src_entry,
1786 	       void *data,
1787 	       bool (*match)(struct lock_list *entry, void *data),
1788 	       bool (*skip)(struct lock_list *entry, void *data),
1789 	       struct lock_list **target_entry)
1790 {
1791 	return __bfs(src_entry, data, match, skip, target_entry,
1792 		     offsetof(struct lock_class, locks_after));
1793 
1794 }
1795 
1796 static inline enum bfs_result
1797 __bfs_backwards(struct lock_list *src_entry,
1798 		void *data,
1799 		bool (*match)(struct lock_list *entry, void *data),
1800 	       bool (*skip)(struct lock_list *entry, void *data),
1801 		struct lock_list **target_entry)
1802 {
1803 	return __bfs(src_entry, data, match, skip, target_entry,
1804 		     offsetof(struct lock_class, locks_before));
1805 
1806 }
1807 
1808 static void print_lock_trace(const struct lock_trace *trace,
1809 			     unsigned int spaces)
1810 {
1811 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1812 }
1813 
1814 /*
1815  * Print a dependency chain entry (this is only done when a deadlock
1816  * has been detected):
1817  */
1818 static noinline void
1819 print_circular_bug_entry(struct lock_list *target, int depth)
1820 {
1821 	if (debug_locks_silent)
1822 		return;
1823 	printk("\n-> #%u", depth);
1824 	print_lock_name(target->class);
1825 	printk(KERN_CONT ":\n");
1826 	print_lock_trace(target->trace, 6);
1827 }
1828 
1829 static void
1830 print_circular_lock_scenario(struct held_lock *src,
1831 			     struct held_lock *tgt,
1832 			     struct lock_list *prt)
1833 {
1834 	struct lock_class *source = hlock_class(src);
1835 	struct lock_class *target = hlock_class(tgt);
1836 	struct lock_class *parent = prt->class;
1837 
1838 	/*
1839 	 * A direct locking problem where unsafe_class lock is taken
1840 	 * directly by safe_class lock, then all we need to show
1841 	 * is the deadlock scenario, as it is obvious that the
1842 	 * unsafe lock is taken under the safe lock.
1843 	 *
1844 	 * But if there is a chain instead, where the safe lock takes
1845 	 * an intermediate lock (middle_class) where this lock is
1846 	 * not the same as the safe lock, then the lock chain is
1847 	 * used to describe the problem. Otherwise we would need
1848 	 * to show a different CPU case for each link in the chain
1849 	 * from the safe_class lock to the unsafe_class lock.
1850 	 */
1851 	if (parent != source) {
1852 		printk("Chain exists of:\n  ");
1853 		__print_lock_name(source);
1854 		printk(KERN_CONT " --> ");
1855 		__print_lock_name(parent);
1856 		printk(KERN_CONT " --> ");
1857 		__print_lock_name(target);
1858 		printk(KERN_CONT "\n\n");
1859 	}
1860 
1861 	printk(" Possible unsafe locking scenario:\n\n");
1862 	printk("       CPU0                    CPU1\n");
1863 	printk("       ----                    ----\n");
1864 	printk("  lock(");
1865 	__print_lock_name(target);
1866 	printk(KERN_CONT ");\n");
1867 	printk("                               lock(");
1868 	__print_lock_name(parent);
1869 	printk(KERN_CONT ");\n");
1870 	printk("                               lock(");
1871 	__print_lock_name(target);
1872 	printk(KERN_CONT ");\n");
1873 	printk("  lock(");
1874 	__print_lock_name(source);
1875 	printk(KERN_CONT ");\n");
1876 	printk("\n *** DEADLOCK ***\n\n");
1877 }
1878 
1879 /*
1880  * When a circular dependency is detected, print the
1881  * header first:
1882  */
1883 static noinline void
1884 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1885 			struct held_lock *check_src,
1886 			struct held_lock *check_tgt)
1887 {
1888 	struct task_struct *curr = current;
1889 
1890 	if (debug_locks_silent)
1891 		return;
1892 
1893 	pr_warn("\n");
1894 	pr_warn("======================================================\n");
1895 	pr_warn("WARNING: possible circular locking dependency detected\n");
1896 	print_kernel_ident();
1897 	pr_warn("------------------------------------------------------\n");
1898 	pr_warn("%s/%d is trying to acquire lock:\n",
1899 		curr->comm, task_pid_nr(curr));
1900 	print_lock(check_src);
1901 
1902 	pr_warn("\nbut task is already holding lock:\n");
1903 
1904 	print_lock(check_tgt);
1905 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1906 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1907 
1908 	print_circular_bug_entry(entry, depth);
1909 }
1910 
1911 /*
1912  * We are about to add A -> B into the dependency graph, and in __bfs() a
1913  * strong dependency path A -> .. -> B is found: hlock_class equals
1914  * entry->class.
1915  *
1916  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1917  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1918  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1919  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1920  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1921  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1922  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1923  *
1924  * We need to make sure both the start and the end of A -> .. -> B is not
1925  * weaker than A -> B. For the start part, please see the comment in
1926  * check_redundant(). For the end part, we need:
1927  *
1928  * Either
1929  *
1930  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1931  *
1932  * or
1933  *
1934  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1935  *
1936  */
1937 static inline bool hlock_equal(struct lock_list *entry, void *data)
1938 {
1939 	struct held_lock *hlock = (struct held_lock *)data;
1940 
1941 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1942 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1943 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1944 }
1945 
1946 /*
1947  * We are about to add B -> A into the dependency graph, and in __bfs() a
1948  * strong dependency path A -> .. -> B is found: hlock_class equals
1949  * entry->class.
1950  *
1951  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1952  * dependency cycle, that means:
1953  *
1954  * Either
1955  *
1956  *     a) B -> A is -(E*)->
1957  *
1958  * or
1959  *
1960  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1961  *
1962  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1963  */
1964 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1965 {
1966 	struct held_lock *hlock = (struct held_lock *)data;
1967 
1968 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1969 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1970 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1971 }
1972 
1973 static noinline void print_circular_bug(struct lock_list *this,
1974 				struct lock_list *target,
1975 				struct held_lock *check_src,
1976 				struct held_lock *check_tgt)
1977 {
1978 	struct task_struct *curr = current;
1979 	struct lock_list *parent;
1980 	struct lock_list *first_parent;
1981 	int depth;
1982 
1983 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1984 		return;
1985 
1986 	this->trace = save_trace();
1987 	if (!this->trace)
1988 		return;
1989 
1990 	depth = get_lock_depth(target);
1991 
1992 	print_circular_bug_header(target, depth, check_src, check_tgt);
1993 
1994 	parent = get_lock_parent(target);
1995 	first_parent = parent;
1996 
1997 	while (parent) {
1998 		print_circular_bug_entry(parent, --depth);
1999 		parent = get_lock_parent(parent);
2000 	}
2001 
2002 	printk("\nother info that might help us debug this:\n\n");
2003 	print_circular_lock_scenario(check_src, check_tgt,
2004 				     first_parent);
2005 
2006 	lockdep_print_held_locks(curr);
2007 
2008 	printk("\nstack backtrace:\n");
2009 	dump_stack();
2010 }
2011 
2012 static noinline void print_bfs_bug(int ret)
2013 {
2014 	if (!debug_locks_off_graph_unlock())
2015 		return;
2016 
2017 	/*
2018 	 * Breadth-first-search failed, graph got corrupted?
2019 	 */
2020 	WARN(1, "lockdep bfs error:%d\n", ret);
2021 }
2022 
2023 static bool noop_count(struct lock_list *entry, void *data)
2024 {
2025 	(*(unsigned long *)data)++;
2026 	return false;
2027 }
2028 
2029 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2030 {
2031 	unsigned long  count = 0;
2032 	struct lock_list *target_entry;
2033 
2034 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2035 
2036 	return count;
2037 }
2038 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2039 {
2040 	unsigned long ret, flags;
2041 	struct lock_list this;
2042 
2043 	__bfs_init_root(&this, class);
2044 
2045 	raw_local_irq_save(flags);
2046 	lockdep_lock();
2047 	ret = __lockdep_count_forward_deps(&this);
2048 	lockdep_unlock();
2049 	raw_local_irq_restore(flags);
2050 
2051 	return ret;
2052 }
2053 
2054 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2055 {
2056 	unsigned long  count = 0;
2057 	struct lock_list *target_entry;
2058 
2059 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2060 
2061 	return count;
2062 }
2063 
2064 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2065 {
2066 	unsigned long ret, flags;
2067 	struct lock_list this;
2068 
2069 	__bfs_init_root(&this, class);
2070 
2071 	raw_local_irq_save(flags);
2072 	lockdep_lock();
2073 	ret = __lockdep_count_backward_deps(&this);
2074 	lockdep_unlock();
2075 	raw_local_irq_restore(flags);
2076 
2077 	return ret;
2078 }
2079 
2080 /*
2081  * Check that the dependency graph starting at <src> can lead to
2082  * <target> or not.
2083  */
2084 static noinline enum bfs_result
2085 check_path(struct held_lock *target, struct lock_list *src_entry,
2086 	   bool (*match)(struct lock_list *entry, void *data),
2087 	   bool (*skip)(struct lock_list *entry, void *data),
2088 	   struct lock_list **target_entry)
2089 {
2090 	enum bfs_result ret;
2091 
2092 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2093 
2094 	if (unlikely(bfs_error(ret)))
2095 		print_bfs_bug(ret);
2096 
2097 	return ret;
2098 }
2099 
2100 /*
2101  * Prove that the dependency graph starting at <src> can not
2102  * lead to <target>. If it can, there is a circle when adding
2103  * <target> -> <src> dependency.
2104  *
2105  * Print an error and return BFS_RMATCH if it does.
2106  */
2107 static noinline enum bfs_result
2108 check_noncircular(struct held_lock *src, struct held_lock *target,
2109 		  struct lock_trace **const trace)
2110 {
2111 	enum bfs_result ret;
2112 	struct lock_list *target_entry;
2113 	struct lock_list src_entry;
2114 
2115 	bfs_init_root(&src_entry, src);
2116 
2117 	debug_atomic_inc(nr_cyclic_checks);
2118 
2119 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2120 
2121 	if (unlikely(ret == BFS_RMATCH)) {
2122 		if (!*trace) {
2123 			/*
2124 			 * If save_trace fails here, the printing might
2125 			 * trigger a WARN but because of the !nr_entries it
2126 			 * should not do bad things.
2127 			 */
2128 			*trace = save_trace();
2129 		}
2130 
2131 		print_circular_bug(&src_entry, target_entry, src, target);
2132 	}
2133 
2134 	return ret;
2135 }
2136 
2137 #ifdef CONFIG_TRACE_IRQFLAGS
2138 
2139 /*
2140  * Forwards and backwards subgraph searching, for the purposes of
2141  * proving that two subgraphs can be connected by a new dependency
2142  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2143  *
2144  * A irq safe->unsafe deadlock happens with the following conditions:
2145  *
2146  * 1) We have a strong dependency path A -> ... -> B
2147  *
2148  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2149  *    irq can create a new dependency B -> A (consider the case that a holder
2150  *    of B gets interrupted by an irq whose handler will try to acquire A).
2151  *
2152  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2153  *    strong circle:
2154  *
2155  *      For the usage bits of B:
2156  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2157  *           ENABLED_IRQ usage suffices.
2158  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2159  *           ENABLED_IRQ_*_READ usage suffices.
2160  *
2161  *      For the usage bits of A:
2162  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2163  *           USED_IN_IRQ usage suffices.
2164  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2165  *           USED_IN_IRQ_*_READ usage suffices.
2166  */
2167 
2168 /*
2169  * There is a strong dependency path in the dependency graph: A -> B, and now
2170  * we need to decide which usage bit of A should be accumulated to detect
2171  * safe->unsafe bugs.
2172  *
2173  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2174  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2175  *
2176  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2177  * path, any usage of A should be considered. Otherwise, we should only
2178  * consider _READ usage.
2179  */
2180 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2181 {
2182 	if (!entry->only_xr)
2183 		*(unsigned long *)mask |= entry->class->usage_mask;
2184 	else /* Mask out _READ usage bits */
2185 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2186 
2187 	return false;
2188 }
2189 
2190 /*
2191  * There is a strong dependency path in the dependency graph: A -> B, and now
2192  * we need to decide which usage bit of B conflicts with the usage bits of A,
2193  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2194  *
2195  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2196  * path, any usage of B should be considered. Otherwise, we should only
2197  * consider _READ usage.
2198  */
2199 static inline bool usage_match(struct lock_list *entry, void *mask)
2200 {
2201 	if (!entry->only_xr)
2202 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2203 	else /* Mask out _READ usage bits */
2204 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2205 }
2206 
2207 static inline bool usage_skip(struct lock_list *entry, void *mask)
2208 {
2209 	/*
2210 	 * Skip local_lock() for irq inversion detection.
2211 	 *
2212 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2213 	 * dependency.
2214 	 *
2215 	 * For RT, an irq inversion happens when we have lock A and B, and on
2216 	 * some CPU we can have:
2217 	 *
2218 	 *	lock(A);
2219 	 *	<interrupted>
2220 	 *	  lock(B);
2221 	 *
2222 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2223 	 *
2224 	 * Now we prove local_lock() cannot exist in that dependency. First we
2225 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2226 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2227 	 * wait context check will complain. And since B is not a sleep lock,
2228 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2229 	 * local_lock() is 3, which is greater than 2, therefore there is no
2230 	 * way the local_lock() exists in the dependency B -> ... -> A.
2231 	 *
2232 	 * As a result, we will skip local_lock(), when we search for irq
2233 	 * inversion bugs.
2234 	 */
2235 	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2236 		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2237 			return false;
2238 
2239 		return true;
2240 	}
2241 
2242 	return false;
2243 }
2244 
2245 /*
2246  * Find a node in the forwards-direction dependency sub-graph starting
2247  * at @root->class that matches @bit.
2248  *
2249  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2250  * into *@target_entry.
2251  */
2252 static enum bfs_result
2253 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2254 			struct lock_list **target_entry)
2255 {
2256 	enum bfs_result result;
2257 
2258 	debug_atomic_inc(nr_find_usage_forwards_checks);
2259 
2260 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2261 
2262 	return result;
2263 }
2264 
2265 /*
2266  * Find a node in the backwards-direction dependency sub-graph starting
2267  * at @root->class that matches @bit.
2268  */
2269 static enum bfs_result
2270 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2271 			struct lock_list **target_entry)
2272 {
2273 	enum bfs_result result;
2274 
2275 	debug_atomic_inc(nr_find_usage_backwards_checks);
2276 
2277 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2278 
2279 	return result;
2280 }
2281 
2282 static void print_lock_class_header(struct lock_class *class, int depth)
2283 {
2284 	int bit;
2285 
2286 	printk("%*s->", depth, "");
2287 	print_lock_name(class);
2288 #ifdef CONFIG_DEBUG_LOCKDEP
2289 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2290 #endif
2291 	printk(KERN_CONT " {\n");
2292 
2293 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2294 		if (class->usage_mask & (1 << bit)) {
2295 			int len = depth;
2296 
2297 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2298 			len += printk(KERN_CONT " at:\n");
2299 			print_lock_trace(class->usage_traces[bit], len);
2300 		}
2301 	}
2302 	printk("%*s }\n", depth, "");
2303 
2304 	printk("%*s ... key      at: [<%px>] %pS\n",
2305 		depth, "", class->key, class->key);
2306 }
2307 
2308 /*
2309  * Dependency path printing:
2310  *
2311  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2312  * printing out each lock in the dependency path will help on understanding how
2313  * the deadlock could happen. Here are some details about dependency path
2314  * printing:
2315  *
2316  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2317  * 	for a lock dependency A -> B, there are two lock_lists:
2318  *
2319  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2320  * 		->links_to is A. In this case, we can say the lock_list is
2321  * 		"A -> B" (forwards case).
2322  *
2323  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2324  * 		and ->links_to is B. In this case, we can say the lock_list is
2325  * 		"B <- A" (bacwards case).
2326  *
2327  * 	The ->trace of both a) and b) point to the call trace where B was
2328  * 	acquired with A held.
2329  *
2330  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2331  * 	represent a certain lock dependency, it only provides an initial entry
2332  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2333  * 	->class is A, as a result BFS will search all dependencies starting with
2334  * 	A, e.g. A -> B or A -> C.
2335  *
2336  * 	The notation of a forwards helper lock_list is like "-> A", which means
2337  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2338  * 	or A -> C.
2339  *
2340  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2341  * 	we should search the backwards dependencies ending with "B", e.g.
2342  * 	B <- A or B <- C.
2343  */
2344 
2345 /*
2346  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2347  *
2348  * We have a lock dependency path as follow:
2349  *
2350  *    @root                                                                 @leaf
2351  *      |                                                                     |
2352  *      V                                                                     V
2353  *	          ->parent                                   ->parent
2354  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2355  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2356  *
2357  * , so it's natural that we start from @leaf and print every ->class and
2358  * ->trace until we reach the @root.
2359  */
2360 static void __used
2361 print_shortest_lock_dependencies(struct lock_list *leaf,
2362 				 struct lock_list *root)
2363 {
2364 	struct lock_list *entry = leaf;
2365 	int depth;
2366 
2367 	/*compute depth from generated tree by BFS*/
2368 	depth = get_lock_depth(leaf);
2369 
2370 	do {
2371 		print_lock_class_header(entry->class, depth);
2372 		printk("%*s ... acquired at:\n", depth, "");
2373 		print_lock_trace(entry->trace, 2);
2374 		printk("\n");
2375 
2376 		if (depth == 0 && (entry != root)) {
2377 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2378 			break;
2379 		}
2380 
2381 		entry = get_lock_parent(entry);
2382 		depth--;
2383 	} while (entry && (depth >= 0));
2384 }
2385 
2386 /*
2387  * printk the shortest lock dependencies from @leaf to @root.
2388  *
2389  * We have a lock dependency path (from a backwards search) as follow:
2390  *
2391  *    @leaf                                                                 @root
2392  *      |                                                                     |
2393  *      V                                                                     V
2394  *	          ->parent                                   ->parent
2395  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2396  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2397  *
2398  * , so when we iterate from @leaf to @root, we actually print the lock
2399  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2400  *
2401  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2402  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2403  * trace of L1 in the dependency path, which is alright, because most of the
2404  * time we can figure out where L1 is held from the call trace of L2.
2405  */
2406 static void __used
2407 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2408 					   struct lock_list *root)
2409 {
2410 	struct lock_list *entry = leaf;
2411 	const struct lock_trace *trace = NULL;
2412 	int depth;
2413 
2414 	/*compute depth from generated tree by BFS*/
2415 	depth = get_lock_depth(leaf);
2416 
2417 	do {
2418 		print_lock_class_header(entry->class, depth);
2419 		if (trace) {
2420 			printk("%*s ... acquired at:\n", depth, "");
2421 			print_lock_trace(trace, 2);
2422 			printk("\n");
2423 		}
2424 
2425 		/*
2426 		 * Record the pointer to the trace for the next lock_list
2427 		 * entry, see the comments for the function.
2428 		 */
2429 		trace = entry->trace;
2430 
2431 		if (depth == 0 && (entry != root)) {
2432 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2433 			break;
2434 		}
2435 
2436 		entry = get_lock_parent(entry);
2437 		depth--;
2438 	} while (entry && (depth >= 0));
2439 }
2440 
2441 static void
2442 print_irq_lock_scenario(struct lock_list *safe_entry,
2443 			struct lock_list *unsafe_entry,
2444 			struct lock_class *prev_class,
2445 			struct lock_class *next_class)
2446 {
2447 	struct lock_class *safe_class = safe_entry->class;
2448 	struct lock_class *unsafe_class = unsafe_entry->class;
2449 	struct lock_class *middle_class = prev_class;
2450 
2451 	if (middle_class == safe_class)
2452 		middle_class = next_class;
2453 
2454 	/*
2455 	 * A direct locking problem where unsafe_class lock is taken
2456 	 * directly by safe_class lock, then all we need to show
2457 	 * is the deadlock scenario, as it is obvious that the
2458 	 * unsafe lock is taken under the safe lock.
2459 	 *
2460 	 * But if there is a chain instead, where the safe lock takes
2461 	 * an intermediate lock (middle_class) where this lock is
2462 	 * not the same as the safe lock, then the lock chain is
2463 	 * used to describe the problem. Otherwise we would need
2464 	 * to show a different CPU case for each link in the chain
2465 	 * from the safe_class lock to the unsafe_class lock.
2466 	 */
2467 	if (middle_class != unsafe_class) {
2468 		printk("Chain exists of:\n  ");
2469 		__print_lock_name(safe_class);
2470 		printk(KERN_CONT " --> ");
2471 		__print_lock_name(middle_class);
2472 		printk(KERN_CONT " --> ");
2473 		__print_lock_name(unsafe_class);
2474 		printk(KERN_CONT "\n\n");
2475 	}
2476 
2477 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2478 	printk("       CPU0                    CPU1\n");
2479 	printk("       ----                    ----\n");
2480 	printk("  lock(");
2481 	__print_lock_name(unsafe_class);
2482 	printk(KERN_CONT ");\n");
2483 	printk("                               local_irq_disable();\n");
2484 	printk("                               lock(");
2485 	__print_lock_name(safe_class);
2486 	printk(KERN_CONT ");\n");
2487 	printk("                               lock(");
2488 	__print_lock_name(middle_class);
2489 	printk(KERN_CONT ");\n");
2490 	printk("  <Interrupt>\n");
2491 	printk("    lock(");
2492 	__print_lock_name(safe_class);
2493 	printk(KERN_CONT ");\n");
2494 	printk("\n *** DEADLOCK ***\n\n");
2495 }
2496 
2497 static void
2498 print_bad_irq_dependency(struct task_struct *curr,
2499 			 struct lock_list *prev_root,
2500 			 struct lock_list *next_root,
2501 			 struct lock_list *backwards_entry,
2502 			 struct lock_list *forwards_entry,
2503 			 struct held_lock *prev,
2504 			 struct held_lock *next,
2505 			 enum lock_usage_bit bit1,
2506 			 enum lock_usage_bit bit2,
2507 			 const char *irqclass)
2508 {
2509 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2510 		return;
2511 
2512 	pr_warn("\n");
2513 	pr_warn("=====================================================\n");
2514 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2515 		irqclass, irqclass);
2516 	print_kernel_ident();
2517 	pr_warn("-----------------------------------------------------\n");
2518 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2519 		curr->comm, task_pid_nr(curr),
2520 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2521 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2522 		lockdep_hardirqs_enabled(),
2523 		curr->softirqs_enabled);
2524 	print_lock(next);
2525 
2526 	pr_warn("\nand this task is already holding:\n");
2527 	print_lock(prev);
2528 	pr_warn("which would create a new lock dependency:\n");
2529 	print_lock_name(hlock_class(prev));
2530 	pr_cont(" ->");
2531 	print_lock_name(hlock_class(next));
2532 	pr_cont("\n");
2533 
2534 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2535 		irqclass);
2536 	print_lock_name(backwards_entry->class);
2537 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2538 
2539 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2540 
2541 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2542 	print_lock_name(forwards_entry->class);
2543 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2544 	pr_warn("...");
2545 
2546 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2547 
2548 	pr_warn("\nother info that might help us debug this:\n\n");
2549 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2550 				hlock_class(prev), hlock_class(next));
2551 
2552 	lockdep_print_held_locks(curr);
2553 
2554 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2555 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2556 
2557 	pr_warn("\nthe dependencies between the lock to be acquired");
2558 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2559 	next_root->trace = save_trace();
2560 	if (!next_root->trace)
2561 		return;
2562 	print_shortest_lock_dependencies(forwards_entry, next_root);
2563 
2564 	pr_warn("\nstack backtrace:\n");
2565 	dump_stack();
2566 }
2567 
2568 static const char *state_names[] = {
2569 #define LOCKDEP_STATE(__STATE) \
2570 	__stringify(__STATE),
2571 #include "lockdep_states.h"
2572 #undef LOCKDEP_STATE
2573 };
2574 
2575 static const char *state_rnames[] = {
2576 #define LOCKDEP_STATE(__STATE) \
2577 	__stringify(__STATE)"-READ",
2578 #include "lockdep_states.h"
2579 #undef LOCKDEP_STATE
2580 };
2581 
2582 static inline const char *state_name(enum lock_usage_bit bit)
2583 {
2584 	if (bit & LOCK_USAGE_READ_MASK)
2585 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2586 	else
2587 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2588 }
2589 
2590 /*
2591  * The bit number is encoded like:
2592  *
2593  *  bit0: 0 exclusive, 1 read lock
2594  *  bit1: 0 used in irq, 1 irq enabled
2595  *  bit2-n: state
2596  */
2597 static int exclusive_bit(int new_bit)
2598 {
2599 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2600 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2601 
2602 	/*
2603 	 * keep state, bit flip the direction and strip read.
2604 	 */
2605 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2606 }
2607 
2608 /*
2609  * Observe that when given a bitmask where each bitnr is encoded as above, a
2610  * right shift of the mask transforms the individual bitnrs as -1 and
2611  * conversely, a left shift transforms into +1 for the individual bitnrs.
2612  *
2613  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2614  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2615  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2616  *
2617  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2618  *
2619  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2620  * all bits set) and recompose with bitnr1 flipped.
2621  */
2622 static unsigned long invert_dir_mask(unsigned long mask)
2623 {
2624 	unsigned long excl = 0;
2625 
2626 	/* Invert dir */
2627 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2628 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2629 
2630 	return excl;
2631 }
2632 
2633 /*
2634  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2635  * usage may cause deadlock too, for example:
2636  *
2637  * P1				P2
2638  * <irq disabled>
2639  * write_lock(l1);		<irq enabled>
2640  *				read_lock(l2);
2641  * write_lock(l2);
2642  * 				<in irq>
2643  * 				read_lock(l1);
2644  *
2645  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2646  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2647  * deadlock.
2648  *
2649  * In fact, all of the following cases may cause deadlocks:
2650  *
2651  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2652  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2653  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2654  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2655  *
2656  * As a result, to calculate the "exclusive mask", first we invert the
2657  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2658  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2659  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2660  */
2661 static unsigned long exclusive_mask(unsigned long mask)
2662 {
2663 	unsigned long excl = invert_dir_mask(mask);
2664 
2665 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2666 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2667 
2668 	return excl;
2669 }
2670 
2671 /*
2672  * Retrieve the _possible_ original mask to which @mask is
2673  * exclusive. Ie: this is the opposite of exclusive_mask().
2674  * Note that 2 possible original bits can match an exclusive
2675  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2676  * cleared. So both are returned for each exclusive bit.
2677  */
2678 static unsigned long original_mask(unsigned long mask)
2679 {
2680 	unsigned long excl = invert_dir_mask(mask);
2681 
2682 	/* Include read in existing usages */
2683 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2684 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2685 
2686 	return excl;
2687 }
2688 
2689 /*
2690  * Find the first pair of bit match between an original
2691  * usage mask and an exclusive usage mask.
2692  */
2693 static int find_exclusive_match(unsigned long mask,
2694 				unsigned long excl_mask,
2695 				enum lock_usage_bit *bitp,
2696 				enum lock_usage_bit *excl_bitp)
2697 {
2698 	int bit, excl, excl_read;
2699 
2700 	for_each_set_bit(bit, &mask, LOCK_USED) {
2701 		/*
2702 		 * exclusive_bit() strips the read bit, however,
2703 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2704 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2705 		 */
2706 		excl = exclusive_bit(bit);
2707 		excl_read = excl | LOCK_USAGE_READ_MASK;
2708 		if (excl_mask & lock_flag(excl)) {
2709 			*bitp = bit;
2710 			*excl_bitp = excl;
2711 			return 0;
2712 		} else if (excl_mask & lock_flag(excl_read)) {
2713 			*bitp = bit;
2714 			*excl_bitp = excl_read;
2715 			return 0;
2716 		}
2717 	}
2718 	return -1;
2719 }
2720 
2721 /*
2722  * Prove that the new dependency does not connect a hardirq-safe(-read)
2723  * lock with a hardirq-unsafe lock - to achieve this we search
2724  * the backwards-subgraph starting at <prev>, and the
2725  * forwards-subgraph starting at <next>:
2726  */
2727 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2728 			   struct held_lock *next)
2729 {
2730 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2731 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2732 	struct lock_list *target_entry1;
2733 	struct lock_list *target_entry;
2734 	struct lock_list this, that;
2735 	enum bfs_result ret;
2736 
2737 	/*
2738 	 * Step 1: gather all hard/soft IRQs usages backward in an
2739 	 * accumulated usage mask.
2740 	 */
2741 	bfs_init_rootb(&this, prev);
2742 
2743 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2744 	if (bfs_error(ret)) {
2745 		print_bfs_bug(ret);
2746 		return 0;
2747 	}
2748 
2749 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2750 	if (!usage_mask)
2751 		return 1;
2752 
2753 	/*
2754 	 * Step 2: find exclusive uses forward that match the previous
2755 	 * backward accumulated mask.
2756 	 */
2757 	forward_mask = exclusive_mask(usage_mask);
2758 
2759 	bfs_init_root(&that, next);
2760 
2761 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2762 	if (bfs_error(ret)) {
2763 		print_bfs_bug(ret);
2764 		return 0;
2765 	}
2766 	if (ret == BFS_RNOMATCH)
2767 		return 1;
2768 
2769 	/*
2770 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2771 	 * list whose usage mask matches the exclusive usage mask from the
2772 	 * lock found on the forward list.
2773 	 *
2774 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2775 	 * the follow case:
2776 	 *
2777 	 * When trying to add A -> B to the graph, we find that there is a
2778 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2779 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2780 	 * invert bits of M's usage_mask, we will find another lock N that is
2781 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2782 	 * cause a inversion deadlock.
2783 	 */
2784 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2785 
2786 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2787 	if (bfs_error(ret)) {
2788 		print_bfs_bug(ret);
2789 		return 0;
2790 	}
2791 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2792 		return 1;
2793 
2794 	/*
2795 	 * Step 4: narrow down to a pair of incompatible usage bits
2796 	 * and report it.
2797 	 */
2798 	ret = find_exclusive_match(target_entry->class->usage_mask,
2799 				   target_entry1->class->usage_mask,
2800 				   &backward_bit, &forward_bit);
2801 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2802 		return 1;
2803 
2804 	print_bad_irq_dependency(curr, &this, &that,
2805 				 target_entry, target_entry1,
2806 				 prev, next,
2807 				 backward_bit, forward_bit,
2808 				 state_name(backward_bit));
2809 
2810 	return 0;
2811 }
2812 
2813 #else
2814 
2815 static inline int check_irq_usage(struct task_struct *curr,
2816 				  struct held_lock *prev, struct held_lock *next)
2817 {
2818 	return 1;
2819 }
2820 
2821 static inline bool usage_skip(struct lock_list *entry, void *mask)
2822 {
2823 	return false;
2824 }
2825 
2826 #endif /* CONFIG_TRACE_IRQFLAGS */
2827 
2828 #ifdef CONFIG_LOCKDEP_SMALL
2829 /*
2830  * Check that the dependency graph starting at <src> can lead to
2831  * <target> or not. If it can, <src> -> <target> dependency is already
2832  * in the graph.
2833  *
2834  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2835  * any error appears in the bfs search.
2836  */
2837 static noinline enum bfs_result
2838 check_redundant(struct held_lock *src, struct held_lock *target)
2839 {
2840 	enum bfs_result ret;
2841 	struct lock_list *target_entry;
2842 	struct lock_list src_entry;
2843 
2844 	bfs_init_root(&src_entry, src);
2845 	/*
2846 	 * Special setup for check_redundant().
2847 	 *
2848 	 * To report redundant, we need to find a strong dependency path that
2849 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2850 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2851 	 * we achieve this by setting the initial node's ->only_xr to true in
2852 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2853 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2854 	 */
2855 	src_entry.only_xr = src->read == 0;
2856 
2857 	debug_atomic_inc(nr_redundant_checks);
2858 
2859 	/*
2860 	 * Note: we skip local_lock() for redundant check, because as the
2861 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2862 	 * the same.
2863 	 */
2864 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2865 
2866 	if (ret == BFS_RMATCH)
2867 		debug_atomic_inc(nr_redundant);
2868 
2869 	return ret;
2870 }
2871 
2872 #else
2873 
2874 static inline enum bfs_result
2875 check_redundant(struct held_lock *src, struct held_lock *target)
2876 {
2877 	return BFS_RNOMATCH;
2878 }
2879 
2880 #endif
2881 
2882 static void inc_chains(int irq_context)
2883 {
2884 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2885 		nr_hardirq_chains++;
2886 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2887 		nr_softirq_chains++;
2888 	else
2889 		nr_process_chains++;
2890 }
2891 
2892 static void dec_chains(int irq_context)
2893 {
2894 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2895 		nr_hardirq_chains--;
2896 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2897 		nr_softirq_chains--;
2898 	else
2899 		nr_process_chains--;
2900 }
2901 
2902 static void
2903 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2904 {
2905 	struct lock_class *next = hlock_class(nxt);
2906 	struct lock_class *prev = hlock_class(prv);
2907 
2908 	printk(" Possible unsafe locking scenario:\n\n");
2909 	printk("       CPU0\n");
2910 	printk("       ----\n");
2911 	printk("  lock(");
2912 	__print_lock_name(prev);
2913 	printk(KERN_CONT ");\n");
2914 	printk("  lock(");
2915 	__print_lock_name(next);
2916 	printk(KERN_CONT ");\n");
2917 	printk("\n *** DEADLOCK ***\n\n");
2918 	printk(" May be due to missing lock nesting notation\n\n");
2919 }
2920 
2921 static void
2922 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2923 		   struct held_lock *next)
2924 {
2925 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2926 		return;
2927 
2928 	pr_warn("\n");
2929 	pr_warn("============================================\n");
2930 	pr_warn("WARNING: possible recursive locking detected\n");
2931 	print_kernel_ident();
2932 	pr_warn("--------------------------------------------\n");
2933 	pr_warn("%s/%d is trying to acquire lock:\n",
2934 		curr->comm, task_pid_nr(curr));
2935 	print_lock(next);
2936 	pr_warn("\nbut task is already holding lock:\n");
2937 	print_lock(prev);
2938 
2939 	pr_warn("\nother info that might help us debug this:\n");
2940 	print_deadlock_scenario(next, prev);
2941 	lockdep_print_held_locks(curr);
2942 
2943 	pr_warn("\nstack backtrace:\n");
2944 	dump_stack();
2945 }
2946 
2947 /*
2948  * Check whether we are holding such a class already.
2949  *
2950  * (Note that this has to be done separately, because the graph cannot
2951  * detect such classes of deadlocks.)
2952  *
2953  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2954  * lock class is held but nest_lock is also held, i.e. we rely on the
2955  * nest_lock to avoid the deadlock.
2956  */
2957 static int
2958 check_deadlock(struct task_struct *curr, struct held_lock *next)
2959 {
2960 	struct held_lock *prev;
2961 	struct held_lock *nest = NULL;
2962 	int i;
2963 
2964 	for (i = 0; i < curr->lockdep_depth; i++) {
2965 		prev = curr->held_locks + i;
2966 
2967 		if (prev->instance == next->nest_lock)
2968 			nest = prev;
2969 
2970 		if (hlock_class(prev) != hlock_class(next))
2971 			continue;
2972 
2973 		/*
2974 		 * Allow read-after-read recursion of the same
2975 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2976 		 */
2977 		if ((next->read == 2) && prev->read)
2978 			continue;
2979 
2980 		/*
2981 		 * We're holding the nest_lock, which serializes this lock's
2982 		 * nesting behaviour.
2983 		 */
2984 		if (nest)
2985 			return 2;
2986 
2987 		print_deadlock_bug(curr, prev, next);
2988 		return 0;
2989 	}
2990 	return 1;
2991 }
2992 
2993 /*
2994  * There was a chain-cache miss, and we are about to add a new dependency
2995  * to a previous lock. We validate the following rules:
2996  *
2997  *  - would the adding of the <prev> -> <next> dependency create a
2998  *    circular dependency in the graph? [== circular deadlock]
2999  *
3000  *  - does the new prev->next dependency connect any hardirq-safe lock
3001  *    (in the full backwards-subgraph starting at <prev>) with any
3002  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3003  *    <next>)? [== illegal lock inversion with hardirq contexts]
3004  *
3005  *  - does the new prev->next dependency connect any softirq-safe lock
3006  *    (in the full backwards-subgraph starting at <prev>) with any
3007  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3008  *    <next>)? [== illegal lock inversion with softirq contexts]
3009  *
3010  * any of these scenarios could lead to a deadlock.
3011  *
3012  * Then if all the validations pass, we add the forwards and backwards
3013  * dependency.
3014  */
3015 static int
3016 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3017 	       struct held_lock *next, u16 distance,
3018 	       struct lock_trace **const trace)
3019 {
3020 	struct lock_list *entry;
3021 	enum bfs_result ret;
3022 
3023 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3024 		/*
3025 		 * The warning statements below may trigger a use-after-free
3026 		 * of the class name. It is better to trigger a use-after free
3027 		 * and to have the class name most of the time instead of not
3028 		 * having the class name available.
3029 		 */
3030 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3031 			  "Detected use-after-free of lock class %px/%s\n",
3032 			  hlock_class(prev),
3033 			  hlock_class(prev)->name);
3034 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3035 			  "Detected use-after-free of lock class %px/%s\n",
3036 			  hlock_class(next),
3037 			  hlock_class(next)->name);
3038 		return 2;
3039 	}
3040 
3041 	/*
3042 	 * Prove that the new <prev> -> <next> dependency would not
3043 	 * create a circular dependency in the graph. (We do this by
3044 	 * a breadth-first search into the graph starting at <next>,
3045 	 * and check whether we can reach <prev>.)
3046 	 *
3047 	 * The search is limited by the size of the circular queue (i.e.,
3048 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3049 	 * in the graph whose neighbours are to be checked.
3050 	 */
3051 	ret = check_noncircular(next, prev, trace);
3052 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3053 		return 0;
3054 
3055 	if (!check_irq_usage(curr, prev, next))
3056 		return 0;
3057 
3058 	/*
3059 	 * Is the <prev> -> <next> dependency already present?
3060 	 *
3061 	 * (this may occur even though this is a new chain: consider
3062 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3063 	 *  chains - the second one will be new, but L1 already has
3064 	 *  L2 added to its dependency list, due to the first chain.)
3065 	 */
3066 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3067 		if (entry->class == hlock_class(next)) {
3068 			if (distance == 1)
3069 				entry->distance = 1;
3070 			entry->dep |= calc_dep(prev, next);
3071 
3072 			/*
3073 			 * Also, update the reverse dependency in @next's
3074 			 * ->locks_before list.
3075 			 *
3076 			 *  Here we reuse @entry as the cursor, which is fine
3077 			 *  because we won't go to the next iteration of the
3078 			 *  outer loop:
3079 			 *
3080 			 *  For normal cases, we return in the inner loop.
3081 			 *
3082 			 *  If we fail to return, we have inconsistency, i.e.
3083 			 *  <prev>::locks_after contains <next> while
3084 			 *  <next>::locks_before doesn't contain <prev>. In
3085 			 *  that case, we return after the inner and indicate
3086 			 *  something is wrong.
3087 			 */
3088 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3089 				if (entry->class == hlock_class(prev)) {
3090 					if (distance == 1)
3091 						entry->distance = 1;
3092 					entry->dep |= calc_depb(prev, next);
3093 					return 1;
3094 				}
3095 			}
3096 
3097 			/* <prev> is not found in <next>::locks_before */
3098 			return 0;
3099 		}
3100 	}
3101 
3102 	/*
3103 	 * Is the <prev> -> <next> link redundant?
3104 	 */
3105 	ret = check_redundant(prev, next);
3106 	if (bfs_error(ret))
3107 		return 0;
3108 	else if (ret == BFS_RMATCH)
3109 		return 2;
3110 
3111 	if (!*trace) {
3112 		*trace = save_trace();
3113 		if (!*trace)
3114 			return 0;
3115 	}
3116 
3117 	/*
3118 	 * Ok, all validations passed, add the new lock
3119 	 * to the previous lock's dependency list:
3120 	 */
3121 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3122 			       &hlock_class(prev)->locks_after,
3123 			       next->acquire_ip, distance,
3124 			       calc_dep(prev, next),
3125 			       *trace);
3126 
3127 	if (!ret)
3128 		return 0;
3129 
3130 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3131 			       &hlock_class(next)->locks_before,
3132 			       next->acquire_ip, distance,
3133 			       calc_depb(prev, next),
3134 			       *trace);
3135 	if (!ret)
3136 		return 0;
3137 
3138 	return 2;
3139 }
3140 
3141 /*
3142  * Add the dependency to all directly-previous locks that are 'relevant'.
3143  * The ones that are relevant are (in increasing distance from curr):
3144  * all consecutive trylock entries and the final non-trylock entry - or
3145  * the end of this context's lock-chain - whichever comes first.
3146  */
3147 static int
3148 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3149 {
3150 	struct lock_trace *trace = NULL;
3151 	int depth = curr->lockdep_depth;
3152 	struct held_lock *hlock;
3153 
3154 	/*
3155 	 * Debugging checks.
3156 	 *
3157 	 * Depth must not be zero for a non-head lock:
3158 	 */
3159 	if (!depth)
3160 		goto out_bug;
3161 	/*
3162 	 * At least two relevant locks must exist for this
3163 	 * to be a head:
3164 	 */
3165 	if (curr->held_locks[depth].irq_context !=
3166 			curr->held_locks[depth-1].irq_context)
3167 		goto out_bug;
3168 
3169 	for (;;) {
3170 		u16 distance = curr->lockdep_depth - depth + 1;
3171 		hlock = curr->held_locks + depth - 1;
3172 
3173 		if (hlock->check) {
3174 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3175 			if (!ret)
3176 				return 0;
3177 
3178 			/*
3179 			 * Stop after the first non-trylock entry,
3180 			 * as non-trylock entries have added their
3181 			 * own direct dependencies already, so this
3182 			 * lock is connected to them indirectly:
3183 			 */
3184 			if (!hlock->trylock)
3185 				break;
3186 		}
3187 
3188 		depth--;
3189 		/*
3190 		 * End of lock-stack?
3191 		 */
3192 		if (!depth)
3193 			break;
3194 		/*
3195 		 * Stop the search if we cross into another context:
3196 		 */
3197 		if (curr->held_locks[depth].irq_context !=
3198 				curr->held_locks[depth-1].irq_context)
3199 			break;
3200 	}
3201 	return 1;
3202 out_bug:
3203 	if (!debug_locks_off_graph_unlock())
3204 		return 0;
3205 
3206 	/*
3207 	 * Clearly we all shouldn't be here, but since we made it we
3208 	 * can reliable say we messed up our state. See the above two
3209 	 * gotos for reasons why we could possibly end up here.
3210 	 */
3211 	WARN_ON(1);
3212 
3213 	return 0;
3214 }
3215 
3216 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3217 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3218 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3219 unsigned long nr_zapped_lock_chains;
3220 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3221 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3222 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3223 
3224 /*
3225  * The first 2 chain_hlocks entries in the chain block in the bucket
3226  * list contains the following meta data:
3227  *
3228  *   entry[0]:
3229  *     Bit    15 - always set to 1 (it is not a class index)
3230  *     Bits 0-14 - upper 15 bits of the next block index
3231  *   entry[1]    - lower 16 bits of next block index
3232  *
3233  * A next block index of all 1 bits means it is the end of the list.
3234  *
3235  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3236  * the chain block size:
3237  *
3238  *   entry[2] - upper 16 bits of the chain block size
3239  *   entry[3] - lower 16 bits of the chain block size
3240  */
3241 #define MAX_CHAIN_BUCKETS	16
3242 #define CHAIN_BLK_FLAG		(1U << 15)
3243 #define CHAIN_BLK_LIST_END	0xFFFFU
3244 
3245 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3246 
3247 static inline int size_to_bucket(int size)
3248 {
3249 	if (size > MAX_CHAIN_BUCKETS)
3250 		return 0;
3251 
3252 	return size - 1;
3253 }
3254 
3255 /*
3256  * Iterate all the chain blocks in a bucket.
3257  */
3258 #define for_each_chain_block(bucket, prev, curr)		\
3259 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3260 	     (curr) >= 0;					\
3261 	     (prev) = (curr), (curr) = chain_block_next(curr))
3262 
3263 /*
3264  * next block or -1
3265  */
3266 static inline int chain_block_next(int offset)
3267 {
3268 	int next = chain_hlocks[offset];
3269 
3270 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3271 
3272 	if (next == CHAIN_BLK_LIST_END)
3273 		return -1;
3274 
3275 	next &= ~CHAIN_BLK_FLAG;
3276 	next <<= 16;
3277 	next |= chain_hlocks[offset + 1];
3278 
3279 	return next;
3280 }
3281 
3282 /*
3283  * bucket-0 only
3284  */
3285 static inline int chain_block_size(int offset)
3286 {
3287 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3288 }
3289 
3290 static inline void init_chain_block(int offset, int next, int bucket, int size)
3291 {
3292 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3293 	chain_hlocks[offset + 1] = (u16)next;
3294 
3295 	if (size && !bucket) {
3296 		chain_hlocks[offset + 2] = size >> 16;
3297 		chain_hlocks[offset + 3] = (u16)size;
3298 	}
3299 }
3300 
3301 static inline void add_chain_block(int offset, int size)
3302 {
3303 	int bucket = size_to_bucket(size);
3304 	int next = chain_block_buckets[bucket];
3305 	int prev, curr;
3306 
3307 	if (unlikely(size < 2)) {
3308 		/*
3309 		 * We can't store single entries on the freelist. Leak them.
3310 		 *
3311 		 * One possible way out would be to uniquely mark them, other
3312 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3313 		 * the block before it is re-added.
3314 		 */
3315 		if (size)
3316 			nr_lost_chain_hlocks++;
3317 		return;
3318 	}
3319 
3320 	nr_free_chain_hlocks += size;
3321 	if (!bucket) {
3322 		nr_large_chain_blocks++;
3323 
3324 		/*
3325 		 * Variable sized, sort large to small.
3326 		 */
3327 		for_each_chain_block(0, prev, curr) {
3328 			if (size >= chain_block_size(curr))
3329 				break;
3330 		}
3331 		init_chain_block(offset, curr, 0, size);
3332 		if (prev < 0)
3333 			chain_block_buckets[0] = offset;
3334 		else
3335 			init_chain_block(prev, offset, 0, 0);
3336 		return;
3337 	}
3338 	/*
3339 	 * Fixed size, add to head.
3340 	 */
3341 	init_chain_block(offset, next, bucket, size);
3342 	chain_block_buckets[bucket] = offset;
3343 }
3344 
3345 /*
3346  * Only the first block in the list can be deleted.
3347  *
3348  * For the variable size bucket[0], the first block (the largest one) is
3349  * returned, broken up and put back into the pool. So if a chain block of
3350  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3351  * queued up after the primordial chain block and never be used until the
3352  * hlock entries in the primordial chain block is almost used up. That
3353  * causes fragmentation and reduce allocation efficiency. That can be
3354  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3355  */
3356 static inline void del_chain_block(int bucket, int size, int next)
3357 {
3358 	nr_free_chain_hlocks -= size;
3359 	chain_block_buckets[bucket] = next;
3360 
3361 	if (!bucket)
3362 		nr_large_chain_blocks--;
3363 }
3364 
3365 static void init_chain_block_buckets(void)
3366 {
3367 	int i;
3368 
3369 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3370 		chain_block_buckets[i] = -1;
3371 
3372 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3373 }
3374 
3375 /*
3376  * Return offset of a chain block of the right size or -1 if not found.
3377  *
3378  * Fairly simple worst-fit allocator with the addition of a number of size
3379  * specific free lists.
3380  */
3381 static int alloc_chain_hlocks(int req)
3382 {
3383 	int bucket, curr, size;
3384 
3385 	/*
3386 	 * We rely on the MSB to act as an escape bit to denote freelist
3387 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3388 	 */
3389 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3390 
3391 	init_data_structures_once();
3392 
3393 	if (nr_free_chain_hlocks < req)
3394 		return -1;
3395 
3396 	/*
3397 	 * We require a minimum of 2 (u16) entries to encode a freelist
3398 	 * 'pointer'.
3399 	 */
3400 	req = max(req, 2);
3401 	bucket = size_to_bucket(req);
3402 	curr = chain_block_buckets[bucket];
3403 
3404 	if (bucket) {
3405 		if (curr >= 0) {
3406 			del_chain_block(bucket, req, chain_block_next(curr));
3407 			return curr;
3408 		}
3409 		/* Try bucket 0 */
3410 		curr = chain_block_buckets[0];
3411 	}
3412 
3413 	/*
3414 	 * The variable sized freelist is sorted by size; the first entry is
3415 	 * the largest. Use it if it fits.
3416 	 */
3417 	if (curr >= 0) {
3418 		size = chain_block_size(curr);
3419 		if (likely(size >= req)) {
3420 			del_chain_block(0, size, chain_block_next(curr));
3421 			add_chain_block(curr + req, size - req);
3422 			return curr;
3423 		}
3424 	}
3425 
3426 	/*
3427 	 * Last resort, split a block in a larger sized bucket.
3428 	 */
3429 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3430 		bucket = size_to_bucket(size);
3431 		curr = chain_block_buckets[bucket];
3432 		if (curr < 0)
3433 			continue;
3434 
3435 		del_chain_block(bucket, size, chain_block_next(curr));
3436 		add_chain_block(curr + req, size - req);
3437 		return curr;
3438 	}
3439 
3440 	return -1;
3441 }
3442 
3443 static inline void free_chain_hlocks(int base, int size)
3444 {
3445 	add_chain_block(base, max(size, 2));
3446 }
3447 
3448 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3449 {
3450 	u16 chain_hlock = chain_hlocks[chain->base + i];
3451 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3452 
3453 	return lock_classes + class_idx - 1;
3454 }
3455 
3456 /*
3457  * Returns the index of the first held_lock of the current chain
3458  */
3459 static inline int get_first_held_lock(struct task_struct *curr,
3460 					struct held_lock *hlock)
3461 {
3462 	int i;
3463 	struct held_lock *hlock_curr;
3464 
3465 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3466 		hlock_curr = curr->held_locks + i;
3467 		if (hlock_curr->irq_context != hlock->irq_context)
3468 			break;
3469 
3470 	}
3471 
3472 	return ++i;
3473 }
3474 
3475 #ifdef CONFIG_DEBUG_LOCKDEP
3476 /*
3477  * Returns the next chain_key iteration
3478  */
3479 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3480 {
3481 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3482 
3483 	printk(" hlock_id:%d -> chain_key:%016Lx",
3484 		(unsigned int)hlock_id,
3485 		(unsigned long long)new_chain_key);
3486 	return new_chain_key;
3487 }
3488 
3489 static void
3490 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3491 {
3492 	struct held_lock *hlock;
3493 	u64 chain_key = INITIAL_CHAIN_KEY;
3494 	int depth = curr->lockdep_depth;
3495 	int i = get_first_held_lock(curr, hlock_next);
3496 
3497 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3498 		hlock_next->irq_context);
3499 	for (; i < depth; i++) {
3500 		hlock = curr->held_locks + i;
3501 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3502 
3503 		print_lock(hlock);
3504 	}
3505 
3506 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3507 	print_lock(hlock_next);
3508 }
3509 
3510 static void print_chain_keys_chain(struct lock_chain *chain)
3511 {
3512 	int i;
3513 	u64 chain_key = INITIAL_CHAIN_KEY;
3514 	u16 hlock_id;
3515 
3516 	printk("depth: %u\n", chain->depth);
3517 	for (i = 0; i < chain->depth; i++) {
3518 		hlock_id = chain_hlocks[chain->base + i];
3519 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3520 
3521 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3522 		printk("\n");
3523 	}
3524 }
3525 
3526 static void print_collision(struct task_struct *curr,
3527 			struct held_lock *hlock_next,
3528 			struct lock_chain *chain)
3529 {
3530 	pr_warn("\n");
3531 	pr_warn("============================\n");
3532 	pr_warn("WARNING: chain_key collision\n");
3533 	print_kernel_ident();
3534 	pr_warn("----------------------------\n");
3535 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3536 	pr_warn("Hash chain already cached but the contents don't match!\n");
3537 
3538 	pr_warn("Held locks:");
3539 	print_chain_keys_held_locks(curr, hlock_next);
3540 
3541 	pr_warn("Locks in cached chain:");
3542 	print_chain_keys_chain(chain);
3543 
3544 	pr_warn("\nstack backtrace:\n");
3545 	dump_stack();
3546 }
3547 #endif
3548 
3549 /*
3550  * Checks whether the chain and the current held locks are consistent
3551  * in depth and also in content. If they are not it most likely means
3552  * that there was a collision during the calculation of the chain_key.
3553  * Returns: 0 not passed, 1 passed
3554  */
3555 static int check_no_collision(struct task_struct *curr,
3556 			struct held_lock *hlock,
3557 			struct lock_chain *chain)
3558 {
3559 #ifdef CONFIG_DEBUG_LOCKDEP
3560 	int i, j, id;
3561 
3562 	i = get_first_held_lock(curr, hlock);
3563 
3564 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3565 		print_collision(curr, hlock, chain);
3566 		return 0;
3567 	}
3568 
3569 	for (j = 0; j < chain->depth - 1; j++, i++) {
3570 		id = hlock_id(&curr->held_locks[i]);
3571 
3572 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3573 			print_collision(curr, hlock, chain);
3574 			return 0;
3575 		}
3576 	}
3577 #endif
3578 	return 1;
3579 }
3580 
3581 /*
3582  * Given an index that is >= -1, return the index of the next lock chain.
3583  * Return -2 if there is no next lock chain.
3584  */
3585 long lockdep_next_lockchain(long i)
3586 {
3587 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3588 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3589 }
3590 
3591 unsigned long lock_chain_count(void)
3592 {
3593 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3594 }
3595 
3596 /* Must be called with the graph lock held. */
3597 static struct lock_chain *alloc_lock_chain(void)
3598 {
3599 	int idx = find_first_zero_bit(lock_chains_in_use,
3600 				      ARRAY_SIZE(lock_chains));
3601 
3602 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3603 		return NULL;
3604 	__set_bit(idx, lock_chains_in_use);
3605 	return lock_chains + idx;
3606 }
3607 
3608 /*
3609  * Adds a dependency chain into chain hashtable. And must be called with
3610  * graph_lock held.
3611  *
3612  * Return 0 if fail, and graph_lock is released.
3613  * Return 1 if succeed, with graph_lock held.
3614  */
3615 static inline int add_chain_cache(struct task_struct *curr,
3616 				  struct held_lock *hlock,
3617 				  u64 chain_key)
3618 {
3619 	struct hlist_head *hash_head = chainhashentry(chain_key);
3620 	struct lock_chain *chain;
3621 	int i, j;
3622 
3623 	/*
3624 	 * The caller must hold the graph lock, ensure we've got IRQs
3625 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3626 	 * lockdep won't complain about its own locking errors.
3627 	 */
3628 	if (lockdep_assert_locked())
3629 		return 0;
3630 
3631 	chain = alloc_lock_chain();
3632 	if (!chain) {
3633 		if (!debug_locks_off_graph_unlock())
3634 			return 0;
3635 
3636 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3637 		dump_stack();
3638 		return 0;
3639 	}
3640 	chain->chain_key = chain_key;
3641 	chain->irq_context = hlock->irq_context;
3642 	i = get_first_held_lock(curr, hlock);
3643 	chain->depth = curr->lockdep_depth + 1 - i;
3644 
3645 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3646 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3647 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3648 
3649 	j = alloc_chain_hlocks(chain->depth);
3650 	if (j < 0) {
3651 		if (!debug_locks_off_graph_unlock())
3652 			return 0;
3653 
3654 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3655 		dump_stack();
3656 		return 0;
3657 	}
3658 
3659 	chain->base = j;
3660 	for (j = 0; j < chain->depth - 1; j++, i++) {
3661 		int lock_id = hlock_id(curr->held_locks + i);
3662 
3663 		chain_hlocks[chain->base + j] = lock_id;
3664 	}
3665 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3666 	hlist_add_head_rcu(&chain->entry, hash_head);
3667 	debug_atomic_inc(chain_lookup_misses);
3668 	inc_chains(chain->irq_context);
3669 
3670 	return 1;
3671 }
3672 
3673 /*
3674  * Look up a dependency chain. Must be called with either the graph lock or
3675  * the RCU read lock held.
3676  */
3677 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3678 {
3679 	struct hlist_head *hash_head = chainhashentry(chain_key);
3680 	struct lock_chain *chain;
3681 
3682 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3683 		if (READ_ONCE(chain->chain_key) == chain_key) {
3684 			debug_atomic_inc(chain_lookup_hits);
3685 			return chain;
3686 		}
3687 	}
3688 	return NULL;
3689 }
3690 
3691 /*
3692  * If the key is not present yet in dependency chain cache then
3693  * add it and return 1 - in this case the new dependency chain is
3694  * validated. If the key is already hashed, return 0.
3695  * (On return with 1 graph_lock is held.)
3696  */
3697 static inline int lookup_chain_cache_add(struct task_struct *curr,
3698 					 struct held_lock *hlock,
3699 					 u64 chain_key)
3700 {
3701 	struct lock_class *class = hlock_class(hlock);
3702 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3703 
3704 	if (chain) {
3705 cache_hit:
3706 		if (!check_no_collision(curr, hlock, chain))
3707 			return 0;
3708 
3709 		if (very_verbose(class)) {
3710 			printk("\nhash chain already cached, key: "
3711 					"%016Lx tail class: [%px] %s\n",
3712 					(unsigned long long)chain_key,
3713 					class->key, class->name);
3714 		}
3715 
3716 		return 0;
3717 	}
3718 
3719 	if (very_verbose(class)) {
3720 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3721 			(unsigned long long)chain_key, class->key, class->name);
3722 	}
3723 
3724 	if (!graph_lock())
3725 		return 0;
3726 
3727 	/*
3728 	 * We have to walk the chain again locked - to avoid duplicates:
3729 	 */
3730 	chain = lookup_chain_cache(chain_key);
3731 	if (chain) {
3732 		graph_unlock();
3733 		goto cache_hit;
3734 	}
3735 
3736 	if (!add_chain_cache(curr, hlock, chain_key))
3737 		return 0;
3738 
3739 	return 1;
3740 }
3741 
3742 static int validate_chain(struct task_struct *curr,
3743 			  struct held_lock *hlock,
3744 			  int chain_head, u64 chain_key)
3745 {
3746 	/*
3747 	 * Trylock needs to maintain the stack of held locks, but it
3748 	 * does not add new dependencies, because trylock can be done
3749 	 * in any order.
3750 	 *
3751 	 * We look up the chain_key and do the O(N^2) check and update of
3752 	 * the dependencies only if this is a new dependency chain.
3753 	 * (If lookup_chain_cache_add() return with 1 it acquires
3754 	 * graph_lock for us)
3755 	 */
3756 	if (!hlock->trylock && hlock->check &&
3757 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3758 		/*
3759 		 * Check whether last held lock:
3760 		 *
3761 		 * - is irq-safe, if this lock is irq-unsafe
3762 		 * - is softirq-safe, if this lock is hardirq-unsafe
3763 		 *
3764 		 * And check whether the new lock's dependency graph
3765 		 * could lead back to the previous lock:
3766 		 *
3767 		 * - within the current held-lock stack
3768 		 * - across our accumulated lock dependency records
3769 		 *
3770 		 * any of these scenarios could lead to a deadlock.
3771 		 */
3772 		/*
3773 		 * The simple case: does the current hold the same lock
3774 		 * already?
3775 		 */
3776 		int ret = check_deadlock(curr, hlock);
3777 
3778 		if (!ret)
3779 			return 0;
3780 		/*
3781 		 * Add dependency only if this lock is not the head
3782 		 * of the chain, and if the new lock introduces no more
3783 		 * lock dependency (because we already hold a lock with the
3784 		 * same lock class) nor deadlock (because the nest_lock
3785 		 * serializes nesting locks), see the comments for
3786 		 * check_deadlock().
3787 		 */
3788 		if (!chain_head && ret != 2) {
3789 			if (!check_prevs_add(curr, hlock))
3790 				return 0;
3791 		}
3792 
3793 		graph_unlock();
3794 	} else {
3795 		/* after lookup_chain_cache_add(): */
3796 		if (unlikely(!debug_locks))
3797 			return 0;
3798 	}
3799 
3800 	return 1;
3801 }
3802 #else
3803 static inline int validate_chain(struct task_struct *curr,
3804 				 struct held_lock *hlock,
3805 				 int chain_head, u64 chain_key)
3806 {
3807 	return 1;
3808 }
3809 
3810 static void init_chain_block_buckets(void)	{ }
3811 #endif /* CONFIG_PROVE_LOCKING */
3812 
3813 /*
3814  * We are building curr_chain_key incrementally, so double-check
3815  * it from scratch, to make sure that it's done correctly:
3816  */
3817 static void check_chain_key(struct task_struct *curr)
3818 {
3819 #ifdef CONFIG_DEBUG_LOCKDEP
3820 	struct held_lock *hlock, *prev_hlock = NULL;
3821 	unsigned int i;
3822 	u64 chain_key = INITIAL_CHAIN_KEY;
3823 
3824 	for (i = 0; i < curr->lockdep_depth; i++) {
3825 		hlock = curr->held_locks + i;
3826 		if (chain_key != hlock->prev_chain_key) {
3827 			debug_locks_off();
3828 			/*
3829 			 * We got mighty confused, our chain keys don't match
3830 			 * with what we expect, someone trample on our task state?
3831 			 */
3832 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3833 				curr->lockdep_depth, i,
3834 				(unsigned long long)chain_key,
3835 				(unsigned long long)hlock->prev_chain_key);
3836 			return;
3837 		}
3838 
3839 		/*
3840 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3841 		 * it registered lock class index?
3842 		 */
3843 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3844 			return;
3845 
3846 		if (prev_hlock && (prev_hlock->irq_context !=
3847 							hlock->irq_context))
3848 			chain_key = INITIAL_CHAIN_KEY;
3849 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3850 		prev_hlock = hlock;
3851 	}
3852 	if (chain_key != curr->curr_chain_key) {
3853 		debug_locks_off();
3854 		/*
3855 		 * More smoking hash instead of calculating it, damn see these
3856 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3857 		 */
3858 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3859 			curr->lockdep_depth, i,
3860 			(unsigned long long)chain_key,
3861 			(unsigned long long)curr->curr_chain_key);
3862 	}
3863 #endif
3864 }
3865 
3866 #ifdef CONFIG_PROVE_LOCKING
3867 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3868 		     enum lock_usage_bit new_bit);
3869 
3870 static void print_usage_bug_scenario(struct held_lock *lock)
3871 {
3872 	struct lock_class *class = hlock_class(lock);
3873 
3874 	printk(" Possible unsafe locking scenario:\n\n");
3875 	printk("       CPU0\n");
3876 	printk("       ----\n");
3877 	printk("  lock(");
3878 	__print_lock_name(class);
3879 	printk(KERN_CONT ");\n");
3880 	printk("  <Interrupt>\n");
3881 	printk("    lock(");
3882 	__print_lock_name(class);
3883 	printk(KERN_CONT ");\n");
3884 	printk("\n *** DEADLOCK ***\n\n");
3885 }
3886 
3887 static void
3888 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3889 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3890 {
3891 	if (!debug_locks_off() || debug_locks_silent)
3892 		return;
3893 
3894 	pr_warn("\n");
3895 	pr_warn("================================\n");
3896 	pr_warn("WARNING: inconsistent lock state\n");
3897 	print_kernel_ident();
3898 	pr_warn("--------------------------------\n");
3899 
3900 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3901 		usage_str[prev_bit], usage_str[new_bit]);
3902 
3903 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3904 		curr->comm, task_pid_nr(curr),
3905 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3906 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3907 		lockdep_hardirqs_enabled(),
3908 		lockdep_softirqs_enabled(curr));
3909 	print_lock(this);
3910 
3911 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3912 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3913 
3914 	print_irqtrace_events(curr);
3915 	pr_warn("\nother info that might help us debug this:\n");
3916 	print_usage_bug_scenario(this);
3917 
3918 	lockdep_print_held_locks(curr);
3919 
3920 	pr_warn("\nstack backtrace:\n");
3921 	dump_stack();
3922 }
3923 
3924 /*
3925  * Print out an error if an invalid bit is set:
3926  */
3927 static inline int
3928 valid_state(struct task_struct *curr, struct held_lock *this,
3929 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3930 {
3931 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3932 		graph_unlock();
3933 		print_usage_bug(curr, this, bad_bit, new_bit);
3934 		return 0;
3935 	}
3936 	return 1;
3937 }
3938 
3939 
3940 /*
3941  * print irq inversion bug:
3942  */
3943 static void
3944 print_irq_inversion_bug(struct task_struct *curr,
3945 			struct lock_list *root, struct lock_list *other,
3946 			struct held_lock *this, int forwards,
3947 			const char *irqclass)
3948 {
3949 	struct lock_list *entry = other;
3950 	struct lock_list *middle = NULL;
3951 	int depth;
3952 
3953 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3954 		return;
3955 
3956 	pr_warn("\n");
3957 	pr_warn("========================================================\n");
3958 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3959 	print_kernel_ident();
3960 	pr_warn("--------------------------------------------------------\n");
3961 	pr_warn("%s/%d just changed the state of lock:\n",
3962 		curr->comm, task_pid_nr(curr));
3963 	print_lock(this);
3964 	if (forwards)
3965 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3966 	else
3967 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3968 	print_lock_name(other->class);
3969 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3970 
3971 	pr_warn("\nother info that might help us debug this:\n");
3972 
3973 	/* Find a middle lock (if one exists) */
3974 	depth = get_lock_depth(other);
3975 	do {
3976 		if (depth == 0 && (entry != root)) {
3977 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3978 			break;
3979 		}
3980 		middle = entry;
3981 		entry = get_lock_parent(entry);
3982 		depth--;
3983 	} while (entry && entry != root && (depth >= 0));
3984 	if (forwards)
3985 		print_irq_lock_scenario(root, other,
3986 			middle ? middle->class : root->class, other->class);
3987 	else
3988 		print_irq_lock_scenario(other, root,
3989 			middle ? middle->class : other->class, root->class);
3990 
3991 	lockdep_print_held_locks(curr);
3992 
3993 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3994 	root->trace = save_trace();
3995 	if (!root->trace)
3996 		return;
3997 	print_shortest_lock_dependencies(other, root);
3998 
3999 	pr_warn("\nstack backtrace:\n");
4000 	dump_stack();
4001 }
4002 
4003 /*
4004  * Prove that in the forwards-direction subgraph starting at <this>
4005  * there is no lock matching <mask>:
4006  */
4007 static int
4008 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4009 		     enum lock_usage_bit bit)
4010 {
4011 	enum bfs_result ret;
4012 	struct lock_list root;
4013 	struct lock_list *target_entry;
4014 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4015 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4016 
4017 	bfs_init_root(&root, this);
4018 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4019 	if (bfs_error(ret)) {
4020 		print_bfs_bug(ret);
4021 		return 0;
4022 	}
4023 	if (ret == BFS_RNOMATCH)
4024 		return 1;
4025 
4026 	/* Check whether write or read usage is the match */
4027 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4028 		print_irq_inversion_bug(curr, &root, target_entry,
4029 					this, 1, state_name(bit));
4030 	} else {
4031 		print_irq_inversion_bug(curr, &root, target_entry,
4032 					this, 1, state_name(read_bit));
4033 	}
4034 
4035 	return 0;
4036 }
4037 
4038 /*
4039  * Prove that in the backwards-direction subgraph starting at <this>
4040  * there is no lock matching <mask>:
4041  */
4042 static int
4043 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4044 		      enum lock_usage_bit bit)
4045 {
4046 	enum bfs_result ret;
4047 	struct lock_list root;
4048 	struct lock_list *target_entry;
4049 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4050 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4051 
4052 	bfs_init_rootb(&root, this);
4053 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4054 	if (bfs_error(ret)) {
4055 		print_bfs_bug(ret);
4056 		return 0;
4057 	}
4058 	if (ret == BFS_RNOMATCH)
4059 		return 1;
4060 
4061 	/* Check whether write or read usage is the match */
4062 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4063 		print_irq_inversion_bug(curr, &root, target_entry,
4064 					this, 0, state_name(bit));
4065 	} else {
4066 		print_irq_inversion_bug(curr, &root, target_entry,
4067 					this, 0, state_name(read_bit));
4068 	}
4069 
4070 	return 0;
4071 }
4072 
4073 void print_irqtrace_events(struct task_struct *curr)
4074 {
4075 	const struct irqtrace_events *trace = &curr->irqtrace;
4076 
4077 	printk("irq event stamp: %u\n", trace->irq_events);
4078 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4079 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4080 		(void *)trace->hardirq_enable_ip);
4081 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4082 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4083 		(void *)trace->hardirq_disable_ip);
4084 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4085 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4086 		(void *)trace->softirq_enable_ip);
4087 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4088 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4089 		(void *)trace->softirq_disable_ip);
4090 }
4091 
4092 static int HARDIRQ_verbose(struct lock_class *class)
4093 {
4094 #if HARDIRQ_VERBOSE
4095 	return class_filter(class);
4096 #endif
4097 	return 0;
4098 }
4099 
4100 static int SOFTIRQ_verbose(struct lock_class *class)
4101 {
4102 #if SOFTIRQ_VERBOSE
4103 	return class_filter(class);
4104 #endif
4105 	return 0;
4106 }
4107 
4108 static int (*state_verbose_f[])(struct lock_class *class) = {
4109 #define LOCKDEP_STATE(__STATE) \
4110 	__STATE##_verbose,
4111 #include "lockdep_states.h"
4112 #undef LOCKDEP_STATE
4113 };
4114 
4115 static inline int state_verbose(enum lock_usage_bit bit,
4116 				struct lock_class *class)
4117 {
4118 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4119 }
4120 
4121 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4122 			     enum lock_usage_bit bit, const char *name);
4123 
4124 static int
4125 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4126 		enum lock_usage_bit new_bit)
4127 {
4128 	int excl_bit = exclusive_bit(new_bit);
4129 	int read = new_bit & LOCK_USAGE_READ_MASK;
4130 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4131 
4132 	/*
4133 	 * Validate that this particular lock does not have conflicting
4134 	 * usage states.
4135 	 */
4136 	if (!valid_state(curr, this, new_bit, excl_bit))
4137 		return 0;
4138 
4139 	/*
4140 	 * Check for read in write conflicts
4141 	 */
4142 	if (!read && !valid_state(curr, this, new_bit,
4143 				  excl_bit + LOCK_USAGE_READ_MASK))
4144 		return 0;
4145 
4146 
4147 	/*
4148 	 * Validate that the lock dependencies don't have conflicting usage
4149 	 * states.
4150 	 */
4151 	if (dir) {
4152 		/*
4153 		 * mark ENABLED has to look backwards -- to ensure no dependee
4154 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4155 		 */
4156 		if (!check_usage_backwards(curr, this, excl_bit))
4157 			return 0;
4158 	} else {
4159 		/*
4160 		 * mark USED_IN has to look forwards -- to ensure no dependency
4161 		 * has ENABLED state, which would allow recursion deadlocks.
4162 		 */
4163 		if (!check_usage_forwards(curr, this, excl_bit))
4164 			return 0;
4165 	}
4166 
4167 	if (state_verbose(new_bit, hlock_class(this)))
4168 		return 2;
4169 
4170 	return 1;
4171 }
4172 
4173 /*
4174  * Mark all held locks with a usage bit:
4175  */
4176 static int
4177 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4178 {
4179 	struct held_lock *hlock;
4180 	int i;
4181 
4182 	for (i = 0; i < curr->lockdep_depth; i++) {
4183 		enum lock_usage_bit hlock_bit = base_bit;
4184 		hlock = curr->held_locks + i;
4185 
4186 		if (hlock->read)
4187 			hlock_bit += LOCK_USAGE_READ_MASK;
4188 
4189 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4190 
4191 		if (!hlock->check)
4192 			continue;
4193 
4194 		if (!mark_lock(curr, hlock, hlock_bit))
4195 			return 0;
4196 	}
4197 
4198 	return 1;
4199 }
4200 
4201 /*
4202  * Hardirqs will be enabled:
4203  */
4204 static void __trace_hardirqs_on_caller(void)
4205 {
4206 	struct task_struct *curr = current;
4207 
4208 	/*
4209 	 * We are going to turn hardirqs on, so set the
4210 	 * usage bit for all held locks:
4211 	 */
4212 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4213 		return;
4214 	/*
4215 	 * If we have softirqs enabled, then set the usage
4216 	 * bit for all held locks. (disabled hardirqs prevented
4217 	 * this bit from being set before)
4218 	 */
4219 	if (curr->softirqs_enabled)
4220 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4221 }
4222 
4223 /**
4224  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4225  * @ip:		Caller address
4226  *
4227  * Invoked before a possible transition to RCU idle from exit to user or
4228  * guest mode. This ensures that all RCU operations are done before RCU
4229  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4230  * invoked to set the final state.
4231  */
4232 void lockdep_hardirqs_on_prepare(unsigned long ip)
4233 {
4234 	if (unlikely(!debug_locks))
4235 		return;
4236 
4237 	/*
4238 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4239 	 */
4240 	if (unlikely(in_nmi()))
4241 		return;
4242 
4243 	if (unlikely(this_cpu_read(lockdep_recursion)))
4244 		return;
4245 
4246 	if (unlikely(lockdep_hardirqs_enabled())) {
4247 		/*
4248 		 * Neither irq nor preemption are disabled here
4249 		 * so this is racy by nature but losing one hit
4250 		 * in a stat is not a big deal.
4251 		 */
4252 		__debug_atomic_inc(redundant_hardirqs_on);
4253 		return;
4254 	}
4255 
4256 	/*
4257 	 * We're enabling irqs and according to our state above irqs weren't
4258 	 * already enabled, yet we find the hardware thinks they are in fact
4259 	 * enabled.. someone messed up their IRQ state tracing.
4260 	 */
4261 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4262 		return;
4263 
4264 	/*
4265 	 * See the fine text that goes along with this variable definition.
4266 	 */
4267 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4268 		return;
4269 
4270 	/*
4271 	 * Can't allow enabling interrupts while in an interrupt handler,
4272 	 * that's general bad form and such. Recursion, limited stack etc..
4273 	 */
4274 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4275 		return;
4276 
4277 	current->hardirq_chain_key = current->curr_chain_key;
4278 
4279 	lockdep_recursion_inc();
4280 	__trace_hardirqs_on_caller();
4281 	lockdep_recursion_finish();
4282 }
4283 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4284 
4285 void noinstr lockdep_hardirqs_on(unsigned long ip)
4286 {
4287 	struct irqtrace_events *trace = &current->irqtrace;
4288 
4289 	if (unlikely(!debug_locks))
4290 		return;
4291 
4292 	/*
4293 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4294 	 * tracking state and hardware state are out of sync.
4295 	 *
4296 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4297 	 * and not rely on hardware state like normal interrupts.
4298 	 */
4299 	if (unlikely(in_nmi())) {
4300 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4301 			return;
4302 
4303 		/*
4304 		 * Skip:
4305 		 *  - recursion check, because NMI can hit lockdep;
4306 		 *  - hardware state check, because above;
4307 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4308 		 */
4309 		goto skip_checks;
4310 	}
4311 
4312 	if (unlikely(this_cpu_read(lockdep_recursion)))
4313 		return;
4314 
4315 	if (lockdep_hardirqs_enabled()) {
4316 		/*
4317 		 * Neither irq nor preemption are disabled here
4318 		 * so this is racy by nature but losing one hit
4319 		 * in a stat is not a big deal.
4320 		 */
4321 		__debug_atomic_inc(redundant_hardirqs_on);
4322 		return;
4323 	}
4324 
4325 	/*
4326 	 * We're enabling irqs and according to our state above irqs weren't
4327 	 * already enabled, yet we find the hardware thinks they are in fact
4328 	 * enabled.. someone messed up their IRQ state tracing.
4329 	 */
4330 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4331 		return;
4332 
4333 	/*
4334 	 * Ensure the lock stack remained unchanged between
4335 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4336 	 */
4337 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4338 			    current->curr_chain_key);
4339 
4340 skip_checks:
4341 	/* we'll do an OFF -> ON transition: */
4342 	__this_cpu_write(hardirqs_enabled, 1);
4343 	trace->hardirq_enable_ip = ip;
4344 	trace->hardirq_enable_event = ++trace->irq_events;
4345 	debug_atomic_inc(hardirqs_on_events);
4346 }
4347 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4348 
4349 /*
4350  * Hardirqs were disabled:
4351  */
4352 void noinstr lockdep_hardirqs_off(unsigned long ip)
4353 {
4354 	if (unlikely(!debug_locks))
4355 		return;
4356 
4357 	/*
4358 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4359 	 * they will restore the software state. This ensures the software
4360 	 * state is consistent inside NMIs as well.
4361 	 */
4362 	if (in_nmi()) {
4363 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4364 			return;
4365 	} else if (__this_cpu_read(lockdep_recursion))
4366 		return;
4367 
4368 	/*
4369 	 * So we're supposed to get called after you mask local IRQs, but for
4370 	 * some reason the hardware doesn't quite think you did a proper job.
4371 	 */
4372 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4373 		return;
4374 
4375 	if (lockdep_hardirqs_enabled()) {
4376 		struct irqtrace_events *trace = &current->irqtrace;
4377 
4378 		/*
4379 		 * We have done an ON -> OFF transition:
4380 		 */
4381 		__this_cpu_write(hardirqs_enabled, 0);
4382 		trace->hardirq_disable_ip = ip;
4383 		trace->hardirq_disable_event = ++trace->irq_events;
4384 		debug_atomic_inc(hardirqs_off_events);
4385 	} else {
4386 		debug_atomic_inc(redundant_hardirqs_off);
4387 	}
4388 }
4389 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4390 
4391 /*
4392  * Softirqs will be enabled:
4393  */
4394 void lockdep_softirqs_on(unsigned long ip)
4395 {
4396 	struct irqtrace_events *trace = &current->irqtrace;
4397 
4398 	if (unlikely(!lockdep_enabled()))
4399 		return;
4400 
4401 	/*
4402 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4403 	 * funny state and nesting things.
4404 	 */
4405 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4406 		return;
4407 
4408 	if (current->softirqs_enabled) {
4409 		debug_atomic_inc(redundant_softirqs_on);
4410 		return;
4411 	}
4412 
4413 	lockdep_recursion_inc();
4414 	/*
4415 	 * We'll do an OFF -> ON transition:
4416 	 */
4417 	current->softirqs_enabled = 1;
4418 	trace->softirq_enable_ip = ip;
4419 	trace->softirq_enable_event = ++trace->irq_events;
4420 	debug_atomic_inc(softirqs_on_events);
4421 	/*
4422 	 * We are going to turn softirqs on, so set the
4423 	 * usage bit for all held locks, if hardirqs are
4424 	 * enabled too:
4425 	 */
4426 	if (lockdep_hardirqs_enabled())
4427 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4428 	lockdep_recursion_finish();
4429 }
4430 
4431 /*
4432  * Softirqs were disabled:
4433  */
4434 void lockdep_softirqs_off(unsigned long ip)
4435 {
4436 	if (unlikely(!lockdep_enabled()))
4437 		return;
4438 
4439 	/*
4440 	 * We fancy IRQs being disabled here, see softirq.c
4441 	 */
4442 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4443 		return;
4444 
4445 	if (current->softirqs_enabled) {
4446 		struct irqtrace_events *trace = &current->irqtrace;
4447 
4448 		/*
4449 		 * We have done an ON -> OFF transition:
4450 		 */
4451 		current->softirqs_enabled = 0;
4452 		trace->softirq_disable_ip = ip;
4453 		trace->softirq_disable_event = ++trace->irq_events;
4454 		debug_atomic_inc(softirqs_off_events);
4455 		/*
4456 		 * Whoops, we wanted softirqs off, so why aren't they?
4457 		 */
4458 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4459 	} else
4460 		debug_atomic_inc(redundant_softirqs_off);
4461 }
4462 
4463 static int
4464 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4465 {
4466 	if (!check)
4467 		goto lock_used;
4468 
4469 	/*
4470 	 * If non-trylock use in a hardirq or softirq context, then
4471 	 * mark the lock as used in these contexts:
4472 	 */
4473 	if (!hlock->trylock) {
4474 		if (hlock->read) {
4475 			if (lockdep_hardirq_context())
4476 				if (!mark_lock(curr, hlock,
4477 						LOCK_USED_IN_HARDIRQ_READ))
4478 					return 0;
4479 			if (curr->softirq_context)
4480 				if (!mark_lock(curr, hlock,
4481 						LOCK_USED_IN_SOFTIRQ_READ))
4482 					return 0;
4483 		} else {
4484 			if (lockdep_hardirq_context())
4485 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4486 					return 0;
4487 			if (curr->softirq_context)
4488 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4489 					return 0;
4490 		}
4491 	}
4492 	if (!hlock->hardirqs_off) {
4493 		if (hlock->read) {
4494 			if (!mark_lock(curr, hlock,
4495 					LOCK_ENABLED_HARDIRQ_READ))
4496 				return 0;
4497 			if (curr->softirqs_enabled)
4498 				if (!mark_lock(curr, hlock,
4499 						LOCK_ENABLED_SOFTIRQ_READ))
4500 					return 0;
4501 		} else {
4502 			if (!mark_lock(curr, hlock,
4503 					LOCK_ENABLED_HARDIRQ))
4504 				return 0;
4505 			if (curr->softirqs_enabled)
4506 				if (!mark_lock(curr, hlock,
4507 						LOCK_ENABLED_SOFTIRQ))
4508 					return 0;
4509 		}
4510 	}
4511 
4512 lock_used:
4513 	/* mark it as used: */
4514 	if (!mark_lock(curr, hlock, LOCK_USED))
4515 		return 0;
4516 
4517 	return 1;
4518 }
4519 
4520 static inline unsigned int task_irq_context(struct task_struct *task)
4521 {
4522 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4523 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4524 }
4525 
4526 static int separate_irq_context(struct task_struct *curr,
4527 		struct held_lock *hlock)
4528 {
4529 	unsigned int depth = curr->lockdep_depth;
4530 
4531 	/*
4532 	 * Keep track of points where we cross into an interrupt context:
4533 	 */
4534 	if (depth) {
4535 		struct held_lock *prev_hlock;
4536 
4537 		prev_hlock = curr->held_locks + depth-1;
4538 		/*
4539 		 * If we cross into another context, reset the
4540 		 * hash key (this also prevents the checking and the
4541 		 * adding of the dependency to 'prev'):
4542 		 */
4543 		if (prev_hlock->irq_context != hlock->irq_context)
4544 			return 1;
4545 	}
4546 	return 0;
4547 }
4548 
4549 /*
4550  * Mark a lock with a usage bit, and validate the state transition:
4551  */
4552 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4553 			     enum lock_usage_bit new_bit)
4554 {
4555 	unsigned int new_mask, ret = 1;
4556 
4557 	if (new_bit >= LOCK_USAGE_STATES) {
4558 		DEBUG_LOCKS_WARN_ON(1);
4559 		return 0;
4560 	}
4561 
4562 	if (new_bit == LOCK_USED && this->read)
4563 		new_bit = LOCK_USED_READ;
4564 
4565 	new_mask = 1 << new_bit;
4566 
4567 	/*
4568 	 * If already set then do not dirty the cacheline,
4569 	 * nor do any checks:
4570 	 */
4571 	if (likely(hlock_class(this)->usage_mask & new_mask))
4572 		return 1;
4573 
4574 	if (!graph_lock())
4575 		return 0;
4576 	/*
4577 	 * Make sure we didn't race:
4578 	 */
4579 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4580 		goto unlock;
4581 
4582 	if (!hlock_class(this)->usage_mask)
4583 		debug_atomic_dec(nr_unused_locks);
4584 
4585 	hlock_class(this)->usage_mask |= new_mask;
4586 
4587 	if (new_bit < LOCK_TRACE_STATES) {
4588 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4589 			return 0;
4590 	}
4591 
4592 	if (new_bit < LOCK_USED) {
4593 		ret = mark_lock_irq(curr, this, new_bit);
4594 		if (!ret)
4595 			return 0;
4596 	}
4597 
4598 unlock:
4599 	graph_unlock();
4600 
4601 	/*
4602 	 * We must printk outside of the graph_lock:
4603 	 */
4604 	if (ret == 2) {
4605 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4606 		print_lock(this);
4607 		print_irqtrace_events(curr);
4608 		dump_stack();
4609 	}
4610 
4611 	return ret;
4612 }
4613 
4614 static inline short task_wait_context(struct task_struct *curr)
4615 {
4616 	/*
4617 	 * Set appropriate wait type for the context; for IRQs we have to take
4618 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4619 	 */
4620 	if (lockdep_hardirq_context()) {
4621 		/*
4622 		 * Check if force_irqthreads will run us threaded.
4623 		 */
4624 		if (curr->hardirq_threaded || curr->irq_config)
4625 			return LD_WAIT_CONFIG;
4626 
4627 		return LD_WAIT_SPIN;
4628 	} else if (curr->softirq_context) {
4629 		/*
4630 		 * Softirqs are always threaded.
4631 		 */
4632 		return LD_WAIT_CONFIG;
4633 	}
4634 
4635 	return LD_WAIT_MAX;
4636 }
4637 
4638 static int
4639 print_lock_invalid_wait_context(struct task_struct *curr,
4640 				struct held_lock *hlock)
4641 {
4642 	short curr_inner;
4643 
4644 	if (!debug_locks_off())
4645 		return 0;
4646 	if (debug_locks_silent)
4647 		return 0;
4648 
4649 	pr_warn("\n");
4650 	pr_warn("=============================\n");
4651 	pr_warn("[ BUG: Invalid wait context ]\n");
4652 	print_kernel_ident();
4653 	pr_warn("-----------------------------\n");
4654 
4655 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4656 	print_lock(hlock);
4657 
4658 	pr_warn("other info that might help us debug this:\n");
4659 
4660 	curr_inner = task_wait_context(curr);
4661 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4662 
4663 	lockdep_print_held_locks(curr);
4664 
4665 	pr_warn("stack backtrace:\n");
4666 	dump_stack();
4667 
4668 	return 0;
4669 }
4670 
4671 /*
4672  * Verify the wait_type context.
4673  *
4674  * This check validates we takes locks in the right wait-type order; that is it
4675  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4676  * acquire spinlocks inside raw_spinlocks and the sort.
4677  *
4678  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4679  * can be taken from (pretty much) any context but also has constraints.
4680  * However when taken in a stricter environment the RCU lock does not loosen
4681  * the constraints.
4682  *
4683  * Therefore we must look for the strictest environment in the lock stack and
4684  * compare that to the lock we're trying to acquire.
4685  */
4686 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4687 {
4688 	u8 next_inner = hlock_class(next)->wait_type_inner;
4689 	u8 next_outer = hlock_class(next)->wait_type_outer;
4690 	u8 curr_inner;
4691 	int depth;
4692 
4693 	if (!next_inner || next->trylock)
4694 		return 0;
4695 
4696 	if (!next_outer)
4697 		next_outer = next_inner;
4698 
4699 	/*
4700 	 * Find start of current irq_context..
4701 	 */
4702 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4703 		struct held_lock *prev = curr->held_locks + depth;
4704 		if (prev->irq_context != next->irq_context)
4705 			break;
4706 	}
4707 	depth++;
4708 
4709 	curr_inner = task_wait_context(curr);
4710 
4711 	for (; depth < curr->lockdep_depth; depth++) {
4712 		struct held_lock *prev = curr->held_locks + depth;
4713 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4714 
4715 		if (prev_inner) {
4716 			/*
4717 			 * We can have a bigger inner than a previous one
4718 			 * when outer is smaller than inner, as with RCU.
4719 			 *
4720 			 * Also due to trylocks.
4721 			 */
4722 			curr_inner = min(curr_inner, prev_inner);
4723 		}
4724 	}
4725 
4726 	if (next_outer > curr_inner)
4727 		return print_lock_invalid_wait_context(curr, next);
4728 
4729 	return 0;
4730 }
4731 
4732 #else /* CONFIG_PROVE_LOCKING */
4733 
4734 static inline int
4735 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4736 {
4737 	return 1;
4738 }
4739 
4740 static inline unsigned int task_irq_context(struct task_struct *task)
4741 {
4742 	return 0;
4743 }
4744 
4745 static inline int separate_irq_context(struct task_struct *curr,
4746 		struct held_lock *hlock)
4747 {
4748 	return 0;
4749 }
4750 
4751 static inline int check_wait_context(struct task_struct *curr,
4752 				     struct held_lock *next)
4753 {
4754 	return 0;
4755 }
4756 
4757 #endif /* CONFIG_PROVE_LOCKING */
4758 
4759 /*
4760  * Initialize a lock instance's lock-class mapping info:
4761  */
4762 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4763 			    struct lock_class_key *key, int subclass,
4764 			    u8 inner, u8 outer, u8 lock_type)
4765 {
4766 	int i;
4767 
4768 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4769 		lock->class_cache[i] = NULL;
4770 
4771 #ifdef CONFIG_LOCK_STAT
4772 	lock->cpu = raw_smp_processor_id();
4773 #endif
4774 
4775 	/*
4776 	 * Can't be having no nameless bastards around this place!
4777 	 */
4778 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4779 		lock->name = "NULL";
4780 		return;
4781 	}
4782 
4783 	lock->name = name;
4784 
4785 	lock->wait_type_outer = outer;
4786 	lock->wait_type_inner = inner;
4787 	lock->lock_type = lock_type;
4788 
4789 	/*
4790 	 * No key, no joy, we need to hash something.
4791 	 */
4792 	if (DEBUG_LOCKS_WARN_ON(!key))
4793 		return;
4794 	/*
4795 	 * Sanity check, the lock-class key must either have been allocated
4796 	 * statically or must have been registered as a dynamic key.
4797 	 */
4798 	if (!static_obj(key) && !is_dynamic_key(key)) {
4799 		if (debug_locks)
4800 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4801 		DEBUG_LOCKS_WARN_ON(1);
4802 		return;
4803 	}
4804 	lock->key = key;
4805 
4806 	if (unlikely(!debug_locks))
4807 		return;
4808 
4809 	if (subclass) {
4810 		unsigned long flags;
4811 
4812 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4813 			return;
4814 
4815 		raw_local_irq_save(flags);
4816 		lockdep_recursion_inc();
4817 		register_lock_class(lock, subclass, 1);
4818 		lockdep_recursion_finish();
4819 		raw_local_irq_restore(flags);
4820 	}
4821 }
4822 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4823 
4824 struct lock_class_key __lockdep_no_validate__;
4825 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4826 
4827 static void
4828 print_lock_nested_lock_not_held(struct task_struct *curr,
4829 				struct held_lock *hlock,
4830 				unsigned long ip)
4831 {
4832 	if (!debug_locks_off())
4833 		return;
4834 	if (debug_locks_silent)
4835 		return;
4836 
4837 	pr_warn("\n");
4838 	pr_warn("==================================\n");
4839 	pr_warn("WARNING: Nested lock was not taken\n");
4840 	print_kernel_ident();
4841 	pr_warn("----------------------------------\n");
4842 
4843 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4844 	print_lock(hlock);
4845 
4846 	pr_warn("\nbut this task is not holding:\n");
4847 	pr_warn("%s\n", hlock->nest_lock->name);
4848 
4849 	pr_warn("\nstack backtrace:\n");
4850 	dump_stack();
4851 
4852 	pr_warn("\nother info that might help us debug this:\n");
4853 	lockdep_print_held_locks(curr);
4854 
4855 	pr_warn("\nstack backtrace:\n");
4856 	dump_stack();
4857 }
4858 
4859 static int __lock_is_held(const struct lockdep_map *lock, int read);
4860 
4861 /*
4862  * This gets called for every mutex_lock*()/spin_lock*() operation.
4863  * We maintain the dependency maps and validate the locking attempt:
4864  *
4865  * The callers must make sure that IRQs are disabled before calling it,
4866  * otherwise we could get an interrupt which would want to take locks,
4867  * which would end up in lockdep again.
4868  */
4869 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4870 			  int trylock, int read, int check, int hardirqs_off,
4871 			  struct lockdep_map *nest_lock, unsigned long ip,
4872 			  int references, int pin_count)
4873 {
4874 	struct task_struct *curr = current;
4875 	struct lock_class *class = NULL;
4876 	struct held_lock *hlock;
4877 	unsigned int depth;
4878 	int chain_head = 0;
4879 	int class_idx;
4880 	u64 chain_key;
4881 
4882 	if (unlikely(!debug_locks))
4883 		return 0;
4884 
4885 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4886 		check = 0;
4887 
4888 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4889 		class = lock->class_cache[subclass];
4890 	/*
4891 	 * Not cached?
4892 	 */
4893 	if (unlikely(!class)) {
4894 		class = register_lock_class(lock, subclass, 0);
4895 		if (!class)
4896 			return 0;
4897 	}
4898 
4899 	debug_class_ops_inc(class);
4900 
4901 	if (very_verbose(class)) {
4902 		printk("\nacquire class [%px] %s", class->key, class->name);
4903 		if (class->name_version > 1)
4904 			printk(KERN_CONT "#%d", class->name_version);
4905 		printk(KERN_CONT "\n");
4906 		dump_stack();
4907 	}
4908 
4909 	/*
4910 	 * Add the lock to the list of currently held locks.
4911 	 * (we dont increase the depth just yet, up until the
4912 	 * dependency checks are done)
4913 	 */
4914 	depth = curr->lockdep_depth;
4915 	/*
4916 	 * Ran out of static storage for our per-task lock stack again have we?
4917 	 */
4918 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4919 		return 0;
4920 
4921 	class_idx = class - lock_classes;
4922 
4923 	if (depth) { /* we're holding locks */
4924 		hlock = curr->held_locks + depth - 1;
4925 		if (hlock->class_idx == class_idx && nest_lock) {
4926 			if (!references)
4927 				references++;
4928 
4929 			if (!hlock->references)
4930 				hlock->references++;
4931 
4932 			hlock->references += references;
4933 
4934 			/* Overflow */
4935 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4936 				return 0;
4937 
4938 			return 2;
4939 		}
4940 	}
4941 
4942 	hlock = curr->held_locks + depth;
4943 	/*
4944 	 * Plain impossible, we just registered it and checked it weren't no
4945 	 * NULL like.. I bet this mushroom I ate was good!
4946 	 */
4947 	if (DEBUG_LOCKS_WARN_ON(!class))
4948 		return 0;
4949 	hlock->class_idx = class_idx;
4950 	hlock->acquire_ip = ip;
4951 	hlock->instance = lock;
4952 	hlock->nest_lock = nest_lock;
4953 	hlock->irq_context = task_irq_context(curr);
4954 	hlock->trylock = trylock;
4955 	hlock->read = read;
4956 	hlock->check = check;
4957 	hlock->hardirqs_off = !!hardirqs_off;
4958 	hlock->references = references;
4959 #ifdef CONFIG_LOCK_STAT
4960 	hlock->waittime_stamp = 0;
4961 	hlock->holdtime_stamp = lockstat_clock();
4962 #endif
4963 	hlock->pin_count = pin_count;
4964 
4965 	if (check_wait_context(curr, hlock))
4966 		return 0;
4967 
4968 	/* Initialize the lock usage bit */
4969 	if (!mark_usage(curr, hlock, check))
4970 		return 0;
4971 
4972 	/*
4973 	 * Calculate the chain hash: it's the combined hash of all the
4974 	 * lock keys along the dependency chain. We save the hash value
4975 	 * at every step so that we can get the current hash easily
4976 	 * after unlock. The chain hash is then used to cache dependency
4977 	 * results.
4978 	 *
4979 	 * The 'key ID' is what is the most compact key value to drive
4980 	 * the hash, not class->key.
4981 	 */
4982 	/*
4983 	 * Whoops, we did it again.. class_idx is invalid.
4984 	 */
4985 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4986 		return 0;
4987 
4988 	chain_key = curr->curr_chain_key;
4989 	if (!depth) {
4990 		/*
4991 		 * How can we have a chain hash when we ain't got no keys?!
4992 		 */
4993 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4994 			return 0;
4995 		chain_head = 1;
4996 	}
4997 
4998 	hlock->prev_chain_key = chain_key;
4999 	if (separate_irq_context(curr, hlock)) {
5000 		chain_key = INITIAL_CHAIN_KEY;
5001 		chain_head = 1;
5002 	}
5003 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5004 
5005 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5006 		print_lock_nested_lock_not_held(curr, hlock, ip);
5007 		return 0;
5008 	}
5009 
5010 	if (!debug_locks_silent) {
5011 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5012 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5013 	}
5014 
5015 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5016 		return 0;
5017 
5018 	curr->curr_chain_key = chain_key;
5019 	curr->lockdep_depth++;
5020 	check_chain_key(curr);
5021 #ifdef CONFIG_DEBUG_LOCKDEP
5022 	if (unlikely(!debug_locks))
5023 		return 0;
5024 #endif
5025 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5026 		debug_locks_off();
5027 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5028 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5029 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5030 
5031 		lockdep_print_held_locks(current);
5032 		debug_show_all_locks();
5033 		dump_stack();
5034 
5035 		return 0;
5036 	}
5037 
5038 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5039 		max_lockdep_depth = curr->lockdep_depth;
5040 
5041 	return 1;
5042 }
5043 
5044 static void print_unlock_imbalance_bug(struct task_struct *curr,
5045 				       struct lockdep_map *lock,
5046 				       unsigned long ip)
5047 {
5048 	if (!debug_locks_off())
5049 		return;
5050 	if (debug_locks_silent)
5051 		return;
5052 
5053 	pr_warn("\n");
5054 	pr_warn("=====================================\n");
5055 	pr_warn("WARNING: bad unlock balance detected!\n");
5056 	print_kernel_ident();
5057 	pr_warn("-------------------------------------\n");
5058 	pr_warn("%s/%d is trying to release lock (",
5059 		curr->comm, task_pid_nr(curr));
5060 	print_lockdep_cache(lock);
5061 	pr_cont(") at:\n");
5062 	print_ip_sym(KERN_WARNING, ip);
5063 	pr_warn("but there are no more locks to release!\n");
5064 	pr_warn("\nother info that might help us debug this:\n");
5065 	lockdep_print_held_locks(curr);
5066 
5067 	pr_warn("\nstack backtrace:\n");
5068 	dump_stack();
5069 }
5070 
5071 static noinstr int match_held_lock(const struct held_lock *hlock,
5072 				   const struct lockdep_map *lock)
5073 {
5074 	if (hlock->instance == lock)
5075 		return 1;
5076 
5077 	if (hlock->references) {
5078 		const struct lock_class *class = lock->class_cache[0];
5079 
5080 		if (!class)
5081 			class = look_up_lock_class(lock, 0);
5082 
5083 		/*
5084 		 * If look_up_lock_class() failed to find a class, we're trying
5085 		 * to test if we hold a lock that has never yet been acquired.
5086 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5087 		 * holding it either, so report failure.
5088 		 */
5089 		if (!class)
5090 			return 0;
5091 
5092 		/*
5093 		 * References, but not a lock we're actually ref-counting?
5094 		 * State got messed up, follow the sites that change ->references
5095 		 * and try to make sense of it.
5096 		 */
5097 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5098 			return 0;
5099 
5100 		if (hlock->class_idx == class - lock_classes)
5101 			return 1;
5102 	}
5103 
5104 	return 0;
5105 }
5106 
5107 /* @depth must not be zero */
5108 static struct held_lock *find_held_lock(struct task_struct *curr,
5109 					struct lockdep_map *lock,
5110 					unsigned int depth, int *idx)
5111 {
5112 	struct held_lock *ret, *hlock, *prev_hlock;
5113 	int i;
5114 
5115 	i = depth - 1;
5116 	hlock = curr->held_locks + i;
5117 	ret = hlock;
5118 	if (match_held_lock(hlock, lock))
5119 		goto out;
5120 
5121 	ret = NULL;
5122 	for (i--, prev_hlock = hlock--;
5123 	     i >= 0;
5124 	     i--, prev_hlock = hlock--) {
5125 		/*
5126 		 * We must not cross into another context:
5127 		 */
5128 		if (prev_hlock->irq_context != hlock->irq_context) {
5129 			ret = NULL;
5130 			break;
5131 		}
5132 		if (match_held_lock(hlock, lock)) {
5133 			ret = hlock;
5134 			break;
5135 		}
5136 	}
5137 
5138 out:
5139 	*idx = i;
5140 	return ret;
5141 }
5142 
5143 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5144 				int idx, unsigned int *merged)
5145 {
5146 	struct held_lock *hlock;
5147 	int first_idx = idx;
5148 
5149 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5150 		return 0;
5151 
5152 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5153 		switch (__lock_acquire(hlock->instance,
5154 				    hlock_class(hlock)->subclass,
5155 				    hlock->trylock,
5156 				    hlock->read, hlock->check,
5157 				    hlock->hardirqs_off,
5158 				    hlock->nest_lock, hlock->acquire_ip,
5159 				    hlock->references, hlock->pin_count)) {
5160 		case 0:
5161 			return 1;
5162 		case 1:
5163 			break;
5164 		case 2:
5165 			*merged += (idx == first_idx);
5166 			break;
5167 		default:
5168 			WARN_ON(1);
5169 			return 0;
5170 		}
5171 	}
5172 	return 0;
5173 }
5174 
5175 static int
5176 __lock_set_class(struct lockdep_map *lock, const char *name,
5177 		 struct lock_class_key *key, unsigned int subclass,
5178 		 unsigned long ip)
5179 {
5180 	struct task_struct *curr = current;
5181 	unsigned int depth, merged = 0;
5182 	struct held_lock *hlock;
5183 	struct lock_class *class;
5184 	int i;
5185 
5186 	if (unlikely(!debug_locks))
5187 		return 0;
5188 
5189 	depth = curr->lockdep_depth;
5190 	/*
5191 	 * This function is about (re)setting the class of a held lock,
5192 	 * yet we're not actually holding any locks. Naughty user!
5193 	 */
5194 	if (DEBUG_LOCKS_WARN_ON(!depth))
5195 		return 0;
5196 
5197 	hlock = find_held_lock(curr, lock, depth, &i);
5198 	if (!hlock) {
5199 		print_unlock_imbalance_bug(curr, lock, ip);
5200 		return 0;
5201 	}
5202 
5203 	lockdep_init_map_waits(lock, name, key, 0,
5204 			       lock->wait_type_inner,
5205 			       lock->wait_type_outer);
5206 	class = register_lock_class(lock, subclass, 0);
5207 	hlock->class_idx = class - lock_classes;
5208 
5209 	curr->lockdep_depth = i;
5210 	curr->curr_chain_key = hlock->prev_chain_key;
5211 
5212 	if (reacquire_held_locks(curr, depth, i, &merged))
5213 		return 0;
5214 
5215 	/*
5216 	 * I took it apart and put it back together again, except now I have
5217 	 * these 'spare' parts.. where shall I put them.
5218 	 */
5219 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5220 		return 0;
5221 	return 1;
5222 }
5223 
5224 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5225 {
5226 	struct task_struct *curr = current;
5227 	unsigned int depth, merged = 0;
5228 	struct held_lock *hlock;
5229 	int i;
5230 
5231 	if (unlikely(!debug_locks))
5232 		return 0;
5233 
5234 	depth = curr->lockdep_depth;
5235 	/*
5236 	 * This function is about (re)setting the class of a held lock,
5237 	 * yet we're not actually holding any locks. Naughty user!
5238 	 */
5239 	if (DEBUG_LOCKS_WARN_ON(!depth))
5240 		return 0;
5241 
5242 	hlock = find_held_lock(curr, lock, depth, &i);
5243 	if (!hlock) {
5244 		print_unlock_imbalance_bug(curr, lock, ip);
5245 		return 0;
5246 	}
5247 
5248 	curr->lockdep_depth = i;
5249 	curr->curr_chain_key = hlock->prev_chain_key;
5250 
5251 	WARN(hlock->read, "downgrading a read lock");
5252 	hlock->read = 1;
5253 	hlock->acquire_ip = ip;
5254 
5255 	if (reacquire_held_locks(curr, depth, i, &merged))
5256 		return 0;
5257 
5258 	/* Merging can't happen with unchanged classes.. */
5259 	if (DEBUG_LOCKS_WARN_ON(merged))
5260 		return 0;
5261 
5262 	/*
5263 	 * I took it apart and put it back together again, except now I have
5264 	 * these 'spare' parts.. where shall I put them.
5265 	 */
5266 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5267 		return 0;
5268 
5269 	return 1;
5270 }
5271 
5272 /*
5273  * Remove the lock from the list of currently held locks - this gets
5274  * called on mutex_unlock()/spin_unlock*() (or on a failed
5275  * mutex_lock_interruptible()).
5276  */
5277 static int
5278 __lock_release(struct lockdep_map *lock, unsigned long ip)
5279 {
5280 	struct task_struct *curr = current;
5281 	unsigned int depth, merged = 1;
5282 	struct held_lock *hlock;
5283 	int i;
5284 
5285 	if (unlikely(!debug_locks))
5286 		return 0;
5287 
5288 	depth = curr->lockdep_depth;
5289 	/*
5290 	 * So we're all set to release this lock.. wait what lock? We don't
5291 	 * own any locks, you've been drinking again?
5292 	 */
5293 	if (depth <= 0) {
5294 		print_unlock_imbalance_bug(curr, lock, ip);
5295 		return 0;
5296 	}
5297 
5298 	/*
5299 	 * Check whether the lock exists in the current stack
5300 	 * of held locks:
5301 	 */
5302 	hlock = find_held_lock(curr, lock, depth, &i);
5303 	if (!hlock) {
5304 		print_unlock_imbalance_bug(curr, lock, ip);
5305 		return 0;
5306 	}
5307 
5308 	if (hlock->instance == lock)
5309 		lock_release_holdtime(hlock);
5310 
5311 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5312 
5313 	if (hlock->references) {
5314 		hlock->references--;
5315 		if (hlock->references) {
5316 			/*
5317 			 * We had, and after removing one, still have
5318 			 * references, the current lock stack is still
5319 			 * valid. We're done!
5320 			 */
5321 			return 1;
5322 		}
5323 	}
5324 
5325 	/*
5326 	 * We have the right lock to unlock, 'hlock' points to it.
5327 	 * Now we remove it from the stack, and add back the other
5328 	 * entries (if any), recalculating the hash along the way:
5329 	 */
5330 
5331 	curr->lockdep_depth = i;
5332 	curr->curr_chain_key = hlock->prev_chain_key;
5333 
5334 	/*
5335 	 * The most likely case is when the unlock is on the innermost
5336 	 * lock. In this case, we are done!
5337 	 */
5338 	if (i == depth-1)
5339 		return 1;
5340 
5341 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5342 		return 0;
5343 
5344 	/*
5345 	 * We had N bottles of beer on the wall, we drank one, but now
5346 	 * there's not N-1 bottles of beer left on the wall...
5347 	 * Pouring two of the bottles together is acceptable.
5348 	 */
5349 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5350 
5351 	/*
5352 	 * Since reacquire_held_locks() would have called check_chain_key()
5353 	 * indirectly via __lock_acquire(), we don't need to do it again
5354 	 * on return.
5355 	 */
5356 	return 0;
5357 }
5358 
5359 static __always_inline
5360 int __lock_is_held(const struct lockdep_map *lock, int read)
5361 {
5362 	struct task_struct *curr = current;
5363 	int i;
5364 
5365 	for (i = 0; i < curr->lockdep_depth; i++) {
5366 		struct held_lock *hlock = curr->held_locks + i;
5367 
5368 		if (match_held_lock(hlock, lock)) {
5369 			if (read == -1 || hlock->read == read)
5370 				return LOCK_STATE_HELD;
5371 
5372 			return LOCK_STATE_NOT_HELD;
5373 		}
5374 	}
5375 
5376 	return LOCK_STATE_NOT_HELD;
5377 }
5378 
5379 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5380 {
5381 	struct pin_cookie cookie = NIL_COOKIE;
5382 	struct task_struct *curr = current;
5383 	int i;
5384 
5385 	if (unlikely(!debug_locks))
5386 		return cookie;
5387 
5388 	for (i = 0; i < curr->lockdep_depth; i++) {
5389 		struct held_lock *hlock = curr->held_locks + i;
5390 
5391 		if (match_held_lock(hlock, lock)) {
5392 			/*
5393 			 * Grab 16bits of randomness; this is sufficient to not
5394 			 * be guessable and still allows some pin nesting in
5395 			 * our u32 pin_count.
5396 			 */
5397 			cookie.val = 1 + (prandom_u32() >> 16);
5398 			hlock->pin_count += cookie.val;
5399 			return cookie;
5400 		}
5401 	}
5402 
5403 	WARN(1, "pinning an unheld lock\n");
5404 	return cookie;
5405 }
5406 
5407 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5408 {
5409 	struct task_struct *curr = current;
5410 	int i;
5411 
5412 	if (unlikely(!debug_locks))
5413 		return;
5414 
5415 	for (i = 0; i < curr->lockdep_depth; i++) {
5416 		struct held_lock *hlock = curr->held_locks + i;
5417 
5418 		if (match_held_lock(hlock, lock)) {
5419 			hlock->pin_count += cookie.val;
5420 			return;
5421 		}
5422 	}
5423 
5424 	WARN(1, "pinning an unheld lock\n");
5425 }
5426 
5427 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5428 {
5429 	struct task_struct *curr = current;
5430 	int i;
5431 
5432 	if (unlikely(!debug_locks))
5433 		return;
5434 
5435 	for (i = 0; i < curr->lockdep_depth; i++) {
5436 		struct held_lock *hlock = curr->held_locks + i;
5437 
5438 		if (match_held_lock(hlock, lock)) {
5439 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5440 				return;
5441 
5442 			hlock->pin_count -= cookie.val;
5443 
5444 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5445 				hlock->pin_count = 0;
5446 
5447 			return;
5448 		}
5449 	}
5450 
5451 	WARN(1, "unpinning an unheld lock\n");
5452 }
5453 
5454 /*
5455  * Check whether we follow the irq-flags state precisely:
5456  */
5457 static noinstr void check_flags(unsigned long flags)
5458 {
5459 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5460 	if (!debug_locks)
5461 		return;
5462 
5463 	/* Get the warning out..  */
5464 	instrumentation_begin();
5465 
5466 	if (irqs_disabled_flags(flags)) {
5467 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5468 			printk("possible reason: unannotated irqs-off.\n");
5469 		}
5470 	} else {
5471 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5472 			printk("possible reason: unannotated irqs-on.\n");
5473 		}
5474 	}
5475 
5476 	/*
5477 	 * We dont accurately track softirq state in e.g.
5478 	 * hardirq contexts (such as on 4KSTACKS), so only
5479 	 * check if not in hardirq contexts:
5480 	 */
5481 	if (!hardirq_count()) {
5482 		if (softirq_count()) {
5483 			/* like the above, but with softirqs */
5484 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5485 		} else {
5486 			/* lick the above, does it taste good? */
5487 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5488 		}
5489 	}
5490 
5491 	if (!debug_locks)
5492 		print_irqtrace_events(current);
5493 
5494 	instrumentation_end();
5495 #endif
5496 }
5497 
5498 void lock_set_class(struct lockdep_map *lock, const char *name,
5499 		    struct lock_class_key *key, unsigned int subclass,
5500 		    unsigned long ip)
5501 {
5502 	unsigned long flags;
5503 
5504 	if (unlikely(!lockdep_enabled()))
5505 		return;
5506 
5507 	raw_local_irq_save(flags);
5508 	lockdep_recursion_inc();
5509 	check_flags(flags);
5510 	if (__lock_set_class(lock, name, key, subclass, ip))
5511 		check_chain_key(current);
5512 	lockdep_recursion_finish();
5513 	raw_local_irq_restore(flags);
5514 }
5515 EXPORT_SYMBOL_GPL(lock_set_class);
5516 
5517 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5518 {
5519 	unsigned long flags;
5520 
5521 	if (unlikely(!lockdep_enabled()))
5522 		return;
5523 
5524 	raw_local_irq_save(flags);
5525 	lockdep_recursion_inc();
5526 	check_flags(flags);
5527 	if (__lock_downgrade(lock, ip))
5528 		check_chain_key(current);
5529 	lockdep_recursion_finish();
5530 	raw_local_irq_restore(flags);
5531 }
5532 EXPORT_SYMBOL_GPL(lock_downgrade);
5533 
5534 /* NMI context !!! */
5535 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5536 {
5537 #ifdef CONFIG_PROVE_LOCKING
5538 	struct lock_class *class = look_up_lock_class(lock, subclass);
5539 	unsigned long mask = LOCKF_USED;
5540 
5541 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5542 	if (!class)
5543 		return;
5544 
5545 	/*
5546 	 * READ locks only conflict with USED, such that if we only ever use
5547 	 * READ locks, there is no deadlock possible -- RCU.
5548 	 */
5549 	if (!hlock->read)
5550 		mask |= LOCKF_USED_READ;
5551 
5552 	if (!(class->usage_mask & mask))
5553 		return;
5554 
5555 	hlock->class_idx = class - lock_classes;
5556 
5557 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5558 #endif
5559 }
5560 
5561 static bool lockdep_nmi(void)
5562 {
5563 	if (raw_cpu_read(lockdep_recursion))
5564 		return false;
5565 
5566 	if (!in_nmi())
5567 		return false;
5568 
5569 	return true;
5570 }
5571 
5572 /*
5573  * read_lock() is recursive if:
5574  * 1. We force lockdep think this way in selftests or
5575  * 2. The implementation is not queued read/write lock or
5576  * 3. The locker is at an in_interrupt() context.
5577  */
5578 bool read_lock_is_recursive(void)
5579 {
5580 	return force_read_lock_recursive ||
5581 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5582 	       in_interrupt();
5583 }
5584 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5585 
5586 /*
5587  * We are not always called with irqs disabled - do that here,
5588  * and also avoid lockdep recursion:
5589  */
5590 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5591 			  int trylock, int read, int check,
5592 			  struct lockdep_map *nest_lock, unsigned long ip)
5593 {
5594 	unsigned long flags;
5595 
5596 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5597 
5598 	if (!debug_locks)
5599 		return;
5600 
5601 	if (unlikely(!lockdep_enabled())) {
5602 		/* XXX allow trylock from NMI ?!? */
5603 		if (lockdep_nmi() && !trylock) {
5604 			struct held_lock hlock;
5605 
5606 			hlock.acquire_ip = ip;
5607 			hlock.instance = lock;
5608 			hlock.nest_lock = nest_lock;
5609 			hlock.irq_context = 2; // XXX
5610 			hlock.trylock = trylock;
5611 			hlock.read = read;
5612 			hlock.check = check;
5613 			hlock.hardirqs_off = true;
5614 			hlock.references = 0;
5615 
5616 			verify_lock_unused(lock, &hlock, subclass);
5617 		}
5618 		return;
5619 	}
5620 
5621 	raw_local_irq_save(flags);
5622 	check_flags(flags);
5623 
5624 	lockdep_recursion_inc();
5625 	__lock_acquire(lock, subclass, trylock, read, check,
5626 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5627 	lockdep_recursion_finish();
5628 	raw_local_irq_restore(flags);
5629 }
5630 EXPORT_SYMBOL_GPL(lock_acquire);
5631 
5632 void lock_release(struct lockdep_map *lock, unsigned long ip)
5633 {
5634 	unsigned long flags;
5635 
5636 	trace_lock_release(lock, ip);
5637 
5638 	if (unlikely(!lockdep_enabled()))
5639 		return;
5640 
5641 	raw_local_irq_save(flags);
5642 	check_flags(flags);
5643 
5644 	lockdep_recursion_inc();
5645 	if (__lock_release(lock, ip))
5646 		check_chain_key(current);
5647 	lockdep_recursion_finish();
5648 	raw_local_irq_restore(flags);
5649 }
5650 EXPORT_SYMBOL_GPL(lock_release);
5651 
5652 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5653 {
5654 	unsigned long flags;
5655 	int ret = LOCK_STATE_NOT_HELD;
5656 
5657 	/*
5658 	 * Avoid false negative lockdep_assert_held() and
5659 	 * lockdep_assert_not_held().
5660 	 */
5661 	if (unlikely(!lockdep_enabled()))
5662 		return LOCK_STATE_UNKNOWN;
5663 
5664 	raw_local_irq_save(flags);
5665 	check_flags(flags);
5666 
5667 	lockdep_recursion_inc();
5668 	ret = __lock_is_held(lock, read);
5669 	lockdep_recursion_finish();
5670 	raw_local_irq_restore(flags);
5671 
5672 	return ret;
5673 }
5674 EXPORT_SYMBOL_GPL(lock_is_held_type);
5675 NOKPROBE_SYMBOL(lock_is_held_type);
5676 
5677 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5678 {
5679 	struct pin_cookie cookie = NIL_COOKIE;
5680 	unsigned long flags;
5681 
5682 	if (unlikely(!lockdep_enabled()))
5683 		return cookie;
5684 
5685 	raw_local_irq_save(flags);
5686 	check_flags(flags);
5687 
5688 	lockdep_recursion_inc();
5689 	cookie = __lock_pin_lock(lock);
5690 	lockdep_recursion_finish();
5691 	raw_local_irq_restore(flags);
5692 
5693 	return cookie;
5694 }
5695 EXPORT_SYMBOL_GPL(lock_pin_lock);
5696 
5697 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5698 {
5699 	unsigned long flags;
5700 
5701 	if (unlikely(!lockdep_enabled()))
5702 		return;
5703 
5704 	raw_local_irq_save(flags);
5705 	check_flags(flags);
5706 
5707 	lockdep_recursion_inc();
5708 	__lock_repin_lock(lock, cookie);
5709 	lockdep_recursion_finish();
5710 	raw_local_irq_restore(flags);
5711 }
5712 EXPORT_SYMBOL_GPL(lock_repin_lock);
5713 
5714 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5715 {
5716 	unsigned long flags;
5717 
5718 	if (unlikely(!lockdep_enabled()))
5719 		return;
5720 
5721 	raw_local_irq_save(flags);
5722 	check_flags(flags);
5723 
5724 	lockdep_recursion_inc();
5725 	__lock_unpin_lock(lock, cookie);
5726 	lockdep_recursion_finish();
5727 	raw_local_irq_restore(flags);
5728 }
5729 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5730 
5731 #ifdef CONFIG_LOCK_STAT
5732 static void print_lock_contention_bug(struct task_struct *curr,
5733 				      struct lockdep_map *lock,
5734 				      unsigned long ip)
5735 {
5736 	if (!debug_locks_off())
5737 		return;
5738 	if (debug_locks_silent)
5739 		return;
5740 
5741 	pr_warn("\n");
5742 	pr_warn("=================================\n");
5743 	pr_warn("WARNING: bad contention detected!\n");
5744 	print_kernel_ident();
5745 	pr_warn("---------------------------------\n");
5746 	pr_warn("%s/%d is trying to contend lock (",
5747 		curr->comm, task_pid_nr(curr));
5748 	print_lockdep_cache(lock);
5749 	pr_cont(") at:\n");
5750 	print_ip_sym(KERN_WARNING, ip);
5751 	pr_warn("but there are no locks held!\n");
5752 	pr_warn("\nother info that might help us debug this:\n");
5753 	lockdep_print_held_locks(curr);
5754 
5755 	pr_warn("\nstack backtrace:\n");
5756 	dump_stack();
5757 }
5758 
5759 static void
5760 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5761 {
5762 	struct task_struct *curr = current;
5763 	struct held_lock *hlock;
5764 	struct lock_class_stats *stats;
5765 	unsigned int depth;
5766 	int i, contention_point, contending_point;
5767 
5768 	depth = curr->lockdep_depth;
5769 	/*
5770 	 * Whee, we contended on this lock, except it seems we're not
5771 	 * actually trying to acquire anything much at all..
5772 	 */
5773 	if (DEBUG_LOCKS_WARN_ON(!depth))
5774 		return;
5775 
5776 	hlock = find_held_lock(curr, lock, depth, &i);
5777 	if (!hlock) {
5778 		print_lock_contention_bug(curr, lock, ip);
5779 		return;
5780 	}
5781 
5782 	if (hlock->instance != lock)
5783 		return;
5784 
5785 	hlock->waittime_stamp = lockstat_clock();
5786 
5787 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5788 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5789 				      lock->ip);
5790 
5791 	stats = get_lock_stats(hlock_class(hlock));
5792 	if (contention_point < LOCKSTAT_POINTS)
5793 		stats->contention_point[contention_point]++;
5794 	if (contending_point < LOCKSTAT_POINTS)
5795 		stats->contending_point[contending_point]++;
5796 	if (lock->cpu != smp_processor_id())
5797 		stats->bounces[bounce_contended + !!hlock->read]++;
5798 }
5799 
5800 static void
5801 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5802 {
5803 	struct task_struct *curr = current;
5804 	struct held_lock *hlock;
5805 	struct lock_class_stats *stats;
5806 	unsigned int depth;
5807 	u64 now, waittime = 0;
5808 	int i, cpu;
5809 
5810 	depth = curr->lockdep_depth;
5811 	/*
5812 	 * Yay, we acquired ownership of this lock we didn't try to
5813 	 * acquire, how the heck did that happen?
5814 	 */
5815 	if (DEBUG_LOCKS_WARN_ON(!depth))
5816 		return;
5817 
5818 	hlock = find_held_lock(curr, lock, depth, &i);
5819 	if (!hlock) {
5820 		print_lock_contention_bug(curr, lock, _RET_IP_);
5821 		return;
5822 	}
5823 
5824 	if (hlock->instance != lock)
5825 		return;
5826 
5827 	cpu = smp_processor_id();
5828 	if (hlock->waittime_stamp) {
5829 		now = lockstat_clock();
5830 		waittime = now - hlock->waittime_stamp;
5831 		hlock->holdtime_stamp = now;
5832 	}
5833 
5834 	stats = get_lock_stats(hlock_class(hlock));
5835 	if (waittime) {
5836 		if (hlock->read)
5837 			lock_time_inc(&stats->read_waittime, waittime);
5838 		else
5839 			lock_time_inc(&stats->write_waittime, waittime);
5840 	}
5841 	if (lock->cpu != cpu)
5842 		stats->bounces[bounce_acquired + !!hlock->read]++;
5843 
5844 	lock->cpu = cpu;
5845 	lock->ip = ip;
5846 }
5847 
5848 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5849 {
5850 	unsigned long flags;
5851 
5852 	trace_lock_contended(lock, ip);
5853 
5854 	if (unlikely(!lock_stat || !lockdep_enabled()))
5855 		return;
5856 
5857 	raw_local_irq_save(flags);
5858 	check_flags(flags);
5859 	lockdep_recursion_inc();
5860 	__lock_contended(lock, ip);
5861 	lockdep_recursion_finish();
5862 	raw_local_irq_restore(flags);
5863 }
5864 EXPORT_SYMBOL_GPL(lock_contended);
5865 
5866 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5867 {
5868 	unsigned long flags;
5869 
5870 	trace_lock_acquired(lock, ip);
5871 
5872 	if (unlikely(!lock_stat || !lockdep_enabled()))
5873 		return;
5874 
5875 	raw_local_irq_save(flags);
5876 	check_flags(flags);
5877 	lockdep_recursion_inc();
5878 	__lock_acquired(lock, ip);
5879 	lockdep_recursion_finish();
5880 	raw_local_irq_restore(flags);
5881 }
5882 EXPORT_SYMBOL_GPL(lock_acquired);
5883 #endif
5884 
5885 /*
5886  * Used by the testsuite, sanitize the validator state
5887  * after a simulated failure:
5888  */
5889 
5890 void lockdep_reset(void)
5891 {
5892 	unsigned long flags;
5893 	int i;
5894 
5895 	raw_local_irq_save(flags);
5896 	lockdep_init_task(current);
5897 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5898 	nr_hardirq_chains = 0;
5899 	nr_softirq_chains = 0;
5900 	nr_process_chains = 0;
5901 	debug_locks = 1;
5902 	for (i = 0; i < CHAINHASH_SIZE; i++)
5903 		INIT_HLIST_HEAD(chainhash_table + i);
5904 	raw_local_irq_restore(flags);
5905 }
5906 
5907 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5908 static void remove_class_from_lock_chain(struct pending_free *pf,
5909 					 struct lock_chain *chain,
5910 					 struct lock_class *class)
5911 {
5912 #ifdef CONFIG_PROVE_LOCKING
5913 	int i;
5914 
5915 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5916 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5917 			continue;
5918 		/*
5919 		 * Each lock class occurs at most once in a lock chain so once
5920 		 * we found a match we can break out of this loop.
5921 		 */
5922 		goto free_lock_chain;
5923 	}
5924 	/* Since the chain has not been modified, return. */
5925 	return;
5926 
5927 free_lock_chain:
5928 	free_chain_hlocks(chain->base, chain->depth);
5929 	/* Overwrite the chain key for concurrent RCU readers. */
5930 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5931 	dec_chains(chain->irq_context);
5932 
5933 	/*
5934 	 * Note: calling hlist_del_rcu() from inside a
5935 	 * hlist_for_each_entry_rcu() loop is safe.
5936 	 */
5937 	hlist_del_rcu(&chain->entry);
5938 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5939 	nr_zapped_lock_chains++;
5940 #endif
5941 }
5942 
5943 /* Must be called with the graph lock held. */
5944 static void remove_class_from_lock_chains(struct pending_free *pf,
5945 					  struct lock_class *class)
5946 {
5947 	struct lock_chain *chain;
5948 	struct hlist_head *head;
5949 	int i;
5950 
5951 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5952 		head = chainhash_table + i;
5953 		hlist_for_each_entry_rcu(chain, head, entry) {
5954 			remove_class_from_lock_chain(pf, chain, class);
5955 		}
5956 	}
5957 }
5958 
5959 /*
5960  * Remove all references to a lock class. The caller must hold the graph lock.
5961  */
5962 static void zap_class(struct pending_free *pf, struct lock_class *class)
5963 {
5964 	struct lock_list *entry;
5965 	int i;
5966 
5967 	WARN_ON_ONCE(!class->key);
5968 
5969 	/*
5970 	 * Remove all dependencies this lock is
5971 	 * involved in:
5972 	 */
5973 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5974 		entry = list_entries + i;
5975 		if (entry->class != class && entry->links_to != class)
5976 			continue;
5977 		__clear_bit(i, list_entries_in_use);
5978 		nr_list_entries--;
5979 		list_del_rcu(&entry->entry);
5980 	}
5981 	if (list_empty(&class->locks_after) &&
5982 	    list_empty(&class->locks_before)) {
5983 		list_move_tail(&class->lock_entry, &pf->zapped);
5984 		hlist_del_rcu(&class->hash_entry);
5985 		WRITE_ONCE(class->key, NULL);
5986 		WRITE_ONCE(class->name, NULL);
5987 		nr_lock_classes--;
5988 		__clear_bit(class - lock_classes, lock_classes_in_use);
5989 	} else {
5990 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5991 			  class->name);
5992 	}
5993 
5994 	remove_class_from_lock_chains(pf, class);
5995 	nr_zapped_classes++;
5996 }
5997 
5998 static void reinit_class(struct lock_class *class)
5999 {
6000 	void *const p = class;
6001 	const unsigned int offset = offsetof(struct lock_class, key);
6002 
6003 	WARN_ON_ONCE(!class->lock_entry.next);
6004 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6005 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6006 	memset(p + offset, 0, sizeof(*class) - offset);
6007 	WARN_ON_ONCE(!class->lock_entry.next);
6008 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6009 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6010 }
6011 
6012 static inline int within(const void *addr, void *start, unsigned long size)
6013 {
6014 	return addr >= start && addr < start + size;
6015 }
6016 
6017 static bool inside_selftest(void)
6018 {
6019 	return current == lockdep_selftest_task_struct;
6020 }
6021 
6022 /* The caller must hold the graph lock. */
6023 static struct pending_free *get_pending_free(void)
6024 {
6025 	return delayed_free.pf + delayed_free.index;
6026 }
6027 
6028 static void free_zapped_rcu(struct rcu_head *cb);
6029 
6030 /*
6031  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6032  * the graph lock held.
6033  */
6034 static void call_rcu_zapped(struct pending_free *pf)
6035 {
6036 	WARN_ON_ONCE(inside_selftest());
6037 
6038 	if (list_empty(&pf->zapped))
6039 		return;
6040 
6041 	if (delayed_free.scheduled)
6042 		return;
6043 
6044 	delayed_free.scheduled = true;
6045 
6046 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6047 	delayed_free.index ^= 1;
6048 
6049 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6050 }
6051 
6052 /* The caller must hold the graph lock. May be called from RCU context. */
6053 static void __free_zapped_classes(struct pending_free *pf)
6054 {
6055 	struct lock_class *class;
6056 
6057 	check_data_structures();
6058 
6059 	list_for_each_entry(class, &pf->zapped, lock_entry)
6060 		reinit_class(class);
6061 
6062 	list_splice_init(&pf->zapped, &free_lock_classes);
6063 
6064 #ifdef CONFIG_PROVE_LOCKING
6065 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6066 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6067 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6068 #endif
6069 }
6070 
6071 static void free_zapped_rcu(struct rcu_head *ch)
6072 {
6073 	struct pending_free *pf;
6074 	unsigned long flags;
6075 
6076 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6077 		return;
6078 
6079 	raw_local_irq_save(flags);
6080 	lockdep_lock();
6081 
6082 	/* closed head */
6083 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6084 	__free_zapped_classes(pf);
6085 	delayed_free.scheduled = false;
6086 
6087 	/*
6088 	 * If there's anything on the open list, close and start a new callback.
6089 	 */
6090 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6091 
6092 	lockdep_unlock();
6093 	raw_local_irq_restore(flags);
6094 }
6095 
6096 /*
6097  * Remove all lock classes from the class hash table and from the
6098  * all_lock_classes list whose key or name is in the address range [start,
6099  * start + size). Move these lock classes to the zapped_classes list. Must
6100  * be called with the graph lock held.
6101  */
6102 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6103 				     unsigned long size)
6104 {
6105 	struct lock_class *class;
6106 	struct hlist_head *head;
6107 	int i;
6108 
6109 	/* Unhash all classes that were created by a module. */
6110 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6111 		head = classhash_table + i;
6112 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6113 			if (!within(class->key, start, size) &&
6114 			    !within(class->name, start, size))
6115 				continue;
6116 			zap_class(pf, class);
6117 		}
6118 	}
6119 }
6120 
6121 /*
6122  * Used in module.c to remove lock classes from memory that is going to be
6123  * freed; and possibly re-used by other modules.
6124  *
6125  * We will have had one synchronize_rcu() before getting here, so we're
6126  * guaranteed nobody will look up these exact classes -- they're properly dead
6127  * but still allocated.
6128  */
6129 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6130 {
6131 	struct pending_free *pf;
6132 	unsigned long flags;
6133 
6134 	init_data_structures_once();
6135 
6136 	raw_local_irq_save(flags);
6137 	lockdep_lock();
6138 	pf = get_pending_free();
6139 	__lockdep_free_key_range(pf, start, size);
6140 	call_rcu_zapped(pf);
6141 	lockdep_unlock();
6142 	raw_local_irq_restore(flags);
6143 
6144 	/*
6145 	 * Wait for any possible iterators from look_up_lock_class() to pass
6146 	 * before continuing to free the memory they refer to.
6147 	 */
6148 	synchronize_rcu();
6149 }
6150 
6151 /*
6152  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6153  * Ignores debug_locks. Must only be used by the lockdep selftests.
6154  */
6155 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6156 {
6157 	struct pending_free *pf = delayed_free.pf;
6158 	unsigned long flags;
6159 
6160 	init_data_structures_once();
6161 
6162 	raw_local_irq_save(flags);
6163 	lockdep_lock();
6164 	__lockdep_free_key_range(pf, start, size);
6165 	__free_zapped_classes(pf);
6166 	lockdep_unlock();
6167 	raw_local_irq_restore(flags);
6168 }
6169 
6170 void lockdep_free_key_range(void *start, unsigned long size)
6171 {
6172 	init_data_structures_once();
6173 
6174 	if (inside_selftest())
6175 		lockdep_free_key_range_imm(start, size);
6176 	else
6177 		lockdep_free_key_range_reg(start, size);
6178 }
6179 
6180 /*
6181  * Check whether any element of the @lock->class_cache[] array refers to a
6182  * registered lock class. The caller must hold either the graph lock or the
6183  * RCU read lock.
6184  */
6185 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6186 {
6187 	struct lock_class *class;
6188 	struct hlist_head *head;
6189 	int i, j;
6190 
6191 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6192 		head = classhash_table + i;
6193 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6194 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6195 				if (lock->class_cache[j] == class)
6196 					return true;
6197 		}
6198 	}
6199 	return false;
6200 }
6201 
6202 /* The caller must hold the graph lock. Does not sleep. */
6203 static void __lockdep_reset_lock(struct pending_free *pf,
6204 				 struct lockdep_map *lock)
6205 {
6206 	struct lock_class *class;
6207 	int j;
6208 
6209 	/*
6210 	 * Remove all classes this lock might have:
6211 	 */
6212 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6213 		/*
6214 		 * If the class exists we look it up and zap it:
6215 		 */
6216 		class = look_up_lock_class(lock, j);
6217 		if (class)
6218 			zap_class(pf, class);
6219 	}
6220 	/*
6221 	 * Debug check: in the end all mapped classes should
6222 	 * be gone.
6223 	 */
6224 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6225 		debug_locks_off();
6226 }
6227 
6228 /*
6229  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6230  * released data structures from RCU context.
6231  */
6232 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6233 {
6234 	struct pending_free *pf;
6235 	unsigned long flags;
6236 	int locked;
6237 
6238 	raw_local_irq_save(flags);
6239 	locked = graph_lock();
6240 	if (!locked)
6241 		goto out_irq;
6242 
6243 	pf = get_pending_free();
6244 	__lockdep_reset_lock(pf, lock);
6245 	call_rcu_zapped(pf);
6246 
6247 	graph_unlock();
6248 out_irq:
6249 	raw_local_irq_restore(flags);
6250 }
6251 
6252 /*
6253  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6254  * lockdep selftests.
6255  */
6256 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6257 {
6258 	struct pending_free *pf = delayed_free.pf;
6259 	unsigned long flags;
6260 
6261 	raw_local_irq_save(flags);
6262 	lockdep_lock();
6263 	__lockdep_reset_lock(pf, lock);
6264 	__free_zapped_classes(pf);
6265 	lockdep_unlock();
6266 	raw_local_irq_restore(flags);
6267 }
6268 
6269 void lockdep_reset_lock(struct lockdep_map *lock)
6270 {
6271 	init_data_structures_once();
6272 
6273 	if (inside_selftest())
6274 		lockdep_reset_lock_imm(lock);
6275 	else
6276 		lockdep_reset_lock_reg(lock);
6277 }
6278 
6279 /* Unregister a dynamically allocated key. */
6280 void lockdep_unregister_key(struct lock_class_key *key)
6281 {
6282 	struct hlist_head *hash_head = keyhashentry(key);
6283 	struct lock_class_key *k;
6284 	struct pending_free *pf;
6285 	unsigned long flags;
6286 	bool found = false;
6287 
6288 	might_sleep();
6289 
6290 	if (WARN_ON_ONCE(static_obj(key)))
6291 		return;
6292 
6293 	raw_local_irq_save(flags);
6294 	if (!graph_lock())
6295 		goto out_irq;
6296 
6297 	pf = get_pending_free();
6298 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6299 		if (k == key) {
6300 			hlist_del_rcu(&k->hash_entry);
6301 			found = true;
6302 			break;
6303 		}
6304 	}
6305 	WARN_ON_ONCE(!found);
6306 	__lockdep_free_key_range(pf, key, 1);
6307 	call_rcu_zapped(pf);
6308 	graph_unlock();
6309 out_irq:
6310 	raw_local_irq_restore(flags);
6311 
6312 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6313 	synchronize_rcu();
6314 }
6315 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6316 
6317 void __init lockdep_init(void)
6318 {
6319 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6320 
6321 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6322 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6323 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6324 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6325 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6326 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6327 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6328 
6329 	printk(" memory used by lock dependency info: %zu kB\n",
6330 	       (sizeof(lock_classes) +
6331 		sizeof(lock_classes_in_use) +
6332 		sizeof(classhash_table) +
6333 		sizeof(list_entries) +
6334 		sizeof(list_entries_in_use) +
6335 		sizeof(chainhash_table) +
6336 		sizeof(delayed_free)
6337 #ifdef CONFIG_PROVE_LOCKING
6338 		+ sizeof(lock_cq)
6339 		+ sizeof(lock_chains)
6340 		+ sizeof(lock_chains_in_use)
6341 		+ sizeof(chain_hlocks)
6342 #endif
6343 		) / 1024
6344 		);
6345 
6346 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6347 	printk(" memory used for stack traces: %zu kB\n",
6348 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6349 	       );
6350 #endif
6351 
6352 	printk(" per task-struct memory footprint: %zu bytes\n",
6353 	       sizeof(((struct task_struct *)NULL)->held_locks));
6354 }
6355 
6356 static void
6357 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6358 		     const void *mem_to, struct held_lock *hlock)
6359 {
6360 	if (!debug_locks_off())
6361 		return;
6362 	if (debug_locks_silent)
6363 		return;
6364 
6365 	pr_warn("\n");
6366 	pr_warn("=========================\n");
6367 	pr_warn("WARNING: held lock freed!\n");
6368 	print_kernel_ident();
6369 	pr_warn("-------------------------\n");
6370 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6371 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6372 	print_lock(hlock);
6373 	lockdep_print_held_locks(curr);
6374 
6375 	pr_warn("\nstack backtrace:\n");
6376 	dump_stack();
6377 }
6378 
6379 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6380 				const void* lock_from, unsigned long lock_len)
6381 {
6382 	return lock_from + lock_len <= mem_from ||
6383 		mem_from + mem_len <= lock_from;
6384 }
6385 
6386 /*
6387  * Called when kernel memory is freed (or unmapped), or if a lock
6388  * is destroyed or reinitialized - this code checks whether there is
6389  * any held lock in the memory range of <from> to <to>:
6390  */
6391 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6392 {
6393 	struct task_struct *curr = current;
6394 	struct held_lock *hlock;
6395 	unsigned long flags;
6396 	int i;
6397 
6398 	if (unlikely(!debug_locks))
6399 		return;
6400 
6401 	raw_local_irq_save(flags);
6402 	for (i = 0; i < curr->lockdep_depth; i++) {
6403 		hlock = curr->held_locks + i;
6404 
6405 		if (not_in_range(mem_from, mem_len, hlock->instance,
6406 					sizeof(*hlock->instance)))
6407 			continue;
6408 
6409 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6410 		break;
6411 	}
6412 	raw_local_irq_restore(flags);
6413 }
6414 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6415 
6416 static void print_held_locks_bug(void)
6417 {
6418 	if (!debug_locks_off())
6419 		return;
6420 	if (debug_locks_silent)
6421 		return;
6422 
6423 	pr_warn("\n");
6424 	pr_warn("====================================\n");
6425 	pr_warn("WARNING: %s/%d still has locks held!\n",
6426 	       current->comm, task_pid_nr(current));
6427 	print_kernel_ident();
6428 	pr_warn("------------------------------------\n");
6429 	lockdep_print_held_locks(current);
6430 	pr_warn("\nstack backtrace:\n");
6431 	dump_stack();
6432 }
6433 
6434 void debug_check_no_locks_held(void)
6435 {
6436 	if (unlikely(current->lockdep_depth > 0))
6437 		print_held_locks_bug();
6438 }
6439 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6440 
6441 #ifdef __KERNEL__
6442 void debug_show_all_locks(void)
6443 {
6444 	struct task_struct *g, *p;
6445 
6446 	if (unlikely(!debug_locks)) {
6447 		pr_warn("INFO: lockdep is turned off.\n");
6448 		return;
6449 	}
6450 	pr_warn("\nShowing all locks held in the system:\n");
6451 
6452 	rcu_read_lock();
6453 	for_each_process_thread(g, p) {
6454 		if (!p->lockdep_depth)
6455 			continue;
6456 		lockdep_print_held_locks(p);
6457 		touch_nmi_watchdog();
6458 		touch_all_softlockup_watchdogs();
6459 	}
6460 	rcu_read_unlock();
6461 
6462 	pr_warn("\n");
6463 	pr_warn("=============================================\n\n");
6464 }
6465 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6466 #endif
6467 
6468 /*
6469  * Careful: only use this function if you are sure that
6470  * the task cannot run in parallel!
6471  */
6472 void debug_show_held_locks(struct task_struct *task)
6473 {
6474 	if (unlikely(!debug_locks)) {
6475 		printk("INFO: lockdep is turned off.\n");
6476 		return;
6477 	}
6478 	lockdep_print_held_locks(task);
6479 }
6480 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6481 
6482 asmlinkage __visible void lockdep_sys_exit(void)
6483 {
6484 	struct task_struct *curr = current;
6485 
6486 	if (unlikely(curr->lockdep_depth)) {
6487 		if (!debug_locks_off())
6488 			return;
6489 		pr_warn("\n");
6490 		pr_warn("================================================\n");
6491 		pr_warn("WARNING: lock held when returning to user space!\n");
6492 		print_kernel_ident();
6493 		pr_warn("------------------------------------------------\n");
6494 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6495 				curr->comm, curr->pid);
6496 		lockdep_print_held_locks(curr);
6497 	}
6498 
6499 	/*
6500 	 * The lock history for each syscall should be independent. So wipe the
6501 	 * slate clean on return to userspace.
6502 	 */
6503 	lockdep_invariant_state(false);
6504 }
6505 
6506 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6507 {
6508 	struct task_struct *curr = current;
6509 	int dl = READ_ONCE(debug_locks);
6510 
6511 	/* Note: the following can be executed concurrently, so be careful. */
6512 	pr_warn("\n");
6513 	pr_warn("=============================\n");
6514 	pr_warn("WARNING: suspicious RCU usage\n");
6515 	print_kernel_ident();
6516 	pr_warn("-----------------------------\n");
6517 	pr_warn("%s:%d %s!\n", file, line, s);
6518 	pr_warn("\nother info that might help us debug this:\n\n");
6519 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6520 	       !rcu_lockdep_current_cpu_online()
6521 			? "RCU used illegally from offline CPU!\n"
6522 			: "",
6523 	       rcu_scheduler_active, dl,
6524 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6525 
6526 	/*
6527 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6528 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6529 	 * considers that CPU to be in an "extended quiescent state",
6530 	 * which means that RCU will be completely ignoring that CPU.
6531 	 * Therefore, rcu_read_lock() and friends have absolutely no
6532 	 * effect on a CPU running in that state. In other words, even if
6533 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6534 	 * delete data structures out from under it.  RCU really has no
6535 	 * choice here: we need to keep an RCU-free window in idle where
6536 	 * the CPU may possibly enter into low power mode. This way we can
6537 	 * notice an extended quiescent state to other CPUs that started a grace
6538 	 * period. Otherwise we would delay any grace period as long as we run
6539 	 * in the idle task.
6540 	 *
6541 	 * So complain bitterly if someone does call rcu_read_lock(),
6542 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6543 	 */
6544 	if (!rcu_is_watching())
6545 		pr_warn("RCU used illegally from extended quiescent state!\n");
6546 
6547 	lockdep_print_held_locks(curr);
6548 	pr_warn("\nstack backtrace:\n");
6549 	dump_stack();
6550 }
6551 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6552