1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 #include <linux/context_tracking.h> 59 60 #include <asm/sections.h> 61 62 #include "lockdep_internals.h" 63 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 static int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 static int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 #ifdef CONFIG_SYSCTL 81 static struct ctl_table kern_lockdep_table[] = { 82 #ifdef CONFIG_PROVE_LOCKING 83 { 84 .procname = "prove_locking", 85 .data = &prove_locking, 86 .maxlen = sizeof(int), 87 .mode = 0644, 88 .proc_handler = proc_dointvec, 89 }, 90 #endif /* CONFIG_PROVE_LOCKING */ 91 #ifdef CONFIG_LOCK_STAT 92 { 93 .procname = "lock_stat", 94 .data = &lock_stat, 95 .maxlen = sizeof(int), 96 .mode = 0644, 97 .proc_handler = proc_dointvec, 98 }, 99 #endif /* CONFIG_LOCK_STAT */ 100 { } 101 }; 102 103 static __init int kernel_lockdep_sysctls_init(void) 104 { 105 register_sysctl_init("kernel", kern_lockdep_table); 106 return 0; 107 } 108 late_initcall(kernel_lockdep_sysctls_init); 109 #endif /* CONFIG_SYSCTL */ 110 111 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 113 114 static __always_inline bool lockdep_enabled(void) 115 { 116 if (!debug_locks) 117 return false; 118 119 if (this_cpu_read(lockdep_recursion)) 120 return false; 121 122 if (current->lockdep_recursion) 123 return false; 124 125 return true; 126 } 127 128 /* 129 * lockdep_lock: protects the lockdep graph, the hashes and the 130 * class/list/hash allocators. 131 * 132 * This is one of the rare exceptions where it's justified 133 * to use a raw spinlock - we really dont want the spinlock 134 * code to recurse back into the lockdep code... 135 */ 136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 137 static struct task_struct *__owner; 138 139 static inline void lockdep_lock(void) 140 { 141 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 142 143 __this_cpu_inc(lockdep_recursion); 144 arch_spin_lock(&__lock); 145 __owner = current; 146 } 147 148 static inline void lockdep_unlock(void) 149 { 150 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 151 152 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 153 return; 154 155 __owner = NULL; 156 arch_spin_unlock(&__lock); 157 __this_cpu_dec(lockdep_recursion); 158 } 159 160 static inline bool lockdep_assert_locked(void) 161 { 162 return DEBUG_LOCKS_WARN_ON(__owner != current); 163 } 164 165 static struct task_struct *lockdep_selftest_task_struct; 166 167 168 static int graph_lock(void) 169 { 170 lockdep_lock(); 171 /* 172 * Make sure that if another CPU detected a bug while 173 * walking the graph we dont change it (while the other 174 * CPU is busy printing out stuff with the graph lock 175 * dropped already) 176 */ 177 if (!debug_locks) { 178 lockdep_unlock(); 179 return 0; 180 } 181 return 1; 182 } 183 184 static inline void graph_unlock(void) 185 { 186 lockdep_unlock(); 187 } 188 189 /* 190 * Turn lock debugging off and return with 0 if it was off already, 191 * and also release the graph lock: 192 */ 193 static inline int debug_locks_off_graph_unlock(void) 194 { 195 int ret = debug_locks_off(); 196 197 lockdep_unlock(); 198 199 return ret; 200 } 201 202 unsigned long nr_list_entries; 203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 205 206 /* 207 * All data structures here are protected by the global debug_lock. 208 * 209 * nr_lock_classes is the number of elements of lock_classes[] that is 210 * in use. 211 */ 212 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 213 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 215 unsigned long nr_lock_classes; 216 unsigned long nr_zapped_classes; 217 unsigned long max_lock_class_idx; 218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 220 221 static inline struct lock_class *hlock_class(struct held_lock *hlock) 222 { 223 unsigned int class_idx = hlock->class_idx; 224 225 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 226 barrier(); 227 228 if (!test_bit(class_idx, lock_classes_in_use)) { 229 /* 230 * Someone passed in garbage, we give up. 231 */ 232 DEBUG_LOCKS_WARN_ON(1); 233 return NULL; 234 } 235 236 /* 237 * At this point, if the passed hlock->class_idx is still garbage, 238 * we just have to live with it 239 */ 240 return lock_classes + class_idx; 241 } 242 243 #ifdef CONFIG_LOCK_STAT 244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 245 246 static inline u64 lockstat_clock(void) 247 { 248 return local_clock(); 249 } 250 251 static int lock_point(unsigned long points[], unsigned long ip) 252 { 253 int i; 254 255 for (i = 0; i < LOCKSTAT_POINTS; i++) { 256 if (points[i] == 0) { 257 points[i] = ip; 258 break; 259 } 260 if (points[i] == ip) 261 break; 262 } 263 264 return i; 265 } 266 267 static void lock_time_inc(struct lock_time *lt, u64 time) 268 { 269 if (time > lt->max) 270 lt->max = time; 271 272 if (time < lt->min || !lt->nr) 273 lt->min = time; 274 275 lt->total += time; 276 lt->nr++; 277 } 278 279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 280 { 281 if (!src->nr) 282 return; 283 284 if (src->max > dst->max) 285 dst->max = src->max; 286 287 if (src->min < dst->min || !dst->nr) 288 dst->min = src->min; 289 290 dst->total += src->total; 291 dst->nr += src->nr; 292 } 293 294 struct lock_class_stats lock_stats(struct lock_class *class) 295 { 296 struct lock_class_stats stats; 297 int cpu, i; 298 299 memset(&stats, 0, sizeof(struct lock_class_stats)); 300 for_each_possible_cpu(cpu) { 301 struct lock_class_stats *pcs = 302 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 303 304 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 305 stats.contention_point[i] += pcs->contention_point[i]; 306 307 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 308 stats.contending_point[i] += pcs->contending_point[i]; 309 310 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 311 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 312 313 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 314 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 315 316 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 317 stats.bounces[i] += pcs->bounces[i]; 318 } 319 320 return stats; 321 } 322 323 void clear_lock_stats(struct lock_class *class) 324 { 325 int cpu; 326 327 for_each_possible_cpu(cpu) { 328 struct lock_class_stats *cpu_stats = 329 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 330 331 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 332 } 333 memset(class->contention_point, 0, sizeof(class->contention_point)); 334 memset(class->contending_point, 0, sizeof(class->contending_point)); 335 } 336 337 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 338 { 339 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 340 } 341 342 static void lock_release_holdtime(struct held_lock *hlock) 343 { 344 struct lock_class_stats *stats; 345 u64 holdtime; 346 347 if (!lock_stat) 348 return; 349 350 holdtime = lockstat_clock() - hlock->holdtime_stamp; 351 352 stats = get_lock_stats(hlock_class(hlock)); 353 if (hlock->read) 354 lock_time_inc(&stats->read_holdtime, holdtime); 355 else 356 lock_time_inc(&stats->write_holdtime, holdtime); 357 } 358 #else 359 static inline void lock_release_holdtime(struct held_lock *hlock) 360 { 361 } 362 #endif 363 364 /* 365 * We keep a global list of all lock classes. The list is only accessed with 366 * the lockdep spinlock lock held. free_lock_classes is a list with free 367 * elements. These elements are linked together by the lock_entry member in 368 * struct lock_class. 369 */ 370 static LIST_HEAD(all_lock_classes); 371 static LIST_HEAD(free_lock_classes); 372 373 /** 374 * struct pending_free - information about data structures about to be freed 375 * @zapped: Head of a list with struct lock_class elements. 376 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 377 * are about to be freed. 378 */ 379 struct pending_free { 380 struct list_head zapped; 381 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 382 }; 383 384 /** 385 * struct delayed_free - data structures used for delayed freeing 386 * 387 * A data structure for delayed freeing of data structures that may be 388 * accessed by RCU readers at the time these were freed. 389 * 390 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 391 * @index: Index of @pf to which freed data structures are added. 392 * @scheduled: Whether or not an RCU callback has been scheduled. 393 * @pf: Array with information about data structures about to be freed. 394 */ 395 static struct delayed_free { 396 struct rcu_head rcu_head; 397 int index; 398 int scheduled; 399 struct pending_free pf[2]; 400 } delayed_free; 401 402 /* 403 * The lockdep classes are in a hash-table as well, for fast lookup: 404 */ 405 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 406 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 407 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 408 #define classhashentry(key) (classhash_table + __classhashfn((key))) 409 410 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 411 412 /* 413 * We put the lock dependency chains into a hash-table as well, to cache 414 * their existence: 415 */ 416 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 417 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 418 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 419 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 420 421 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 422 423 /* 424 * the id of held_lock 425 */ 426 static inline u16 hlock_id(struct held_lock *hlock) 427 { 428 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 429 430 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 431 } 432 433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 434 { 435 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 436 } 437 438 /* 439 * The hash key of the lock dependency chains is a hash itself too: 440 * it's a hash of all locks taken up to that lock, including that lock. 441 * It's a 64-bit hash, because it's important for the keys to be 442 * unique. 443 */ 444 static inline u64 iterate_chain_key(u64 key, u32 idx) 445 { 446 u32 k0 = key, k1 = key >> 32; 447 448 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 449 450 return k0 | (u64)k1 << 32; 451 } 452 453 void lockdep_init_task(struct task_struct *task) 454 { 455 task->lockdep_depth = 0; /* no locks held yet */ 456 task->curr_chain_key = INITIAL_CHAIN_KEY; 457 task->lockdep_recursion = 0; 458 } 459 460 static __always_inline void lockdep_recursion_inc(void) 461 { 462 __this_cpu_inc(lockdep_recursion); 463 } 464 465 static __always_inline void lockdep_recursion_finish(void) 466 { 467 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 468 __this_cpu_write(lockdep_recursion, 0); 469 } 470 471 void lockdep_set_selftest_task(struct task_struct *task) 472 { 473 lockdep_selftest_task_struct = task; 474 } 475 476 /* 477 * Debugging switches: 478 */ 479 480 #define VERBOSE 0 481 #define VERY_VERBOSE 0 482 483 #if VERBOSE 484 # define HARDIRQ_VERBOSE 1 485 # define SOFTIRQ_VERBOSE 1 486 #else 487 # define HARDIRQ_VERBOSE 0 488 # define SOFTIRQ_VERBOSE 0 489 #endif 490 491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 492 /* 493 * Quick filtering for interesting events: 494 */ 495 static int class_filter(struct lock_class *class) 496 { 497 #if 0 498 /* Example */ 499 if (class->name_version == 1 && 500 !strcmp(class->name, "lockname")) 501 return 1; 502 if (class->name_version == 1 && 503 !strcmp(class->name, "&struct->lockfield")) 504 return 1; 505 #endif 506 /* Filter everything else. 1 would be to allow everything else */ 507 return 0; 508 } 509 #endif 510 511 static int verbose(struct lock_class *class) 512 { 513 #if VERBOSE 514 return class_filter(class); 515 #endif 516 return 0; 517 } 518 519 static void print_lockdep_off(const char *bug_msg) 520 { 521 printk(KERN_DEBUG "%s\n", bug_msg); 522 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 523 #ifdef CONFIG_LOCK_STAT 524 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 525 #endif 526 } 527 528 unsigned long nr_stack_trace_entries; 529 530 #ifdef CONFIG_PROVE_LOCKING 531 /** 532 * struct lock_trace - single stack backtrace 533 * @hash_entry: Entry in a stack_trace_hash[] list. 534 * @hash: jhash() of @entries. 535 * @nr_entries: Number of entries in @entries. 536 * @entries: Actual stack backtrace. 537 */ 538 struct lock_trace { 539 struct hlist_node hash_entry; 540 u32 hash; 541 u32 nr_entries; 542 unsigned long entries[] __aligned(sizeof(unsigned long)); 543 }; 544 #define LOCK_TRACE_SIZE_IN_LONGS \ 545 (sizeof(struct lock_trace) / sizeof(unsigned long)) 546 /* 547 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 548 */ 549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 551 552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 553 { 554 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 555 memcmp(t1->entries, t2->entries, 556 t1->nr_entries * sizeof(t1->entries[0])) == 0; 557 } 558 559 static struct lock_trace *save_trace(void) 560 { 561 struct lock_trace *trace, *t2; 562 struct hlist_head *hash_head; 563 u32 hash; 564 int max_entries; 565 566 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 567 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 568 569 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 570 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 571 LOCK_TRACE_SIZE_IN_LONGS; 572 573 if (max_entries <= 0) { 574 if (!debug_locks_off_graph_unlock()) 575 return NULL; 576 577 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 578 dump_stack(); 579 580 return NULL; 581 } 582 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 583 584 hash = jhash(trace->entries, trace->nr_entries * 585 sizeof(trace->entries[0]), 0); 586 trace->hash = hash; 587 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 588 hlist_for_each_entry(t2, hash_head, hash_entry) { 589 if (traces_identical(trace, t2)) 590 return t2; 591 } 592 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 593 hlist_add_head(&trace->hash_entry, hash_head); 594 595 return trace; 596 } 597 598 /* Return the number of stack traces in the stack_trace[] array. */ 599 u64 lockdep_stack_trace_count(void) 600 { 601 struct lock_trace *trace; 602 u64 c = 0; 603 int i; 604 605 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 606 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 607 c++; 608 } 609 } 610 611 return c; 612 } 613 614 /* Return the number of stack hash chains that have at least one stack trace. */ 615 u64 lockdep_stack_hash_count(void) 616 { 617 u64 c = 0; 618 int i; 619 620 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 621 if (!hlist_empty(&stack_trace_hash[i])) 622 c++; 623 624 return c; 625 } 626 #endif 627 628 unsigned int nr_hardirq_chains; 629 unsigned int nr_softirq_chains; 630 unsigned int nr_process_chains; 631 unsigned int max_lockdep_depth; 632 633 #ifdef CONFIG_DEBUG_LOCKDEP 634 /* 635 * Various lockdep statistics: 636 */ 637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 638 #endif 639 640 #ifdef CONFIG_PROVE_LOCKING 641 /* 642 * Locking printouts: 643 */ 644 645 #define __USAGE(__STATE) \ 646 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 647 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 648 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 649 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 650 651 static const char *usage_str[] = 652 { 653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 654 #include "lockdep_states.h" 655 #undef LOCKDEP_STATE 656 [LOCK_USED] = "INITIAL USE", 657 [LOCK_USED_READ] = "INITIAL READ USE", 658 /* abused as string storage for verify_lock_unused() */ 659 [LOCK_USAGE_STATES] = "IN-NMI", 660 }; 661 #endif 662 663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 664 { 665 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 666 } 667 668 static inline unsigned long lock_flag(enum lock_usage_bit bit) 669 { 670 return 1UL << bit; 671 } 672 673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 674 { 675 /* 676 * The usage character defaults to '.' (i.e., irqs disabled and not in 677 * irq context), which is the safest usage category. 678 */ 679 char c = '.'; 680 681 /* 682 * The order of the following usage checks matters, which will 683 * result in the outcome character as follows: 684 * 685 * - '+': irq is enabled and not in irq context 686 * - '-': in irq context and irq is disabled 687 * - '?': in irq context and irq is enabled 688 */ 689 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 690 c = '+'; 691 if (class->usage_mask & lock_flag(bit)) 692 c = '?'; 693 } else if (class->usage_mask & lock_flag(bit)) 694 c = '-'; 695 696 return c; 697 } 698 699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 700 { 701 int i = 0; 702 703 #define LOCKDEP_STATE(__STATE) \ 704 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 705 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 706 #include "lockdep_states.h" 707 #undef LOCKDEP_STATE 708 709 usage[i] = '\0'; 710 } 711 712 static void __print_lock_name(struct lock_class *class) 713 { 714 char str[KSYM_NAME_LEN]; 715 const char *name; 716 717 name = class->name; 718 if (!name) { 719 name = __get_key_name(class->key, str); 720 printk(KERN_CONT "%s", name); 721 } else { 722 printk(KERN_CONT "%s", name); 723 if (class->name_version > 1) 724 printk(KERN_CONT "#%d", class->name_version); 725 if (class->subclass) 726 printk(KERN_CONT "/%d", class->subclass); 727 } 728 } 729 730 static void print_lock_name(struct lock_class *class) 731 { 732 char usage[LOCK_USAGE_CHARS]; 733 734 get_usage_chars(class, usage); 735 736 printk(KERN_CONT " ("); 737 __print_lock_name(class); 738 printk(KERN_CONT "){%s}-{%d:%d}", usage, 739 class->wait_type_outer ?: class->wait_type_inner, 740 class->wait_type_inner); 741 } 742 743 static void print_lockdep_cache(struct lockdep_map *lock) 744 { 745 const char *name; 746 char str[KSYM_NAME_LEN]; 747 748 name = lock->name; 749 if (!name) 750 name = __get_key_name(lock->key->subkeys, str); 751 752 printk(KERN_CONT "%s", name); 753 } 754 755 static void print_lock(struct held_lock *hlock) 756 { 757 /* 758 * We can be called locklessly through debug_show_all_locks() so be 759 * extra careful, the hlock might have been released and cleared. 760 * 761 * If this indeed happens, lets pretend it does not hurt to continue 762 * to print the lock unless the hlock class_idx does not point to a 763 * registered class. The rationale here is: since we don't attempt 764 * to distinguish whether we are in this situation, if it just 765 * happened we can't count on class_idx to tell either. 766 */ 767 struct lock_class *lock = hlock_class(hlock); 768 769 if (!lock) { 770 printk(KERN_CONT "<RELEASED>\n"); 771 return; 772 } 773 774 printk(KERN_CONT "%px", hlock->instance); 775 print_lock_name(lock); 776 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 777 } 778 779 static void lockdep_print_held_locks(struct task_struct *p) 780 { 781 int i, depth = READ_ONCE(p->lockdep_depth); 782 783 if (!depth) 784 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 785 else 786 printk("%d lock%s held by %s/%d:\n", depth, 787 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 788 /* 789 * It's not reliable to print a task's held locks if it's not sleeping 790 * and it's not the current task. 791 */ 792 if (p != current && task_is_running(p)) 793 return; 794 for (i = 0; i < depth; i++) { 795 printk(" #%d: ", i); 796 print_lock(p->held_locks + i); 797 } 798 } 799 800 static void print_kernel_ident(void) 801 { 802 printk("%s %.*s %s\n", init_utsname()->release, 803 (int)strcspn(init_utsname()->version, " "), 804 init_utsname()->version, 805 print_tainted()); 806 } 807 808 static int very_verbose(struct lock_class *class) 809 { 810 #if VERY_VERBOSE 811 return class_filter(class); 812 #endif 813 return 0; 814 } 815 816 /* 817 * Is this the address of a static object: 818 */ 819 #ifdef __KERNEL__ 820 /* 821 * Check if an address is part of freed initmem. After initmem is freed, 822 * memory can be allocated from it, and such allocations would then have 823 * addresses within the range [_stext, _end]. 824 */ 825 #ifndef arch_is_kernel_initmem_freed 826 static int arch_is_kernel_initmem_freed(unsigned long addr) 827 { 828 if (system_state < SYSTEM_FREEING_INITMEM) 829 return 0; 830 831 return init_section_contains((void *)addr, 1); 832 } 833 #endif 834 835 static int static_obj(const void *obj) 836 { 837 unsigned long start = (unsigned long) &_stext, 838 end = (unsigned long) &_end, 839 addr = (unsigned long) obj; 840 841 if (arch_is_kernel_initmem_freed(addr)) 842 return 0; 843 844 /* 845 * static variable? 846 */ 847 if ((addr >= start) && (addr < end)) 848 return 1; 849 850 /* 851 * in-kernel percpu var? 852 */ 853 if (is_kernel_percpu_address(addr)) 854 return 1; 855 856 /* 857 * module static or percpu var? 858 */ 859 return is_module_address(addr) || is_module_percpu_address(addr); 860 } 861 #endif 862 863 /* 864 * To make lock name printouts unique, we calculate a unique 865 * class->name_version generation counter. The caller must hold the graph 866 * lock. 867 */ 868 static int count_matching_names(struct lock_class *new_class) 869 { 870 struct lock_class *class; 871 int count = 0; 872 873 if (!new_class->name) 874 return 0; 875 876 list_for_each_entry(class, &all_lock_classes, lock_entry) { 877 if (new_class->key - new_class->subclass == class->key) 878 return class->name_version; 879 if (class->name && !strcmp(class->name, new_class->name)) 880 count = max(count, class->name_version); 881 } 882 883 return count + 1; 884 } 885 886 /* used from NMI context -- must be lockless */ 887 static noinstr struct lock_class * 888 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 889 { 890 struct lockdep_subclass_key *key; 891 struct hlist_head *hash_head; 892 struct lock_class *class; 893 894 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 895 instrumentation_begin(); 896 debug_locks_off(); 897 printk(KERN_ERR 898 "BUG: looking up invalid subclass: %u\n", subclass); 899 printk(KERN_ERR 900 "turning off the locking correctness validator.\n"); 901 dump_stack(); 902 instrumentation_end(); 903 return NULL; 904 } 905 906 /* 907 * If it is not initialised then it has never been locked, 908 * so it won't be present in the hash table. 909 */ 910 if (unlikely(!lock->key)) 911 return NULL; 912 913 /* 914 * NOTE: the class-key must be unique. For dynamic locks, a static 915 * lock_class_key variable is passed in through the mutex_init() 916 * (or spin_lock_init()) call - which acts as the key. For static 917 * locks we use the lock object itself as the key. 918 */ 919 BUILD_BUG_ON(sizeof(struct lock_class_key) > 920 sizeof(struct lockdep_map)); 921 922 key = lock->key->subkeys + subclass; 923 924 hash_head = classhashentry(key); 925 926 /* 927 * We do an RCU walk of the hash, see lockdep_free_key_range(). 928 */ 929 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 930 return NULL; 931 932 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 933 if (class->key == key) { 934 /* 935 * Huh! same key, different name? Did someone trample 936 * on some memory? We're most confused. 937 */ 938 WARN_ONCE(class->name != lock->name && 939 lock->key != &__lockdep_no_validate__, 940 "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n", 941 lock->name, lock->key, class->name); 942 return class; 943 } 944 } 945 946 return NULL; 947 } 948 949 /* 950 * Static locks do not have their class-keys yet - for them the key is 951 * the lock object itself. If the lock is in the per cpu area, the 952 * canonical address of the lock (per cpu offset removed) is used. 953 */ 954 static bool assign_lock_key(struct lockdep_map *lock) 955 { 956 unsigned long can_addr, addr = (unsigned long)lock; 957 958 #ifdef __KERNEL__ 959 /* 960 * lockdep_free_key_range() assumes that struct lock_class_key 961 * objects do not overlap. Since we use the address of lock 962 * objects as class key for static objects, check whether the 963 * size of lock_class_key objects does not exceed the size of 964 * the smallest lock object. 965 */ 966 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 967 #endif 968 969 if (__is_kernel_percpu_address(addr, &can_addr)) 970 lock->key = (void *)can_addr; 971 else if (__is_module_percpu_address(addr, &can_addr)) 972 lock->key = (void *)can_addr; 973 else if (static_obj(lock)) 974 lock->key = (void *)lock; 975 else { 976 /* Debug-check: all keys must be persistent! */ 977 debug_locks_off(); 978 pr_err("INFO: trying to register non-static key.\n"); 979 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 980 pr_err("you didn't initialize this object before use?\n"); 981 pr_err("turning off the locking correctness validator.\n"); 982 dump_stack(); 983 return false; 984 } 985 986 return true; 987 } 988 989 #ifdef CONFIG_DEBUG_LOCKDEP 990 991 /* Check whether element @e occurs in list @h */ 992 static bool in_list(struct list_head *e, struct list_head *h) 993 { 994 struct list_head *f; 995 996 list_for_each(f, h) { 997 if (e == f) 998 return true; 999 } 1000 1001 return false; 1002 } 1003 1004 /* 1005 * Check whether entry @e occurs in any of the locks_after or locks_before 1006 * lists. 1007 */ 1008 static bool in_any_class_list(struct list_head *e) 1009 { 1010 struct lock_class *class; 1011 int i; 1012 1013 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1014 class = &lock_classes[i]; 1015 if (in_list(e, &class->locks_after) || 1016 in_list(e, &class->locks_before)) 1017 return true; 1018 } 1019 return false; 1020 } 1021 1022 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 1023 { 1024 struct lock_list *e; 1025 1026 list_for_each_entry(e, h, entry) { 1027 if (e->links_to != c) { 1028 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 1029 c->name ? : "(?)", 1030 (unsigned long)(e - list_entries), 1031 e->links_to && e->links_to->name ? 1032 e->links_to->name : "(?)", 1033 e->class && e->class->name ? e->class->name : 1034 "(?)"); 1035 return false; 1036 } 1037 } 1038 return true; 1039 } 1040 1041 #ifdef CONFIG_PROVE_LOCKING 1042 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1043 #endif 1044 1045 static bool check_lock_chain_key(struct lock_chain *chain) 1046 { 1047 #ifdef CONFIG_PROVE_LOCKING 1048 u64 chain_key = INITIAL_CHAIN_KEY; 1049 int i; 1050 1051 for (i = chain->base; i < chain->base + chain->depth; i++) 1052 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1053 /* 1054 * The 'unsigned long long' casts avoid that a compiler warning 1055 * is reported when building tools/lib/lockdep. 1056 */ 1057 if (chain->chain_key != chain_key) { 1058 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1059 (unsigned long long)(chain - lock_chains), 1060 (unsigned long long)chain->chain_key, 1061 (unsigned long long)chain_key); 1062 return false; 1063 } 1064 #endif 1065 return true; 1066 } 1067 1068 static bool in_any_zapped_class_list(struct lock_class *class) 1069 { 1070 struct pending_free *pf; 1071 int i; 1072 1073 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1074 if (in_list(&class->lock_entry, &pf->zapped)) 1075 return true; 1076 } 1077 1078 return false; 1079 } 1080 1081 static bool __check_data_structures(void) 1082 { 1083 struct lock_class *class; 1084 struct lock_chain *chain; 1085 struct hlist_head *head; 1086 struct lock_list *e; 1087 int i; 1088 1089 /* Check whether all classes occur in a lock list. */ 1090 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1091 class = &lock_classes[i]; 1092 if (!in_list(&class->lock_entry, &all_lock_classes) && 1093 !in_list(&class->lock_entry, &free_lock_classes) && 1094 !in_any_zapped_class_list(class)) { 1095 printk(KERN_INFO "class %px/%s is not in any class list\n", 1096 class, class->name ? : "(?)"); 1097 return false; 1098 } 1099 } 1100 1101 /* Check whether all classes have valid lock lists. */ 1102 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1103 class = &lock_classes[i]; 1104 if (!class_lock_list_valid(class, &class->locks_before)) 1105 return false; 1106 if (!class_lock_list_valid(class, &class->locks_after)) 1107 return false; 1108 } 1109 1110 /* Check the chain_key of all lock chains. */ 1111 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1112 head = chainhash_table + i; 1113 hlist_for_each_entry_rcu(chain, head, entry) { 1114 if (!check_lock_chain_key(chain)) 1115 return false; 1116 } 1117 } 1118 1119 /* 1120 * Check whether all list entries that are in use occur in a class 1121 * lock list. 1122 */ 1123 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1124 e = list_entries + i; 1125 if (!in_any_class_list(&e->entry)) { 1126 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1127 (unsigned int)(e - list_entries), 1128 e->class->name ? : "(?)", 1129 e->links_to->name ? : "(?)"); 1130 return false; 1131 } 1132 } 1133 1134 /* 1135 * Check whether all list entries that are not in use do not occur in 1136 * a class lock list. 1137 */ 1138 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1139 e = list_entries + i; 1140 if (in_any_class_list(&e->entry)) { 1141 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1142 (unsigned int)(e - list_entries), 1143 e->class && e->class->name ? e->class->name : 1144 "(?)", 1145 e->links_to && e->links_to->name ? 1146 e->links_to->name : "(?)"); 1147 return false; 1148 } 1149 } 1150 1151 return true; 1152 } 1153 1154 int check_consistency = 0; 1155 module_param(check_consistency, int, 0644); 1156 1157 static void check_data_structures(void) 1158 { 1159 static bool once = false; 1160 1161 if (check_consistency && !once) { 1162 if (!__check_data_structures()) { 1163 once = true; 1164 WARN_ON(once); 1165 } 1166 } 1167 } 1168 1169 #else /* CONFIG_DEBUG_LOCKDEP */ 1170 1171 static inline void check_data_structures(void) { } 1172 1173 #endif /* CONFIG_DEBUG_LOCKDEP */ 1174 1175 static void init_chain_block_buckets(void); 1176 1177 /* 1178 * Initialize the lock_classes[] array elements, the free_lock_classes list 1179 * and also the delayed_free structure. 1180 */ 1181 static void init_data_structures_once(void) 1182 { 1183 static bool __read_mostly ds_initialized, rcu_head_initialized; 1184 int i; 1185 1186 if (likely(rcu_head_initialized)) 1187 return; 1188 1189 if (system_state >= SYSTEM_SCHEDULING) { 1190 init_rcu_head(&delayed_free.rcu_head); 1191 rcu_head_initialized = true; 1192 } 1193 1194 if (ds_initialized) 1195 return; 1196 1197 ds_initialized = true; 1198 1199 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1200 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1201 1202 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1203 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1204 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1205 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1206 } 1207 init_chain_block_buckets(); 1208 } 1209 1210 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1211 { 1212 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1213 1214 return lock_keys_hash + hash; 1215 } 1216 1217 /* Register a dynamically allocated key. */ 1218 void lockdep_register_key(struct lock_class_key *key) 1219 { 1220 struct hlist_head *hash_head; 1221 struct lock_class_key *k; 1222 unsigned long flags; 1223 1224 if (WARN_ON_ONCE(static_obj(key))) 1225 return; 1226 hash_head = keyhashentry(key); 1227 1228 raw_local_irq_save(flags); 1229 if (!graph_lock()) 1230 goto restore_irqs; 1231 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1232 if (WARN_ON_ONCE(k == key)) 1233 goto out_unlock; 1234 } 1235 hlist_add_head_rcu(&key->hash_entry, hash_head); 1236 out_unlock: 1237 graph_unlock(); 1238 restore_irqs: 1239 raw_local_irq_restore(flags); 1240 } 1241 EXPORT_SYMBOL_GPL(lockdep_register_key); 1242 1243 /* Check whether a key has been registered as a dynamic key. */ 1244 static bool is_dynamic_key(const struct lock_class_key *key) 1245 { 1246 struct hlist_head *hash_head; 1247 struct lock_class_key *k; 1248 bool found = false; 1249 1250 if (WARN_ON_ONCE(static_obj(key))) 1251 return false; 1252 1253 /* 1254 * If lock debugging is disabled lock_keys_hash[] may contain 1255 * pointers to memory that has already been freed. Avoid triggering 1256 * a use-after-free in that case by returning early. 1257 */ 1258 if (!debug_locks) 1259 return true; 1260 1261 hash_head = keyhashentry(key); 1262 1263 rcu_read_lock(); 1264 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1265 if (k == key) { 1266 found = true; 1267 break; 1268 } 1269 } 1270 rcu_read_unlock(); 1271 1272 return found; 1273 } 1274 1275 /* 1276 * Register a lock's class in the hash-table, if the class is not present 1277 * yet. Otherwise we look it up. We cache the result in the lock object 1278 * itself, so actual lookup of the hash should be once per lock object. 1279 */ 1280 static struct lock_class * 1281 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1282 { 1283 struct lockdep_subclass_key *key; 1284 struct hlist_head *hash_head; 1285 struct lock_class *class; 1286 int idx; 1287 1288 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1289 1290 class = look_up_lock_class(lock, subclass); 1291 if (likely(class)) 1292 goto out_set_class_cache; 1293 1294 if (!lock->key) { 1295 if (!assign_lock_key(lock)) 1296 return NULL; 1297 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1298 return NULL; 1299 } 1300 1301 key = lock->key->subkeys + subclass; 1302 hash_head = classhashentry(key); 1303 1304 if (!graph_lock()) { 1305 return NULL; 1306 } 1307 /* 1308 * We have to do the hash-walk again, to avoid races 1309 * with another CPU: 1310 */ 1311 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1312 if (class->key == key) 1313 goto out_unlock_set; 1314 } 1315 1316 init_data_structures_once(); 1317 1318 /* Allocate a new lock class and add it to the hash. */ 1319 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1320 lock_entry); 1321 if (!class) { 1322 if (!debug_locks_off_graph_unlock()) { 1323 return NULL; 1324 } 1325 1326 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1327 dump_stack(); 1328 return NULL; 1329 } 1330 nr_lock_classes++; 1331 __set_bit(class - lock_classes, lock_classes_in_use); 1332 debug_atomic_inc(nr_unused_locks); 1333 class->key = key; 1334 class->name = lock->name; 1335 class->subclass = subclass; 1336 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1337 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1338 class->name_version = count_matching_names(class); 1339 class->wait_type_inner = lock->wait_type_inner; 1340 class->wait_type_outer = lock->wait_type_outer; 1341 class->lock_type = lock->lock_type; 1342 /* 1343 * We use RCU's safe list-add method to make 1344 * parallel walking of the hash-list safe: 1345 */ 1346 hlist_add_head_rcu(&class->hash_entry, hash_head); 1347 /* 1348 * Remove the class from the free list and add it to the global list 1349 * of classes. 1350 */ 1351 list_move_tail(&class->lock_entry, &all_lock_classes); 1352 idx = class - lock_classes; 1353 if (idx > max_lock_class_idx) 1354 max_lock_class_idx = idx; 1355 1356 if (verbose(class)) { 1357 graph_unlock(); 1358 1359 printk("\nnew class %px: %s", class->key, class->name); 1360 if (class->name_version > 1) 1361 printk(KERN_CONT "#%d", class->name_version); 1362 printk(KERN_CONT "\n"); 1363 dump_stack(); 1364 1365 if (!graph_lock()) { 1366 return NULL; 1367 } 1368 } 1369 out_unlock_set: 1370 graph_unlock(); 1371 1372 out_set_class_cache: 1373 if (!subclass || force) 1374 lock->class_cache[0] = class; 1375 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1376 lock->class_cache[subclass] = class; 1377 1378 /* 1379 * Hash collision, did we smoke some? We found a class with a matching 1380 * hash but the subclass -- which is hashed in -- didn't match. 1381 */ 1382 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1383 return NULL; 1384 1385 return class; 1386 } 1387 1388 #ifdef CONFIG_PROVE_LOCKING 1389 /* 1390 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1391 * with NULL on failure) 1392 */ 1393 static struct lock_list *alloc_list_entry(void) 1394 { 1395 int idx = find_first_zero_bit(list_entries_in_use, 1396 ARRAY_SIZE(list_entries)); 1397 1398 if (idx >= ARRAY_SIZE(list_entries)) { 1399 if (!debug_locks_off_graph_unlock()) 1400 return NULL; 1401 1402 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1403 dump_stack(); 1404 return NULL; 1405 } 1406 nr_list_entries++; 1407 __set_bit(idx, list_entries_in_use); 1408 return list_entries + idx; 1409 } 1410 1411 /* 1412 * Add a new dependency to the head of the list: 1413 */ 1414 static int add_lock_to_list(struct lock_class *this, 1415 struct lock_class *links_to, struct list_head *head, 1416 u16 distance, u8 dep, 1417 const struct lock_trace *trace) 1418 { 1419 struct lock_list *entry; 1420 /* 1421 * Lock not present yet - get a new dependency struct and 1422 * add it to the list: 1423 */ 1424 entry = alloc_list_entry(); 1425 if (!entry) 1426 return 0; 1427 1428 entry->class = this; 1429 entry->links_to = links_to; 1430 entry->dep = dep; 1431 entry->distance = distance; 1432 entry->trace = trace; 1433 /* 1434 * Both allocation and removal are done under the graph lock; but 1435 * iteration is under RCU-sched; see look_up_lock_class() and 1436 * lockdep_free_key_range(). 1437 */ 1438 list_add_tail_rcu(&entry->entry, head); 1439 1440 return 1; 1441 } 1442 1443 /* 1444 * For good efficiency of modular, we use power of 2 1445 */ 1446 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1447 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1448 1449 /* 1450 * The circular_queue and helpers are used to implement graph 1451 * breadth-first search (BFS) algorithm, by which we can determine 1452 * whether there is a path from a lock to another. In deadlock checks, 1453 * a path from the next lock to be acquired to a previous held lock 1454 * indicates that adding the <prev> -> <next> lock dependency will 1455 * produce a circle in the graph. Breadth-first search instead of 1456 * depth-first search is used in order to find the shortest (circular) 1457 * path. 1458 */ 1459 struct circular_queue { 1460 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1461 unsigned int front, rear; 1462 }; 1463 1464 static struct circular_queue lock_cq; 1465 1466 unsigned int max_bfs_queue_depth; 1467 1468 static unsigned int lockdep_dependency_gen_id; 1469 1470 static inline void __cq_init(struct circular_queue *cq) 1471 { 1472 cq->front = cq->rear = 0; 1473 lockdep_dependency_gen_id++; 1474 } 1475 1476 static inline int __cq_empty(struct circular_queue *cq) 1477 { 1478 return (cq->front == cq->rear); 1479 } 1480 1481 static inline int __cq_full(struct circular_queue *cq) 1482 { 1483 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1484 } 1485 1486 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1487 { 1488 if (__cq_full(cq)) 1489 return -1; 1490 1491 cq->element[cq->rear] = elem; 1492 cq->rear = (cq->rear + 1) & CQ_MASK; 1493 return 0; 1494 } 1495 1496 /* 1497 * Dequeue an element from the circular_queue, return a lock_list if 1498 * the queue is not empty, or NULL if otherwise. 1499 */ 1500 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1501 { 1502 struct lock_list * lock; 1503 1504 if (__cq_empty(cq)) 1505 return NULL; 1506 1507 lock = cq->element[cq->front]; 1508 cq->front = (cq->front + 1) & CQ_MASK; 1509 1510 return lock; 1511 } 1512 1513 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1514 { 1515 return (cq->rear - cq->front) & CQ_MASK; 1516 } 1517 1518 static inline void mark_lock_accessed(struct lock_list *lock) 1519 { 1520 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1521 } 1522 1523 static inline void visit_lock_entry(struct lock_list *lock, 1524 struct lock_list *parent) 1525 { 1526 lock->parent = parent; 1527 } 1528 1529 static inline unsigned long lock_accessed(struct lock_list *lock) 1530 { 1531 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1532 } 1533 1534 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1535 { 1536 return child->parent; 1537 } 1538 1539 static inline int get_lock_depth(struct lock_list *child) 1540 { 1541 int depth = 0; 1542 struct lock_list *parent; 1543 1544 while ((parent = get_lock_parent(child))) { 1545 child = parent; 1546 depth++; 1547 } 1548 return depth; 1549 } 1550 1551 /* 1552 * Return the forward or backward dependency list. 1553 * 1554 * @lock: the lock_list to get its class's dependency list 1555 * @offset: the offset to struct lock_class to determine whether it is 1556 * locks_after or locks_before 1557 */ 1558 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1559 { 1560 void *lock_class = lock->class; 1561 1562 return lock_class + offset; 1563 } 1564 /* 1565 * Return values of a bfs search: 1566 * 1567 * BFS_E* indicates an error 1568 * BFS_R* indicates a result (match or not) 1569 * 1570 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1571 * 1572 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1573 * 1574 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1575 * *@target_entry. 1576 * 1577 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1578 * _unchanged_. 1579 */ 1580 enum bfs_result { 1581 BFS_EINVALIDNODE = -2, 1582 BFS_EQUEUEFULL = -1, 1583 BFS_RMATCH = 0, 1584 BFS_RNOMATCH = 1, 1585 }; 1586 1587 /* 1588 * bfs_result < 0 means error 1589 */ 1590 static inline bool bfs_error(enum bfs_result res) 1591 { 1592 return res < 0; 1593 } 1594 1595 /* 1596 * DEP_*_BIT in lock_list::dep 1597 * 1598 * For dependency @prev -> @next: 1599 * 1600 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1601 * (->read == 2) 1602 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1603 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1604 * EN: @prev is exclusive locker and @next is non-recursive locker 1605 * 1606 * Note that we define the value of DEP_*_BITs so that: 1607 * bit0 is prev->read == 0 1608 * bit1 is next->read != 2 1609 */ 1610 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1611 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1612 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1613 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1614 1615 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1616 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1617 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1618 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1619 1620 static inline unsigned int 1621 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1622 { 1623 return (prev->read == 0) + ((next->read != 2) << 1); 1624 } 1625 1626 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1627 { 1628 return 1U << __calc_dep_bit(prev, next); 1629 } 1630 1631 /* 1632 * calculate the dep_bit for backwards edges. We care about whether @prev is 1633 * shared and whether @next is recursive. 1634 */ 1635 static inline unsigned int 1636 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1637 { 1638 return (next->read != 2) + ((prev->read == 0) << 1); 1639 } 1640 1641 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1642 { 1643 return 1U << __calc_dep_bitb(prev, next); 1644 } 1645 1646 /* 1647 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1648 * search. 1649 */ 1650 static inline void __bfs_init_root(struct lock_list *lock, 1651 struct lock_class *class) 1652 { 1653 lock->class = class; 1654 lock->parent = NULL; 1655 lock->only_xr = 0; 1656 } 1657 1658 /* 1659 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1660 * root for a BFS search. 1661 * 1662 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1663 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1664 * and -(S*)->. 1665 */ 1666 static inline void bfs_init_root(struct lock_list *lock, 1667 struct held_lock *hlock) 1668 { 1669 __bfs_init_root(lock, hlock_class(hlock)); 1670 lock->only_xr = (hlock->read == 2); 1671 } 1672 1673 /* 1674 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1675 * 1676 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1677 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1678 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1679 */ 1680 static inline void bfs_init_rootb(struct lock_list *lock, 1681 struct held_lock *hlock) 1682 { 1683 __bfs_init_root(lock, hlock_class(hlock)); 1684 lock->only_xr = (hlock->read != 0); 1685 } 1686 1687 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1688 { 1689 if (!lock || !lock->parent) 1690 return NULL; 1691 1692 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1693 &lock->entry, struct lock_list, entry); 1694 } 1695 1696 /* 1697 * Breadth-First Search to find a strong path in the dependency graph. 1698 * 1699 * @source_entry: the source of the path we are searching for. 1700 * @data: data used for the second parameter of @match function 1701 * @match: match function for the search 1702 * @target_entry: pointer to the target of a matched path 1703 * @offset: the offset to struct lock_class to determine whether it is 1704 * locks_after or locks_before 1705 * 1706 * We may have multiple edges (considering different kinds of dependencies, 1707 * e.g. ER and SN) between two nodes in the dependency graph. But 1708 * only the strong dependency path in the graph is relevant to deadlocks. A 1709 * strong dependency path is a dependency path that doesn't have two adjacent 1710 * dependencies as -(*R)-> -(S*)->, please see: 1711 * 1712 * Documentation/locking/lockdep-design.rst 1713 * 1714 * for more explanation of the definition of strong dependency paths 1715 * 1716 * In __bfs(), we only traverse in the strong dependency path: 1717 * 1718 * In lock_list::only_xr, we record whether the previous dependency only 1719 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1720 * filter out any -(S*)-> in the current dependency and after that, the 1721 * ->only_xr is set according to whether we only have -(*R)-> left. 1722 */ 1723 static enum bfs_result __bfs(struct lock_list *source_entry, 1724 void *data, 1725 bool (*match)(struct lock_list *entry, void *data), 1726 bool (*skip)(struct lock_list *entry, void *data), 1727 struct lock_list **target_entry, 1728 int offset) 1729 { 1730 struct circular_queue *cq = &lock_cq; 1731 struct lock_list *lock = NULL; 1732 struct lock_list *entry; 1733 struct list_head *head; 1734 unsigned int cq_depth; 1735 bool first; 1736 1737 lockdep_assert_locked(); 1738 1739 __cq_init(cq); 1740 __cq_enqueue(cq, source_entry); 1741 1742 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1743 if (!lock->class) 1744 return BFS_EINVALIDNODE; 1745 1746 /* 1747 * Step 1: check whether we already finish on this one. 1748 * 1749 * If we have visited all the dependencies from this @lock to 1750 * others (iow, if we have visited all lock_list entries in 1751 * @lock->class->locks_{after,before}) we skip, otherwise go 1752 * and visit all the dependencies in the list and mark this 1753 * list accessed. 1754 */ 1755 if (lock_accessed(lock)) 1756 continue; 1757 else 1758 mark_lock_accessed(lock); 1759 1760 /* 1761 * Step 2: check whether prev dependency and this form a strong 1762 * dependency path. 1763 */ 1764 if (lock->parent) { /* Parent exists, check prev dependency */ 1765 u8 dep = lock->dep; 1766 bool prev_only_xr = lock->parent->only_xr; 1767 1768 /* 1769 * Mask out all -(S*)-> if we only have *R in previous 1770 * step, because -(*R)-> -(S*)-> don't make up a strong 1771 * dependency. 1772 */ 1773 if (prev_only_xr) 1774 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1775 1776 /* If nothing left, we skip */ 1777 if (!dep) 1778 continue; 1779 1780 /* If there are only -(*R)-> left, set that for the next step */ 1781 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1782 } 1783 1784 /* 1785 * Step 3: we haven't visited this and there is a strong 1786 * dependency path to this, so check with @match. 1787 * If @skip is provide and returns true, we skip this 1788 * lock (and any path this lock is in). 1789 */ 1790 if (skip && skip(lock, data)) 1791 continue; 1792 1793 if (match(lock, data)) { 1794 *target_entry = lock; 1795 return BFS_RMATCH; 1796 } 1797 1798 /* 1799 * Step 4: if not match, expand the path by adding the 1800 * forward or backwards dependencies in the search 1801 * 1802 */ 1803 first = true; 1804 head = get_dep_list(lock, offset); 1805 list_for_each_entry_rcu(entry, head, entry) { 1806 visit_lock_entry(entry, lock); 1807 1808 /* 1809 * Note we only enqueue the first of the list into the 1810 * queue, because we can always find a sibling 1811 * dependency from one (see __bfs_next()), as a result 1812 * the space of queue is saved. 1813 */ 1814 if (!first) 1815 continue; 1816 1817 first = false; 1818 1819 if (__cq_enqueue(cq, entry)) 1820 return BFS_EQUEUEFULL; 1821 1822 cq_depth = __cq_get_elem_count(cq); 1823 if (max_bfs_queue_depth < cq_depth) 1824 max_bfs_queue_depth = cq_depth; 1825 } 1826 } 1827 1828 return BFS_RNOMATCH; 1829 } 1830 1831 static inline enum bfs_result 1832 __bfs_forwards(struct lock_list *src_entry, 1833 void *data, 1834 bool (*match)(struct lock_list *entry, void *data), 1835 bool (*skip)(struct lock_list *entry, void *data), 1836 struct lock_list **target_entry) 1837 { 1838 return __bfs(src_entry, data, match, skip, target_entry, 1839 offsetof(struct lock_class, locks_after)); 1840 1841 } 1842 1843 static inline enum bfs_result 1844 __bfs_backwards(struct lock_list *src_entry, 1845 void *data, 1846 bool (*match)(struct lock_list *entry, void *data), 1847 bool (*skip)(struct lock_list *entry, void *data), 1848 struct lock_list **target_entry) 1849 { 1850 return __bfs(src_entry, data, match, skip, target_entry, 1851 offsetof(struct lock_class, locks_before)); 1852 1853 } 1854 1855 static void print_lock_trace(const struct lock_trace *trace, 1856 unsigned int spaces) 1857 { 1858 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1859 } 1860 1861 /* 1862 * Print a dependency chain entry (this is only done when a deadlock 1863 * has been detected): 1864 */ 1865 static noinline void 1866 print_circular_bug_entry(struct lock_list *target, int depth) 1867 { 1868 if (debug_locks_silent) 1869 return; 1870 printk("\n-> #%u", depth); 1871 print_lock_name(target->class); 1872 printk(KERN_CONT ":\n"); 1873 print_lock_trace(target->trace, 6); 1874 } 1875 1876 static void 1877 print_circular_lock_scenario(struct held_lock *src, 1878 struct held_lock *tgt, 1879 struct lock_list *prt) 1880 { 1881 struct lock_class *source = hlock_class(src); 1882 struct lock_class *target = hlock_class(tgt); 1883 struct lock_class *parent = prt->class; 1884 int src_read = src->read; 1885 int tgt_read = tgt->read; 1886 1887 /* 1888 * A direct locking problem where unsafe_class lock is taken 1889 * directly by safe_class lock, then all we need to show 1890 * is the deadlock scenario, as it is obvious that the 1891 * unsafe lock is taken under the safe lock. 1892 * 1893 * But if there is a chain instead, where the safe lock takes 1894 * an intermediate lock (middle_class) where this lock is 1895 * not the same as the safe lock, then the lock chain is 1896 * used to describe the problem. Otherwise we would need 1897 * to show a different CPU case for each link in the chain 1898 * from the safe_class lock to the unsafe_class lock. 1899 */ 1900 if (parent != source) { 1901 printk("Chain exists of:\n "); 1902 __print_lock_name(source); 1903 printk(KERN_CONT " --> "); 1904 __print_lock_name(parent); 1905 printk(KERN_CONT " --> "); 1906 __print_lock_name(target); 1907 printk(KERN_CONT "\n\n"); 1908 } 1909 1910 printk(" Possible unsafe locking scenario:\n\n"); 1911 printk(" CPU0 CPU1\n"); 1912 printk(" ---- ----\n"); 1913 if (tgt_read != 0) 1914 printk(" rlock("); 1915 else 1916 printk(" lock("); 1917 __print_lock_name(target); 1918 printk(KERN_CONT ");\n"); 1919 printk(" lock("); 1920 __print_lock_name(parent); 1921 printk(KERN_CONT ");\n"); 1922 printk(" lock("); 1923 __print_lock_name(target); 1924 printk(KERN_CONT ");\n"); 1925 if (src_read != 0) 1926 printk(" rlock("); 1927 else if (src->sync) 1928 printk(" sync("); 1929 else 1930 printk(" lock("); 1931 __print_lock_name(source); 1932 printk(KERN_CONT ");\n"); 1933 printk("\n *** DEADLOCK ***\n\n"); 1934 } 1935 1936 /* 1937 * When a circular dependency is detected, print the 1938 * header first: 1939 */ 1940 static noinline void 1941 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1942 struct held_lock *check_src, 1943 struct held_lock *check_tgt) 1944 { 1945 struct task_struct *curr = current; 1946 1947 if (debug_locks_silent) 1948 return; 1949 1950 pr_warn("\n"); 1951 pr_warn("======================================================\n"); 1952 pr_warn("WARNING: possible circular locking dependency detected\n"); 1953 print_kernel_ident(); 1954 pr_warn("------------------------------------------------------\n"); 1955 pr_warn("%s/%d is trying to acquire lock:\n", 1956 curr->comm, task_pid_nr(curr)); 1957 print_lock(check_src); 1958 1959 pr_warn("\nbut task is already holding lock:\n"); 1960 1961 print_lock(check_tgt); 1962 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1963 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1964 1965 print_circular_bug_entry(entry, depth); 1966 } 1967 1968 /* 1969 * We are about to add A -> B into the dependency graph, and in __bfs() a 1970 * strong dependency path A -> .. -> B is found: hlock_class equals 1971 * entry->class. 1972 * 1973 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1974 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1975 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1976 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1977 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1978 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1979 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1980 * 1981 * We need to make sure both the start and the end of A -> .. -> B is not 1982 * weaker than A -> B. For the start part, please see the comment in 1983 * check_redundant(). For the end part, we need: 1984 * 1985 * Either 1986 * 1987 * a) A -> B is -(*R)-> (everything is not weaker than that) 1988 * 1989 * or 1990 * 1991 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1992 * 1993 */ 1994 static inline bool hlock_equal(struct lock_list *entry, void *data) 1995 { 1996 struct held_lock *hlock = (struct held_lock *)data; 1997 1998 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1999 (hlock->read == 2 || /* A -> B is -(*R)-> */ 2000 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2001 } 2002 2003 /* 2004 * We are about to add B -> A into the dependency graph, and in __bfs() a 2005 * strong dependency path A -> .. -> B is found: hlock_class equals 2006 * entry->class. 2007 * 2008 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 2009 * dependency cycle, that means: 2010 * 2011 * Either 2012 * 2013 * a) B -> A is -(E*)-> 2014 * 2015 * or 2016 * 2017 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 2018 * 2019 * as then we don't have -(*R)-> -(S*)-> in the cycle. 2020 */ 2021 static inline bool hlock_conflict(struct lock_list *entry, void *data) 2022 { 2023 struct held_lock *hlock = (struct held_lock *)data; 2024 2025 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 2026 (hlock->read == 0 || /* B -> A is -(E*)-> */ 2027 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 2028 } 2029 2030 static noinline void print_circular_bug(struct lock_list *this, 2031 struct lock_list *target, 2032 struct held_lock *check_src, 2033 struct held_lock *check_tgt) 2034 { 2035 struct task_struct *curr = current; 2036 struct lock_list *parent; 2037 struct lock_list *first_parent; 2038 int depth; 2039 2040 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2041 return; 2042 2043 this->trace = save_trace(); 2044 if (!this->trace) 2045 return; 2046 2047 depth = get_lock_depth(target); 2048 2049 print_circular_bug_header(target, depth, check_src, check_tgt); 2050 2051 parent = get_lock_parent(target); 2052 first_parent = parent; 2053 2054 while (parent) { 2055 print_circular_bug_entry(parent, --depth); 2056 parent = get_lock_parent(parent); 2057 } 2058 2059 printk("\nother info that might help us debug this:\n\n"); 2060 print_circular_lock_scenario(check_src, check_tgt, 2061 first_parent); 2062 2063 lockdep_print_held_locks(curr); 2064 2065 printk("\nstack backtrace:\n"); 2066 dump_stack(); 2067 } 2068 2069 static noinline void print_bfs_bug(int ret) 2070 { 2071 if (!debug_locks_off_graph_unlock()) 2072 return; 2073 2074 /* 2075 * Breadth-first-search failed, graph got corrupted? 2076 */ 2077 WARN(1, "lockdep bfs error:%d\n", ret); 2078 } 2079 2080 static bool noop_count(struct lock_list *entry, void *data) 2081 { 2082 (*(unsigned long *)data)++; 2083 return false; 2084 } 2085 2086 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2087 { 2088 unsigned long count = 0; 2089 struct lock_list *target_entry; 2090 2091 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2092 2093 return count; 2094 } 2095 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2096 { 2097 unsigned long ret, flags; 2098 struct lock_list this; 2099 2100 __bfs_init_root(&this, class); 2101 2102 raw_local_irq_save(flags); 2103 lockdep_lock(); 2104 ret = __lockdep_count_forward_deps(&this); 2105 lockdep_unlock(); 2106 raw_local_irq_restore(flags); 2107 2108 return ret; 2109 } 2110 2111 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2112 { 2113 unsigned long count = 0; 2114 struct lock_list *target_entry; 2115 2116 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2117 2118 return count; 2119 } 2120 2121 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2122 { 2123 unsigned long ret, flags; 2124 struct lock_list this; 2125 2126 __bfs_init_root(&this, class); 2127 2128 raw_local_irq_save(flags); 2129 lockdep_lock(); 2130 ret = __lockdep_count_backward_deps(&this); 2131 lockdep_unlock(); 2132 raw_local_irq_restore(flags); 2133 2134 return ret; 2135 } 2136 2137 /* 2138 * Check that the dependency graph starting at <src> can lead to 2139 * <target> or not. 2140 */ 2141 static noinline enum bfs_result 2142 check_path(struct held_lock *target, struct lock_list *src_entry, 2143 bool (*match)(struct lock_list *entry, void *data), 2144 bool (*skip)(struct lock_list *entry, void *data), 2145 struct lock_list **target_entry) 2146 { 2147 enum bfs_result ret; 2148 2149 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2150 2151 if (unlikely(bfs_error(ret))) 2152 print_bfs_bug(ret); 2153 2154 return ret; 2155 } 2156 2157 /* 2158 * Prove that the dependency graph starting at <src> can not 2159 * lead to <target>. If it can, there is a circle when adding 2160 * <target> -> <src> dependency. 2161 * 2162 * Print an error and return BFS_RMATCH if it does. 2163 */ 2164 static noinline enum bfs_result 2165 check_noncircular(struct held_lock *src, struct held_lock *target, 2166 struct lock_trace **const trace) 2167 { 2168 enum bfs_result ret; 2169 struct lock_list *target_entry; 2170 struct lock_list src_entry; 2171 2172 bfs_init_root(&src_entry, src); 2173 2174 debug_atomic_inc(nr_cyclic_checks); 2175 2176 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2177 2178 if (unlikely(ret == BFS_RMATCH)) { 2179 if (!*trace) { 2180 /* 2181 * If save_trace fails here, the printing might 2182 * trigger a WARN but because of the !nr_entries it 2183 * should not do bad things. 2184 */ 2185 *trace = save_trace(); 2186 } 2187 2188 print_circular_bug(&src_entry, target_entry, src, target); 2189 } 2190 2191 return ret; 2192 } 2193 2194 #ifdef CONFIG_TRACE_IRQFLAGS 2195 2196 /* 2197 * Forwards and backwards subgraph searching, for the purposes of 2198 * proving that two subgraphs can be connected by a new dependency 2199 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2200 * 2201 * A irq safe->unsafe deadlock happens with the following conditions: 2202 * 2203 * 1) We have a strong dependency path A -> ... -> B 2204 * 2205 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2206 * irq can create a new dependency B -> A (consider the case that a holder 2207 * of B gets interrupted by an irq whose handler will try to acquire A). 2208 * 2209 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2210 * strong circle: 2211 * 2212 * For the usage bits of B: 2213 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2214 * ENABLED_IRQ usage suffices. 2215 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2216 * ENABLED_IRQ_*_READ usage suffices. 2217 * 2218 * For the usage bits of A: 2219 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2220 * USED_IN_IRQ usage suffices. 2221 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2222 * USED_IN_IRQ_*_READ usage suffices. 2223 */ 2224 2225 /* 2226 * There is a strong dependency path in the dependency graph: A -> B, and now 2227 * we need to decide which usage bit of A should be accumulated to detect 2228 * safe->unsafe bugs. 2229 * 2230 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2231 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2232 * 2233 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2234 * path, any usage of A should be considered. Otherwise, we should only 2235 * consider _READ usage. 2236 */ 2237 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2238 { 2239 if (!entry->only_xr) 2240 *(unsigned long *)mask |= entry->class->usage_mask; 2241 else /* Mask out _READ usage bits */ 2242 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2243 2244 return false; 2245 } 2246 2247 /* 2248 * There is a strong dependency path in the dependency graph: A -> B, and now 2249 * we need to decide which usage bit of B conflicts with the usage bits of A, 2250 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2251 * 2252 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2253 * path, any usage of B should be considered. Otherwise, we should only 2254 * consider _READ usage. 2255 */ 2256 static inline bool usage_match(struct lock_list *entry, void *mask) 2257 { 2258 if (!entry->only_xr) 2259 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2260 else /* Mask out _READ usage bits */ 2261 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2262 } 2263 2264 static inline bool usage_skip(struct lock_list *entry, void *mask) 2265 { 2266 /* 2267 * Skip local_lock() for irq inversion detection. 2268 * 2269 * For !RT, local_lock() is not a real lock, so it won't carry any 2270 * dependency. 2271 * 2272 * For RT, an irq inversion happens when we have lock A and B, and on 2273 * some CPU we can have: 2274 * 2275 * lock(A); 2276 * <interrupted> 2277 * lock(B); 2278 * 2279 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2280 * 2281 * Now we prove local_lock() cannot exist in that dependency. First we 2282 * have the observation for any lock chain L1 -> ... -> Ln, for any 2283 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2284 * wait context check will complain. And since B is not a sleep lock, 2285 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2286 * local_lock() is 3, which is greater than 2, therefore there is no 2287 * way the local_lock() exists in the dependency B -> ... -> A. 2288 * 2289 * As a result, we will skip local_lock(), when we search for irq 2290 * inversion bugs. 2291 */ 2292 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2293 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2294 return false; 2295 2296 return true; 2297 } 2298 2299 return false; 2300 } 2301 2302 /* 2303 * Find a node in the forwards-direction dependency sub-graph starting 2304 * at @root->class that matches @bit. 2305 * 2306 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2307 * into *@target_entry. 2308 */ 2309 static enum bfs_result 2310 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2311 struct lock_list **target_entry) 2312 { 2313 enum bfs_result result; 2314 2315 debug_atomic_inc(nr_find_usage_forwards_checks); 2316 2317 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2318 2319 return result; 2320 } 2321 2322 /* 2323 * Find a node in the backwards-direction dependency sub-graph starting 2324 * at @root->class that matches @bit. 2325 */ 2326 static enum bfs_result 2327 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2328 struct lock_list **target_entry) 2329 { 2330 enum bfs_result result; 2331 2332 debug_atomic_inc(nr_find_usage_backwards_checks); 2333 2334 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2335 2336 return result; 2337 } 2338 2339 static void print_lock_class_header(struct lock_class *class, int depth) 2340 { 2341 int bit; 2342 2343 printk("%*s->", depth, ""); 2344 print_lock_name(class); 2345 #ifdef CONFIG_DEBUG_LOCKDEP 2346 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2347 #endif 2348 printk(KERN_CONT " {\n"); 2349 2350 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2351 if (class->usage_mask & (1 << bit)) { 2352 int len = depth; 2353 2354 len += printk("%*s %s", depth, "", usage_str[bit]); 2355 len += printk(KERN_CONT " at:\n"); 2356 print_lock_trace(class->usage_traces[bit], len); 2357 } 2358 } 2359 printk("%*s }\n", depth, ""); 2360 2361 printk("%*s ... key at: [<%px>] %pS\n", 2362 depth, "", class->key, class->key); 2363 } 2364 2365 /* 2366 * Dependency path printing: 2367 * 2368 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2369 * printing out each lock in the dependency path will help on understanding how 2370 * the deadlock could happen. Here are some details about dependency path 2371 * printing: 2372 * 2373 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2374 * for a lock dependency A -> B, there are two lock_lists: 2375 * 2376 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2377 * ->links_to is A. In this case, we can say the lock_list is 2378 * "A -> B" (forwards case). 2379 * 2380 * b) lock_list in the ->locks_before list of B, whose ->class is A 2381 * and ->links_to is B. In this case, we can say the lock_list is 2382 * "B <- A" (bacwards case). 2383 * 2384 * The ->trace of both a) and b) point to the call trace where B was 2385 * acquired with A held. 2386 * 2387 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2388 * represent a certain lock dependency, it only provides an initial entry 2389 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2390 * ->class is A, as a result BFS will search all dependencies starting with 2391 * A, e.g. A -> B or A -> C. 2392 * 2393 * The notation of a forwards helper lock_list is like "-> A", which means 2394 * we should search the forwards dependencies starting with "A", e.g A -> B 2395 * or A -> C. 2396 * 2397 * The notation of a bacwards helper lock_list is like "<- B", which means 2398 * we should search the backwards dependencies ending with "B", e.g. 2399 * B <- A or B <- C. 2400 */ 2401 2402 /* 2403 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2404 * 2405 * We have a lock dependency path as follow: 2406 * 2407 * @root @leaf 2408 * | | 2409 * V V 2410 * ->parent ->parent 2411 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2412 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2413 * 2414 * , so it's natural that we start from @leaf and print every ->class and 2415 * ->trace until we reach the @root. 2416 */ 2417 static void __used 2418 print_shortest_lock_dependencies(struct lock_list *leaf, 2419 struct lock_list *root) 2420 { 2421 struct lock_list *entry = leaf; 2422 int depth; 2423 2424 /*compute depth from generated tree by BFS*/ 2425 depth = get_lock_depth(leaf); 2426 2427 do { 2428 print_lock_class_header(entry->class, depth); 2429 printk("%*s ... acquired at:\n", depth, ""); 2430 print_lock_trace(entry->trace, 2); 2431 printk("\n"); 2432 2433 if (depth == 0 && (entry != root)) { 2434 printk("lockdep:%s bad path found in chain graph\n", __func__); 2435 break; 2436 } 2437 2438 entry = get_lock_parent(entry); 2439 depth--; 2440 } while (entry && (depth >= 0)); 2441 } 2442 2443 /* 2444 * printk the shortest lock dependencies from @leaf to @root. 2445 * 2446 * We have a lock dependency path (from a backwards search) as follow: 2447 * 2448 * @leaf @root 2449 * | | 2450 * V V 2451 * ->parent ->parent 2452 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2453 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2454 * 2455 * , so when we iterate from @leaf to @root, we actually print the lock 2456 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2457 * 2458 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2459 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2460 * trace of L1 in the dependency path, which is alright, because most of the 2461 * time we can figure out where L1 is held from the call trace of L2. 2462 */ 2463 static void __used 2464 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2465 struct lock_list *root) 2466 { 2467 struct lock_list *entry = leaf; 2468 const struct lock_trace *trace = NULL; 2469 int depth; 2470 2471 /*compute depth from generated tree by BFS*/ 2472 depth = get_lock_depth(leaf); 2473 2474 do { 2475 print_lock_class_header(entry->class, depth); 2476 if (trace) { 2477 printk("%*s ... acquired at:\n", depth, ""); 2478 print_lock_trace(trace, 2); 2479 printk("\n"); 2480 } 2481 2482 /* 2483 * Record the pointer to the trace for the next lock_list 2484 * entry, see the comments for the function. 2485 */ 2486 trace = entry->trace; 2487 2488 if (depth == 0 && (entry != root)) { 2489 printk("lockdep:%s bad path found in chain graph\n", __func__); 2490 break; 2491 } 2492 2493 entry = get_lock_parent(entry); 2494 depth--; 2495 } while (entry && (depth >= 0)); 2496 } 2497 2498 static void 2499 print_irq_lock_scenario(struct lock_list *safe_entry, 2500 struct lock_list *unsafe_entry, 2501 struct lock_class *prev_class, 2502 struct lock_class *next_class) 2503 { 2504 struct lock_class *safe_class = safe_entry->class; 2505 struct lock_class *unsafe_class = unsafe_entry->class; 2506 struct lock_class *middle_class = prev_class; 2507 2508 if (middle_class == safe_class) 2509 middle_class = next_class; 2510 2511 /* 2512 * A direct locking problem where unsafe_class lock is taken 2513 * directly by safe_class lock, then all we need to show 2514 * is the deadlock scenario, as it is obvious that the 2515 * unsafe lock is taken under the safe lock. 2516 * 2517 * But if there is a chain instead, where the safe lock takes 2518 * an intermediate lock (middle_class) where this lock is 2519 * not the same as the safe lock, then the lock chain is 2520 * used to describe the problem. Otherwise we would need 2521 * to show a different CPU case for each link in the chain 2522 * from the safe_class lock to the unsafe_class lock. 2523 */ 2524 if (middle_class != unsafe_class) { 2525 printk("Chain exists of:\n "); 2526 __print_lock_name(safe_class); 2527 printk(KERN_CONT " --> "); 2528 __print_lock_name(middle_class); 2529 printk(KERN_CONT " --> "); 2530 __print_lock_name(unsafe_class); 2531 printk(KERN_CONT "\n\n"); 2532 } 2533 2534 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2535 printk(" CPU0 CPU1\n"); 2536 printk(" ---- ----\n"); 2537 printk(" lock("); 2538 __print_lock_name(unsafe_class); 2539 printk(KERN_CONT ");\n"); 2540 printk(" local_irq_disable();\n"); 2541 printk(" lock("); 2542 __print_lock_name(safe_class); 2543 printk(KERN_CONT ");\n"); 2544 printk(" lock("); 2545 __print_lock_name(middle_class); 2546 printk(KERN_CONT ");\n"); 2547 printk(" <Interrupt>\n"); 2548 printk(" lock("); 2549 __print_lock_name(safe_class); 2550 printk(KERN_CONT ");\n"); 2551 printk("\n *** DEADLOCK ***\n\n"); 2552 } 2553 2554 static void 2555 print_bad_irq_dependency(struct task_struct *curr, 2556 struct lock_list *prev_root, 2557 struct lock_list *next_root, 2558 struct lock_list *backwards_entry, 2559 struct lock_list *forwards_entry, 2560 struct held_lock *prev, 2561 struct held_lock *next, 2562 enum lock_usage_bit bit1, 2563 enum lock_usage_bit bit2, 2564 const char *irqclass) 2565 { 2566 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2567 return; 2568 2569 pr_warn("\n"); 2570 pr_warn("=====================================================\n"); 2571 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2572 irqclass, irqclass); 2573 print_kernel_ident(); 2574 pr_warn("-----------------------------------------------------\n"); 2575 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2576 curr->comm, task_pid_nr(curr), 2577 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2578 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2579 lockdep_hardirqs_enabled(), 2580 curr->softirqs_enabled); 2581 print_lock(next); 2582 2583 pr_warn("\nand this task is already holding:\n"); 2584 print_lock(prev); 2585 pr_warn("which would create a new lock dependency:\n"); 2586 print_lock_name(hlock_class(prev)); 2587 pr_cont(" ->"); 2588 print_lock_name(hlock_class(next)); 2589 pr_cont("\n"); 2590 2591 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2592 irqclass); 2593 print_lock_name(backwards_entry->class); 2594 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2595 2596 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2597 2598 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2599 print_lock_name(forwards_entry->class); 2600 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2601 pr_warn("..."); 2602 2603 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2604 2605 pr_warn("\nother info that might help us debug this:\n\n"); 2606 print_irq_lock_scenario(backwards_entry, forwards_entry, 2607 hlock_class(prev), hlock_class(next)); 2608 2609 lockdep_print_held_locks(curr); 2610 2611 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2612 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2613 2614 pr_warn("\nthe dependencies between the lock to be acquired"); 2615 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2616 next_root->trace = save_trace(); 2617 if (!next_root->trace) 2618 return; 2619 print_shortest_lock_dependencies(forwards_entry, next_root); 2620 2621 pr_warn("\nstack backtrace:\n"); 2622 dump_stack(); 2623 } 2624 2625 static const char *state_names[] = { 2626 #define LOCKDEP_STATE(__STATE) \ 2627 __stringify(__STATE), 2628 #include "lockdep_states.h" 2629 #undef LOCKDEP_STATE 2630 }; 2631 2632 static const char *state_rnames[] = { 2633 #define LOCKDEP_STATE(__STATE) \ 2634 __stringify(__STATE)"-READ", 2635 #include "lockdep_states.h" 2636 #undef LOCKDEP_STATE 2637 }; 2638 2639 static inline const char *state_name(enum lock_usage_bit bit) 2640 { 2641 if (bit & LOCK_USAGE_READ_MASK) 2642 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2643 else 2644 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2645 } 2646 2647 /* 2648 * The bit number is encoded like: 2649 * 2650 * bit0: 0 exclusive, 1 read lock 2651 * bit1: 0 used in irq, 1 irq enabled 2652 * bit2-n: state 2653 */ 2654 static int exclusive_bit(int new_bit) 2655 { 2656 int state = new_bit & LOCK_USAGE_STATE_MASK; 2657 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2658 2659 /* 2660 * keep state, bit flip the direction and strip read. 2661 */ 2662 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2663 } 2664 2665 /* 2666 * Observe that when given a bitmask where each bitnr is encoded as above, a 2667 * right shift of the mask transforms the individual bitnrs as -1 and 2668 * conversely, a left shift transforms into +1 for the individual bitnrs. 2669 * 2670 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2671 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2672 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2673 * 2674 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2675 * 2676 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2677 * all bits set) and recompose with bitnr1 flipped. 2678 */ 2679 static unsigned long invert_dir_mask(unsigned long mask) 2680 { 2681 unsigned long excl = 0; 2682 2683 /* Invert dir */ 2684 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2685 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2686 2687 return excl; 2688 } 2689 2690 /* 2691 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2692 * usage may cause deadlock too, for example: 2693 * 2694 * P1 P2 2695 * <irq disabled> 2696 * write_lock(l1); <irq enabled> 2697 * read_lock(l2); 2698 * write_lock(l2); 2699 * <in irq> 2700 * read_lock(l1); 2701 * 2702 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2703 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2704 * deadlock. 2705 * 2706 * In fact, all of the following cases may cause deadlocks: 2707 * 2708 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2709 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2710 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2711 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2712 * 2713 * As a result, to calculate the "exclusive mask", first we invert the 2714 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2715 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2716 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2717 */ 2718 static unsigned long exclusive_mask(unsigned long mask) 2719 { 2720 unsigned long excl = invert_dir_mask(mask); 2721 2722 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2723 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2724 2725 return excl; 2726 } 2727 2728 /* 2729 * Retrieve the _possible_ original mask to which @mask is 2730 * exclusive. Ie: this is the opposite of exclusive_mask(). 2731 * Note that 2 possible original bits can match an exclusive 2732 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2733 * cleared. So both are returned for each exclusive bit. 2734 */ 2735 static unsigned long original_mask(unsigned long mask) 2736 { 2737 unsigned long excl = invert_dir_mask(mask); 2738 2739 /* Include read in existing usages */ 2740 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2741 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2742 2743 return excl; 2744 } 2745 2746 /* 2747 * Find the first pair of bit match between an original 2748 * usage mask and an exclusive usage mask. 2749 */ 2750 static int find_exclusive_match(unsigned long mask, 2751 unsigned long excl_mask, 2752 enum lock_usage_bit *bitp, 2753 enum lock_usage_bit *excl_bitp) 2754 { 2755 int bit, excl, excl_read; 2756 2757 for_each_set_bit(bit, &mask, LOCK_USED) { 2758 /* 2759 * exclusive_bit() strips the read bit, however, 2760 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2761 * to search excl | LOCK_USAGE_READ_MASK as well. 2762 */ 2763 excl = exclusive_bit(bit); 2764 excl_read = excl | LOCK_USAGE_READ_MASK; 2765 if (excl_mask & lock_flag(excl)) { 2766 *bitp = bit; 2767 *excl_bitp = excl; 2768 return 0; 2769 } else if (excl_mask & lock_flag(excl_read)) { 2770 *bitp = bit; 2771 *excl_bitp = excl_read; 2772 return 0; 2773 } 2774 } 2775 return -1; 2776 } 2777 2778 /* 2779 * Prove that the new dependency does not connect a hardirq-safe(-read) 2780 * lock with a hardirq-unsafe lock - to achieve this we search 2781 * the backwards-subgraph starting at <prev>, and the 2782 * forwards-subgraph starting at <next>: 2783 */ 2784 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2785 struct held_lock *next) 2786 { 2787 unsigned long usage_mask = 0, forward_mask, backward_mask; 2788 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2789 struct lock_list *target_entry1; 2790 struct lock_list *target_entry; 2791 struct lock_list this, that; 2792 enum bfs_result ret; 2793 2794 /* 2795 * Step 1: gather all hard/soft IRQs usages backward in an 2796 * accumulated usage mask. 2797 */ 2798 bfs_init_rootb(&this, prev); 2799 2800 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2801 if (bfs_error(ret)) { 2802 print_bfs_bug(ret); 2803 return 0; 2804 } 2805 2806 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2807 if (!usage_mask) 2808 return 1; 2809 2810 /* 2811 * Step 2: find exclusive uses forward that match the previous 2812 * backward accumulated mask. 2813 */ 2814 forward_mask = exclusive_mask(usage_mask); 2815 2816 bfs_init_root(&that, next); 2817 2818 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2819 if (bfs_error(ret)) { 2820 print_bfs_bug(ret); 2821 return 0; 2822 } 2823 if (ret == BFS_RNOMATCH) 2824 return 1; 2825 2826 /* 2827 * Step 3: we found a bad match! Now retrieve a lock from the backward 2828 * list whose usage mask matches the exclusive usage mask from the 2829 * lock found on the forward list. 2830 * 2831 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2832 * the follow case: 2833 * 2834 * When trying to add A -> B to the graph, we find that there is a 2835 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2836 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2837 * invert bits of M's usage_mask, we will find another lock N that is 2838 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2839 * cause a inversion deadlock. 2840 */ 2841 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2842 2843 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2844 if (bfs_error(ret)) { 2845 print_bfs_bug(ret); 2846 return 0; 2847 } 2848 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2849 return 1; 2850 2851 /* 2852 * Step 4: narrow down to a pair of incompatible usage bits 2853 * and report it. 2854 */ 2855 ret = find_exclusive_match(target_entry->class->usage_mask, 2856 target_entry1->class->usage_mask, 2857 &backward_bit, &forward_bit); 2858 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2859 return 1; 2860 2861 print_bad_irq_dependency(curr, &this, &that, 2862 target_entry, target_entry1, 2863 prev, next, 2864 backward_bit, forward_bit, 2865 state_name(backward_bit)); 2866 2867 return 0; 2868 } 2869 2870 #else 2871 2872 static inline int check_irq_usage(struct task_struct *curr, 2873 struct held_lock *prev, struct held_lock *next) 2874 { 2875 return 1; 2876 } 2877 2878 static inline bool usage_skip(struct lock_list *entry, void *mask) 2879 { 2880 return false; 2881 } 2882 2883 #endif /* CONFIG_TRACE_IRQFLAGS */ 2884 2885 #ifdef CONFIG_LOCKDEP_SMALL 2886 /* 2887 * Check that the dependency graph starting at <src> can lead to 2888 * <target> or not. If it can, <src> -> <target> dependency is already 2889 * in the graph. 2890 * 2891 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2892 * any error appears in the bfs search. 2893 */ 2894 static noinline enum bfs_result 2895 check_redundant(struct held_lock *src, struct held_lock *target) 2896 { 2897 enum bfs_result ret; 2898 struct lock_list *target_entry; 2899 struct lock_list src_entry; 2900 2901 bfs_init_root(&src_entry, src); 2902 /* 2903 * Special setup for check_redundant(). 2904 * 2905 * To report redundant, we need to find a strong dependency path that 2906 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2907 * we need to let __bfs() only search for a path starting at a -(E*)->, 2908 * we achieve this by setting the initial node's ->only_xr to true in 2909 * that case. And if <prev> is S, we set initial ->only_xr to false 2910 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2911 */ 2912 src_entry.only_xr = src->read == 0; 2913 2914 debug_atomic_inc(nr_redundant_checks); 2915 2916 /* 2917 * Note: we skip local_lock() for redundant check, because as the 2918 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2919 * the same. 2920 */ 2921 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2922 2923 if (ret == BFS_RMATCH) 2924 debug_atomic_inc(nr_redundant); 2925 2926 return ret; 2927 } 2928 2929 #else 2930 2931 static inline enum bfs_result 2932 check_redundant(struct held_lock *src, struct held_lock *target) 2933 { 2934 return BFS_RNOMATCH; 2935 } 2936 2937 #endif 2938 2939 static void inc_chains(int irq_context) 2940 { 2941 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2942 nr_hardirq_chains++; 2943 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2944 nr_softirq_chains++; 2945 else 2946 nr_process_chains++; 2947 } 2948 2949 static void dec_chains(int irq_context) 2950 { 2951 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2952 nr_hardirq_chains--; 2953 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2954 nr_softirq_chains--; 2955 else 2956 nr_process_chains--; 2957 } 2958 2959 static void 2960 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2961 { 2962 struct lock_class *next = hlock_class(nxt); 2963 struct lock_class *prev = hlock_class(prv); 2964 2965 printk(" Possible unsafe locking scenario:\n\n"); 2966 printk(" CPU0\n"); 2967 printk(" ----\n"); 2968 printk(" lock("); 2969 __print_lock_name(prev); 2970 printk(KERN_CONT ");\n"); 2971 printk(" lock("); 2972 __print_lock_name(next); 2973 printk(KERN_CONT ");\n"); 2974 printk("\n *** DEADLOCK ***\n\n"); 2975 printk(" May be due to missing lock nesting notation\n\n"); 2976 } 2977 2978 static void 2979 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2980 struct held_lock *next) 2981 { 2982 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2983 return; 2984 2985 pr_warn("\n"); 2986 pr_warn("============================================\n"); 2987 pr_warn("WARNING: possible recursive locking detected\n"); 2988 print_kernel_ident(); 2989 pr_warn("--------------------------------------------\n"); 2990 pr_warn("%s/%d is trying to acquire lock:\n", 2991 curr->comm, task_pid_nr(curr)); 2992 print_lock(next); 2993 pr_warn("\nbut task is already holding lock:\n"); 2994 print_lock(prev); 2995 2996 pr_warn("\nother info that might help us debug this:\n"); 2997 print_deadlock_scenario(next, prev); 2998 lockdep_print_held_locks(curr); 2999 3000 pr_warn("\nstack backtrace:\n"); 3001 dump_stack(); 3002 } 3003 3004 /* 3005 * Check whether we are holding such a class already. 3006 * 3007 * (Note that this has to be done separately, because the graph cannot 3008 * detect such classes of deadlocks.) 3009 * 3010 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 3011 * lock class is held but nest_lock is also held, i.e. we rely on the 3012 * nest_lock to avoid the deadlock. 3013 */ 3014 static int 3015 check_deadlock(struct task_struct *curr, struct held_lock *next) 3016 { 3017 struct held_lock *prev; 3018 struct held_lock *nest = NULL; 3019 int i; 3020 3021 for (i = 0; i < curr->lockdep_depth; i++) { 3022 prev = curr->held_locks + i; 3023 3024 if (prev->instance == next->nest_lock) 3025 nest = prev; 3026 3027 if (hlock_class(prev) != hlock_class(next)) 3028 continue; 3029 3030 /* 3031 * Allow read-after-read recursion of the same 3032 * lock class (i.e. read_lock(lock)+read_lock(lock)): 3033 */ 3034 if ((next->read == 2) && prev->read) 3035 continue; 3036 3037 /* 3038 * We're holding the nest_lock, which serializes this lock's 3039 * nesting behaviour. 3040 */ 3041 if (nest) 3042 return 2; 3043 3044 print_deadlock_bug(curr, prev, next); 3045 return 0; 3046 } 3047 return 1; 3048 } 3049 3050 /* 3051 * There was a chain-cache miss, and we are about to add a new dependency 3052 * to a previous lock. We validate the following rules: 3053 * 3054 * - would the adding of the <prev> -> <next> dependency create a 3055 * circular dependency in the graph? [== circular deadlock] 3056 * 3057 * - does the new prev->next dependency connect any hardirq-safe lock 3058 * (in the full backwards-subgraph starting at <prev>) with any 3059 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3060 * <next>)? [== illegal lock inversion with hardirq contexts] 3061 * 3062 * - does the new prev->next dependency connect any softirq-safe lock 3063 * (in the full backwards-subgraph starting at <prev>) with any 3064 * softirq-unsafe lock (in the full forwards-subgraph starting at 3065 * <next>)? [== illegal lock inversion with softirq contexts] 3066 * 3067 * any of these scenarios could lead to a deadlock. 3068 * 3069 * Then if all the validations pass, we add the forwards and backwards 3070 * dependency. 3071 */ 3072 static int 3073 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3074 struct held_lock *next, u16 distance, 3075 struct lock_trace **const trace) 3076 { 3077 struct lock_list *entry; 3078 enum bfs_result ret; 3079 3080 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3081 /* 3082 * The warning statements below may trigger a use-after-free 3083 * of the class name. It is better to trigger a use-after free 3084 * and to have the class name most of the time instead of not 3085 * having the class name available. 3086 */ 3087 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3088 "Detected use-after-free of lock class %px/%s\n", 3089 hlock_class(prev), 3090 hlock_class(prev)->name); 3091 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3092 "Detected use-after-free of lock class %px/%s\n", 3093 hlock_class(next), 3094 hlock_class(next)->name); 3095 return 2; 3096 } 3097 3098 /* 3099 * Prove that the new <prev> -> <next> dependency would not 3100 * create a circular dependency in the graph. (We do this by 3101 * a breadth-first search into the graph starting at <next>, 3102 * and check whether we can reach <prev>.) 3103 * 3104 * The search is limited by the size of the circular queue (i.e., 3105 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3106 * in the graph whose neighbours are to be checked. 3107 */ 3108 ret = check_noncircular(next, prev, trace); 3109 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3110 return 0; 3111 3112 if (!check_irq_usage(curr, prev, next)) 3113 return 0; 3114 3115 /* 3116 * Is the <prev> -> <next> dependency already present? 3117 * 3118 * (this may occur even though this is a new chain: consider 3119 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3120 * chains - the second one will be new, but L1 already has 3121 * L2 added to its dependency list, due to the first chain.) 3122 */ 3123 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3124 if (entry->class == hlock_class(next)) { 3125 if (distance == 1) 3126 entry->distance = 1; 3127 entry->dep |= calc_dep(prev, next); 3128 3129 /* 3130 * Also, update the reverse dependency in @next's 3131 * ->locks_before list. 3132 * 3133 * Here we reuse @entry as the cursor, which is fine 3134 * because we won't go to the next iteration of the 3135 * outer loop: 3136 * 3137 * For normal cases, we return in the inner loop. 3138 * 3139 * If we fail to return, we have inconsistency, i.e. 3140 * <prev>::locks_after contains <next> while 3141 * <next>::locks_before doesn't contain <prev>. In 3142 * that case, we return after the inner and indicate 3143 * something is wrong. 3144 */ 3145 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3146 if (entry->class == hlock_class(prev)) { 3147 if (distance == 1) 3148 entry->distance = 1; 3149 entry->dep |= calc_depb(prev, next); 3150 return 1; 3151 } 3152 } 3153 3154 /* <prev> is not found in <next>::locks_before */ 3155 return 0; 3156 } 3157 } 3158 3159 /* 3160 * Is the <prev> -> <next> link redundant? 3161 */ 3162 ret = check_redundant(prev, next); 3163 if (bfs_error(ret)) 3164 return 0; 3165 else if (ret == BFS_RMATCH) 3166 return 2; 3167 3168 if (!*trace) { 3169 *trace = save_trace(); 3170 if (!*trace) 3171 return 0; 3172 } 3173 3174 /* 3175 * Ok, all validations passed, add the new lock 3176 * to the previous lock's dependency list: 3177 */ 3178 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3179 &hlock_class(prev)->locks_after, distance, 3180 calc_dep(prev, next), *trace); 3181 3182 if (!ret) 3183 return 0; 3184 3185 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3186 &hlock_class(next)->locks_before, distance, 3187 calc_depb(prev, next), *trace); 3188 if (!ret) 3189 return 0; 3190 3191 return 2; 3192 } 3193 3194 /* 3195 * Add the dependency to all directly-previous locks that are 'relevant'. 3196 * The ones that are relevant are (in increasing distance from curr): 3197 * all consecutive trylock entries and the final non-trylock entry - or 3198 * the end of this context's lock-chain - whichever comes first. 3199 */ 3200 static int 3201 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3202 { 3203 struct lock_trace *trace = NULL; 3204 int depth = curr->lockdep_depth; 3205 struct held_lock *hlock; 3206 3207 /* 3208 * Debugging checks. 3209 * 3210 * Depth must not be zero for a non-head lock: 3211 */ 3212 if (!depth) 3213 goto out_bug; 3214 /* 3215 * At least two relevant locks must exist for this 3216 * to be a head: 3217 */ 3218 if (curr->held_locks[depth].irq_context != 3219 curr->held_locks[depth-1].irq_context) 3220 goto out_bug; 3221 3222 for (;;) { 3223 u16 distance = curr->lockdep_depth - depth + 1; 3224 hlock = curr->held_locks + depth - 1; 3225 3226 if (hlock->check) { 3227 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3228 if (!ret) 3229 return 0; 3230 3231 /* 3232 * Stop after the first non-trylock entry, 3233 * as non-trylock entries have added their 3234 * own direct dependencies already, so this 3235 * lock is connected to them indirectly: 3236 */ 3237 if (!hlock->trylock) 3238 break; 3239 } 3240 3241 depth--; 3242 /* 3243 * End of lock-stack? 3244 */ 3245 if (!depth) 3246 break; 3247 /* 3248 * Stop the search if we cross into another context: 3249 */ 3250 if (curr->held_locks[depth].irq_context != 3251 curr->held_locks[depth-1].irq_context) 3252 break; 3253 } 3254 return 1; 3255 out_bug: 3256 if (!debug_locks_off_graph_unlock()) 3257 return 0; 3258 3259 /* 3260 * Clearly we all shouldn't be here, but since we made it we 3261 * can reliable say we messed up our state. See the above two 3262 * gotos for reasons why we could possibly end up here. 3263 */ 3264 WARN_ON(1); 3265 3266 return 0; 3267 } 3268 3269 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3270 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3271 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3272 unsigned long nr_zapped_lock_chains; 3273 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3274 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3275 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3276 3277 /* 3278 * The first 2 chain_hlocks entries in the chain block in the bucket 3279 * list contains the following meta data: 3280 * 3281 * entry[0]: 3282 * Bit 15 - always set to 1 (it is not a class index) 3283 * Bits 0-14 - upper 15 bits of the next block index 3284 * entry[1] - lower 16 bits of next block index 3285 * 3286 * A next block index of all 1 bits means it is the end of the list. 3287 * 3288 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3289 * the chain block size: 3290 * 3291 * entry[2] - upper 16 bits of the chain block size 3292 * entry[3] - lower 16 bits of the chain block size 3293 */ 3294 #define MAX_CHAIN_BUCKETS 16 3295 #define CHAIN_BLK_FLAG (1U << 15) 3296 #define CHAIN_BLK_LIST_END 0xFFFFU 3297 3298 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3299 3300 static inline int size_to_bucket(int size) 3301 { 3302 if (size > MAX_CHAIN_BUCKETS) 3303 return 0; 3304 3305 return size - 1; 3306 } 3307 3308 /* 3309 * Iterate all the chain blocks in a bucket. 3310 */ 3311 #define for_each_chain_block(bucket, prev, curr) \ 3312 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3313 (curr) >= 0; \ 3314 (prev) = (curr), (curr) = chain_block_next(curr)) 3315 3316 /* 3317 * next block or -1 3318 */ 3319 static inline int chain_block_next(int offset) 3320 { 3321 int next = chain_hlocks[offset]; 3322 3323 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3324 3325 if (next == CHAIN_BLK_LIST_END) 3326 return -1; 3327 3328 next &= ~CHAIN_BLK_FLAG; 3329 next <<= 16; 3330 next |= chain_hlocks[offset + 1]; 3331 3332 return next; 3333 } 3334 3335 /* 3336 * bucket-0 only 3337 */ 3338 static inline int chain_block_size(int offset) 3339 { 3340 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3341 } 3342 3343 static inline void init_chain_block(int offset, int next, int bucket, int size) 3344 { 3345 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3346 chain_hlocks[offset + 1] = (u16)next; 3347 3348 if (size && !bucket) { 3349 chain_hlocks[offset + 2] = size >> 16; 3350 chain_hlocks[offset + 3] = (u16)size; 3351 } 3352 } 3353 3354 static inline void add_chain_block(int offset, int size) 3355 { 3356 int bucket = size_to_bucket(size); 3357 int next = chain_block_buckets[bucket]; 3358 int prev, curr; 3359 3360 if (unlikely(size < 2)) { 3361 /* 3362 * We can't store single entries on the freelist. Leak them. 3363 * 3364 * One possible way out would be to uniquely mark them, other 3365 * than with CHAIN_BLK_FLAG, such that we can recover them when 3366 * the block before it is re-added. 3367 */ 3368 if (size) 3369 nr_lost_chain_hlocks++; 3370 return; 3371 } 3372 3373 nr_free_chain_hlocks += size; 3374 if (!bucket) { 3375 nr_large_chain_blocks++; 3376 3377 /* 3378 * Variable sized, sort large to small. 3379 */ 3380 for_each_chain_block(0, prev, curr) { 3381 if (size >= chain_block_size(curr)) 3382 break; 3383 } 3384 init_chain_block(offset, curr, 0, size); 3385 if (prev < 0) 3386 chain_block_buckets[0] = offset; 3387 else 3388 init_chain_block(prev, offset, 0, 0); 3389 return; 3390 } 3391 /* 3392 * Fixed size, add to head. 3393 */ 3394 init_chain_block(offset, next, bucket, size); 3395 chain_block_buckets[bucket] = offset; 3396 } 3397 3398 /* 3399 * Only the first block in the list can be deleted. 3400 * 3401 * For the variable size bucket[0], the first block (the largest one) is 3402 * returned, broken up and put back into the pool. So if a chain block of 3403 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3404 * queued up after the primordial chain block and never be used until the 3405 * hlock entries in the primordial chain block is almost used up. That 3406 * causes fragmentation and reduce allocation efficiency. That can be 3407 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3408 */ 3409 static inline void del_chain_block(int bucket, int size, int next) 3410 { 3411 nr_free_chain_hlocks -= size; 3412 chain_block_buckets[bucket] = next; 3413 3414 if (!bucket) 3415 nr_large_chain_blocks--; 3416 } 3417 3418 static void init_chain_block_buckets(void) 3419 { 3420 int i; 3421 3422 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3423 chain_block_buckets[i] = -1; 3424 3425 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3426 } 3427 3428 /* 3429 * Return offset of a chain block of the right size or -1 if not found. 3430 * 3431 * Fairly simple worst-fit allocator with the addition of a number of size 3432 * specific free lists. 3433 */ 3434 static int alloc_chain_hlocks(int req) 3435 { 3436 int bucket, curr, size; 3437 3438 /* 3439 * We rely on the MSB to act as an escape bit to denote freelist 3440 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3441 */ 3442 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3443 3444 init_data_structures_once(); 3445 3446 if (nr_free_chain_hlocks < req) 3447 return -1; 3448 3449 /* 3450 * We require a minimum of 2 (u16) entries to encode a freelist 3451 * 'pointer'. 3452 */ 3453 req = max(req, 2); 3454 bucket = size_to_bucket(req); 3455 curr = chain_block_buckets[bucket]; 3456 3457 if (bucket) { 3458 if (curr >= 0) { 3459 del_chain_block(bucket, req, chain_block_next(curr)); 3460 return curr; 3461 } 3462 /* Try bucket 0 */ 3463 curr = chain_block_buckets[0]; 3464 } 3465 3466 /* 3467 * The variable sized freelist is sorted by size; the first entry is 3468 * the largest. Use it if it fits. 3469 */ 3470 if (curr >= 0) { 3471 size = chain_block_size(curr); 3472 if (likely(size >= req)) { 3473 del_chain_block(0, size, chain_block_next(curr)); 3474 add_chain_block(curr + req, size - req); 3475 return curr; 3476 } 3477 } 3478 3479 /* 3480 * Last resort, split a block in a larger sized bucket. 3481 */ 3482 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3483 bucket = size_to_bucket(size); 3484 curr = chain_block_buckets[bucket]; 3485 if (curr < 0) 3486 continue; 3487 3488 del_chain_block(bucket, size, chain_block_next(curr)); 3489 add_chain_block(curr + req, size - req); 3490 return curr; 3491 } 3492 3493 return -1; 3494 } 3495 3496 static inline void free_chain_hlocks(int base, int size) 3497 { 3498 add_chain_block(base, max(size, 2)); 3499 } 3500 3501 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3502 { 3503 u16 chain_hlock = chain_hlocks[chain->base + i]; 3504 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3505 3506 return lock_classes + class_idx; 3507 } 3508 3509 /* 3510 * Returns the index of the first held_lock of the current chain 3511 */ 3512 static inline int get_first_held_lock(struct task_struct *curr, 3513 struct held_lock *hlock) 3514 { 3515 int i; 3516 struct held_lock *hlock_curr; 3517 3518 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3519 hlock_curr = curr->held_locks + i; 3520 if (hlock_curr->irq_context != hlock->irq_context) 3521 break; 3522 3523 } 3524 3525 return ++i; 3526 } 3527 3528 #ifdef CONFIG_DEBUG_LOCKDEP 3529 /* 3530 * Returns the next chain_key iteration 3531 */ 3532 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3533 { 3534 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3535 3536 printk(" hlock_id:%d -> chain_key:%016Lx", 3537 (unsigned int)hlock_id, 3538 (unsigned long long)new_chain_key); 3539 return new_chain_key; 3540 } 3541 3542 static void 3543 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3544 { 3545 struct held_lock *hlock; 3546 u64 chain_key = INITIAL_CHAIN_KEY; 3547 int depth = curr->lockdep_depth; 3548 int i = get_first_held_lock(curr, hlock_next); 3549 3550 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3551 hlock_next->irq_context); 3552 for (; i < depth; i++) { 3553 hlock = curr->held_locks + i; 3554 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3555 3556 print_lock(hlock); 3557 } 3558 3559 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3560 print_lock(hlock_next); 3561 } 3562 3563 static void print_chain_keys_chain(struct lock_chain *chain) 3564 { 3565 int i; 3566 u64 chain_key = INITIAL_CHAIN_KEY; 3567 u16 hlock_id; 3568 3569 printk("depth: %u\n", chain->depth); 3570 for (i = 0; i < chain->depth; i++) { 3571 hlock_id = chain_hlocks[chain->base + i]; 3572 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3573 3574 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id)); 3575 printk("\n"); 3576 } 3577 } 3578 3579 static void print_collision(struct task_struct *curr, 3580 struct held_lock *hlock_next, 3581 struct lock_chain *chain) 3582 { 3583 pr_warn("\n"); 3584 pr_warn("============================\n"); 3585 pr_warn("WARNING: chain_key collision\n"); 3586 print_kernel_ident(); 3587 pr_warn("----------------------------\n"); 3588 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3589 pr_warn("Hash chain already cached but the contents don't match!\n"); 3590 3591 pr_warn("Held locks:"); 3592 print_chain_keys_held_locks(curr, hlock_next); 3593 3594 pr_warn("Locks in cached chain:"); 3595 print_chain_keys_chain(chain); 3596 3597 pr_warn("\nstack backtrace:\n"); 3598 dump_stack(); 3599 } 3600 #endif 3601 3602 /* 3603 * Checks whether the chain and the current held locks are consistent 3604 * in depth and also in content. If they are not it most likely means 3605 * that there was a collision during the calculation of the chain_key. 3606 * Returns: 0 not passed, 1 passed 3607 */ 3608 static int check_no_collision(struct task_struct *curr, 3609 struct held_lock *hlock, 3610 struct lock_chain *chain) 3611 { 3612 #ifdef CONFIG_DEBUG_LOCKDEP 3613 int i, j, id; 3614 3615 i = get_first_held_lock(curr, hlock); 3616 3617 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3618 print_collision(curr, hlock, chain); 3619 return 0; 3620 } 3621 3622 for (j = 0; j < chain->depth - 1; j++, i++) { 3623 id = hlock_id(&curr->held_locks[i]); 3624 3625 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3626 print_collision(curr, hlock, chain); 3627 return 0; 3628 } 3629 } 3630 #endif 3631 return 1; 3632 } 3633 3634 /* 3635 * Given an index that is >= -1, return the index of the next lock chain. 3636 * Return -2 if there is no next lock chain. 3637 */ 3638 long lockdep_next_lockchain(long i) 3639 { 3640 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3641 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3642 } 3643 3644 unsigned long lock_chain_count(void) 3645 { 3646 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3647 } 3648 3649 /* Must be called with the graph lock held. */ 3650 static struct lock_chain *alloc_lock_chain(void) 3651 { 3652 int idx = find_first_zero_bit(lock_chains_in_use, 3653 ARRAY_SIZE(lock_chains)); 3654 3655 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3656 return NULL; 3657 __set_bit(idx, lock_chains_in_use); 3658 return lock_chains + idx; 3659 } 3660 3661 /* 3662 * Adds a dependency chain into chain hashtable. And must be called with 3663 * graph_lock held. 3664 * 3665 * Return 0 if fail, and graph_lock is released. 3666 * Return 1 if succeed, with graph_lock held. 3667 */ 3668 static inline int add_chain_cache(struct task_struct *curr, 3669 struct held_lock *hlock, 3670 u64 chain_key) 3671 { 3672 struct hlist_head *hash_head = chainhashentry(chain_key); 3673 struct lock_chain *chain; 3674 int i, j; 3675 3676 /* 3677 * The caller must hold the graph lock, ensure we've got IRQs 3678 * disabled to make this an IRQ-safe lock.. for recursion reasons 3679 * lockdep won't complain about its own locking errors. 3680 */ 3681 if (lockdep_assert_locked()) 3682 return 0; 3683 3684 chain = alloc_lock_chain(); 3685 if (!chain) { 3686 if (!debug_locks_off_graph_unlock()) 3687 return 0; 3688 3689 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3690 dump_stack(); 3691 return 0; 3692 } 3693 chain->chain_key = chain_key; 3694 chain->irq_context = hlock->irq_context; 3695 i = get_first_held_lock(curr, hlock); 3696 chain->depth = curr->lockdep_depth + 1 - i; 3697 3698 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3699 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3700 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3701 3702 j = alloc_chain_hlocks(chain->depth); 3703 if (j < 0) { 3704 if (!debug_locks_off_graph_unlock()) 3705 return 0; 3706 3707 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3708 dump_stack(); 3709 return 0; 3710 } 3711 3712 chain->base = j; 3713 for (j = 0; j < chain->depth - 1; j++, i++) { 3714 int lock_id = hlock_id(curr->held_locks + i); 3715 3716 chain_hlocks[chain->base + j] = lock_id; 3717 } 3718 chain_hlocks[chain->base + j] = hlock_id(hlock); 3719 hlist_add_head_rcu(&chain->entry, hash_head); 3720 debug_atomic_inc(chain_lookup_misses); 3721 inc_chains(chain->irq_context); 3722 3723 return 1; 3724 } 3725 3726 /* 3727 * Look up a dependency chain. Must be called with either the graph lock or 3728 * the RCU read lock held. 3729 */ 3730 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3731 { 3732 struct hlist_head *hash_head = chainhashentry(chain_key); 3733 struct lock_chain *chain; 3734 3735 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3736 if (READ_ONCE(chain->chain_key) == chain_key) { 3737 debug_atomic_inc(chain_lookup_hits); 3738 return chain; 3739 } 3740 } 3741 return NULL; 3742 } 3743 3744 /* 3745 * If the key is not present yet in dependency chain cache then 3746 * add it and return 1 - in this case the new dependency chain is 3747 * validated. If the key is already hashed, return 0. 3748 * (On return with 1 graph_lock is held.) 3749 */ 3750 static inline int lookup_chain_cache_add(struct task_struct *curr, 3751 struct held_lock *hlock, 3752 u64 chain_key) 3753 { 3754 struct lock_class *class = hlock_class(hlock); 3755 struct lock_chain *chain = lookup_chain_cache(chain_key); 3756 3757 if (chain) { 3758 cache_hit: 3759 if (!check_no_collision(curr, hlock, chain)) 3760 return 0; 3761 3762 if (very_verbose(class)) { 3763 printk("\nhash chain already cached, key: " 3764 "%016Lx tail class: [%px] %s\n", 3765 (unsigned long long)chain_key, 3766 class->key, class->name); 3767 } 3768 3769 return 0; 3770 } 3771 3772 if (very_verbose(class)) { 3773 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3774 (unsigned long long)chain_key, class->key, class->name); 3775 } 3776 3777 if (!graph_lock()) 3778 return 0; 3779 3780 /* 3781 * We have to walk the chain again locked - to avoid duplicates: 3782 */ 3783 chain = lookup_chain_cache(chain_key); 3784 if (chain) { 3785 graph_unlock(); 3786 goto cache_hit; 3787 } 3788 3789 if (!add_chain_cache(curr, hlock, chain_key)) 3790 return 0; 3791 3792 return 1; 3793 } 3794 3795 static int validate_chain(struct task_struct *curr, 3796 struct held_lock *hlock, 3797 int chain_head, u64 chain_key) 3798 { 3799 /* 3800 * Trylock needs to maintain the stack of held locks, but it 3801 * does not add new dependencies, because trylock can be done 3802 * in any order. 3803 * 3804 * We look up the chain_key and do the O(N^2) check and update of 3805 * the dependencies only if this is a new dependency chain. 3806 * (If lookup_chain_cache_add() return with 1 it acquires 3807 * graph_lock for us) 3808 */ 3809 if (!hlock->trylock && hlock->check && 3810 lookup_chain_cache_add(curr, hlock, chain_key)) { 3811 /* 3812 * Check whether last held lock: 3813 * 3814 * - is irq-safe, if this lock is irq-unsafe 3815 * - is softirq-safe, if this lock is hardirq-unsafe 3816 * 3817 * And check whether the new lock's dependency graph 3818 * could lead back to the previous lock: 3819 * 3820 * - within the current held-lock stack 3821 * - across our accumulated lock dependency records 3822 * 3823 * any of these scenarios could lead to a deadlock. 3824 */ 3825 /* 3826 * The simple case: does the current hold the same lock 3827 * already? 3828 */ 3829 int ret = check_deadlock(curr, hlock); 3830 3831 if (!ret) 3832 return 0; 3833 /* 3834 * Add dependency only if this lock is not the head 3835 * of the chain, and if the new lock introduces no more 3836 * lock dependency (because we already hold a lock with the 3837 * same lock class) nor deadlock (because the nest_lock 3838 * serializes nesting locks), see the comments for 3839 * check_deadlock(). 3840 */ 3841 if (!chain_head && ret != 2) { 3842 if (!check_prevs_add(curr, hlock)) 3843 return 0; 3844 } 3845 3846 graph_unlock(); 3847 } else { 3848 /* after lookup_chain_cache_add(): */ 3849 if (unlikely(!debug_locks)) 3850 return 0; 3851 } 3852 3853 return 1; 3854 } 3855 #else 3856 static inline int validate_chain(struct task_struct *curr, 3857 struct held_lock *hlock, 3858 int chain_head, u64 chain_key) 3859 { 3860 return 1; 3861 } 3862 3863 static void init_chain_block_buckets(void) { } 3864 #endif /* CONFIG_PROVE_LOCKING */ 3865 3866 /* 3867 * We are building curr_chain_key incrementally, so double-check 3868 * it from scratch, to make sure that it's done correctly: 3869 */ 3870 static void check_chain_key(struct task_struct *curr) 3871 { 3872 #ifdef CONFIG_DEBUG_LOCKDEP 3873 struct held_lock *hlock, *prev_hlock = NULL; 3874 unsigned int i; 3875 u64 chain_key = INITIAL_CHAIN_KEY; 3876 3877 for (i = 0; i < curr->lockdep_depth; i++) { 3878 hlock = curr->held_locks + i; 3879 if (chain_key != hlock->prev_chain_key) { 3880 debug_locks_off(); 3881 /* 3882 * We got mighty confused, our chain keys don't match 3883 * with what we expect, someone trample on our task state? 3884 */ 3885 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3886 curr->lockdep_depth, i, 3887 (unsigned long long)chain_key, 3888 (unsigned long long)hlock->prev_chain_key); 3889 return; 3890 } 3891 3892 /* 3893 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3894 * it registered lock class index? 3895 */ 3896 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3897 return; 3898 3899 if (prev_hlock && (prev_hlock->irq_context != 3900 hlock->irq_context)) 3901 chain_key = INITIAL_CHAIN_KEY; 3902 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3903 prev_hlock = hlock; 3904 } 3905 if (chain_key != curr->curr_chain_key) { 3906 debug_locks_off(); 3907 /* 3908 * More smoking hash instead of calculating it, damn see these 3909 * numbers float.. I bet that a pink elephant stepped on my memory. 3910 */ 3911 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3912 curr->lockdep_depth, i, 3913 (unsigned long long)chain_key, 3914 (unsigned long long)curr->curr_chain_key); 3915 } 3916 #endif 3917 } 3918 3919 #ifdef CONFIG_PROVE_LOCKING 3920 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3921 enum lock_usage_bit new_bit); 3922 3923 static void print_usage_bug_scenario(struct held_lock *lock) 3924 { 3925 struct lock_class *class = hlock_class(lock); 3926 3927 printk(" Possible unsafe locking scenario:\n\n"); 3928 printk(" CPU0\n"); 3929 printk(" ----\n"); 3930 printk(" lock("); 3931 __print_lock_name(class); 3932 printk(KERN_CONT ");\n"); 3933 printk(" <Interrupt>\n"); 3934 printk(" lock("); 3935 __print_lock_name(class); 3936 printk(KERN_CONT ");\n"); 3937 printk("\n *** DEADLOCK ***\n\n"); 3938 } 3939 3940 static void 3941 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3942 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3943 { 3944 if (!debug_locks_off() || debug_locks_silent) 3945 return; 3946 3947 pr_warn("\n"); 3948 pr_warn("================================\n"); 3949 pr_warn("WARNING: inconsistent lock state\n"); 3950 print_kernel_ident(); 3951 pr_warn("--------------------------------\n"); 3952 3953 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3954 usage_str[prev_bit], usage_str[new_bit]); 3955 3956 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3957 curr->comm, task_pid_nr(curr), 3958 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3959 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3960 lockdep_hardirqs_enabled(), 3961 lockdep_softirqs_enabled(curr)); 3962 print_lock(this); 3963 3964 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3965 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3966 3967 print_irqtrace_events(curr); 3968 pr_warn("\nother info that might help us debug this:\n"); 3969 print_usage_bug_scenario(this); 3970 3971 lockdep_print_held_locks(curr); 3972 3973 pr_warn("\nstack backtrace:\n"); 3974 dump_stack(); 3975 } 3976 3977 /* 3978 * Print out an error if an invalid bit is set: 3979 */ 3980 static inline int 3981 valid_state(struct task_struct *curr, struct held_lock *this, 3982 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3983 { 3984 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3985 graph_unlock(); 3986 print_usage_bug(curr, this, bad_bit, new_bit); 3987 return 0; 3988 } 3989 return 1; 3990 } 3991 3992 3993 /* 3994 * print irq inversion bug: 3995 */ 3996 static void 3997 print_irq_inversion_bug(struct task_struct *curr, 3998 struct lock_list *root, struct lock_list *other, 3999 struct held_lock *this, int forwards, 4000 const char *irqclass) 4001 { 4002 struct lock_list *entry = other; 4003 struct lock_list *middle = NULL; 4004 int depth; 4005 4006 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 4007 return; 4008 4009 pr_warn("\n"); 4010 pr_warn("========================================================\n"); 4011 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 4012 print_kernel_ident(); 4013 pr_warn("--------------------------------------------------------\n"); 4014 pr_warn("%s/%d just changed the state of lock:\n", 4015 curr->comm, task_pid_nr(curr)); 4016 print_lock(this); 4017 if (forwards) 4018 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 4019 else 4020 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 4021 print_lock_name(other->class); 4022 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 4023 4024 pr_warn("\nother info that might help us debug this:\n"); 4025 4026 /* Find a middle lock (if one exists) */ 4027 depth = get_lock_depth(other); 4028 do { 4029 if (depth == 0 && (entry != root)) { 4030 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 4031 break; 4032 } 4033 middle = entry; 4034 entry = get_lock_parent(entry); 4035 depth--; 4036 } while (entry && entry != root && (depth >= 0)); 4037 if (forwards) 4038 print_irq_lock_scenario(root, other, 4039 middle ? middle->class : root->class, other->class); 4040 else 4041 print_irq_lock_scenario(other, root, 4042 middle ? middle->class : other->class, root->class); 4043 4044 lockdep_print_held_locks(curr); 4045 4046 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4047 root->trace = save_trace(); 4048 if (!root->trace) 4049 return; 4050 print_shortest_lock_dependencies(other, root); 4051 4052 pr_warn("\nstack backtrace:\n"); 4053 dump_stack(); 4054 } 4055 4056 /* 4057 * Prove that in the forwards-direction subgraph starting at <this> 4058 * there is no lock matching <mask>: 4059 */ 4060 static int 4061 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4062 enum lock_usage_bit bit) 4063 { 4064 enum bfs_result ret; 4065 struct lock_list root; 4066 struct lock_list *target_entry; 4067 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4068 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4069 4070 bfs_init_root(&root, this); 4071 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4072 if (bfs_error(ret)) { 4073 print_bfs_bug(ret); 4074 return 0; 4075 } 4076 if (ret == BFS_RNOMATCH) 4077 return 1; 4078 4079 /* Check whether write or read usage is the match */ 4080 if (target_entry->class->usage_mask & lock_flag(bit)) { 4081 print_irq_inversion_bug(curr, &root, target_entry, 4082 this, 1, state_name(bit)); 4083 } else { 4084 print_irq_inversion_bug(curr, &root, target_entry, 4085 this, 1, state_name(read_bit)); 4086 } 4087 4088 return 0; 4089 } 4090 4091 /* 4092 * Prove that in the backwards-direction subgraph starting at <this> 4093 * there is no lock matching <mask>: 4094 */ 4095 static int 4096 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4097 enum lock_usage_bit bit) 4098 { 4099 enum bfs_result ret; 4100 struct lock_list root; 4101 struct lock_list *target_entry; 4102 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4103 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4104 4105 bfs_init_rootb(&root, this); 4106 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4107 if (bfs_error(ret)) { 4108 print_bfs_bug(ret); 4109 return 0; 4110 } 4111 if (ret == BFS_RNOMATCH) 4112 return 1; 4113 4114 /* Check whether write or read usage is the match */ 4115 if (target_entry->class->usage_mask & lock_flag(bit)) { 4116 print_irq_inversion_bug(curr, &root, target_entry, 4117 this, 0, state_name(bit)); 4118 } else { 4119 print_irq_inversion_bug(curr, &root, target_entry, 4120 this, 0, state_name(read_bit)); 4121 } 4122 4123 return 0; 4124 } 4125 4126 void print_irqtrace_events(struct task_struct *curr) 4127 { 4128 const struct irqtrace_events *trace = &curr->irqtrace; 4129 4130 printk("irq event stamp: %u\n", trace->irq_events); 4131 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4132 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4133 (void *)trace->hardirq_enable_ip); 4134 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4135 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4136 (void *)trace->hardirq_disable_ip); 4137 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4138 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4139 (void *)trace->softirq_enable_ip); 4140 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4141 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4142 (void *)trace->softirq_disable_ip); 4143 } 4144 4145 static int HARDIRQ_verbose(struct lock_class *class) 4146 { 4147 #if HARDIRQ_VERBOSE 4148 return class_filter(class); 4149 #endif 4150 return 0; 4151 } 4152 4153 static int SOFTIRQ_verbose(struct lock_class *class) 4154 { 4155 #if SOFTIRQ_VERBOSE 4156 return class_filter(class); 4157 #endif 4158 return 0; 4159 } 4160 4161 static int (*state_verbose_f[])(struct lock_class *class) = { 4162 #define LOCKDEP_STATE(__STATE) \ 4163 __STATE##_verbose, 4164 #include "lockdep_states.h" 4165 #undef LOCKDEP_STATE 4166 }; 4167 4168 static inline int state_verbose(enum lock_usage_bit bit, 4169 struct lock_class *class) 4170 { 4171 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4172 } 4173 4174 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4175 enum lock_usage_bit bit, const char *name); 4176 4177 static int 4178 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4179 enum lock_usage_bit new_bit) 4180 { 4181 int excl_bit = exclusive_bit(new_bit); 4182 int read = new_bit & LOCK_USAGE_READ_MASK; 4183 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4184 4185 /* 4186 * Validate that this particular lock does not have conflicting 4187 * usage states. 4188 */ 4189 if (!valid_state(curr, this, new_bit, excl_bit)) 4190 return 0; 4191 4192 /* 4193 * Check for read in write conflicts 4194 */ 4195 if (!read && !valid_state(curr, this, new_bit, 4196 excl_bit + LOCK_USAGE_READ_MASK)) 4197 return 0; 4198 4199 4200 /* 4201 * Validate that the lock dependencies don't have conflicting usage 4202 * states. 4203 */ 4204 if (dir) { 4205 /* 4206 * mark ENABLED has to look backwards -- to ensure no dependee 4207 * has USED_IN state, which, again, would allow recursion deadlocks. 4208 */ 4209 if (!check_usage_backwards(curr, this, excl_bit)) 4210 return 0; 4211 } else { 4212 /* 4213 * mark USED_IN has to look forwards -- to ensure no dependency 4214 * has ENABLED state, which would allow recursion deadlocks. 4215 */ 4216 if (!check_usage_forwards(curr, this, excl_bit)) 4217 return 0; 4218 } 4219 4220 if (state_verbose(new_bit, hlock_class(this))) 4221 return 2; 4222 4223 return 1; 4224 } 4225 4226 /* 4227 * Mark all held locks with a usage bit: 4228 */ 4229 static int 4230 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4231 { 4232 struct held_lock *hlock; 4233 int i; 4234 4235 for (i = 0; i < curr->lockdep_depth; i++) { 4236 enum lock_usage_bit hlock_bit = base_bit; 4237 hlock = curr->held_locks + i; 4238 4239 if (hlock->read) 4240 hlock_bit += LOCK_USAGE_READ_MASK; 4241 4242 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4243 4244 if (!hlock->check) 4245 continue; 4246 4247 if (!mark_lock(curr, hlock, hlock_bit)) 4248 return 0; 4249 } 4250 4251 return 1; 4252 } 4253 4254 /* 4255 * Hardirqs will be enabled: 4256 */ 4257 static void __trace_hardirqs_on_caller(void) 4258 { 4259 struct task_struct *curr = current; 4260 4261 /* 4262 * We are going to turn hardirqs on, so set the 4263 * usage bit for all held locks: 4264 */ 4265 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4266 return; 4267 /* 4268 * If we have softirqs enabled, then set the usage 4269 * bit for all held locks. (disabled hardirqs prevented 4270 * this bit from being set before) 4271 */ 4272 if (curr->softirqs_enabled) 4273 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4274 } 4275 4276 /** 4277 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4278 * 4279 * Invoked before a possible transition to RCU idle from exit to user or 4280 * guest mode. This ensures that all RCU operations are done before RCU 4281 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4282 * invoked to set the final state. 4283 */ 4284 void lockdep_hardirqs_on_prepare(void) 4285 { 4286 if (unlikely(!debug_locks)) 4287 return; 4288 4289 /* 4290 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4291 */ 4292 if (unlikely(in_nmi())) 4293 return; 4294 4295 if (unlikely(this_cpu_read(lockdep_recursion))) 4296 return; 4297 4298 if (unlikely(lockdep_hardirqs_enabled())) { 4299 /* 4300 * Neither irq nor preemption are disabled here 4301 * so this is racy by nature but losing one hit 4302 * in a stat is not a big deal. 4303 */ 4304 __debug_atomic_inc(redundant_hardirqs_on); 4305 return; 4306 } 4307 4308 /* 4309 * We're enabling irqs and according to our state above irqs weren't 4310 * already enabled, yet we find the hardware thinks they are in fact 4311 * enabled.. someone messed up their IRQ state tracing. 4312 */ 4313 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4314 return; 4315 4316 /* 4317 * See the fine text that goes along with this variable definition. 4318 */ 4319 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4320 return; 4321 4322 /* 4323 * Can't allow enabling interrupts while in an interrupt handler, 4324 * that's general bad form and such. Recursion, limited stack etc.. 4325 */ 4326 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4327 return; 4328 4329 current->hardirq_chain_key = current->curr_chain_key; 4330 4331 lockdep_recursion_inc(); 4332 __trace_hardirqs_on_caller(); 4333 lockdep_recursion_finish(); 4334 } 4335 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4336 4337 void noinstr lockdep_hardirqs_on(unsigned long ip) 4338 { 4339 struct irqtrace_events *trace = ¤t->irqtrace; 4340 4341 if (unlikely(!debug_locks)) 4342 return; 4343 4344 /* 4345 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4346 * tracking state and hardware state are out of sync. 4347 * 4348 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4349 * and not rely on hardware state like normal interrupts. 4350 */ 4351 if (unlikely(in_nmi())) { 4352 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4353 return; 4354 4355 /* 4356 * Skip: 4357 * - recursion check, because NMI can hit lockdep; 4358 * - hardware state check, because above; 4359 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4360 */ 4361 goto skip_checks; 4362 } 4363 4364 if (unlikely(this_cpu_read(lockdep_recursion))) 4365 return; 4366 4367 if (lockdep_hardirqs_enabled()) { 4368 /* 4369 * Neither irq nor preemption are disabled here 4370 * so this is racy by nature but losing one hit 4371 * in a stat is not a big deal. 4372 */ 4373 __debug_atomic_inc(redundant_hardirqs_on); 4374 return; 4375 } 4376 4377 /* 4378 * We're enabling irqs and according to our state above irqs weren't 4379 * already enabled, yet we find the hardware thinks they are in fact 4380 * enabled.. someone messed up their IRQ state tracing. 4381 */ 4382 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4383 return; 4384 4385 /* 4386 * Ensure the lock stack remained unchanged between 4387 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4388 */ 4389 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4390 current->curr_chain_key); 4391 4392 skip_checks: 4393 /* we'll do an OFF -> ON transition: */ 4394 __this_cpu_write(hardirqs_enabled, 1); 4395 trace->hardirq_enable_ip = ip; 4396 trace->hardirq_enable_event = ++trace->irq_events; 4397 debug_atomic_inc(hardirqs_on_events); 4398 } 4399 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4400 4401 /* 4402 * Hardirqs were disabled: 4403 */ 4404 void noinstr lockdep_hardirqs_off(unsigned long ip) 4405 { 4406 if (unlikely(!debug_locks)) 4407 return; 4408 4409 /* 4410 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4411 * they will restore the software state. This ensures the software 4412 * state is consistent inside NMIs as well. 4413 */ 4414 if (in_nmi()) { 4415 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4416 return; 4417 } else if (__this_cpu_read(lockdep_recursion)) 4418 return; 4419 4420 /* 4421 * So we're supposed to get called after you mask local IRQs, but for 4422 * some reason the hardware doesn't quite think you did a proper job. 4423 */ 4424 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4425 return; 4426 4427 if (lockdep_hardirqs_enabled()) { 4428 struct irqtrace_events *trace = ¤t->irqtrace; 4429 4430 /* 4431 * We have done an ON -> OFF transition: 4432 */ 4433 __this_cpu_write(hardirqs_enabled, 0); 4434 trace->hardirq_disable_ip = ip; 4435 trace->hardirq_disable_event = ++trace->irq_events; 4436 debug_atomic_inc(hardirqs_off_events); 4437 } else { 4438 debug_atomic_inc(redundant_hardirqs_off); 4439 } 4440 } 4441 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4442 4443 /* 4444 * Softirqs will be enabled: 4445 */ 4446 void lockdep_softirqs_on(unsigned long ip) 4447 { 4448 struct irqtrace_events *trace = ¤t->irqtrace; 4449 4450 if (unlikely(!lockdep_enabled())) 4451 return; 4452 4453 /* 4454 * We fancy IRQs being disabled here, see softirq.c, avoids 4455 * funny state and nesting things. 4456 */ 4457 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4458 return; 4459 4460 if (current->softirqs_enabled) { 4461 debug_atomic_inc(redundant_softirqs_on); 4462 return; 4463 } 4464 4465 lockdep_recursion_inc(); 4466 /* 4467 * We'll do an OFF -> ON transition: 4468 */ 4469 current->softirqs_enabled = 1; 4470 trace->softirq_enable_ip = ip; 4471 trace->softirq_enable_event = ++trace->irq_events; 4472 debug_atomic_inc(softirqs_on_events); 4473 /* 4474 * We are going to turn softirqs on, so set the 4475 * usage bit for all held locks, if hardirqs are 4476 * enabled too: 4477 */ 4478 if (lockdep_hardirqs_enabled()) 4479 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4480 lockdep_recursion_finish(); 4481 } 4482 4483 /* 4484 * Softirqs were disabled: 4485 */ 4486 void lockdep_softirqs_off(unsigned long ip) 4487 { 4488 if (unlikely(!lockdep_enabled())) 4489 return; 4490 4491 /* 4492 * We fancy IRQs being disabled here, see softirq.c 4493 */ 4494 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4495 return; 4496 4497 if (current->softirqs_enabled) { 4498 struct irqtrace_events *trace = ¤t->irqtrace; 4499 4500 /* 4501 * We have done an ON -> OFF transition: 4502 */ 4503 current->softirqs_enabled = 0; 4504 trace->softirq_disable_ip = ip; 4505 trace->softirq_disable_event = ++trace->irq_events; 4506 debug_atomic_inc(softirqs_off_events); 4507 /* 4508 * Whoops, we wanted softirqs off, so why aren't they? 4509 */ 4510 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4511 } else 4512 debug_atomic_inc(redundant_softirqs_off); 4513 } 4514 4515 static int 4516 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4517 { 4518 if (!check) 4519 goto lock_used; 4520 4521 /* 4522 * If non-trylock use in a hardirq or softirq context, then 4523 * mark the lock as used in these contexts: 4524 */ 4525 if (!hlock->trylock) { 4526 if (hlock->read) { 4527 if (lockdep_hardirq_context()) 4528 if (!mark_lock(curr, hlock, 4529 LOCK_USED_IN_HARDIRQ_READ)) 4530 return 0; 4531 if (curr->softirq_context) 4532 if (!mark_lock(curr, hlock, 4533 LOCK_USED_IN_SOFTIRQ_READ)) 4534 return 0; 4535 } else { 4536 if (lockdep_hardirq_context()) 4537 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4538 return 0; 4539 if (curr->softirq_context) 4540 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4541 return 0; 4542 } 4543 } 4544 4545 /* 4546 * For lock_sync(), don't mark the ENABLED usage, since lock_sync() 4547 * creates no critical section and no extra dependency can be introduced 4548 * by interrupts 4549 */ 4550 if (!hlock->hardirqs_off && !hlock->sync) { 4551 if (hlock->read) { 4552 if (!mark_lock(curr, hlock, 4553 LOCK_ENABLED_HARDIRQ_READ)) 4554 return 0; 4555 if (curr->softirqs_enabled) 4556 if (!mark_lock(curr, hlock, 4557 LOCK_ENABLED_SOFTIRQ_READ)) 4558 return 0; 4559 } else { 4560 if (!mark_lock(curr, hlock, 4561 LOCK_ENABLED_HARDIRQ)) 4562 return 0; 4563 if (curr->softirqs_enabled) 4564 if (!mark_lock(curr, hlock, 4565 LOCK_ENABLED_SOFTIRQ)) 4566 return 0; 4567 } 4568 } 4569 4570 lock_used: 4571 /* mark it as used: */ 4572 if (!mark_lock(curr, hlock, LOCK_USED)) 4573 return 0; 4574 4575 return 1; 4576 } 4577 4578 static inline unsigned int task_irq_context(struct task_struct *task) 4579 { 4580 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4581 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4582 } 4583 4584 static int separate_irq_context(struct task_struct *curr, 4585 struct held_lock *hlock) 4586 { 4587 unsigned int depth = curr->lockdep_depth; 4588 4589 /* 4590 * Keep track of points where we cross into an interrupt context: 4591 */ 4592 if (depth) { 4593 struct held_lock *prev_hlock; 4594 4595 prev_hlock = curr->held_locks + depth-1; 4596 /* 4597 * If we cross into another context, reset the 4598 * hash key (this also prevents the checking and the 4599 * adding of the dependency to 'prev'): 4600 */ 4601 if (prev_hlock->irq_context != hlock->irq_context) 4602 return 1; 4603 } 4604 return 0; 4605 } 4606 4607 /* 4608 * Mark a lock with a usage bit, and validate the state transition: 4609 */ 4610 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4611 enum lock_usage_bit new_bit) 4612 { 4613 unsigned int new_mask, ret = 1; 4614 4615 if (new_bit >= LOCK_USAGE_STATES) { 4616 DEBUG_LOCKS_WARN_ON(1); 4617 return 0; 4618 } 4619 4620 if (new_bit == LOCK_USED && this->read) 4621 new_bit = LOCK_USED_READ; 4622 4623 new_mask = 1 << new_bit; 4624 4625 /* 4626 * If already set then do not dirty the cacheline, 4627 * nor do any checks: 4628 */ 4629 if (likely(hlock_class(this)->usage_mask & new_mask)) 4630 return 1; 4631 4632 if (!graph_lock()) 4633 return 0; 4634 /* 4635 * Make sure we didn't race: 4636 */ 4637 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4638 goto unlock; 4639 4640 if (!hlock_class(this)->usage_mask) 4641 debug_atomic_dec(nr_unused_locks); 4642 4643 hlock_class(this)->usage_mask |= new_mask; 4644 4645 if (new_bit < LOCK_TRACE_STATES) { 4646 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4647 return 0; 4648 } 4649 4650 if (new_bit < LOCK_USED) { 4651 ret = mark_lock_irq(curr, this, new_bit); 4652 if (!ret) 4653 return 0; 4654 } 4655 4656 unlock: 4657 graph_unlock(); 4658 4659 /* 4660 * We must printk outside of the graph_lock: 4661 */ 4662 if (ret == 2) { 4663 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4664 print_lock(this); 4665 print_irqtrace_events(curr); 4666 dump_stack(); 4667 } 4668 4669 return ret; 4670 } 4671 4672 static inline short task_wait_context(struct task_struct *curr) 4673 { 4674 /* 4675 * Set appropriate wait type for the context; for IRQs we have to take 4676 * into account force_irqthread as that is implied by PREEMPT_RT. 4677 */ 4678 if (lockdep_hardirq_context()) { 4679 /* 4680 * Check if force_irqthreads will run us threaded. 4681 */ 4682 if (curr->hardirq_threaded || curr->irq_config) 4683 return LD_WAIT_CONFIG; 4684 4685 return LD_WAIT_SPIN; 4686 } else if (curr->softirq_context) { 4687 /* 4688 * Softirqs are always threaded. 4689 */ 4690 return LD_WAIT_CONFIG; 4691 } 4692 4693 return LD_WAIT_MAX; 4694 } 4695 4696 static int 4697 print_lock_invalid_wait_context(struct task_struct *curr, 4698 struct held_lock *hlock) 4699 { 4700 short curr_inner; 4701 4702 if (!debug_locks_off()) 4703 return 0; 4704 if (debug_locks_silent) 4705 return 0; 4706 4707 pr_warn("\n"); 4708 pr_warn("=============================\n"); 4709 pr_warn("[ BUG: Invalid wait context ]\n"); 4710 print_kernel_ident(); 4711 pr_warn("-----------------------------\n"); 4712 4713 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4714 print_lock(hlock); 4715 4716 pr_warn("other info that might help us debug this:\n"); 4717 4718 curr_inner = task_wait_context(curr); 4719 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4720 4721 lockdep_print_held_locks(curr); 4722 4723 pr_warn("stack backtrace:\n"); 4724 dump_stack(); 4725 4726 return 0; 4727 } 4728 4729 /* 4730 * Verify the wait_type context. 4731 * 4732 * This check validates we take locks in the right wait-type order; that is it 4733 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4734 * acquire spinlocks inside raw_spinlocks and the sort. 4735 * 4736 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4737 * can be taken from (pretty much) any context but also has constraints. 4738 * However when taken in a stricter environment the RCU lock does not loosen 4739 * the constraints. 4740 * 4741 * Therefore we must look for the strictest environment in the lock stack and 4742 * compare that to the lock we're trying to acquire. 4743 */ 4744 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4745 { 4746 u8 next_inner = hlock_class(next)->wait_type_inner; 4747 u8 next_outer = hlock_class(next)->wait_type_outer; 4748 u8 curr_inner; 4749 int depth; 4750 4751 if (!next_inner || next->trylock) 4752 return 0; 4753 4754 if (!next_outer) 4755 next_outer = next_inner; 4756 4757 /* 4758 * Find start of current irq_context.. 4759 */ 4760 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4761 struct held_lock *prev = curr->held_locks + depth; 4762 if (prev->irq_context != next->irq_context) 4763 break; 4764 } 4765 depth++; 4766 4767 curr_inner = task_wait_context(curr); 4768 4769 for (; depth < curr->lockdep_depth; depth++) { 4770 struct held_lock *prev = curr->held_locks + depth; 4771 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4772 4773 if (prev_inner) { 4774 /* 4775 * We can have a bigger inner than a previous one 4776 * when outer is smaller than inner, as with RCU. 4777 * 4778 * Also due to trylocks. 4779 */ 4780 curr_inner = min(curr_inner, prev_inner); 4781 } 4782 } 4783 4784 if (next_outer > curr_inner) 4785 return print_lock_invalid_wait_context(curr, next); 4786 4787 return 0; 4788 } 4789 4790 #else /* CONFIG_PROVE_LOCKING */ 4791 4792 static inline int 4793 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4794 { 4795 return 1; 4796 } 4797 4798 static inline unsigned int task_irq_context(struct task_struct *task) 4799 { 4800 return 0; 4801 } 4802 4803 static inline int separate_irq_context(struct task_struct *curr, 4804 struct held_lock *hlock) 4805 { 4806 return 0; 4807 } 4808 4809 static inline int check_wait_context(struct task_struct *curr, 4810 struct held_lock *next) 4811 { 4812 return 0; 4813 } 4814 4815 #endif /* CONFIG_PROVE_LOCKING */ 4816 4817 /* 4818 * Initialize a lock instance's lock-class mapping info: 4819 */ 4820 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4821 struct lock_class_key *key, int subclass, 4822 u8 inner, u8 outer, u8 lock_type) 4823 { 4824 int i; 4825 4826 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4827 lock->class_cache[i] = NULL; 4828 4829 #ifdef CONFIG_LOCK_STAT 4830 lock->cpu = raw_smp_processor_id(); 4831 #endif 4832 4833 /* 4834 * Can't be having no nameless bastards around this place! 4835 */ 4836 if (DEBUG_LOCKS_WARN_ON(!name)) { 4837 lock->name = "NULL"; 4838 return; 4839 } 4840 4841 lock->name = name; 4842 4843 lock->wait_type_outer = outer; 4844 lock->wait_type_inner = inner; 4845 lock->lock_type = lock_type; 4846 4847 /* 4848 * No key, no joy, we need to hash something. 4849 */ 4850 if (DEBUG_LOCKS_WARN_ON(!key)) 4851 return; 4852 /* 4853 * Sanity check, the lock-class key must either have been allocated 4854 * statically or must have been registered as a dynamic key. 4855 */ 4856 if (!static_obj(key) && !is_dynamic_key(key)) { 4857 if (debug_locks) 4858 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4859 DEBUG_LOCKS_WARN_ON(1); 4860 return; 4861 } 4862 lock->key = key; 4863 4864 if (unlikely(!debug_locks)) 4865 return; 4866 4867 if (subclass) { 4868 unsigned long flags; 4869 4870 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4871 return; 4872 4873 raw_local_irq_save(flags); 4874 lockdep_recursion_inc(); 4875 register_lock_class(lock, subclass, 1); 4876 lockdep_recursion_finish(); 4877 raw_local_irq_restore(flags); 4878 } 4879 } 4880 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4881 4882 struct lock_class_key __lockdep_no_validate__; 4883 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4884 4885 static void 4886 print_lock_nested_lock_not_held(struct task_struct *curr, 4887 struct held_lock *hlock) 4888 { 4889 if (!debug_locks_off()) 4890 return; 4891 if (debug_locks_silent) 4892 return; 4893 4894 pr_warn("\n"); 4895 pr_warn("==================================\n"); 4896 pr_warn("WARNING: Nested lock was not taken\n"); 4897 print_kernel_ident(); 4898 pr_warn("----------------------------------\n"); 4899 4900 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4901 print_lock(hlock); 4902 4903 pr_warn("\nbut this task is not holding:\n"); 4904 pr_warn("%s\n", hlock->nest_lock->name); 4905 4906 pr_warn("\nstack backtrace:\n"); 4907 dump_stack(); 4908 4909 pr_warn("\nother info that might help us debug this:\n"); 4910 lockdep_print_held_locks(curr); 4911 4912 pr_warn("\nstack backtrace:\n"); 4913 dump_stack(); 4914 } 4915 4916 static int __lock_is_held(const struct lockdep_map *lock, int read); 4917 4918 /* 4919 * This gets called for every mutex_lock*()/spin_lock*() operation. 4920 * We maintain the dependency maps and validate the locking attempt: 4921 * 4922 * The callers must make sure that IRQs are disabled before calling it, 4923 * otherwise we could get an interrupt which would want to take locks, 4924 * which would end up in lockdep again. 4925 */ 4926 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4927 int trylock, int read, int check, int hardirqs_off, 4928 struct lockdep_map *nest_lock, unsigned long ip, 4929 int references, int pin_count, int sync) 4930 { 4931 struct task_struct *curr = current; 4932 struct lock_class *class = NULL; 4933 struct held_lock *hlock; 4934 unsigned int depth; 4935 int chain_head = 0; 4936 int class_idx; 4937 u64 chain_key; 4938 4939 if (unlikely(!debug_locks)) 4940 return 0; 4941 4942 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4943 check = 0; 4944 4945 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4946 class = lock->class_cache[subclass]; 4947 /* 4948 * Not cached? 4949 */ 4950 if (unlikely(!class)) { 4951 class = register_lock_class(lock, subclass, 0); 4952 if (!class) 4953 return 0; 4954 } 4955 4956 debug_class_ops_inc(class); 4957 4958 if (very_verbose(class)) { 4959 printk("\nacquire class [%px] %s", class->key, class->name); 4960 if (class->name_version > 1) 4961 printk(KERN_CONT "#%d", class->name_version); 4962 printk(KERN_CONT "\n"); 4963 dump_stack(); 4964 } 4965 4966 /* 4967 * Add the lock to the list of currently held locks. 4968 * (we dont increase the depth just yet, up until the 4969 * dependency checks are done) 4970 */ 4971 depth = curr->lockdep_depth; 4972 /* 4973 * Ran out of static storage for our per-task lock stack again have we? 4974 */ 4975 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4976 return 0; 4977 4978 class_idx = class - lock_classes; 4979 4980 if (depth && !sync) { 4981 /* we're holding locks and the new held lock is not a sync */ 4982 hlock = curr->held_locks + depth - 1; 4983 if (hlock->class_idx == class_idx && nest_lock) { 4984 if (!references) 4985 references++; 4986 4987 if (!hlock->references) 4988 hlock->references++; 4989 4990 hlock->references += references; 4991 4992 /* Overflow */ 4993 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4994 return 0; 4995 4996 return 2; 4997 } 4998 } 4999 5000 hlock = curr->held_locks + depth; 5001 /* 5002 * Plain impossible, we just registered it and checked it weren't no 5003 * NULL like.. I bet this mushroom I ate was good! 5004 */ 5005 if (DEBUG_LOCKS_WARN_ON(!class)) 5006 return 0; 5007 hlock->class_idx = class_idx; 5008 hlock->acquire_ip = ip; 5009 hlock->instance = lock; 5010 hlock->nest_lock = nest_lock; 5011 hlock->irq_context = task_irq_context(curr); 5012 hlock->trylock = trylock; 5013 hlock->read = read; 5014 hlock->check = check; 5015 hlock->sync = !!sync; 5016 hlock->hardirqs_off = !!hardirqs_off; 5017 hlock->references = references; 5018 #ifdef CONFIG_LOCK_STAT 5019 hlock->waittime_stamp = 0; 5020 hlock->holdtime_stamp = lockstat_clock(); 5021 #endif 5022 hlock->pin_count = pin_count; 5023 5024 if (check_wait_context(curr, hlock)) 5025 return 0; 5026 5027 /* Initialize the lock usage bit */ 5028 if (!mark_usage(curr, hlock, check)) 5029 return 0; 5030 5031 /* 5032 * Calculate the chain hash: it's the combined hash of all the 5033 * lock keys along the dependency chain. We save the hash value 5034 * at every step so that we can get the current hash easily 5035 * after unlock. The chain hash is then used to cache dependency 5036 * results. 5037 * 5038 * The 'key ID' is what is the most compact key value to drive 5039 * the hash, not class->key. 5040 */ 5041 /* 5042 * Whoops, we did it again.. class_idx is invalid. 5043 */ 5044 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5045 return 0; 5046 5047 chain_key = curr->curr_chain_key; 5048 if (!depth) { 5049 /* 5050 * How can we have a chain hash when we ain't got no keys?! 5051 */ 5052 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5053 return 0; 5054 chain_head = 1; 5055 } 5056 5057 hlock->prev_chain_key = chain_key; 5058 if (separate_irq_context(curr, hlock)) { 5059 chain_key = INITIAL_CHAIN_KEY; 5060 chain_head = 1; 5061 } 5062 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5063 5064 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5065 print_lock_nested_lock_not_held(curr, hlock); 5066 return 0; 5067 } 5068 5069 if (!debug_locks_silent) { 5070 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5071 WARN_ON_ONCE(!hlock_class(hlock)->key); 5072 } 5073 5074 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5075 return 0; 5076 5077 /* For lock_sync(), we are done here since no actual critical section */ 5078 if (hlock->sync) 5079 return 1; 5080 5081 curr->curr_chain_key = chain_key; 5082 curr->lockdep_depth++; 5083 check_chain_key(curr); 5084 #ifdef CONFIG_DEBUG_LOCKDEP 5085 if (unlikely(!debug_locks)) 5086 return 0; 5087 #endif 5088 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5089 debug_locks_off(); 5090 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5091 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5092 curr->lockdep_depth, MAX_LOCK_DEPTH); 5093 5094 lockdep_print_held_locks(current); 5095 debug_show_all_locks(); 5096 dump_stack(); 5097 5098 return 0; 5099 } 5100 5101 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5102 max_lockdep_depth = curr->lockdep_depth; 5103 5104 return 1; 5105 } 5106 5107 static void print_unlock_imbalance_bug(struct task_struct *curr, 5108 struct lockdep_map *lock, 5109 unsigned long ip) 5110 { 5111 if (!debug_locks_off()) 5112 return; 5113 if (debug_locks_silent) 5114 return; 5115 5116 pr_warn("\n"); 5117 pr_warn("=====================================\n"); 5118 pr_warn("WARNING: bad unlock balance detected!\n"); 5119 print_kernel_ident(); 5120 pr_warn("-------------------------------------\n"); 5121 pr_warn("%s/%d is trying to release lock (", 5122 curr->comm, task_pid_nr(curr)); 5123 print_lockdep_cache(lock); 5124 pr_cont(") at:\n"); 5125 print_ip_sym(KERN_WARNING, ip); 5126 pr_warn("but there are no more locks to release!\n"); 5127 pr_warn("\nother info that might help us debug this:\n"); 5128 lockdep_print_held_locks(curr); 5129 5130 pr_warn("\nstack backtrace:\n"); 5131 dump_stack(); 5132 } 5133 5134 static noinstr int match_held_lock(const struct held_lock *hlock, 5135 const struct lockdep_map *lock) 5136 { 5137 if (hlock->instance == lock) 5138 return 1; 5139 5140 if (hlock->references) { 5141 const struct lock_class *class = lock->class_cache[0]; 5142 5143 if (!class) 5144 class = look_up_lock_class(lock, 0); 5145 5146 /* 5147 * If look_up_lock_class() failed to find a class, we're trying 5148 * to test if we hold a lock that has never yet been acquired. 5149 * Clearly if the lock hasn't been acquired _ever_, we're not 5150 * holding it either, so report failure. 5151 */ 5152 if (!class) 5153 return 0; 5154 5155 /* 5156 * References, but not a lock we're actually ref-counting? 5157 * State got messed up, follow the sites that change ->references 5158 * and try to make sense of it. 5159 */ 5160 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5161 return 0; 5162 5163 if (hlock->class_idx == class - lock_classes) 5164 return 1; 5165 } 5166 5167 return 0; 5168 } 5169 5170 /* @depth must not be zero */ 5171 static struct held_lock *find_held_lock(struct task_struct *curr, 5172 struct lockdep_map *lock, 5173 unsigned int depth, int *idx) 5174 { 5175 struct held_lock *ret, *hlock, *prev_hlock; 5176 int i; 5177 5178 i = depth - 1; 5179 hlock = curr->held_locks + i; 5180 ret = hlock; 5181 if (match_held_lock(hlock, lock)) 5182 goto out; 5183 5184 ret = NULL; 5185 for (i--, prev_hlock = hlock--; 5186 i >= 0; 5187 i--, prev_hlock = hlock--) { 5188 /* 5189 * We must not cross into another context: 5190 */ 5191 if (prev_hlock->irq_context != hlock->irq_context) { 5192 ret = NULL; 5193 break; 5194 } 5195 if (match_held_lock(hlock, lock)) { 5196 ret = hlock; 5197 break; 5198 } 5199 } 5200 5201 out: 5202 *idx = i; 5203 return ret; 5204 } 5205 5206 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5207 int idx, unsigned int *merged) 5208 { 5209 struct held_lock *hlock; 5210 int first_idx = idx; 5211 5212 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5213 return 0; 5214 5215 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5216 switch (__lock_acquire(hlock->instance, 5217 hlock_class(hlock)->subclass, 5218 hlock->trylock, 5219 hlock->read, hlock->check, 5220 hlock->hardirqs_off, 5221 hlock->nest_lock, hlock->acquire_ip, 5222 hlock->references, hlock->pin_count, 0)) { 5223 case 0: 5224 return 1; 5225 case 1: 5226 break; 5227 case 2: 5228 *merged += (idx == first_idx); 5229 break; 5230 default: 5231 WARN_ON(1); 5232 return 0; 5233 } 5234 } 5235 return 0; 5236 } 5237 5238 static int 5239 __lock_set_class(struct lockdep_map *lock, const char *name, 5240 struct lock_class_key *key, unsigned int subclass, 5241 unsigned long ip) 5242 { 5243 struct task_struct *curr = current; 5244 unsigned int depth, merged = 0; 5245 struct held_lock *hlock; 5246 struct lock_class *class; 5247 int i; 5248 5249 if (unlikely(!debug_locks)) 5250 return 0; 5251 5252 depth = curr->lockdep_depth; 5253 /* 5254 * This function is about (re)setting the class of a held lock, 5255 * yet we're not actually holding any locks. Naughty user! 5256 */ 5257 if (DEBUG_LOCKS_WARN_ON(!depth)) 5258 return 0; 5259 5260 hlock = find_held_lock(curr, lock, depth, &i); 5261 if (!hlock) { 5262 print_unlock_imbalance_bug(curr, lock, ip); 5263 return 0; 5264 } 5265 5266 lockdep_init_map_type(lock, name, key, 0, 5267 lock->wait_type_inner, 5268 lock->wait_type_outer, 5269 lock->lock_type); 5270 class = register_lock_class(lock, subclass, 0); 5271 hlock->class_idx = class - lock_classes; 5272 5273 curr->lockdep_depth = i; 5274 curr->curr_chain_key = hlock->prev_chain_key; 5275 5276 if (reacquire_held_locks(curr, depth, i, &merged)) 5277 return 0; 5278 5279 /* 5280 * I took it apart and put it back together again, except now I have 5281 * these 'spare' parts.. where shall I put them. 5282 */ 5283 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5284 return 0; 5285 return 1; 5286 } 5287 5288 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5289 { 5290 struct task_struct *curr = current; 5291 unsigned int depth, merged = 0; 5292 struct held_lock *hlock; 5293 int i; 5294 5295 if (unlikely(!debug_locks)) 5296 return 0; 5297 5298 depth = curr->lockdep_depth; 5299 /* 5300 * This function is about (re)setting the class of a held lock, 5301 * yet we're not actually holding any locks. Naughty user! 5302 */ 5303 if (DEBUG_LOCKS_WARN_ON(!depth)) 5304 return 0; 5305 5306 hlock = find_held_lock(curr, lock, depth, &i); 5307 if (!hlock) { 5308 print_unlock_imbalance_bug(curr, lock, ip); 5309 return 0; 5310 } 5311 5312 curr->lockdep_depth = i; 5313 curr->curr_chain_key = hlock->prev_chain_key; 5314 5315 WARN(hlock->read, "downgrading a read lock"); 5316 hlock->read = 1; 5317 hlock->acquire_ip = ip; 5318 5319 if (reacquire_held_locks(curr, depth, i, &merged)) 5320 return 0; 5321 5322 /* Merging can't happen with unchanged classes.. */ 5323 if (DEBUG_LOCKS_WARN_ON(merged)) 5324 return 0; 5325 5326 /* 5327 * I took it apart and put it back together again, except now I have 5328 * these 'spare' parts.. where shall I put them. 5329 */ 5330 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5331 return 0; 5332 5333 return 1; 5334 } 5335 5336 /* 5337 * Remove the lock from the list of currently held locks - this gets 5338 * called on mutex_unlock()/spin_unlock*() (or on a failed 5339 * mutex_lock_interruptible()). 5340 */ 5341 static int 5342 __lock_release(struct lockdep_map *lock, unsigned long ip) 5343 { 5344 struct task_struct *curr = current; 5345 unsigned int depth, merged = 1; 5346 struct held_lock *hlock; 5347 int i; 5348 5349 if (unlikely(!debug_locks)) 5350 return 0; 5351 5352 depth = curr->lockdep_depth; 5353 /* 5354 * So we're all set to release this lock.. wait what lock? We don't 5355 * own any locks, you've been drinking again? 5356 */ 5357 if (depth <= 0) { 5358 print_unlock_imbalance_bug(curr, lock, ip); 5359 return 0; 5360 } 5361 5362 /* 5363 * Check whether the lock exists in the current stack 5364 * of held locks: 5365 */ 5366 hlock = find_held_lock(curr, lock, depth, &i); 5367 if (!hlock) { 5368 print_unlock_imbalance_bug(curr, lock, ip); 5369 return 0; 5370 } 5371 5372 if (hlock->instance == lock) 5373 lock_release_holdtime(hlock); 5374 5375 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5376 5377 if (hlock->references) { 5378 hlock->references--; 5379 if (hlock->references) { 5380 /* 5381 * We had, and after removing one, still have 5382 * references, the current lock stack is still 5383 * valid. We're done! 5384 */ 5385 return 1; 5386 } 5387 } 5388 5389 /* 5390 * We have the right lock to unlock, 'hlock' points to it. 5391 * Now we remove it from the stack, and add back the other 5392 * entries (if any), recalculating the hash along the way: 5393 */ 5394 5395 curr->lockdep_depth = i; 5396 curr->curr_chain_key = hlock->prev_chain_key; 5397 5398 /* 5399 * The most likely case is when the unlock is on the innermost 5400 * lock. In this case, we are done! 5401 */ 5402 if (i == depth-1) 5403 return 1; 5404 5405 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5406 return 0; 5407 5408 /* 5409 * We had N bottles of beer on the wall, we drank one, but now 5410 * there's not N-1 bottles of beer left on the wall... 5411 * Pouring two of the bottles together is acceptable. 5412 */ 5413 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5414 5415 /* 5416 * Since reacquire_held_locks() would have called check_chain_key() 5417 * indirectly via __lock_acquire(), we don't need to do it again 5418 * on return. 5419 */ 5420 return 0; 5421 } 5422 5423 static __always_inline 5424 int __lock_is_held(const struct lockdep_map *lock, int read) 5425 { 5426 struct task_struct *curr = current; 5427 int i; 5428 5429 for (i = 0; i < curr->lockdep_depth; i++) { 5430 struct held_lock *hlock = curr->held_locks + i; 5431 5432 if (match_held_lock(hlock, lock)) { 5433 if (read == -1 || !!hlock->read == read) 5434 return LOCK_STATE_HELD; 5435 5436 return LOCK_STATE_NOT_HELD; 5437 } 5438 } 5439 5440 return LOCK_STATE_NOT_HELD; 5441 } 5442 5443 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5444 { 5445 struct pin_cookie cookie = NIL_COOKIE; 5446 struct task_struct *curr = current; 5447 int i; 5448 5449 if (unlikely(!debug_locks)) 5450 return cookie; 5451 5452 for (i = 0; i < curr->lockdep_depth; i++) { 5453 struct held_lock *hlock = curr->held_locks + i; 5454 5455 if (match_held_lock(hlock, lock)) { 5456 /* 5457 * Grab 16bits of randomness; this is sufficient to not 5458 * be guessable and still allows some pin nesting in 5459 * our u32 pin_count. 5460 */ 5461 cookie.val = 1 + (sched_clock() & 0xffff); 5462 hlock->pin_count += cookie.val; 5463 return cookie; 5464 } 5465 } 5466 5467 WARN(1, "pinning an unheld lock\n"); 5468 return cookie; 5469 } 5470 5471 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5472 { 5473 struct task_struct *curr = current; 5474 int i; 5475 5476 if (unlikely(!debug_locks)) 5477 return; 5478 5479 for (i = 0; i < curr->lockdep_depth; i++) { 5480 struct held_lock *hlock = curr->held_locks + i; 5481 5482 if (match_held_lock(hlock, lock)) { 5483 hlock->pin_count += cookie.val; 5484 return; 5485 } 5486 } 5487 5488 WARN(1, "pinning an unheld lock\n"); 5489 } 5490 5491 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5492 { 5493 struct task_struct *curr = current; 5494 int i; 5495 5496 if (unlikely(!debug_locks)) 5497 return; 5498 5499 for (i = 0; i < curr->lockdep_depth; i++) { 5500 struct held_lock *hlock = curr->held_locks + i; 5501 5502 if (match_held_lock(hlock, lock)) { 5503 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5504 return; 5505 5506 hlock->pin_count -= cookie.val; 5507 5508 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5509 hlock->pin_count = 0; 5510 5511 return; 5512 } 5513 } 5514 5515 WARN(1, "unpinning an unheld lock\n"); 5516 } 5517 5518 /* 5519 * Check whether we follow the irq-flags state precisely: 5520 */ 5521 static noinstr void check_flags(unsigned long flags) 5522 { 5523 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5524 if (!debug_locks) 5525 return; 5526 5527 /* Get the warning out.. */ 5528 instrumentation_begin(); 5529 5530 if (irqs_disabled_flags(flags)) { 5531 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5532 printk("possible reason: unannotated irqs-off.\n"); 5533 } 5534 } else { 5535 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5536 printk("possible reason: unannotated irqs-on.\n"); 5537 } 5538 } 5539 5540 #ifndef CONFIG_PREEMPT_RT 5541 /* 5542 * We dont accurately track softirq state in e.g. 5543 * hardirq contexts (such as on 4KSTACKS), so only 5544 * check if not in hardirq contexts: 5545 */ 5546 if (!hardirq_count()) { 5547 if (softirq_count()) { 5548 /* like the above, but with softirqs */ 5549 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5550 } else { 5551 /* lick the above, does it taste good? */ 5552 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5553 } 5554 } 5555 #endif 5556 5557 if (!debug_locks) 5558 print_irqtrace_events(current); 5559 5560 instrumentation_end(); 5561 #endif 5562 } 5563 5564 void lock_set_class(struct lockdep_map *lock, const char *name, 5565 struct lock_class_key *key, unsigned int subclass, 5566 unsigned long ip) 5567 { 5568 unsigned long flags; 5569 5570 if (unlikely(!lockdep_enabled())) 5571 return; 5572 5573 raw_local_irq_save(flags); 5574 lockdep_recursion_inc(); 5575 check_flags(flags); 5576 if (__lock_set_class(lock, name, key, subclass, ip)) 5577 check_chain_key(current); 5578 lockdep_recursion_finish(); 5579 raw_local_irq_restore(flags); 5580 } 5581 EXPORT_SYMBOL_GPL(lock_set_class); 5582 5583 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5584 { 5585 unsigned long flags; 5586 5587 if (unlikely(!lockdep_enabled())) 5588 return; 5589 5590 raw_local_irq_save(flags); 5591 lockdep_recursion_inc(); 5592 check_flags(flags); 5593 if (__lock_downgrade(lock, ip)) 5594 check_chain_key(current); 5595 lockdep_recursion_finish(); 5596 raw_local_irq_restore(flags); 5597 } 5598 EXPORT_SYMBOL_GPL(lock_downgrade); 5599 5600 /* NMI context !!! */ 5601 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5602 { 5603 #ifdef CONFIG_PROVE_LOCKING 5604 struct lock_class *class = look_up_lock_class(lock, subclass); 5605 unsigned long mask = LOCKF_USED; 5606 5607 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5608 if (!class) 5609 return; 5610 5611 /* 5612 * READ locks only conflict with USED, such that if we only ever use 5613 * READ locks, there is no deadlock possible -- RCU. 5614 */ 5615 if (!hlock->read) 5616 mask |= LOCKF_USED_READ; 5617 5618 if (!(class->usage_mask & mask)) 5619 return; 5620 5621 hlock->class_idx = class - lock_classes; 5622 5623 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5624 #endif 5625 } 5626 5627 static bool lockdep_nmi(void) 5628 { 5629 if (raw_cpu_read(lockdep_recursion)) 5630 return false; 5631 5632 if (!in_nmi()) 5633 return false; 5634 5635 return true; 5636 } 5637 5638 /* 5639 * read_lock() is recursive if: 5640 * 1. We force lockdep think this way in selftests or 5641 * 2. The implementation is not queued read/write lock or 5642 * 3. The locker is at an in_interrupt() context. 5643 */ 5644 bool read_lock_is_recursive(void) 5645 { 5646 return force_read_lock_recursive || 5647 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5648 in_interrupt(); 5649 } 5650 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5651 5652 /* 5653 * We are not always called with irqs disabled - do that here, 5654 * and also avoid lockdep recursion: 5655 */ 5656 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5657 int trylock, int read, int check, 5658 struct lockdep_map *nest_lock, unsigned long ip) 5659 { 5660 unsigned long flags; 5661 5662 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5663 5664 if (!debug_locks) 5665 return; 5666 5667 if (unlikely(!lockdep_enabled())) { 5668 /* XXX allow trylock from NMI ?!? */ 5669 if (lockdep_nmi() && !trylock) { 5670 struct held_lock hlock; 5671 5672 hlock.acquire_ip = ip; 5673 hlock.instance = lock; 5674 hlock.nest_lock = nest_lock; 5675 hlock.irq_context = 2; // XXX 5676 hlock.trylock = trylock; 5677 hlock.read = read; 5678 hlock.check = check; 5679 hlock.hardirqs_off = true; 5680 hlock.references = 0; 5681 5682 verify_lock_unused(lock, &hlock, subclass); 5683 } 5684 return; 5685 } 5686 5687 raw_local_irq_save(flags); 5688 check_flags(flags); 5689 5690 lockdep_recursion_inc(); 5691 __lock_acquire(lock, subclass, trylock, read, check, 5692 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 0); 5693 lockdep_recursion_finish(); 5694 raw_local_irq_restore(flags); 5695 } 5696 EXPORT_SYMBOL_GPL(lock_acquire); 5697 5698 void lock_release(struct lockdep_map *lock, unsigned long ip) 5699 { 5700 unsigned long flags; 5701 5702 trace_lock_release(lock, ip); 5703 5704 if (unlikely(!lockdep_enabled())) 5705 return; 5706 5707 raw_local_irq_save(flags); 5708 check_flags(flags); 5709 5710 lockdep_recursion_inc(); 5711 if (__lock_release(lock, ip)) 5712 check_chain_key(current); 5713 lockdep_recursion_finish(); 5714 raw_local_irq_restore(flags); 5715 } 5716 EXPORT_SYMBOL_GPL(lock_release); 5717 5718 /* 5719 * lock_sync() - A special annotation for synchronize_{s,}rcu()-like API. 5720 * 5721 * No actual critical section is created by the APIs annotated with this: these 5722 * APIs are used to wait for one or multiple critical sections (on other CPUs 5723 * or threads), and it means that calling these APIs inside these critical 5724 * sections is potential deadlock. 5725 */ 5726 void lock_sync(struct lockdep_map *lock, unsigned subclass, int read, 5727 int check, struct lockdep_map *nest_lock, unsigned long ip) 5728 { 5729 unsigned long flags; 5730 5731 if (unlikely(!lockdep_enabled())) 5732 return; 5733 5734 raw_local_irq_save(flags); 5735 check_flags(flags); 5736 5737 lockdep_recursion_inc(); 5738 __lock_acquire(lock, subclass, 0, read, check, 5739 irqs_disabled_flags(flags), nest_lock, ip, 0, 0, 1); 5740 check_chain_key(current); 5741 lockdep_recursion_finish(); 5742 raw_local_irq_restore(flags); 5743 } 5744 EXPORT_SYMBOL_GPL(lock_sync); 5745 5746 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5747 { 5748 unsigned long flags; 5749 int ret = LOCK_STATE_NOT_HELD; 5750 5751 /* 5752 * Avoid false negative lockdep_assert_held() and 5753 * lockdep_assert_not_held(). 5754 */ 5755 if (unlikely(!lockdep_enabled())) 5756 return LOCK_STATE_UNKNOWN; 5757 5758 raw_local_irq_save(flags); 5759 check_flags(flags); 5760 5761 lockdep_recursion_inc(); 5762 ret = __lock_is_held(lock, read); 5763 lockdep_recursion_finish(); 5764 raw_local_irq_restore(flags); 5765 5766 return ret; 5767 } 5768 EXPORT_SYMBOL_GPL(lock_is_held_type); 5769 NOKPROBE_SYMBOL(lock_is_held_type); 5770 5771 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5772 { 5773 struct pin_cookie cookie = NIL_COOKIE; 5774 unsigned long flags; 5775 5776 if (unlikely(!lockdep_enabled())) 5777 return cookie; 5778 5779 raw_local_irq_save(flags); 5780 check_flags(flags); 5781 5782 lockdep_recursion_inc(); 5783 cookie = __lock_pin_lock(lock); 5784 lockdep_recursion_finish(); 5785 raw_local_irq_restore(flags); 5786 5787 return cookie; 5788 } 5789 EXPORT_SYMBOL_GPL(lock_pin_lock); 5790 5791 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5792 { 5793 unsigned long flags; 5794 5795 if (unlikely(!lockdep_enabled())) 5796 return; 5797 5798 raw_local_irq_save(flags); 5799 check_flags(flags); 5800 5801 lockdep_recursion_inc(); 5802 __lock_repin_lock(lock, cookie); 5803 lockdep_recursion_finish(); 5804 raw_local_irq_restore(flags); 5805 } 5806 EXPORT_SYMBOL_GPL(lock_repin_lock); 5807 5808 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5809 { 5810 unsigned long flags; 5811 5812 if (unlikely(!lockdep_enabled())) 5813 return; 5814 5815 raw_local_irq_save(flags); 5816 check_flags(flags); 5817 5818 lockdep_recursion_inc(); 5819 __lock_unpin_lock(lock, cookie); 5820 lockdep_recursion_finish(); 5821 raw_local_irq_restore(flags); 5822 } 5823 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5824 5825 #ifdef CONFIG_LOCK_STAT 5826 static void print_lock_contention_bug(struct task_struct *curr, 5827 struct lockdep_map *lock, 5828 unsigned long ip) 5829 { 5830 if (!debug_locks_off()) 5831 return; 5832 if (debug_locks_silent) 5833 return; 5834 5835 pr_warn("\n"); 5836 pr_warn("=================================\n"); 5837 pr_warn("WARNING: bad contention detected!\n"); 5838 print_kernel_ident(); 5839 pr_warn("---------------------------------\n"); 5840 pr_warn("%s/%d is trying to contend lock (", 5841 curr->comm, task_pid_nr(curr)); 5842 print_lockdep_cache(lock); 5843 pr_cont(") at:\n"); 5844 print_ip_sym(KERN_WARNING, ip); 5845 pr_warn("but there are no locks held!\n"); 5846 pr_warn("\nother info that might help us debug this:\n"); 5847 lockdep_print_held_locks(curr); 5848 5849 pr_warn("\nstack backtrace:\n"); 5850 dump_stack(); 5851 } 5852 5853 static void 5854 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5855 { 5856 struct task_struct *curr = current; 5857 struct held_lock *hlock; 5858 struct lock_class_stats *stats; 5859 unsigned int depth; 5860 int i, contention_point, contending_point; 5861 5862 depth = curr->lockdep_depth; 5863 /* 5864 * Whee, we contended on this lock, except it seems we're not 5865 * actually trying to acquire anything much at all.. 5866 */ 5867 if (DEBUG_LOCKS_WARN_ON(!depth)) 5868 return; 5869 5870 hlock = find_held_lock(curr, lock, depth, &i); 5871 if (!hlock) { 5872 print_lock_contention_bug(curr, lock, ip); 5873 return; 5874 } 5875 5876 if (hlock->instance != lock) 5877 return; 5878 5879 hlock->waittime_stamp = lockstat_clock(); 5880 5881 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5882 contending_point = lock_point(hlock_class(hlock)->contending_point, 5883 lock->ip); 5884 5885 stats = get_lock_stats(hlock_class(hlock)); 5886 if (contention_point < LOCKSTAT_POINTS) 5887 stats->contention_point[contention_point]++; 5888 if (contending_point < LOCKSTAT_POINTS) 5889 stats->contending_point[contending_point]++; 5890 if (lock->cpu != smp_processor_id()) 5891 stats->bounces[bounce_contended + !!hlock->read]++; 5892 } 5893 5894 static void 5895 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5896 { 5897 struct task_struct *curr = current; 5898 struct held_lock *hlock; 5899 struct lock_class_stats *stats; 5900 unsigned int depth; 5901 u64 now, waittime = 0; 5902 int i, cpu; 5903 5904 depth = curr->lockdep_depth; 5905 /* 5906 * Yay, we acquired ownership of this lock we didn't try to 5907 * acquire, how the heck did that happen? 5908 */ 5909 if (DEBUG_LOCKS_WARN_ON(!depth)) 5910 return; 5911 5912 hlock = find_held_lock(curr, lock, depth, &i); 5913 if (!hlock) { 5914 print_lock_contention_bug(curr, lock, _RET_IP_); 5915 return; 5916 } 5917 5918 if (hlock->instance != lock) 5919 return; 5920 5921 cpu = smp_processor_id(); 5922 if (hlock->waittime_stamp) { 5923 now = lockstat_clock(); 5924 waittime = now - hlock->waittime_stamp; 5925 hlock->holdtime_stamp = now; 5926 } 5927 5928 stats = get_lock_stats(hlock_class(hlock)); 5929 if (waittime) { 5930 if (hlock->read) 5931 lock_time_inc(&stats->read_waittime, waittime); 5932 else 5933 lock_time_inc(&stats->write_waittime, waittime); 5934 } 5935 if (lock->cpu != cpu) 5936 stats->bounces[bounce_acquired + !!hlock->read]++; 5937 5938 lock->cpu = cpu; 5939 lock->ip = ip; 5940 } 5941 5942 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5943 { 5944 unsigned long flags; 5945 5946 trace_lock_contended(lock, ip); 5947 5948 if (unlikely(!lock_stat || !lockdep_enabled())) 5949 return; 5950 5951 raw_local_irq_save(flags); 5952 check_flags(flags); 5953 lockdep_recursion_inc(); 5954 __lock_contended(lock, ip); 5955 lockdep_recursion_finish(); 5956 raw_local_irq_restore(flags); 5957 } 5958 EXPORT_SYMBOL_GPL(lock_contended); 5959 5960 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5961 { 5962 unsigned long flags; 5963 5964 trace_lock_acquired(lock, ip); 5965 5966 if (unlikely(!lock_stat || !lockdep_enabled())) 5967 return; 5968 5969 raw_local_irq_save(flags); 5970 check_flags(flags); 5971 lockdep_recursion_inc(); 5972 __lock_acquired(lock, ip); 5973 lockdep_recursion_finish(); 5974 raw_local_irq_restore(flags); 5975 } 5976 EXPORT_SYMBOL_GPL(lock_acquired); 5977 #endif 5978 5979 /* 5980 * Used by the testsuite, sanitize the validator state 5981 * after a simulated failure: 5982 */ 5983 5984 void lockdep_reset(void) 5985 { 5986 unsigned long flags; 5987 int i; 5988 5989 raw_local_irq_save(flags); 5990 lockdep_init_task(current); 5991 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5992 nr_hardirq_chains = 0; 5993 nr_softirq_chains = 0; 5994 nr_process_chains = 0; 5995 debug_locks = 1; 5996 for (i = 0; i < CHAINHASH_SIZE; i++) 5997 INIT_HLIST_HEAD(chainhash_table + i); 5998 raw_local_irq_restore(flags); 5999 } 6000 6001 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 6002 static void remove_class_from_lock_chain(struct pending_free *pf, 6003 struct lock_chain *chain, 6004 struct lock_class *class) 6005 { 6006 #ifdef CONFIG_PROVE_LOCKING 6007 int i; 6008 6009 for (i = chain->base; i < chain->base + chain->depth; i++) { 6010 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 6011 continue; 6012 /* 6013 * Each lock class occurs at most once in a lock chain so once 6014 * we found a match we can break out of this loop. 6015 */ 6016 goto free_lock_chain; 6017 } 6018 /* Since the chain has not been modified, return. */ 6019 return; 6020 6021 free_lock_chain: 6022 free_chain_hlocks(chain->base, chain->depth); 6023 /* Overwrite the chain key for concurrent RCU readers. */ 6024 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 6025 dec_chains(chain->irq_context); 6026 6027 /* 6028 * Note: calling hlist_del_rcu() from inside a 6029 * hlist_for_each_entry_rcu() loop is safe. 6030 */ 6031 hlist_del_rcu(&chain->entry); 6032 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 6033 nr_zapped_lock_chains++; 6034 #endif 6035 } 6036 6037 /* Must be called with the graph lock held. */ 6038 static void remove_class_from_lock_chains(struct pending_free *pf, 6039 struct lock_class *class) 6040 { 6041 struct lock_chain *chain; 6042 struct hlist_head *head; 6043 int i; 6044 6045 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 6046 head = chainhash_table + i; 6047 hlist_for_each_entry_rcu(chain, head, entry) { 6048 remove_class_from_lock_chain(pf, chain, class); 6049 } 6050 } 6051 } 6052 6053 /* 6054 * Remove all references to a lock class. The caller must hold the graph lock. 6055 */ 6056 static void zap_class(struct pending_free *pf, struct lock_class *class) 6057 { 6058 struct lock_list *entry; 6059 int i; 6060 6061 WARN_ON_ONCE(!class->key); 6062 6063 /* 6064 * Remove all dependencies this lock is 6065 * involved in: 6066 */ 6067 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 6068 entry = list_entries + i; 6069 if (entry->class != class && entry->links_to != class) 6070 continue; 6071 __clear_bit(i, list_entries_in_use); 6072 nr_list_entries--; 6073 list_del_rcu(&entry->entry); 6074 } 6075 if (list_empty(&class->locks_after) && 6076 list_empty(&class->locks_before)) { 6077 list_move_tail(&class->lock_entry, &pf->zapped); 6078 hlist_del_rcu(&class->hash_entry); 6079 WRITE_ONCE(class->key, NULL); 6080 WRITE_ONCE(class->name, NULL); 6081 nr_lock_classes--; 6082 __clear_bit(class - lock_classes, lock_classes_in_use); 6083 if (class - lock_classes == max_lock_class_idx) 6084 max_lock_class_idx--; 6085 } else { 6086 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6087 class->name); 6088 } 6089 6090 remove_class_from_lock_chains(pf, class); 6091 nr_zapped_classes++; 6092 } 6093 6094 static void reinit_class(struct lock_class *class) 6095 { 6096 WARN_ON_ONCE(!class->lock_entry.next); 6097 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6098 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6099 memset_startat(class, 0, key); 6100 WARN_ON_ONCE(!class->lock_entry.next); 6101 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6102 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6103 } 6104 6105 static inline int within(const void *addr, void *start, unsigned long size) 6106 { 6107 return addr >= start && addr < start + size; 6108 } 6109 6110 static bool inside_selftest(void) 6111 { 6112 return current == lockdep_selftest_task_struct; 6113 } 6114 6115 /* The caller must hold the graph lock. */ 6116 static struct pending_free *get_pending_free(void) 6117 { 6118 return delayed_free.pf + delayed_free.index; 6119 } 6120 6121 static void free_zapped_rcu(struct rcu_head *cb); 6122 6123 /* 6124 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6125 * the graph lock held. 6126 */ 6127 static void call_rcu_zapped(struct pending_free *pf) 6128 { 6129 WARN_ON_ONCE(inside_selftest()); 6130 6131 if (list_empty(&pf->zapped)) 6132 return; 6133 6134 if (delayed_free.scheduled) 6135 return; 6136 6137 delayed_free.scheduled = true; 6138 6139 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6140 delayed_free.index ^= 1; 6141 6142 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6143 } 6144 6145 /* The caller must hold the graph lock. May be called from RCU context. */ 6146 static void __free_zapped_classes(struct pending_free *pf) 6147 { 6148 struct lock_class *class; 6149 6150 check_data_structures(); 6151 6152 list_for_each_entry(class, &pf->zapped, lock_entry) 6153 reinit_class(class); 6154 6155 list_splice_init(&pf->zapped, &free_lock_classes); 6156 6157 #ifdef CONFIG_PROVE_LOCKING 6158 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6159 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6160 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6161 #endif 6162 } 6163 6164 static void free_zapped_rcu(struct rcu_head *ch) 6165 { 6166 struct pending_free *pf; 6167 unsigned long flags; 6168 6169 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6170 return; 6171 6172 raw_local_irq_save(flags); 6173 lockdep_lock(); 6174 6175 /* closed head */ 6176 pf = delayed_free.pf + (delayed_free.index ^ 1); 6177 __free_zapped_classes(pf); 6178 delayed_free.scheduled = false; 6179 6180 /* 6181 * If there's anything on the open list, close and start a new callback. 6182 */ 6183 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6184 6185 lockdep_unlock(); 6186 raw_local_irq_restore(flags); 6187 } 6188 6189 /* 6190 * Remove all lock classes from the class hash table and from the 6191 * all_lock_classes list whose key or name is in the address range [start, 6192 * start + size). Move these lock classes to the zapped_classes list. Must 6193 * be called with the graph lock held. 6194 */ 6195 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6196 unsigned long size) 6197 { 6198 struct lock_class *class; 6199 struct hlist_head *head; 6200 int i; 6201 6202 /* Unhash all classes that were created by a module. */ 6203 for (i = 0; i < CLASSHASH_SIZE; i++) { 6204 head = classhash_table + i; 6205 hlist_for_each_entry_rcu(class, head, hash_entry) { 6206 if (!within(class->key, start, size) && 6207 !within(class->name, start, size)) 6208 continue; 6209 zap_class(pf, class); 6210 } 6211 } 6212 } 6213 6214 /* 6215 * Used in module.c to remove lock classes from memory that is going to be 6216 * freed; and possibly re-used by other modules. 6217 * 6218 * We will have had one synchronize_rcu() before getting here, so we're 6219 * guaranteed nobody will look up these exact classes -- they're properly dead 6220 * but still allocated. 6221 */ 6222 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6223 { 6224 struct pending_free *pf; 6225 unsigned long flags; 6226 6227 init_data_structures_once(); 6228 6229 raw_local_irq_save(flags); 6230 lockdep_lock(); 6231 pf = get_pending_free(); 6232 __lockdep_free_key_range(pf, start, size); 6233 call_rcu_zapped(pf); 6234 lockdep_unlock(); 6235 raw_local_irq_restore(flags); 6236 6237 /* 6238 * Wait for any possible iterators from look_up_lock_class() to pass 6239 * before continuing to free the memory they refer to. 6240 */ 6241 synchronize_rcu(); 6242 } 6243 6244 /* 6245 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6246 * Ignores debug_locks. Must only be used by the lockdep selftests. 6247 */ 6248 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6249 { 6250 struct pending_free *pf = delayed_free.pf; 6251 unsigned long flags; 6252 6253 init_data_structures_once(); 6254 6255 raw_local_irq_save(flags); 6256 lockdep_lock(); 6257 __lockdep_free_key_range(pf, start, size); 6258 __free_zapped_classes(pf); 6259 lockdep_unlock(); 6260 raw_local_irq_restore(flags); 6261 } 6262 6263 void lockdep_free_key_range(void *start, unsigned long size) 6264 { 6265 init_data_structures_once(); 6266 6267 if (inside_selftest()) 6268 lockdep_free_key_range_imm(start, size); 6269 else 6270 lockdep_free_key_range_reg(start, size); 6271 } 6272 6273 /* 6274 * Check whether any element of the @lock->class_cache[] array refers to a 6275 * registered lock class. The caller must hold either the graph lock or the 6276 * RCU read lock. 6277 */ 6278 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6279 { 6280 struct lock_class *class; 6281 struct hlist_head *head; 6282 int i, j; 6283 6284 for (i = 0; i < CLASSHASH_SIZE; i++) { 6285 head = classhash_table + i; 6286 hlist_for_each_entry_rcu(class, head, hash_entry) { 6287 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6288 if (lock->class_cache[j] == class) 6289 return true; 6290 } 6291 } 6292 return false; 6293 } 6294 6295 /* The caller must hold the graph lock. Does not sleep. */ 6296 static void __lockdep_reset_lock(struct pending_free *pf, 6297 struct lockdep_map *lock) 6298 { 6299 struct lock_class *class; 6300 int j; 6301 6302 /* 6303 * Remove all classes this lock might have: 6304 */ 6305 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6306 /* 6307 * If the class exists we look it up and zap it: 6308 */ 6309 class = look_up_lock_class(lock, j); 6310 if (class) 6311 zap_class(pf, class); 6312 } 6313 /* 6314 * Debug check: in the end all mapped classes should 6315 * be gone. 6316 */ 6317 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6318 debug_locks_off(); 6319 } 6320 6321 /* 6322 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6323 * released data structures from RCU context. 6324 */ 6325 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6326 { 6327 struct pending_free *pf; 6328 unsigned long flags; 6329 int locked; 6330 6331 raw_local_irq_save(flags); 6332 locked = graph_lock(); 6333 if (!locked) 6334 goto out_irq; 6335 6336 pf = get_pending_free(); 6337 __lockdep_reset_lock(pf, lock); 6338 call_rcu_zapped(pf); 6339 6340 graph_unlock(); 6341 out_irq: 6342 raw_local_irq_restore(flags); 6343 } 6344 6345 /* 6346 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6347 * lockdep selftests. 6348 */ 6349 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6350 { 6351 struct pending_free *pf = delayed_free.pf; 6352 unsigned long flags; 6353 6354 raw_local_irq_save(flags); 6355 lockdep_lock(); 6356 __lockdep_reset_lock(pf, lock); 6357 __free_zapped_classes(pf); 6358 lockdep_unlock(); 6359 raw_local_irq_restore(flags); 6360 } 6361 6362 void lockdep_reset_lock(struct lockdep_map *lock) 6363 { 6364 init_data_structures_once(); 6365 6366 if (inside_selftest()) 6367 lockdep_reset_lock_imm(lock); 6368 else 6369 lockdep_reset_lock_reg(lock); 6370 } 6371 6372 /* 6373 * Unregister a dynamically allocated key. 6374 * 6375 * Unlike lockdep_register_key(), a search is always done to find a matching 6376 * key irrespective of debug_locks to avoid potential invalid access to freed 6377 * memory in lock_class entry. 6378 */ 6379 void lockdep_unregister_key(struct lock_class_key *key) 6380 { 6381 struct hlist_head *hash_head = keyhashentry(key); 6382 struct lock_class_key *k; 6383 struct pending_free *pf; 6384 unsigned long flags; 6385 bool found = false; 6386 6387 might_sleep(); 6388 6389 if (WARN_ON_ONCE(static_obj(key))) 6390 return; 6391 6392 raw_local_irq_save(flags); 6393 lockdep_lock(); 6394 6395 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6396 if (k == key) { 6397 hlist_del_rcu(&k->hash_entry); 6398 found = true; 6399 break; 6400 } 6401 } 6402 WARN_ON_ONCE(!found && debug_locks); 6403 if (found) { 6404 pf = get_pending_free(); 6405 __lockdep_free_key_range(pf, key, 1); 6406 call_rcu_zapped(pf); 6407 } 6408 lockdep_unlock(); 6409 raw_local_irq_restore(flags); 6410 6411 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6412 synchronize_rcu(); 6413 } 6414 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6415 6416 void __init lockdep_init(void) 6417 { 6418 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6419 6420 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6421 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6422 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6423 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6424 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6425 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6426 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6427 6428 printk(" memory used by lock dependency info: %zu kB\n", 6429 (sizeof(lock_classes) + 6430 sizeof(lock_classes_in_use) + 6431 sizeof(classhash_table) + 6432 sizeof(list_entries) + 6433 sizeof(list_entries_in_use) + 6434 sizeof(chainhash_table) + 6435 sizeof(delayed_free) 6436 #ifdef CONFIG_PROVE_LOCKING 6437 + sizeof(lock_cq) 6438 + sizeof(lock_chains) 6439 + sizeof(lock_chains_in_use) 6440 + sizeof(chain_hlocks) 6441 #endif 6442 ) / 1024 6443 ); 6444 6445 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6446 printk(" memory used for stack traces: %zu kB\n", 6447 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6448 ); 6449 #endif 6450 6451 printk(" per task-struct memory footprint: %zu bytes\n", 6452 sizeof(((struct task_struct *)NULL)->held_locks)); 6453 } 6454 6455 static void 6456 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6457 const void *mem_to, struct held_lock *hlock) 6458 { 6459 if (!debug_locks_off()) 6460 return; 6461 if (debug_locks_silent) 6462 return; 6463 6464 pr_warn("\n"); 6465 pr_warn("=========================\n"); 6466 pr_warn("WARNING: held lock freed!\n"); 6467 print_kernel_ident(); 6468 pr_warn("-------------------------\n"); 6469 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6470 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6471 print_lock(hlock); 6472 lockdep_print_held_locks(curr); 6473 6474 pr_warn("\nstack backtrace:\n"); 6475 dump_stack(); 6476 } 6477 6478 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6479 const void* lock_from, unsigned long lock_len) 6480 { 6481 return lock_from + lock_len <= mem_from || 6482 mem_from + mem_len <= lock_from; 6483 } 6484 6485 /* 6486 * Called when kernel memory is freed (or unmapped), or if a lock 6487 * is destroyed or reinitialized - this code checks whether there is 6488 * any held lock in the memory range of <from> to <to>: 6489 */ 6490 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6491 { 6492 struct task_struct *curr = current; 6493 struct held_lock *hlock; 6494 unsigned long flags; 6495 int i; 6496 6497 if (unlikely(!debug_locks)) 6498 return; 6499 6500 raw_local_irq_save(flags); 6501 for (i = 0; i < curr->lockdep_depth; i++) { 6502 hlock = curr->held_locks + i; 6503 6504 if (not_in_range(mem_from, mem_len, hlock->instance, 6505 sizeof(*hlock->instance))) 6506 continue; 6507 6508 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6509 break; 6510 } 6511 raw_local_irq_restore(flags); 6512 } 6513 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6514 6515 static void print_held_locks_bug(void) 6516 { 6517 if (!debug_locks_off()) 6518 return; 6519 if (debug_locks_silent) 6520 return; 6521 6522 pr_warn("\n"); 6523 pr_warn("====================================\n"); 6524 pr_warn("WARNING: %s/%d still has locks held!\n", 6525 current->comm, task_pid_nr(current)); 6526 print_kernel_ident(); 6527 pr_warn("------------------------------------\n"); 6528 lockdep_print_held_locks(current); 6529 pr_warn("\nstack backtrace:\n"); 6530 dump_stack(); 6531 } 6532 6533 void debug_check_no_locks_held(void) 6534 { 6535 if (unlikely(current->lockdep_depth > 0)) 6536 print_held_locks_bug(); 6537 } 6538 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6539 6540 #ifdef __KERNEL__ 6541 void debug_show_all_locks(void) 6542 { 6543 struct task_struct *g, *p; 6544 6545 if (unlikely(!debug_locks)) { 6546 pr_warn("INFO: lockdep is turned off.\n"); 6547 return; 6548 } 6549 pr_warn("\nShowing all locks held in the system:\n"); 6550 6551 rcu_read_lock(); 6552 for_each_process_thread(g, p) { 6553 if (!p->lockdep_depth) 6554 continue; 6555 lockdep_print_held_locks(p); 6556 touch_nmi_watchdog(); 6557 touch_all_softlockup_watchdogs(); 6558 } 6559 rcu_read_unlock(); 6560 6561 pr_warn("\n"); 6562 pr_warn("=============================================\n\n"); 6563 } 6564 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6565 #endif 6566 6567 /* 6568 * Careful: only use this function if you are sure that 6569 * the task cannot run in parallel! 6570 */ 6571 void debug_show_held_locks(struct task_struct *task) 6572 { 6573 if (unlikely(!debug_locks)) { 6574 printk("INFO: lockdep is turned off.\n"); 6575 return; 6576 } 6577 lockdep_print_held_locks(task); 6578 } 6579 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6580 6581 asmlinkage __visible void lockdep_sys_exit(void) 6582 { 6583 struct task_struct *curr = current; 6584 6585 if (unlikely(curr->lockdep_depth)) { 6586 if (!debug_locks_off()) 6587 return; 6588 pr_warn("\n"); 6589 pr_warn("================================================\n"); 6590 pr_warn("WARNING: lock held when returning to user space!\n"); 6591 print_kernel_ident(); 6592 pr_warn("------------------------------------------------\n"); 6593 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6594 curr->comm, curr->pid); 6595 lockdep_print_held_locks(curr); 6596 } 6597 6598 /* 6599 * The lock history for each syscall should be independent. So wipe the 6600 * slate clean on return to userspace. 6601 */ 6602 lockdep_invariant_state(false); 6603 } 6604 6605 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6606 { 6607 struct task_struct *curr = current; 6608 int dl = READ_ONCE(debug_locks); 6609 bool rcu = warn_rcu_enter(); 6610 6611 /* Note: the following can be executed concurrently, so be careful. */ 6612 pr_warn("\n"); 6613 pr_warn("=============================\n"); 6614 pr_warn("WARNING: suspicious RCU usage\n"); 6615 print_kernel_ident(); 6616 pr_warn("-----------------------------\n"); 6617 pr_warn("%s:%d %s!\n", file, line, s); 6618 pr_warn("\nother info that might help us debug this:\n\n"); 6619 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6620 !rcu_lockdep_current_cpu_online() 6621 ? "RCU used illegally from offline CPU!\n" 6622 : "", 6623 rcu_scheduler_active, dl, 6624 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6625 6626 /* 6627 * If a CPU is in the RCU-free window in idle (ie: in the section 6628 * between ct_idle_enter() and ct_idle_exit(), then RCU 6629 * considers that CPU to be in an "extended quiescent state", 6630 * which means that RCU will be completely ignoring that CPU. 6631 * Therefore, rcu_read_lock() and friends have absolutely no 6632 * effect on a CPU running in that state. In other words, even if 6633 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6634 * delete data structures out from under it. RCU really has no 6635 * choice here: we need to keep an RCU-free window in idle where 6636 * the CPU may possibly enter into low power mode. This way we can 6637 * notice an extended quiescent state to other CPUs that started a grace 6638 * period. Otherwise we would delay any grace period as long as we run 6639 * in the idle task. 6640 * 6641 * So complain bitterly if someone does call rcu_read_lock(), 6642 * rcu_read_lock_bh() and so on from extended quiescent states. 6643 */ 6644 if (!rcu_is_watching()) 6645 pr_warn("RCU used illegally from extended quiescent state!\n"); 6646 6647 lockdep_print_held_locks(curr); 6648 pr_warn("\nstack backtrace:\n"); 6649 dump_stack(); 6650 warn_rcu_exit(rcu); 6651 } 6652 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6653