1 /* 2 * kernel/lockdep.c 3 * 4 * Runtime locking correctness validator 5 * 6 * Started by Ingo Molnar: 7 * 8 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 9 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 10 * 11 * this code maps all the lock dependencies as they occur in a live kernel 12 * and will warn about the following classes of locking bugs: 13 * 14 * - lock inversion scenarios 15 * - circular lock dependencies 16 * - hardirq/softirq safe/unsafe locking bugs 17 * 18 * Bugs are reported even if the current locking scenario does not cause 19 * any deadlock at this point. 20 * 21 * I.e. if anytime in the past two locks were taken in a different order, 22 * even if it happened for another task, even if those were different 23 * locks (but of the same class as this lock), this code will detect it. 24 * 25 * Thanks to Arjan van de Ven for coming up with the initial idea of 26 * mapping lock dependencies runtime. 27 */ 28 #define DISABLE_BRANCH_PROFILING 29 #include <linux/mutex.h> 30 #include <linux/sched.h> 31 #include <linux/delay.h> 32 #include <linux/module.h> 33 #include <linux/proc_fs.h> 34 #include <linux/seq_file.h> 35 #include <linux/spinlock.h> 36 #include <linux/kallsyms.h> 37 #include <linux/interrupt.h> 38 #include <linux/stacktrace.h> 39 #include <linux/debug_locks.h> 40 #include <linux/irqflags.h> 41 #include <linux/utsname.h> 42 #include <linux/hash.h> 43 #include <linux/ftrace.h> 44 #include <linux/stringify.h> 45 #include <linux/bitops.h> 46 #include <linux/gfp.h> 47 #include <linux/kmemcheck.h> 48 #include <linux/random.h> 49 #include <linux/jhash.h> 50 51 #include <asm/sections.h> 52 53 #include "lockdep_internals.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/lock.h> 57 58 #ifdef CONFIG_PROVE_LOCKING 59 int prove_locking = 1; 60 module_param(prove_locking, int, 0644); 61 #else 62 #define prove_locking 0 63 #endif 64 65 #ifdef CONFIG_LOCK_STAT 66 int lock_stat = 1; 67 module_param(lock_stat, int, 0644); 68 #else 69 #define lock_stat 0 70 #endif 71 72 /* 73 * lockdep_lock: protects the lockdep graph, the hashes and the 74 * class/list/hash allocators. 75 * 76 * This is one of the rare exceptions where it's justified 77 * to use a raw spinlock - we really dont want the spinlock 78 * code to recurse back into the lockdep code... 79 */ 80 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 81 82 static int graph_lock(void) 83 { 84 arch_spin_lock(&lockdep_lock); 85 /* 86 * Make sure that if another CPU detected a bug while 87 * walking the graph we dont change it (while the other 88 * CPU is busy printing out stuff with the graph lock 89 * dropped already) 90 */ 91 if (!debug_locks) { 92 arch_spin_unlock(&lockdep_lock); 93 return 0; 94 } 95 /* prevent any recursions within lockdep from causing deadlocks */ 96 current->lockdep_recursion++; 97 return 1; 98 } 99 100 static inline int graph_unlock(void) 101 { 102 if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) { 103 /* 104 * The lockdep graph lock isn't locked while we expect it to 105 * be, we're confused now, bye! 106 */ 107 return DEBUG_LOCKS_WARN_ON(1); 108 } 109 110 current->lockdep_recursion--; 111 arch_spin_unlock(&lockdep_lock); 112 return 0; 113 } 114 115 /* 116 * Turn lock debugging off and return with 0 if it was off already, 117 * and also release the graph lock: 118 */ 119 static inline int debug_locks_off_graph_unlock(void) 120 { 121 int ret = debug_locks_off(); 122 123 arch_spin_unlock(&lockdep_lock); 124 125 return ret; 126 } 127 128 unsigned long nr_list_entries; 129 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 130 131 /* 132 * All data structures here are protected by the global debug_lock. 133 * 134 * Mutex key structs only get allocated, once during bootup, and never 135 * get freed - this significantly simplifies the debugging code. 136 */ 137 unsigned long nr_lock_classes; 138 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 139 140 static inline struct lock_class *hlock_class(struct held_lock *hlock) 141 { 142 if (!hlock->class_idx) { 143 /* 144 * Someone passed in garbage, we give up. 145 */ 146 DEBUG_LOCKS_WARN_ON(1); 147 return NULL; 148 } 149 return lock_classes + hlock->class_idx - 1; 150 } 151 152 #ifdef CONFIG_LOCK_STAT 153 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 154 155 static inline u64 lockstat_clock(void) 156 { 157 return local_clock(); 158 } 159 160 static int lock_point(unsigned long points[], unsigned long ip) 161 { 162 int i; 163 164 for (i = 0; i < LOCKSTAT_POINTS; i++) { 165 if (points[i] == 0) { 166 points[i] = ip; 167 break; 168 } 169 if (points[i] == ip) 170 break; 171 } 172 173 return i; 174 } 175 176 static void lock_time_inc(struct lock_time *lt, u64 time) 177 { 178 if (time > lt->max) 179 lt->max = time; 180 181 if (time < lt->min || !lt->nr) 182 lt->min = time; 183 184 lt->total += time; 185 lt->nr++; 186 } 187 188 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 189 { 190 if (!src->nr) 191 return; 192 193 if (src->max > dst->max) 194 dst->max = src->max; 195 196 if (src->min < dst->min || !dst->nr) 197 dst->min = src->min; 198 199 dst->total += src->total; 200 dst->nr += src->nr; 201 } 202 203 struct lock_class_stats lock_stats(struct lock_class *class) 204 { 205 struct lock_class_stats stats; 206 int cpu, i; 207 208 memset(&stats, 0, sizeof(struct lock_class_stats)); 209 for_each_possible_cpu(cpu) { 210 struct lock_class_stats *pcs = 211 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 212 213 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 214 stats.contention_point[i] += pcs->contention_point[i]; 215 216 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 217 stats.contending_point[i] += pcs->contending_point[i]; 218 219 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 220 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 221 222 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 223 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 224 225 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 226 stats.bounces[i] += pcs->bounces[i]; 227 } 228 229 return stats; 230 } 231 232 void clear_lock_stats(struct lock_class *class) 233 { 234 int cpu; 235 236 for_each_possible_cpu(cpu) { 237 struct lock_class_stats *cpu_stats = 238 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 239 240 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 241 } 242 memset(class->contention_point, 0, sizeof(class->contention_point)); 243 memset(class->contending_point, 0, sizeof(class->contending_point)); 244 } 245 246 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 247 { 248 return &get_cpu_var(cpu_lock_stats)[class - lock_classes]; 249 } 250 251 static void put_lock_stats(struct lock_class_stats *stats) 252 { 253 put_cpu_var(cpu_lock_stats); 254 } 255 256 static void lock_release_holdtime(struct held_lock *hlock) 257 { 258 struct lock_class_stats *stats; 259 u64 holdtime; 260 261 if (!lock_stat) 262 return; 263 264 holdtime = lockstat_clock() - hlock->holdtime_stamp; 265 266 stats = get_lock_stats(hlock_class(hlock)); 267 if (hlock->read) 268 lock_time_inc(&stats->read_holdtime, holdtime); 269 else 270 lock_time_inc(&stats->write_holdtime, holdtime); 271 put_lock_stats(stats); 272 } 273 #else 274 static inline void lock_release_holdtime(struct held_lock *hlock) 275 { 276 } 277 #endif 278 279 /* 280 * We keep a global list of all lock classes. The list only grows, 281 * never shrinks. The list is only accessed with the lockdep 282 * spinlock lock held. 283 */ 284 LIST_HEAD(all_lock_classes); 285 286 /* 287 * The lockdep classes are in a hash-table as well, for fast lookup: 288 */ 289 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 290 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 291 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 292 #define classhashentry(key) (classhash_table + __classhashfn((key))) 293 294 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 295 296 /* 297 * We put the lock dependency chains into a hash-table as well, to cache 298 * their existence: 299 */ 300 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 301 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 302 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 303 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 304 305 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 306 307 /* 308 * The hash key of the lock dependency chains is a hash itself too: 309 * it's a hash of all locks taken up to that lock, including that lock. 310 * It's a 64-bit hash, because it's important for the keys to be 311 * unique. 312 */ 313 static inline u64 iterate_chain_key(u64 key, u32 idx) 314 { 315 u32 k0 = key, k1 = key >> 32; 316 317 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 318 319 return k0 | (u64)k1 << 32; 320 } 321 322 void lockdep_off(void) 323 { 324 current->lockdep_recursion++; 325 } 326 EXPORT_SYMBOL(lockdep_off); 327 328 void lockdep_on(void) 329 { 330 current->lockdep_recursion--; 331 } 332 EXPORT_SYMBOL(lockdep_on); 333 334 /* 335 * Debugging switches: 336 */ 337 338 #define VERBOSE 0 339 #define VERY_VERBOSE 0 340 341 #if VERBOSE 342 # define HARDIRQ_VERBOSE 1 343 # define SOFTIRQ_VERBOSE 1 344 # define RECLAIM_VERBOSE 1 345 #else 346 # define HARDIRQ_VERBOSE 0 347 # define SOFTIRQ_VERBOSE 0 348 # define RECLAIM_VERBOSE 0 349 #endif 350 351 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE || RECLAIM_VERBOSE 352 /* 353 * Quick filtering for interesting events: 354 */ 355 static int class_filter(struct lock_class *class) 356 { 357 #if 0 358 /* Example */ 359 if (class->name_version == 1 && 360 !strcmp(class->name, "lockname")) 361 return 1; 362 if (class->name_version == 1 && 363 !strcmp(class->name, "&struct->lockfield")) 364 return 1; 365 #endif 366 /* Filter everything else. 1 would be to allow everything else */ 367 return 0; 368 } 369 #endif 370 371 static int verbose(struct lock_class *class) 372 { 373 #if VERBOSE 374 return class_filter(class); 375 #endif 376 return 0; 377 } 378 379 /* 380 * Stack-trace: tightly packed array of stack backtrace 381 * addresses. Protected by the graph_lock. 382 */ 383 unsigned long nr_stack_trace_entries; 384 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 385 386 static void print_lockdep_off(const char *bug_msg) 387 { 388 printk(KERN_DEBUG "%s\n", bug_msg); 389 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 390 #ifdef CONFIG_LOCK_STAT 391 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 392 #endif 393 } 394 395 static int save_trace(struct stack_trace *trace) 396 { 397 trace->nr_entries = 0; 398 trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries; 399 trace->entries = stack_trace + nr_stack_trace_entries; 400 401 trace->skip = 3; 402 403 save_stack_trace(trace); 404 405 /* 406 * Some daft arches put -1 at the end to indicate its a full trace. 407 * 408 * <rant> this is buggy anyway, since it takes a whole extra entry so a 409 * complete trace that maxes out the entries provided will be reported 410 * as incomplete, friggin useless </rant> 411 */ 412 if (trace->nr_entries != 0 && 413 trace->entries[trace->nr_entries-1] == ULONG_MAX) 414 trace->nr_entries--; 415 416 trace->max_entries = trace->nr_entries; 417 418 nr_stack_trace_entries += trace->nr_entries; 419 420 if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) { 421 if (!debug_locks_off_graph_unlock()) 422 return 0; 423 424 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 425 dump_stack(); 426 427 return 0; 428 } 429 430 return 1; 431 } 432 433 unsigned int nr_hardirq_chains; 434 unsigned int nr_softirq_chains; 435 unsigned int nr_process_chains; 436 unsigned int max_lockdep_depth; 437 438 #ifdef CONFIG_DEBUG_LOCKDEP 439 /* 440 * Various lockdep statistics: 441 */ 442 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 443 #endif 444 445 /* 446 * Locking printouts: 447 */ 448 449 #define __USAGE(__STATE) \ 450 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 451 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 452 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 453 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 454 455 static const char *usage_str[] = 456 { 457 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 458 #include "lockdep_states.h" 459 #undef LOCKDEP_STATE 460 [LOCK_USED] = "INITIAL USE", 461 }; 462 463 const char * __get_key_name(struct lockdep_subclass_key *key, char *str) 464 { 465 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 466 } 467 468 static inline unsigned long lock_flag(enum lock_usage_bit bit) 469 { 470 return 1UL << bit; 471 } 472 473 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 474 { 475 char c = '.'; 476 477 if (class->usage_mask & lock_flag(bit + 2)) 478 c = '+'; 479 if (class->usage_mask & lock_flag(bit)) { 480 c = '-'; 481 if (class->usage_mask & lock_flag(bit + 2)) 482 c = '?'; 483 } 484 485 return c; 486 } 487 488 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 489 { 490 int i = 0; 491 492 #define LOCKDEP_STATE(__STATE) \ 493 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 494 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 495 #include "lockdep_states.h" 496 #undef LOCKDEP_STATE 497 498 usage[i] = '\0'; 499 } 500 501 static void __print_lock_name(struct lock_class *class) 502 { 503 char str[KSYM_NAME_LEN]; 504 const char *name; 505 506 name = class->name; 507 if (!name) { 508 name = __get_key_name(class->key, str); 509 printk(KERN_CONT "%s", name); 510 } else { 511 printk(KERN_CONT "%s", name); 512 if (class->name_version > 1) 513 printk(KERN_CONT "#%d", class->name_version); 514 if (class->subclass) 515 printk(KERN_CONT "/%d", class->subclass); 516 } 517 } 518 519 static void print_lock_name(struct lock_class *class) 520 { 521 char usage[LOCK_USAGE_CHARS]; 522 523 get_usage_chars(class, usage); 524 525 printk(KERN_CONT " ("); 526 __print_lock_name(class); 527 printk(KERN_CONT "){%s}", usage); 528 } 529 530 static void print_lockdep_cache(struct lockdep_map *lock) 531 { 532 const char *name; 533 char str[KSYM_NAME_LEN]; 534 535 name = lock->name; 536 if (!name) 537 name = __get_key_name(lock->key->subkeys, str); 538 539 printk(KERN_CONT "%s", name); 540 } 541 542 static void print_lock(struct held_lock *hlock) 543 { 544 /* 545 * We can be called locklessly through debug_show_all_locks() so be 546 * extra careful, the hlock might have been released and cleared. 547 */ 548 unsigned int class_idx = hlock->class_idx; 549 550 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfields: */ 551 barrier(); 552 553 if (!class_idx || (class_idx - 1) >= MAX_LOCKDEP_KEYS) { 554 printk(KERN_CONT "<RELEASED>\n"); 555 return; 556 } 557 558 print_lock_name(lock_classes + class_idx - 1); 559 printk(KERN_CONT ", at: [<%p>] %pS\n", 560 (void *)hlock->acquire_ip, (void *)hlock->acquire_ip); 561 } 562 563 static void lockdep_print_held_locks(struct task_struct *curr) 564 { 565 int i, depth = curr->lockdep_depth; 566 567 if (!depth) { 568 printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr)); 569 return; 570 } 571 printk("%d lock%s held by %s/%d:\n", 572 depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr)); 573 574 for (i = 0; i < depth; i++) { 575 printk(" #%d: ", i); 576 print_lock(curr->held_locks + i); 577 } 578 } 579 580 static void print_kernel_ident(void) 581 { 582 printk("%s %.*s %s\n", init_utsname()->release, 583 (int)strcspn(init_utsname()->version, " "), 584 init_utsname()->version, 585 print_tainted()); 586 } 587 588 static int very_verbose(struct lock_class *class) 589 { 590 #if VERY_VERBOSE 591 return class_filter(class); 592 #endif 593 return 0; 594 } 595 596 /* 597 * Is this the address of a static object: 598 */ 599 #ifdef __KERNEL__ 600 static int static_obj(void *obj) 601 { 602 unsigned long start = (unsigned long) &_stext, 603 end = (unsigned long) &_end, 604 addr = (unsigned long) obj; 605 606 /* 607 * static variable? 608 */ 609 if ((addr >= start) && (addr < end)) 610 return 1; 611 612 if (arch_is_kernel_data(addr)) 613 return 1; 614 615 /* 616 * in-kernel percpu var? 617 */ 618 if (is_kernel_percpu_address(addr)) 619 return 1; 620 621 /* 622 * module static or percpu var? 623 */ 624 return is_module_address(addr) || is_module_percpu_address(addr); 625 } 626 #endif 627 628 /* 629 * To make lock name printouts unique, we calculate a unique 630 * class->name_version generation counter: 631 */ 632 static int count_matching_names(struct lock_class *new_class) 633 { 634 struct lock_class *class; 635 int count = 0; 636 637 if (!new_class->name) 638 return 0; 639 640 list_for_each_entry_rcu(class, &all_lock_classes, lock_entry) { 641 if (new_class->key - new_class->subclass == class->key) 642 return class->name_version; 643 if (class->name && !strcmp(class->name, new_class->name)) 644 count = max(count, class->name_version); 645 } 646 647 return count + 1; 648 } 649 650 /* 651 * Register a lock's class in the hash-table, if the class is not present 652 * yet. Otherwise we look it up. We cache the result in the lock object 653 * itself, so actual lookup of the hash should be once per lock object. 654 */ 655 static inline struct lock_class * 656 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass) 657 { 658 struct lockdep_subclass_key *key; 659 struct hlist_head *hash_head; 660 struct lock_class *class; 661 662 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 663 debug_locks_off(); 664 printk(KERN_ERR 665 "BUG: looking up invalid subclass: %u\n", subclass); 666 printk(KERN_ERR 667 "turning off the locking correctness validator.\n"); 668 dump_stack(); 669 return NULL; 670 } 671 672 /* 673 * Static locks do not have their class-keys yet - for them the key 674 * is the lock object itself: 675 */ 676 if (unlikely(!lock->key)) 677 lock->key = (void *)lock; 678 679 /* 680 * NOTE: the class-key must be unique. For dynamic locks, a static 681 * lock_class_key variable is passed in through the mutex_init() 682 * (or spin_lock_init()) call - which acts as the key. For static 683 * locks we use the lock object itself as the key. 684 */ 685 BUILD_BUG_ON(sizeof(struct lock_class_key) > 686 sizeof(struct lockdep_map)); 687 688 key = lock->key->subkeys + subclass; 689 690 hash_head = classhashentry(key); 691 692 /* 693 * We do an RCU walk of the hash, see lockdep_free_key_range(). 694 */ 695 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 696 return NULL; 697 698 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 699 if (class->key == key) { 700 /* 701 * Huh! same key, different name? Did someone trample 702 * on some memory? We're most confused. 703 */ 704 WARN_ON_ONCE(class->name != lock->name); 705 return class; 706 } 707 } 708 709 return NULL; 710 } 711 712 /* 713 * Register a lock's class in the hash-table, if the class is not present 714 * yet. Otherwise we look it up. We cache the result in the lock object 715 * itself, so actual lookup of the hash should be once per lock object. 716 */ 717 static struct lock_class * 718 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 719 { 720 struct lockdep_subclass_key *key; 721 struct hlist_head *hash_head; 722 struct lock_class *class; 723 724 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 725 726 class = look_up_lock_class(lock, subclass); 727 if (likely(class)) 728 goto out_set_class_cache; 729 730 /* 731 * Debug-check: all keys must be persistent! 732 */ 733 if (!static_obj(lock->key)) { 734 debug_locks_off(); 735 printk("INFO: trying to register non-static key.\n"); 736 printk("the code is fine but needs lockdep annotation.\n"); 737 printk("turning off the locking correctness validator.\n"); 738 dump_stack(); 739 740 return NULL; 741 } 742 743 key = lock->key->subkeys + subclass; 744 hash_head = classhashentry(key); 745 746 if (!graph_lock()) { 747 return NULL; 748 } 749 /* 750 * We have to do the hash-walk again, to avoid races 751 * with another CPU: 752 */ 753 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 754 if (class->key == key) 755 goto out_unlock_set; 756 } 757 758 /* 759 * Allocate a new key from the static array, and add it to 760 * the hash: 761 */ 762 if (nr_lock_classes >= MAX_LOCKDEP_KEYS) { 763 if (!debug_locks_off_graph_unlock()) { 764 return NULL; 765 } 766 767 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 768 dump_stack(); 769 return NULL; 770 } 771 class = lock_classes + nr_lock_classes++; 772 debug_atomic_inc(nr_unused_locks); 773 class->key = key; 774 class->name = lock->name; 775 class->subclass = subclass; 776 INIT_LIST_HEAD(&class->lock_entry); 777 INIT_LIST_HEAD(&class->locks_before); 778 INIT_LIST_HEAD(&class->locks_after); 779 class->name_version = count_matching_names(class); 780 /* 781 * We use RCU's safe list-add method to make 782 * parallel walking of the hash-list safe: 783 */ 784 hlist_add_head_rcu(&class->hash_entry, hash_head); 785 /* 786 * Add it to the global list of classes: 787 */ 788 list_add_tail_rcu(&class->lock_entry, &all_lock_classes); 789 790 if (verbose(class)) { 791 graph_unlock(); 792 793 printk("\nnew class %p: %s", class->key, class->name); 794 if (class->name_version > 1) 795 printk(KERN_CONT "#%d", class->name_version); 796 printk(KERN_CONT "\n"); 797 dump_stack(); 798 799 if (!graph_lock()) { 800 return NULL; 801 } 802 } 803 out_unlock_set: 804 graph_unlock(); 805 806 out_set_class_cache: 807 if (!subclass || force) 808 lock->class_cache[0] = class; 809 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 810 lock->class_cache[subclass] = class; 811 812 /* 813 * Hash collision, did we smoke some? We found a class with a matching 814 * hash but the subclass -- which is hashed in -- didn't match. 815 */ 816 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 817 return NULL; 818 819 return class; 820 } 821 822 #ifdef CONFIG_PROVE_LOCKING 823 /* 824 * Allocate a lockdep entry. (assumes the graph_lock held, returns 825 * with NULL on failure) 826 */ 827 static struct lock_list *alloc_list_entry(void) 828 { 829 if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) { 830 if (!debug_locks_off_graph_unlock()) 831 return NULL; 832 833 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 834 dump_stack(); 835 return NULL; 836 } 837 return list_entries + nr_list_entries++; 838 } 839 840 /* 841 * Add a new dependency to the head of the list: 842 */ 843 static int add_lock_to_list(struct lock_class *this, struct list_head *head, 844 unsigned long ip, int distance, 845 struct stack_trace *trace) 846 { 847 struct lock_list *entry; 848 /* 849 * Lock not present yet - get a new dependency struct and 850 * add it to the list: 851 */ 852 entry = alloc_list_entry(); 853 if (!entry) 854 return 0; 855 856 entry->class = this; 857 entry->distance = distance; 858 entry->trace = *trace; 859 /* 860 * Both allocation and removal are done under the graph lock; but 861 * iteration is under RCU-sched; see look_up_lock_class() and 862 * lockdep_free_key_range(). 863 */ 864 list_add_tail_rcu(&entry->entry, head); 865 866 return 1; 867 } 868 869 /* 870 * For good efficiency of modular, we use power of 2 871 */ 872 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL 873 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 874 875 /* 876 * The circular_queue and helpers is used to implement the 877 * breadth-first search(BFS)algorithem, by which we can build 878 * the shortest path from the next lock to be acquired to the 879 * previous held lock if there is a circular between them. 880 */ 881 struct circular_queue { 882 unsigned long element[MAX_CIRCULAR_QUEUE_SIZE]; 883 unsigned int front, rear; 884 }; 885 886 static struct circular_queue lock_cq; 887 888 unsigned int max_bfs_queue_depth; 889 890 static unsigned int lockdep_dependency_gen_id; 891 892 static inline void __cq_init(struct circular_queue *cq) 893 { 894 cq->front = cq->rear = 0; 895 lockdep_dependency_gen_id++; 896 } 897 898 static inline int __cq_empty(struct circular_queue *cq) 899 { 900 return (cq->front == cq->rear); 901 } 902 903 static inline int __cq_full(struct circular_queue *cq) 904 { 905 return ((cq->rear + 1) & CQ_MASK) == cq->front; 906 } 907 908 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem) 909 { 910 if (__cq_full(cq)) 911 return -1; 912 913 cq->element[cq->rear] = elem; 914 cq->rear = (cq->rear + 1) & CQ_MASK; 915 return 0; 916 } 917 918 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem) 919 { 920 if (__cq_empty(cq)) 921 return -1; 922 923 *elem = cq->element[cq->front]; 924 cq->front = (cq->front + 1) & CQ_MASK; 925 return 0; 926 } 927 928 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 929 { 930 return (cq->rear - cq->front) & CQ_MASK; 931 } 932 933 static inline void mark_lock_accessed(struct lock_list *lock, 934 struct lock_list *parent) 935 { 936 unsigned long nr; 937 938 nr = lock - list_entries; 939 WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */ 940 lock->parent = parent; 941 lock->class->dep_gen_id = lockdep_dependency_gen_id; 942 } 943 944 static inline unsigned long lock_accessed(struct lock_list *lock) 945 { 946 unsigned long nr; 947 948 nr = lock - list_entries; 949 WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */ 950 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 951 } 952 953 static inline struct lock_list *get_lock_parent(struct lock_list *child) 954 { 955 return child->parent; 956 } 957 958 static inline int get_lock_depth(struct lock_list *child) 959 { 960 int depth = 0; 961 struct lock_list *parent; 962 963 while ((parent = get_lock_parent(child))) { 964 child = parent; 965 depth++; 966 } 967 return depth; 968 } 969 970 static int __bfs(struct lock_list *source_entry, 971 void *data, 972 int (*match)(struct lock_list *entry, void *data), 973 struct lock_list **target_entry, 974 int forward) 975 { 976 struct lock_list *entry; 977 struct list_head *head; 978 struct circular_queue *cq = &lock_cq; 979 int ret = 1; 980 981 if (match(source_entry, data)) { 982 *target_entry = source_entry; 983 ret = 0; 984 goto exit; 985 } 986 987 if (forward) 988 head = &source_entry->class->locks_after; 989 else 990 head = &source_entry->class->locks_before; 991 992 if (list_empty(head)) 993 goto exit; 994 995 __cq_init(cq); 996 __cq_enqueue(cq, (unsigned long)source_entry); 997 998 while (!__cq_empty(cq)) { 999 struct lock_list *lock; 1000 1001 __cq_dequeue(cq, (unsigned long *)&lock); 1002 1003 if (!lock->class) { 1004 ret = -2; 1005 goto exit; 1006 } 1007 1008 if (forward) 1009 head = &lock->class->locks_after; 1010 else 1011 head = &lock->class->locks_before; 1012 1013 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1014 1015 list_for_each_entry_rcu(entry, head, entry) { 1016 if (!lock_accessed(entry)) { 1017 unsigned int cq_depth; 1018 mark_lock_accessed(entry, lock); 1019 if (match(entry, data)) { 1020 *target_entry = entry; 1021 ret = 0; 1022 goto exit; 1023 } 1024 1025 if (__cq_enqueue(cq, (unsigned long)entry)) { 1026 ret = -1; 1027 goto exit; 1028 } 1029 cq_depth = __cq_get_elem_count(cq); 1030 if (max_bfs_queue_depth < cq_depth) 1031 max_bfs_queue_depth = cq_depth; 1032 } 1033 } 1034 } 1035 exit: 1036 return ret; 1037 } 1038 1039 static inline int __bfs_forwards(struct lock_list *src_entry, 1040 void *data, 1041 int (*match)(struct lock_list *entry, void *data), 1042 struct lock_list **target_entry) 1043 { 1044 return __bfs(src_entry, data, match, target_entry, 1); 1045 1046 } 1047 1048 static inline int __bfs_backwards(struct lock_list *src_entry, 1049 void *data, 1050 int (*match)(struct lock_list *entry, void *data), 1051 struct lock_list **target_entry) 1052 { 1053 return __bfs(src_entry, data, match, target_entry, 0); 1054 1055 } 1056 1057 /* 1058 * Recursive, forwards-direction lock-dependency checking, used for 1059 * both noncyclic checking and for hardirq-unsafe/softirq-unsafe 1060 * checking. 1061 */ 1062 1063 /* 1064 * Print a dependency chain entry (this is only done when a deadlock 1065 * has been detected): 1066 */ 1067 static noinline int 1068 print_circular_bug_entry(struct lock_list *target, int depth) 1069 { 1070 if (debug_locks_silent) 1071 return 0; 1072 printk("\n-> #%u", depth); 1073 print_lock_name(target->class); 1074 printk(KERN_CONT ":\n"); 1075 print_stack_trace(&target->trace, 6); 1076 1077 return 0; 1078 } 1079 1080 static void 1081 print_circular_lock_scenario(struct held_lock *src, 1082 struct held_lock *tgt, 1083 struct lock_list *prt) 1084 { 1085 struct lock_class *source = hlock_class(src); 1086 struct lock_class *target = hlock_class(tgt); 1087 struct lock_class *parent = prt->class; 1088 1089 /* 1090 * A direct locking problem where unsafe_class lock is taken 1091 * directly by safe_class lock, then all we need to show 1092 * is the deadlock scenario, as it is obvious that the 1093 * unsafe lock is taken under the safe lock. 1094 * 1095 * But if there is a chain instead, where the safe lock takes 1096 * an intermediate lock (middle_class) where this lock is 1097 * not the same as the safe lock, then the lock chain is 1098 * used to describe the problem. Otherwise we would need 1099 * to show a different CPU case for each link in the chain 1100 * from the safe_class lock to the unsafe_class lock. 1101 */ 1102 if (parent != source) { 1103 printk("Chain exists of:\n "); 1104 __print_lock_name(source); 1105 printk(KERN_CONT " --> "); 1106 __print_lock_name(parent); 1107 printk(KERN_CONT " --> "); 1108 __print_lock_name(target); 1109 printk(KERN_CONT "\n\n"); 1110 } 1111 1112 printk(" Possible unsafe locking scenario:\n\n"); 1113 printk(" CPU0 CPU1\n"); 1114 printk(" ---- ----\n"); 1115 printk(" lock("); 1116 __print_lock_name(target); 1117 printk(KERN_CONT ");\n"); 1118 printk(" lock("); 1119 __print_lock_name(parent); 1120 printk(KERN_CONT ");\n"); 1121 printk(" lock("); 1122 __print_lock_name(target); 1123 printk(KERN_CONT ");\n"); 1124 printk(" lock("); 1125 __print_lock_name(source); 1126 printk(KERN_CONT ");\n"); 1127 printk("\n *** DEADLOCK ***\n\n"); 1128 } 1129 1130 /* 1131 * When a circular dependency is detected, print the 1132 * header first: 1133 */ 1134 static noinline int 1135 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1136 struct held_lock *check_src, 1137 struct held_lock *check_tgt) 1138 { 1139 struct task_struct *curr = current; 1140 1141 if (debug_locks_silent) 1142 return 0; 1143 1144 printk("\n"); 1145 printk("======================================================\n"); 1146 printk("[ INFO: possible circular locking dependency detected ]\n"); 1147 print_kernel_ident(); 1148 printk("-------------------------------------------------------\n"); 1149 printk("%s/%d is trying to acquire lock:\n", 1150 curr->comm, task_pid_nr(curr)); 1151 print_lock(check_src); 1152 printk("\nbut task is already holding lock:\n"); 1153 print_lock(check_tgt); 1154 printk("\nwhich lock already depends on the new lock.\n\n"); 1155 printk("\nthe existing dependency chain (in reverse order) is:\n"); 1156 1157 print_circular_bug_entry(entry, depth); 1158 1159 return 0; 1160 } 1161 1162 static inline int class_equal(struct lock_list *entry, void *data) 1163 { 1164 return entry->class == data; 1165 } 1166 1167 static noinline int print_circular_bug(struct lock_list *this, 1168 struct lock_list *target, 1169 struct held_lock *check_src, 1170 struct held_lock *check_tgt) 1171 { 1172 struct task_struct *curr = current; 1173 struct lock_list *parent; 1174 struct lock_list *first_parent; 1175 int depth; 1176 1177 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1178 return 0; 1179 1180 if (!save_trace(&this->trace)) 1181 return 0; 1182 1183 depth = get_lock_depth(target); 1184 1185 print_circular_bug_header(target, depth, check_src, check_tgt); 1186 1187 parent = get_lock_parent(target); 1188 first_parent = parent; 1189 1190 while (parent) { 1191 print_circular_bug_entry(parent, --depth); 1192 parent = get_lock_parent(parent); 1193 } 1194 1195 printk("\nother info that might help us debug this:\n\n"); 1196 print_circular_lock_scenario(check_src, check_tgt, 1197 first_parent); 1198 1199 lockdep_print_held_locks(curr); 1200 1201 printk("\nstack backtrace:\n"); 1202 dump_stack(); 1203 1204 return 0; 1205 } 1206 1207 static noinline int print_bfs_bug(int ret) 1208 { 1209 if (!debug_locks_off_graph_unlock()) 1210 return 0; 1211 1212 /* 1213 * Breadth-first-search failed, graph got corrupted? 1214 */ 1215 WARN(1, "lockdep bfs error:%d\n", ret); 1216 1217 return 0; 1218 } 1219 1220 static int noop_count(struct lock_list *entry, void *data) 1221 { 1222 (*(unsigned long *)data)++; 1223 return 0; 1224 } 1225 1226 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 1227 { 1228 unsigned long count = 0; 1229 struct lock_list *uninitialized_var(target_entry); 1230 1231 __bfs_forwards(this, (void *)&count, noop_count, &target_entry); 1232 1233 return count; 1234 } 1235 unsigned long lockdep_count_forward_deps(struct lock_class *class) 1236 { 1237 unsigned long ret, flags; 1238 struct lock_list this; 1239 1240 this.parent = NULL; 1241 this.class = class; 1242 1243 local_irq_save(flags); 1244 arch_spin_lock(&lockdep_lock); 1245 ret = __lockdep_count_forward_deps(&this); 1246 arch_spin_unlock(&lockdep_lock); 1247 local_irq_restore(flags); 1248 1249 return ret; 1250 } 1251 1252 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 1253 { 1254 unsigned long count = 0; 1255 struct lock_list *uninitialized_var(target_entry); 1256 1257 __bfs_backwards(this, (void *)&count, noop_count, &target_entry); 1258 1259 return count; 1260 } 1261 1262 unsigned long lockdep_count_backward_deps(struct lock_class *class) 1263 { 1264 unsigned long ret, flags; 1265 struct lock_list this; 1266 1267 this.parent = NULL; 1268 this.class = class; 1269 1270 local_irq_save(flags); 1271 arch_spin_lock(&lockdep_lock); 1272 ret = __lockdep_count_backward_deps(&this); 1273 arch_spin_unlock(&lockdep_lock); 1274 local_irq_restore(flags); 1275 1276 return ret; 1277 } 1278 1279 /* 1280 * Prove that the dependency graph starting at <entry> can not 1281 * lead to <target>. Print an error and return 0 if it does. 1282 */ 1283 static noinline int 1284 check_noncircular(struct lock_list *root, struct lock_class *target, 1285 struct lock_list **target_entry) 1286 { 1287 int result; 1288 1289 debug_atomic_inc(nr_cyclic_checks); 1290 1291 result = __bfs_forwards(root, target, class_equal, target_entry); 1292 1293 return result; 1294 } 1295 1296 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 1297 /* 1298 * Forwards and backwards subgraph searching, for the purposes of 1299 * proving that two subgraphs can be connected by a new dependency 1300 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 1301 */ 1302 1303 static inline int usage_match(struct lock_list *entry, void *bit) 1304 { 1305 return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit); 1306 } 1307 1308 1309 1310 /* 1311 * Find a node in the forwards-direction dependency sub-graph starting 1312 * at @root->class that matches @bit. 1313 * 1314 * Return 0 if such a node exists in the subgraph, and put that node 1315 * into *@target_entry. 1316 * 1317 * Return 1 otherwise and keep *@target_entry unchanged. 1318 * Return <0 on error. 1319 */ 1320 static int 1321 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit, 1322 struct lock_list **target_entry) 1323 { 1324 int result; 1325 1326 debug_atomic_inc(nr_find_usage_forwards_checks); 1327 1328 result = __bfs_forwards(root, (void *)bit, usage_match, target_entry); 1329 1330 return result; 1331 } 1332 1333 /* 1334 * Find a node in the backwards-direction dependency sub-graph starting 1335 * at @root->class that matches @bit. 1336 * 1337 * Return 0 if such a node exists in the subgraph, and put that node 1338 * into *@target_entry. 1339 * 1340 * Return 1 otherwise and keep *@target_entry unchanged. 1341 * Return <0 on error. 1342 */ 1343 static int 1344 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit, 1345 struct lock_list **target_entry) 1346 { 1347 int result; 1348 1349 debug_atomic_inc(nr_find_usage_backwards_checks); 1350 1351 result = __bfs_backwards(root, (void *)bit, usage_match, target_entry); 1352 1353 return result; 1354 } 1355 1356 static void print_lock_class_header(struct lock_class *class, int depth) 1357 { 1358 int bit; 1359 1360 printk("%*s->", depth, ""); 1361 print_lock_name(class); 1362 printk(KERN_CONT " ops: %lu", class->ops); 1363 printk(KERN_CONT " {\n"); 1364 1365 for (bit = 0; bit < LOCK_USAGE_STATES; bit++) { 1366 if (class->usage_mask & (1 << bit)) { 1367 int len = depth; 1368 1369 len += printk("%*s %s", depth, "", usage_str[bit]); 1370 len += printk(KERN_CONT " at:\n"); 1371 print_stack_trace(class->usage_traces + bit, len); 1372 } 1373 } 1374 printk("%*s }\n", depth, ""); 1375 1376 printk("%*s ... key at: [<%p>] %pS\n", 1377 depth, "", class->key, class->key); 1378 } 1379 1380 /* 1381 * printk the shortest lock dependencies from @start to @end in reverse order: 1382 */ 1383 static void __used 1384 print_shortest_lock_dependencies(struct lock_list *leaf, 1385 struct lock_list *root) 1386 { 1387 struct lock_list *entry = leaf; 1388 int depth; 1389 1390 /*compute depth from generated tree by BFS*/ 1391 depth = get_lock_depth(leaf); 1392 1393 do { 1394 print_lock_class_header(entry->class, depth); 1395 printk("%*s ... acquired at:\n", depth, ""); 1396 print_stack_trace(&entry->trace, 2); 1397 printk("\n"); 1398 1399 if (depth == 0 && (entry != root)) { 1400 printk("lockdep:%s bad path found in chain graph\n", __func__); 1401 break; 1402 } 1403 1404 entry = get_lock_parent(entry); 1405 depth--; 1406 } while (entry && (depth >= 0)); 1407 1408 return; 1409 } 1410 1411 static void 1412 print_irq_lock_scenario(struct lock_list *safe_entry, 1413 struct lock_list *unsafe_entry, 1414 struct lock_class *prev_class, 1415 struct lock_class *next_class) 1416 { 1417 struct lock_class *safe_class = safe_entry->class; 1418 struct lock_class *unsafe_class = unsafe_entry->class; 1419 struct lock_class *middle_class = prev_class; 1420 1421 if (middle_class == safe_class) 1422 middle_class = next_class; 1423 1424 /* 1425 * A direct locking problem where unsafe_class lock is taken 1426 * directly by safe_class lock, then all we need to show 1427 * is the deadlock scenario, as it is obvious that the 1428 * unsafe lock is taken under the safe lock. 1429 * 1430 * But if there is a chain instead, where the safe lock takes 1431 * an intermediate lock (middle_class) where this lock is 1432 * not the same as the safe lock, then the lock chain is 1433 * used to describe the problem. Otherwise we would need 1434 * to show a different CPU case for each link in the chain 1435 * from the safe_class lock to the unsafe_class lock. 1436 */ 1437 if (middle_class != unsafe_class) { 1438 printk("Chain exists of:\n "); 1439 __print_lock_name(safe_class); 1440 printk(KERN_CONT " --> "); 1441 __print_lock_name(middle_class); 1442 printk(KERN_CONT " --> "); 1443 __print_lock_name(unsafe_class); 1444 printk(KERN_CONT "\n\n"); 1445 } 1446 1447 printk(" Possible interrupt unsafe locking scenario:\n\n"); 1448 printk(" CPU0 CPU1\n"); 1449 printk(" ---- ----\n"); 1450 printk(" lock("); 1451 __print_lock_name(unsafe_class); 1452 printk(KERN_CONT ");\n"); 1453 printk(" local_irq_disable();\n"); 1454 printk(" lock("); 1455 __print_lock_name(safe_class); 1456 printk(KERN_CONT ");\n"); 1457 printk(" lock("); 1458 __print_lock_name(middle_class); 1459 printk(KERN_CONT ");\n"); 1460 printk(" <Interrupt>\n"); 1461 printk(" lock("); 1462 __print_lock_name(safe_class); 1463 printk(KERN_CONT ");\n"); 1464 printk("\n *** DEADLOCK ***\n\n"); 1465 } 1466 1467 static int 1468 print_bad_irq_dependency(struct task_struct *curr, 1469 struct lock_list *prev_root, 1470 struct lock_list *next_root, 1471 struct lock_list *backwards_entry, 1472 struct lock_list *forwards_entry, 1473 struct held_lock *prev, 1474 struct held_lock *next, 1475 enum lock_usage_bit bit1, 1476 enum lock_usage_bit bit2, 1477 const char *irqclass) 1478 { 1479 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1480 return 0; 1481 1482 printk("\n"); 1483 printk("======================================================\n"); 1484 printk("[ INFO: %s-safe -> %s-unsafe lock order detected ]\n", 1485 irqclass, irqclass); 1486 print_kernel_ident(); 1487 printk("------------------------------------------------------\n"); 1488 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 1489 curr->comm, task_pid_nr(curr), 1490 curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT, 1491 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 1492 curr->hardirqs_enabled, 1493 curr->softirqs_enabled); 1494 print_lock(next); 1495 1496 printk("\nand this task is already holding:\n"); 1497 print_lock(prev); 1498 printk("which would create a new lock dependency:\n"); 1499 print_lock_name(hlock_class(prev)); 1500 printk(KERN_CONT " ->"); 1501 print_lock_name(hlock_class(next)); 1502 printk(KERN_CONT "\n"); 1503 1504 printk("\nbut this new dependency connects a %s-irq-safe lock:\n", 1505 irqclass); 1506 print_lock_name(backwards_entry->class); 1507 printk("\n... which became %s-irq-safe at:\n", irqclass); 1508 1509 print_stack_trace(backwards_entry->class->usage_traces + bit1, 1); 1510 1511 printk("\nto a %s-irq-unsafe lock:\n", irqclass); 1512 print_lock_name(forwards_entry->class); 1513 printk("\n... which became %s-irq-unsafe at:\n", irqclass); 1514 printk("..."); 1515 1516 print_stack_trace(forwards_entry->class->usage_traces + bit2, 1); 1517 1518 printk("\nother info that might help us debug this:\n\n"); 1519 print_irq_lock_scenario(backwards_entry, forwards_entry, 1520 hlock_class(prev), hlock_class(next)); 1521 1522 lockdep_print_held_locks(curr); 1523 1524 printk("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 1525 if (!save_trace(&prev_root->trace)) 1526 return 0; 1527 print_shortest_lock_dependencies(backwards_entry, prev_root); 1528 1529 printk("\nthe dependencies between the lock to be acquired"); 1530 printk(" and %s-irq-unsafe lock:\n", irqclass); 1531 if (!save_trace(&next_root->trace)) 1532 return 0; 1533 print_shortest_lock_dependencies(forwards_entry, next_root); 1534 1535 printk("\nstack backtrace:\n"); 1536 dump_stack(); 1537 1538 return 0; 1539 } 1540 1541 static int 1542 check_usage(struct task_struct *curr, struct held_lock *prev, 1543 struct held_lock *next, enum lock_usage_bit bit_backwards, 1544 enum lock_usage_bit bit_forwards, const char *irqclass) 1545 { 1546 int ret; 1547 struct lock_list this, that; 1548 struct lock_list *uninitialized_var(target_entry); 1549 struct lock_list *uninitialized_var(target_entry1); 1550 1551 this.parent = NULL; 1552 1553 this.class = hlock_class(prev); 1554 ret = find_usage_backwards(&this, bit_backwards, &target_entry); 1555 if (ret < 0) 1556 return print_bfs_bug(ret); 1557 if (ret == 1) 1558 return ret; 1559 1560 that.parent = NULL; 1561 that.class = hlock_class(next); 1562 ret = find_usage_forwards(&that, bit_forwards, &target_entry1); 1563 if (ret < 0) 1564 return print_bfs_bug(ret); 1565 if (ret == 1) 1566 return ret; 1567 1568 return print_bad_irq_dependency(curr, &this, &that, 1569 target_entry, target_entry1, 1570 prev, next, 1571 bit_backwards, bit_forwards, irqclass); 1572 } 1573 1574 static const char *state_names[] = { 1575 #define LOCKDEP_STATE(__STATE) \ 1576 __stringify(__STATE), 1577 #include "lockdep_states.h" 1578 #undef LOCKDEP_STATE 1579 }; 1580 1581 static const char *state_rnames[] = { 1582 #define LOCKDEP_STATE(__STATE) \ 1583 __stringify(__STATE)"-READ", 1584 #include "lockdep_states.h" 1585 #undef LOCKDEP_STATE 1586 }; 1587 1588 static inline const char *state_name(enum lock_usage_bit bit) 1589 { 1590 return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2]; 1591 } 1592 1593 static int exclusive_bit(int new_bit) 1594 { 1595 /* 1596 * USED_IN 1597 * USED_IN_READ 1598 * ENABLED 1599 * ENABLED_READ 1600 * 1601 * bit 0 - write/read 1602 * bit 1 - used_in/enabled 1603 * bit 2+ state 1604 */ 1605 1606 int state = new_bit & ~3; 1607 int dir = new_bit & 2; 1608 1609 /* 1610 * keep state, bit flip the direction and strip read. 1611 */ 1612 return state | (dir ^ 2); 1613 } 1614 1615 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 1616 struct held_lock *next, enum lock_usage_bit bit) 1617 { 1618 /* 1619 * Prove that the new dependency does not connect a hardirq-safe 1620 * lock with a hardirq-unsafe lock - to achieve this we search 1621 * the backwards-subgraph starting at <prev>, and the 1622 * forwards-subgraph starting at <next>: 1623 */ 1624 if (!check_usage(curr, prev, next, bit, 1625 exclusive_bit(bit), state_name(bit))) 1626 return 0; 1627 1628 bit++; /* _READ */ 1629 1630 /* 1631 * Prove that the new dependency does not connect a hardirq-safe-read 1632 * lock with a hardirq-unsafe lock - to achieve this we search 1633 * the backwards-subgraph starting at <prev>, and the 1634 * forwards-subgraph starting at <next>: 1635 */ 1636 if (!check_usage(curr, prev, next, bit, 1637 exclusive_bit(bit), state_name(bit))) 1638 return 0; 1639 1640 return 1; 1641 } 1642 1643 static int 1644 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, 1645 struct held_lock *next) 1646 { 1647 #define LOCKDEP_STATE(__STATE) \ 1648 if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE)) \ 1649 return 0; 1650 #include "lockdep_states.h" 1651 #undef LOCKDEP_STATE 1652 1653 return 1; 1654 } 1655 1656 static void inc_chains(void) 1657 { 1658 if (current->hardirq_context) 1659 nr_hardirq_chains++; 1660 else { 1661 if (current->softirq_context) 1662 nr_softirq_chains++; 1663 else 1664 nr_process_chains++; 1665 } 1666 } 1667 1668 #else 1669 1670 static inline int 1671 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev, 1672 struct held_lock *next) 1673 { 1674 return 1; 1675 } 1676 1677 static inline void inc_chains(void) 1678 { 1679 nr_process_chains++; 1680 } 1681 1682 #endif 1683 1684 static void 1685 print_deadlock_scenario(struct held_lock *nxt, 1686 struct held_lock *prv) 1687 { 1688 struct lock_class *next = hlock_class(nxt); 1689 struct lock_class *prev = hlock_class(prv); 1690 1691 printk(" Possible unsafe locking scenario:\n\n"); 1692 printk(" CPU0\n"); 1693 printk(" ----\n"); 1694 printk(" lock("); 1695 __print_lock_name(prev); 1696 printk(KERN_CONT ");\n"); 1697 printk(" lock("); 1698 __print_lock_name(next); 1699 printk(KERN_CONT ");\n"); 1700 printk("\n *** DEADLOCK ***\n\n"); 1701 printk(" May be due to missing lock nesting notation\n\n"); 1702 } 1703 1704 static int 1705 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 1706 struct held_lock *next) 1707 { 1708 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1709 return 0; 1710 1711 printk("\n"); 1712 printk("=============================================\n"); 1713 printk("[ INFO: possible recursive locking detected ]\n"); 1714 print_kernel_ident(); 1715 printk("---------------------------------------------\n"); 1716 printk("%s/%d is trying to acquire lock:\n", 1717 curr->comm, task_pid_nr(curr)); 1718 print_lock(next); 1719 printk("\nbut task is already holding lock:\n"); 1720 print_lock(prev); 1721 1722 printk("\nother info that might help us debug this:\n"); 1723 print_deadlock_scenario(next, prev); 1724 lockdep_print_held_locks(curr); 1725 1726 printk("\nstack backtrace:\n"); 1727 dump_stack(); 1728 1729 return 0; 1730 } 1731 1732 /* 1733 * Check whether we are holding such a class already. 1734 * 1735 * (Note that this has to be done separately, because the graph cannot 1736 * detect such classes of deadlocks.) 1737 * 1738 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read 1739 */ 1740 static int 1741 check_deadlock(struct task_struct *curr, struct held_lock *next, 1742 struct lockdep_map *next_instance, int read) 1743 { 1744 struct held_lock *prev; 1745 struct held_lock *nest = NULL; 1746 int i; 1747 1748 for (i = 0; i < curr->lockdep_depth; i++) { 1749 prev = curr->held_locks + i; 1750 1751 if (prev->instance == next->nest_lock) 1752 nest = prev; 1753 1754 if (hlock_class(prev) != hlock_class(next)) 1755 continue; 1756 1757 /* 1758 * Allow read-after-read recursion of the same 1759 * lock class (i.e. read_lock(lock)+read_lock(lock)): 1760 */ 1761 if ((read == 2) && prev->read) 1762 return 2; 1763 1764 /* 1765 * We're holding the nest_lock, which serializes this lock's 1766 * nesting behaviour. 1767 */ 1768 if (nest) 1769 return 2; 1770 1771 return print_deadlock_bug(curr, prev, next); 1772 } 1773 return 1; 1774 } 1775 1776 /* 1777 * There was a chain-cache miss, and we are about to add a new dependency 1778 * to a previous lock. We recursively validate the following rules: 1779 * 1780 * - would the adding of the <prev> -> <next> dependency create a 1781 * circular dependency in the graph? [== circular deadlock] 1782 * 1783 * - does the new prev->next dependency connect any hardirq-safe lock 1784 * (in the full backwards-subgraph starting at <prev>) with any 1785 * hardirq-unsafe lock (in the full forwards-subgraph starting at 1786 * <next>)? [== illegal lock inversion with hardirq contexts] 1787 * 1788 * - does the new prev->next dependency connect any softirq-safe lock 1789 * (in the full backwards-subgraph starting at <prev>) with any 1790 * softirq-unsafe lock (in the full forwards-subgraph starting at 1791 * <next>)? [== illegal lock inversion with softirq contexts] 1792 * 1793 * any of these scenarios could lead to a deadlock. 1794 * 1795 * Then if all the validations pass, we add the forwards and backwards 1796 * dependency. 1797 */ 1798 static int 1799 check_prev_add(struct task_struct *curr, struct held_lock *prev, 1800 struct held_lock *next, int distance, int *stack_saved) 1801 { 1802 struct lock_list *entry; 1803 int ret; 1804 struct lock_list this; 1805 struct lock_list *uninitialized_var(target_entry); 1806 /* 1807 * Static variable, serialized by the graph_lock(). 1808 * 1809 * We use this static variable to save the stack trace in case 1810 * we call into this function multiple times due to encountering 1811 * trylocks in the held lock stack. 1812 */ 1813 static struct stack_trace trace; 1814 1815 /* 1816 * Prove that the new <prev> -> <next> dependency would not 1817 * create a circular dependency in the graph. (We do this by 1818 * forward-recursing into the graph starting at <next>, and 1819 * checking whether we can reach <prev>.) 1820 * 1821 * We are using global variables to control the recursion, to 1822 * keep the stackframe size of the recursive functions low: 1823 */ 1824 this.class = hlock_class(next); 1825 this.parent = NULL; 1826 ret = check_noncircular(&this, hlock_class(prev), &target_entry); 1827 if (unlikely(!ret)) 1828 return print_circular_bug(&this, target_entry, next, prev); 1829 else if (unlikely(ret < 0)) 1830 return print_bfs_bug(ret); 1831 1832 if (!check_prev_add_irq(curr, prev, next)) 1833 return 0; 1834 1835 /* 1836 * For recursive read-locks we do all the dependency checks, 1837 * but we dont store read-triggered dependencies (only 1838 * write-triggered dependencies). This ensures that only the 1839 * write-side dependencies matter, and that if for example a 1840 * write-lock never takes any other locks, then the reads are 1841 * equivalent to a NOP. 1842 */ 1843 if (next->read == 2 || prev->read == 2) 1844 return 1; 1845 /* 1846 * Is the <prev> -> <next> dependency already present? 1847 * 1848 * (this may occur even though this is a new chain: consider 1849 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 1850 * chains - the second one will be new, but L1 already has 1851 * L2 added to its dependency list, due to the first chain.) 1852 */ 1853 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 1854 if (entry->class == hlock_class(next)) { 1855 if (distance == 1) 1856 entry->distance = 1; 1857 return 2; 1858 } 1859 } 1860 1861 if (!*stack_saved) { 1862 if (!save_trace(&trace)) 1863 return 0; 1864 *stack_saved = 1; 1865 } 1866 1867 /* 1868 * Ok, all validations passed, add the new lock 1869 * to the previous lock's dependency list: 1870 */ 1871 ret = add_lock_to_list(hlock_class(next), 1872 &hlock_class(prev)->locks_after, 1873 next->acquire_ip, distance, &trace); 1874 1875 if (!ret) 1876 return 0; 1877 1878 ret = add_lock_to_list(hlock_class(prev), 1879 &hlock_class(next)->locks_before, 1880 next->acquire_ip, distance, &trace); 1881 if (!ret) 1882 return 0; 1883 1884 /* 1885 * Debugging printouts: 1886 */ 1887 if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) { 1888 /* We drop graph lock, so another thread can overwrite trace. */ 1889 *stack_saved = 0; 1890 graph_unlock(); 1891 printk("\n new dependency: "); 1892 print_lock_name(hlock_class(prev)); 1893 printk(KERN_CONT " => "); 1894 print_lock_name(hlock_class(next)); 1895 printk(KERN_CONT "\n"); 1896 dump_stack(); 1897 return graph_lock(); 1898 } 1899 return 1; 1900 } 1901 1902 /* 1903 * Add the dependency to all directly-previous locks that are 'relevant'. 1904 * The ones that are relevant are (in increasing distance from curr): 1905 * all consecutive trylock entries and the final non-trylock entry - or 1906 * the end of this context's lock-chain - whichever comes first. 1907 */ 1908 static int 1909 check_prevs_add(struct task_struct *curr, struct held_lock *next) 1910 { 1911 int depth = curr->lockdep_depth; 1912 int stack_saved = 0; 1913 struct held_lock *hlock; 1914 1915 /* 1916 * Debugging checks. 1917 * 1918 * Depth must not be zero for a non-head lock: 1919 */ 1920 if (!depth) 1921 goto out_bug; 1922 /* 1923 * At least two relevant locks must exist for this 1924 * to be a head: 1925 */ 1926 if (curr->held_locks[depth].irq_context != 1927 curr->held_locks[depth-1].irq_context) 1928 goto out_bug; 1929 1930 for (;;) { 1931 int distance = curr->lockdep_depth - depth + 1; 1932 hlock = curr->held_locks + depth - 1; 1933 /* 1934 * Only non-recursive-read entries get new dependencies 1935 * added: 1936 */ 1937 if (hlock->read != 2 && hlock->check) { 1938 if (!check_prev_add(curr, hlock, next, 1939 distance, &stack_saved)) 1940 return 0; 1941 /* 1942 * Stop after the first non-trylock entry, 1943 * as non-trylock entries have added their 1944 * own direct dependencies already, so this 1945 * lock is connected to them indirectly: 1946 */ 1947 if (!hlock->trylock) 1948 break; 1949 } 1950 depth--; 1951 /* 1952 * End of lock-stack? 1953 */ 1954 if (!depth) 1955 break; 1956 /* 1957 * Stop the search if we cross into another context: 1958 */ 1959 if (curr->held_locks[depth].irq_context != 1960 curr->held_locks[depth-1].irq_context) 1961 break; 1962 } 1963 return 1; 1964 out_bug: 1965 if (!debug_locks_off_graph_unlock()) 1966 return 0; 1967 1968 /* 1969 * Clearly we all shouldn't be here, but since we made it we 1970 * can reliable say we messed up our state. See the above two 1971 * gotos for reasons why we could possibly end up here. 1972 */ 1973 WARN_ON(1); 1974 1975 return 0; 1976 } 1977 1978 unsigned long nr_lock_chains; 1979 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 1980 int nr_chain_hlocks; 1981 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1982 1983 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 1984 { 1985 return lock_classes + chain_hlocks[chain->base + i]; 1986 } 1987 1988 /* 1989 * Returns the index of the first held_lock of the current chain 1990 */ 1991 static inline int get_first_held_lock(struct task_struct *curr, 1992 struct held_lock *hlock) 1993 { 1994 int i; 1995 struct held_lock *hlock_curr; 1996 1997 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 1998 hlock_curr = curr->held_locks + i; 1999 if (hlock_curr->irq_context != hlock->irq_context) 2000 break; 2001 2002 } 2003 2004 return ++i; 2005 } 2006 2007 #ifdef CONFIG_DEBUG_LOCKDEP 2008 /* 2009 * Returns the next chain_key iteration 2010 */ 2011 static u64 print_chain_key_iteration(int class_idx, u64 chain_key) 2012 { 2013 u64 new_chain_key = iterate_chain_key(chain_key, class_idx); 2014 2015 printk(" class_idx:%d -> chain_key:%016Lx", 2016 class_idx, 2017 (unsigned long long)new_chain_key); 2018 return new_chain_key; 2019 } 2020 2021 static void 2022 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 2023 { 2024 struct held_lock *hlock; 2025 u64 chain_key = 0; 2026 int depth = curr->lockdep_depth; 2027 int i; 2028 2029 printk("depth: %u\n", depth + 1); 2030 for (i = get_first_held_lock(curr, hlock_next); i < depth; i++) { 2031 hlock = curr->held_locks + i; 2032 chain_key = print_chain_key_iteration(hlock->class_idx, chain_key); 2033 2034 print_lock(hlock); 2035 } 2036 2037 print_chain_key_iteration(hlock_next->class_idx, chain_key); 2038 print_lock(hlock_next); 2039 } 2040 2041 static void print_chain_keys_chain(struct lock_chain *chain) 2042 { 2043 int i; 2044 u64 chain_key = 0; 2045 int class_id; 2046 2047 printk("depth: %u\n", chain->depth); 2048 for (i = 0; i < chain->depth; i++) { 2049 class_id = chain_hlocks[chain->base + i]; 2050 chain_key = print_chain_key_iteration(class_id + 1, chain_key); 2051 2052 print_lock_name(lock_classes + class_id); 2053 printk("\n"); 2054 } 2055 } 2056 2057 static void print_collision(struct task_struct *curr, 2058 struct held_lock *hlock_next, 2059 struct lock_chain *chain) 2060 { 2061 printk("\n"); 2062 printk("======================\n"); 2063 printk("[chain_key collision ]\n"); 2064 print_kernel_ident(); 2065 printk("----------------------\n"); 2066 printk("%s/%d: ", current->comm, task_pid_nr(current)); 2067 printk("Hash chain already cached but the contents don't match!\n"); 2068 2069 printk("Held locks:"); 2070 print_chain_keys_held_locks(curr, hlock_next); 2071 2072 printk("Locks in cached chain:"); 2073 print_chain_keys_chain(chain); 2074 2075 printk("\nstack backtrace:\n"); 2076 dump_stack(); 2077 } 2078 #endif 2079 2080 /* 2081 * Checks whether the chain and the current held locks are consistent 2082 * in depth and also in content. If they are not it most likely means 2083 * that there was a collision during the calculation of the chain_key. 2084 * Returns: 0 not passed, 1 passed 2085 */ 2086 static int check_no_collision(struct task_struct *curr, 2087 struct held_lock *hlock, 2088 struct lock_chain *chain) 2089 { 2090 #ifdef CONFIG_DEBUG_LOCKDEP 2091 int i, j, id; 2092 2093 i = get_first_held_lock(curr, hlock); 2094 2095 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 2096 print_collision(curr, hlock, chain); 2097 return 0; 2098 } 2099 2100 for (j = 0; j < chain->depth - 1; j++, i++) { 2101 id = curr->held_locks[i].class_idx - 1; 2102 2103 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 2104 print_collision(curr, hlock, chain); 2105 return 0; 2106 } 2107 } 2108 #endif 2109 return 1; 2110 } 2111 2112 /* 2113 * Look up a dependency chain. If the key is not present yet then 2114 * add it and return 1 - in this case the new dependency chain is 2115 * validated. If the key is already hashed, return 0. 2116 * (On return with 1 graph_lock is held.) 2117 */ 2118 static inline int lookup_chain_cache(struct task_struct *curr, 2119 struct held_lock *hlock, 2120 u64 chain_key) 2121 { 2122 struct lock_class *class = hlock_class(hlock); 2123 struct hlist_head *hash_head = chainhashentry(chain_key); 2124 struct lock_chain *chain; 2125 int i, j; 2126 2127 /* 2128 * We might need to take the graph lock, ensure we've got IRQs 2129 * disabled to make this an IRQ-safe lock.. for recursion reasons 2130 * lockdep won't complain about its own locking errors. 2131 */ 2132 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2133 return 0; 2134 /* 2135 * We can walk it lock-free, because entries only get added 2136 * to the hash: 2137 */ 2138 hlist_for_each_entry_rcu(chain, hash_head, entry) { 2139 if (chain->chain_key == chain_key) { 2140 cache_hit: 2141 debug_atomic_inc(chain_lookup_hits); 2142 if (!check_no_collision(curr, hlock, chain)) 2143 return 0; 2144 2145 if (very_verbose(class)) 2146 printk("\nhash chain already cached, key: " 2147 "%016Lx tail class: [%p] %s\n", 2148 (unsigned long long)chain_key, 2149 class->key, class->name); 2150 return 0; 2151 } 2152 } 2153 if (very_verbose(class)) 2154 printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n", 2155 (unsigned long long)chain_key, class->key, class->name); 2156 /* 2157 * Allocate a new chain entry from the static array, and add 2158 * it to the hash: 2159 */ 2160 if (!graph_lock()) 2161 return 0; 2162 /* 2163 * We have to walk the chain again locked - to avoid duplicates: 2164 */ 2165 hlist_for_each_entry(chain, hash_head, entry) { 2166 if (chain->chain_key == chain_key) { 2167 graph_unlock(); 2168 goto cache_hit; 2169 } 2170 } 2171 if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) { 2172 if (!debug_locks_off_graph_unlock()) 2173 return 0; 2174 2175 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 2176 dump_stack(); 2177 return 0; 2178 } 2179 chain = lock_chains + nr_lock_chains++; 2180 chain->chain_key = chain_key; 2181 chain->irq_context = hlock->irq_context; 2182 i = get_first_held_lock(curr, hlock); 2183 chain->depth = curr->lockdep_depth + 1 - i; 2184 2185 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 2186 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 2187 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 2188 2189 if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) { 2190 chain->base = nr_chain_hlocks; 2191 for (j = 0; j < chain->depth - 1; j++, i++) { 2192 int lock_id = curr->held_locks[i].class_idx - 1; 2193 chain_hlocks[chain->base + j] = lock_id; 2194 } 2195 chain_hlocks[chain->base + j] = class - lock_classes; 2196 } 2197 2198 if (nr_chain_hlocks < MAX_LOCKDEP_CHAIN_HLOCKS) 2199 nr_chain_hlocks += chain->depth; 2200 2201 #ifdef CONFIG_DEBUG_LOCKDEP 2202 /* 2203 * Important for check_no_collision(). 2204 */ 2205 if (unlikely(nr_chain_hlocks > MAX_LOCKDEP_CHAIN_HLOCKS)) { 2206 if (!debug_locks_off_graph_unlock()) 2207 return 0; 2208 2209 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 2210 dump_stack(); 2211 return 0; 2212 } 2213 #endif 2214 2215 hlist_add_head_rcu(&chain->entry, hash_head); 2216 debug_atomic_inc(chain_lookup_misses); 2217 inc_chains(); 2218 2219 return 1; 2220 } 2221 2222 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock, 2223 struct held_lock *hlock, int chain_head, u64 chain_key) 2224 { 2225 /* 2226 * Trylock needs to maintain the stack of held locks, but it 2227 * does not add new dependencies, because trylock can be done 2228 * in any order. 2229 * 2230 * We look up the chain_key and do the O(N^2) check and update of 2231 * the dependencies only if this is a new dependency chain. 2232 * (If lookup_chain_cache() returns with 1 it acquires 2233 * graph_lock for us) 2234 */ 2235 if (!hlock->trylock && hlock->check && 2236 lookup_chain_cache(curr, hlock, chain_key)) { 2237 /* 2238 * Check whether last held lock: 2239 * 2240 * - is irq-safe, if this lock is irq-unsafe 2241 * - is softirq-safe, if this lock is hardirq-unsafe 2242 * 2243 * And check whether the new lock's dependency graph 2244 * could lead back to the previous lock. 2245 * 2246 * any of these scenarios could lead to a deadlock. If 2247 * All validations 2248 */ 2249 int ret = check_deadlock(curr, hlock, lock, hlock->read); 2250 2251 if (!ret) 2252 return 0; 2253 /* 2254 * Mark recursive read, as we jump over it when 2255 * building dependencies (just like we jump over 2256 * trylock entries): 2257 */ 2258 if (ret == 2) 2259 hlock->read = 2; 2260 /* 2261 * Add dependency only if this lock is not the head 2262 * of the chain, and if it's not a secondary read-lock: 2263 */ 2264 if (!chain_head && ret != 2) 2265 if (!check_prevs_add(curr, hlock)) 2266 return 0; 2267 graph_unlock(); 2268 } else 2269 /* after lookup_chain_cache(): */ 2270 if (unlikely(!debug_locks)) 2271 return 0; 2272 2273 return 1; 2274 } 2275 #else 2276 static inline int validate_chain(struct task_struct *curr, 2277 struct lockdep_map *lock, struct held_lock *hlock, 2278 int chain_head, u64 chain_key) 2279 { 2280 return 1; 2281 } 2282 #endif 2283 2284 /* 2285 * We are building curr_chain_key incrementally, so double-check 2286 * it from scratch, to make sure that it's done correctly: 2287 */ 2288 static void check_chain_key(struct task_struct *curr) 2289 { 2290 #ifdef CONFIG_DEBUG_LOCKDEP 2291 struct held_lock *hlock, *prev_hlock = NULL; 2292 unsigned int i; 2293 u64 chain_key = 0; 2294 2295 for (i = 0; i < curr->lockdep_depth; i++) { 2296 hlock = curr->held_locks + i; 2297 if (chain_key != hlock->prev_chain_key) { 2298 debug_locks_off(); 2299 /* 2300 * We got mighty confused, our chain keys don't match 2301 * with what we expect, someone trample on our task state? 2302 */ 2303 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 2304 curr->lockdep_depth, i, 2305 (unsigned long long)chain_key, 2306 (unsigned long long)hlock->prev_chain_key); 2307 return; 2308 } 2309 /* 2310 * Whoops ran out of static storage again? 2311 */ 2312 if (DEBUG_LOCKS_WARN_ON(hlock->class_idx > MAX_LOCKDEP_KEYS)) 2313 return; 2314 2315 if (prev_hlock && (prev_hlock->irq_context != 2316 hlock->irq_context)) 2317 chain_key = 0; 2318 chain_key = iterate_chain_key(chain_key, hlock->class_idx); 2319 prev_hlock = hlock; 2320 } 2321 if (chain_key != curr->curr_chain_key) { 2322 debug_locks_off(); 2323 /* 2324 * More smoking hash instead of calculating it, damn see these 2325 * numbers float.. I bet that a pink elephant stepped on my memory. 2326 */ 2327 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 2328 curr->lockdep_depth, i, 2329 (unsigned long long)chain_key, 2330 (unsigned long long)curr->curr_chain_key); 2331 } 2332 #endif 2333 } 2334 2335 static void 2336 print_usage_bug_scenario(struct held_lock *lock) 2337 { 2338 struct lock_class *class = hlock_class(lock); 2339 2340 printk(" Possible unsafe locking scenario:\n\n"); 2341 printk(" CPU0\n"); 2342 printk(" ----\n"); 2343 printk(" lock("); 2344 __print_lock_name(class); 2345 printk(KERN_CONT ");\n"); 2346 printk(" <Interrupt>\n"); 2347 printk(" lock("); 2348 __print_lock_name(class); 2349 printk(KERN_CONT ");\n"); 2350 printk("\n *** DEADLOCK ***\n\n"); 2351 } 2352 2353 static int 2354 print_usage_bug(struct task_struct *curr, struct held_lock *this, 2355 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 2356 { 2357 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2358 return 0; 2359 2360 printk("\n"); 2361 printk("=================================\n"); 2362 printk("[ INFO: inconsistent lock state ]\n"); 2363 print_kernel_ident(); 2364 printk("---------------------------------\n"); 2365 2366 printk("inconsistent {%s} -> {%s} usage.\n", 2367 usage_str[prev_bit], usage_str[new_bit]); 2368 2369 printk("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 2370 curr->comm, task_pid_nr(curr), 2371 trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT, 2372 trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 2373 trace_hardirqs_enabled(curr), 2374 trace_softirqs_enabled(curr)); 2375 print_lock(this); 2376 2377 printk("{%s} state was registered at:\n", usage_str[prev_bit]); 2378 print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1); 2379 2380 print_irqtrace_events(curr); 2381 printk("\nother info that might help us debug this:\n"); 2382 print_usage_bug_scenario(this); 2383 2384 lockdep_print_held_locks(curr); 2385 2386 printk("\nstack backtrace:\n"); 2387 dump_stack(); 2388 2389 return 0; 2390 } 2391 2392 /* 2393 * Print out an error if an invalid bit is set: 2394 */ 2395 static inline int 2396 valid_state(struct task_struct *curr, struct held_lock *this, 2397 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 2398 { 2399 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) 2400 return print_usage_bug(curr, this, bad_bit, new_bit); 2401 return 1; 2402 } 2403 2404 static int mark_lock(struct task_struct *curr, struct held_lock *this, 2405 enum lock_usage_bit new_bit); 2406 2407 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 2408 2409 /* 2410 * print irq inversion bug: 2411 */ 2412 static int 2413 print_irq_inversion_bug(struct task_struct *curr, 2414 struct lock_list *root, struct lock_list *other, 2415 struct held_lock *this, int forwards, 2416 const char *irqclass) 2417 { 2418 struct lock_list *entry = other; 2419 struct lock_list *middle = NULL; 2420 int depth; 2421 2422 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2423 return 0; 2424 2425 printk("\n"); 2426 printk("=========================================================\n"); 2427 printk("[ INFO: possible irq lock inversion dependency detected ]\n"); 2428 print_kernel_ident(); 2429 printk("---------------------------------------------------------\n"); 2430 printk("%s/%d just changed the state of lock:\n", 2431 curr->comm, task_pid_nr(curr)); 2432 print_lock(this); 2433 if (forwards) 2434 printk("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 2435 else 2436 printk("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 2437 print_lock_name(other->class); 2438 printk("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 2439 2440 printk("\nother info that might help us debug this:\n"); 2441 2442 /* Find a middle lock (if one exists) */ 2443 depth = get_lock_depth(other); 2444 do { 2445 if (depth == 0 && (entry != root)) { 2446 printk("lockdep:%s bad path found in chain graph\n", __func__); 2447 break; 2448 } 2449 middle = entry; 2450 entry = get_lock_parent(entry); 2451 depth--; 2452 } while (entry && entry != root && (depth >= 0)); 2453 if (forwards) 2454 print_irq_lock_scenario(root, other, 2455 middle ? middle->class : root->class, other->class); 2456 else 2457 print_irq_lock_scenario(other, root, 2458 middle ? middle->class : other->class, root->class); 2459 2460 lockdep_print_held_locks(curr); 2461 2462 printk("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 2463 if (!save_trace(&root->trace)) 2464 return 0; 2465 print_shortest_lock_dependencies(other, root); 2466 2467 printk("\nstack backtrace:\n"); 2468 dump_stack(); 2469 2470 return 0; 2471 } 2472 2473 /* 2474 * Prove that in the forwards-direction subgraph starting at <this> 2475 * there is no lock matching <mask>: 2476 */ 2477 static int 2478 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 2479 enum lock_usage_bit bit, const char *irqclass) 2480 { 2481 int ret; 2482 struct lock_list root; 2483 struct lock_list *uninitialized_var(target_entry); 2484 2485 root.parent = NULL; 2486 root.class = hlock_class(this); 2487 ret = find_usage_forwards(&root, bit, &target_entry); 2488 if (ret < 0) 2489 return print_bfs_bug(ret); 2490 if (ret == 1) 2491 return ret; 2492 2493 return print_irq_inversion_bug(curr, &root, target_entry, 2494 this, 1, irqclass); 2495 } 2496 2497 /* 2498 * Prove that in the backwards-direction subgraph starting at <this> 2499 * there is no lock matching <mask>: 2500 */ 2501 static int 2502 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 2503 enum lock_usage_bit bit, const char *irqclass) 2504 { 2505 int ret; 2506 struct lock_list root; 2507 struct lock_list *uninitialized_var(target_entry); 2508 2509 root.parent = NULL; 2510 root.class = hlock_class(this); 2511 ret = find_usage_backwards(&root, bit, &target_entry); 2512 if (ret < 0) 2513 return print_bfs_bug(ret); 2514 if (ret == 1) 2515 return ret; 2516 2517 return print_irq_inversion_bug(curr, &root, target_entry, 2518 this, 0, irqclass); 2519 } 2520 2521 void print_irqtrace_events(struct task_struct *curr) 2522 { 2523 printk("irq event stamp: %u\n", curr->irq_events); 2524 printk("hardirqs last enabled at (%u): [<%p>] %pS\n", 2525 curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip, 2526 (void *)curr->hardirq_enable_ip); 2527 printk("hardirqs last disabled at (%u): [<%p>] %pS\n", 2528 curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip, 2529 (void *)curr->hardirq_disable_ip); 2530 printk("softirqs last enabled at (%u): [<%p>] %pS\n", 2531 curr->softirq_enable_event, (void *)curr->softirq_enable_ip, 2532 (void *)curr->softirq_enable_ip); 2533 printk("softirqs last disabled at (%u): [<%p>] %pS\n", 2534 curr->softirq_disable_event, (void *)curr->softirq_disable_ip, 2535 (void *)curr->softirq_disable_ip); 2536 } 2537 2538 static int HARDIRQ_verbose(struct lock_class *class) 2539 { 2540 #if HARDIRQ_VERBOSE 2541 return class_filter(class); 2542 #endif 2543 return 0; 2544 } 2545 2546 static int SOFTIRQ_verbose(struct lock_class *class) 2547 { 2548 #if SOFTIRQ_VERBOSE 2549 return class_filter(class); 2550 #endif 2551 return 0; 2552 } 2553 2554 static int RECLAIM_FS_verbose(struct lock_class *class) 2555 { 2556 #if RECLAIM_VERBOSE 2557 return class_filter(class); 2558 #endif 2559 return 0; 2560 } 2561 2562 #define STRICT_READ_CHECKS 1 2563 2564 static int (*state_verbose_f[])(struct lock_class *class) = { 2565 #define LOCKDEP_STATE(__STATE) \ 2566 __STATE##_verbose, 2567 #include "lockdep_states.h" 2568 #undef LOCKDEP_STATE 2569 }; 2570 2571 static inline int state_verbose(enum lock_usage_bit bit, 2572 struct lock_class *class) 2573 { 2574 return state_verbose_f[bit >> 2](class); 2575 } 2576 2577 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 2578 enum lock_usage_bit bit, const char *name); 2579 2580 static int 2581 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 2582 enum lock_usage_bit new_bit) 2583 { 2584 int excl_bit = exclusive_bit(new_bit); 2585 int read = new_bit & 1; 2586 int dir = new_bit & 2; 2587 2588 /* 2589 * mark USED_IN has to look forwards -- to ensure no dependency 2590 * has ENABLED state, which would allow recursion deadlocks. 2591 * 2592 * mark ENABLED has to look backwards -- to ensure no dependee 2593 * has USED_IN state, which, again, would allow recursion deadlocks. 2594 */ 2595 check_usage_f usage = dir ? 2596 check_usage_backwards : check_usage_forwards; 2597 2598 /* 2599 * Validate that this particular lock does not have conflicting 2600 * usage states. 2601 */ 2602 if (!valid_state(curr, this, new_bit, excl_bit)) 2603 return 0; 2604 2605 /* 2606 * Validate that the lock dependencies don't have conflicting usage 2607 * states. 2608 */ 2609 if ((!read || !dir || STRICT_READ_CHECKS) && 2610 !usage(curr, this, excl_bit, state_name(new_bit & ~1))) 2611 return 0; 2612 2613 /* 2614 * Check for read in write conflicts 2615 */ 2616 if (!read) { 2617 if (!valid_state(curr, this, new_bit, excl_bit + 1)) 2618 return 0; 2619 2620 if (STRICT_READ_CHECKS && 2621 !usage(curr, this, excl_bit + 1, 2622 state_name(new_bit + 1))) 2623 return 0; 2624 } 2625 2626 if (state_verbose(new_bit, hlock_class(this))) 2627 return 2; 2628 2629 return 1; 2630 } 2631 2632 enum mark_type { 2633 #define LOCKDEP_STATE(__STATE) __STATE, 2634 #include "lockdep_states.h" 2635 #undef LOCKDEP_STATE 2636 }; 2637 2638 /* 2639 * Mark all held locks with a usage bit: 2640 */ 2641 static int 2642 mark_held_locks(struct task_struct *curr, enum mark_type mark) 2643 { 2644 enum lock_usage_bit usage_bit; 2645 struct held_lock *hlock; 2646 int i; 2647 2648 for (i = 0; i < curr->lockdep_depth; i++) { 2649 hlock = curr->held_locks + i; 2650 2651 usage_bit = 2 + (mark << 2); /* ENABLED */ 2652 if (hlock->read) 2653 usage_bit += 1; /* READ */ 2654 2655 BUG_ON(usage_bit >= LOCK_USAGE_STATES); 2656 2657 if (!hlock->check) 2658 continue; 2659 2660 if (!mark_lock(curr, hlock, usage_bit)) 2661 return 0; 2662 } 2663 2664 return 1; 2665 } 2666 2667 /* 2668 * Hardirqs will be enabled: 2669 */ 2670 static void __trace_hardirqs_on_caller(unsigned long ip) 2671 { 2672 struct task_struct *curr = current; 2673 2674 /* we'll do an OFF -> ON transition: */ 2675 curr->hardirqs_enabled = 1; 2676 2677 /* 2678 * We are going to turn hardirqs on, so set the 2679 * usage bit for all held locks: 2680 */ 2681 if (!mark_held_locks(curr, HARDIRQ)) 2682 return; 2683 /* 2684 * If we have softirqs enabled, then set the usage 2685 * bit for all held locks. (disabled hardirqs prevented 2686 * this bit from being set before) 2687 */ 2688 if (curr->softirqs_enabled) 2689 if (!mark_held_locks(curr, SOFTIRQ)) 2690 return; 2691 2692 curr->hardirq_enable_ip = ip; 2693 curr->hardirq_enable_event = ++curr->irq_events; 2694 debug_atomic_inc(hardirqs_on_events); 2695 } 2696 2697 __visible void trace_hardirqs_on_caller(unsigned long ip) 2698 { 2699 time_hardirqs_on(CALLER_ADDR0, ip); 2700 2701 if (unlikely(!debug_locks || current->lockdep_recursion)) 2702 return; 2703 2704 if (unlikely(current->hardirqs_enabled)) { 2705 /* 2706 * Neither irq nor preemption are disabled here 2707 * so this is racy by nature but losing one hit 2708 * in a stat is not a big deal. 2709 */ 2710 __debug_atomic_inc(redundant_hardirqs_on); 2711 return; 2712 } 2713 2714 /* 2715 * We're enabling irqs and according to our state above irqs weren't 2716 * already enabled, yet we find the hardware thinks they are in fact 2717 * enabled.. someone messed up their IRQ state tracing. 2718 */ 2719 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2720 return; 2721 2722 /* 2723 * See the fine text that goes along with this variable definition. 2724 */ 2725 if (DEBUG_LOCKS_WARN_ON(unlikely(early_boot_irqs_disabled))) 2726 return; 2727 2728 /* 2729 * Can't allow enabling interrupts while in an interrupt handler, 2730 * that's general bad form and such. Recursion, limited stack etc.. 2731 */ 2732 if (DEBUG_LOCKS_WARN_ON(current->hardirq_context)) 2733 return; 2734 2735 current->lockdep_recursion = 1; 2736 __trace_hardirqs_on_caller(ip); 2737 current->lockdep_recursion = 0; 2738 } 2739 EXPORT_SYMBOL(trace_hardirqs_on_caller); 2740 2741 void trace_hardirqs_on(void) 2742 { 2743 trace_hardirqs_on_caller(CALLER_ADDR0); 2744 } 2745 EXPORT_SYMBOL(trace_hardirqs_on); 2746 2747 /* 2748 * Hardirqs were disabled: 2749 */ 2750 __visible void trace_hardirqs_off_caller(unsigned long ip) 2751 { 2752 struct task_struct *curr = current; 2753 2754 time_hardirqs_off(CALLER_ADDR0, ip); 2755 2756 if (unlikely(!debug_locks || current->lockdep_recursion)) 2757 return; 2758 2759 /* 2760 * So we're supposed to get called after you mask local IRQs, but for 2761 * some reason the hardware doesn't quite think you did a proper job. 2762 */ 2763 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2764 return; 2765 2766 if (curr->hardirqs_enabled) { 2767 /* 2768 * We have done an ON -> OFF transition: 2769 */ 2770 curr->hardirqs_enabled = 0; 2771 curr->hardirq_disable_ip = ip; 2772 curr->hardirq_disable_event = ++curr->irq_events; 2773 debug_atomic_inc(hardirqs_off_events); 2774 } else 2775 debug_atomic_inc(redundant_hardirqs_off); 2776 } 2777 EXPORT_SYMBOL(trace_hardirqs_off_caller); 2778 2779 void trace_hardirqs_off(void) 2780 { 2781 trace_hardirqs_off_caller(CALLER_ADDR0); 2782 } 2783 EXPORT_SYMBOL(trace_hardirqs_off); 2784 2785 /* 2786 * Softirqs will be enabled: 2787 */ 2788 void trace_softirqs_on(unsigned long ip) 2789 { 2790 struct task_struct *curr = current; 2791 2792 if (unlikely(!debug_locks || current->lockdep_recursion)) 2793 return; 2794 2795 /* 2796 * We fancy IRQs being disabled here, see softirq.c, avoids 2797 * funny state and nesting things. 2798 */ 2799 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2800 return; 2801 2802 if (curr->softirqs_enabled) { 2803 debug_atomic_inc(redundant_softirqs_on); 2804 return; 2805 } 2806 2807 current->lockdep_recursion = 1; 2808 /* 2809 * We'll do an OFF -> ON transition: 2810 */ 2811 curr->softirqs_enabled = 1; 2812 curr->softirq_enable_ip = ip; 2813 curr->softirq_enable_event = ++curr->irq_events; 2814 debug_atomic_inc(softirqs_on_events); 2815 /* 2816 * We are going to turn softirqs on, so set the 2817 * usage bit for all held locks, if hardirqs are 2818 * enabled too: 2819 */ 2820 if (curr->hardirqs_enabled) 2821 mark_held_locks(curr, SOFTIRQ); 2822 current->lockdep_recursion = 0; 2823 } 2824 2825 /* 2826 * Softirqs were disabled: 2827 */ 2828 void trace_softirqs_off(unsigned long ip) 2829 { 2830 struct task_struct *curr = current; 2831 2832 if (unlikely(!debug_locks || current->lockdep_recursion)) 2833 return; 2834 2835 /* 2836 * We fancy IRQs being disabled here, see softirq.c 2837 */ 2838 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 2839 return; 2840 2841 if (curr->softirqs_enabled) { 2842 /* 2843 * We have done an ON -> OFF transition: 2844 */ 2845 curr->softirqs_enabled = 0; 2846 curr->softirq_disable_ip = ip; 2847 curr->softirq_disable_event = ++curr->irq_events; 2848 debug_atomic_inc(softirqs_off_events); 2849 /* 2850 * Whoops, we wanted softirqs off, so why aren't they? 2851 */ 2852 DEBUG_LOCKS_WARN_ON(!softirq_count()); 2853 } else 2854 debug_atomic_inc(redundant_softirqs_off); 2855 } 2856 2857 static void __lockdep_trace_alloc(gfp_t gfp_mask, unsigned long flags) 2858 { 2859 struct task_struct *curr = current; 2860 2861 if (unlikely(!debug_locks)) 2862 return; 2863 2864 /* no reclaim without waiting on it */ 2865 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 2866 return; 2867 2868 /* this guy won't enter reclaim */ 2869 if ((curr->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 2870 return; 2871 2872 /* We're only interested __GFP_FS allocations for now */ 2873 if (!(gfp_mask & __GFP_FS)) 2874 return; 2875 2876 /* 2877 * Oi! Can't be having __GFP_FS allocations with IRQs disabled. 2878 */ 2879 if (DEBUG_LOCKS_WARN_ON(irqs_disabled_flags(flags))) 2880 return; 2881 2882 mark_held_locks(curr, RECLAIM_FS); 2883 } 2884 2885 static void check_flags(unsigned long flags); 2886 2887 void lockdep_trace_alloc(gfp_t gfp_mask) 2888 { 2889 unsigned long flags; 2890 2891 if (unlikely(current->lockdep_recursion)) 2892 return; 2893 2894 raw_local_irq_save(flags); 2895 check_flags(flags); 2896 current->lockdep_recursion = 1; 2897 __lockdep_trace_alloc(gfp_mask, flags); 2898 current->lockdep_recursion = 0; 2899 raw_local_irq_restore(flags); 2900 } 2901 2902 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock) 2903 { 2904 /* 2905 * If non-trylock use in a hardirq or softirq context, then 2906 * mark the lock as used in these contexts: 2907 */ 2908 if (!hlock->trylock) { 2909 if (hlock->read) { 2910 if (curr->hardirq_context) 2911 if (!mark_lock(curr, hlock, 2912 LOCK_USED_IN_HARDIRQ_READ)) 2913 return 0; 2914 if (curr->softirq_context) 2915 if (!mark_lock(curr, hlock, 2916 LOCK_USED_IN_SOFTIRQ_READ)) 2917 return 0; 2918 } else { 2919 if (curr->hardirq_context) 2920 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 2921 return 0; 2922 if (curr->softirq_context) 2923 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 2924 return 0; 2925 } 2926 } 2927 if (!hlock->hardirqs_off) { 2928 if (hlock->read) { 2929 if (!mark_lock(curr, hlock, 2930 LOCK_ENABLED_HARDIRQ_READ)) 2931 return 0; 2932 if (curr->softirqs_enabled) 2933 if (!mark_lock(curr, hlock, 2934 LOCK_ENABLED_SOFTIRQ_READ)) 2935 return 0; 2936 } else { 2937 if (!mark_lock(curr, hlock, 2938 LOCK_ENABLED_HARDIRQ)) 2939 return 0; 2940 if (curr->softirqs_enabled) 2941 if (!mark_lock(curr, hlock, 2942 LOCK_ENABLED_SOFTIRQ)) 2943 return 0; 2944 } 2945 } 2946 2947 /* 2948 * We reuse the irq context infrastructure more broadly as a general 2949 * context checking code. This tests GFP_FS recursion (a lock taken 2950 * during reclaim for a GFP_FS allocation is held over a GFP_FS 2951 * allocation). 2952 */ 2953 if (!hlock->trylock && (curr->lockdep_reclaim_gfp & __GFP_FS)) { 2954 if (hlock->read) { 2955 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS_READ)) 2956 return 0; 2957 } else { 2958 if (!mark_lock(curr, hlock, LOCK_USED_IN_RECLAIM_FS)) 2959 return 0; 2960 } 2961 } 2962 2963 return 1; 2964 } 2965 2966 static inline unsigned int task_irq_context(struct task_struct *task) 2967 { 2968 return 2 * !!task->hardirq_context + !!task->softirq_context; 2969 } 2970 2971 static int separate_irq_context(struct task_struct *curr, 2972 struct held_lock *hlock) 2973 { 2974 unsigned int depth = curr->lockdep_depth; 2975 2976 /* 2977 * Keep track of points where we cross into an interrupt context: 2978 */ 2979 if (depth) { 2980 struct held_lock *prev_hlock; 2981 2982 prev_hlock = curr->held_locks + depth-1; 2983 /* 2984 * If we cross into another context, reset the 2985 * hash key (this also prevents the checking and the 2986 * adding of the dependency to 'prev'): 2987 */ 2988 if (prev_hlock->irq_context != hlock->irq_context) 2989 return 1; 2990 } 2991 return 0; 2992 } 2993 2994 #else /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */ 2995 2996 static inline 2997 int mark_lock_irq(struct task_struct *curr, struct held_lock *this, 2998 enum lock_usage_bit new_bit) 2999 { 3000 WARN_ON(1); /* Impossible innit? when we don't have TRACE_IRQFLAG */ 3001 return 1; 3002 } 3003 3004 static inline int mark_irqflags(struct task_struct *curr, 3005 struct held_lock *hlock) 3006 { 3007 return 1; 3008 } 3009 3010 static inline unsigned int task_irq_context(struct task_struct *task) 3011 { 3012 return 0; 3013 } 3014 3015 static inline int separate_irq_context(struct task_struct *curr, 3016 struct held_lock *hlock) 3017 { 3018 return 0; 3019 } 3020 3021 void lockdep_trace_alloc(gfp_t gfp_mask) 3022 { 3023 } 3024 3025 #endif /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */ 3026 3027 /* 3028 * Mark a lock with a usage bit, and validate the state transition: 3029 */ 3030 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3031 enum lock_usage_bit new_bit) 3032 { 3033 unsigned int new_mask = 1 << new_bit, ret = 1; 3034 3035 /* 3036 * If already set then do not dirty the cacheline, 3037 * nor do any checks: 3038 */ 3039 if (likely(hlock_class(this)->usage_mask & new_mask)) 3040 return 1; 3041 3042 if (!graph_lock()) 3043 return 0; 3044 /* 3045 * Make sure we didn't race: 3046 */ 3047 if (unlikely(hlock_class(this)->usage_mask & new_mask)) { 3048 graph_unlock(); 3049 return 1; 3050 } 3051 3052 hlock_class(this)->usage_mask |= new_mask; 3053 3054 if (!save_trace(hlock_class(this)->usage_traces + new_bit)) 3055 return 0; 3056 3057 switch (new_bit) { 3058 #define LOCKDEP_STATE(__STATE) \ 3059 case LOCK_USED_IN_##__STATE: \ 3060 case LOCK_USED_IN_##__STATE##_READ: \ 3061 case LOCK_ENABLED_##__STATE: \ 3062 case LOCK_ENABLED_##__STATE##_READ: 3063 #include "lockdep_states.h" 3064 #undef LOCKDEP_STATE 3065 ret = mark_lock_irq(curr, this, new_bit); 3066 if (!ret) 3067 return 0; 3068 break; 3069 case LOCK_USED: 3070 debug_atomic_dec(nr_unused_locks); 3071 break; 3072 default: 3073 if (!debug_locks_off_graph_unlock()) 3074 return 0; 3075 WARN_ON(1); 3076 return 0; 3077 } 3078 3079 graph_unlock(); 3080 3081 /* 3082 * We must printk outside of the graph_lock: 3083 */ 3084 if (ret == 2) { 3085 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 3086 print_lock(this); 3087 print_irqtrace_events(curr); 3088 dump_stack(); 3089 } 3090 3091 return ret; 3092 } 3093 3094 /* 3095 * Initialize a lock instance's lock-class mapping info: 3096 */ 3097 void lockdep_init_map(struct lockdep_map *lock, const char *name, 3098 struct lock_class_key *key, int subclass) 3099 { 3100 int i; 3101 3102 kmemcheck_mark_initialized(lock, sizeof(*lock)); 3103 3104 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 3105 lock->class_cache[i] = NULL; 3106 3107 #ifdef CONFIG_LOCK_STAT 3108 lock->cpu = raw_smp_processor_id(); 3109 #endif 3110 3111 /* 3112 * Can't be having no nameless bastards around this place! 3113 */ 3114 if (DEBUG_LOCKS_WARN_ON(!name)) { 3115 lock->name = "NULL"; 3116 return; 3117 } 3118 3119 lock->name = name; 3120 3121 /* 3122 * No key, no joy, we need to hash something. 3123 */ 3124 if (DEBUG_LOCKS_WARN_ON(!key)) 3125 return; 3126 /* 3127 * Sanity check, the lock-class key must be persistent: 3128 */ 3129 if (!static_obj(key)) { 3130 printk("BUG: key %p not in .data!\n", key); 3131 /* 3132 * What it says above ^^^^^, I suggest you read it. 3133 */ 3134 DEBUG_LOCKS_WARN_ON(1); 3135 return; 3136 } 3137 lock->key = key; 3138 3139 if (unlikely(!debug_locks)) 3140 return; 3141 3142 if (subclass) { 3143 unsigned long flags; 3144 3145 if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion)) 3146 return; 3147 3148 raw_local_irq_save(flags); 3149 current->lockdep_recursion = 1; 3150 register_lock_class(lock, subclass, 1); 3151 current->lockdep_recursion = 0; 3152 raw_local_irq_restore(flags); 3153 } 3154 } 3155 EXPORT_SYMBOL_GPL(lockdep_init_map); 3156 3157 struct lock_class_key __lockdep_no_validate__; 3158 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 3159 3160 static int 3161 print_lock_nested_lock_not_held(struct task_struct *curr, 3162 struct held_lock *hlock, 3163 unsigned long ip) 3164 { 3165 if (!debug_locks_off()) 3166 return 0; 3167 if (debug_locks_silent) 3168 return 0; 3169 3170 printk("\n"); 3171 printk("==================================\n"); 3172 printk("[ BUG: Nested lock was not taken ]\n"); 3173 print_kernel_ident(); 3174 printk("----------------------------------\n"); 3175 3176 printk("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 3177 print_lock(hlock); 3178 3179 printk("\nbut this task is not holding:\n"); 3180 printk("%s\n", hlock->nest_lock->name); 3181 3182 printk("\nstack backtrace:\n"); 3183 dump_stack(); 3184 3185 printk("\nother info that might help us debug this:\n"); 3186 lockdep_print_held_locks(curr); 3187 3188 printk("\nstack backtrace:\n"); 3189 dump_stack(); 3190 3191 return 0; 3192 } 3193 3194 static int __lock_is_held(struct lockdep_map *lock, int read); 3195 3196 /* 3197 * This gets called for every mutex_lock*()/spin_lock*() operation. 3198 * We maintain the dependency maps and validate the locking attempt: 3199 */ 3200 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 3201 int trylock, int read, int check, int hardirqs_off, 3202 struct lockdep_map *nest_lock, unsigned long ip, 3203 int references, int pin_count) 3204 { 3205 struct task_struct *curr = current; 3206 struct lock_class *class = NULL; 3207 struct held_lock *hlock; 3208 unsigned int depth; 3209 int chain_head = 0; 3210 int class_idx; 3211 u64 chain_key; 3212 3213 if (unlikely(!debug_locks)) 3214 return 0; 3215 3216 /* 3217 * Lockdep should run with IRQs disabled, otherwise we could 3218 * get an interrupt which would want to take locks, which would 3219 * end up in lockdep and have you got a head-ache already? 3220 */ 3221 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 3222 return 0; 3223 3224 if (!prove_locking || lock->key == &__lockdep_no_validate__) 3225 check = 0; 3226 3227 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 3228 class = lock->class_cache[subclass]; 3229 /* 3230 * Not cached? 3231 */ 3232 if (unlikely(!class)) { 3233 class = register_lock_class(lock, subclass, 0); 3234 if (!class) 3235 return 0; 3236 } 3237 atomic_inc((atomic_t *)&class->ops); 3238 if (very_verbose(class)) { 3239 printk("\nacquire class [%p] %s", class->key, class->name); 3240 if (class->name_version > 1) 3241 printk(KERN_CONT "#%d", class->name_version); 3242 printk(KERN_CONT "\n"); 3243 dump_stack(); 3244 } 3245 3246 /* 3247 * Add the lock to the list of currently held locks. 3248 * (we dont increase the depth just yet, up until the 3249 * dependency checks are done) 3250 */ 3251 depth = curr->lockdep_depth; 3252 /* 3253 * Ran out of static storage for our per-task lock stack again have we? 3254 */ 3255 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 3256 return 0; 3257 3258 class_idx = class - lock_classes + 1; 3259 3260 if (depth) { 3261 hlock = curr->held_locks + depth - 1; 3262 if (hlock->class_idx == class_idx && nest_lock) { 3263 if (hlock->references) 3264 hlock->references++; 3265 else 3266 hlock->references = 2; 3267 3268 return 1; 3269 } 3270 } 3271 3272 hlock = curr->held_locks + depth; 3273 /* 3274 * Plain impossible, we just registered it and checked it weren't no 3275 * NULL like.. I bet this mushroom I ate was good! 3276 */ 3277 if (DEBUG_LOCKS_WARN_ON(!class)) 3278 return 0; 3279 hlock->class_idx = class_idx; 3280 hlock->acquire_ip = ip; 3281 hlock->instance = lock; 3282 hlock->nest_lock = nest_lock; 3283 hlock->irq_context = task_irq_context(curr); 3284 hlock->trylock = trylock; 3285 hlock->read = read; 3286 hlock->check = check; 3287 hlock->hardirqs_off = !!hardirqs_off; 3288 hlock->references = references; 3289 #ifdef CONFIG_LOCK_STAT 3290 hlock->waittime_stamp = 0; 3291 hlock->holdtime_stamp = lockstat_clock(); 3292 #endif 3293 hlock->pin_count = pin_count; 3294 3295 if (check && !mark_irqflags(curr, hlock)) 3296 return 0; 3297 3298 /* mark it as used: */ 3299 if (!mark_lock(curr, hlock, LOCK_USED)) 3300 return 0; 3301 3302 /* 3303 * Calculate the chain hash: it's the combined hash of all the 3304 * lock keys along the dependency chain. We save the hash value 3305 * at every step so that we can get the current hash easily 3306 * after unlock. The chain hash is then used to cache dependency 3307 * results. 3308 * 3309 * The 'key ID' is what is the most compact key value to drive 3310 * the hash, not class->key. 3311 */ 3312 /* 3313 * Whoops, we did it again.. ran straight out of our static allocation. 3314 */ 3315 if (DEBUG_LOCKS_WARN_ON(class_idx > MAX_LOCKDEP_KEYS)) 3316 return 0; 3317 3318 chain_key = curr->curr_chain_key; 3319 if (!depth) { 3320 /* 3321 * How can we have a chain hash when we ain't got no keys?! 3322 */ 3323 if (DEBUG_LOCKS_WARN_ON(chain_key != 0)) 3324 return 0; 3325 chain_head = 1; 3326 } 3327 3328 hlock->prev_chain_key = chain_key; 3329 if (separate_irq_context(curr, hlock)) { 3330 chain_key = 0; 3331 chain_head = 1; 3332 } 3333 chain_key = iterate_chain_key(chain_key, class_idx); 3334 3335 if (nest_lock && !__lock_is_held(nest_lock, -1)) 3336 return print_lock_nested_lock_not_held(curr, hlock, ip); 3337 3338 if (!validate_chain(curr, lock, hlock, chain_head, chain_key)) 3339 return 0; 3340 3341 curr->curr_chain_key = chain_key; 3342 curr->lockdep_depth++; 3343 check_chain_key(curr); 3344 #ifdef CONFIG_DEBUG_LOCKDEP 3345 if (unlikely(!debug_locks)) 3346 return 0; 3347 #endif 3348 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 3349 debug_locks_off(); 3350 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 3351 printk(KERN_DEBUG "depth: %i max: %lu!\n", 3352 curr->lockdep_depth, MAX_LOCK_DEPTH); 3353 3354 lockdep_print_held_locks(current); 3355 debug_show_all_locks(); 3356 dump_stack(); 3357 3358 return 0; 3359 } 3360 3361 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 3362 max_lockdep_depth = curr->lockdep_depth; 3363 3364 return 1; 3365 } 3366 3367 static int 3368 print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock, 3369 unsigned long ip) 3370 { 3371 if (!debug_locks_off()) 3372 return 0; 3373 if (debug_locks_silent) 3374 return 0; 3375 3376 printk("\n"); 3377 printk("=====================================\n"); 3378 printk("[ BUG: bad unlock balance detected! ]\n"); 3379 print_kernel_ident(); 3380 printk("-------------------------------------\n"); 3381 printk("%s/%d is trying to release lock (", 3382 curr->comm, task_pid_nr(curr)); 3383 print_lockdep_cache(lock); 3384 printk(KERN_CONT ") at:\n"); 3385 print_ip_sym(ip); 3386 printk("but there are no more locks to release!\n"); 3387 printk("\nother info that might help us debug this:\n"); 3388 lockdep_print_held_locks(curr); 3389 3390 printk("\nstack backtrace:\n"); 3391 dump_stack(); 3392 3393 return 0; 3394 } 3395 3396 static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock) 3397 { 3398 if (hlock->instance == lock) 3399 return 1; 3400 3401 if (hlock->references) { 3402 struct lock_class *class = lock->class_cache[0]; 3403 3404 if (!class) 3405 class = look_up_lock_class(lock, 0); 3406 3407 /* 3408 * If look_up_lock_class() failed to find a class, we're trying 3409 * to test if we hold a lock that has never yet been acquired. 3410 * Clearly if the lock hasn't been acquired _ever_, we're not 3411 * holding it either, so report failure. 3412 */ 3413 if (!class) 3414 return 0; 3415 3416 /* 3417 * References, but not a lock we're actually ref-counting? 3418 * State got messed up, follow the sites that change ->references 3419 * and try to make sense of it. 3420 */ 3421 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 3422 return 0; 3423 3424 if (hlock->class_idx == class - lock_classes + 1) 3425 return 1; 3426 } 3427 3428 return 0; 3429 } 3430 3431 static int 3432 __lock_set_class(struct lockdep_map *lock, const char *name, 3433 struct lock_class_key *key, unsigned int subclass, 3434 unsigned long ip) 3435 { 3436 struct task_struct *curr = current; 3437 struct held_lock *hlock, *prev_hlock; 3438 struct lock_class *class; 3439 unsigned int depth; 3440 int i; 3441 3442 depth = curr->lockdep_depth; 3443 /* 3444 * This function is about (re)setting the class of a held lock, 3445 * yet we're not actually holding any locks. Naughty user! 3446 */ 3447 if (DEBUG_LOCKS_WARN_ON(!depth)) 3448 return 0; 3449 3450 prev_hlock = NULL; 3451 for (i = depth-1; i >= 0; i--) { 3452 hlock = curr->held_locks + i; 3453 /* 3454 * We must not cross into another context: 3455 */ 3456 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3457 break; 3458 if (match_held_lock(hlock, lock)) 3459 goto found_it; 3460 prev_hlock = hlock; 3461 } 3462 return print_unlock_imbalance_bug(curr, lock, ip); 3463 3464 found_it: 3465 lockdep_init_map(lock, name, key, 0); 3466 class = register_lock_class(lock, subclass, 0); 3467 hlock->class_idx = class - lock_classes + 1; 3468 3469 curr->lockdep_depth = i; 3470 curr->curr_chain_key = hlock->prev_chain_key; 3471 3472 for (; i < depth; i++) { 3473 hlock = curr->held_locks + i; 3474 if (!__lock_acquire(hlock->instance, 3475 hlock_class(hlock)->subclass, hlock->trylock, 3476 hlock->read, hlock->check, hlock->hardirqs_off, 3477 hlock->nest_lock, hlock->acquire_ip, 3478 hlock->references, hlock->pin_count)) 3479 return 0; 3480 } 3481 3482 /* 3483 * I took it apart and put it back together again, except now I have 3484 * these 'spare' parts.. where shall I put them. 3485 */ 3486 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 3487 return 0; 3488 return 1; 3489 } 3490 3491 /* 3492 * Remove the lock to the list of currently held locks - this gets 3493 * called on mutex_unlock()/spin_unlock*() (or on a failed 3494 * mutex_lock_interruptible()). 3495 * 3496 * @nested is an hysterical artifact, needs a tree wide cleanup. 3497 */ 3498 static int 3499 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip) 3500 { 3501 struct task_struct *curr = current; 3502 struct held_lock *hlock, *prev_hlock; 3503 unsigned int depth; 3504 int i; 3505 3506 if (unlikely(!debug_locks)) 3507 return 0; 3508 3509 depth = curr->lockdep_depth; 3510 /* 3511 * So we're all set to release this lock.. wait what lock? We don't 3512 * own any locks, you've been drinking again? 3513 */ 3514 if (DEBUG_LOCKS_WARN_ON(depth <= 0)) 3515 return print_unlock_imbalance_bug(curr, lock, ip); 3516 3517 /* 3518 * Check whether the lock exists in the current stack 3519 * of held locks: 3520 */ 3521 prev_hlock = NULL; 3522 for (i = depth-1; i >= 0; i--) { 3523 hlock = curr->held_locks + i; 3524 /* 3525 * We must not cross into another context: 3526 */ 3527 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3528 break; 3529 if (match_held_lock(hlock, lock)) 3530 goto found_it; 3531 prev_hlock = hlock; 3532 } 3533 return print_unlock_imbalance_bug(curr, lock, ip); 3534 3535 found_it: 3536 if (hlock->instance == lock) 3537 lock_release_holdtime(hlock); 3538 3539 WARN(hlock->pin_count, "releasing a pinned lock\n"); 3540 3541 if (hlock->references) { 3542 hlock->references--; 3543 if (hlock->references) { 3544 /* 3545 * We had, and after removing one, still have 3546 * references, the current lock stack is still 3547 * valid. We're done! 3548 */ 3549 return 1; 3550 } 3551 } 3552 3553 /* 3554 * We have the right lock to unlock, 'hlock' points to it. 3555 * Now we remove it from the stack, and add back the other 3556 * entries (if any), recalculating the hash along the way: 3557 */ 3558 3559 curr->lockdep_depth = i; 3560 curr->curr_chain_key = hlock->prev_chain_key; 3561 3562 for (i++; i < depth; i++) { 3563 hlock = curr->held_locks + i; 3564 if (!__lock_acquire(hlock->instance, 3565 hlock_class(hlock)->subclass, hlock->trylock, 3566 hlock->read, hlock->check, hlock->hardirqs_off, 3567 hlock->nest_lock, hlock->acquire_ip, 3568 hlock->references, hlock->pin_count)) 3569 return 0; 3570 } 3571 3572 /* 3573 * We had N bottles of beer on the wall, we drank one, but now 3574 * there's not N-1 bottles of beer left on the wall... 3575 */ 3576 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1)) 3577 return 0; 3578 3579 return 1; 3580 } 3581 3582 static int __lock_is_held(struct lockdep_map *lock, int read) 3583 { 3584 struct task_struct *curr = current; 3585 int i; 3586 3587 for (i = 0; i < curr->lockdep_depth; i++) { 3588 struct held_lock *hlock = curr->held_locks + i; 3589 3590 if (match_held_lock(hlock, lock)) { 3591 if (read == -1 || hlock->read == read) 3592 return 1; 3593 3594 return 0; 3595 } 3596 } 3597 3598 return 0; 3599 } 3600 3601 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 3602 { 3603 struct pin_cookie cookie = NIL_COOKIE; 3604 struct task_struct *curr = current; 3605 int i; 3606 3607 if (unlikely(!debug_locks)) 3608 return cookie; 3609 3610 for (i = 0; i < curr->lockdep_depth; i++) { 3611 struct held_lock *hlock = curr->held_locks + i; 3612 3613 if (match_held_lock(hlock, lock)) { 3614 /* 3615 * Grab 16bits of randomness; this is sufficient to not 3616 * be guessable and still allows some pin nesting in 3617 * our u32 pin_count. 3618 */ 3619 cookie.val = 1 + (prandom_u32() >> 16); 3620 hlock->pin_count += cookie.val; 3621 return cookie; 3622 } 3623 } 3624 3625 WARN(1, "pinning an unheld lock\n"); 3626 return cookie; 3627 } 3628 3629 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3630 { 3631 struct task_struct *curr = current; 3632 int i; 3633 3634 if (unlikely(!debug_locks)) 3635 return; 3636 3637 for (i = 0; i < curr->lockdep_depth; i++) { 3638 struct held_lock *hlock = curr->held_locks + i; 3639 3640 if (match_held_lock(hlock, lock)) { 3641 hlock->pin_count += cookie.val; 3642 return; 3643 } 3644 } 3645 3646 WARN(1, "pinning an unheld lock\n"); 3647 } 3648 3649 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3650 { 3651 struct task_struct *curr = current; 3652 int i; 3653 3654 if (unlikely(!debug_locks)) 3655 return; 3656 3657 for (i = 0; i < curr->lockdep_depth; i++) { 3658 struct held_lock *hlock = curr->held_locks + i; 3659 3660 if (match_held_lock(hlock, lock)) { 3661 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 3662 return; 3663 3664 hlock->pin_count -= cookie.val; 3665 3666 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 3667 hlock->pin_count = 0; 3668 3669 return; 3670 } 3671 } 3672 3673 WARN(1, "unpinning an unheld lock\n"); 3674 } 3675 3676 /* 3677 * Check whether we follow the irq-flags state precisely: 3678 */ 3679 static void check_flags(unsigned long flags) 3680 { 3681 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \ 3682 defined(CONFIG_TRACE_IRQFLAGS) 3683 if (!debug_locks) 3684 return; 3685 3686 if (irqs_disabled_flags(flags)) { 3687 if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) { 3688 printk("possible reason: unannotated irqs-off.\n"); 3689 } 3690 } else { 3691 if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) { 3692 printk("possible reason: unannotated irqs-on.\n"); 3693 } 3694 } 3695 3696 /* 3697 * We dont accurately track softirq state in e.g. 3698 * hardirq contexts (such as on 4KSTACKS), so only 3699 * check if not in hardirq contexts: 3700 */ 3701 if (!hardirq_count()) { 3702 if (softirq_count()) { 3703 /* like the above, but with softirqs */ 3704 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 3705 } else { 3706 /* lick the above, does it taste good? */ 3707 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 3708 } 3709 } 3710 3711 if (!debug_locks) 3712 print_irqtrace_events(current); 3713 #endif 3714 } 3715 3716 void lock_set_class(struct lockdep_map *lock, const char *name, 3717 struct lock_class_key *key, unsigned int subclass, 3718 unsigned long ip) 3719 { 3720 unsigned long flags; 3721 3722 if (unlikely(current->lockdep_recursion)) 3723 return; 3724 3725 raw_local_irq_save(flags); 3726 current->lockdep_recursion = 1; 3727 check_flags(flags); 3728 if (__lock_set_class(lock, name, key, subclass, ip)) 3729 check_chain_key(current); 3730 current->lockdep_recursion = 0; 3731 raw_local_irq_restore(flags); 3732 } 3733 EXPORT_SYMBOL_GPL(lock_set_class); 3734 3735 /* 3736 * We are not always called with irqs disabled - do that here, 3737 * and also avoid lockdep recursion: 3738 */ 3739 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 3740 int trylock, int read, int check, 3741 struct lockdep_map *nest_lock, unsigned long ip) 3742 { 3743 unsigned long flags; 3744 3745 if (unlikely(current->lockdep_recursion)) 3746 return; 3747 3748 raw_local_irq_save(flags); 3749 check_flags(flags); 3750 3751 current->lockdep_recursion = 1; 3752 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 3753 __lock_acquire(lock, subclass, trylock, read, check, 3754 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 3755 current->lockdep_recursion = 0; 3756 raw_local_irq_restore(flags); 3757 } 3758 EXPORT_SYMBOL_GPL(lock_acquire); 3759 3760 void lock_release(struct lockdep_map *lock, int nested, 3761 unsigned long ip) 3762 { 3763 unsigned long flags; 3764 3765 if (unlikely(current->lockdep_recursion)) 3766 return; 3767 3768 raw_local_irq_save(flags); 3769 check_flags(flags); 3770 current->lockdep_recursion = 1; 3771 trace_lock_release(lock, ip); 3772 if (__lock_release(lock, nested, ip)) 3773 check_chain_key(current); 3774 current->lockdep_recursion = 0; 3775 raw_local_irq_restore(flags); 3776 } 3777 EXPORT_SYMBOL_GPL(lock_release); 3778 3779 int lock_is_held_type(struct lockdep_map *lock, int read) 3780 { 3781 unsigned long flags; 3782 int ret = 0; 3783 3784 if (unlikely(current->lockdep_recursion)) 3785 return 1; /* avoid false negative lockdep_assert_held() */ 3786 3787 raw_local_irq_save(flags); 3788 check_flags(flags); 3789 3790 current->lockdep_recursion = 1; 3791 ret = __lock_is_held(lock, read); 3792 current->lockdep_recursion = 0; 3793 raw_local_irq_restore(flags); 3794 3795 return ret; 3796 } 3797 EXPORT_SYMBOL_GPL(lock_is_held_type); 3798 3799 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 3800 { 3801 struct pin_cookie cookie = NIL_COOKIE; 3802 unsigned long flags; 3803 3804 if (unlikely(current->lockdep_recursion)) 3805 return cookie; 3806 3807 raw_local_irq_save(flags); 3808 check_flags(flags); 3809 3810 current->lockdep_recursion = 1; 3811 cookie = __lock_pin_lock(lock); 3812 current->lockdep_recursion = 0; 3813 raw_local_irq_restore(flags); 3814 3815 return cookie; 3816 } 3817 EXPORT_SYMBOL_GPL(lock_pin_lock); 3818 3819 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3820 { 3821 unsigned long flags; 3822 3823 if (unlikely(current->lockdep_recursion)) 3824 return; 3825 3826 raw_local_irq_save(flags); 3827 check_flags(flags); 3828 3829 current->lockdep_recursion = 1; 3830 __lock_repin_lock(lock, cookie); 3831 current->lockdep_recursion = 0; 3832 raw_local_irq_restore(flags); 3833 } 3834 EXPORT_SYMBOL_GPL(lock_repin_lock); 3835 3836 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 3837 { 3838 unsigned long flags; 3839 3840 if (unlikely(current->lockdep_recursion)) 3841 return; 3842 3843 raw_local_irq_save(flags); 3844 check_flags(flags); 3845 3846 current->lockdep_recursion = 1; 3847 __lock_unpin_lock(lock, cookie); 3848 current->lockdep_recursion = 0; 3849 raw_local_irq_restore(flags); 3850 } 3851 EXPORT_SYMBOL_GPL(lock_unpin_lock); 3852 3853 void lockdep_set_current_reclaim_state(gfp_t gfp_mask) 3854 { 3855 current->lockdep_reclaim_gfp = gfp_mask; 3856 } 3857 3858 void lockdep_clear_current_reclaim_state(void) 3859 { 3860 current->lockdep_reclaim_gfp = 0; 3861 } 3862 3863 #ifdef CONFIG_LOCK_STAT 3864 static int 3865 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock, 3866 unsigned long ip) 3867 { 3868 if (!debug_locks_off()) 3869 return 0; 3870 if (debug_locks_silent) 3871 return 0; 3872 3873 printk("\n"); 3874 printk("=================================\n"); 3875 printk("[ BUG: bad contention detected! ]\n"); 3876 print_kernel_ident(); 3877 printk("---------------------------------\n"); 3878 printk("%s/%d is trying to contend lock (", 3879 curr->comm, task_pid_nr(curr)); 3880 print_lockdep_cache(lock); 3881 printk(KERN_CONT ") at:\n"); 3882 print_ip_sym(ip); 3883 printk("but there are no locks held!\n"); 3884 printk("\nother info that might help us debug this:\n"); 3885 lockdep_print_held_locks(curr); 3886 3887 printk("\nstack backtrace:\n"); 3888 dump_stack(); 3889 3890 return 0; 3891 } 3892 3893 static void 3894 __lock_contended(struct lockdep_map *lock, unsigned long ip) 3895 { 3896 struct task_struct *curr = current; 3897 struct held_lock *hlock, *prev_hlock; 3898 struct lock_class_stats *stats; 3899 unsigned int depth; 3900 int i, contention_point, contending_point; 3901 3902 depth = curr->lockdep_depth; 3903 /* 3904 * Whee, we contended on this lock, except it seems we're not 3905 * actually trying to acquire anything much at all.. 3906 */ 3907 if (DEBUG_LOCKS_WARN_ON(!depth)) 3908 return; 3909 3910 prev_hlock = NULL; 3911 for (i = depth-1; i >= 0; i--) { 3912 hlock = curr->held_locks + i; 3913 /* 3914 * We must not cross into another context: 3915 */ 3916 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3917 break; 3918 if (match_held_lock(hlock, lock)) 3919 goto found_it; 3920 prev_hlock = hlock; 3921 } 3922 print_lock_contention_bug(curr, lock, ip); 3923 return; 3924 3925 found_it: 3926 if (hlock->instance != lock) 3927 return; 3928 3929 hlock->waittime_stamp = lockstat_clock(); 3930 3931 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 3932 contending_point = lock_point(hlock_class(hlock)->contending_point, 3933 lock->ip); 3934 3935 stats = get_lock_stats(hlock_class(hlock)); 3936 if (contention_point < LOCKSTAT_POINTS) 3937 stats->contention_point[contention_point]++; 3938 if (contending_point < LOCKSTAT_POINTS) 3939 stats->contending_point[contending_point]++; 3940 if (lock->cpu != smp_processor_id()) 3941 stats->bounces[bounce_contended + !!hlock->read]++; 3942 put_lock_stats(stats); 3943 } 3944 3945 static void 3946 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 3947 { 3948 struct task_struct *curr = current; 3949 struct held_lock *hlock, *prev_hlock; 3950 struct lock_class_stats *stats; 3951 unsigned int depth; 3952 u64 now, waittime = 0; 3953 int i, cpu; 3954 3955 depth = curr->lockdep_depth; 3956 /* 3957 * Yay, we acquired ownership of this lock we didn't try to 3958 * acquire, how the heck did that happen? 3959 */ 3960 if (DEBUG_LOCKS_WARN_ON(!depth)) 3961 return; 3962 3963 prev_hlock = NULL; 3964 for (i = depth-1; i >= 0; i--) { 3965 hlock = curr->held_locks + i; 3966 /* 3967 * We must not cross into another context: 3968 */ 3969 if (prev_hlock && prev_hlock->irq_context != hlock->irq_context) 3970 break; 3971 if (match_held_lock(hlock, lock)) 3972 goto found_it; 3973 prev_hlock = hlock; 3974 } 3975 print_lock_contention_bug(curr, lock, _RET_IP_); 3976 return; 3977 3978 found_it: 3979 if (hlock->instance != lock) 3980 return; 3981 3982 cpu = smp_processor_id(); 3983 if (hlock->waittime_stamp) { 3984 now = lockstat_clock(); 3985 waittime = now - hlock->waittime_stamp; 3986 hlock->holdtime_stamp = now; 3987 } 3988 3989 trace_lock_acquired(lock, ip); 3990 3991 stats = get_lock_stats(hlock_class(hlock)); 3992 if (waittime) { 3993 if (hlock->read) 3994 lock_time_inc(&stats->read_waittime, waittime); 3995 else 3996 lock_time_inc(&stats->write_waittime, waittime); 3997 } 3998 if (lock->cpu != cpu) 3999 stats->bounces[bounce_acquired + !!hlock->read]++; 4000 put_lock_stats(stats); 4001 4002 lock->cpu = cpu; 4003 lock->ip = ip; 4004 } 4005 4006 void lock_contended(struct lockdep_map *lock, unsigned long ip) 4007 { 4008 unsigned long flags; 4009 4010 if (unlikely(!lock_stat)) 4011 return; 4012 4013 if (unlikely(current->lockdep_recursion)) 4014 return; 4015 4016 raw_local_irq_save(flags); 4017 check_flags(flags); 4018 current->lockdep_recursion = 1; 4019 trace_lock_contended(lock, ip); 4020 __lock_contended(lock, ip); 4021 current->lockdep_recursion = 0; 4022 raw_local_irq_restore(flags); 4023 } 4024 EXPORT_SYMBOL_GPL(lock_contended); 4025 4026 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 4027 { 4028 unsigned long flags; 4029 4030 if (unlikely(!lock_stat)) 4031 return; 4032 4033 if (unlikely(current->lockdep_recursion)) 4034 return; 4035 4036 raw_local_irq_save(flags); 4037 check_flags(flags); 4038 current->lockdep_recursion = 1; 4039 __lock_acquired(lock, ip); 4040 current->lockdep_recursion = 0; 4041 raw_local_irq_restore(flags); 4042 } 4043 EXPORT_SYMBOL_GPL(lock_acquired); 4044 #endif 4045 4046 /* 4047 * Used by the testsuite, sanitize the validator state 4048 * after a simulated failure: 4049 */ 4050 4051 void lockdep_reset(void) 4052 { 4053 unsigned long flags; 4054 int i; 4055 4056 raw_local_irq_save(flags); 4057 current->curr_chain_key = 0; 4058 current->lockdep_depth = 0; 4059 current->lockdep_recursion = 0; 4060 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 4061 nr_hardirq_chains = 0; 4062 nr_softirq_chains = 0; 4063 nr_process_chains = 0; 4064 debug_locks = 1; 4065 for (i = 0; i < CHAINHASH_SIZE; i++) 4066 INIT_HLIST_HEAD(chainhash_table + i); 4067 raw_local_irq_restore(flags); 4068 } 4069 4070 static void zap_class(struct lock_class *class) 4071 { 4072 int i; 4073 4074 /* 4075 * Remove all dependencies this lock is 4076 * involved in: 4077 */ 4078 for (i = 0; i < nr_list_entries; i++) { 4079 if (list_entries[i].class == class) 4080 list_del_rcu(&list_entries[i].entry); 4081 } 4082 /* 4083 * Unhash the class and remove it from the all_lock_classes list: 4084 */ 4085 hlist_del_rcu(&class->hash_entry); 4086 list_del_rcu(&class->lock_entry); 4087 4088 RCU_INIT_POINTER(class->key, NULL); 4089 RCU_INIT_POINTER(class->name, NULL); 4090 } 4091 4092 static inline int within(const void *addr, void *start, unsigned long size) 4093 { 4094 return addr >= start && addr < start + size; 4095 } 4096 4097 /* 4098 * Used in module.c to remove lock classes from memory that is going to be 4099 * freed; and possibly re-used by other modules. 4100 * 4101 * We will have had one sync_sched() before getting here, so we're guaranteed 4102 * nobody will look up these exact classes -- they're properly dead but still 4103 * allocated. 4104 */ 4105 void lockdep_free_key_range(void *start, unsigned long size) 4106 { 4107 struct lock_class *class; 4108 struct hlist_head *head; 4109 unsigned long flags; 4110 int i; 4111 int locked; 4112 4113 raw_local_irq_save(flags); 4114 locked = graph_lock(); 4115 4116 /* 4117 * Unhash all classes that were created by this module: 4118 */ 4119 for (i = 0; i < CLASSHASH_SIZE; i++) { 4120 head = classhash_table + i; 4121 hlist_for_each_entry_rcu(class, head, hash_entry) { 4122 if (within(class->key, start, size)) 4123 zap_class(class); 4124 else if (within(class->name, start, size)) 4125 zap_class(class); 4126 } 4127 } 4128 4129 if (locked) 4130 graph_unlock(); 4131 raw_local_irq_restore(flags); 4132 4133 /* 4134 * Wait for any possible iterators from look_up_lock_class() to pass 4135 * before continuing to free the memory they refer to. 4136 * 4137 * sync_sched() is sufficient because the read-side is IRQ disable. 4138 */ 4139 synchronize_sched(); 4140 4141 /* 4142 * XXX at this point we could return the resources to the pool; 4143 * instead we leak them. We would need to change to bitmap allocators 4144 * instead of the linear allocators we have now. 4145 */ 4146 } 4147 4148 void lockdep_reset_lock(struct lockdep_map *lock) 4149 { 4150 struct lock_class *class; 4151 struct hlist_head *head; 4152 unsigned long flags; 4153 int i, j; 4154 int locked; 4155 4156 raw_local_irq_save(flags); 4157 4158 /* 4159 * Remove all classes this lock might have: 4160 */ 4161 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 4162 /* 4163 * If the class exists we look it up and zap it: 4164 */ 4165 class = look_up_lock_class(lock, j); 4166 if (class) 4167 zap_class(class); 4168 } 4169 /* 4170 * Debug check: in the end all mapped classes should 4171 * be gone. 4172 */ 4173 locked = graph_lock(); 4174 for (i = 0; i < CLASSHASH_SIZE; i++) { 4175 head = classhash_table + i; 4176 hlist_for_each_entry_rcu(class, head, hash_entry) { 4177 int match = 0; 4178 4179 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 4180 match |= class == lock->class_cache[j]; 4181 4182 if (unlikely(match)) { 4183 if (debug_locks_off_graph_unlock()) { 4184 /* 4185 * We all just reset everything, how did it match? 4186 */ 4187 WARN_ON(1); 4188 } 4189 goto out_restore; 4190 } 4191 } 4192 } 4193 if (locked) 4194 graph_unlock(); 4195 4196 out_restore: 4197 raw_local_irq_restore(flags); 4198 } 4199 4200 void __init lockdep_info(void) 4201 { 4202 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 4203 4204 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 4205 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 4206 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 4207 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 4208 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 4209 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 4210 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 4211 4212 printk(" memory used by lock dependency info: %lu kB\n", 4213 (sizeof(struct lock_class) * MAX_LOCKDEP_KEYS + 4214 sizeof(struct list_head) * CLASSHASH_SIZE + 4215 sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES + 4216 sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS + 4217 sizeof(struct list_head) * CHAINHASH_SIZE 4218 #ifdef CONFIG_PROVE_LOCKING 4219 + sizeof(struct circular_queue) 4220 #endif 4221 ) / 1024 4222 ); 4223 4224 printk(" per task-struct memory footprint: %lu bytes\n", 4225 sizeof(struct held_lock) * MAX_LOCK_DEPTH); 4226 } 4227 4228 static void 4229 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 4230 const void *mem_to, struct held_lock *hlock) 4231 { 4232 if (!debug_locks_off()) 4233 return; 4234 if (debug_locks_silent) 4235 return; 4236 4237 printk("\n"); 4238 printk("=========================\n"); 4239 printk("[ BUG: held lock freed! ]\n"); 4240 print_kernel_ident(); 4241 printk("-------------------------\n"); 4242 printk("%s/%d is freeing memory %p-%p, with a lock still held there!\n", 4243 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 4244 print_lock(hlock); 4245 lockdep_print_held_locks(curr); 4246 4247 printk("\nstack backtrace:\n"); 4248 dump_stack(); 4249 } 4250 4251 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 4252 const void* lock_from, unsigned long lock_len) 4253 { 4254 return lock_from + lock_len <= mem_from || 4255 mem_from + mem_len <= lock_from; 4256 } 4257 4258 /* 4259 * Called when kernel memory is freed (or unmapped), or if a lock 4260 * is destroyed or reinitialized - this code checks whether there is 4261 * any held lock in the memory range of <from> to <to>: 4262 */ 4263 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 4264 { 4265 struct task_struct *curr = current; 4266 struct held_lock *hlock; 4267 unsigned long flags; 4268 int i; 4269 4270 if (unlikely(!debug_locks)) 4271 return; 4272 4273 local_irq_save(flags); 4274 for (i = 0; i < curr->lockdep_depth; i++) { 4275 hlock = curr->held_locks + i; 4276 4277 if (not_in_range(mem_from, mem_len, hlock->instance, 4278 sizeof(*hlock->instance))) 4279 continue; 4280 4281 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 4282 break; 4283 } 4284 local_irq_restore(flags); 4285 } 4286 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 4287 4288 static void print_held_locks_bug(void) 4289 { 4290 if (!debug_locks_off()) 4291 return; 4292 if (debug_locks_silent) 4293 return; 4294 4295 printk("\n"); 4296 printk("=====================================\n"); 4297 printk("[ BUG: %s/%d still has locks held! ]\n", 4298 current->comm, task_pid_nr(current)); 4299 print_kernel_ident(); 4300 printk("-------------------------------------\n"); 4301 lockdep_print_held_locks(current); 4302 printk("\nstack backtrace:\n"); 4303 dump_stack(); 4304 } 4305 4306 void debug_check_no_locks_held(void) 4307 { 4308 if (unlikely(current->lockdep_depth > 0)) 4309 print_held_locks_bug(); 4310 } 4311 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 4312 4313 #ifdef __KERNEL__ 4314 void debug_show_all_locks(void) 4315 { 4316 struct task_struct *g, *p; 4317 int count = 10; 4318 int unlock = 1; 4319 4320 if (unlikely(!debug_locks)) { 4321 printk("INFO: lockdep is turned off.\n"); 4322 return; 4323 } 4324 printk("\nShowing all locks held in the system:\n"); 4325 4326 /* 4327 * Here we try to get the tasklist_lock as hard as possible, 4328 * if not successful after 2 seconds we ignore it (but keep 4329 * trying). This is to enable a debug printout even if a 4330 * tasklist_lock-holding task deadlocks or crashes. 4331 */ 4332 retry: 4333 if (!read_trylock(&tasklist_lock)) { 4334 if (count == 10) 4335 printk("hm, tasklist_lock locked, retrying... "); 4336 if (count) { 4337 count--; 4338 printk(" #%d", 10-count); 4339 mdelay(200); 4340 goto retry; 4341 } 4342 printk(" ignoring it.\n"); 4343 unlock = 0; 4344 } else { 4345 if (count != 10) 4346 printk(KERN_CONT " locked it.\n"); 4347 } 4348 4349 do_each_thread(g, p) { 4350 /* 4351 * It's not reliable to print a task's held locks 4352 * if it's not sleeping (or if it's not the current 4353 * task): 4354 */ 4355 if (p->state == TASK_RUNNING && p != current) 4356 continue; 4357 if (p->lockdep_depth) 4358 lockdep_print_held_locks(p); 4359 if (!unlock) 4360 if (read_trylock(&tasklist_lock)) 4361 unlock = 1; 4362 } while_each_thread(g, p); 4363 4364 printk("\n"); 4365 printk("=============================================\n\n"); 4366 4367 if (unlock) 4368 read_unlock(&tasklist_lock); 4369 } 4370 EXPORT_SYMBOL_GPL(debug_show_all_locks); 4371 #endif 4372 4373 /* 4374 * Careful: only use this function if you are sure that 4375 * the task cannot run in parallel! 4376 */ 4377 void debug_show_held_locks(struct task_struct *task) 4378 { 4379 if (unlikely(!debug_locks)) { 4380 printk("INFO: lockdep is turned off.\n"); 4381 return; 4382 } 4383 lockdep_print_held_locks(task); 4384 } 4385 EXPORT_SYMBOL_GPL(debug_show_held_locks); 4386 4387 asmlinkage __visible void lockdep_sys_exit(void) 4388 { 4389 struct task_struct *curr = current; 4390 4391 if (unlikely(curr->lockdep_depth)) { 4392 if (!debug_locks_off()) 4393 return; 4394 printk("\n"); 4395 printk("================================================\n"); 4396 printk("[ BUG: lock held when returning to user space! ]\n"); 4397 print_kernel_ident(); 4398 printk("------------------------------------------------\n"); 4399 printk("%s/%d is leaving the kernel with locks still held!\n", 4400 curr->comm, curr->pid); 4401 lockdep_print_held_locks(curr); 4402 } 4403 } 4404 4405 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 4406 { 4407 struct task_struct *curr = current; 4408 4409 #ifndef CONFIG_PROVE_RCU_REPEATEDLY 4410 if (!debug_locks_off()) 4411 return; 4412 #endif /* #ifdef CONFIG_PROVE_RCU_REPEATEDLY */ 4413 /* Note: the following can be executed concurrently, so be careful. */ 4414 printk("\n"); 4415 pr_err("===============================\n"); 4416 pr_err("[ ERR: suspicious RCU usage. ]\n"); 4417 print_kernel_ident(); 4418 pr_err("-------------------------------\n"); 4419 pr_err("%s:%d %s!\n", file, line, s); 4420 pr_err("\nother info that might help us debug this:\n\n"); 4421 pr_err("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 4422 !rcu_lockdep_current_cpu_online() 4423 ? "RCU used illegally from offline CPU!\n" 4424 : !rcu_is_watching() 4425 ? "RCU used illegally from idle CPU!\n" 4426 : "", 4427 rcu_scheduler_active, debug_locks); 4428 4429 /* 4430 * If a CPU is in the RCU-free window in idle (ie: in the section 4431 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 4432 * considers that CPU to be in an "extended quiescent state", 4433 * which means that RCU will be completely ignoring that CPU. 4434 * Therefore, rcu_read_lock() and friends have absolutely no 4435 * effect on a CPU running in that state. In other words, even if 4436 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 4437 * delete data structures out from under it. RCU really has no 4438 * choice here: we need to keep an RCU-free window in idle where 4439 * the CPU may possibly enter into low power mode. This way we can 4440 * notice an extended quiescent state to other CPUs that started a grace 4441 * period. Otherwise we would delay any grace period as long as we run 4442 * in the idle task. 4443 * 4444 * So complain bitterly if someone does call rcu_read_lock(), 4445 * rcu_read_lock_bh() and so on from extended quiescent states. 4446 */ 4447 if (!rcu_is_watching()) 4448 printk("RCU used illegally from extended quiescent state!\n"); 4449 4450 lockdep_print_held_locks(curr); 4451 printk("\nstack backtrace:\n"); 4452 dump_stack(); 4453 } 4454 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 4455