1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 59 #include <asm/sections.h> 60 61 #include "lockdep_internals.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 82 83 static __always_inline bool lockdep_enabled(void) 84 { 85 if (!debug_locks) 86 return false; 87 88 if (this_cpu_read(lockdep_recursion)) 89 return false; 90 91 if (current->lockdep_recursion) 92 return false; 93 94 return true; 95 } 96 97 /* 98 * lockdep_lock: protects the lockdep graph, the hashes and the 99 * class/list/hash allocators. 100 * 101 * This is one of the rare exceptions where it's justified 102 * to use a raw spinlock - we really dont want the spinlock 103 * code to recurse back into the lockdep code... 104 */ 105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 106 static struct task_struct *__owner; 107 108 static inline void lockdep_lock(void) 109 { 110 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 111 112 __this_cpu_inc(lockdep_recursion); 113 arch_spin_lock(&__lock); 114 __owner = current; 115 } 116 117 static inline void lockdep_unlock(void) 118 { 119 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 120 121 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 122 return; 123 124 __owner = NULL; 125 arch_spin_unlock(&__lock); 126 __this_cpu_dec(lockdep_recursion); 127 } 128 129 static inline bool lockdep_assert_locked(void) 130 { 131 return DEBUG_LOCKS_WARN_ON(__owner != current); 132 } 133 134 static struct task_struct *lockdep_selftest_task_struct; 135 136 137 static int graph_lock(void) 138 { 139 lockdep_lock(); 140 /* 141 * Make sure that if another CPU detected a bug while 142 * walking the graph we dont change it (while the other 143 * CPU is busy printing out stuff with the graph lock 144 * dropped already) 145 */ 146 if (!debug_locks) { 147 lockdep_unlock(); 148 return 0; 149 } 150 return 1; 151 } 152 153 static inline void graph_unlock(void) 154 { 155 lockdep_unlock(); 156 } 157 158 /* 159 * Turn lock debugging off and return with 0 if it was off already, 160 * and also release the graph lock: 161 */ 162 static inline int debug_locks_off_graph_unlock(void) 163 { 164 int ret = debug_locks_off(); 165 166 lockdep_unlock(); 167 168 return ret; 169 } 170 171 unsigned long nr_list_entries; 172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 174 175 /* 176 * All data structures here are protected by the global debug_lock. 177 * 178 * nr_lock_classes is the number of elements of lock_classes[] that is 179 * in use. 180 */ 181 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 182 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 184 unsigned long nr_lock_classes; 185 unsigned long nr_zapped_classes; 186 unsigned long max_lock_class_idx; 187 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 188 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 189 190 static inline struct lock_class *hlock_class(struct held_lock *hlock) 191 { 192 unsigned int class_idx = hlock->class_idx; 193 194 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 195 barrier(); 196 197 if (!test_bit(class_idx, lock_classes_in_use)) { 198 /* 199 * Someone passed in garbage, we give up. 200 */ 201 DEBUG_LOCKS_WARN_ON(1); 202 return NULL; 203 } 204 205 /* 206 * At this point, if the passed hlock->class_idx is still garbage, 207 * we just have to live with it 208 */ 209 return lock_classes + class_idx; 210 } 211 212 #ifdef CONFIG_LOCK_STAT 213 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 214 215 static inline u64 lockstat_clock(void) 216 { 217 return local_clock(); 218 } 219 220 static int lock_point(unsigned long points[], unsigned long ip) 221 { 222 int i; 223 224 for (i = 0; i < LOCKSTAT_POINTS; i++) { 225 if (points[i] == 0) { 226 points[i] = ip; 227 break; 228 } 229 if (points[i] == ip) 230 break; 231 } 232 233 return i; 234 } 235 236 static void lock_time_inc(struct lock_time *lt, u64 time) 237 { 238 if (time > lt->max) 239 lt->max = time; 240 241 if (time < lt->min || !lt->nr) 242 lt->min = time; 243 244 lt->total += time; 245 lt->nr++; 246 } 247 248 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 249 { 250 if (!src->nr) 251 return; 252 253 if (src->max > dst->max) 254 dst->max = src->max; 255 256 if (src->min < dst->min || !dst->nr) 257 dst->min = src->min; 258 259 dst->total += src->total; 260 dst->nr += src->nr; 261 } 262 263 struct lock_class_stats lock_stats(struct lock_class *class) 264 { 265 struct lock_class_stats stats; 266 int cpu, i; 267 268 memset(&stats, 0, sizeof(struct lock_class_stats)); 269 for_each_possible_cpu(cpu) { 270 struct lock_class_stats *pcs = 271 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 272 273 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 274 stats.contention_point[i] += pcs->contention_point[i]; 275 276 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 277 stats.contending_point[i] += pcs->contending_point[i]; 278 279 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 280 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 281 282 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 283 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 284 285 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 286 stats.bounces[i] += pcs->bounces[i]; 287 } 288 289 return stats; 290 } 291 292 void clear_lock_stats(struct lock_class *class) 293 { 294 int cpu; 295 296 for_each_possible_cpu(cpu) { 297 struct lock_class_stats *cpu_stats = 298 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 299 300 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 301 } 302 memset(class->contention_point, 0, sizeof(class->contention_point)); 303 memset(class->contending_point, 0, sizeof(class->contending_point)); 304 } 305 306 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 307 { 308 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 309 } 310 311 static void lock_release_holdtime(struct held_lock *hlock) 312 { 313 struct lock_class_stats *stats; 314 u64 holdtime; 315 316 if (!lock_stat) 317 return; 318 319 holdtime = lockstat_clock() - hlock->holdtime_stamp; 320 321 stats = get_lock_stats(hlock_class(hlock)); 322 if (hlock->read) 323 lock_time_inc(&stats->read_holdtime, holdtime); 324 else 325 lock_time_inc(&stats->write_holdtime, holdtime); 326 } 327 #else 328 static inline void lock_release_holdtime(struct held_lock *hlock) 329 { 330 } 331 #endif 332 333 /* 334 * We keep a global list of all lock classes. The list is only accessed with 335 * the lockdep spinlock lock held. free_lock_classes is a list with free 336 * elements. These elements are linked together by the lock_entry member in 337 * struct lock_class. 338 */ 339 static LIST_HEAD(all_lock_classes); 340 static LIST_HEAD(free_lock_classes); 341 342 /** 343 * struct pending_free - information about data structures about to be freed 344 * @zapped: Head of a list with struct lock_class elements. 345 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 346 * are about to be freed. 347 */ 348 struct pending_free { 349 struct list_head zapped; 350 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 351 }; 352 353 /** 354 * struct delayed_free - data structures used for delayed freeing 355 * 356 * A data structure for delayed freeing of data structures that may be 357 * accessed by RCU readers at the time these were freed. 358 * 359 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 360 * @index: Index of @pf to which freed data structures are added. 361 * @scheduled: Whether or not an RCU callback has been scheduled. 362 * @pf: Array with information about data structures about to be freed. 363 */ 364 static struct delayed_free { 365 struct rcu_head rcu_head; 366 int index; 367 int scheduled; 368 struct pending_free pf[2]; 369 } delayed_free; 370 371 /* 372 * The lockdep classes are in a hash-table as well, for fast lookup: 373 */ 374 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 375 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 376 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 377 #define classhashentry(key) (classhash_table + __classhashfn((key))) 378 379 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 380 381 /* 382 * We put the lock dependency chains into a hash-table as well, to cache 383 * their existence: 384 */ 385 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 386 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 387 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 388 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 389 390 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 391 392 /* 393 * the id of held_lock 394 */ 395 static inline u16 hlock_id(struct held_lock *hlock) 396 { 397 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 398 399 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 400 } 401 402 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 403 { 404 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 405 } 406 407 /* 408 * The hash key of the lock dependency chains is a hash itself too: 409 * it's a hash of all locks taken up to that lock, including that lock. 410 * It's a 64-bit hash, because it's important for the keys to be 411 * unique. 412 */ 413 static inline u64 iterate_chain_key(u64 key, u32 idx) 414 { 415 u32 k0 = key, k1 = key >> 32; 416 417 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 418 419 return k0 | (u64)k1 << 32; 420 } 421 422 void lockdep_init_task(struct task_struct *task) 423 { 424 task->lockdep_depth = 0; /* no locks held yet */ 425 task->curr_chain_key = INITIAL_CHAIN_KEY; 426 task->lockdep_recursion = 0; 427 } 428 429 static __always_inline void lockdep_recursion_inc(void) 430 { 431 __this_cpu_inc(lockdep_recursion); 432 } 433 434 static __always_inline void lockdep_recursion_finish(void) 435 { 436 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 437 __this_cpu_write(lockdep_recursion, 0); 438 } 439 440 void lockdep_set_selftest_task(struct task_struct *task) 441 { 442 lockdep_selftest_task_struct = task; 443 } 444 445 /* 446 * Debugging switches: 447 */ 448 449 #define VERBOSE 0 450 #define VERY_VERBOSE 0 451 452 #if VERBOSE 453 # define HARDIRQ_VERBOSE 1 454 # define SOFTIRQ_VERBOSE 1 455 #else 456 # define HARDIRQ_VERBOSE 0 457 # define SOFTIRQ_VERBOSE 0 458 #endif 459 460 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 461 /* 462 * Quick filtering for interesting events: 463 */ 464 static int class_filter(struct lock_class *class) 465 { 466 #if 0 467 /* Example */ 468 if (class->name_version == 1 && 469 !strcmp(class->name, "lockname")) 470 return 1; 471 if (class->name_version == 1 && 472 !strcmp(class->name, "&struct->lockfield")) 473 return 1; 474 #endif 475 /* Filter everything else. 1 would be to allow everything else */ 476 return 0; 477 } 478 #endif 479 480 static int verbose(struct lock_class *class) 481 { 482 #if VERBOSE 483 return class_filter(class); 484 #endif 485 return 0; 486 } 487 488 static void print_lockdep_off(const char *bug_msg) 489 { 490 printk(KERN_DEBUG "%s\n", bug_msg); 491 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 492 #ifdef CONFIG_LOCK_STAT 493 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 494 #endif 495 } 496 497 unsigned long nr_stack_trace_entries; 498 499 #ifdef CONFIG_PROVE_LOCKING 500 /** 501 * struct lock_trace - single stack backtrace 502 * @hash_entry: Entry in a stack_trace_hash[] list. 503 * @hash: jhash() of @entries. 504 * @nr_entries: Number of entries in @entries. 505 * @entries: Actual stack backtrace. 506 */ 507 struct lock_trace { 508 struct hlist_node hash_entry; 509 u32 hash; 510 u32 nr_entries; 511 unsigned long entries[] __aligned(sizeof(unsigned long)); 512 }; 513 #define LOCK_TRACE_SIZE_IN_LONGS \ 514 (sizeof(struct lock_trace) / sizeof(unsigned long)) 515 /* 516 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 517 */ 518 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 519 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 520 521 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 522 { 523 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 524 memcmp(t1->entries, t2->entries, 525 t1->nr_entries * sizeof(t1->entries[0])) == 0; 526 } 527 528 static struct lock_trace *save_trace(void) 529 { 530 struct lock_trace *trace, *t2; 531 struct hlist_head *hash_head; 532 u32 hash; 533 int max_entries; 534 535 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 536 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 537 538 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 539 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 540 LOCK_TRACE_SIZE_IN_LONGS; 541 542 if (max_entries <= 0) { 543 if (!debug_locks_off_graph_unlock()) 544 return NULL; 545 546 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 547 dump_stack(); 548 549 return NULL; 550 } 551 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 552 553 hash = jhash(trace->entries, trace->nr_entries * 554 sizeof(trace->entries[0]), 0); 555 trace->hash = hash; 556 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 557 hlist_for_each_entry(t2, hash_head, hash_entry) { 558 if (traces_identical(trace, t2)) 559 return t2; 560 } 561 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 562 hlist_add_head(&trace->hash_entry, hash_head); 563 564 return trace; 565 } 566 567 /* Return the number of stack traces in the stack_trace[] array. */ 568 u64 lockdep_stack_trace_count(void) 569 { 570 struct lock_trace *trace; 571 u64 c = 0; 572 int i; 573 574 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 575 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 576 c++; 577 } 578 } 579 580 return c; 581 } 582 583 /* Return the number of stack hash chains that have at least one stack trace. */ 584 u64 lockdep_stack_hash_count(void) 585 { 586 u64 c = 0; 587 int i; 588 589 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 590 if (!hlist_empty(&stack_trace_hash[i])) 591 c++; 592 593 return c; 594 } 595 #endif 596 597 unsigned int nr_hardirq_chains; 598 unsigned int nr_softirq_chains; 599 unsigned int nr_process_chains; 600 unsigned int max_lockdep_depth; 601 602 #ifdef CONFIG_DEBUG_LOCKDEP 603 /* 604 * Various lockdep statistics: 605 */ 606 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 607 #endif 608 609 #ifdef CONFIG_PROVE_LOCKING 610 /* 611 * Locking printouts: 612 */ 613 614 #define __USAGE(__STATE) \ 615 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 616 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 617 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 618 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 619 620 static const char *usage_str[] = 621 { 622 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 623 #include "lockdep_states.h" 624 #undef LOCKDEP_STATE 625 [LOCK_USED] = "INITIAL USE", 626 [LOCK_USED_READ] = "INITIAL READ USE", 627 /* abused as string storage for verify_lock_unused() */ 628 [LOCK_USAGE_STATES] = "IN-NMI", 629 }; 630 #endif 631 632 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 633 { 634 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 635 } 636 637 static inline unsigned long lock_flag(enum lock_usage_bit bit) 638 { 639 return 1UL << bit; 640 } 641 642 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 643 { 644 /* 645 * The usage character defaults to '.' (i.e., irqs disabled and not in 646 * irq context), which is the safest usage category. 647 */ 648 char c = '.'; 649 650 /* 651 * The order of the following usage checks matters, which will 652 * result in the outcome character as follows: 653 * 654 * - '+': irq is enabled and not in irq context 655 * - '-': in irq context and irq is disabled 656 * - '?': in irq context and irq is enabled 657 */ 658 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 659 c = '+'; 660 if (class->usage_mask & lock_flag(bit)) 661 c = '?'; 662 } else if (class->usage_mask & lock_flag(bit)) 663 c = '-'; 664 665 return c; 666 } 667 668 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 669 { 670 int i = 0; 671 672 #define LOCKDEP_STATE(__STATE) \ 673 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 674 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 675 #include "lockdep_states.h" 676 #undef LOCKDEP_STATE 677 678 usage[i] = '\0'; 679 } 680 681 static void __print_lock_name(struct lock_class *class) 682 { 683 char str[KSYM_NAME_LEN]; 684 const char *name; 685 686 name = class->name; 687 if (!name) { 688 name = __get_key_name(class->key, str); 689 printk(KERN_CONT "%s", name); 690 } else { 691 printk(KERN_CONT "%s", name); 692 if (class->name_version > 1) 693 printk(KERN_CONT "#%d", class->name_version); 694 if (class->subclass) 695 printk(KERN_CONT "/%d", class->subclass); 696 } 697 } 698 699 static void print_lock_name(struct lock_class *class) 700 { 701 char usage[LOCK_USAGE_CHARS]; 702 703 get_usage_chars(class, usage); 704 705 printk(KERN_CONT " ("); 706 __print_lock_name(class); 707 printk(KERN_CONT "){%s}-{%d:%d}", usage, 708 class->wait_type_outer ?: class->wait_type_inner, 709 class->wait_type_inner); 710 } 711 712 static void print_lockdep_cache(struct lockdep_map *lock) 713 { 714 const char *name; 715 char str[KSYM_NAME_LEN]; 716 717 name = lock->name; 718 if (!name) 719 name = __get_key_name(lock->key->subkeys, str); 720 721 printk(KERN_CONT "%s", name); 722 } 723 724 static void print_lock(struct held_lock *hlock) 725 { 726 /* 727 * We can be called locklessly through debug_show_all_locks() so be 728 * extra careful, the hlock might have been released and cleared. 729 * 730 * If this indeed happens, lets pretend it does not hurt to continue 731 * to print the lock unless the hlock class_idx does not point to a 732 * registered class. The rationale here is: since we don't attempt 733 * to distinguish whether we are in this situation, if it just 734 * happened we can't count on class_idx to tell either. 735 */ 736 struct lock_class *lock = hlock_class(hlock); 737 738 if (!lock) { 739 printk(KERN_CONT "<RELEASED>\n"); 740 return; 741 } 742 743 printk(KERN_CONT "%px", hlock->instance); 744 print_lock_name(lock); 745 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 746 } 747 748 static void lockdep_print_held_locks(struct task_struct *p) 749 { 750 int i, depth = READ_ONCE(p->lockdep_depth); 751 752 if (!depth) 753 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 754 else 755 printk("%d lock%s held by %s/%d:\n", depth, 756 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 757 /* 758 * It's not reliable to print a task's held locks if it's not sleeping 759 * and it's not the current task. 760 */ 761 if (p != current && task_is_running(p)) 762 return; 763 for (i = 0; i < depth; i++) { 764 printk(" #%d: ", i); 765 print_lock(p->held_locks + i); 766 } 767 } 768 769 static void print_kernel_ident(void) 770 { 771 printk("%s %.*s %s\n", init_utsname()->release, 772 (int)strcspn(init_utsname()->version, " "), 773 init_utsname()->version, 774 print_tainted()); 775 } 776 777 static int very_verbose(struct lock_class *class) 778 { 779 #if VERY_VERBOSE 780 return class_filter(class); 781 #endif 782 return 0; 783 } 784 785 /* 786 * Is this the address of a static object: 787 */ 788 #ifdef __KERNEL__ 789 /* 790 * Check if an address is part of freed initmem. After initmem is freed, 791 * memory can be allocated from it, and such allocations would then have 792 * addresses within the range [_stext, _end]. 793 */ 794 #ifndef arch_is_kernel_initmem_freed 795 static int arch_is_kernel_initmem_freed(unsigned long addr) 796 { 797 if (system_state < SYSTEM_FREEING_INITMEM) 798 return 0; 799 800 return init_section_contains((void *)addr, 1); 801 } 802 #endif 803 804 static int static_obj(const void *obj) 805 { 806 unsigned long start = (unsigned long) &_stext, 807 end = (unsigned long) &_end, 808 addr = (unsigned long) obj; 809 810 if (arch_is_kernel_initmem_freed(addr)) 811 return 0; 812 813 /* 814 * static variable? 815 */ 816 if ((addr >= start) && (addr < end)) 817 return 1; 818 819 /* 820 * in-kernel percpu var? 821 */ 822 if (is_kernel_percpu_address(addr)) 823 return 1; 824 825 /* 826 * module static or percpu var? 827 */ 828 return is_module_address(addr) || is_module_percpu_address(addr); 829 } 830 #endif 831 832 /* 833 * To make lock name printouts unique, we calculate a unique 834 * class->name_version generation counter. The caller must hold the graph 835 * lock. 836 */ 837 static int count_matching_names(struct lock_class *new_class) 838 { 839 struct lock_class *class; 840 int count = 0; 841 842 if (!new_class->name) 843 return 0; 844 845 list_for_each_entry(class, &all_lock_classes, lock_entry) { 846 if (new_class->key - new_class->subclass == class->key) 847 return class->name_version; 848 if (class->name && !strcmp(class->name, new_class->name)) 849 count = max(count, class->name_version); 850 } 851 852 return count + 1; 853 } 854 855 /* used from NMI context -- must be lockless */ 856 static noinstr struct lock_class * 857 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 858 { 859 struct lockdep_subclass_key *key; 860 struct hlist_head *hash_head; 861 struct lock_class *class; 862 863 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 864 instrumentation_begin(); 865 debug_locks_off(); 866 printk(KERN_ERR 867 "BUG: looking up invalid subclass: %u\n", subclass); 868 printk(KERN_ERR 869 "turning off the locking correctness validator.\n"); 870 dump_stack(); 871 instrumentation_end(); 872 return NULL; 873 } 874 875 /* 876 * If it is not initialised then it has never been locked, 877 * so it won't be present in the hash table. 878 */ 879 if (unlikely(!lock->key)) 880 return NULL; 881 882 /* 883 * NOTE: the class-key must be unique. For dynamic locks, a static 884 * lock_class_key variable is passed in through the mutex_init() 885 * (or spin_lock_init()) call - which acts as the key. For static 886 * locks we use the lock object itself as the key. 887 */ 888 BUILD_BUG_ON(sizeof(struct lock_class_key) > 889 sizeof(struct lockdep_map)); 890 891 key = lock->key->subkeys + subclass; 892 893 hash_head = classhashentry(key); 894 895 /* 896 * We do an RCU walk of the hash, see lockdep_free_key_range(). 897 */ 898 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 899 return NULL; 900 901 hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) { 902 if (class->key == key) { 903 /* 904 * Huh! same key, different name? Did someone trample 905 * on some memory? We're most confused. 906 */ 907 WARN_ON_ONCE(class->name != lock->name && 908 lock->key != &__lockdep_no_validate__); 909 return class; 910 } 911 } 912 913 return NULL; 914 } 915 916 /* 917 * Static locks do not have their class-keys yet - for them the key is 918 * the lock object itself. If the lock is in the per cpu area, the 919 * canonical address of the lock (per cpu offset removed) is used. 920 */ 921 static bool assign_lock_key(struct lockdep_map *lock) 922 { 923 unsigned long can_addr, addr = (unsigned long)lock; 924 925 #ifdef __KERNEL__ 926 /* 927 * lockdep_free_key_range() assumes that struct lock_class_key 928 * objects do not overlap. Since we use the address of lock 929 * objects as class key for static objects, check whether the 930 * size of lock_class_key objects does not exceed the size of 931 * the smallest lock object. 932 */ 933 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 934 #endif 935 936 if (__is_kernel_percpu_address(addr, &can_addr)) 937 lock->key = (void *)can_addr; 938 else if (__is_module_percpu_address(addr, &can_addr)) 939 lock->key = (void *)can_addr; 940 else if (static_obj(lock)) 941 lock->key = (void *)lock; 942 else { 943 /* Debug-check: all keys must be persistent! */ 944 debug_locks_off(); 945 pr_err("INFO: trying to register non-static key.\n"); 946 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 947 pr_err("you didn't initialize this object before use?\n"); 948 pr_err("turning off the locking correctness validator.\n"); 949 dump_stack(); 950 return false; 951 } 952 953 return true; 954 } 955 956 #ifdef CONFIG_DEBUG_LOCKDEP 957 958 /* Check whether element @e occurs in list @h */ 959 static bool in_list(struct list_head *e, struct list_head *h) 960 { 961 struct list_head *f; 962 963 list_for_each(f, h) { 964 if (e == f) 965 return true; 966 } 967 968 return false; 969 } 970 971 /* 972 * Check whether entry @e occurs in any of the locks_after or locks_before 973 * lists. 974 */ 975 static bool in_any_class_list(struct list_head *e) 976 { 977 struct lock_class *class; 978 int i; 979 980 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 981 class = &lock_classes[i]; 982 if (in_list(e, &class->locks_after) || 983 in_list(e, &class->locks_before)) 984 return true; 985 } 986 return false; 987 } 988 989 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 990 { 991 struct lock_list *e; 992 993 list_for_each_entry(e, h, entry) { 994 if (e->links_to != c) { 995 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 996 c->name ? : "(?)", 997 (unsigned long)(e - list_entries), 998 e->links_to && e->links_to->name ? 999 e->links_to->name : "(?)", 1000 e->class && e->class->name ? e->class->name : 1001 "(?)"); 1002 return false; 1003 } 1004 } 1005 return true; 1006 } 1007 1008 #ifdef CONFIG_PROVE_LOCKING 1009 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1010 #endif 1011 1012 static bool check_lock_chain_key(struct lock_chain *chain) 1013 { 1014 #ifdef CONFIG_PROVE_LOCKING 1015 u64 chain_key = INITIAL_CHAIN_KEY; 1016 int i; 1017 1018 for (i = chain->base; i < chain->base + chain->depth; i++) 1019 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1020 /* 1021 * The 'unsigned long long' casts avoid that a compiler warning 1022 * is reported when building tools/lib/lockdep. 1023 */ 1024 if (chain->chain_key != chain_key) { 1025 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1026 (unsigned long long)(chain - lock_chains), 1027 (unsigned long long)chain->chain_key, 1028 (unsigned long long)chain_key); 1029 return false; 1030 } 1031 #endif 1032 return true; 1033 } 1034 1035 static bool in_any_zapped_class_list(struct lock_class *class) 1036 { 1037 struct pending_free *pf; 1038 int i; 1039 1040 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1041 if (in_list(&class->lock_entry, &pf->zapped)) 1042 return true; 1043 } 1044 1045 return false; 1046 } 1047 1048 static bool __check_data_structures(void) 1049 { 1050 struct lock_class *class; 1051 struct lock_chain *chain; 1052 struct hlist_head *head; 1053 struct lock_list *e; 1054 int i; 1055 1056 /* Check whether all classes occur in a lock list. */ 1057 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1058 class = &lock_classes[i]; 1059 if (!in_list(&class->lock_entry, &all_lock_classes) && 1060 !in_list(&class->lock_entry, &free_lock_classes) && 1061 !in_any_zapped_class_list(class)) { 1062 printk(KERN_INFO "class %px/%s is not in any class list\n", 1063 class, class->name ? : "(?)"); 1064 return false; 1065 } 1066 } 1067 1068 /* Check whether all classes have valid lock lists. */ 1069 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1070 class = &lock_classes[i]; 1071 if (!class_lock_list_valid(class, &class->locks_before)) 1072 return false; 1073 if (!class_lock_list_valid(class, &class->locks_after)) 1074 return false; 1075 } 1076 1077 /* Check the chain_key of all lock chains. */ 1078 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1079 head = chainhash_table + i; 1080 hlist_for_each_entry_rcu(chain, head, entry) { 1081 if (!check_lock_chain_key(chain)) 1082 return false; 1083 } 1084 } 1085 1086 /* 1087 * Check whether all list entries that are in use occur in a class 1088 * lock list. 1089 */ 1090 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1091 e = list_entries + i; 1092 if (!in_any_class_list(&e->entry)) { 1093 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1094 (unsigned int)(e - list_entries), 1095 e->class->name ? : "(?)", 1096 e->links_to->name ? : "(?)"); 1097 return false; 1098 } 1099 } 1100 1101 /* 1102 * Check whether all list entries that are not in use do not occur in 1103 * a class lock list. 1104 */ 1105 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1106 e = list_entries + i; 1107 if (in_any_class_list(&e->entry)) { 1108 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1109 (unsigned int)(e - list_entries), 1110 e->class && e->class->name ? e->class->name : 1111 "(?)", 1112 e->links_to && e->links_to->name ? 1113 e->links_to->name : "(?)"); 1114 return false; 1115 } 1116 } 1117 1118 return true; 1119 } 1120 1121 int check_consistency = 0; 1122 module_param(check_consistency, int, 0644); 1123 1124 static void check_data_structures(void) 1125 { 1126 static bool once = false; 1127 1128 if (check_consistency && !once) { 1129 if (!__check_data_structures()) { 1130 once = true; 1131 WARN_ON(once); 1132 } 1133 } 1134 } 1135 1136 #else /* CONFIG_DEBUG_LOCKDEP */ 1137 1138 static inline void check_data_structures(void) { } 1139 1140 #endif /* CONFIG_DEBUG_LOCKDEP */ 1141 1142 static void init_chain_block_buckets(void); 1143 1144 /* 1145 * Initialize the lock_classes[] array elements, the free_lock_classes list 1146 * and also the delayed_free structure. 1147 */ 1148 static void init_data_structures_once(void) 1149 { 1150 static bool __read_mostly ds_initialized, rcu_head_initialized; 1151 int i; 1152 1153 if (likely(rcu_head_initialized)) 1154 return; 1155 1156 if (system_state >= SYSTEM_SCHEDULING) { 1157 init_rcu_head(&delayed_free.rcu_head); 1158 rcu_head_initialized = true; 1159 } 1160 1161 if (ds_initialized) 1162 return; 1163 1164 ds_initialized = true; 1165 1166 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1167 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1168 1169 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1170 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1171 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1172 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1173 } 1174 init_chain_block_buckets(); 1175 } 1176 1177 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1178 { 1179 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1180 1181 return lock_keys_hash + hash; 1182 } 1183 1184 /* Register a dynamically allocated key. */ 1185 void lockdep_register_key(struct lock_class_key *key) 1186 { 1187 struct hlist_head *hash_head; 1188 struct lock_class_key *k; 1189 unsigned long flags; 1190 1191 if (WARN_ON_ONCE(static_obj(key))) 1192 return; 1193 hash_head = keyhashentry(key); 1194 1195 raw_local_irq_save(flags); 1196 if (!graph_lock()) 1197 goto restore_irqs; 1198 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1199 if (WARN_ON_ONCE(k == key)) 1200 goto out_unlock; 1201 } 1202 hlist_add_head_rcu(&key->hash_entry, hash_head); 1203 out_unlock: 1204 graph_unlock(); 1205 restore_irqs: 1206 raw_local_irq_restore(flags); 1207 } 1208 EXPORT_SYMBOL_GPL(lockdep_register_key); 1209 1210 /* Check whether a key has been registered as a dynamic key. */ 1211 static bool is_dynamic_key(const struct lock_class_key *key) 1212 { 1213 struct hlist_head *hash_head; 1214 struct lock_class_key *k; 1215 bool found = false; 1216 1217 if (WARN_ON_ONCE(static_obj(key))) 1218 return false; 1219 1220 /* 1221 * If lock debugging is disabled lock_keys_hash[] may contain 1222 * pointers to memory that has already been freed. Avoid triggering 1223 * a use-after-free in that case by returning early. 1224 */ 1225 if (!debug_locks) 1226 return true; 1227 1228 hash_head = keyhashentry(key); 1229 1230 rcu_read_lock(); 1231 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1232 if (k == key) { 1233 found = true; 1234 break; 1235 } 1236 } 1237 rcu_read_unlock(); 1238 1239 return found; 1240 } 1241 1242 /* 1243 * Register a lock's class in the hash-table, if the class is not present 1244 * yet. Otherwise we look it up. We cache the result in the lock object 1245 * itself, so actual lookup of the hash should be once per lock object. 1246 */ 1247 static struct lock_class * 1248 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1249 { 1250 struct lockdep_subclass_key *key; 1251 struct hlist_head *hash_head; 1252 struct lock_class *class; 1253 int idx; 1254 1255 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1256 1257 class = look_up_lock_class(lock, subclass); 1258 if (likely(class)) 1259 goto out_set_class_cache; 1260 1261 if (!lock->key) { 1262 if (!assign_lock_key(lock)) 1263 return NULL; 1264 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1265 return NULL; 1266 } 1267 1268 key = lock->key->subkeys + subclass; 1269 hash_head = classhashentry(key); 1270 1271 if (!graph_lock()) { 1272 return NULL; 1273 } 1274 /* 1275 * We have to do the hash-walk again, to avoid races 1276 * with another CPU: 1277 */ 1278 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1279 if (class->key == key) 1280 goto out_unlock_set; 1281 } 1282 1283 init_data_structures_once(); 1284 1285 /* Allocate a new lock class and add it to the hash. */ 1286 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1287 lock_entry); 1288 if (!class) { 1289 if (!debug_locks_off_graph_unlock()) { 1290 return NULL; 1291 } 1292 1293 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1294 dump_stack(); 1295 return NULL; 1296 } 1297 nr_lock_classes++; 1298 __set_bit(class - lock_classes, lock_classes_in_use); 1299 debug_atomic_inc(nr_unused_locks); 1300 class->key = key; 1301 class->name = lock->name; 1302 class->subclass = subclass; 1303 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1304 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1305 class->name_version = count_matching_names(class); 1306 class->wait_type_inner = lock->wait_type_inner; 1307 class->wait_type_outer = lock->wait_type_outer; 1308 class->lock_type = lock->lock_type; 1309 /* 1310 * We use RCU's safe list-add method to make 1311 * parallel walking of the hash-list safe: 1312 */ 1313 hlist_add_head_rcu(&class->hash_entry, hash_head); 1314 /* 1315 * Remove the class from the free list and add it to the global list 1316 * of classes. 1317 */ 1318 list_move_tail(&class->lock_entry, &all_lock_classes); 1319 idx = class - lock_classes; 1320 if (idx > max_lock_class_idx) 1321 max_lock_class_idx = idx; 1322 1323 if (verbose(class)) { 1324 graph_unlock(); 1325 1326 printk("\nnew class %px: %s", class->key, class->name); 1327 if (class->name_version > 1) 1328 printk(KERN_CONT "#%d", class->name_version); 1329 printk(KERN_CONT "\n"); 1330 dump_stack(); 1331 1332 if (!graph_lock()) { 1333 return NULL; 1334 } 1335 } 1336 out_unlock_set: 1337 graph_unlock(); 1338 1339 out_set_class_cache: 1340 if (!subclass || force) 1341 lock->class_cache[0] = class; 1342 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1343 lock->class_cache[subclass] = class; 1344 1345 /* 1346 * Hash collision, did we smoke some? We found a class with a matching 1347 * hash but the subclass -- which is hashed in -- didn't match. 1348 */ 1349 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1350 return NULL; 1351 1352 return class; 1353 } 1354 1355 #ifdef CONFIG_PROVE_LOCKING 1356 /* 1357 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1358 * with NULL on failure) 1359 */ 1360 static struct lock_list *alloc_list_entry(void) 1361 { 1362 int idx = find_first_zero_bit(list_entries_in_use, 1363 ARRAY_SIZE(list_entries)); 1364 1365 if (idx >= ARRAY_SIZE(list_entries)) { 1366 if (!debug_locks_off_graph_unlock()) 1367 return NULL; 1368 1369 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1370 dump_stack(); 1371 return NULL; 1372 } 1373 nr_list_entries++; 1374 __set_bit(idx, list_entries_in_use); 1375 return list_entries + idx; 1376 } 1377 1378 /* 1379 * Add a new dependency to the head of the list: 1380 */ 1381 static int add_lock_to_list(struct lock_class *this, 1382 struct lock_class *links_to, struct list_head *head, 1383 unsigned long ip, u16 distance, u8 dep, 1384 const struct lock_trace *trace) 1385 { 1386 struct lock_list *entry; 1387 /* 1388 * Lock not present yet - get a new dependency struct and 1389 * add it to the list: 1390 */ 1391 entry = alloc_list_entry(); 1392 if (!entry) 1393 return 0; 1394 1395 entry->class = this; 1396 entry->links_to = links_to; 1397 entry->dep = dep; 1398 entry->distance = distance; 1399 entry->trace = trace; 1400 /* 1401 * Both allocation and removal are done under the graph lock; but 1402 * iteration is under RCU-sched; see look_up_lock_class() and 1403 * lockdep_free_key_range(). 1404 */ 1405 list_add_tail_rcu(&entry->entry, head); 1406 1407 return 1; 1408 } 1409 1410 /* 1411 * For good efficiency of modular, we use power of 2 1412 */ 1413 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1414 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1415 1416 /* 1417 * The circular_queue and helpers are used to implement graph 1418 * breadth-first search (BFS) algorithm, by which we can determine 1419 * whether there is a path from a lock to another. In deadlock checks, 1420 * a path from the next lock to be acquired to a previous held lock 1421 * indicates that adding the <prev> -> <next> lock dependency will 1422 * produce a circle in the graph. Breadth-first search instead of 1423 * depth-first search is used in order to find the shortest (circular) 1424 * path. 1425 */ 1426 struct circular_queue { 1427 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1428 unsigned int front, rear; 1429 }; 1430 1431 static struct circular_queue lock_cq; 1432 1433 unsigned int max_bfs_queue_depth; 1434 1435 static unsigned int lockdep_dependency_gen_id; 1436 1437 static inline void __cq_init(struct circular_queue *cq) 1438 { 1439 cq->front = cq->rear = 0; 1440 lockdep_dependency_gen_id++; 1441 } 1442 1443 static inline int __cq_empty(struct circular_queue *cq) 1444 { 1445 return (cq->front == cq->rear); 1446 } 1447 1448 static inline int __cq_full(struct circular_queue *cq) 1449 { 1450 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1451 } 1452 1453 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1454 { 1455 if (__cq_full(cq)) 1456 return -1; 1457 1458 cq->element[cq->rear] = elem; 1459 cq->rear = (cq->rear + 1) & CQ_MASK; 1460 return 0; 1461 } 1462 1463 /* 1464 * Dequeue an element from the circular_queue, return a lock_list if 1465 * the queue is not empty, or NULL if otherwise. 1466 */ 1467 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1468 { 1469 struct lock_list * lock; 1470 1471 if (__cq_empty(cq)) 1472 return NULL; 1473 1474 lock = cq->element[cq->front]; 1475 cq->front = (cq->front + 1) & CQ_MASK; 1476 1477 return lock; 1478 } 1479 1480 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1481 { 1482 return (cq->rear - cq->front) & CQ_MASK; 1483 } 1484 1485 static inline void mark_lock_accessed(struct lock_list *lock) 1486 { 1487 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1488 } 1489 1490 static inline void visit_lock_entry(struct lock_list *lock, 1491 struct lock_list *parent) 1492 { 1493 lock->parent = parent; 1494 } 1495 1496 static inline unsigned long lock_accessed(struct lock_list *lock) 1497 { 1498 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1499 } 1500 1501 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1502 { 1503 return child->parent; 1504 } 1505 1506 static inline int get_lock_depth(struct lock_list *child) 1507 { 1508 int depth = 0; 1509 struct lock_list *parent; 1510 1511 while ((parent = get_lock_parent(child))) { 1512 child = parent; 1513 depth++; 1514 } 1515 return depth; 1516 } 1517 1518 /* 1519 * Return the forward or backward dependency list. 1520 * 1521 * @lock: the lock_list to get its class's dependency list 1522 * @offset: the offset to struct lock_class to determine whether it is 1523 * locks_after or locks_before 1524 */ 1525 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1526 { 1527 void *lock_class = lock->class; 1528 1529 return lock_class + offset; 1530 } 1531 /* 1532 * Return values of a bfs search: 1533 * 1534 * BFS_E* indicates an error 1535 * BFS_R* indicates a result (match or not) 1536 * 1537 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1538 * 1539 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1540 * 1541 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1542 * *@target_entry. 1543 * 1544 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1545 * _unchanged_. 1546 */ 1547 enum bfs_result { 1548 BFS_EINVALIDNODE = -2, 1549 BFS_EQUEUEFULL = -1, 1550 BFS_RMATCH = 0, 1551 BFS_RNOMATCH = 1, 1552 }; 1553 1554 /* 1555 * bfs_result < 0 means error 1556 */ 1557 static inline bool bfs_error(enum bfs_result res) 1558 { 1559 return res < 0; 1560 } 1561 1562 /* 1563 * DEP_*_BIT in lock_list::dep 1564 * 1565 * For dependency @prev -> @next: 1566 * 1567 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1568 * (->read == 2) 1569 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1570 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1571 * EN: @prev is exclusive locker and @next is non-recursive locker 1572 * 1573 * Note that we define the value of DEP_*_BITs so that: 1574 * bit0 is prev->read == 0 1575 * bit1 is next->read != 2 1576 */ 1577 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1578 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1579 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1580 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1581 1582 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1583 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1584 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1585 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1586 1587 static inline unsigned int 1588 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1589 { 1590 return (prev->read == 0) + ((next->read != 2) << 1); 1591 } 1592 1593 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1594 { 1595 return 1U << __calc_dep_bit(prev, next); 1596 } 1597 1598 /* 1599 * calculate the dep_bit for backwards edges. We care about whether @prev is 1600 * shared and whether @next is recursive. 1601 */ 1602 static inline unsigned int 1603 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1604 { 1605 return (next->read != 2) + ((prev->read == 0) << 1); 1606 } 1607 1608 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1609 { 1610 return 1U << __calc_dep_bitb(prev, next); 1611 } 1612 1613 /* 1614 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1615 * search. 1616 */ 1617 static inline void __bfs_init_root(struct lock_list *lock, 1618 struct lock_class *class) 1619 { 1620 lock->class = class; 1621 lock->parent = NULL; 1622 lock->only_xr = 0; 1623 } 1624 1625 /* 1626 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1627 * root for a BFS search. 1628 * 1629 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1630 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1631 * and -(S*)->. 1632 */ 1633 static inline void bfs_init_root(struct lock_list *lock, 1634 struct held_lock *hlock) 1635 { 1636 __bfs_init_root(lock, hlock_class(hlock)); 1637 lock->only_xr = (hlock->read == 2); 1638 } 1639 1640 /* 1641 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1642 * 1643 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1644 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1645 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1646 */ 1647 static inline void bfs_init_rootb(struct lock_list *lock, 1648 struct held_lock *hlock) 1649 { 1650 __bfs_init_root(lock, hlock_class(hlock)); 1651 lock->only_xr = (hlock->read != 0); 1652 } 1653 1654 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1655 { 1656 if (!lock || !lock->parent) 1657 return NULL; 1658 1659 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1660 &lock->entry, struct lock_list, entry); 1661 } 1662 1663 /* 1664 * Breadth-First Search to find a strong path in the dependency graph. 1665 * 1666 * @source_entry: the source of the path we are searching for. 1667 * @data: data used for the second parameter of @match function 1668 * @match: match function for the search 1669 * @target_entry: pointer to the target of a matched path 1670 * @offset: the offset to struct lock_class to determine whether it is 1671 * locks_after or locks_before 1672 * 1673 * We may have multiple edges (considering different kinds of dependencies, 1674 * e.g. ER and SN) between two nodes in the dependency graph. But 1675 * only the strong dependency path in the graph is relevant to deadlocks. A 1676 * strong dependency path is a dependency path that doesn't have two adjacent 1677 * dependencies as -(*R)-> -(S*)->, please see: 1678 * 1679 * Documentation/locking/lockdep-design.rst 1680 * 1681 * for more explanation of the definition of strong dependency paths 1682 * 1683 * In __bfs(), we only traverse in the strong dependency path: 1684 * 1685 * In lock_list::only_xr, we record whether the previous dependency only 1686 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1687 * filter out any -(S*)-> in the current dependency and after that, the 1688 * ->only_xr is set according to whether we only have -(*R)-> left. 1689 */ 1690 static enum bfs_result __bfs(struct lock_list *source_entry, 1691 void *data, 1692 bool (*match)(struct lock_list *entry, void *data), 1693 bool (*skip)(struct lock_list *entry, void *data), 1694 struct lock_list **target_entry, 1695 int offset) 1696 { 1697 struct circular_queue *cq = &lock_cq; 1698 struct lock_list *lock = NULL; 1699 struct lock_list *entry; 1700 struct list_head *head; 1701 unsigned int cq_depth; 1702 bool first; 1703 1704 lockdep_assert_locked(); 1705 1706 __cq_init(cq); 1707 __cq_enqueue(cq, source_entry); 1708 1709 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1710 if (!lock->class) 1711 return BFS_EINVALIDNODE; 1712 1713 /* 1714 * Step 1: check whether we already finish on this one. 1715 * 1716 * If we have visited all the dependencies from this @lock to 1717 * others (iow, if we have visited all lock_list entries in 1718 * @lock->class->locks_{after,before}) we skip, otherwise go 1719 * and visit all the dependencies in the list and mark this 1720 * list accessed. 1721 */ 1722 if (lock_accessed(lock)) 1723 continue; 1724 else 1725 mark_lock_accessed(lock); 1726 1727 /* 1728 * Step 2: check whether prev dependency and this form a strong 1729 * dependency path. 1730 */ 1731 if (lock->parent) { /* Parent exists, check prev dependency */ 1732 u8 dep = lock->dep; 1733 bool prev_only_xr = lock->parent->only_xr; 1734 1735 /* 1736 * Mask out all -(S*)-> if we only have *R in previous 1737 * step, because -(*R)-> -(S*)-> don't make up a strong 1738 * dependency. 1739 */ 1740 if (prev_only_xr) 1741 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1742 1743 /* If nothing left, we skip */ 1744 if (!dep) 1745 continue; 1746 1747 /* If there are only -(*R)-> left, set that for the next step */ 1748 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1749 } 1750 1751 /* 1752 * Step 3: we haven't visited this and there is a strong 1753 * dependency path to this, so check with @match. 1754 * If @skip is provide and returns true, we skip this 1755 * lock (and any path this lock is in). 1756 */ 1757 if (skip && skip(lock, data)) 1758 continue; 1759 1760 if (match(lock, data)) { 1761 *target_entry = lock; 1762 return BFS_RMATCH; 1763 } 1764 1765 /* 1766 * Step 4: if not match, expand the path by adding the 1767 * forward or backwards dependencies in the search 1768 * 1769 */ 1770 first = true; 1771 head = get_dep_list(lock, offset); 1772 list_for_each_entry_rcu(entry, head, entry) { 1773 visit_lock_entry(entry, lock); 1774 1775 /* 1776 * Note we only enqueue the first of the list into the 1777 * queue, because we can always find a sibling 1778 * dependency from one (see __bfs_next()), as a result 1779 * the space of queue is saved. 1780 */ 1781 if (!first) 1782 continue; 1783 1784 first = false; 1785 1786 if (__cq_enqueue(cq, entry)) 1787 return BFS_EQUEUEFULL; 1788 1789 cq_depth = __cq_get_elem_count(cq); 1790 if (max_bfs_queue_depth < cq_depth) 1791 max_bfs_queue_depth = cq_depth; 1792 } 1793 } 1794 1795 return BFS_RNOMATCH; 1796 } 1797 1798 static inline enum bfs_result 1799 __bfs_forwards(struct lock_list *src_entry, 1800 void *data, 1801 bool (*match)(struct lock_list *entry, void *data), 1802 bool (*skip)(struct lock_list *entry, void *data), 1803 struct lock_list **target_entry) 1804 { 1805 return __bfs(src_entry, data, match, skip, target_entry, 1806 offsetof(struct lock_class, locks_after)); 1807 1808 } 1809 1810 static inline enum bfs_result 1811 __bfs_backwards(struct lock_list *src_entry, 1812 void *data, 1813 bool (*match)(struct lock_list *entry, void *data), 1814 bool (*skip)(struct lock_list *entry, void *data), 1815 struct lock_list **target_entry) 1816 { 1817 return __bfs(src_entry, data, match, skip, target_entry, 1818 offsetof(struct lock_class, locks_before)); 1819 1820 } 1821 1822 static void print_lock_trace(const struct lock_trace *trace, 1823 unsigned int spaces) 1824 { 1825 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1826 } 1827 1828 /* 1829 * Print a dependency chain entry (this is only done when a deadlock 1830 * has been detected): 1831 */ 1832 static noinline void 1833 print_circular_bug_entry(struct lock_list *target, int depth) 1834 { 1835 if (debug_locks_silent) 1836 return; 1837 printk("\n-> #%u", depth); 1838 print_lock_name(target->class); 1839 printk(KERN_CONT ":\n"); 1840 print_lock_trace(target->trace, 6); 1841 } 1842 1843 static void 1844 print_circular_lock_scenario(struct held_lock *src, 1845 struct held_lock *tgt, 1846 struct lock_list *prt) 1847 { 1848 struct lock_class *source = hlock_class(src); 1849 struct lock_class *target = hlock_class(tgt); 1850 struct lock_class *parent = prt->class; 1851 1852 /* 1853 * A direct locking problem where unsafe_class lock is taken 1854 * directly by safe_class lock, then all we need to show 1855 * is the deadlock scenario, as it is obvious that the 1856 * unsafe lock is taken under the safe lock. 1857 * 1858 * But if there is a chain instead, where the safe lock takes 1859 * an intermediate lock (middle_class) where this lock is 1860 * not the same as the safe lock, then the lock chain is 1861 * used to describe the problem. Otherwise we would need 1862 * to show a different CPU case for each link in the chain 1863 * from the safe_class lock to the unsafe_class lock. 1864 */ 1865 if (parent != source) { 1866 printk("Chain exists of:\n "); 1867 __print_lock_name(source); 1868 printk(KERN_CONT " --> "); 1869 __print_lock_name(parent); 1870 printk(KERN_CONT " --> "); 1871 __print_lock_name(target); 1872 printk(KERN_CONT "\n\n"); 1873 } 1874 1875 printk(" Possible unsafe locking scenario:\n\n"); 1876 printk(" CPU0 CPU1\n"); 1877 printk(" ---- ----\n"); 1878 printk(" lock("); 1879 __print_lock_name(target); 1880 printk(KERN_CONT ");\n"); 1881 printk(" lock("); 1882 __print_lock_name(parent); 1883 printk(KERN_CONT ");\n"); 1884 printk(" lock("); 1885 __print_lock_name(target); 1886 printk(KERN_CONT ");\n"); 1887 printk(" lock("); 1888 __print_lock_name(source); 1889 printk(KERN_CONT ");\n"); 1890 printk("\n *** DEADLOCK ***\n\n"); 1891 } 1892 1893 /* 1894 * When a circular dependency is detected, print the 1895 * header first: 1896 */ 1897 static noinline void 1898 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1899 struct held_lock *check_src, 1900 struct held_lock *check_tgt) 1901 { 1902 struct task_struct *curr = current; 1903 1904 if (debug_locks_silent) 1905 return; 1906 1907 pr_warn("\n"); 1908 pr_warn("======================================================\n"); 1909 pr_warn("WARNING: possible circular locking dependency detected\n"); 1910 print_kernel_ident(); 1911 pr_warn("------------------------------------------------------\n"); 1912 pr_warn("%s/%d is trying to acquire lock:\n", 1913 curr->comm, task_pid_nr(curr)); 1914 print_lock(check_src); 1915 1916 pr_warn("\nbut task is already holding lock:\n"); 1917 1918 print_lock(check_tgt); 1919 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1920 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1921 1922 print_circular_bug_entry(entry, depth); 1923 } 1924 1925 /* 1926 * We are about to add A -> B into the dependency graph, and in __bfs() a 1927 * strong dependency path A -> .. -> B is found: hlock_class equals 1928 * entry->class. 1929 * 1930 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1931 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1932 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1933 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1934 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1935 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1936 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1937 * 1938 * We need to make sure both the start and the end of A -> .. -> B is not 1939 * weaker than A -> B. For the start part, please see the comment in 1940 * check_redundant(). For the end part, we need: 1941 * 1942 * Either 1943 * 1944 * a) A -> B is -(*R)-> (everything is not weaker than that) 1945 * 1946 * or 1947 * 1948 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1949 * 1950 */ 1951 static inline bool hlock_equal(struct lock_list *entry, void *data) 1952 { 1953 struct held_lock *hlock = (struct held_lock *)data; 1954 1955 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1956 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1957 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1958 } 1959 1960 /* 1961 * We are about to add B -> A into the dependency graph, and in __bfs() a 1962 * strong dependency path A -> .. -> B is found: hlock_class equals 1963 * entry->class. 1964 * 1965 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1966 * dependency cycle, that means: 1967 * 1968 * Either 1969 * 1970 * a) B -> A is -(E*)-> 1971 * 1972 * or 1973 * 1974 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 1975 * 1976 * as then we don't have -(*R)-> -(S*)-> in the cycle. 1977 */ 1978 static inline bool hlock_conflict(struct lock_list *entry, void *data) 1979 { 1980 struct held_lock *hlock = (struct held_lock *)data; 1981 1982 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1983 (hlock->read == 0 || /* B -> A is -(E*)-> */ 1984 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1985 } 1986 1987 static noinline void print_circular_bug(struct lock_list *this, 1988 struct lock_list *target, 1989 struct held_lock *check_src, 1990 struct held_lock *check_tgt) 1991 { 1992 struct task_struct *curr = current; 1993 struct lock_list *parent; 1994 struct lock_list *first_parent; 1995 int depth; 1996 1997 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1998 return; 1999 2000 this->trace = save_trace(); 2001 if (!this->trace) 2002 return; 2003 2004 depth = get_lock_depth(target); 2005 2006 print_circular_bug_header(target, depth, check_src, check_tgt); 2007 2008 parent = get_lock_parent(target); 2009 first_parent = parent; 2010 2011 while (parent) { 2012 print_circular_bug_entry(parent, --depth); 2013 parent = get_lock_parent(parent); 2014 } 2015 2016 printk("\nother info that might help us debug this:\n\n"); 2017 print_circular_lock_scenario(check_src, check_tgt, 2018 first_parent); 2019 2020 lockdep_print_held_locks(curr); 2021 2022 printk("\nstack backtrace:\n"); 2023 dump_stack(); 2024 } 2025 2026 static noinline void print_bfs_bug(int ret) 2027 { 2028 if (!debug_locks_off_graph_unlock()) 2029 return; 2030 2031 /* 2032 * Breadth-first-search failed, graph got corrupted? 2033 */ 2034 WARN(1, "lockdep bfs error:%d\n", ret); 2035 } 2036 2037 static bool noop_count(struct lock_list *entry, void *data) 2038 { 2039 (*(unsigned long *)data)++; 2040 return false; 2041 } 2042 2043 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2044 { 2045 unsigned long count = 0; 2046 struct lock_list *target_entry; 2047 2048 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2049 2050 return count; 2051 } 2052 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2053 { 2054 unsigned long ret, flags; 2055 struct lock_list this; 2056 2057 __bfs_init_root(&this, class); 2058 2059 raw_local_irq_save(flags); 2060 lockdep_lock(); 2061 ret = __lockdep_count_forward_deps(&this); 2062 lockdep_unlock(); 2063 raw_local_irq_restore(flags); 2064 2065 return ret; 2066 } 2067 2068 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2069 { 2070 unsigned long count = 0; 2071 struct lock_list *target_entry; 2072 2073 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2074 2075 return count; 2076 } 2077 2078 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2079 { 2080 unsigned long ret, flags; 2081 struct lock_list this; 2082 2083 __bfs_init_root(&this, class); 2084 2085 raw_local_irq_save(flags); 2086 lockdep_lock(); 2087 ret = __lockdep_count_backward_deps(&this); 2088 lockdep_unlock(); 2089 raw_local_irq_restore(flags); 2090 2091 return ret; 2092 } 2093 2094 /* 2095 * Check that the dependency graph starting at <src> can lead to 2096 * <target> or not. 2097 */ 2098 static noinline enum bfs_result 2099 check_path(struct held_lock *target, struct lock_list *src_entry, 2100 bool (*match)(struct lock_list *entry, void *data), 2101 bool (*skip)(struct lock_list *entry, void *data), 2102 struct lock_list **target_entry) 2103 { 2104 enum bfs_result ret; 2105 2106 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2107 2108 if (unlikely(bfs_error(ret))) 2109 print_bfs_bug(ret); 2110 2111 return ret; 2112 } 2113 2114 /* 2115 * Prove that the dependency graph starting at <src> can not 2116 * lead to <target>. If it can, there is a circle when adding 2117 * <target> -> <src> dependency. 2118 * 2119 * Print an error and return BFS_RMATCH if it does. 2120 */ 2121 static noinline enum bfs_result 2122 check_noncircular(struct held_lock *src, struct held_lock *target, 2123 struct lock_trace **const trace) 2124 { 2125 enum bfs_result ret; 2126 struct lock_list *target_entry; 2127 struct lock_list src_entry; 2128 2129 bfs_init_root(&src_entry, src); 2130 2131 debug_atomic_inc(nr_cyclic_checks); 2132 2133 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2134 2135 if (unlikely(ret == BFS_RMATCH)) { 2136 if (!*trace) { 2137 /* 2138 * If save_trace fails here, the printing might 2139 * trigger a WARN but because of the !nr_entries it 2140 * should not do bad things. 2141 */ 2142 *trace = save_trace(); 2143 } 2144 2145 print_circular_bug(&src_entry, target_entry, src, target); 2146 } 2147 2148 return ret; 2149 } 2150 2151 #ifdef CONFIG_TRACE_IRQFLAGS 2152 2153 /* 2154 * Forwards and backwards subgraph searching, for the purposes of 2155 * proving that two subgraphs can be connected by a new dependency 2156 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2157 * 2158 * A irq safe->unsafe deadlock happens with the following conditions: 2159 * 2160 * 1) We have a strong dependency path A -> ... -> B 2161 * 2162 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2163 * irq can create a new dependency B -> A (consider the case that a holder 2164 * of B gets interrupted by an irq whose handler will try to acquire A). 2165 * 2166 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2167 * strong circle: 2168 * 2169 * For the usage bits of B: 2170 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2171 * ENABLED_IRQ usage suffices. 2172 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2173 * ENABLED_IRQ_*_READ usage suffices. 2174 * 2175 * For the usage bits of A: 2176 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2177 * USED_IN_IRQ usage suffices. 2178 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2179 * USED_IN_IRQ_*_READ usage suffices. 2180 */ 2181 2182 /* 2183 * There is a strong dependency path in the dependency graph: A -> B, and now 2184 * we need to decide which usage bit of A should be accumulated to detect 2185 * safe->unsafe bugs. 2186 * 2187 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2188 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2189 * 2190 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2191 * path, any usage of A should be considered. Otherwise, we should only 2192 * consider _READ usage. 2193 */ 2194 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2195 { 2196 if (!entry->only_xr) 2197 *(unsigned long *)mask |= entry->class->usage_mask; 2198 else /* Mask out _READ usage bits */ 2199 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2200 2201 return false; 2202 } 2203 2204 /* 2205 * There is a strong dependency path in the dependency graph: A -> B, and now 2206 * we need to decide which usage bit of B conflicts with the usage bits of A, 2207 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2208 * 2209 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2210 * path, any usage of B should be considered. Otherwise, we should only 2211 * consider _READ usage. 2212 */ 2213 static inline bool usage_match(struct lock_list *entry, void *mask) 2214 { 2215 if (!entry->only_xr) 2216 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2217 else /* Mask out _READ usage bits */ 2218 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2219 } 2220 2221 static inline bool usage_skip(struct lock_list *entry, void *mask) 2222 { 2223 /* 2224 * Skip local_lock() for irq inversion detection. 2225 * 2226 * For !RT, local_lock() is not a real lock, so it won't carry any 2227 * dependency. 2228 * 2229 * For RT, an irq inversion happens when we have lock A and B, and on 2230 * some CPU we can have: 2231 * 2232 * lock(A); 2233 * <interrupted> 2234 * lock(B); 2235 * 2236 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2237 * 2238 * Now we prove local_lock() cannot exist in that dependency. First we 2239 * have the observation for any lock chain L1 -> ... -> Ln, for any 2240 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2241 * wait context check will complain. And since B is not a sleep lock, 2242 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2243 * local_lock() is 3, which is greater than 2, therefore there is no 2244 * way the local_lock() exists in the dependency B -> ... -> A. 2245 * 2246 * As a result, we will skip local_lock(), when we search for irq 2247 * inversion bugs. 2248 */ 2249 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2250 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2251 return false; 2252 2253 return true; 2254 } 2255 2256 return false; 2257 } 2258 2259 /* 2260 * Find a node in the forwards-direction dependency sub-graph starting 2261 * at @root->class that matches @bit. 2262 * 2263 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2264 * into *@target_entry. 2265 */ 2266 static enum bfs_result 2267 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2268 struct lock_list **target_entry) 2269 { 2270 enum bfs_result result; 2271 2272 debug_atomic_inc(nr_find_usage_forwards_checks); 2273 2274 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2275 2276 return result; 2277 } 2278 2279 /* 2280 * Find a node in the backwards-direction dependency sub-graph starting 2281 * at @root->class that matches @bit. 2282 */ 2283 static enum bfs_result 2284 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2285 struct lock_list **target_entry) 2286 { 2287 enum bfs_result result; 2288 2289 debug_atomic_inc(nr_find_usage_backwards_checks); 2290 2291 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2292 2293 return result; 2294 } 2295 2296 static void print_lock_class_header(struct lock_class *class, int depth) 2297 { 2298 int bit; 2299 2300 printk("%*s->", depth, ""); 2301 print_lock_name(class); 2302 #ifdef CONFIG_DEBUG_LOCKDEP 2303 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2304 #endif 2305 printk(KERN_CONT " {\n"); 2306 2307 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2308 if (class->usage_mask & (1 << bit)) { 2309 int len = depth; 2310 2311 len += printk("%*s %s", depth, "", usage_str[bit]); 2312 len += printk(KERN_CONT " at:\n"); 2313 print_lock_trace(class->usage_traces[bit], len); 2314 } 2315 } 2316 printk("%*s }\n", depth, ""); 2317 2318 printk("%*s ... key at: [<%px>] %pS\n", 2319 depth, "", class->key, class->key); 2320 } 2321 2322 /* 2323 * Dependency path printing: 2324 * 2325 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2326 * printing out each lock in the dependency path will help on understanding how 2327 * the deadlock could happen. Here are some details about dependency path 2328 * printing: 2329 * 2330 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2331 * for a lock dependency A -> B, there are two lock_lists: 2332 * 2333 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2334 * ->links_to is A. In this case, we can say the lock_list is 2335 * "A -> B" (forwards case). 2336 * 2337 * b) lock_list in the ->locks_before list of B, whose ->class is A 2338 * and ->links_to is B. In this case, we can say the lock_list is 2339 * "B <- A" (bacwards case). 2340 * 2341 * The ->trace of both a) and b) point to the call trace where B was 2342 * acquired with A held. 2343 * 2344 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2345 * represent a certain lock dependency, it only provides an initial entry 2346 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2347 * ->class is A, as a result BFS will search all dependencies starting with 2348 * A, e.g. A -> B or A -> C. 2349 * 2350 * The notation of a forwards helper lock_list is like "-> A", which means 2351 * we should search the forwards dependencies starting with "A", e.g A -> B 2352 * or A -> C. 2353 * 2354 * The notation of a bacwards helper lock_list is like "<- B", which means 2355 * we should search the backwards dependencies ending with "B", e.g. 2356 * B <- A or B <- C. 2357 */ 2358 2359 /* 2360 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2361 * 2362 * We have a lock dependency path as follow: 2363 * 2364 * @root @leaf 2365 * | | 2366 * V V 2367 * ->parent ->parent 2368 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2369 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2370 * 2371 * , so it's natural that we start from @leaf and print every ->class and 2372 * ->trace until we reach the @root. 2373 */ 2374 static void __used 2375 print_shortest_lock_dependencies(struct lock_list *leaf, 2376 struct lock_list *root) 2377 { 2378 struct lock_list *entry = leaf; 2379 int depth; 2380 2381 /*compute depth from generated tree by BFS*/ 2382 depth = get_lock_depth(leaf); 2383 2384 do { 2385 print_lock_class_header(entry->class, depth); 2386 printk("%*s ... acquired at:\n", depth, ""); 2387 print_lock_trace(entry->trace, 2); 2388 printk("\n"); 2389 2390 if (depth == 0 && (entry != root)) { 2391 printk("lockdep:%s bad path found in chain graph\n", __func__); 2392 break; 2393 } 2394 2395 entry = get_lock_parent(entry); 2396 depth--; 2397 } while (entry && (depth >= 0)); 2398 } 2399 2400 /* 2401 * printk the shortest lock dependencies from @leaf to @root. 2402 * 2403 * We have a lock dependency path (from a backwards search) as follow: 2404 * 2405 * @leaf @root 2406 * | | 2407 * V V 2408 * ->parent ->parent 2409 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2410 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2411 * 2412 * , so when we iterate from @leaf to @root, we actually print the lock 2413 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2414 * 2415 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2416 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2417 * trace of L1 in the dependency path, which is alright, because most of the 2418 * time we can figure out where L1 is held from the call trace of L2. 2419 */ 2420 static void __used 2421 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2422 struct lock_list *root) 2423 { 2424 struct lock_list *entry = leaf; 2425 const struct lock_trace *trace = NULL; 2426 int depth; 2427 2428 /*compute depth from generated tree by BFS*/ 2429 depth = get_lock_depth(leaf); 2430 2431 do { 2432 print_lock_class_header(entry->class, depth); 2433 if (trace) { 2434 printk("%*s ... acquired at:\n", depth, ""); 2435 print_lock_trace(trace, 2); 2436 printk("\n"); 2437 } 2438 2439 /* 2440 * Record the pointer to the trace for the next lock_list 2441 * entry, see the comments for the function. 2442 */ 2443 trace = entry->trace; 2444 2445 if (depth == 0 && (entry != root)) { 2446 printk("lockdep:%s bad path found in chain graph\n", __func__); 2447 break; 2448 } 2449 2450 entry = get_lock_parent(entry); 2451 depth--; 2452 } while (entry && (depth >= 0)); 2453 } 2454 2455 static void 2456 print_irq_lock_scenario(struct lock_list *safe_entry, 2457 struct lock_list *unsafe_entry, 2458 struct lock_class *prev_class, 2459 struct lock_class *next_class) 2460 { 2461 struct lock_class *safe_class = safe_entry->class; 2462 struct lock_class *unsafe_class = unsafe_entry->class; 2463 struct lock_class *middle_class = prev_class; 2464 2465 if (middle_class == safe_class) 2466 middle_class = next_class; 2467 2468 /* 2469 * A direct locking problem where unsafe_class lock is taken 2470 * directly by safe_class lock, then all we need to show 2471 * is the deadlock scenario, as it is obvious that the 2472 * unsafe lock is taken under the safe lock. 2473 * 2474 * But if there is a chain instead, where the safe lock takes 2475 * an intermediate lock (middle_class) where this lock is 2476 * not the same as the safe lock, then the lock chain is 2477 * used to describe the problem. Otherwise we would need 2478 * to show a different CPU case for each link in the chain 2479 * from the safe_class lock to the unsafe_class lock. 2480 */ 2481 if (middle_class != unsafe_class) { 2482 printk("Chain exists of:\n "); 2483 __print_lock_name(safe_class); 2484 printk(KERN_CONT " --> "); 2485 __print_lock_name(middle_class); 2486 printk(KERN_CONT " --> "); 2487 __print_lock_name(unsafe_class); 2488 printk(KERN_CONT "\n\n"); 2489 } 2490 2491 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2492 printk(" CPU0 CPU1\n"); 2493 printk(" ---- ----\n"); 2494 printk(" lock("); 2495 __print_lock_name(unsafe_class); 2496 printk(KERN_CONT ");\n"); 2497 printk(" local_irq_disable();\n"); 2498 printk(" lock("); 2499 __print_lock_name(safe_class); 2500 printk(KERN_CONT ");\n"); 2501 printk(" lock("); 2502 __print_lock_name(middle_class); 2503 printk(KERN_CONT ");\n"); 2504 printk(" <Interrupt>\n"); 2505 printk(" lock("); 2506 __print_lock_name(safe_class); 2507 printk(KERN_CONT ");\n"); 2508 printk("\n *** DEADLOCK ***\n\n"); 2509 } 2510 2511 static void 2512 print_bad_irq_dependency(struct task_struct *curr, 2513 struct lock_list *prev_root, 2514 struct lock_list *next_root, 2515 struct lock_list *backwards_entry, 2516 struct lock_list *forwards_entry, 2517 struct held_lock *prev, 2518 struct held_lock *next, 2519 enum lock_usage_bit bit1, 2520 enum lock_usage_bit bit2, 2521 const char *irqclass) 2522 { 2523 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2524 return; 2525 2526 pr_warn("\n"); 2527 pr_warn("=====================================================\n"); 2528 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2529 irqclass, irqclass); 2530 print_kernel_ident(); 2531 pr_warn("-----------------------------------------------------\n"); 2532 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2533 curr->comm, task_pid_nr(curr), 2534 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2535 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2536 lockdep_hardirqs_enabled(), 2537 curr->softirqs_enabled); 2538 print_lock(next); 2539 2540 pr_warn("\nand this task is already holding:\n"); 2541 print_lock(prev); 2542 pr_warn("which would create a new lock dependency:\n"); 2543 print_lock_name(hlock_class(prev)); 2544 pr_cont(" ->"); 2545 print_lock_name(hlock_class(next)); 2546 pr_cont("\n"); 2547 2548 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2549 irqclass); 2550 print_lock_name(backwards_entry->class); 2551 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2552 2553 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2554 2555 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2556 print_lock_name(forwards_entry->class); 2557 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2558 pr_warn("..."); 2559 2560 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2561 2562 pr_warn("\nother info that might help us debug this:\n\n"); 2563 print_irq_lock_scenario(backwards_entry, forwards_entry, 2564 hlock_class(prev), hlock_class(next)); 2565 2566 lockdep_print_held_locks(curr); 2567 2568 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2569 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2570 2571 pr_warn("\nthe dependencies between the lock to be acquired"); 2572 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2573 next_root->trace = save_trace(); 2574 if (!next_root->trace) 2575 return; 2576 print_shortest_lock_dependencies(forwards_entry, next_root); 2577 2578 pr_warn("\nstack backtrace:\n"); 2579 dump_stack(); 2580 } 2581 2582 static const char *state_names[] = { 2583 #define LOCKDEP_STATE(__STATE) \ 2584 __stringify(__STATE), 2585 #include "lockdep_states.h" 2586 #undef LOCKDEP_STATE 2587 }; 2588 2589 static const char *state_rnames[] = { 2590 #define LOCKDEP_STATE(__STATE) \ 2591 __stringify(__STATE)"-READ", 2592 #include "lockdep_states.h" 2593 #undef LOCKDEP_STATE 2594 }; 2595 2596 static inline const char *state_name(enum lock_usage_bit bit) 2597 { 2598 if (bit & LOCK_USAGE_READ_MASK) 2599 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2600 else 2601 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2602 } 2603 2604 /* 2605 * The bit number is encoded like: 2606 * 2607 * bit0: 0 exclusive, 1 read lock 2608 * bit1: 0 used in irq, 1 irq enabled 2609 * bit2-n: state 2610 */ 2611 static int exclusive_bit(int new_bit) 2612 { 2613 int state = new_bit & LOCK_USAGE_STATE_MASK; 2614 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2615 2616 /* 2617 * keep state, bit flip the direction and strip read. 2618 */ 2619 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2620 } 2621 2622 /* 2623 * Observe that when given a bitmask where each bitnr is encoded as above, a 2624 * right shift of the mask transforms the individual bitnrs as -1 and 2625 * conversely, a left shift transforms into +1 for the individual bitnrs. 2626 * 2627 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2628 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2629 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2630 * 2631 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2632 * 2633 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2634 * all bits set) and recompose with bitnr1 flipped. 2635 */ 2636 static unsigned long invert_dir_mask(unsigned long mask) 2637 { 2638 unsigned long excl = 0; 2639 2640 /* Invert dir */ 2641 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2642 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2643 2644 return excl; 2645 } 2646 2647 /* 2648 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2649 * usage may cause deadlock too, for example: 2650 * 2651 * P1 P2 2652 * <irq disabled> 2653 * write_lock(l1); <irq enabled> 2654 * read_lock(l2); 2655 * write_lock(l2); 2656 * <in irq> 2657 * read_lock(l1); 2658 * 2659 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2660 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2661 * deadlock. 2662 * 2663 * In fact, all of the following cases may cause deadlocks: 2664 * 2665 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2666 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2667 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2668 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2669 * 2670 * As a result, to calculate the "exclusive mask", first we invert the 2671 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2672 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2673 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2674 */ 2675 static unsigned long exclusive_mask(unsigned long mask) 2676 { 2677 unsigned long excl = invert_dir_mask(mask); 2678 2679 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2680 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2681 2682 return excl; 2683 } 2684 2685 /* 2686 * Retrieve the _possible_ original mask to which @mask is 2687 * exclusive. Ie: this is the opposite of exclusive_mask(). 2688 * Note that 2 possible original bits can match an exclusive 2689 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2690 * cleared. So both are returned for each exclusive bit. 2691 */ 2692 static unsigned long original_mask(unsigned long mask) 2693 { 2694 unsigned long excl = invert_dir_mask(mask); 2695 2696 /* Include read in existing usages */ 2697 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2698 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2699 2700 return excl; 2701 } 2702 2703 /* 2704 * Find the first pair of bit match between an original 2705 * usage mask and an exclusive usage mask. 2706 */ 2707 static int find_exclusive_match(unsigned long mask, 2708 unsigned long excl_mask, 2709 enum lock_usage_bit *bitp, 2710 enum lock_usage_bit *excl_bitp) 2711 { 2712 int bit, excl, excl_read; 2713 2714 for_each_set_bit(bit, &mask, LOCK_USED) { 2715 /* 2716 * exclusive_bit() strips the read bit, however, 2717 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2718 * to search excl | LOCK_USAGE_READ_MASK as well. 2719 */ 2720 excl = exclusive_bit(bit); 2721 excl_read = excl | LOCK_USAGE_READ_MASK; 2722 if (excl_mask & lock_flag(excl)) { 2723 *bitp = bit; 2724 *excl_bitp = excl; 2725 return 0; 2726 } else if (excl_mask & lock_flag(excl_read)) { 2727 *bitp = bit; 2728 *excl_bitp = excl_read; 2729 return 0; 2730 } 2731 } 2732 return -1; 2733 } 2734 2735 /* 2736 * Prove that the new dependency does not connect a hardirq-safe(-read) 2737 * lock with a hardirq-unsafe lock - to achieve this we search 2738 * the backwards-subgraph starting at <prev>, and the 2739 * forwards-subgraph starting at <next>: 2740 */ 2741 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2742 struct held_lock *next) 2743 { 2744 unsigned long usage_mask = 0, forward_mask, backward_mask; 2745 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2746 struct lock_list *target_entry1; 2747 struct lock_list *target_entry; 2748 struct lock_list this, that; 2749 enum bfs_result ret; 2750 2751 /* 2752 * Step 1: gather all hard/soft IRQs usages backward in an 2753 * accumulated usage mask. 2754 */ 2755 bfs_init_rootb(&this, prev); 2756 2757 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2758 if (bfs_error(ret)) { 2759 print_bfs_bug(ret); 2760 return 0; 2761 } 2762 2763 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2764 if (!usage_mask) 2765 return 1; 2766 2767 /* 2768 * Step 2: find exclusive uses forward that match the previous 2769 * backward accumulated mask. 2770 */ 2771 forward_mask = exclusive_mask(usage_mask); 2772 2773 bfs_init_root(&that, next); 2774 2775 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2776 if (bfs_error(ret)) { 2777 print_bfs_bug(ret); 2778 return 0; 2779 } 2780 if (ret == BFS_RNOMATCH) 2781 return 1; 2782 2783 /* 2784 * Step 3: we found a bad match! Now retrieve a lock from the backward 2785 * list whose usage mask matches the exclusive usage mask from the 2786 * lock found on the forward list. 2787 * 2788 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2789 * the follow case: 2790 * 2791 * When trying to add A -> B to the graph, we find that there is a 2792 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2793 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2794 * invert bits of M's usage_mask, we will find another lock N that is 2795 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2796 * cause a inversion deadlock. 2797 */ 2798 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2799 2800 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2801 if (bfs_error(ret)) { 2802 print_bfs_bug(ret); 2803 return 0; 2804 } 2805 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2806 return 1; 2807 2808 /* 2809 * Step 4: narrow down to a pair of incompatible usage bits 2810 * and report it. 2811 */ 2812 ret = find_exclusive_match(target_entry->class->usage_mask, 2813 target_entry1->class->usage_mask, 2814 &backward_bit, &forward_bit); 2815 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2816 return 1; 2817 2818 print_bad_irq_dependency(curr, &this, &that, 2819 target_entry, target_entry1, 2820 prev, next, 2821 backward_bit, forward_bit, 2822 state_name(backward_bit)); 2823 2824 return 0; 2825 } 2826 2827 #else 2828 2829 static inline int check_irq_usage(struct task_struct *curr, 2830 struct held_lock *prev, struct held_lock *next) 2831 { 2832 return 1; 2833 } 2834 2835 static inline bool usage_skip(struct lock_list *entry, void *mask) 2836 { 2837 return false; 2838 } 2839 2840 #endif /* CONFIG_TRACE_IRQFLAGS */ 2841 2842 #ifdef CONFIG_LOCKDEP_SMALL 2843 /* 2844 * Check that the dependency graph starting at <src> can lead to 2845 * <target> or not. If it can, <src> -> <target> dependency is already 2846 * in the graph. 2847 * 2848 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2849 * any error appears in the bfs search. 2850 */ 2851 static noinline enum bfs_result 2852 check_redundant(struct held_lock *src, struct held_lock *target) 2853 { 2854 enum bfs_result ret; 2855 struct lock_list *target_entry; 2856 struct lock_list src_entry; 2857 2858 bfs_init_root(&src_entry, src); 2859 /* 2860 * Special setup for check_redundant(). 2861 * 2862 * To report redundant, we need to find a strong dependency path that 2863 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2864 * we need to let __bfs() only search for a path starting at a -(E*)->, 2865 * we achieve this by setting the initial node's ->only_xr to true in 2866 * that case. And if <prev> is S, we set initial ->only_xr to false 2867 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2868 */ 2869 src_entry.only_xr = src->read == 0; 2870 2871 debug_atomic_inc(nr_redundant_checks); 2872 2873 /* 2874 * Note: we skip local_lock() for redundant check, because as the 2875 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2876 * the same. 2877 */ 2878 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2879 2880 if (ret == BFS_RMATCH) 2881 debug_atomic_inc(nr_redundant); 2882 2883 return ret; 2884 } 2885 2886 #else 2887 2888 static inline enum bfs_result 2889 check_redundant(struct held_lock *src, struct held_lock *target) 2890 { 2891 return BFS_RNOMATCH; 2892 } 2893 2894 #endif 2895 2896 static void inc_chains(int irq_context) 2897 { 2898 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2899 nr_hardirq_chains++; 2900 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2901 nr_softirq_chains++; 2902 else 2903 nr_process_chains++; 2904 } 2905 2906 static void dec_chains(int irq_context) 2907 { 2908 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2909 nr_hardirq_chains--; 2910 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2911 nr_softirq_chains--; 2912 else 2913 nr_process_chains--; 2914 } 2915 2916 static void 2917 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2918 { 2919 struct lock_class *next = hlock_class(nxt); 2920 struct lock_class *prev = hlock_class(prv); 2921 2922 printk(" Possible unsafe locking scenario:\n\n"); 2923 printk(" CPU0\n"); 2924 printk(" ----\n"); 2925 printk(" lock("); 2926 __print_lock_name(prev); 2927 printk(KERN_CONT ");\n"); 2928 printk(" lock("); 2929 __print_lock_name(next); 2930 printk(KERN_CONT ");\n"); 2931 printk("\n *** DEADLOCK ***\n\n"); 2932 printk(" May be due to missing lock nesting notation\n\n"); 2933 } 2934 2935 static void 2936 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2937 struct held_lock *next) 2938 { 2939 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2940 return; 2941 2942 pr_warn("\n"); 2943 pr_warn("============================================\n"); 2944 pr_warn("WARNING: possible recursive locking detected\n"); 2945 print_kernel_ident(); 2946 pr_warn("--------------------------------------------\n"); 2947 pr_warn("%s/%d is trying to acquire lock:\n", 2948 curr->comm, task_pid_nr(curr)); 2949 print_lock(next); 2950 pr_warn("\nbut task is already holding lock:\n"); 2951 print_lock(prev); 2952 2953 pr_warn("\nother info that might help us debug this:\n"); 2954 print_deadlock_scenario(next, prev); 2955 lockdep_print_held_locks(curr); 2956 2957 pr_warn("\nstack backtrace:\n"); 2958 dump_stack(); 2959 } 2960 2961 /* 2962 * Check whether we are holding such a class already. 2963 * 2964 * (Note that this has to be done separately, because the graph cannot 2965 * detect such classes of deadlocks.) 2966 * 2967 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 2968 * lock class is held but nest_lock is also held, i.e. we rely on the 2969 * nest_lock to avoid the deadlock. 2970 */ 2971 static int 2972 check_deadlock(struct task_struct *curr, struct held_lock *next) 2973 { 2974 struct held_lock *prev; 2975 struct held_lock *nest = NULL; 2976 int i; 2977 2978 for (i = 0; i < curr->lockdep_depth; i++) { 2979 prev = curr->held_locks + i; 2980 2981 if (prev->instance == next->nest_lock) 2982 nest = prev; 2983 2984 if (hlock_class(prev) != hlock_class(next)) 2985 continue; 2986 2987 /* 2988 * Allow read-after-read recursion of the same 2989 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2990 */ 2991 if ((next->read == 2) && prev->read) 2992 continue; 2993 2994 /* 2995 * We're holding the nest_lock, which serializes this lock's 2996 * nesting behaviour. 2997 */ 2998 if (nest) 2999 return 2; 3000 3001 print_deadlock_bug(curr, prev, next); 3002 return 0; 3003 } 3004 return 1; 3005 } 3006 3007 /* 3008 * There was a chain-cache miss, and we are about to add a new dependency 3009 * to a previous lock. We validate the following rules: 3010 * 3011 * - would the adding of the <prev> -> <next> dependency create a 3012 * circular dependency in the graph? [== circular deadlock] 3013 * 3014 * - does the new prev->next dependency connect any hardirq-safe lock 3015 * (in the full backwards-subgraph starting at <prev>) with any 3016 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3017 * <next>)? [== illegal lock inversion with hardirq contexts] 3018 * 3019 * - does the new prev->next dependency connect any softirq-safe lock 3020 * (in the full backwards-subgraph starting at <prev>) with any 3021 * softirq-unsafe lock (in the full forwards-subgraph starting at 3022 * <next>)? [== illegal lock inversion with softirq contexts] 3023 * 3024 * any of these scenarios could lead to a deadlock. 3025 * 3026 * Then if all the validations pass, we add the forwards and backwards 3027 * dependency. 3028 */ 3029 static int 3030 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3031 struct held_lock *next, u16 distance, 3032 struct lock_trace **const trace) 3033 { 3034 struct lock_list *entry; 3035 enum bfs_result ret; 3036 3037 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3038 /* 3039 * The warning statements below may trigger a use-after-free 3040 * of the class name. It is better to trigger a use-after free 3041 * and to have the class name most of the time instead of not 3042 * having the class name available. 3043 */ 3044 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3045 "Detected use-after-free of lock class %px/%s\n", 3046 hlock_class(prev), 3047 hlock_class(prev)->name); 3048 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3049 "Detected use-after-free of lock class %px/%s\n", 3050 hlock_class(next), 3051 hlock_class(next)->name); 3052 return 2; 3053 } 3054 3055 /* 3056 * Prove that the new <prev> -> <next> dependency would not 3057 * create a circular dependency in the graph. (We do this by 3058 * a breadth-first search into the graph starting at <next>, 3059 * and check whether we can reach <prev>.) 3060 * 3061 * The search is limited by the size of the circular queue (i.e., 3062 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3063 * in the graph whose neighbours are to be checked. 3064 */ 3065 ret = check_noncircular(next, prev, trace); 3066 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3067 return 0; 3068 3069 if (!check_irq_usage(curr, prev, next)) 3070 return 0; 3071 3072 /* 3073 * Is the <prev> -> <next> dependency already present? 3074 * 3075 * (this may occur even though this is a new chain: consider 3076 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3077 * chains - the second one will be new, but L1 already has 3078 * L2 added to its dependency list, due to the first chain.) 3079 */ 3080 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3081 if (entry->class == hlock_class(next)) { 3082 if (distance == 1) 3083 entry->distance = 1; 3084 entry->dep |= calc_dep(prev, next); 3085 3086 /* 3087 * Also, update the reverse dependency in @next's 3088 * ->locks_before list. 3089 * 3090 * Here we reuse @entry as the cursor, which is fine 3091 * because we won't go to the next iteration of the 3092 * outer loop: 3093 * 3094 * For normal cases, we return in the inner loop. 3095 * 3096 * If we fail to return, we have inconsistency, i.e. 3097 * <prev>::locks_after contains <next> while 3098 * <next>::locks_before doesn't contain <prev>. In 3099 * that case, we return after the inner and indicate 3100 * something is wrong. 3101 */ 3102 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3103 if (entry->class == hlock_class(prev)) { 3104 if (distance == 1) 3105 entry->distance = 1; 3106 entry->dep |= calc_depb(prev, next); 3107 return 1; 3108 } 3109 } 3110 3111 /* <prev> is not found in <next>::locks_before */ 3112 return 0; 3113 } 3114 } 3115 3116 /* 3117 * Is the <prev> -> <next> link redundant? 3118 */ 3119 ret = check_redundant(prev, next); 3120 if (bfs_error(ret)) 3121 return 0; 3122 else if (ret == BFS_RMATCH) 3123 return 2; 3124 3125 if (!*trace) { 3126 *trace = save_trace(); 3127 if (!*trace) 3128 return 0; 3129 } 3130 3131 /* 3132 * Ok, all validations passed, add the new lock 3133 * to the previous lock's dependency list: 3134 */ 3135 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3136 &hlock_class(prev)->locks_after, 3137 next->acquire_ip, distance, 3138 calc_dep(prev, next), 3139 *trace); 3140 3141 if (!ret) 3142 return 0; 3143 3144 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3145 &hlock_class(next)->locks_before, 3146 next->acquire_ip, distance, 3147 calc_depb(prev, next), 3148 *trace); 3149 if (!ret) 3150 return 0; 3151 3152 return 2; 3153 } 3154 3155 /* 3156 * Add the dependency to all directly-previous locks that are 'relevant'. 3157 * The ones that are relevant are (in increasing distance from curr): 3158 * all consecutive trylock entries and the final non-trylock entry - or 3159 * the end of this context's lock-chain - whichever comes first. 3160 */ 3161 static int 3162 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3163 { 3164 struct lock_trace *trace = NULL; 3165 int depth = curr->lockdep_depth; 3166 struct held_lock *hlock; 3167 3168 /* 3169 * Debugging checks. 3170 * 3171 * Depth must not be zero for a non-head lock: 3172 */ 3173 if (!depth) 3174 goto out_bug; 3175 /* 3176 * At least two relevant locks must exist for this 3177 * to be a head: 3178 */ 3179 if (curr->held_locks[depth].irq_context != 3180 curr->held_locks[depth-1].irq_context) 3181 goto out_bug; 3182 3183 for (;;) { 3184 u16 distance = curr->lockdep_depth - depth + 1; 3185 hlock = curr->held_locks + depth - 1; 3186 3187 if (hlock->check) { 3188 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3189 if (!ret) 3190 return 0; 3191 3192 /* 3193 * Stop after the first non-trylock entry, 3194 * as non-trylock entries have added their 3195 * own direct dependencies already, so this 3196 * lock is connected to them indirectly: 3197 */ 3198 if (!hlock->trylock) 3199 break; 3200 } 3201 3202 depth--; 3203 /* 3204 * End of lock-stack? 3205 */ 3206 if (!depth) 3207 break; 3208 /* 3209 * Stop the search if we cross into another context: 3210 */ 3211 if (curr->held_locks[depth].irq_context != 3212 curr->held_locks[depth-1].irq_context) 3213 break; 3214 } 3215 return 1; 3216 out_bug: 3217 if (!debug_locks_off_graph_unlock()) 3218 return 0; 3219 3220 /* 3221 * Clearly we all shouldn't be here, but since we made it we 3222 * can reliable say we messed up our state. See the above two 3223 * gotos for reasons why we could possibly end up here. 3224 */ 3225 WARN_ON(1); 3226 3227 return 0; 3228 } 3229 3230 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3231 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3232 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3233 unsigned long nr_zapped_lock_chains; 3234 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3235 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3236 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3237 3238 /* 3239 * The first 2 chain_hlocks entries in the chain block in the bucket 3240 * list contains the following meta data: 3241 * 3242 * entry[0]: 3243 * Bit 15 - always set to 1 (it is not a class index) 3244 * Bits 0-14 - upper 15 bits of the next block index 3245 * entry[1] - lower 16 bits of next block index 3246 * 3247 * A next block index of all 1 bits means it is the end of the list. 3248 * 3249 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3250 * the chain block size: 3251 * 3252 * entry[2] - upper 16 bits of the chain block size 3253 * entry[3] - lower 16 bits of the chain block size 3254 */ 3255 #define MAX_CHAIN_BUCKETS 16 3256 #define CHAIN_BLK_FLAG (1U << 15) 3257 #define CHAIN_BLK_LIST_END 0xFFFFU 3258 3259 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3260 3261 static inline int size_to_bucket(int size) 3262 { 3263 if (size > MAX_CHAIN_BUCKETS) 3264 return 0; 3265 3266 return size - 1; 3267 } 3268 3269 /* 3270 * Iterate all the chain blocks in a bucket. 3271 */ 3272 #define for_each_chain_block(bucket, prev, curr) \ 3273 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3274 (curr) >= 0; \ 3275 (prev) = (curr), (curr) = chain_block_next(curr)) 3276 3277 /* 3278 * next block or -1 3279 */ 3280 static inline int chain_block_next(int offset) 3281 { 3282 int next = chain_hlocks[offset]; 3283 3284 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3285 3286 if (next == CHAIN_BLK_LIST_END) 3287 return -1; 3288 3289 next &= ~CHAIN_BLK_FLAG; 3290 next <<= 16; 3291 next |= chain_hlocks[offset + 1]; 3292 3293 return next; 3294 } 3295 3296 /* 3297 * bucket-0 only 3298 */ 3299 static inline int chain_block_size(int offset) 3300 { 3301 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3302 } 3303 3304 static inline void init_chain_block(int offset, int next, int bucket, int size) 3305 { 3306 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3307 chain_hlocks[offset + 1] = (u16)next; 3308 3309 if (size && !bucket) { 3310 chain_hlocks[offset + 2] = size >> 16; 3311 chain_hlocks[offset + 3] = (u16)size; 3312 } 3313 } 3314 3315 static inline void add_chain_block(int offset, int size) 3316 { 3317 int bucket = size_to_bucket(size); 3318 int next = chain_block_buckets[bucket]; 3319 int prev, curr; 3320 3321 if (unlikely(size < 2)) { 3322 /* 3323 * We can't store single entries on the freelist. Leak them. 3324 * 3325 * One possible way out would be to uniquely mark them, other 3326 * than with CHAIN_BLK_FLAG, such that we can recover them when 3327 * the block before it is re-added. 3328 */ 3329 if (size) 3330 nr_lost_chain_hlocks++; 3331 return; 3332 } 3333 3334 nr_free_chain_hlocks += size; 3335 if (!bucket) { 3336 nr_large_chain_blocks++; 3337 3338 /* 3339 * Variable sized, sort large to small. 3340 */ 3341 for_each_chain_block(0, prev, curr) { 3342 if (size >= chain_block_size(curr)) 3343 break; 3344 } 3345 init_chain_block(offset, curr, 0, size); 3346 if (prev < 0) 3347 chain_block_buckets[0] = offset; 3348 else 3349 init_chain_block(prev, offset, 0, 0); 3350 return; 3351 } 3352 /* 3353 * Fixed size, add to head. 3354 */ 3355 init_chain_block(offset, next, bucket, size); 3356 chain_block_buckets[bucket] = offset; 3357 } 3358 3359 /* 3360 * Only the first block in the list can be deleted. 3361 * 3362 * For the variable size bucket[0], the first block (the largest one) is 3363 * returned, broken up and put back into the pool. So if a chain block of 3364 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3365 * queued up after the primordial chain block and never be used until the 3366 * hlock entries in the primordial chain block is almost used up. That 3367 * causes fragmentation and reduce allocation efficiency. That can be 3368 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3369 */ 3370 static inline void del_chain_block(int bucket, int size, int next) 3371 { 3372 nr_free_chain_hlocks -= size; 3373 chain_block_buckets[bucket] = next; 3374 3375 if (!bucket) 3376 nr_large_chain_blocks--; 3377 } 3378 3379 static void init_chain_block_buckets(void) 3380 { 3381 int i; 3382 3383 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3384 chain_block_buckets[i] = -1; 3385 3386 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3387 } 3388 3389 /* 3390 * Return offset of a chain block of the right size or -1 if not found. 3391 * 3392 * Fairly simple worst-fit allocator with the addition of a number of size 3393 * specific free lists. 3394 */ 3395 static int alloc_chain_hlocks(int req) 3396 { 3397 int bucket, curr, size; 3398 3399 /* 3400 * We rely on the MSB to act as an escape bit to denote freelist 3401 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3402 */ 3403 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3404 3405 init_data_structures_once(); 3406 3407 if (nr_free_chain_hlocks < req) 3408 return -1; 3409 3410 /* 3411 * We require a minimum of 2 (u16) entries to encode a freelist 3412 * 'pointer'. 3413 */ 3414 req = max(req, 2); 3415 bucket = size_to_bucket(req); 3416 curr = chain_block_buckets[bucket]; 3417 3418 if (bucket) { 3419 if (curr >= 0) { 3420 del_chain_block(bucket, req, chain_block_next(curr)); 3421 return curr; 3422 } 3423 /* Try bucket 0 */ 3424 curr = chain_block_buckets[0]; 3425 } 3426 3427 /* 3428 * The variable sized freelist is sorted by size; the first entry is 3429 * the largest. Use it if it fits. 3430 */ 3431 if (curr >= 0) { 3432 size = chain_block_size(curr); 3433 if (likely(size >= req)) { 3434 del_chain_block(0, size, chain_block_next(curr)); 3435 add_chain_block(curr + req, size - req); 3436 return curr; 3437 } 3438 } 3439 3440 /* 3441 * Last resort, split a block in a larger sized bucket. 3442 */ 3443 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3444 bucket = size_to_bucket(size); 3445 curr = chain_block_buckets[bucket]; 3446 if (curr < 0) 3447 continue; 3448 3449 del_chain_block(bucket, size, chain_block_next(curr)); 3450 add_chain_block(curr + req, size - req); 3451 return curr; 3452 } 3453 3454 return -1; 3455 } 3456 3457 static inline void free_chain_hlocks(int base, int size) 3458 { 3459 add_chain_block(base, max(size, 2)); 3460 } 3461 3462 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3463 { 3464 u16 chain_hlock = chain_hlocks[chain->base + i]; 3465 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3466 3467 return lock_classes + class_idx; 3468 } 3469 3470 /* 3471 * Returns the index of the first held_lock of the current chain 3472 */ 3473 static inline int get_first_held_lock(struct task_struct *curr, 3474 struct held_lock *hlock) 3475 { 3476 int i; 3477 struct held_lock *hlock_curr; 3478 3479 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3480 hlock_curr = curr->held_locks + i; 3481 if (hlock_curr->irq_context != hlock->irq_context) 3482 break; 3483 3484 } 3485 3486 return ++i; 3487 } 3488 3489 #ifdef CONFIG_DEBUG_LOCKDEP 3490 /* 3491 * Returns the next chain_key iteration 3492 */ 3493 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3494 { 3495 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3496 3497 printk(" hlock_id:%d -> chain_key:%016Lx", 3498 (unsigned int)hlock_id, 3499 (unsigned long long)new_chain_key); 3500 return new_chain_key; 3501 } 3502 3503 static void 3504 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3505 { 3506 struct held_lock *hlock; 3507 u64 chain_key = INITIAL_CHAIN_KEY; 3508 int depth = curr->lockdep_depth; 3509 int i = get_first_held_lock(curr, hlock_next); 3510 3511 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3512 hlock_next->irq_context); 3513 for (; i < depth; i++) { 3514 hlock = curr->held_locks + i; 3515 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3516 3517 print_lock(hlock); 3518 } 3519 3520 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3521 print_lock(hlock_next); 3522 } 3523 3524 static void print_chain_keys_chain(struct lock_chain *chain) 3525 { 3526 int i; 3527 u64 chain_key = INITIAL_CHAIN_KEY; 3528 u16 hlock_id; 3529 3530 printk("depth: %u\n", chain->depth); 3531 for (i = 0; i < chain->depth; i++) { 3532 hlock_id = chain_hlocks[chain->base + i]; 3533 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3534 3535 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id)); 3536 printk("\n"); 3537 } 3538 } 3539 3540 static void print_collision(struct task_struct *curr, 3541 struct held_lock *hlock_next, 3542 struct lock_chain *chain) 3543 { 3544 pr_warn("\n"); 3545 pr_warn("============================\n"); 3546 pr_warn("WARNING: chain_key collision\n"); 3547 print_kernel_ident(); 3548 pr_warn("----------------------------\n"); 3549 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3550 pr_warn("Hash chain already cached but the contents don't match!\n"); 3551 3552 pr_warn("Held locks:"); 3553 print_chain_keys_held_locks(curr, hlock_next); 3554 3555 pr_warn("Locks in cached chain:"); 3556 print_chain_keys_chain(chain); 3557 3558 pr_warn("\nstack backtrace:\n"); 3559 dump_stack(); 3560 } 3561 #endif 3562 3563 /* 3564 * Checks whether the chain and the current held locks are consistent 3565 * in depth and also in content. If they are not it most likely means 3566 * that there was a collision during the calculation of the chain_key. 3567 * Returns: 0 not passed, 1 passed 3568 */ 3569 static int check_no_collision(struct task_struct *curr, 3570 struct held_lock *hlock, 3571 struct lock_chain *chain) 3572 { 3573 #ifdef CONFIG_DEBUG_LOCKDEP 3574 int i, j, id; 3575 3576 i = get_first_held_lock(curr, hlock); 3577 3578 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3579 print_collision(curr, hlock, chain); 3580 return 0; 3581 } 3582 3583 for (j = 0; j < chain->depth - 1; j++, i++) { 3584 id = hlock_id(&curr->held_locks[i]); 3585 3586 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3587 print_collision(curr, hlock, chain); 3588 return 0; 3589 } 3590 } 3591 #endif 3592 return 1; 3593 } 3594 3595 /* 3596 * Given an index that is >= -1, return the index of the next lock chain. 3597 * Return -2 if there is no next lock chain. 3598 */ 3599 long lockdep_next_lockchain(long i) 3600 { 3601 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3602 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3603 } 3604 3605 unsigned long lock_chain_count(void) 3606 { 3607 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3608 } 3609 3610 /* Must be called with the graph lock held. */ 3611 static struct lock_chain *alloc_lock_chain(void) 3612 { 3613 int idx = find_first_zero_bit(lock_chains_in_use, 3614 ARRAY_SIZE(lock_chains)); 3615 3616 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3617 return NULL; 3618 __set_bit(idx, lock_chains_in_use); 3619 return lock_chains + idx; 3620 } 3621 3622 /* 3623 * Adds a dependency chain into chain hashtable. And must be called with 3624 * graph_lock held. 3625 * 3626 * Return 0 if fail, and graph_lock is released. 3627 * Return 1 if succeed, with graph_lock held. 3628 */ 3629 static inline int add_chain_cache(struct task_struct *curr, 3630 struct held_lock *hlock, 3631 u64 chain_key) 3632 { 3633 struct hlist_head *hash_head = chainhashentry(chain_key); 3634 struct lock_chain *chain; 3635 int i, j; 3636 3637 /* 3638 * The caller must hold the graph lock, ensure we've got IRQs 3639 * disabled to make this an IRQ-safe lock.. for recursion reasons 3640 * lockdep won't complain about its own locking errors. 3641 */ 3642 if (lockdep_assert_locked()) 3643 return 0; 3644 3645 chain = alloc_lock_chain(); 3646 if (!chain) { 3647 if (!debug_locks_off_graph_unlock()) 3648 return 0; 3649 3650 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3651 dump_stack(); 3652 return 0; 3653 } 3654 chain->chain_key = chain_key; 3655 chain->irq_context = hlock->irq_context; 3656 i = get_first_held_lock(curr, hlock); 3657 chain->depth = curr->lockdep_depth + 1 - i; 3658 3659 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3660 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3661 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3662 3663 j = alloc_chain_hlocks(chain->depth); 3664 if (j < 0) { 3665 if (!debug_locks_off_graph_unlock()) 3666 return 0; 3667 3668 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3669 dump_stack(); 3670 return 0; 3671 } 3672 3673 chain->base = j; 3674 for (j = 0; j < chain->depth - 1; j++, i++) { 3675 int lock_id = hlock_id(curr->held_locks + i); 3676 3677 chain_hlocks[chain->base + j] = lock_id; 3678 } 3679 chain_hlocks[chain->base + j] = hlock_id(hlock); 3680 hlist_add_head_rcu(&chain->entry, hash_head); 3681 debug_atomic_inc(chain_lookup_misses); 3682 inc_chains(chain->irq_context); 3683 3684 return 1; 3685 } 3686 3687 /* 3688 * Look up a dependency chain. Must be called with either the graph lock or 3689 * the RCU read lock held. 3690 */ 3691 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3692 { 3693 struct hlist_head *hash_head = chainhashentry(chain_key); 3694 struct lock_chain *chain; 3695 3696 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3697 if (READ_ONCE(chain->chain_key) == chain_key) { 3698 debug_atomic_inc(chain_lookup_hits); 3699 return chain; 3700 } 3701 } 3702 return NULL; 3703 } 3704 3705 /* 3706 * If the key is not present yet in dependency chain cache then 3707 * add it and return 1 - in this case the new dependency chain is 3708 * validated. If the key is already hashed, return 0. 3709 * (On return with 1 graph_lock is held.) 3710 */ 3711 static inline int lookup_chain_cache_add(struct task_struct *curr, 3712 struct held_lock *hlock, 3713 u64 chain_key) 3714 { 3715 struct lock_class *class = hlock_class(hlock); 3716 struct lock_chain *chain = lookup_chain_cache(chain_key); 3717 3718 if (chain) { 3719 cache_hit: 3720 if (!check_no_collision(curr, hlock, chain)) 3721 return 0; 3722 3723 if (very_verbose(class)) { 3724 printk("\nhash chain already cached, key: " 3725 "%016Lx tail class: [%px] %s\n", 3726 (unsigned long long)chain_key, 3727 class->key, class->name); 3728 } 3729 3730 return 0; 3731 } 3732 3733 if (very_verbose(class)) { 3734 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3735 (unsigned long long)chain_key, class->key, class->name); 3736 } 3737 3738 if (!graph_lock()) 3739 return 0; 3740 3741 /* 3742 * We have to walk the chain again locked - to avoid duplicates: 3743 */ 3744 chain = lookup_chain_cache(chain_key); 3745 if (chain) { 3746 graph_unlock(); 3747 goto cache_hit; 3748 } 3749 3750 if (!add_chain_cache(curr, hlock, chain_key)) 3751 return 0; 3752 3753 return 1; 3754 } 3755 3756 static int validate_chain(struct task_struct *curr, 3757 struct held_lock *hlock, 3758 int chain_head, u64 chain_key) 3759 { 3760 /* 3761 * Trylock needs to maintain the stack of held locks, but it 3762 * does not add new dependencies, because trylock can be done 3763 * in any order. 3764 * 3765 * We look up the chain_key and do the O(N^2) check and update of 3766 * the dependencies only if this is a new dependency chain. 3767 * (If lookup_chain_cache_add() return with 1 it acquires 3768 * graph_lock for us) 3769 */ 3770 if (!hlock->trylock && hlock->check && 3771 lookup_chain_cache_add(curr, hlock, chain_key)) { 3772 /* 3773 * Check whether last held lock: 3774 * 3775 * - is irq-safe, if this lock is irq-unsafe 3776 * - is softirq-safe, if this lock is hardirq-unsafe 3777 * 3778 * And check whether the new lock's dependency graph 3779 * could lead back to the previous lock: 3780 * 3781 * - within the current held-lock stack 3782 * - across our accumulated lock dependency records 3783 * 3784 * any of these scenarios could lead to a deadlock. 3785 */ 3786 /* 3787 * The simple case: does the current hold the same lock 3788 * already? 3789 */ 3790 int ret = check_deadlock(curr, hlock); 3791 3792 if (!ret) 3793 return 0; 3794 /* 3795 * Add dependency only if this lock is not the head 3796 * of the chain, and if the new lock introduces no more 3797 * lock dependency (because we already hold a lock with the 3798 * same lock class) nor deadlock (because the nest_lock 3799 * serializes nesting locks), see the comments for 3800 * check_deadlock(). 3801 */ 3802 if (!chain_head && ret != 2) { 3803 if (!check_prevs_add(curr, hlock)) 3804 return 0; 3805 } 3806 3807 graph_unlock(); 3808 } else { 3809 /* after lookup_chain_cache_add(): */ 3810 if (unlikely(!debug_locks)) 3811 return 0; 3812 } 3813 3814 return 1; 3815 } 3816 #else 3817 static inline int validate_chain(struct task_struct *curr, 3818 struct held_lock *hlock, 3819 int chain_head, u64 chain_key) 3820 { 3821 return 1; 3822 } 3823 3824 static void init_chain_block_buckets(void) { } 3825 #endif /* CONFIG_PROVE_LOCKING */ 3826 3827 /* 3828 * We are building curr_chain_key incrementally, so double-check 3829 * it from scratch, to make sure that it's done correctly: 3830 */ 3831 static void check_chain_key(struct task_struct *curr) 3832 { 3833 #ifdef CONFIG_DEBUG_LOCKDEP 3834 struct held_lock *hlock, *prev_hlock = NULL; 3835 unsigned int i; 3836 u64 chain_key = INITIAL_CHAIN_KEY; 3837 3838 for (i = 0; i < curr->lockdep_depth; i++) { 3839 hlock = curr->held_locks + i; 3840 if (chain_key != hlock->prev_chain_key) { 3841 debug_locks_off(); 3842 /* 3843 * We got mighty confused, our chain keys don't match 3844 * with what we expect, someone trample on our task state? 3845 */ 3846 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3847 curr->lockdep_depth, i, 3848 (unsigned long long)chain_key, 3849 (unsigned long long)hlock->prev_chain_key); 3850 return; 3851 } 3852 3853 /* 3854 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3855 * it registered lock class index? 3856 */ 3857 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3858 return; 3859 3860 if (prev_hlock && (prev_hlock->irq_context != 3861 hlock->irq_context)) 3862 chain_key = INITIAL_CHAIN_KEY; 3863 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3864 prev_hlock = hlock; 3865 } 3866 if (chain_key != curr->curr_chain_key) { 3867 debug_locks_off(); 3868 /* 3869 * More smoking hash instead of calculating it, damn see these 3870 * numbers float.. I bet that a pink elephant stepped on my memory. 3871 */ 3872 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3873 curr->lockdep_depth, i, 3874 (unsigned long long)chain_key, 3875 (unsigned long long)curr->curr_chain_key); 3876 } 3877 #endif 3878 } 3879 3880 #ifdef CONFIG_PROVE_LOCKING 3881 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3882 enum lock_usage_bit new_bit); 3883 3884 static void print_usage_bug_scenario(struct held_lock *lock) 3885 { 3886 struct lock_class *class = hlock_class(lock); 3887 3888 printk(" Possible unsafe locking scenario:\n\n"); 3889 printk(" CPU0\n"); 3890 printk(" ----\n"); 3891 printk(" lock("); 3892 __print_lock_name(class); 3893 printk(KERN_CONT ");\n"); 3894 printk(" <Interrupt>\n"); 3895 printk(" lock("); 3896 __print_lock_name(class); 3897 printk(KERN_CONT ");\n"); 3898 printk("\n *** DEADLOCK ***\n\n"); 3899 } 3900 3901 static void 3902 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3903 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3904 { 3905 if (!debug_locks_off() || debug_locks_silent) 3906 return; 3907 3908 pr_warn("\n"); 3909 pr_warn("================================\n"); 3910 pr_warn("WARNING: inconsistent lock state\n"); 3911 print_kernel_ident(); 3912 pr_warn("--------------------------------\n"); 3913 3914 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3915 usage_str[prev_bit], usage_str[new_bit]); 3916 3917 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3918 curr->comm, task_pid_nr(curr), 3919 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3920 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3921 lockdep_hardirqs_enabled(), 3922 lockdep_softirqs_enabled(curr)); 3923 print_lock(this); 3924 3925 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3926 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3927 3928 print_irqtrace_events(curr); 3929 pr_warn("\nother info that might help us debug this:\n"); 3930 print_usage_bug_scenario(this); 3931 3932 lockdep_print_held_locks(curr); 3933 3934 pr_warn("\nstack backtrace:\n"); 3935 dump_stack(); 3936 } 3937 3938 /* 3939 * Print out an error if an invalid bit is set: 3940 */ 3941 static inline int 3942 valid_state(struct task_struct *curr, struct held_lock *this, 3943 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3944 { 3945 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3946 graph_unlock(); 3947 print_usage_bug(curr, this, bad_bit, new_bit); 3948 return 0; 3949 } 3950 return 1; 3951 } 3952 3953 3954 /* 3955 * print irq inversion bug: 3956 */ 3957 static void 3958 print_irq_inversion_bug(struct task_struct *curr, 3959 struct lock_list *root, struct lock_list *other, 3960 struct held_lock *this, int forwards, 3961 const char *irqclass) 3962 { 3963 struct lock_list *entry = other; 3964 struct lock_list *middle = NULL; 3965 int depth; 3966 3967 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3968 return; 3969 3970 pr_warn("\n"); 3971 pr_warn("========================================================\n"); 3972 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3973 print_kernel_ident(); 3974 pr_warn("--------------------------------------------------------\n"); 3975 pr_warn("%s/%d just changed the state of lock:\n", 3976 curr->comm, task_pid_nr(curr)); 3977 print_lock(this); 3978 if (forwards) 3979 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3980 else 3981 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3982 print_lock_name(other->class); 3983 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3984 3985 pr_warn("\nother info that might help us debug this:\n"); 3986 3987 /* Find a middle lock (if one exists) */ 3988 depth = get_lock_depth(other); 3989 do { 3990 if (depth == 0 && (entry != root)) { 3991 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3992 break; 3993 } 3994 middle = entry; 3995 entry = get_lock_parent(entry); 3996 depth--; 3997 } while (entry && entry != root && (depth >= 0)); 3998 if (forwards) 3999 print_irq_lock_scenario(root, other, 4000 middle ? middle->class : root->class, other->class); 4001 else 4002 print_irq_lock_scenario(other, root, 4003 middle ? middle->class : other->class, root->class); 4004 4005 lockdep_print_held_locks(curr); 4006 4007 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 4008 root->trace = save_trace(); 4009 if (!root->trace) 4010 return; 4011 print_shortest_lock_dependencies(other, root); 4012 4013 pr_warn("\nstack backtrace:\n"); 4014 dump_stack(); 4015 } 4016 4017 /* 4018 * Prove that in the forwards-direction subgraph starting at <this> 4019 * there is no lock matching <mask>: 4020 */ 4021 static int 4022 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4023 enum lock_usage_bit bit) 4024 { 4025 enum bfs_result ret; 4026 struct lock_list root; 4027 struct lock_list *target_entry; 4028 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4029 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4030 4031 bfs_init_root(&root, this); 4032 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4033 if (bfs_error(ret)) { 4034 print_bfs_bug(ret); 4035 return 0; 4036 } 4037 if (ret == BFS_RNOMATCH) 4038 return 1; 4039 4040 /* Check whether write or read usage is the match */ 4041 if (target_entry->class->usage_mask & lock_flag(bit)) { 4042 print_irq_inversion_bug(curr, &root, target_entry, 4043 this, 1, state_name(bit)); 4044 } else { 4045 print_irq_inversion_bug(curr, &root, target_entry, 4046 this, 1, state_name(read_bit)); 4047 } 4048 4049 return 0; 4050 } 4051 4052 /* 4053 * Prove that in the backwards-direction subgraph starting at <this> 4054 * there is no lock matching <mask>: 4055 */ 4056 static int 4057 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4058 enum lock_usage_bit bit) 4059 { 4060 enum bfs_result ret; 4061 struct lock_list root; 4062 struct lock_list *target_entry; 4063 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4064 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4065 4066 bfs_init_rootb(&root, this); 4067 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4068 if (bfs_error(ret)) { 4069 print_bfs_bug(ret); 4070 return 0; 4071 } 4072 if (ret == BFS_RNOMATCH) 4073 return 1; 4074 4075 /* Check whether write or read usage is the match */ 4076 if (target_entry->class->usage_mask & lock_flag(bit)) { 4077 print_irq_inversion_bug(curr, &root, target_entry, 4078 this, 0, state_name(bit)); 4079 } else { 4080 print_irq_inversion_bug(curr, &root, target_entry, 4081 this, 0, state_name(read_bit)); 4082 } 4083 4084 return 0; 4085 } 4086 4087 void print_irqtrace_events(struct task_struct *curr) 4088 { 4089 const struct irqtrace_events *trace = &curr->irqtrace; 4090 4091 printk("irq event stamp: %u\n", trace->irq_events); 4092 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4093 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4094 (void *)trace->hardirq_enable_ip); 4095 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4096 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4097 (void *)trace->hardirq_disable_ip); 4098 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4099 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4100 (void *)trace->softirq_enable_ip); 4101 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4102 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4103 (void *)trace->softirq_disable_ip); 4104 } 4105 4106 static int HARDIRQ_verbose(struct lock_class *class) 4107 { 4108 #if HARDIRQ_VERBOSE 4109 return class_filter(class); 4110 #endif 4111 return 0; 4112 } 4113 4114 static int SOFTIRQ_verbose(struct lock_class *class) 4115 { 4116 #if SOFTIRQ_VERBOSE 4117 return class_filter(class); 4118 #endif 4119 return 0; 4120 } 4121 4122 static int (*state_verbose_f[])(struct lock_class *class) = { 4123 #define LOCKDEP_STATE(__STATE) \ 4124 __STATE##_verbose, 4125 #include "lockdep_states.h" 4126 #undef LOCKDEP_STATE 4127 }; 4128 4129 static inline int state_verbose(enum lock_usage_bit bit, 4130 struct lock_class *class) 4131 { 4132 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4133 } 4134 4135 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4136 enum lock_usage_bit bit, const char *name); 4137 4138 static int 4139 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4140 enum lock_usage_bit new_bit) 4141 { 4142 int excl_bit = exclusive_bit(new_bit); 4143 int read = new_bit & LOCK_USAGE_READ_MASK; 4144 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4145 4146 /* 4147 * Validate that this particular lock does not have conflicting 4148 * usage states. 4149 */ 4150 if (!valid_state(curr, this, new_bit, excl_bit)) 4151 return 0; 4152 4153 /* 4154 * Check for read in write conflicts 4155 */ 4156 if (!read && !valid_state(curr, this, new_bit, 4157 excl_bit + LOCK_USAGE_READ_MASK)) 4158 return 0; 4159 4160 4161 /* 4162 * Validate that the lock dependencies don't have conflicting usage 4163 * states. 4164 */ 4165 if (dir) { 4166 /* 4167 * mark ENABLED has to look backwards -- to ensure no dependee 4168 * has USED_IN state, which, again, would allow recursion deadlocks. 4169 */ 4170 if (!check_usage_backwards(curr, this, excl_bit)) 4171 return 0; 4172 } else { 4173 /* 4174 * mark USED_IN has to look forwards -- to ensure no dependency 4175 * has ENABLED state, which would allow recursion deadlocks. 4176 */ 4177 if (!check_usage_forwards(curr, this, excl_bit)) 4178 return 0; 4179 } 4180 4181 if (state_verbose(new_bit, hlock_class(this))) 4182 return 2; 4183 4184 return 1; 4185 } 4186 4187 /* 4188 * Mark all held locks with a usage bit: 4189 */ 4190 static int 4191 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4192 { 4193 struct held_lock *hlock; 4194 int i; 4195 4196 for (i = 0; i < curr->lockdep_depth; i++) { 4197 enum lock_usage_bit hlock_bit = base_bit; 4198 hlock = curr->held_locks + i; 4199 4200 if (hlock->read) 4201 hlock_bit += LOCK_USAGE_READ_MASK; 4202 4203 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4204 4205 if (!hlock->check) 4206 continue; 4207 4208 if (!mark_lock(curr, hlock, hlock_bit)) 4209 return 0; 4210 } 4211 4212 return 1; 4213 } 4214 4215 /* 4216 * Hardirqs will be enabled: 4217 */ 4218 static void __trace_hardirqs_on_caller(void) 4219 { 4220 struct task_struct *curr = current; 4221 4222 /* 4223 * We are going to turn hardirqs on, so set the 4224 * usage bit for all held locks: 4225 */ 4226 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4227 return; 4228 /* 4229 * If we have softirqs enabled, then set the usage 4230 * bit for all held locks. (disabled hardirqs prevented 4231 * this bit from being set before) 4232 */ 4233 if (curr->softirqs_enabled) 4234 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4235 } 4236 4237 /** 4238 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4239 * @ip: Caller address 4240 * 4241 * Invoked before a possible transition to RCU idle from exit to user or 4242 * guest mode. This ensures that all RCU operations are done before RCU 4243 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4244 * invoked to set the final state. 4245 */ 4246 void lockdep_hardirqs_on_prepare(unsigned long ip) 4247 { 4248 if (unlikely(!debug_locks)) 4249 return; 4250 4251 /* 4252 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4253 */ 4254 if (unlikely(in_nmi())) 4255 return; 4256 4257 if (unlikely(this_cpu_read(lockdep_recursion))) 4258 return; 4259 4260 if (unlikely(lockdep_hardirqs_enabled())) { 4261 /* 4262 * Neither irq nor preemption are disabled here 4263 * so this is racy by nature but losing one hit 4264 * in a stat is not a big deal. 4265 */ 4266 __debug_atomic_inc(redundant_hardirqs_on); 4267 return; 4268 } 4269 4270 /* 4271 * We're enabling irqs and according to our state above irqs weren't 4272 * already enabled, yet we find the hardware thinks they are in fact 4273 * enabled.. someone messed up their IRQ state tracing. 4274 */ 4275 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4276 return; 4277 4278 /* 4279 * See the fine text that goes along with this variable definition. 4280 */ 4281 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4282 return; 4283 4284 /* 4285 * Can't allow enabling interrupts while in an interrupt handler, 4286 * that's general bad form and such. Recursion, limited stack etc.. 4287 */ 4288 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4289 return; 4290 4291 current->hardirq_chain_key = current->curr_chain_key; 4292 4293 lockdep_recursion_inc(); 4294 __trace_hardirqs_on_caller(); 4295 lockdep_recursion_finish(); 4296 } 4297 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4298 4299 void noinstr lockdep_hardirqs_on(unsigned long ip) 4300 { 4301 struct irqtrace_events *trace = ¤t->irqtrace; 4302 4303 if (unlikely(!debug_locks)) 4304 return; 4305 4306 /* 4307 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4308 * tracking state and hardware state are out of sync. 4309 * 4310 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4311 * and not rely on hardware state like normal interrupts. 4312 */ 4313 if (unlikely(in_nmi())) { 4314 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4315 return; 4316 4317 /* 4318 * Skip: 4319 * - recursion check, because NMI can hit lockdep; 4320 * - hardware state check, because above; 4321 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4322 */ 4323 goto skip_checks; 4324 } 4325 4326 if (unlikely(this_cpu_read(lockdep_recursion))) 4327 return; 4328 4329 if (lockdep_hardirqs_enabled()) { 4330 /* 4331 * Neither irq nor preemption are disabled here 4332 * so this is racy by nature but losing one hit 4333 * in a stat is not a big deal. 4334 */ 4335 __debug_atomic_inc(redundant_hardirqs_on); 4336 return; 4337 } 4338 4339 /* 4340 * We're enabling irqs and according to our state above irqs weren't 4341 * already enabled, yet we find the hardware thinks they are in fact 4342 * enabled.. someone messed up their IRQ state tracing. 4343 */ 4344 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4345 return; 4346 4347 /* 4348 * Ensure the lock stack remained unchanged between 4349 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4350 */ 4351 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4352 current->curr_chain_key); 4353 4354 skip_checks: 4355 /* we'll do an OFF -> ON transition: */ 4356 __this_cpu_write(hardirqs_enabled, 1); 4357 trace->hardirq_enable_ip = ip; 4358 trace->hardirq_enable_event = ++trace->irq_events; 4359 debug_atomic_inc(hardirqs_on_events); 4360 } 4361 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4362 4363 /* 4364 * Hardirqs were disabled: 4365 */ 4366 void noinstr lockdep_hardirqs_off(unsigned long ip) 4367 { 4368 if (unlikely(!debug_locks)) 4369 return; 4370 4371 /* 4372 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4373 * they will restore the software state. This ensures the software 4374 * state is consistent inside NMIs as well. 4375 */ 4376 if (in_nmi()) { 4377 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4378 return; 4379 } else if (__this_cpu_read(lockdep_recursion)) 4380 return; 4381 4382 /* 4383 * So we're supposed to get called after you mask local IRQs, but for 4384 * some reason the hardware doesn't quite think you did a proper job. 4385 */ 4386 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4387 return; 4388 4389 if (lockdep_hardirqs_enabled()) { 4390 struct irqtrace_events *trace = ¤t->irqtrace; 4391 4392 /* 4393 * We have done an ON -> OFF transition: 4394 */ 4395 __this_cpu_write(hardirqs_enabled, 0); 4396 trace->hardirq_disable_ip = ip; 4397 trace->hardirq_disable_event = ++trace->irq_events; 4398 debug_atomic_inc(hardirqs_off_events); 4399 } else { 4400 debug_atomic_inc(redundant_hardirqs_off); 4401 } 4402 } 4403 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4404 4405 /* 4406 * Softirqs will be enabled: 4407 */ 4408 void lockdep_softirqs_on(unsigned long ip) 4409 { 4410 struct irqtrace_events *trace = ¤t->irqtrace; 4411 4412 if (unlikely(!lockdep_enabled())) 4413 return; 4414 4415 /* 4416 * We fancy IRQs being disabled here, see softirq.c, avoids 4417 * funny state and nesting things. 4418 */ 4419 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4420 return; 4421 4422 if (current->softirqs_enabled) { 4423 debug_atomic_inc(redundant_softirqs_on); 4424 return; 4425 } 4426 4427 lockdep_recursion_inc(); 4428 /* 4429 * We'll do an OFF -> ON transition: 4430 */ 4431 current->softirqs_enabled = 1; 4432 trace->softirq_enable_ip = ip; 4433 trace->softirq_enable_event = ++trace->irq_events; 4434 debug_atomic_inc(softirqs_on_events); 4435 /* 4436 * We are going to turn softirqs on, so set the 4437 * usage bit for all held locks, if hardirqs are 4438 * enabled too: 4439 */ 4440 if (lockdep_hardirqs_enabled()) 4441 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4442 lockdep_recursion_finish(); 4443 } 4444 4445 /* 4446 * Softirqs were disabled: 4447 */ 4448 void lockdep_softirqs_off(unsigned long ip) 4449 { 4450 if (unlikely(!lockdep_enabled())) 4451 return; 4452 4453 /* 4454 * We fancy IRQs being disabled here, see softirq.c 4455 */ 4456 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4457 return; 4458 4459 if (current->softirqs_enabled) { 4460 struct irqtrace_events *trace = ¤t->irqtrace; 4461 4462 /* 4463 * We have done an ON -> OFF transition: 4464 */ 4465 current->softirqs_enabled = 0; 4466 trace->softirq_disable_ip = ip; 4467 trace->softirq_disable_event = ++trace->irq_events; 4468 debug_atomic_inc(softirqs_off_events); 4469 /* 4470 * Whoops, we wanted softirqs off, so why aren't they? 4471 */ 4472 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4473 } else 4474 debug_atomic_inc(redundant_softirqs_off); 4475 } 4476 4477 static int 4478 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4479 { 4480 if (!check) 4481 goto lock_used; 4482 4483 /* 4484 * If non-trylock use in a hardirq or softirq context, then 4485 * mark the lock as used in these contexts: 4486 */ 4487 if (!hlock->trylock) { 4488 if (hlock->read) { 4489 if (lockdep_hardirq_context()) 4490 if (!mark_lock(curr, hlock, 4491 LOCK_USED_IN_HARDIRQ_READ)) 4492 return 0; 4493 if (curr->softirq_context) 4494 if (!mark_lock(curr, hlock, 4495 LOCK_USED_IN_SOFTIRQ_READ)) 4496 return 0; 4497 } else { 4498 if (lockdep_hardirq_context()) 4499 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4500 return 0; 4501 if (curr->softirq_context) 4502 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4503 return 0; 4504 } 4505 } 4506 if (!hlock->hardirqs_off) { 4507 if (hlock->read) { 4508 if (!mark_lock(curr, hlock, 4509 LOCK_ENABLED_HARDIRQ_READ)) 4510 return 0; 4511 if (curr->softirqs_enabled) 4512 if (!mark_lock(curr, hlock, 4513 LOCK_ENABLED_SOFTIRQ_READ)) 4514 return 0; 4515 } else { 4516 if (!mark_lock(curr, hlock, 4517 LOCK_ENABLED_HARDIRQ)) 4518 return 0; 4519 if (curr->softirqs_enabled) 4520 if (!mark_lock(curr, hlock, 4521 LOCK_ENABLED_SOFTIRQ)) 4522 return 0; 4523 } 4524 } 4525 4526 lock_used: 4527 /* mark it as used: */ 4528 if (!mark_lock(curr, hlock, LOCK_USED)) 4529 return 0; 4530 4531 return 1; 4532 } 4533 4534 static inline unsigned int task_irq_context(struct task_struct *task) 4535 { 4536 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4537 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4538 } 4539 4540 static int separate_irq_context(struct task_struct *curr, 4541 struct held_lock *hlock) 4542 { 4543 unsigned int depth = curr->lockdep_depth; 4544 4545 /* 4546 * Keep track of points where we cross into an interrupt context: 4547 */ 4548 if (depth) { 4549 struct held_lock *prev_hlock; 4550 4551 prev_hlock = curr->held_locks + depth-1; 4552 /* 4553 * If we cross into another context, reset the 4554 * hash key (this also prevents the checking and the 4555 * adding of the dependency to 'prev'): 4556 */ 4557 if (prev_hlock->irq_context != hlock->irq_context) 4558 return 1; 4559 } 4560 return 0; 4561 } 4562 4563 /* 4564 * Mark a lock with a usage bit, and validate the state transition: 4565 */ 4566 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4567 enum lock_usage_bit new_bit) 4568 { 4569 unsigned int new_mask, ret = 1; 4570 4571 if (new_bit >= LOCK_USAGE_STATES) { 4572 DEBUG_LOCKS_WARN_ON(1); 4573 return 0; 4574 } 4575 4576 if (new_bit == LOCK_USED && this->read) 4577 new_bit = LOCK_USED_READ; 4578 4579 new_mask = 1 << new_bit; 4580 4581 /* 4582 * If already set then do not dirty the cacheline, 4583 * nor do any checks: 4584 */ 4585 if (likely(hlock_class(this)->usage_mask & new_mask)) 4586 return 1; 4587 4588 if (!graph_lock()) 4589 return 0; 4590 /* 4591 * Make sure we didn't race: 4592 */ 4593 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4594 goto unlock; 4595 4596 if (!hlock_class(this)->usage_mask) 4597 debug_atomic_dec(nr_unused_locks); 4598 4599 hlock_class(this)->usage_mask |= new_mask; 4600 4601 if (new_bit < LOCK_TRACE_STATES) { 4602 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4603 return 0; 4604 } 4605 4606 if (new_bit < LOCK_USED) { 4607 ret = mark_lock_irq(curr, this, new_bit); 4608 if (!ret) 4609 return 0; 4610 } 4611 4612 unlock: 4613 graph_unlock(); 4614 4615 /* 4616 * We must printk outside of the graph_lock: 4617 */ 4618 if (ret == 2) { 4619 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4620 print_lock(this); 4621 print_irqtrace_events(curr); 4622 dump_stack(); 4623 } 4624 4625 return ret; 4626 } 4627 4628 static inline short task_wait_context(struct task_struct *curr) 4629 { 4630 /* 4631 * Set appropriate wait type for the context; for IRQs we have to take 4632 * into account force_irqthread as that is implied by PREEMPT_RT. 4633 */ 4634 if (lockdep_hardirq_context()) { 4635 /* 4636 * Check if force_irqthreads will run us threaded. 4637 */ 4638 if (curr->hardirq_threaded || curr->irq_config) 4639 return LD_WAIT_CONFIG; 4640 4641 return LD_WAIT_SPIN; 4642 } else if (curr->softirq_context) { 4643 /* 4644 * Softirqs are always threaded. 4645 */ 4646 return LD_WAIT_CONFIG; 4647 } 4648 4649 return LD_WAIT_MAX; 4650 } 4651 4652 static int 4653 print_lock_invalid_wait_context(struct task_struct *curr, 4654 struct held_lock *hlock) 4655 { 4656 short curr_inner; 4657 4658 if (!debug_locks_off()) 4659 return 0; 4660 if (debug_locks_silent) 4661 return 0; 4662 4663 pr_warn("\n"); 4664 pr_warn("=============================\n"); 4665 pr_warn("[ BUG: Invalid wait context ]\n"); 4666 print_kernel_ident(); 4667 pr_warn("-----------------------------\n"); 4668 4669 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4670 print_lock(hlock); 4671 4672 pr_warn("other info that might help us debug this:\n"); 4673 4674 curr_inner = task_wait_context(curr); 4675 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4676 4677 lockdep_print_held_locks(curr); 4678 4679 pr_warn("stack backtrace:\n"); 4680 dump_stack(); 4681 4682 return 0; 4683 } 4684 4685 /* 4686 * Verify the wait_type context. 4687 * 4688 * This check validates we take locks in the right wait-type order; that is it 4689 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4690 * acquire spinlocks inside raw_spinlocks and the sort. 4691 * 4692 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4693 * can be taken from (pretty much) any context but also has constraints. 4694 * However when taken in a stricter environment the RCU lock does not loosen 4695 * the constraints. 4696 * 4697 * Therefore we must look for the strictest environment in the lock stack and 4698 * compare that to the lock we're trying to acquire. 4699 */ 4700 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4701 { 4702 u8 next_inner = hlock_class(next)->wait_type_inner; 4703 u8 next_outer = hlock_class(next)->wait_type_outer; 4704 u8 curr_inner; 4705 int depth; 4706 4707 if (!next_inner || next->trylock) 4708 return 0; 4709 4710 if (!next_outer) 4711 next_outer = next_inner; 4712 4713 /* 4714 * Find start of current irq_context.. 4715 */ 4716 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4717 struct held_lock *prev = curr->held_locks + depth; 4718 if (prev->irq_context != next->irq_context) 4719 break; 4720 } 4721 depth++; 4722 4723 curr_inner = task_wait_context(curr); 4724 4725 for (; depth < curr->lockdep_depth; depth++) { 4726 struct held_lock *prev = curr->held_locks + depth; 4727 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4728 4729 if (prev_inner) { 4730 /* 4731 * We can have a bigger inner than a previous one 4732 * when outer is smaller than inner, as with RCU. 4733 * 4734 * Also due to trylocks. 4735 */ 4736 curr_inner = min(curr_inner, prev_inner); 4737 } 4738 } 4739 4740 if (next_outer > curr_inner) 4741 return print_lock_invalid_wait_context(curr, next); 4742 4743 return 0; 4744 } 4745 4746 #else /* CONFIG_PROVE_LOCKING */ 4747 4748 static inline int 4749 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4750 { 4751 return 1; 4752 } 4753 4754 static inline unsigned int task_irq_context(struct task_struct *task) 4755 { 4756 return 0; 4757 } 4758 4759 static inline int separate_irq_context(struct task_struct *curr, 4760 struct held_lock *hlock) 4761 { 4762 return 0; 4763 } 4764 4765 static inline int check_wait_context(struct task_struct *curr, 4766 struct held_lock *next) 4767 { 4768 return 0; 4769 } 4770 4771 #endif /* CONFIG_PROVE_LOCKING */ 4772 4773 /* 4774 * Initialize a lock instance's lock-class mapping info: 4775 */ 4776 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4777 struct lock_class_key *key, int subclass, 4778 u8 inner, u8 outer, u8 lock_type) 4779 { 4780 int i; 4781 4782 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4783 lock->class_cache[i] = NULL; 4784 4785 #ifdef CONFIG_LOCK_STAT 4786 lock->cpu = raw_smp_processor_id(); 4787 #endif 4788 4789 /* 4790 * Can't be having no nameless bastards around this place! 4791 */ 4792 if (DEBUG_LOCKS_WARN_ON(!name)) { 4793 lock->name = "NULL"; 4794 return; 4795 } 4796 4797 lock->name = name; 4798 4799 lock->wait_type_outer = outer; 4800 lock->wait_type_inner = inner; 4801 lock->lock_type = lock_type; 4802 4803 /* 4804 * No key, no joy, we need to hash something. 4805 */ 4806 if (DEBUG_LOCKS_WARN_ON(!key)) 4807 return; 4808 /* 4809 * Sanity check, the lock-class key must either have been allocated 4810 * statically or must have been registered as a dynamic key. 4811 */ 4812 if (!static_obj(key) && !is_dynamic_key(key)) { 4813 if (debug_locks) 4814 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4815 DEBUG_LOCKS_WARN_ON(1); 4816 return; 4817 } 4818 lock->key = key; 4819 4820 if (unlikely(!debug_locks)) 4821 return; 4822 4823 if (subclass) { 4824 unsigned long flags; 4825 4826 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4827 return; 4828 4829 raw_local_irq_save(flags); 4830 lockdep_recursion_inc(); 4831 register_lock_class(lock, subclass, 1); 4832 lockdep_recursion_finish(); 4833 raw_local_irq_restore(flags); 4834 } 4835 } 4836 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4837 4838 struct lock_class_key __lockdep_no_validate__; 4839 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4840 4841 static void 4842 print_lock_nested_lock_not_held(struct task_struct *curr, 4843 struct held_lock *hlock, 4844 unsigned long ip) 4845 { 4846 if (!debug_locks_off()) 4847 return; 4848 if (debug_locks_silent) 4849 return; 4850 4851 pr_warn("\n"); 4852 pr_warn("==================================\n"); 4853 pr_warn("WARNING: Nested lock was not taken\n"); 4854 print_kernel_ident(); 4855 pr_warn("----------------------------------\n"); 4856 4857 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4858 print_lock(hlock); 4859 4860 pr_warn("\nbut this task is not holding:\n"); 4861 pr_warn("%s\n", hlock->nest_lock->name); 4862 4863 pr_warn("\nstack backtrace:\n"); 4864 dump_stack(); 4865 4866 pr_warn("\nother info that might help us debug this:\n"); 4867 lockdep_print_held_locks(curr); 4868 4869 pr_warn("\nstack backtrace:\n"); 4870 dump_stack(); 4871 } 4872 4873 static int __lock_is_held(const struct lockdep_map *lock, int read); 4874 4875 /* 4876 * This gets called for every mutex_lock*()/spin_lock*() operation. 4877 * We maintain the dependency maps and validate the locking attempt: 4878 * 4879 * The callers must make sure that IRQs are disabled before calling it, 4880 * otherwise we could get an interrupt which would want to take locks, 4881 * which would end up in lockdep again. 4882 */ 4883 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4884 int trylock, int read, int check, int hardirqs_off, 4885 struct lockdep_map *nest_lock, unsigned long ip, 4886 int references, int pin_count) 4887 { 4888 struct task_struct *curr = current; 4889 struct lock_class *class = NULL; 4890 struct held_lock *hlock; 4891 unsigned int depth; 4892 int chain_head = 0; 4893 int class_idx; 4894 u64 chain_key; 4895 4896 if (unlikely(!debug_locks)) 4897 return 0; 4898 4899 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4900 check = 0; 4901 4902 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4903 class = lock->class_cache[subclass]; 4904 /* 4905 * Not cached? 4906 */ 4907 if (unlikely(!class)) { 4908 class = register_lock_class(lock, subclass, 0); 4909 if (!class) 4910 return 0; 4911 } 4912 4913 debug_class_ops_inc(class); 4914 4915 if (very_verbose(class)) { 4916 printk("\nacquire class [%px] %s", class->key, class->name); 4917 if (class->name_version > 1) 4918 printk(KERN_CONT "#%d", class->name_version); 4919 printk(KERN_CONT "\n"); 4920 dump_stack(); 4921 } 4922 4923 /* 4924 * Add the lock to the list of currently held locks. 4925 * (we dont increase the depth just yet, up until the 4926 * dependency checks are done) 4927 */ 4928 depth = curr->lockdep_depth; 4929 /* 4930 * Ran out of static storage for our per-task lock stack again have we? 4931 */ 4932 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4933 return 0; 4934 4935 class_idx = class - lock_classes; 4936 4937 if (depth) { /* we're holding locks */ 4938 hlock = curr->held_locks + depth - 1; 4939 if (hlock->class_idx == class_idx && nest_lock) { 4940 if (!references) 4941 references++; 4942 4943 if (!hlock->references) 4944 hlock->references++; 4945 4946 hlock->references += references; 4947 4948 /* Overflow */ 4949 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4950 return 0; 4951 4952 return 2; 4953 } 4954 } 4955 4956 hlock = curr->held_locks + depth; 4957 /* 4958 * Plain impossible, we just registered it and checked it weren't no 4959 * NULL like.. I bet this mushroom I ate was good! 4960 */ 4961 if (DEBUG_LOCKS_WARN_ON(!class)) 4962 return 0; 4963 hlock->class_idx = class_idx; 4964 hlock->acquire_ip = ip; 4965 hlock->instance = lock; 4966 hlock->nest_lock = nest_lock; 4967 hlock->irq_context = task_irq_context(curr); 4968 hlock->trylock = trylock; 4969 hlock->read = read; 4970 hlock->check = check; 4971 hlock->hardirqs_off = !!hardirqs_off; 4972 hlock->references = references; 4973 #ifdef CONFIG_LOCK_STAT 4974 hlock->waittime_stamp = 0; 4975 hlock->holdtime_stamp = lockstat_clock(); 4976 #endif 4977 hlock->pin_count = pin_count; 4978 4979 if (check_wait_context(curr, hlock)) 4980 return 0; 4981 4982 /* Initialize the lock usage bit */ 4983 if (!mark_usage(curr, hlock, check)) 4984 return 0; 4985 4986 /* 4987 * Calculate the chain hash: it's the combined hash of all the 4988 * lock keys along the dependency chain. We save the hash value 4989 * at every step so that we can get the current hash easily 4990 * after unlock. The chain hash is then used to cache dependency 4991 * results. 4992 * 4993 * The 'key ID' is what is the most compact key value to drive 4994 * the hash, not class->key. 4995 */ 4996 /* 4997 * Whoops, we did it again.. class_idx is invalid. 4998 */ 4999 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 5000 return 0; 5001 5002 chain_key = curr->curr_chain_key; 5003 if (!depth) { 5004 /* 5005 * How can we have a chain hash when we ain't got no keys?! 5006 */ 5007 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 5008 return 0; 5009 chain_head = 1; 5010 } 5011 5012 hlock->prev_chain_key = chain_key; 5013 if (separate_irq_context(curr, hlock)) { 5014 chain_key = INITIAL_CHAIN_KEY; 5015 chain_head = 1; 5016 } 5017 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5018 5019 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5020 print_lock_nested_lock_not_held(curr, hlock, ip); 5021 return 0; 5022 } 5023 5024 if (!debug_locks_silent) { 5025 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5026 WARN_ON_ONCE(!hlock_class(hlock)->key); 5027 } 5028 5029 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5030 return 0; 5031 5032 curr->curr_chain_key = chain_key; 5033 curr->lockdep_depth++; 5034 check_chain_key(curr); 5035 #ifdef CONFIG_DEBUG_LOCKDEP 5036 if (unlikely(!debug_locks)) 5037 return 0; 5038 #endif 5039 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5040 debug_locks_off(); 5041 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5042 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5043 curr->lockdep_depth, MAX_LOCK_DEPTH); 5044 5045 lockdep_print_held_locks(current); 5046 debug_show_all_locks(); 5047 dump_stack(); 5048 5049 return 0; 5050 } 5051 5052 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5053 max_lockdep_depth = curr->lockdep_depth; 5054 5055 return 1; 5056 } 5057 5058 static void print_unlock_imbalance_bug(struct task_struct *curr, 5059 struct lockdep_map *lock, 5060 unsigned long ip) 5061 { 5062 if (!debug_locks_off()) 5063 return; 5064 if (debug_locks_silent) 5065 return; 5066 5067 pr_warn("\n"); 5068 pr_warn("=====================================\n"); 5069 pr_warn("WARNING: bad unlock balance detected!\n"); 5070 print_kernel_ident(); 5071 pr_warn("-------------------------------------\n"); 5072 pr_warn("%s/%d is trying to release lock (", 5073 curr->comm, task_pid_nr(curr)); 5074 print_lockdep_cache(lock); 5075 pr_cont(") at:\n"); 5076 print_ip_sym(KERN_WARNING, ip); 5077 pr_warn("but there are no more locks to release!\n"); 5078 pr_warn("\nother info that might help us debug this:\n"); 5079 lockdep_print_held_locks(curr); 5080 5081 pr_warn("\nstack backtrace:\n"); 5082 dump_stack(); 5083 } 5084 5085 static noinstr int match_held_lock(const struct held_lock *hlock, 5086 const struct lockdep_map *lock) 5087 { 5088 if (hlock->instance == lock) 5089 return 1; 5090 5091 if (hlock->references) { 5092 const struct lock_class *class = lock->class_cache[0]; 5093 5094 if (!class) 5095 class = look_up_lock_class(lock, 0); 5096 5097 /* 5098 * If look_up_lock_class() failed to find a class, we're trying 5099 * to test if we hold a lock that has never yet been acquired. 5100 * Clearly if the lock hasn't been acquired _ever_, we're not 5101 * holding it either, so report failure. 5102 */ 5103 if (!class) 5104 return 0; 5105 5106 /* 5107 * References, but not a lock we're actually ref-counting? 5108 * State got messed up, follow the sites that change ->references 5109 * and try to make sense of it. 5110 */ 5111 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5112 return 0; 5113 5114 if (hlock->class_idx == class - lock_classes) 5115 return 1; 5116 } 5117 5118 return 0; 5119 } 5120 5121 /* @depth must not be zero */ 5122 static struct held_lock *find_held_lock(struct task_struct *curr, 5123 struct lockdep_map *lock, 5124 unsigned int depth, int *idx) 5125 { 5126 struct held_lock *ret, *hlock, *prev_hlock; 5127 int i; 5128 5129 i = depth - 1; 5130 hlock = curr->held_locks + i; 5131 ret = hlock; 5132 if (match_held_lock(hlock, lock)) 5133 goto out; 5134 5135 ret = NULL; 5136 for (i--, prev_hlock = hlock--; 5137 i >= 0; 5138 i--, prev_hlock = hlock--) { 5139 /* 5140 * We must not cross into another context: 5141 */ 5142 if (prev_hlock->irq_context != hlock->irq_context) { 5143 ret = NULL; 5144 break; 5145 } 5146 if (match_held_lock(hlock, lock)) { 5147 ret = hlock; 5148 break; 5149 } 5150 } 5151 5152 out: 5153 *idx = i; 5154 return ret; 5155 } 5156 5157 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5158 int idx, unsigned int *merged) 5159 { 5160 struct held_lock *hlock; 5161 int first_idx = idx; 5162 5163 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5164 return 0; 5165 5166 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5167 switch (__lock_acquire(hlock->instance, 5168 hlock_class(hlock)->subclass, 5169 hlock->trylock, 5170 hlock->read, hlock->check, 5171 hlock->hardirqs_off, 5172 hlock->nest_lock, hlock->acquire_ip, 5173 hlock->references, hlock->pin_count)) { 5174 case 0: 5175 return 1; 5176 case 1: 5177 break; 5178 case 2: 5179 *merged += (idx == first_idx); 5180 break; 5181 default: 5182 WARN_ON(1); 5183 return 0; 5184 } 5185 } 5186 return 0; 5187 } 5188 5189 static int 5190 __lock_set_class(struct lockdep_map *lock, const char *name, 5191 struct lock_class_key *key, unsigned int subclass, 5192 unsigned long ip) 5193 { 5194 struct task_struct *curr = current; 5195 unsigned int depth, merged = 0; 5196 struct held_lock *hlock; 5197 struct lock_class *class; 5198 int i; 5199 5200 if (unlikely(!debug_locks)) 5201 return 0; 5202 5203 depth = curr->lockdep_depth; 5204 /* 5205 * This function is about (re)setting the class of a held lock, 5206 * yet we're not actually holding any locks. Naughty user! 5207 */ 5208 if (DEBUG_LOCKS_WARN_ON(!depth)) 5209 return 0; 5210 5211 hlock = find_held_lock(curr, lock, depth, &i); 5212 if (!hlock) { 5213 print_unlock_imbalance_bug(curr, lock, ip); 5214 return 0; 5215 } 5216 5217 lockdep_init_map_waits(lock, name, key, 0, 5218 lock->wait_type_inner, 5219 lock->wait_type_outer); 5220 class = register_lock_class(lock, subclass, 0); 5221 hlock->class_idx = class - lock_classes; 5222 5223 curr->lockdep_depth = i; 5224 curr->curr_chain_key = hlock->prev_chain_key; 5225 5226 if (reacquire_held_locks(curr, depth, i, &merged)) 5227 return 0; 5228 5229 /* 5230 * I took it apart and put it back together again, except now I have 5231 * these 'spare' parts.. where shall I put them. 5232 */ 5233 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5234 return 0; 5235 return 1; 5236 } 5237 5238 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5239 { 5240 struct task_struct *curr = current; 5241 unsigned int depth, merged = 0; 5242 struct held_lock *hlock; 5243 int i; 5244 5245 if (unlikely(!debug_locks)) 5246 return 0; 5247 5248 depth = curr->lockdep_depth; 5249 /* 5250 * This function is about (re)setting the class of a held lock, 5251 * yet we're not actually holding any locks. Naughty user! 5252 */ 5253 if (DEBUG_LOCKS_WARN_ON(!depth)) 5254 return 0; 5255 5256 hlock = find_held_lock(curr, lock, depth, &i); 5257 if (!hlock) { 5258 print_unlock_imbalance_bug(curr, lock, ip); 5259 return 0; 5260 } 5261 5262 curr->lockdep_depth = i; 5263 curr->curr_chain_key = hlock->prev_chain_key; 5264 5265 WARN(hlock->read, "downgrading a read lock"); 5266 hlock->read = 1; 5267 hlock->acquire_ip = ip; 5268 5269 if (reacquire_held_locks(curr, depth, i, &merged)) 5270 return 0; 5271 5272 /* Merging can't happen with unchanged classes.. */ 5273 if (DEBUG_LOCKS_WARN_ON(merged)) 5274 return 0; 5275 5276 /* 5277 * I took it apart and put it back together again, except now I have 5278 * these 'spare' parts.. where shall I put them. 5279 */ 5280 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5281 return 0; 5282 5283 return 1; 5284 } 5285 5286 /* 5287 * Remove the lock from the list of currently held locks - this gets 5288 * called on mutex_unlock()/spin_unlock*() (or on a failed 5289 * mutex_lock_interruptible()). 5290 */ 5291 static int 5292 __lock_release(struct lockdep_map *lock, unsigned long ip) 5293 { 5294 struct task_struct *curr = current; 5295 unsigned int depth, merged = 1; 5296 struct held_lock *hlock; 5297 int i; 5298 5299 if (unlikely(!debug_locks)) 5300 return 0; 5301 5302 depth = curr->lockdep_depth; 5303 /* 5304 * So we're all set to release this lock.. wait what lock? We don't 5305 * own any locks, you've been drinking again? 5306 */ 5307 if (depth <= 0) { 5308 print_unlock_imbalance_bug(curr, lock, ip); 5309 return 0; 5310 } 5311 5312 /* 5313 * Check whether the lock exists in the current stack 5314 * of held locks: 5315 */ 5316 hlock = find_held_lock(curr, lock, depth, &i); 5317 if (!hlock) { 5318 print_unlock_imbalance_bug(curr, lock, ip); 5319 return 0; 5320 } 5321 5322 if (hlock->instance == lock) 5323 lock_release_holdtime(hlock); 5324 5325 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5326 5327 if (hlock->references) { 5328 hlock->references--; 5329 if (hlock->references) { 5330 /* 5331 * We had, and after removing one, still have 5332 * references, the current lock stack is still 5333 * valid. We're done! 5334 */ 5335 return 1; 5336 } 5337 } 5338 5339 /* 5340 * We have the right lock to unlock, 'hlock' points to it. 5341 * Now we remove it from the stack, and add back the other 5342 * entries (if any), recalculating the hash along the way: 5343 */ 5344 5345 curr->lockdep_depth = i; 5346 curr->curr_chain_key = hlock->prev_chain_key; 5347 5348 /* 5349 * The most likely case is when the unlock is on the innermost 5350 * lock. In this case, we are done! 5351 */ 5352 if (i == depth-1) 5353 return 1; 5354 5355 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5356 return 0; 5357 5358 /* 5359 * We had N bottles of beer on the wall, we drank one, but now 5360 * there's not N-1 bottles of beer left on the wall... 5361 * Pouring two of the bottles together is acceptable. 5362 */ 5363 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5364 5365 /* 5366 * Since reacquire_held_locks() would have called check_chain_key() 5367 * indirectly via __lock_acquire(), we don't need to do it again 5368 * on return. 5369 */ 5370 return 0; 5371 } 5372 5373 static __always_inline 5374 int __lock_is_held(const struct lockdep_map *lock, int read) 5375 { 5376 struct task_struct *curr = current; 5377 int i; 5378 5379 for (i = 0; i < curr->lockdep_depth; i++) { 5380 struct held_lock *hlock = curr->held_locks + i; 5381 5382 if (match_held_lock(hlock, lock)) { 5383 if (read == -1 || !!hlock->read == read) 5384 return LOCK_STATE_HELD; 5385 5386 return LOCK_STATE_NOT_HELD; 5387 } 5388 } 5389 5390 return LOCK_STATE_NOT_HELD; 5391 } 5392 5393 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5394 { 5395 struct pin_cookie cookie = NIL_COOKIE; 5396 struct task_struct *curr = current; 5397 int i; 5398 5399 if (unlikely(!debug_locks)) 5400 return cookie; 5401 5402 for (i = 0; i < curr->lockdep_depth; i++) { 5403 struct held_lock *hlock = curr->held_locks + i; 5404 5405 if (match_held_lock(hlock, lock)) { 5406 /* 5407 * Grab 16bits of randomness; this is sufficient to not 5408 * be guessable and still allows some pin nesting in 5409 * our u32 pin_count. 5410 */ 5411 cookie.val = 1 + (prandom_u32() >> 16); 5412 hlock->pin_count += cookie.val; 5413 return cookie; 5414 } 5415 } 5416 5417 WARN(1, "pinning an unheld lock\n"); 5418 return cookie; 5419 } 5420 5421 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5422 { 5423 struct task_struct *curr = current; 5424 int i; 5425 5426 if (unlikely(!debug_locks)) 5427 return; 5428 5429 for (i = 0; i < curr->lockdep_depth; i++) { 5430 struct held_lock *hlock = curr->held_locks + i; 5431 5432 if (match_held_lock(hlock, lock)) { 5433 hlock->pin_count += cookie.val; 5434 return; 5435 } 5436 } 5437 5438 WARN(1, "pinning an unheld lock\n"); 5439 } 5440 5441 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5442 { 5443 struct task_struct *curr = current; 5444 int i; 5445 5446 if (unlikely(!debug_locks)) 5447 return; 5448 5449 for (i = 0; i < curr->lockdep_depth; i++) { 5450 struct held_lock *hlock = curr->held_locks + i; 5451 5452 if (match_held_lock(hlock, lock)) { 5453 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5454 return; 5455 5456 hlock->pin_count -= cookie.val; 5457 5458 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5459 hlock->pin_count = 0; 5460 5461 return; 5462 } 5463 } 5464 5465 WARN(1, "unpinning an unheld lock\n"); 5466 } 5467 5468 /* 5469 * Check whether we follow the irq-flags state precisely: 5470 */ 5471 static noinstr void check_flags(unsigned long flags) 5472 { 5473 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5474 if (!debug_locks) 5475 return; 5476 5477 /* Get the warning out.. */ 5478 instrumentation_begin(); 5479 5480 if (irqs_disabled_flags(flags)) { 5481 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5482 printk("possible reason: unannotated irqs-off.\n"); 5483 } 5484 } else { 5485 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5486 printk("possible reason: unannotated irqs-on.\n"); 5487 } 5488 } 5489 5490 #ifndef CONFIG_PREEMPT_RT 5491 /* 5492 * We dont accurately track softirq state in e.g. 5493 * hardirq contexts (such as on 4KSTACKS), so only 5494 * check if not in hardirq contexts: 5495 */ 5496 if (!hardirq_count()) { 5497 if (softirq_count()) { 5498 /* like the above, but with softirqs */ 5499 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5500 } else { 5501 /* lick the above, does it taste good? */ 5502 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5503 } 5504 } 5505 #endif 5506 5507 if (!debug_locks) 5508 print_irqtrace_events(current); 5509 5510 instrumentation_end(); 5511 #endif 5512 } 5513 5514 void lock_set_class(struct lockdep_map *lock, const char *name, 5515 struct lock_class_key *key, unsigned int subclass, 5516 unsigned long ip) 5517 { 5518 unsigned long flags; 5519 5520 if (unlikely(!lockdep_enabled())) 5521 return; 5522 5523 raw_local_irq_save(flags); 5524 lockdep_recursion_inc(); 5525 check_flags(flags); 5526 if (__lock_set_class(lock, name, key, subclass, ip)) 5527 check_chain_key(current); 5528 lockdep_recursion_finish(); 5529 raw_local_irq_restore(flags); 5530 } 5531 EXPORT_SYMBOL_GPL(lock_set_class); 5532 5533 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5534 { 5535 unsigned long flags; 5536 5537 if (unlikely(!lockdep_enabled())) 5538 return; 5539 5540 raw_local_irq_save(flags); 5541 lockdep_recursion_inc(); 5542 check_flags(flags); 5543 if (__lock_downgrade(lock, ip)) 5544 check_chain_key(current); 5545 lockdep_recursion_finish(); 5546 raw_local_irq_restore(flags); 5547 } 5548 EXPORT_SYMBOL_GPL(lock_downgrade); 5549 5550 /* NMI context !!! */ 5551 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5552 { 5553 #ifdef CONFIG_PROVE_LOCKING 5554 struct lock_class *class = look_up_lock_class(lock, subclass); 5555 unsigned long mask = LOCKF_USED; 5556 5557 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5558 if (!class) 5559 return; 5560 5561 /* 5562 * READ locks only conflict with USED, such that if we only ever use 5563 * READ locks, there is no deadlock possible -- RCU. 5564 */ 5565 if (!hlock->read) 5566 mask |= LOCKF_USED_READ; 5567 5568 if (!(class->usage_mask & mask)) 5569 return; 5570 5571 hlock->class_idx = class - lock_classes; 5572 5573 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5574 #endif 5575 } 5576 5577 static bool lockdep_nmi(void) 5578 { 5579 if (raw_cpu_read(lockdep_recursion)) 5580 return false; 5581 5582 if (!in_nmi()) 5583 return false; 5584 5585 return true; 5586 } 5587 5588 /* 5589 * read_lock() is recursive if: 5590 * 1. We force lockdep think this way in selftests or 5591 * 2. The implementation is not queued read/write lock or 5592 * 3. The locker is at an in_interrupt() context. 5593 */ 5594 bool read_lock_is_recursive(void) 5595 { 5596 return force_read_lock_recursive || 5597 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5598 in_interrupt(); 5599 } 5600 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5601 5602 /* 5603 * We are not always called with irqs disabled - do that here, 5604 * and also avoid lockdep recursion: 5605 */ 5606 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5607 int trylock, int read, int check, 5608 struct lockdep_map *nest_lock, unsigned long ip) 5609 { 5610 unsigned long flags; 5611 5612 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5613 5614 if (!debug_locks) 5615 return; 5616 5617 if (unlikely(!lockdep_enabled())) { 5618 /* XXX allow trylock from NMI ?!? */ 5619 if (lockdep_nmi() && !trylock) { 5620 struct held_lock hlock; 5621 5622 hlock.acquire_ip = ip; 5623 hlock.instance = lock; 5624 hlock.nest_lock = nest_lock; 5625 hlock.irq_context = 2; // XXX 5626 hlock.trylock = trylock; 5627 hlock.read = read; 5628 hlock.check = check; 5629 hlock.hardirqs_off = true; 5630 hlock.references = 0; 5631 5632 verify_lock_unused(lock, &hlock, subclass); 5633 } 5634 return; 5635 } 5636 5637 raw_local_irq_save(flags); 5638 check_flags(flags); 5639 5640 lockdep_recursion_inc(); 5641 __lock_acquire(lock, subclass, trylock, read, check, 5642 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5643 lockdep_recursion_finish(); 5644 raw_local_irq_restore(flags); 5645 } 5646 EXPORT_SYMBOL_GPL(lock_acquire); 5647 5648 void lock_release(struct lockdep_map *lock, unsigned long ip) 5649 { 5650 unsigned long flags; 5651 5652 trace_lock_release(lock, ip); 5653 5654 if (unlikely(!lockdep_enabled())) 5655 return; 5656 5657 raw_local_irq_save(flags); 5658 check_flags(flags); 5659 5660 lockdep_recursion_inc(); 5661 if (__lock_release(lock, ip)) 5662 check_chain_key(current); 5663 lockdep_recursion_finish(); 5664 raw_local_irq_restore(flags); 5665 } 5666 EXPORT_SYMBOL_GPL(lock_release); 5667 5668 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5669 { 5670 unsigned long flags; 5671 int ret = LOCK_STATE_NOT_HELD; 5672 5673 /* 5674 * Avoid false negative lockdep_assert_held() and 5675 * lockdep_assert_not_held(). 5676 */ 5677 if (unlikely(!lockdep_enabled())) 5678 return LOCK_STATE_UNKNOWN; 5679 5680 raw_local_irq_save(flags); 5681 check_flags(flags); 5682 5683 lockdep_recursion_inc(); 5684 ret = __lock_is_held(lock, read); 5685 lockdep_recursion_finish(); 5686 raw_local_irq_restore(flags); 5687 5688 return ret; 5689 } 5690 EXPORT_SYMBOL_GPL(lock_is_held_type); 5691 NOKPROBE_SYMBOL(lock_is_held_type); 5692 5693 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5694 { 5695 struct pin_cookie cookie = NIL_COOKIE; 5696 unsigned long flags; 5697 5698 if (unlikely(!lockdep_enabled())) 5699 return cookie; 5700 5701 raw_local_irq_save(flags); 5702 check_flags(flags); 5703 5704 lockdep_recursion_inc(); 5705 cookie = __lock_pin_lock(lock); 5706 lockdep_recursion_finish(); 5707 raw_local_irq_restore(flags); 5708 5709 return cookie; 5710 } 5711 EXPORT_SYMBOL_GPL(lock_pin_lock); 5712 5713 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5714 { 5715 unsigned long flags; 5716 5717 if (unlikely(!lockdep_enabled())) 5718 return; 5719 5720 raw_local_irq_save(flags); 5721 check_flags(flags); 5722 5723 lockdep_recursion_inc(); 5724 __lock_repin_lock(lock, cookie); 5725 lockdep_recursion_finish(); 5726 raw_local_irq_restore(flags); 5727 } 5728 EXPORT_SYMBOL_GPL(lock_repin_lock); 5729 5730 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5731 { 5732 unsigned long flags; 5733 5734 if (unlikely(!lockdep_enabled())) 5735 return; 5736 5737 raw_local_irq_save(flags); 5738 check_flags(flags); 5739 5740 lockdep_recursion_inc(); 5741 __lock_unpin_lock(lock, cookie); 5742 lockdep_recursion_finish(); 5743 raw_local_irq_restore(flags); 5744 } 5745 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5746 5747 #ifdef CONFIG_LOCK_STAT 5748 static void print_lock_contention_bug(struct task_struct *curr, 5749 struct lockdep_map *lock, 5750 unsigned long ip) 5751 { 5752 if (!debug_locks_off()) 5753 return; 5754 if (debug_locks_silent) 5755 return; 5756 5757 pr_warn("\n"); 5758 pr_warn("=================================\n"); 5759 pr_warn("WARNING: bad contention detected!\n"); 5760 print_kernel_ident(); 5761 pr_warn("---------------------------------\n"); 5762 pr_warn("%s/%d is trying to contend lock (", 5763 curr->comm, task_pid_nr(curr)); 5764 print_lockdep_cache(lock); 5765 pr_cont(") at:\n"); 5766 print_ip_sym(KERN_WARNING, ip); 5767 pr_warn("but there are no locks held!\n"); 5768 pr_warn("\nother info that might help us debug this:\n"); 5769 lockdep_print_held_locks(curr); 5770 5771 pr_warn("\nstack backtrace:\n"); 5772 dump_stack(); 5773 } 5774 5775 static void 5776 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5777 { 5778 struct task_struct *curr = current; 5779 struct held_lock *hlock; 5780 struct lock_class_stats *stats; 5781 unsigned int depth; 5782 int i, contention_point, contending_point; 5783 5784 depth = curr->lockdep_depth; 5785 /* 5786 * Whee, we contended on this lock, except it seems we're not 5787 * actually trying to acquire anything much at all.. 5788 */ 5789 if (DEBUG_LOCKS_WARN_ON(!depth)) 5790 return; 5791 5792 hlock = find_held_lock(curr, lock, depth, &i); 5793 if (!hlock) { 5794 print_lock_contention_bug(curr, lock, ip); 5795 return; 5796 } 5797 5798 if (hlock->instance != lock) 5799 return; 5800 5801 hlock->waittime_stamp = lockstat_clock(); 5802 5803 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5804 contending_point = lock_point(hlock_class(hlock)->contending_point, 5805 lock->ip); 5806 5807 stats = get_lock_stats(hlock_class(hlock)); 5808 if (contention_point < LOCKSTAT_POINTS) 5809 stats->contention_point[contention_point]++; 5810 if (contending_point < LOCKSTAT_POINTS) 5811 stats->contending_point[contending_point]++; 5812 if (lock->cpu != smp_processor_id()) 5813 stats->bounces[bounce_contended + !!hlock->read]++; 5814 } 5815 5816 static void 5817 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5818 { 5819 struct task_struct *curr = current; 5820 struct held_lock *hlock; 5821 struct lock_class_stats *stats; 5822 unsigned int depth; 5823 u64 now, waittime = 0; 5824 int i, cpu; 5825 5826 depth = curr->lockdep_depth; 5827 /* 5828 * Yay, we acquired ownership of this lock we didn't try to 5829 * acquire, how the heck did that happen? 5830 */ 5831 if (DEBUG_LOCKS_WARN_ON(!depth)) 5832 return; 5833 5834 hlock = find_held_lock(curr, lock, depth, &i); 5835 if (!hlock) { 5836 print_lock_contention_bug(curr, lock, _RET_IP_); 5837 return; 5838 } 5839 5840 if (hlock->instance != lock) 5841 return; 5842 5843 cpu = smp_processor_id(); 5844 if (hlock->waittime_stamp) { 5845 now = lockstat_clock(); 5846 waittime = now - hlock->waittime_stamp; 5847 hlock->holdtime_stamp = now; 5848 } 5849 5850 stats = get_lock_stats(hlock_class(hlock)); 5851 if (waittime) { 5852 if (hlock->read) 5853 lock_time_inc(&stats->read_waittime, waittime); 5854 else 5855 lock_time_inc(&stats->write_waittime, waittime); 5856 } 5857 if (lock->cpu != cpu) 5858 stats->bounces[bounce_acquired + !!hlock->read]++; 5859 5860 lock->cpu = cpu; 5861 lock->ip = ip; 5862 } 5863 5864 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5865 { 5866 unsigned long flags; 5867 5868 trace_lock_contended(lock, ip); 5869 5870 if (unlikely(!lock_stat || !lockdep_enabled())) 5871 return; 5872 5873 raw_local_irq_save(flags); 5874 check_flags(flags); 5875 lockdep_recursion_inc(); 5876 __lock_contended(lock, ip); 5877 lockdep_recursion_finish(); 5878 raw_local_irq_restore(flags); 5879 } 5880 EXPORT_SYMBOL_GPL(lock_contended); 5881 5882 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5883 { 5884 unsigned long flags; 5885 5886 trace_lock_acquired(lock, ip); 5887 5888 if (unlikely(!lock_stat || !lockdep_enabled())) 5889 return; 5890 5891 raw_local_irq_save(flags); 5892 check_flags(flags); 5893 lockdep_recursion_inc(); 5894 __lock_acquired(lock, ip); 5895 lockdep_recursion_finish(); 5896 raw_local_irq_restore(flags); 5897 } 5898 EXPORT_SYMBOL_GPL(lock_acquired); 5899 #endif 5900 5901 /* 5902 * Used by the testsuite, sanitize the validator state 5903 * after a simulated failure: 5904 */ 5905 5906 void lockdep_reset(void) 5907 { 5908 unsigned long flags; 5909 int i; 5910 5911 raw_local_irq_save(flags); 5912 lockdep_init_task(current); 5913 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5914 nr_hardirq_chains = 0; 5915 nr_softirq_chains = 0; 5916 nr_process_chains = 0; 5917 debug_locks = 1; 5918 for (i = 0; i < CHAINHASH_SIZE; i++) 5919 INIT_HLIST_HEAD(chainhash_table + i); 5920 raw_local_irq_restore(flags); 5921 } 5922 5923 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5924 static void remove_class_from_lock_chain(struct pending_free *pf, 5925 struct lock_chain *chain, 5926 struct lock_class *class) 5927 { 5928 #ifdef CONFIG_PROVE_LOCKING 5929 int i; 5930 5931 for (i = chain->base; i < chain->base + chain->depth; i++) { 5932 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5933 continue; 5934 /* 5935 * Each lock class occurs at most once in a lock chain so once 5936 * we found a match we can break out of this loop. 5937 */ 5938 goto free_lock_chain; 5939 } 5940 /* Since the chain has not been modified, return. */ 5941 return; 5942 5943 free_lock_chain: 5944 free_chain_hlocks(chain->base, chain->depth); 5945 /* Overwrite the chain key for concurrent RCU readers. */ 5946 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5947 dec_chains(chain->irq_context); 5948 5949 /* 5950 * Note: calling hlist_del_rcu() from inside a 5951 * hlist_for_each_entry_rcu() loop is safe. 5952 */ 5953 hlist_del_rcu(&chain->entry); 5954 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5955 nr_zapped_lock_chains++; 5956 #endif 5957 } 5958 5959 /* Must be called with the graph lock held. */ 5960 static void remove_class_from_lock_chains(struct pending_free *pf, 5961 struct lock_class *class) 5962 { 5963 struct lock_chain *chain; 5964 struct hlist_head *head; 5965 int i; 5966 5967 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5968 head = chainhash_table + i; 5969 hlist_for_each_entry_rcu(chain, head, entry) { 5970 remove_class_from_lock_chain(pf, chain, class); 5971 } 5972 } 5973 } 5974 5975 /* 5976 * Remove all references to a lock class. The caller must hold the graph lock. 5977 */ 5978 static void zap_class(struct pending_free *pf, struct lock_class *class) 5979 { 5980 struct lock_list *entry; 5981 int i; 5982 5983 WARN_ON_ONCE(!class->key); 5984 5985 /* 5986 * Remove all dependencies this lock is 5987 * involved in: 5988 */ 5989 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5990 entry = list_entries + i; 5991 if (entry->class != class && entry->links_to != class) 5992 continue; 5993 __clear_bit(i, list_entries_in_use); 5994 nr_list_entries--; 5995 list_del_rcu(&entry->entry); 5996 } 5997 if (list_empty(&class->locks_after) && 5998 list_empty(&class->locks_before)) { 5999 list_move_tail(&class->lock_entry, &pf->zapped); 6000 hlist_del_rcu(&class->hash_entry); 6001 WRITE_ONCE(class->key, NULL); 6002 WRITE_ONCE(class->name, NULL); 6003 nr_lock_classes--; 6004 __clear_bit(class - lock_classes, lock_classes_in_use); 6005 if (class - lock_classes == max_lock_class_idx) 6006 max_lock_class_idx--; 6007 } else { 6008 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 6009 class->name); 6010 } 6011 6012 remove_class_from_lock_chains(pf, class); 6013 nr_zapped_classes++; 6014 } 6015 6016 static void reinit_class(struct lock_class *class) 6017 { 6018 WARN_ON_ONCE(!class->lock_entry.next); 6019 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6020 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6021 memset_startat(class, 0, key); 6022 WARN_ON_ONCE(!class->lock_entry.next); 6023 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6024 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6025 } 6026 6027 static inline int within(const void *addr, void *start, unsigned long size) 6028 { 6029 return addr >= start && addr < start + size; 6030 } 6031 6032 static bool inside_selftest(void) 6033 { 6034 return current == lockdep_selftest_task_struct; 6035 } 6036 6037 /* The caller must hold the graph lock. */ 6038 static struct pending_free *get_pending_free(void) 6039 { 6040 return delayed_free.pf + delayed_free.index; 6041 } 6042 6043 static void free_zapped_rcu(struct rcu_head *cb); 6044 6045 /* 6046 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6047 * the graph lock held. 6048 */ 6049 static void call_rcu_zapped(struct pending_free *pf) 6050 { 6051 WARN_ON_ONCE(inside_selftest()); 6052 6053 if (list_empty(&pf->zapped)) 6054 return; 6055 6056 if (delayed_free.scheduled) 6057 return; 6058 6059 delayed_free.scheduled = true; 6060 6061 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6062 delayed_free.index ^= 1; 6063 6064 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6065 } 6066 6067 /* The caller must hold the graph lock. May be called from RCU context. */ 6068 static void __free_zapped_classes(struct pending_free *pf) 6069 { 6070 struct lock_class *class; 6071 6072 check_data_structures(); 6073 6074 list_for_each_entry(class, &pf->zapped, lock_entry) 6075 reinit_class(class); 6076 6077 list_splice_init(&pf->zapped, &free_lock_classes); 6078 6079 #ifdef CONFIG_PROVE_LOCKING 6080 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6081 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6082 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6083 #endif 6084 } 6085 6086 static void free_zapped_rcu(struct rcu_head *ch) 6087 { 6088 struct pending_free *pf; 6089 unsigned long flags; 6090 6091 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6092 return; 6093 6094 raw_local_irq_save(flags); 6095 lockdep_lock(); 6096 6097 /* closed head */ 6098 pf = delayed_free.pf + (delayed_free.index ^ 1); 6099 __free_zapped_classes(pf); 6100 delayed_free.scheduled = false; 6101 6102 /* 6103 * If there's anything on the open list, close and start a new callback. 6104 */ 6105 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6106 6107 lockdep_unlock(); 6108 raw_local_irq_restore(flags); 6109 } 6110 6111 /* 6112 * Remove all lock classes from the class hash table and from the 6113 * all_lock_classes list whose key or name is in the address range [start, 6114 * start + size). Move these lock classes to the zapped_classes list. Must 6115 * be called with the graph lock held. 6116 */ 6117 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6118 unsigned long size) 6119 { 6120 struct lock_class *class; 6121 struct hlist_head *head; 6122 int i; 6123 6124 /* Unhash all classes that were created by a module. */ 6125 for (i = 0; i < CLASSHASH_SIZE; i++) { 6126 head = classhash_table + i; 6127 hlist_for_each_entry_rcu(class, head, hash_entry) { 6128 if (!within(class->key, start, size) && 6129 !within(class->name, start, size)) 6130 continue; 6131 zap_class(pf, class); 6132 } 6133 } 6134 } 6135 6136 /* 6137 * Used in module.c to remove lock classes from memory that is going to be 6138 * freed; and possibly re-used by other modules. 6139 * 6140 * We will have had one synchronize_rcu() before getting here, so we're 6141 * guaranteed nobody will look up these exact classes -- they're properly dead 6142 * but still allocated. 6143 */ 6144 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6145 { 6146 struct pending_free *pf; 6147 unsigned long flags; 6148 6149 init_data_structures_once(); 6150 6151 raw_local_irq_save(flags); 6152 lockdep_lock(); 6153 pf = get_pending_free(); 6154 __lockdep_free_key_range(pf, start, size); 6155 call_rcu_zapped(pf); 6156 lockdep_unlock(); 6157 raw_local_irq_restore(flags); 6158 6159 /* 6160 * Wait for any possible iterators from look_up_lock_class() to pass 6161 * before continuing to free the memory they refer to. 6162 */ 6163 synchronize_rcu(); 6164 } 6165 6166 /* 6167 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6168 * Ignores debug_locks. Must only be used by the lockdep selftests. 6169 */ 6170 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6171 { 6172 struct pending_free *pf = delayed_free.pf; 6173 unsigned long flags; 6174 6175 init_data_structures_once(); 6176 6177 raw_local_irq_save(flags); 6178 lockdep_lock(); 6179 __lockdep_free_key_range(pf, start, size); 6180 __free_zapped_classes(pf); 6181 lockdep_unlock(); 6182 raw_local_irq_restore(flags); 6183 } 6184 6185 void lockdep_free_key_range(void *start, unsigned long size) 6186 { 6187 init_data_structures_once(); 6188 6189 if (inside_selftest()) 6190 lockdep_free_key_range_imm(start, size); 6191 else 6192 lockdep_free_key_range_reg(start, size); 6193 } 6194 6195 /* 6196 * Check whether any element of the @lock->class_cache[] array refers to a 6197 * registered lock class. The caller must hold either the graph lock or the 6198 * RCU read lock. 6199 */ 6200 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6201 { 6202 struct lock_class *class; 6203 struct hlist_head *head; 6204 int i, j; 6205 6206 for (i = 0; i < CLASSHASH_SIZE; i++) { 6207 head = classhash_table + i; 6208 hlist_for_each_entry_rcu(class, head, hash_entry) { 6209 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6210 if (lock->class_cache[j] == class) 6211 return true; 6212 } 6213 } 6214 return false; 6215 } 6216 6217 /* The caller must hold the graph lock. Does not sleep. */ 6218 static void __lockdep_reset_lock(struct pending_free *pf, 6219 struct lockdep_map *lock) 6220 { 6221 struct lock_class *class; 6222 int j; 6223 6224 /* 6225 * Remove all classes this lock might have: 6226 */ 6227 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6228 /* 6229 * If the class exists we look it up and zap it: 6230 */ 6231 class = look_up_lock_class(lock, j); 6232 if (class) 6233 zap_class(pf, class); 6234 } 6235 /* 6236 * Debug check: in the end all mapped classes should 6237 * be gone. 6238 */ 6239 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6240 debug_locks_off(); 6241 } 6242 6243 /* 6244 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6245 * released data structures from RCU context. 6246 */ 6247 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6248 { 6249 struct pending_free *pf; 6250 unsigned long flags; 6251 int locked; 6252 6253 raw_local_irq_save(flags); 6254 locked = graph_lock(); 6255 if (!locked) 6256 goto out_irq; 6257 6258 pf = get_pending_free(); 6259 __lockdep_reset_lock(pf, lock); 6260 call_rcu_zapped(pf); 6261 6262 graph_unlock(); 6263 out_irq: 6264 raw_local_irq_restore(flags); 6265 } 6266 6267 /* 6268 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6269 * lockdep selftests. 6270 */ 6271 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6272 { 6273 struct pending_free *pf = delayed_free.pf; 6274 unsigned long flags; 6275 6276 raw_local_irq_save(flags); 6277 lockdep_lock(); 6278 __lockdep_reset_lock(pf, lock); 6279 __free_zapped_classes(pf); 6280 lockdep_unlock(); 6281 raw_local_irq_restore(flags); 6282 } 6283 6284 void lockdep_reset_lock(struct lockdep_map *lock) 6285 { 6286 init_data_structures_once(); 6287 6288 if (inside_selftest()) 6289 lockdep_reset_lock_imm(lock); 6290 else 6291 lockdep_reset_lock_reg(lock); 6292 } 6293 6294 /* 6295 * Unregister a dynamically allocated key. 6296 * 6297 * Unlike lockdep_register_key(), a search is always done to find a matching 6298 * key irrespective of debug_locks to avoid potential invalid access to freed 6299 * memory in lock_class entry. 6300 */ 6301 void lockdep_unregister_key(struct lock_class_key *key) 6302 { 6303 struct hlist_head *hash_head = keyhashentry(key); 6304 struct lock_class_key *k; 6305 struct pending_free *pf; 6306 unsigned long flags; 6307 bool found = false; 6308 6309 might_sleep(); 6310 6311 if (WARN_ON_ONCE(static_obj(key))) 6312 return; 6313 6314 raw_local_irq_save(flags); 6315 lockdep_lock(); 6316 6317 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6318 if (k == key) { 6319 hlist_del_rcu(&k->hash_entry); 6320 found = true; 6321 break; 6322 } 6323 } 6324 WARN_ON_ONCE(!found && debug_locks); 6325 if (found) { 6326 pf = get_pending_free(); 6327 __lockdep_free_key_range(pf, key, 1); 6328 call_rcu_zapped(pf); 6329 } 6330 lockdep_unlock(); 6331 raw_local_irq_restore(flags); 6332 6333 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6334 synchronize_rcu(); 6335 } 6336 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6337 6338 void __init lockdep_init(void) 6339 { 6340 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6341 6342 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6343 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6344 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6345 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6346 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6347 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6348 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6349 6350 printk(" memory used by lock dependency info: %zu kB\n", 6351 (sizeof(lock_classes) + 6352 sizeof(lock_classes_in_use) + 6353 sizeof(classhash_table) + 6354 sizeof(list_entries) + 6355 sizeof(list_entries_in_use) + 6356 sizeof(chainhash_table) + 6357 sizeof(delayed_free) 6358 #ifdef CONFIG_PROVE_LOCKING 6359 + sizeof(lock_cq) 6360 + sizeof(lock_chains) 6361 + sizeof(lock_chains_in_use) 6362 + sizeof(chain_hlocks) 6363 #endif 6364 ) / 1024 6365 ); 6366 6367 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6368 printk(" memory used for stack traces: %zu kB\n", 6369 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6370 ); 6371 #endif 6372 6373 printk(" per task-struct memory footprint: %zu bytes\n", 6374 sizeof(((struct task_struct *)NULL)->held_locks)); 6375 } 6376 6377 static void 6378 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6379 const void *mem_to, struct held_lock *hlock) 6380 { 6381 if (!debug_locks_off()) 6382 return; 6383 if (debug_locks_silent) 6384 return; 6385 6386 pr_warn("\n"); 6387 pr_warn("=========================\n"); 6388 pr_warn("WARNING: held lock freed!\n"); 6389 print_kernel_ident(); 6390 pr_warn("-------------------------\n"); 6391 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6392 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6393 print_lock(hlock); 6394 lockdep_print_held_locks(curr); 6395 6396 pr_warn("\nstack backtrace:\n"); 6397 dump_stack(); 6398 } 6399 6400 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6401 const void* lock_from, unsigned long lock_len) 6402 { 6403 return lock_from + lock_len <= mem_from || 6404 mem_from + mem_len <= lock_from; 6405 } 6406 6407 /* 6408 * Called when kernel memory is freed (or unmapped), or if a lock 6409 * is destroyed or reinitialized - this code checks whether there is 6410 * any held lock in the memory range of <from> to <to>: 6411 */ 6412 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6413 { 6414 struct task_struct *curr = current; 6415 struct held_lock *hlock; 6416 unsigned long flags; 6417 int i; 6418 6419 if (unlikely(!debug_locks)) 6420 return; 6421 6422 raw_local_irq_save(flags); 6423 for (i = 0; i < curr->lockdep_depth; i++) { 6424 hlock = curr->held_locks + i; 6425 6426 if (not_in_range(mem_from, mem_len, hlock->instance, 6427 sizeof(*hlock->instance))) 6428 continue; 6429 6430 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6431 break; 6432 } 6433 raw_local_irq_restore(flags); 6434 } 6435 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6436 6437 static void print_held_locks_bug(void) 6438 { 6439 if (!debug_locks_off()) 6440 return; 6441 if (debug_locks_silent) 6442 return; 6443 6444 pr_warn("\n"); 6445 pr_warn("====================================\n"); 6446 pr_warn("WARNING: %s/%d still has locks held!\n", 6447 current->comm, task_pid_nr(current)); 6448 print_kernel_ident(); 6449 pr_warn("------------------------------------\n"); 6450 lockdep_print_held_locks(current); 6451 pr_warn("\nstack backtrace:\n"); 6452 dump_stack(); 6453 } 6454 6455 void debug_check_no_locks_held(void) 6456 { 6457 if (unlikely(current->lockdep_depth > 0)) 6458 print_held_locks_bug(); 6459 } 6460 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6461 6462 #ifdef __KERNEL__ 6463 void debug_show_all_locks(void) 6464 { 6465 struct task_struct *g, *p; 6466 6467 if (unlikely(!debug_locks)) { 6468 pr_warn("INFO: lockdep is turned off.\n"); 6469 return; 6470 } 6471 pr_warn("\nShowing all locks held in the system:\n"); 6472 6473 rcu_read_lock(); 6474 for_each_process_thread(g, p) { 6475 if (!p->lockdep_depth) 6476 continue; 6477 lockdep_print_held_locks(p); 6478 touch_nmi_watchdog(); 6479 touch_all_softlockup_watchdogs(); 6480 } 6481 rcu_read_unlock(); 6482 6483 pr_warn("\n"); 6484 pr_warn("=============================================\n\n"); 6485 } 6486 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6487 #endif 6488 6489 /* 6490 * Careful: only use this function if you are sure that 6491 * the task cannot run in parallel! 6492 */ 6493 void debug_show_held_locks(struct task_struct *task) 6494 { 6495 if (unlikely(!debug_locks)) { 6496 printk("INFO: lockdep is turned off.\n"); 6497 return; 6498 } 6499 lockdep_print_held_locks(task); 6500 } 6501 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6502 6503 asmlinkage __visible void lockdep_sys_exit(void) 6504 { 6505 struct task_struct *curr = current; 6506 6507 if (unlikely(curr->lockdep_depth)) { 6508 if (!debug_locks_off()) 6509 return; 6510 pr_warn("\n"); 6511 pr_warn("================================================\n"); 6512 pr_warn("WARNING: lock held when returning to user space!\n"); 6513 print_kernel_ident(); 6514 pr_warn("------------------------------------------------\n"); 6515 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6516 curr->comm, curr->pid); 6517 lockdep_print_held_locks(curr); 6518 } 6519 6520 /* 6521 * The lock history for each syscall should be independent. So wipe the 6522 * slate clean on return to userspace. 6523 */ 6524 lockdep_invariant_state(false); 6525 } 6526 6527 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6528 { 6529 struct task_struct *curr = current; 6530 int dl = READ_ONCE(debug_locks); 6531 6532 /* Note: the following can be executed concurrently, so be careful. */ 6533 pr_warn("\n"); 6534 pr_warn("=============================\n"); 6535 pr_warn("WARNING: suspicious RCU usage\n"); 6536 print_kernel_ident(); 6537 pr_warn("-----------------------------\n"); 6538 pr_warn("%s:%d %s!\n", file, line, s); 6539 pr_warn("\nother info that might help us debug this:\n\n"); 6540 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6541 !rcu_lockdep_current_cpu_online() 6542 ? "RCU used illegally from offline CPU!\n" 6543 : "", 6544 rcu_scheduler_active, dl, 6545 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6546 6547 /* 6548 * If a CPU is in the RCU-free window in idle (ie: in the section 6549 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 6550 * considers that CPU to be in an "extended quiescent state", 6551 * which means that RCU will be completely ignoring that CPU. 6552 * Therefore, rcu_read_lock() and friends have absolutely no 6553 * effect on a CPU running in that state. In other words, even if 6554 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6555 * delete data structures out from under it. RCU really has no 6556 * choice here: we need to keep an RCU-free window in idle where 6557 * the CPU may possibly enter into low power mode. This way we can 6558 * notice an extended quiescent state to other CPUs that started a grace 6559 * period. Otherwise we would delay any grace period as long as we run 6560 * in the idle task. 6561 * 6562 * So complain bitterly if someone does call rcu_read_lock(), 6563 * rcu_read_lock_bh() and so on from extended quiescent states. 6564 */ 6565 if (!rcu_is_watching()) 6566 pr_warn("RCU used illegally from extended quiescent state!\n"); 6567 6568 lockdep_print_held_locks(curr); 6569 pr_warn("\nstack backtrace:\n"); 6570 dump_stack(); 6571 } 6572 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6573