xref: /openbmc/linux/kernel/locking/lockdep.c (revision 74ce1896)
1 /*
2  * kernel/lockdep.c
3  *
4  * Runtime locking correctness validator
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
10  *
11  * this code maps all the lock dependencies as they occur in a live kernel
12  * and will warn about the following classes of locking bugs:
13  *
14  * - lock inversion scenarios
15  * - circular lock dependencies
16  * - hardirq/softirq safe/unsafe locking bugs
17  *
18  * Bugs are reported even if the current locking scenario does not cause
19  * any deadlock at this point.
20  *
21  * I.e. if anytime in the past two locks were taken in a different order,
22  * even if it happened for another task, even if those were different
23  * locks (but of the same class as this lock), this code will detect it.
24  *
25  * Thanks to Arjan van de Ven for coming up with the initial idea of
26  * mapping lock dependencies runtime.
27  */
28 #define DISABLE_BRANCH_PROFILING
29 #include <linux/mutex.h>
30 #include <linux/sched.h>
31 #include <linux/sched/clock.h>
32 #include <linux/sched/task.h>
33 #include <linux/sched/mm.h>
34 #include <linux/delay.h>
35 #include <linux/module.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/spinlock.h>
39 #include <linux/kallsyms.h>
40 #include <linux/interrupt.h>
41 #include <linux/stacktrace.h>
42 #include <linux/debug_locks.h>
43 #include <linux/irqflags.h>
44 #include <linux/utsname.h>
45 #include <linux/hash.h>
46 #include <linux/ftrace.h>
47 #include <linux/stringify.h>
48 #include <linux/bitops.h>
49 #include <linux/gfp.h>
50 #include <linux/kmemcheck.h>
51 #include <linux/random.h>
52 #include <linux/jhash.h>
53 
54 #include <asm/sections.h>
55 
56 #include "lockdep_internals.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/lock.h>
60 
61 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
62 #include <linux/slab.h>
63 #endif
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 /*
80  * lockdep_lock: protects the lockdep graph, the hashes and the
81  *               class/list/hash allocators.
82  *
83  * This is one of the rare exceptions where it's justified
84  * to use a raw spinlock - we really dont want the spinlock
85  * code to recurse back into the lockdep code...
86  */
87 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
88 
89 static int graph_lock(void)
90 {
91 	arch_spin_lock(&lockdep_lock);
92 	/*
93 	 * Make sure that if another CPU detected a bug while
94 	 * walking the graph we dont change it (while the other
95 	 * CPU is busy printing out stuff with the graph lock
96 	 * dropped already)
97 	 */
98 	if (!debug_locks) {
99 		arch_spin_unlock(&lockdep_lock);
100 		return 0;
101 	}
102 	/* prevent any recursions within lockdep from causing deadlocks */
103 	current->lockdep_recursion++;
104 	return 1;
105 }
106 
107 static inline int graph_unlock(void)
108 {
109 	if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) {
110 		/*
111 		 * The lockdep graph lock isn't locked while we expect it to
112 		 * be, we're confused now, bye!
113 		 */
114 		return DEBUG_LOCKS_WARN_ON(1);
115 	}
116 
117 	current->lockdep_recursion--;
118 	arch_spin_unlock(&lockdep_lock);
119 	return 0;
120 }
121 
122 /*
123  * Turn lock debugging off and return with 0 if it was off already,
124  * and also release the graph lock:
125  */
126 static inline int debug_locks_off_graph_unlock(void)
127 {
128 	int ret = debug_locks_off();
129 
130 	arch_spin_unlock(&lockdep_lock);
131 
132 	return ret;
133 }
134 
135 unsigned long nr_list_entries;
136 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
137 
138 /*
139  * All data structures here are protected by the global debug_lock.
140  *
141  * Mutex key structs only get allocated, once during bootup, and never
142  * get freed - this significantly simplifies the debugging code.
143  */
144 unsigned long nr_lock_classes;
145 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
146 
147 static inline struct lock_class *hlock_class(struct held_lock *hlock)
148 {
149 	if (!hlock->class_idx) {
150 		/*
151 		 * Someone passed in garbage, we give up.
152 		 */
153 		DEBUG_LOCKS_WARN_ON(1);
154 		return NULL;
155 	}
156 	return lock_classes + hlock->class_idx - 1;
157 }
158 
159 #ifdef CONFIG_LOCK_STAT
160 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
161 
162 static inline u64 lockstat_clock(void)
163 {
164 	return local_clock();
165 }
166 
167 static int lock_point(unsigned long points[], unsigned long ip)
168 {
169 	int i;
170 
171 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
172 		if (points[i] == 0) {
173 			points[i] = ip;
174 			break;
175 		}
176 		if (points[i] == ip)
177 			break;
178 	}
179 
180 	return i;
181 }
182 
183 static void lock_time_inc(struct lock_time *lt, u64 time)
184 {
185 	if (time > lt->max)
186 		lt->max = time;
187 
188 	if (time < lt->min || !lt->nr)
189 		lt->min = time;
190 
191 	lt->total += time;
192 	lt->nr++;
193 }
194 
195 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
196 {
197 	if (!src->nr)
198 		return;
199 
200 	if (src->max > dst->max)
201 		dst->max = src->max;
202 
203 	if (src->min < dst->min || !dst->nr)
204 		dst->min = src->min;
205 
206 	dst->total += src->total;
207 	dst->nr += src->nr;
208 }
209 
210 struct lock_class_stats lock_stats(struct lock_class *class)
211 {
212 	struct lock_class_stats stats;
213 	int cpu, i;
214 
215 	memset(&stats, 0, sizeof(struct lock_class_stats));
216 	for_each_possible_cpu(cpu) {
217 		struct lock_class_stats *pcs =
218 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
219 
220 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
221 			stats.contention_point[i] += pcs->contention_point[i];
222 
223 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
224 			stats.contending_point[i] += pcs->contending_point[i];
225 
226 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
227 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
228 
229 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
230 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
231 
232 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
233 			stats.bounces[i] += pcs->bounces[i];
234 	}
235 
236 	return stats;
237 }
238 
239 void clear_lock_stats(struct lock_class *class)
240 {
241 	int cpu;
242 
243 	for_each_possible_cpu(cpu) {
244 		struct lock_class_stats *cpu_stats =
245 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
246 
247 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
248 	}
249 	memset(class->contention_point, 0, sizeof(class->contention_point));
250 	memset(class->contending_point, 0, sizeof(class->contending_point));
251 }
252 
253 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
254 {
255 	return &get_cpu_var(cpu_lock_stats)[class - lock_classes];
256 }
257 
258 static void put_lock_stats(struct lock_class_stats *stats)
259 {
260 	put_cpu_var(cpu_lock_stats);
261 }
262 
263 static void lock_release_holdtime(struct held_lock *hlock)
264 {
265 	struct lock_class_stats *stats;
266 	u64 holdtime;
267 
268 	if (!lock_stat)
269 		return;
270 
271 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
272 
273 	stats = get_lock_stats(hlock_class(hlock));
274 	if (hlock->read)
275 		lock_time_inc(&stats->read_holdtime, holdtime);
276 	else
277 		lock_time_inc(&stats->write_holdtime, holdtime);
278 	put_lock_stats(stats);
279 }
280 #else
281 static inline void lock_release_holdtime(struct held_lock *hlock)
282 {
283 }
284 #endif
285 
286 /*
287  * We keep a global list of all lock classes. The list only grows,
288  * never shrinks. The list is only accessed with the lockdep
289  * spinlock lock held.
290  */
291 LIST_HEAD(all_lock_classes);
292 
293 /*
294  * The lockdep classes are in a hash-table as well, for fast lookup:
295  */
296 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
297 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
298 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
299 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
300 
301 static struct hlist_head classhash_table[CLASSHASH_SIZE];
302 
303 /*
304  * We put the lock dependency chains into a hash-table as well, to cache
305  * their existence:
306  */
307 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
308 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
309 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
310 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
311 
312 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
313 
314 /*
315  * The hash key of the lock dependency chains is a hash itself too:
316  * it's a hash of all locks taken up to that lock, including that lock.
317  * It's a 64-bit hash, because it's important for the keys to be
318  * unique.
319  */
320 static inline u64 iterate_chain_key(u64 key, u32 idx)
321 {
322 	u32 k0 = key, k1 = key >> 32;
323 
324 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
325 
326 	return k0 | (u64)k1 << 32;
327 }
328 
329 void lockdep_off(void)
330 {
331 	current->lockdep_recursion++;
332 }
333 EXPORT_SYMBOL(lockdep_off);
334 
335 void lockdep_on(void)
336 {
337 	current->lockdep_recursion--;
338 }
339 EXPORT_SYMBOL(lockdep_on);
340 
341 /*
342  * Debugging switches:
343  */
344 
345 #define VERBOSE			0
346 #define VERY_VERBOSE		0
347 
348 #if VERBOSE
349 # define HARDIRQ_VERBOSE	1
350 # define SOFTIRQ_VERBOSE	1
351 #else
352 # define HARDIRQ_VERBOSE	0
353 # define SOFTIRQ_VERBOSE	0
354 #endif
355 
356 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
357 /*
358  * Quick filtering for interesting events:
359  */
360 static int class_filter(struct lock_class *class)
361 {
362 #if 0
363 	/* Example */
364 	if (class->name_version == 1 &&
365 			!strcmp(class->name, "lockname"))
366 		return 1;
367 	if (class->name_version == 1 &&
368 			!strcmp(class->name, "&struct->lockfield"))
369 		return 1;
370 #endif
371 	/* Filter everything else. 1 would be to allow everything else */
372 	return 0;
373 }
374 #endif
375 
376 static int verbose(struct lock_class *class)
377 {
378 #if VERBOSE
379 	return class_filter(class);
380 #endif
381 	return 0;
382 }
383 
384 /*
385  * Stack-trace: tightly packed array of stack backtrace
386  * addresses. Protected by the graph_lock.
387  */
388 unsigned long nr_stack_trace_entries;
389 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
390 
391 static void print_lockdep_off(const char *bug_msg)
392 {
393 	printk(KERN_DEBUG "%s\n", bug_msg);
394 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
395 #ifdef CONFIG_LOCK_STAT
396 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
397 #endif
398 }
399 
400 static int save_trace(struct stack_trace *trace)
401 {
402 	trace->nr_entries = 0;
403 	trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
404 	trace->entries = stack_trace + nr_stack_trace_entries;
405 
406 	trace->skip = 3;
407 
408 	save_stack_trace(trace);
409 
410 	/*
411 	 * Some daft arches put -1 at the end to indicate its a full trace.
412 	 *
413 	 * <rant> this is buggy anyway, since it takes a whole extra entry so a
414 	 * complete trace that maxes out the entries provided will be reported
415 	 * as incomplete, friggin useless </rant>
416 	 */
417 	if (trace->nr_entries != 0 &&
418 	    trace->entries[trace->nr_entries-1] == ULONG_MAX)
419 		trace->nr_entries--;
420 
421 	trace->max_entries = trace->nr_entries;
422 
423 	nr_stack_trace_entries += trace->nr_entries;
424 
425 	if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
426 		if (!debug_locks_off_graph_unlock())
427 			return 0;
428 
429 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
430 		dump_stack();
431 
432 		return 0;
433 	}
434 
435 	return 1;
436 }
437 
438 unsigned int nr_hardirq_chains;
439 unsigned int nr_softirq_chains;
440 unsigned int nr_process_chains;
441 unsigned int max_lockdep_depth;
442 
443 #ifdef CONFIG_DEBUG_LOCKDEP
444 /*
445  * Various lockdep statistics:
446  */
447 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
448 #endif
449 
450 /*
451  * Locking printouts:
452  */
453 
454 #define __USAGE(__STATE)						\
455 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
456 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
457 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
458 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
459 
460 static const char *usage_str[] =
461 {
462 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
463 #include "lockdep_states.h"
464 #undef LOCKDEP_STATE
465 	[LOCK_USED] = "INITIAL USE",
466 };
467 
468 const char * __get_key_name(struct lockdep_subclass_key *key, char *str)
469 {
470 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
471 }
472 
473 static inline unsigned long lock_flag(enum lock_usage_bit bit)
474 {
475 	return 1UL << bit;
476 }
477 
478 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
479 {
480 	char c = '.';
481 
482 	if (class->usage_mask & lock_flag(bit + 2))
483 		c = '+';
484 	if (class->usage_mask & lock_flag(bit)) {
485 		c = '-';
486 		if (class->usage_mask & lock_flag(bit + 2))
487 			c = '?';
488 	}
489 
490 	return c;
491 }
492 
493 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
494 {
495 	int i = 0;
496 
497 #define LOCKDEP_STATE(__STATE) 						\
498 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
499 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
500 #include "lockdep_states.h"
501 #undef LOCKDEP_STATE
502 
503 	usage[i] = '\0';
504 }
505 
506 static void __print_lock_name(struct lock_class *class)
507 {
508 	char str[KSYM_NAME_LEN];
509 	const char *name;
510 
511 	name = class->name;
512 	if (!name) {
513 		name = __get_key_name(class->key, str);
514 		printk(KERN_CONT "%s", name);
515 	} else {
516 		printk(KERN_CONT "%s", name);
517 		if (class->name_version > 1)
518 			printk(KERN_CONT "#%d", class->name_version);
519 		if (class->subclass)
520 			printk(KERN_CONT "/%d", class->subclass);
521 	}
522 }
523 
524 static void print_lock_name(struct lock_class *class)
525 {
526 	char usage[LOCK_USAGE_CHARS];
527 
528 	get_usage_chars(class, usage);
529 
530 	printk(KERN_CONT " (");
531 	__print_lock_name(class);
532 	printk(KERN_CONT "){%s}", usage);
533 }
534 
535 static void print_lockdep_cache(struct lockdep_map *lock)
536 {
537 	const char *name;
538 	char str[KSYM_NAME_LEN];
539 
540 	name = lock->name;
541 	if (!name)
542 		name = __get_key_name(lock->key->subkeys, str);
543 
544 	printk(KERN_CONT "%s", name);
545 }
546 
547 static void print_lock(struct held_lock *hlock)
548 {
549 	/*
550 	 * We can be called locklessly through debug_show_all_locks() so be
551 	 * extra careful, the hlock might have been released and cleared.
552 	 */
553 	unsigned int class_idx = hlock->class_idx;
554 
555 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfields: */
556 	barrier();
557 
558 	if (!class_idx || (class_idx - 1) >= MAX_LOCKDEP_KEYS) {
559 		printk(KERN_CONT "<RELEASED>\n");
560 		return;
561 	}
562 
563 	print_lock_name(lock_classes + class_idx - 1);
564 	printk(KERN_CONT ", at: [<%p>] %pS\n",
565 		(void *)hlock->acquire_ip, (void *)hlock->acquire_ip);
566 }
567 
568 static void lockdep_print_held_locks(struct task_struct *curr)
569 {
570 	int i, depth = curr->lockdep_depth;
571 
572 	if (!depth) {
573 		printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr));
574 		return;
575 	}
576 	printk("%d lock%s held by %s/%d:\n",
577 		depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr));
578 
579 	for (i = 0; i < depth; i++) {
580 		printk(" #%d: ", i);
581 		print_lock(curr->held_locks + i);
582 	}
583 }
584 
585 static void print_kernel_ident(void)
586 {
587 	printk("%s %.*s %s\n", init_utsname()->release,
588 		(int)strcspn(init_utsname()->version, " "),
589 		init_utsname()->version,
590 		print_tainted());
591 }
592 
593 static int very_verbose(struct lock_class *class)
594 {
595 #if VERY_VERBOSE
596 	return class_filter(class);
597 #endif
598 	return 0;
599 }
600 
601 /*
602  * Is this the address of a static object:
603  */
604 #ifdef __KERNEL__
605 static int static_obj(void *obj)
606 {
607 	unsigned long start = (unsigned long) &_stext,
608 		      end   = (unsigned long) &_end,
609 		      addr  = (unsigned long) obj;
610 
611 	/*
612 	 * static variable?
613 	 */
614 	if ((addr >= start) && (addr < end))
615 		return 1;
616 
617 	if (arch_is_kernel_data(addr))
618 		return 1;
619 
620 	/*
621 	 * in-kernel percpu var?
622 	 */
623 	if (is_kernel_percpu_address(addr))
624 		return 1;
625 
626 	/*
627 	 * module static or percpu var?
628 	 */
629 	return is_module_address(addr) || is_module_percpu_address(addr);
630 }
631 #endif
632 
633 /*
634  * To make lock name printouts unique, we calculate a unique
635  * class->name_version generation counter:
636  */
637 static int count_matching_names(struct lock_class *new_class)
638 {
639 	struct lock_class *class;
640 	int count = 0;
641 
642 	if (!new_class->name)
643 		return 0;
644 
645 	list_for_each_entry_rcu(class, &all_lock_classes, lock_entry) {
646 		if (new_class->key - new_class->subclass == class->key)
647 			return class->name_version;
648 		if (class->name && !strcmp(class->name, new_class->name))
649 			count = max(count, class->name_version);
650 	}
651 
652 	return count + 1;
653 }
654 
655 /*
656  * Register a lock's class in the hash-table, if the class is not present
657  * yet. Otherwise we look it up. We cache the result in the lock object
658  * itself, so actual lookup of the hash should be once per lock object.
659  */
660 static inline struct lock_class *
661 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass)
662 {
663 	struct lockdep_subclass_key *key;
664 	struct hlist_head *hash_head;
665 	struct lock_class *class;
666 	bool is_static = false;
667 
668 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
669 		debug_locks_off();
670 		printk(KERN_ERR
671 			"BUG: looking up invalid subclass: %u\n", subclass);
672 		printk(KERN_ERR
673 			"turning off the locking correctness validator.\n");
674 		dump_stack();
675 		return NULL;
676 	}
677 
678 	/*
679 	 * Static locks do not have their class-keys yet - for them the key
680 	 * is the lock object itself. If the lock is in the per cpu area,
681 	 * the canonical address of the lock (per cpu offset removed) is
682 	 * used.
683 	 */
684 	if (unlikely(!lock->key)) {
685 		unsigned long can_addr, addr = (unsigned long)lock;
686 
687 		if (__is_kernel_percpu_address(addr, &can_addr))
688 			lock->key = (void *)can_addr;
689 		else if (__is_module_percpu_address(addr, &can_addr))
690 			lock->key = (void *)can_addr;
691 		else if (static_obj(lock))
692 			lock->key = (void *)lock;
693 		else
694 			return ERR_PTR(-EINVAL);
695 		is_static = true;
696 	}
697 
698 	/*
699 	 * NOTE: the class-key must be unique. For dynamic locks, a static
700 	 * lock_class_key variable is passed in through the mutex_init()
701 	 * (or spin_lock_init()) call - which acts as the key. For static
702 	 * locks we use the lock object itself as the key.
703 	 */
704 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
705 			sizeof(struct lockdep_map));
706 
707 	key = lock->key->subkeys + subclass;
708 
709 	hash_head = classhashentry(key);
710 
711 	/*
712 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
713 	 */
714 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
715 		return NULL;
716 
717 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
718 		if (class->key == key) {
719 			/*
720 			 * Huh! same key, different name? Did someone trample
721 			 * on some memory? We're most confused.
722 			 */
723 			WARN_ON_ONCE(class->name != lock->name);
724 			return class;
725 		}
726 	}
727 
728 	return is_static || static_obj(lock->key) ? NULL : ERR_PTR(-EINVAL);
729 }
730 
731 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
732 static void cross_init(struct lockdep_map *lock, int cross);
733 static int cross_lock(struct lockdep_map *lock);
734 static int lock_acquire_crosslock(struct held_lock *hlock);
735 static int lock_release_crosslock(struct lockdep_map *lock);
736 #else
737 static inline void cross_init(struct lockdep_map *lock, int cross) {}
738 static inline int cross_lock(struct lockdep_map *lock) { return 0; }
739 static inline int lock_acquire_crosslock(struct held_lock *hlock) { return 2; }
740 static inline int lock_release_crosslock(struct lockdep_map *lock) { return 2; }
741 #endif
742 
743 /*
744  * Register a lock's class in the hash-table, if the class is not present
745  * yet. Otherwise we look it up. We cache the result in the lock object
746  * itself, so actual lookup of the hash should be once per lock object.
747  */
748 static struct lock_class *
749 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
750 {
751 	struct lockdep_subclass_key *key;
752 	struct hlist_head *hash_head;
753 	struct lock_class *class;
754 
755 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
756 
757 	class = look_up_lock_class(lock, subclass);
758 	if (likely(!IS_ERR_OR_NULL(class)))
759 		goto out_set_class_cache;
760 
761 	/*
762 	 * Debug-check: all keys must be persistent!
763 	 */
764 	if (IS_ERR(class)) {
765 		debug_locks_off();
766 		printk("INFO: trying to register non-static key.\n");
767 		printk("the code is fine but needs lockdep annotation.\n");
768 		printk("turning off the locking correctness validator.\n");
769 		dump_stack();
770 		return NULL;
771 	}
772 
773 	key = lock->key->subkeys + subclass;
774 	hash_head = classhashentry(key);
775 
776 	if (!graph_lock()) {
777 		return NULL;
778 	}
779 	/*
780 	 * We have to do the hash-walk again, to avoid races
781 	 * with another CPU:
782 	 */
783 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
784 		if (class->key == key)
785 			goto out_unlock_set;
786 	}
787 
788 	/*
789 	 * Allocate a new key from the static array, and add it to
790 	 * the hash:
791 	 */
792 	if (nr_lock_classes >= MAX_LOCKDEP_KEYS) {
793 		if (!debug_locks_off_graph_unlock()) {
794 			return NULL;
795 		}
796 
797 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
798 		dump_stack();
799 		return NULL;
800 	}
801 	class = lock_classes + nr_lock_classes++;
802 	debug_atomic_inc(nr_unused_locks);
803 	class->key = key;
804 	class->name = lock->name;
805 	class->subclass = subclass;
806 	INIT_LIST_HEAD(&class->lock_entry);
807 	INIT_LIST_HEAD(&class->locks_before);
808 	INIT_LIST_HEAD(&class->locks_after);
809 	class->name_version = count_matching_names(class);
810 	/*
811 	 * We use RCU's safe list-add method to make
812 	 * parallel walking of the hash-list safe:
813 	 */
814 	hlist_add_head_rcu(&class->hash_entry, hash_head);
815 	/*
816 	 * Add it to the global list of classes:
817 	 */
818 	list_add_tail_rcu(&class->lock_entry, &all_lock_classes);
819 
820 	if (verbose(class)) {
821 		graph_unlock();
822 
823 		printk("\nnew class %p: %s", class->key, class->name);
824 		if (class->name_version > 1)
825 			printk(KERN_CONT "#%d", class->name_version);
826 		printk(KERN_CONT "\n");
827 		dump_stack();
828 
829 		if (!graph_lock()) {
830 			return NULL;
831 		}
832 	}
833 out_unlock_set:
834 	graph_unlock();
835 
836 out_set_class_cache:
837 	if (!subclass || force)
838 		lock->class_cache[0] = class;
839 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
840 		lock->class_cache[subclass] = class;
841 
842 	/*
843 	 * Hash collision, did we smoke some? We found a class with a matching
844 	 * hash but the subclass -- which is hashed in -- didn't match.
845 	 */
846 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
847 		return NULL;
848 
849 	return class;
850 }
851 
852 #ifdef CONFIG_PROVE_LOCKING
853 /*
854  * Allocate a lockdep entry. (assumes the graph_lock held, returns
855  * with NULL on failure)
856  */
857 static struct lock_list *alloc_list_entry(void)
858 {
859 	if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) {
860 		if (!debug_locks_off_graph_unlock())
861 			return NULL;
862 
863 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
864 		dump_stack();
865 		return NULL;
866 	}
867 	return list_entries + nr_list_entries++;
868 }
869 
870 /*
871  * Add a new dependency to the head of the list:
872  */
873 static int add_lock_to_list(struct lock_class *this, struct list_head *head,
874 			    unsigned long ip, int distance,
875 			    struct stack_trace *trace)
876 {
877 	struct lock_list *entry;
878 	/*
879 	 * Lock not present yet - get a new dependency struct and
880 	 * add it to the list:
881 	 */
882 	entry = alloc_list_entry();
883 	if (!entry)
884 		return 0;
885 
886 	entry->class = this;
887 	entry->distance = distance;
888 	entry->trace = *trace;
889 	/*
890 	 * Both allocation and removal are done under the graph lock; but
891 	 * iteration is under RCU-sched; see look_up_lock_class() and
892 	 * lockdep_free_key_range().
893 	 */
894 	list_add_tail_rcu(&entry->entry, head);
895 
896 	return 1;
897 }
898 
899 /*
900  * For good efficiency of modular, we use power of 2
901  */
902 #define MAX_CIRCULAR_QUEUE_SIZE		4096UL
903 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
904 
905 /*
906  * The circular_queue and helpers is used to implement the
907  * breadth-first search(BFS)algorithem, by which we can build
908  * the shortest path from the next lock to be acquired to the
909  * previous held lock if there is a circular between them.
910  */
911 struct circular_queue {
912 	unsigned long element[MAX_CIRCULAR_QUEUE_SIZE];
913 	unsigned int  front, rear;
914 };
915 
916 static struct circular_queue lock_cq;
917 
918 unsigned int max_bfs_queue_depth;
919 
920 static unsigned int lockdep_dependency_gen_id;
921 
922 static inline void __cq_init(struct circular_queue *cq)
923 {
924 	cq->front = cq->rear = 0;
925 	lockdep_dependency_gen_id++;
926 }
927 
928 static inline int __cq_empty(struct circular_queue *cq)
929 {
930 	return (cq->front == cq->rear);
931 }
932 
933 static inline int __cq_full(struct circular_queue *cq)
934 {
935 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
936 }
937 
938 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem)
939 {
940 	if (__cq_full(cq))
941 		return -1;
942 
943 	cq->element[cq->rear] = elem;
944 	cq->rear = (cq->rear + 1) & CQ_MASK;
945 	return 0;
946 }
947 
948 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem)
949 {
950 	if (__cq_empty(cq))
951 		return -1;
952 
953 	*elem = cq->element[cq->front];
954 	cq->front = (cq->front + 1) & CQ_MASK;
955 	return 0;
956 }
957 
958 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
959 {
960 	return (cq->rear - cq->front) & CQ_MASK;
961 }
962 
963 static inline void mark_lock_accessed(struct lock_list *lock,
964 					struct lock_list *parent)
965 {
966 	unsigned long nr;
967 
968 	nr = lock - list_entries;
969 	WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */
970 	lock->parent = parent;
971 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
972 }
973 
974 static inline unsigned long lock_accessed(struct lock_list *lock)
975 {
976 	unsigned long nr;
977 
978 	nr = lock - list_entries;
979 	WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */
980 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
981 }
982 
983 static inline struct lock_list *get_lock_parent(struct lock_list *child)
984 {
985 	return child->parent;
986 }
987 
988 static inline int get_lock_depth(struct lock_list *child)
989 {
990 	int depth = 0;
991 	struct lock_list *parent;
992 
993 	while ((parent = get_lock_parent(child))) {
994 		child = parent;
995 		depth++;
996 	}
997 	return depth;
998 }
999 
1000 static int __bfs(struct lock_list *source_entry,
1001 		 void *data,
1002 		 int (*match)(struct lock_list *entry, void *data),
1003 		 struct lock_list **target_entry,
1004 		 int forward)
1005 {
1006 	struct lock_list *entry;
1007 	struct list_head *head;
1008 	struct circular_queue *cq = &lock_cq;
1009 	int ret = 1;
1010 
1011 	if (match(source_entry, data)) {
1012 		*target_entry = source_entry;
1013 		ret = 0;
1014 		goto exit;
1015 	}
1016 
1017 	if (forward)
1018 		head = &source_entry->class->locks_after;
1019 	else
1020 		head = &source_entry->class->locks_before;
1021 
1022 	if (list_empty(head))
1023 		goto exit;
1024 
1025 	__cq_init(cq);
1026 	__cq_enqueue(cq, (unsigned long)source_entry);
1027 
1028 	while (!__cq_empty(cq)) {
1029 		struct lock_list *lock;
1030 
1031 		__cq_dequeue(cq, (unsigned long *)&lock);
1032 
1033 		if (!lock->class) {
1034 			ret = -2;
1035 			goto exit;
1036 		}
1037 
1038 		if (forward)
1039 			head = &lock->class->locks_after;
1040 		else
1041 			head = &lock->class->locks_before;
1042 
1043 		DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1044 
1045 		list_for_each_entry_rcu(entry, head, entry) {
1046 			if (!lock_accessed(entry)) {
1047 				unsigned int cq_depth;
1048 				mark_lock_accessed(entry, lock);
1049 				if (match(entry, data)) {
1050 					*target_entry = entry;
1051 					ret = 0;
1052 					goto exit;
1053 				}
1054 
1055 				if (__cq_enqueue(cq, (unsigned long)entry)) {
1056 					ret = -1;
1057 					goto exit;
1058 				}
1059 				cq_depth = __cq_get_elem_count(cq);
1060 				if (max_bfs_queue_depth < cq_depth)
1061 					max_bfs_queue_depth = cq_depth;
1062 			}
1063 		}
1064 	}
1065 exit:
1066 	return ret;
1067 }
1068 
1069 static inline int __bfs_forwards(struct lock_list *src_entry,
1070 			void *data,
1071 			int (*match)(struct lock_list *entry, void *data),
1072 			struct lock_list **target_entry)
1073 {
1074 	return __bfs(src_entry, data, match, target_entry, 1);
1075 
1076 }
1077 
1078 static inline int __bfs_backwards(struct lock_list *src_entry,
1079 			void *data,
1080 			int (*match)(struct lock_list *entry, void *data),
1081 			struct lock_list **target_entry)
1082 {
1083 	return __bfs(src_entry, data, match, target_entry, 0);
1084 
1085 }
1086 
1087 /*
1088  * Recursive, forwards-direction lock-dependency checking, used for
1089  * both noncyclic checking and for hardirq-unsafe/softirq-unsafe
1090  * checking.
1091  */
1092 
1093 /*
1094  * Print a dependency chain entry (this is only done when a deadlock
1095  * has been detected):
1096  */
1097 static noinline int
1098 print_circular_bug_entry(struct lock_list *target, int depth)
1099 {
1100 	if (debug_locks_silent)
1101 		return 0;
1102 	printk("\n-> #%u", depth);
1103 	print_lock_name(target->class);
1104 	printk(KERN_CONT ":\n");
1105 	print_stack_trace(&target->trace, 6);
1106 
1107 	return 0;
1108 }
1109 
1110 static void
1111 print_circular_lock_scenario(struct held_lock *src,
1112 			     struct held_lock *tgt,
1113 			     struct lock_list *prt)
1114 {
1115 	struct lock_class *source = hlock_class(src);
1116 	struct lock_class *target = hlock_class(tgt);
1117 	struct lock_class *parent = prt->class;
1118 
1119 	/*
1120 	 * A direct locking problem where unsafe_class lock is taken
1121 	 * directly by safe_class lock, then all we need to show
1122 	 * is the deadlock scenario, as it is obvious that the
1123 	 * unsafe lock is taken under the safe lock.
1124 	 *
1125 	 * But if there is a chain instead, where the safe lock takes
1126 	 * an intermediate lock (middle_class) where this lock is
1127 	 * not the same as the safe lock, then the lock chain is
1128 	 * used to describe the problem. Otherwise we would need
1129 	 * to show a different CPU case for each link in the chain
1130 	 * from the safe_class lock to the unsafe_class lock.
1131 	 */
1132 	if (parent != source) {
1133 		printk("Chain exists of:\n  ");
1134 		__print_lock_name(source);
1135 		printk(KERN_CONT " --> ");
1136 		__print_lock_name(parent);
1137 		printk(KERN_CONT " --> ");
1138 		__print_lock_name(target);
1139 		printk(KERN_CONT "\n\n");
1140 	}
1141 
1142 	if (cross_lock(tgt->instance)) {
1143 		printk(" Possible unsafe locking scenario by crosslock:\n\n");
1144 		printk("       CPU0                    CPU1\n");
1145 		printk("       ----                    ----\n");
1146 		printk("  lock(");
1147 		__print_lock_name(parent);
1148 		printk(KERN_CONT ");\n");
1149 		printk("  lock(");
1150 		__print_lock_name(target);
1151 		printk(KERN_CONT ");\n");
1152 		printk("                               lock(");
1153 		__print_lock_name(source);
1154 		printk(KERN_CONT ");\n");
1155 		printk("                               unlock(");
1156 		__print_lock_name(target);
1157 		printk(KERN_CONT ");\n");
1158 		printk("\n *** DEADLOCK ***\n\n");
1159 	} else {
1160 		printk(" Possible unsafe locking scenario:\n\n");
1161 		printk("       CPU0                    CPU1\n");
1162 		printk("       ----                    ----\n");
1163 		printk("  lock(");
1164 		__print_lock_name(target);
1165 		printk(KERN_CONT ");\n");
1166 		printk("                               lock(");
1167 		__print_lock_name(parent);
1168 		printk(KERN_CONT ");\n");
1169 		printk("                               lock(");
1170 		__print_lock_name(target);
1171 		printk(KERN_CONT ");\n");
1172 		printk("  lock(");
1173 		__print_lock_name(source);
1174 		printk(KERN_CONT ");\n");
1175 		printk("\n *** DEADLOCK ***\n\n");
1176 	}
1177 }
1178 
1179 /*
1180  * When a circular dependency is detected, print the
1181  * header first:
1182  */
1183 static noinline int
1184 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1185 			struct held_lock *check_src,
1186 			struct held_lock *check_tgt)
1187 {
1188 	struct task_struct *curr = current;
1189 
1190 	if (debug_locks_silent)
1191 		return 0;
1192 
1193 	pr_warn("\n");
1194 	pr_warn("======================================================\n");
1195 	pr_warn("WARNING: possible circular locking dependency detected\n");
1196 	print_kernel_ident();
1197 	pr_warn("------------------------------------------------------\n");
1198 	pr_warn("%s/%d is trying to acquire lock:\n",
1199 		curr->comm, task_pid_nr(curr));
1200 	print_lock(check_src);
1201 
1202 	if (cross_lock(check_tgt->instance))
1203 		pr_warn("\nbut now in release context of a crosslock acquired at the following:\n");
1204 	else
1205 		pr_warn("\nbut task is already holding lock:\n");
1206 
1207 	print_lock(check_tgt);
1208 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1209 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1210 
1211 	print_circular_bug_entry(entry, depth);
1212 
1213 	return 0;
1214 }
1215 
1216 static inline int class_equal(struct lock_list *entry, void *data)
1217 {
1218 	return entry->class == data;
1219 }
1220 
1221 static noinline int print_circular_bug(struct lock_list *this,
1222 				struct lock_list *target,
1223 				struct held_lock *check_src,
1224 				struct held_lock *check_tgt,
1225 				struct stack_trace *trace)
1226 {
1227 	struct task_struct *curr = current;
1228 	struct lock_list *parent;
1229 	struct lock_list *first_parent;
1230 	int depth;
1231 
1232 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1233 		return 0;
1234 
1235 	if (cross_lock(check_tgt->instance))
1236 		this->trace = *trace;
1237 	else if (!save_trace(&this->trace))
1238 		return 0;
1239 
1240 	depth = get_lock_depth(target);
1241 
1242 	print_circular_bug_header(target, depth, check_src, check_tgt);
1243 
1244 	parent = get_lock_parent(target);
1245 	first_parent = parent;
1246 
1247 	while (parent) {
1248 		print_circular_bug_entry(parent, --depth);
1249 		parent = get_lock_parent(parent);
1250 	}
1251 
1252 	printk("\nother info that might help us debug this:\n\n");
1253 	print_circular_lock_scenario(check_src, check_tgt,
1254 				     first_parent);
1255 
1256 	lockdep_print_held_locks(curr);
1257 
1258 	printk("\nstack backtrace:\n");
1259 	dump_stack();
1260 
1261 	return 0;
1262 }
1263 
1264 static noinline int print_bfs_bug(int ret)
1265 {
1266 	if (!debug_locks_off_graph_unlock())
1267 		return 0;
1268 
1269 	/*
1270 	 * Breadth-first-search failed, graph got corrupted?
1271 	 */
1272 	WARN(1, "lockdep bfs error:%d\n", ret);
1273 
1274 	return 0;
1275 }
1276 
1277 static int noop_count(struct lock_list *entry, void *data)
1278 {
1279 	(*(unsigned long *)data)++;
1280 	return 0;
1281 }
1282 
1283 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1284 {
1285 	unsigned long  count = 0;
1286 	struct lock_list *uninitialized_var(target_entry);
1287 
1288 	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1289 
1290 	return count;
1291 }
1292 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1293 {
1294 	unsigned long ret, flags;
1295 	struct lock_list this;
1296 
1297 	this.parent = NULL;
1298 	this.class = class;
1299 
1300 	local_irq_save(flags);
1301 	arch_spin_lock(&lockdep_lock);
1302 	ret = __lockdep_count_forward_deps(&this);
1303 	arch_spin_unlock(&lockdep_lock);
1304 	local_irq_restore(flags);
1305 
1306 	return ret;
1307 }
1308 
1309 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1310 {
1311 	unsigned long  count = 0;
1312 	struct lock_list *uninitialized_var(target_entry);
1313 
1314 	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1315 
1316 	return count;
1317 }
1318 
1319 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1320 {
1321 	unsigned long ret, flags;
1322 	struct lock_list this;
1323 
1324 	this.parent = NULL;
1325 	this.class = class;
1326 
1327 	local_irq_save(flags);
1328 	arch_spin_lock(&lockdep_lock);
1329 	ret = __lockdep_count_backward_deps(&this);
1330 	arch_spin_unlock(&lockdep_lock);
1331 	local_irq_restore(flags);
1332 
1333 	return ret;
1334 }
1335 
1336 /*
1337  * Prove that the dependency graph starting at <entry> can not
1338  * lead to <target>. Print an error and return 0 if it does.
1339  */
1340 static noinline int
1341 check_noncircular(struct lock_list *root, struct lock_class *target,
1342 		struct lock_list **target_entry)
1343 {
1344 	int result;
1345 
1346 	debug_atomic_inc(nr_cyclic_checks);
1347 
1348 	result = __bfs_forwards(root, target, class_equal, target_entry);
1349 
1350 	return result;
1351 }
1352 
1353 static noinline int
1354 check_redundant(struct lock_list *root, struct lock_class *target,
1355 		struct lock_list **target_entry)
1356 {
1357 	int result;
1358 
1359 	debug_atomic_inc(nr_redundant_checks);
1360 
1361 	result = __bfs_forwards(root, target, class_equal, target_entry);
1362 
1363 	return result;
1364 }
1365 
1366 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
1367 /*
1368  * Forwards and backwards subgraph searching, for the purposes of
1369  * proving that two subgraphs can be connected by a new dependency
1370  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1371  */
1372 
1373 static inline int usage_match(struct lock_list *entry, void *bit)
1374 {
1375 	return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit);
1376 }
1377 
1378 
1379 
1380 /*
1381  * Find a node in the forwards-direction dependency sub-graph starting
1382  * at @root->class that matches @bit.
1383  *
1384  * Return 0 if such a node exists in the subgraph, and put that node
1385  * into *@target_entry.
1386  *
1387  * Return 1 otherwise and keep *@target_entry unchanged.
1388  * Return <0 on error.
1389  */
1390 static int
1391 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1392 			struct lock_list **target_entry)
1393 {
1394 	int result;
1395 
1396 	debug_atomic_inc(nr_find_usage_forwards_checks);
1397 
1398 	result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1399 
1400 	return result;
1401 }
1402 
1403 /*
1404  * Find a node in the backwards-direction dependency sub-graph starting
1405  * at @root->class that matches @bit.
1406  *
1407  * Return 0 if such a node exists in the subgraph, and put that node
1408  * into *@target_entry.
1409  *
1410  * Return 1 otherwise and keep *@target_entry unchanged.
1411  * Return <0 on error.
1412  */
1413 static int
1414 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1415 			struct lock_list **target_entry)
1416 {
1417 	int result;
1418 
1419 	debug_atomic_inc(nr_find_usage_backwards_checks);
1420 
1421 	result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1422 
1423 	return result;
1424 }
1425 
1426 static void print_lock_class_header(struct lock_class *class, int depth)
1427 {
1428 	int bit;
1429 
1430 	printk("%*s->", depth, "");
1431 	print_lock_name(class);
1432 	printk(KERN_CONT " ops: %lu", class->ops);
1433 	printk(KERN_CONT " {\n");
1434 
1435 	for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1436 		if (class->usage_mask & (1 << bit)) {
1437 			int len = depth;
1438 
1439 			len += printk("%*s   %s", depth, "", usage_str[bit]);
1440 			len += printk(KERN_CONT " at:\n");
1441 			print_stack_trace(class->usage_traces + bit, len);
1442 		}
1443 	}
1444 	printk("%*s }\n", depth, "");
1445 
1446 	printk("%*s ... key      at: [<%p>] %pS\n",
1447 		depth, "", class->key, class->key);
1448 }
1449 
1450 /*
1451  * printk the shortest lock dependencies from @start to @end in reverse order:
1452  */
1453 static void __used
1454 print_shortest_lock_dependencies(struct lock_list *leaf,
1455 				struct lock_list *root)
1456 {
1457 	struct lock_list *entry = leaf;
1458 	int depth;
1459 
1460 	/*compute depth from generated tree by BFS*/
1461 	depth = get_lock_depth(leaf);
1462 
1463 	do {
1464 		print_lock_class_header(entry->class, depth);
1465 		printk("%*s ... acquired at:\n", depth, "");
1466 		print_stack_trace(&entry->trace, 2);
1467 		printk("\n");
1468 
1469 		if (depth == 0 && (entry != root)) {
1470 			printk("lockdep:%s bad path found in chain graph\n", __func__);
1471 			break;
1472 		}
1473 
1474 		entry = get_lock_parent(entry);
1475 		depth--;
1476 	} while (entry && (depth >= 0));
1477 
1478 	return;
1479 }
1480 
1481 static void
1482 print_irq_lock_scenario(struct lock_list *safe_entry,
1483 			struct lock_list *unsafe_entry,
1484 			struct lock_class *prev_class,
1485 			struct lock_class *next_class)
1486 {
1487 	struct lock_class *safe_class = safe_entry->class;
1488 	struct lock_class *unsafe_class = unsafe_entry->class;
1489 	struct lock_class *middle_class = prev_class;
1490 
1491 	if (middle_class == safe_class)
1492 		middle_class = next_class;
1493 
1494 	/*
1495 	 * A direct locking problem where unsafe_class lock is taken
1496 	 * directly by safe_class lock, then all we need to show
1497 	 * is the deadlock scenario, as it is obvious that the
1498 	 * unsafe lock is taken under the safe lock.
1499 	 *
1500 	 * But if there is a chain instead, where the safe lock takes
1501 	 * an intermediate lock (middle_class) where this lock is
1502 	 * not the same as the safe lock, then the lock chain is
1503 	 * used to describe the problem. Otherwise we would need
1504 	 * to show a different CPU case for each link in the chain
1505 	 * from the safe_class lock to the unsafe_class lock.
1506 	 */
1507 	if (middle_class != unsafe_class) {
1508 		printk("Chain exists of:\n  ");
1509 		__print_lock_name(safe_class);
1510 		printk(KERN_CONT " --> ");
1511 		__print_lock_name(middle_class);
1512 		printk(KERN_CONT " --> ");
1513 		__print_lock_name(unsafe_class);
1514 		printk(KERN_CONT "\n\n");
1515 	}
1516 
1517 	printk(" Possible interrupt unsafe locking scenario:\n\n");
1518 	printk("       CPU0                    CPU1\n");
1519 	printk("       ----                    ----\n");
1520 	printk("  lock(");
1521 	__print_lock_name(unsafe_class);
1522 	printk(KERN_CONT ");\n");
1523 	printk("                               local_irq_disable();\n");
1524 	printk("                               lock(");
1525 	__print_lock_name(safe_class);
1526 	printk(KERN_CONT ");\n");
1527 	printk("                               lock(");
1528 	__print_lock_name(middle_class);
1529 	printk(KERN_CONT ");\n");
1530 	printk("  <Interrupt>\n");
1531 	printk("    lock(");
1532 	__print_lock_name(safe_class);
1533 	printk(KERN_CONT ");\n");
1534 	printk("\n *** DEADLOCK ***\n\n");
1535 }
1536 
1537 static int
1538 print_bad_irq_dependency(struct task_struct *curr,
1539 			 struct lock_list *prev_root,
1540 			 struct lock_list *next_root,
1541 			 struct lock_list *backwards_entry,
1542 			 struct lock_list *forwards_entry,
1543 			 struct held_lock *prev,
1544 			 struct held_lock *next,
1545 			 enum lock_usage_bit bit1,
1546 			 enum lock_usage_bit bit2,
1547 			 const char *irqclass)
1548 {
1549 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1550 		return 0;
1551 
1552 	pr_warn("\n");
1553 	pr_warn("=====================================================\n");
1554 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
1555 		irqclass, irqclass);
1556 	print_kernel_ident();
1557 	pr_warn("-----------------------------------------------------\n");
1558 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
1559 		curr->comm, task_pid_nr(curr),
1560 		curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
1561 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
1562 		curr->hardirqs_enabled,
1563 		curr->softirqs_enabled);
1564 	print_lock(next);
1565 
1566 	pr_warn("\nand this task is already holding:\n");
1567 	print_lock(prev);
1568 	pr_warn("which would create a new lock dependency:\n");
1569 	print_lock_name(hlock_class(prev));
1570 	pr_cont(" ->");
1571 	print_lock_name(hlock_class(next));
1572 	pr_cont("\n");
1573 
1574 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
1575 		irqclass);
1576 	print_lock_name(backwards_entry->class);
1577 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
1578 
1579 	print_stack_trace(backwards_entry->class->usage_traces + bit1, 1);
1580 
1581 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
1582 	print_lock_name(forwards_entry->class);
1583 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
1584 	pr_warn("...");
1585 
1586 	print_stack_trace(forwards_entry->class->usage_traces + bit2, 1);
1587 
1588 	pr_warn("\nother info that might help us debug this:\n\n");
1589 	print_irq_lock_scenario(backwards_entry, forwards_entry,
1590 				hlock_class(prev), hlock_class(next));
1591 
1592 	lockdep_print_held_locks(curr);
1593 
1594 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
1595 	if (!save_trace(&prev_root->trace))
1596 		return 0;
1597 	print_shortest_lock_dependencies(backwards_entry, prev_root);
1598 
1599 	pr_warn("\nthe dependencies between the lock to be acquired");
1600 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
1601 	if (!save_trace(&next_root->trace))
1602 		return 0;
1603 	print_shortest_lock_dependencies(forwards_entry, next_root);
1604 
1605 	pr_warn("\nstack backtrace:\n");
1606 	dump_stack();
1607 
1608 	return 0;
1609 }
1610 
1611 static int
1612 check_usage(struct task_struct *curr, struct held_lock *prev,
1613 	    struct held_lock *next, enum lock_usage_bit bit_backwards,
1614 	    enum lock_usage_bit bit_forwards, const char *irqclass)
1615 {
1616 	int ret;
1617 	struct lock_list this, that;
1618 	struct lock_list *uninitialized_var(target_entry);
1619 	struct lock_list *uninitialized_var(target_entry1);
1620 
1621 	this.parent = NULL;
1622 
1623 	this.class = hlock_class(prev);
1624 	ret = find_usage_backwards(&this, bit_backwards, &target_entry);
1625 	if (ret < 0)
1626 		return print_bfs_bug(ret);
1627 	if (ret == 1)
1628 		return ret;
1629 
1630 	that.parent = NULL;
1631 	that.class = hlock_class(next);
1632 	ret = find_usage_forwards(&that, bit_forwards, &target_entry1);
1633 	if (ret < 0)
1634 		return print_bfs_bug(ret);
1635 	if (ret == 1)
1636 		return ret;
1637 
1638 	return print_bad_irq_dependency(curr, &this, &that,
1639 			target_entry, target_entry1,
1640 			prev, next,
1641 			bit_backwards, bit_forwards, irqclass);
1642 }
1643 
1644 static const char *state_names[] = {
1645 #define LOCKDEP_STATE(__STATE) \
1646 	__stringify(__STATE),
1647 #include "lockdep_states.h"
1648 #undef LOCKDEP_STATE
1649 };
1650 
1651 static const char *state_rnames[] = {
1652 #define LOCKDEP_STATE(__STATE) \
1653 	__stringify(__STATE)"-READ",
1654 #include "lockdep_states.h"
1655 #undef LOCKDEP_STATE
1656 };
1657 
1658 static inline const char *state_name(enum lock_usage_bit bit)
1659 {
1660 	return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2];
1661 }
1662 
1663 static int exclusive_bit(int new_bit)
1664 {
1665 	/*
1666 	 * USED_IN
1667 	 * USED_IN_READ
1668 	 * ENABLED
1669 	 * ENABLED_READ
1670 	 *
1671 	 * bit 0 - write/read
1672 	 * bit 1 - used_in/enabled
1673 	 * bit 2+  state
1674 	 */
1675 
1676 	int state = new_bit & ~3;
1677 	int dir = new_bit & 2;
1678 
1679 	/*
1680 	 * keep state, bit flip the direction and strip read.
1681 	 */
1682 	return state | (dir ^ 2);
1683 }
1684 
1685 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
1686 			   struct held_lock *next, enum lock_usage_bit bit)
1687 {
1688 	/*
1689 	 * Prove that the new dependency does not connect a hardirq-safe
1690 	 * lock with a hardirq-unsafe lock - to achieve this we search
1691 	 * the backwards-subgraph starting at <prev>, and the
1692 	 * forwards-subgraph starting at <next>:
1693 	 */
1694 	if (!check_usage(curr, prev, next, bit,
1695 			   exclusive_bit(bit), state_name(bit)))
1696 		return 0;
1697 
1698 	bit++; /* _READ */
1699 
1700 	/*
1701 	 * Prove that the new dependency does not connect a hardirq-safe-read
1702 	 * lock with a hardirq-unsafe lock - to achieve this we search
1703 	 * the backwards-subgraph starting at <prev>, and the
1704 	 * forwards-subgraph starting at <next>:
1705 	 */
1706 	if (!check_usage(curr, prev, next, bit,
1707 			   exclusive_bit(bit), state_name(bit)))
1708 		return 0;
1709 
1710 	return 1;
1711 }
1712 
1713 static int
1714 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1715 		struct held_lock *next)
1716 {
1717 #define LOCKDEP_STATE(__STATE)						\
1718 	if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE))	\
1719 		return 0;
1720 #include "lockdep_states.h"
1721 #undef LOCKDEP_STATE
1722 
1723 	return 1;
1724 }
1725 
1726 static void inc_chains(void)
1727 {
1728 	if (current->hardirq_context)
1729 		nr_hardirq_chains++;
1730 	else {
1731 		if (current->softirq_context)
1732 			nr_softirq_chains++;
1733 		else
1734 			nr_process_chains++;
1735 	}
1736 }
1737 
1738 #else
1739 
1740 static inline int
1741 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1742 		struct held_lock *next)
1743 {
1744 	return 1;
1745 }
1746 
1747 static inline void inc_chains(void)
1748 {
1749 	nr_process_chains++;
1750 }
1751 
1752 #endif
1753 
1754 static void
1755 print_deadlock_scenario(struct held_lock *nxt,
1756 			     struct held_lock *prv)
1757 {
1758 	struct lock_class *next = hlock_class(nxt);
1759 	struct lock_class *prev = hlock_class(prv);
1760 
1761 	printk(" Possible unsafe locking scenario:\n\n");
1762 	printk("       CPU0\n");
1763 	printk("       ----\n");
1764 	printk("  lock(");
1765 	__print_lock_name(prev);
1766 	printk(KERN_CONT ");\n");
1767 	printk("  lock(");
1768 	__print_lock_name(next);
1769 	printk(KERN_CONT ");\n");
1770 	printk("\n *** DEADLOCK ***\n\n");
1771 	printk(" May be due to missing lock nesting notation\n\n");
1772 }
1773 
1774 static int
1775 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
1776 		   struct held_lock *next)
1777 {
1778 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1779 		return 0;
1780 
1781 	pr_warn("\n");
1782 	pr_warn("============================================\n");
1783 	pr_warn("WARNING: possible recursive locking detected\n");
1784 	print_kernel_ident();
1785 	pr_warn("--------------------------------------------\n");
1786 	pr_warn("%s/%d is trying to acquire lock:\n",
1787 		curr->comm, task_pid_nr(curr));
1788 	print_lock(next);
1789 	pr_warn("\nbut task is already holding lock:\n");
1790 	print_lock(prev);
1791 
1792 	pr_warn("\nother info that might help us debug this:\n");
1793 	print_deadlock_scenario(next, prev);
1794 	lockdep_print_held_locks(curr);
1795 
1796 	pr_warn("\nstack backtrace:\n");
1797 	dump_stack();
1798 
1799 	return 0;
1800 }
1801 
1802 /*
1803  * Check whether we are holding such a class already.
1804  *
1805  * (Note that this has to be done separately, because the graph cannot
1806  * detect such classes of deadlocks.)
1807  *
1808  * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
1809  */
1810 static int
1811 check_deadlock(struct task_struct *curr, struct held_lock *next,
1812 	       struct lockdep_map *next_instance, int read)
1813 {
1814 	struct held_lock *prev;
1815 	struct held_lock *nest = NULL;
1816 	int i;
1817 
1818 	for (i = 0; i < curr->lockdep_depth; i++) {
1819 		prev = curr->held_locks + i;
1820 
1821 		if (prev->instance == next->nest_lock)
1822 			nest = prev;
1823 
1824 		if (hlock_class(prev) != hlock_class(next))
1825 			continue;
1826 
1827 		/*
1828 		 * Allow read-after-read recursion of the same
1829 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
1830 		 */
1831 		if ((read == 2) && prev->read)
1832 			return 2;
1833 
1834 		/*
1835 		 * We're holding the nest_lock, which serializes this lock's
1836 		 * nesting behaviour.
1837 		 */
1838 		if (nest)
1839 			return 2;
1840 
1841 		if (cross_lock(prev->instance))
1842 			continue;
1843 
1844 		return print_deadlock_bug(curr, prev, next);
1845 	}
1846 	return 1;
1847 }
1848 
1849 /*
1850  * There was a chain-cache miss, and we are about to add a new dependency
1851  * to a previous lock. We recursively validate the following rules:
1852  *
1853  *  - would the adding of the <prev> -> <next> dependency create a
1854  *    circular dependency in the graph? [== circular deadlock]
1855  *
1856  *  - does the new prev->next dependency connect any hardirq-safe lock
1857  *    (in the full backwards-subgraph starting at <prev>) with any
1858  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
1859  *    <next>)? [== illegal lock inversion with hardirq contexts]
1860  *
1861  *  - does the new prev->next dependency connect any softirq-safe lock
1862  *    (in the full backwards-subgraph starting at <prev>) with any
1863  *    softirq-unsafe lock (in the full forwards-subgraph starting at
1864  *    <next>)? [== illegal lock inversion with softirq contexts]
1865  *
1866  * any of these scenarios could lead to a deadlock.
1867  *
1868  * Then if all the validations pass, we add the forwards and backwards
1869  * dependency.
1870  */
1871 static int
1872 check_prev_add(struct task_struct *curr, struct held_lock *prev,
1873 	       struct held_lock *next, int distance, struct stack_trace *trace,
1874 	       int (*save)(struct stack_trace *trace))
1875 {
1876 	struct lock_list *entry;
1877 	int ret;
1878 	struct lock_list this;
1879 	struct lock_list *uninitialized_var(target_entry);
1880 
1881 	/*
1882 	 * Prove that the new <prev> -> <next> dependency would not
1883 	 * create a circular dependency in the graph. (We do this by
1884 	 * forward-recursing into the graph starting at <next>, and
1885 	 * checking whether we can reach <prev>.)
1886 	 *
1887 	 * We are using global variables to control the recursion, to
1888 	 * keep the stackframe size of the recursive functions low:
1889 	 */
1890 	this.class = hlock_class(next);
1891 	this.parent = NULL;
1892 	ret = check_noncircular(&this, hlock_class(prev), &target_entry);
1893 	if (unlikely(!ret))
1894 		return print_circular_bug(&this, target_entry, next, prev, trace);
1895 	else if (unlikely(ret < 0))
1896 		return print_bfs_bug(ret);
1897 
1898 	if (!check_prev_add_irq(curr, prev, next))
1899 		return 0;
1900 
1901 	/*
1902 	 * For recursive read-locks we do all the dependency checks,
1903 	 * but we dont store read-triggered dependencies (only
1904 	 * write-triggered dependencies). This ensures that only the
1905 	 * write-side dependencies matter, and that if for example a
1906 	 * write-lock never takes any other locks, then the reads are
1907 	 * equivalent to a NOP.
1908 	 */
1909 	if (next->read == 2 || prev->read == 2)
1910 		return 1;
1911 	/*
1912 	 * Is the <prev> -> <next> dependency already present?
1913 	 *
1914 	 * (this may occur even though this is a new chain: consider
1915 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
1916 	 *  chains - the second one will be new, but L1 already has
1917 	 *  L2 added to its dependency list, due to the first chain.)
1918 	 */
1919 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
1920 		if (entry->class == hlock_class(next)) {
1921 			if (distance == 1)
1922 				entry->distance = 1;
1923 			return 1;
1924 		}
1925 	}
1926 
1927 	/*
1928 	 * Is the <prev> -> <next> link redundant?
1929 	 */
1930 	this.class = hlock_class(prev);
1931 	this.parent = NULL;
1932 	ret = check_redundant(&this, hlock_class(next), &target_entry);
1933 	if (!ret) {
1934 		debug_atomic_inc(nr_redundant);
1935 		return 2;
1936 	}
1937 	if (ret < 0)
1938 		return print_bfs_bug(ret);
1939 
1940 
1941 	if (save && !save(trace))
1942 		return 0;
1943 
1944 	/*
1945 	 * Ok, all validations passed, add the new lock
1946 	 * to the previous lock's dependency list:
1947 	 */
1948 	ret = add_lock_to_list(hlock_class(next),
1949 			       &hlock_class(prev)->locks_after,
1950 			       next->acquire_ip, distance, trace);
1951 
1952 	if (!ret)
1953 		return 0;
1954 
1955 	ret = add_lock_to_list(hlock_class(prev),
1956 			       &hlock_class(next)->locks_before,
1957 			       next->acquire_ip, distance, trace);
1958 	if (!ret)
1959 		return 0;
1960 
1961 	/*
1962 	 * Debugging printouts:
1963 	 */
1964 	if (verbose(hlock_class(prev)) || verbose(hlock_class(next))) {
1965 		graph_unlock();
1966 		printk("\n new dependency: ");
1967 		print_lock_name(hlock_class(prev));
1968 		printk(KERN_CONT " => ");
1969 		print_lock_name(hlock_class(next));
1970 		printk(KERN_CONT "\n");
1971 		dump_stack();
1972 		if (!graph_lock())
1973 			return 0;
1974 	}
1975 	return 2;
1976 }
1977 
1978 /*
1979  * Add the dependency to all directly-previous locks that are 'relevant'.
1980  * The ones that are relevant are (in increasing distance from curr):
1981  * all consecutive trylock entries and the final non-trylock entry - or
1982  * the end of this context's lock-chain - whichever comes first.
1983  */
1984 static int
1985 check_prevs_add(struct task_struct *curr, struct held_lock *next)
1986 {
1987 	int depth = curr->lockdep_depth;
1988 	struct held_lock *hlock;
1989 	struct stack_trace trace;
1990 	int (*save)(struct stack_trace *trace) = save_trace;
1991 
1992 	/*
1993 	 * Debugging checks.
1994 	 *
1995 	 * Depth must not be zero for a non-head lock:
1996 	 */
1997 	if (!depth)
1998 		goto out_bug;
1999 	/*
2000 	 * At least two relevant locks must exist for this
2001 	 * to be a head:
2002 	 */
2003 	if (curr->held_locks[depth].irq_context !=
2004 			curr->held_locks[depth-1].irq_context)
2005 		goto out_bug;
2006 
2007 	for (;;) {
2008 		int distance = curr->lockdep_depth - depth + 1;
2009 		hlock = curr->held_locks + depth - 1;
2010 		/*
2011 		 * Only non-crosslock entries get new dependencies added.
2012 		 * Crosslock entries will be added by commit later:
2013 		 */
2014 		if (!cross_lock(hlock->instance)) {
2015 			/*
2016 			 * Only non-recursive-read entries get new dependencies
2017 			 * added:
2018 			 */
2019 			if (hlock->read != 2 && hlock->check) {
2020 				int ret = check_prev_add(curr, hlock, next,
2021 							 distance, &trace, save);
2022 				if (!ret)
2023 					return 0;
2024 
2025 				/*
2026 				 * Stop saving stack_trace if save_trace() was
2027 				 * called at least once:
2028 				 */
2029 				if (save && ret == 2)
2030 					save = NULL;
2031 
2032 				/*
2033 				 * Stop after the first non-trylock entry,
2034 				 * as non-trylock entries have added their
2035 				 * own direct dependencies already, so this
2036 				 * lock is connected to them indirectly:
2037 				 */
2038 				if (!hlock->trylock)
2039 					break;
2040 			}
2041 		}
2042 		depth--;
2043 		/*
2044 		 * End of lock-stack?
2045 		 */
2046 		if (!depth)
2047 			break;
2048 		/*
2049 		 * Stop the search if we cross into another context:
2050 		 */
2051 		if (curr->held_locks[depth].irq_context !=
2052 				curr->held_locks[depth-1].irq_context)
2053 			break;
2054 	}
2055 	return 1;
2056 out_bug:
2057 	if (!debug_locks_off_graph_unlock())
2058 		return 0;
2059 
2060 	/*
2061 	 * Clearly we all shouldn't be here, but since we made it we
2062 	 * can reliable say we messed up our state. See the above two
2063 	 * gotos for reasons why we could possibly end up here.
2064 	 */
2065 	WARN_ON(1);
2066 
2067 	return 0;
2068 }
2069 
2070 unsigned long nr_lock_chains;
2071 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
2072 int nr_chain_hlocks;
2073 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
2074 
2075 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
2076 {
2077 	return lock_classes + chain_hlocks[chain->base + i];
2078 }
2079 
2080 /*
2081  * Returns the index of the first held_lock of the current chain
2082  */
2083 static inline int get_first_held_lock(struct task_struct *curr,
2084 					struct held_lock *hlock)
2085 {
2086 	int i;
2087 	struct held_lock *hlock_curr;
2088 
2089 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2090 		hlock_curr = curr->held_locks + i;
2091 		if (hlock_curr->irq_context != hlock->irq_context)
2092 			break;
2093 
2094 	}
2095 
2096 	return ++i;
2097 }
2098 
2099 #ifdef CONFIG_DEBUG_LOCKDEP
2100 /*
2101  * Returns the next chain_key iteration
2102  */
2103 static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2104 {
2105 	u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2106 
2107 	printk(" class_idx:%d -> chain_key:%016Lx",
2108 		class_idx,
2109 		(unsigned long long)new_chain_key);
2110 	return new_chain_key;
2111 }
2112 
2113 static void
2114 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2115 {
2116 	struct held_lock *hlock;
2117 	u64 chain_key = 0;
2118 	int depth = curr->lockdep_depth;
2119 	int i;
2120 
2121 	printk("depth: %u\n", depth + 1);
2122 	for (i = get_first_held_lock(curr, hlock_next); i < depth; i++) {
2123 		hlock = curr->held_locks + i;
2124 		chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2125 
2126 		print_lock(hlock);
2127 	}
2128 
2129 	print_chain_key_iteration(hlock_next->class_idx, chain_key);
2130 	print_lock(hlock_next);
2131 }
2132 
2133 static void print_chain_keys_chain(struct lock_chain *chain)
2134 {
2135 	int i;
2136 	u64 chain_key = 0;
2137 	int class_id;
2138 
2139 	printk("depth: %u\n", chain->depth);
2140 	for (i = 0; i < chain->depth; i++) {
2141 		class_id = chain_hlocks[chain->base + i];
2142 		chain_key = print_chain_key_iteration(class_id + 1, chain_key);
2143 
2144 		print_lock_name(lock_classes + class_id);
2145 		printk("\n");
2146 	}
2147 }
2148 
2149 static void print_collision(struct task_struct *curr,
2150 			struct held_lock *hlock_next,
2151 			struct lock_chain *chain)
2152 {
2153 	pr_warn("\n");
2154 	pr_warn("============================\n");
2155 	pr_warn("WARNING: chain_key collision\n");
2156 	print_kernel_ident();
2157 	pr_warn("----------------------------\n");
2158 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
2159 	pr_warn("Hash chain already cached but the contents don't match!\n");
2160 
2161 	pr_warn("Held locks:");
2162 	print_chain_keys_held_locks(curr, hlock_next);
2163 
2164 	pr_warn("Locks in cached chain:");
2165 	print_chain_keys_chain(chain);
2166 
2167 	pr_warn("\nstack backtrace:\n");
2168 	dump_stack();
2169 }
2170 #endif
2171 
2172 /*
2173  * Checks whether the chain and the current held locks are consistent
2174  * in depth and also in content. If they are not it most likely means
2175  * that there was a collision during the calculation of the chain_key.
2176  * Returns: 0 not passed, 1 passed
2177  */
2178 static int check_no_collision(struct task_struct *curr,
2179 			struct held_lock *hlock,
2180 			struct lock_chain *chain)
2181 {
2182 #ifdef CONFIG_DEBUG_LOCKDEP
2183 	int i, j, id;
2184 
2185 	i = get_first_held_lock(curr, hlock);
2186 
2187 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
2188 		print_collision(curr, hlock, chain);
2189 		return 0;
2190 	}
2191 
2192 	for (j = 0; j < chain->depth - 1; j++, i++) {
2193 		id = curr->held_locks[i].class_idx - 1;
2194 
2195 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
2196 			print_collision(curr, hlock, chain);
2197 			return 0;
2198 		}
2199 	}
2200 #endif
2201 	return 1;
2202 }
2203 
2204 /*
2205  * This is for building a chain between just two different classes,
2206  * instead of adding a new hlock upon current, which is done by
2207  * add_chain_cache().
2208  *
2209  * This can be called in any context with two classes, while
2210  * add_chain_cache() must be done within the lock owener's context
2211  * since it uses hlock which might be racy in another context.
2212  */
2213 static inline int add_chain_cache_classes(unsigned int prev,
2214 					  unsigned int next,
2215 					  unsigned int irq_context,
2216 					  u64 chain_key)
2217 {
2218 	struct hlist_head *hash_head = chainhashentry(chain_key);
2219 	struct lock_chain *chain;
2220 
2221 	/*
2222 	 * Allocate a new chain entry from the static array, and add
2223 	 * it to the hash:
2224 	 */
2225 
2226 	/*
2227 	 * We might need to take the graph lock, ensure we've got IRQs
2228 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
2229 	 * lockdep won't complain about its own locking errors.
2230 	 */
2231 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2232 		return 0;
2233 
2234 	if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) {
2235 		if (!debug_locks_off_graph_unlock())
2236 			return 0;
2237 
2238 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2239 		dump_stack();
2240 		return 0;
2241 	}
2242 
2243 	chain = lock_chains + nr_lock_chains++;
2244 	chain->chain_key = chain_key;
2245 	chain->irq_context = irq_context;
2246 	chain->depth = 2;
2247 	if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2248 		chain->base = nr_chain_hlocks;
2249 		nr_chain_hlocks += chain->depth;
2250 		chain_hlocks[chain->base] = prev - 1;
2251 		chain_hlocks[chain->base + 1] = next -1;
2252 	}
2253 #ifdef CONFIG_DEBUG_LOCKDEP
2254 	/*
2255 	 * Important for check_no_collision().
2256 	 */
2257 	else {
2258 		if (!debug_locks_off_graph_unlock())
2259 			return 0;
2260 
2261 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2262 		dump_stack();
2263 		return 0;
2264 	}
2265 #endif
2266 
2267 	hlist_add_head_rcu(&chain->entry, hash_head);
2268 	debug_atomic_inc(chain_lookup_misses);
2269 	inc_chains();
2270 
2271 	return 1;
2272 }
2273 
2274 /*
2275  * Adds a dependency chain into chain hashtable. And must be called with
2276  * graph_lock held.
2277  *
2278  * Return 0 if fail, and graph_lock is released.
2279  * Return 1 if succeed, with graph_lock held.
2280  */
2281 static inline int add_chain_cache(struct task_struct *curr,
2282 				  struct held_lock *hlock,
2283 				  u64 chain_key)
2284 {
2285 	struct lock_class *class = hlock_class(hlock);
2286 	struct hlist_head *hash_head = chainhashentry(chain_key);
2287 	struct lock_chain *chain;
2288 	int i, j;
2289 
2290 	/*
2291 	 * Allocate a new chain entry from the static array, and add
2292 	 * it to the hash:
2293 	 */
2294 
2295 	/*
2296 	 * We might need to take the graph lock, ensure we've got IRQs
2297 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
2298 	 * lockdep won't complain about its own locking errors.
2299 	 */
2300 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2301 		return 0;
2302 
2303 	if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) {
2304 		if (!debug_locks_off_graph_unlock())
2305 			return 0;
2306 
2307 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2308 		dump_stack();
2309 		return 0;
2310 	}
2311 	chain = lock_chains + nr_lock_chains++;
2312 	chain->chain_key = chain_key;
2313 	chain->irq_context = hlock->irq_context;
2314 	i = get_first_held_lock(curr, hlock);
2315 	chain->depth = curr->lockdep_depth + 1 - i;
2316 
2317 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
2318 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
2319 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
2320 
2321 	if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2322 		chain->base = nr_chain_hlocks;
2323 		for (j = 0; j < chain->depth - 1; j++, i++) {
2324 			int lock_id = curr->held_locks[i].class_idx - 1;
2325 			chain_hlocks[chain->base + j] = lock_id;
2326 		}
2327 		chain_hlocks[chain->base + j] = class - lock_classes;
2328 	}
2329 
2330 	if (nr_chain_hlocks < MAX_LOCKDEP_CHAIN_HLOCKS)
2331 		nr_chain_hlocks += chain->depth;
2332 
2333 #ifdef CONFIG_DEBUG_LOCKDEP
2334 	/*
2335 	 * Important for check_no_collision().
2336 	 */
2337 	if (unlikely(nr_chain_hlocks > MAX_LOCKDEP_CHAIN_HLOCKS)) {
2338 		if (!debug_locks_off_graph_unlock())
2339 			return 0;
2340 
2341 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2342 		dump_stack();
2343 		return 0;
2344 	}
2345 #endif
2346 
2347 	hlist_add_head_rcu(&chain->entry, hash_head);
2348 	debug_atomic_inc(chain_lookup_misses);
2349 	inc_chains();
2350 
2351 	return 1;
2352 }
2353 
2354 /*
2355  * Look up a dependency chain.
2356  */
2357 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
2358 {
2359 	struct hlist_head *hash_head = chainhashentry(chain_key);
2360 	struct lock_chain *chain;
2361 
2362 	/*
2363 	 * We can walk it lock-free, because entries only get added
2364 	 * to the hash:
2365 	 */
2366 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
2367 		if (chain->chain_key == chain_key) {
2368 			debug_atomic_inc(chain_lookup_hits);
2369 			return chain;
2370 		}
2371 	}
2372 	return NULL;
2373 }
2374 
2375 /*
2376  * If the key is not present yet in dependency chain cache then
2377  * add it and return 1 - in this case the new dependency chain is
2378  * validated. If the key is already hashed, return 0.
2379  * (On return with 1 graph_lock is held.)
2380  */
2381 static inline int lookup_chain_cache_add(struct task_struct *curr,
2382 					 struct held_lock *hlock,
2383 					 u64 chain_key)
2384 {
2385 	struct lock_class *class = hlock_class(hlock);
2386 	struct lock_chain *chain = lookup_chain_cache(chain_key);
2387 
2388 	if (chain) {
2389 cache_hit:
2390 		if (!check_no_collision(curr, hlock, chain))
2391 			return 0;
2392 
2393 		if (very_verbose(class)) {
2394 			printk("\nhash chain already cached, key: "
2395 					"%016Lx tail class: [%p] %s\n",
2396 					(unsigned long long)chain_key,
2397 					class->key, class->name);
2398 		}
2399 
2400 		return 0;
2401 	}
2402 
2403 	if (very_verbose(class)) {
2404 		printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n",
2405 			(unsigned long long)chain_key, class->key, class->name);
2406 	}
2407 
2408 	if (!graph_lock())
2409 		return 0;
2410 
2411 	/*
2412 	 * We have to walk the chain again locked - to avoid duplicates:
2413 	 */
2414 	chain = lookup_chain_cache(chain_key);
2415 	if (chain) {
2416 		graph_unlock();
2417 		goto cache_hit;
2418 	}
2419 
2420 	if (!add_chain_cache(curr, hlock, chain_key))
2421 		return 0;
2422 
2423 	return 1;
2424 }
2425 
2426 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock,
2427 		struct held_lock *hlock, int chain_head, u64 chain_key)
2428 {
2429 	/*
2430 	 * Trylock needs to maintain the stack of held locks, but it
2431 	 * does not add new dependencies, because trylock can be done
2432 	 * in any order.
2433 	 *
2434 	 * We look up the chain_key and do the O(N^2) check and update of
2435 	 * the dependencies only if this is a new dependency chain.
2436 	 * (If lookup_chain_cache_add() return with 1 it acquires
2437 	 * graph_lock for us)
2438 	 */
2439 	if (!hlock->trylock && hlock->check &&
2440 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
2441 		/*
2442 		 * Check whether last held lock:
2443 		 *
2444 		 * - is irq-safe, if this lock is irq-unsafe
2445 		 * - is softirq-safe, if this lock is hardirq-unsafe
2446 		 *
2447 		 * And check whether the new lock's dependency graph
2448 		 * could lead back to the previous lock.
2449 		 *
2450 		 * any of these scenarios could lead to a deadlock. If
2451 		 * All validations
2452 		 */
2453 		int ret = check_deadlock(curr, hlock, lock, hlock->read);
2454 
2455 		if (!ret)
2456 			return 0;
2457 		/*
2458 		 * Mark recursive read, as we jump over it when
2459 		 * building dependencies (just like we jump over
2460 		 * trylock entries):
2461 		 */
2462 		if (ret == 2)
2463 			hlock->read = 2;
2464 		/*
2465 		 * Add dependency only if this lock is not the head
2466 		 * of the chain, and if it's not a secondary read-lock:
2467 		 */
2468 		if (!chain_head && ret != 2) {
2469 			if (!check_prevs_add(curr, hlock))
2470 				return 0;
2471 		}
2472 
2473 		graph_unlock();
2474 	} else {
2475 		/* after lookup_chain_cache_add(): */
2476 		if (unlikely(!debug_locks))
2477 			return 0;
2478 	}
2479 
2480 	return 1;
2481 }
2482 #else
2483 static inline int validate_chain(struct task_struct *curr,
2484 	       	struct lockdep_map *lock, struct held_lock *hlock,
2485 		int chain_head, u64 chain_key)
2486 {
2487 	return 1;
2488 }
2489 #endif
2490 
2491 /*
2492  * We are building curr_chain_key incrementally, so double-check
2493  * it from scratch, to make sure that it's done correctly:
2494  */
2495 static void check_chain_key(struct task_struct *curr)
2496 {
2497 #ifdef CONFIG_DEBUG_LOCKDEP
2498 	struct held_lock *hlock, *prev_hlock = NULL;
2499 	unsigned int i;
2500 	u64 chain_key = 0;
2501 
2502 	for (i = 0; i < curr->lockdep_depth; i++) {
2503 		hlock = curr->held_locks + i;
2504 		if (chain_key != hlock->prev_chain_key) {
2505 			debug_locks_off();
2506 			/*
2507 			 * We got mighty confused, our chain keys don't match
2508 			 * with what we expect, someone trample on our task state?
2509 			 */
2510 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
2511 				curr->lockdep_depth, i,
2512 				(unsigned long long)chain_key,
2513 				(unsigned long long)hlock->prev_chain_key);
2514 			return;
2515 		}
2516 		/*
2517 		 * Whoops ran out of static storage again?
2518 		 */
2519 		if (DEBUG_LOCKS_WARN_ON(hlock->class_idx > MAX_LOCKDEP_KEYS))
2520 			return;
2521 
2522 		if (prev_hlock && (prev_hlock->irq_context !=
2523 							hlock->irq_context))
2524 			chain_key = 0;
2525 		chain_key = iterate_chain_key(chain_key, hlock->class_idx);
2526 		prev_hlock = hlock;
2527 	}
2528 	if (chain_key != curr->curr_chain_key) {
2529 		debug_locks_off();
2530 		/*
2531 		 * More smoking hash instead of calculating it, damn see these
2532 		 * numbers float.. I bet that a pink elephant stepped on my memory.
2533 		 */
2534 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
2535 			curr->lockdep_depth, i,
2536 			(unsigned long long)chain_key,
2537 			(unsigned long long)curr->curr_chain_key);
2538 	}
2539 #endif
2540 }
2541 
2542 static void
2543 print_usage_bug_scenario(struct held_lock *lock)
2544 {
2545 	struct lock_class *class = hlock_class(lock);
2546 
2547 	printk(" Possible unsafe locking scenario:\n\n");
2548 	printk("       CPU0\n");
2549 	printk("       ----\n");
2550 	printk("  lock(");
2551 	__print_lock_name(class);
2552 	printk(KERN_CONT ");\n");
2553 	printk("  <Interrupt>\n");
2554 	printk("    lock(");
2555 	__print_lock_name(class);
2556 	printk(KERN_CONT ");\n");
2557 	printk("\n *** DEADLOCK ***\n\n");
2558 }
2559 
2560 static int
2561 print_usage_bug(struct task_struct *curr, struct held_lock *this,
2562 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
2563 {
2564 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2565 		return 0;
2566 
2567 	pr_warn("\n");
2568 	pr_warn("================================\n");
2569 	pr_warn("WARNING: inconsistent lock state\n");
2570 	print_kernel_ident();
2571 	pr_warn("--------------------------------\n");
2572 
2573 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
2574 		usage_str[prev_bit], usage_str[new_bit]);
2575 
2576 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
2577 		curr->comm, task_pid_nr(curr),
2578 		trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
2579 		trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
2580 		trace_hardirqs_enabled(curr),
2581 		trace_softirqs_enabled(curr));
2582 	print_lock(this);
2583 
2584 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
2585 	print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1);
2586 
2587 	print_irqtrace_events(curr);
2588 	pr_warn("\nother info that might help us debug this:\n");
2589 	print_usage_bug_scenario(this);
2590 
2591 	lockdep_print_held_locks(curr);
2592 
2593 	pr_warn("\nstack backtrace:\n");
2594 	dump_stack();
2595 
2596 	return 0;
2597 }
2598 
2599 /*
2600  * Print out an error if an invalid bit is set:
2601  */
2602 static inline int
2603 valid_state(struct task_struct *curr, struct held_lock *this,
2604 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
2605 {
2606 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit)))
2607 		return print_usage_bug(curr, this, bad_bit, new_bit);
2608 	return 1;
2609 }
2610 
2611 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2612 		     enum lock_usage_bit new_bit);
2613 
2614 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
2615 
2616 /*
2617  * print irq inversion bug:
2618  */
2619 static int
2620 print_irq_inversion_bug(struct task_struct *curr,
2621 			struct lock_list *root, struct lock_list *other,
2622 			struct held_lock *this, int forwards,
2623 			const char *irqclass)
2624 {
2625 	struct lock_list *entry = other;
2626 	struct lock_list *middle = NULL;
2627 	int depth;
2628 
2629 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2630 		return 0;
2631 
2632 	pr_warn("\n");
2633 	pr_warn("========================================================\n");
2634 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
2635 	print_kernel_ident();
2636 	pr_warn("--------------------------------------------------------\n");
2637 	pr_warn("%s/%d just changed the state of lock:\n",
2638 		curr->comm, task_pid_nr(curr));
2639 	print_lock(this);
2640 	if (forwards)
2641 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
2642 	else
2643 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
2644 	print_lock_name(other->class);
2645 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
2646 
2647 	pr_warn("\nother info that might help us debug this:\n");
2648 
2649 	/* Find a middle lock (if one exists) */
2650 	depth = get_lock_depth(other);
2651 	do {
2652 		if (depth == 0 && (entry != root)) {
2653 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
2654 			break;
2655 		}
2656 		middle = entry;
2657 		entry = get_lock_parent(entry);
2658 		depth--;
2659 	} while (entry && entry != root && (depth >= 0));
2660 	if (forwards)
2661 		print_irq_lock_scenario(root, other,
2662 			middle ? middle->class : root->class, other->class);
2663 	else
2664 		print_irq_lock_scenario(other, root,
2665 			middle ? middle->class : other->class, root->class);
2666 
2667 	lockdep_print_held_locks(curr);
2668 
2669 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
2670 	if (!save_trace(&root->trace))
2671 		return 0;
2672 	print_shortest_lock_dependencies(other, root);
2673 
2674 	pr_warn("\nstack backtrace:\n");
2675 	dump_stack();
2676 
2677 	return 0;
2678 }
2679 
2680 /*
2681  * Prove that in the forwards-direction subgraph starting at <this>
2682  * there is no lock matching <mask>:
2683  */
2684 static int
2685 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
2686 		     enum lock_usage_bit bit, const char *irqclass)
2687 {
2688 	int ret;
2689 	struct lock_list root;
2690 	struct lock_list *uninitialized_var(target_entry);
2691 
2692 	root.parent = NULL;
2693 	root.class = hlock_class(this);
2694 	ret = find_usage_forwards(&root, bit, &target_entry);
2695 	if (ret < 0)
2696 		return print_bfs_bug(ret);
2697 	if (ret == 1)
2698 		return ret;
2699 
2700 	return print_irq_inversion_bug(curr, &root, target_entry,
2701 					this, 1, irqclass);
2702 }
2703 
2704 /*
2705  * Prove that in the backwards-direction subgraph starting at <this>
2706  * there is no lock matching <mask>:
2707  */
2708 static int
2709 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
2710 		      enum lock_usage_bit bit, const char *irqclass)
2711 {
2712 	int ret;
2713 	struct lock_list root;
2714 	struct lock_list *uninitialized_var(target_entry);
2715 
2716 	root.parent = NULL;
2717 	root.class = hlock_class(this);
2718 	ret = find_usage_backwards(&root, bit, &target_entry);
2719 	if (ret < 0)
2720 		return print_bfs_bug(ret);
2721 	if (ret == 1)
2722 		return ret;
2723 
2724 	return print_irq_inversion_bug(curr, &root, target_entry,
2725 					this, 0, irqclass);
2726 }
2727 
2728 void print_irqtrace_events(struct task_struct *curr)
2729 {
2730 	printk("irq event stamp: %u\n", curr->irq_events);
2731 	printk("hardirqs last  enabled at (%u): [<%p>] %pS\n",
2732 		curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
2733 		(void *)curr->hardirq_enable_ip);
2734 	printk("hardirqs last disabled at (%u): [<%p>] %pS\n",
2735 		curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
2736 		(void *)curr->hardirq_disable_ip);
2737 	printk("softirqs last  enabled at (%u): [<%p>] %pS\n",
2738 		curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
2739 		(void *)curr->softirq_enable_ip);
2740 	printk("softirqs last disabled at (%u): [<%p>] %pS\n",
2741 		curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
2742 		(void *)curr->softirq_disable_ip);
2743 }
2744 
2745 static int HARDIRQ_verbose(struct lock_class *class)
2746 {
2747 #if HARDIRQ_VERBOSE
2748 	return class_filter(class);
2749 #endif
2750 	return 0;
2751 }
2752 
2753 static int SOFTIRQ_verbose(struct lock_class *class)
2754 {
2755 #if SOFTIRQ_VERBOSE
2756 	return class_filter(class);
2757 #endif
2758 	return 0;
2759 }
2760 
2761 #define STRICT_READ_CHECKS	1
2762 
2763 static int (*state_verbose_f[])(struct lock_class *class) = {
2764 #define LOCKDEP_STATE(__STATE) \
2765 	__STATE##_verbose,
2766 #include "lockdep_states.h"
2767 #undef LOCKDEP_STATE
2768 };
2769 
2770 static inline int state_verbose(enum lock_usage_bit bit,
2771 				struct lock_class *class)
2772 {
2773 	return state_verbose_f[bit >> 2](class);
2774 }
2775 
2776 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
2777 			     enum lock_usage_bit bit, const char *name);
2778 
2779 static int
2780 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2781 		enum lock_usage_bit new_bit)
2782 {
2783 	int excl_bit = exclusive_bit(new_bit);
2784 	int read = new_bit & 1;
2785 	int dir = new_bit & 2;
2786 
2787 	/*
2788 	 * mark USED_IN has to look forwards -- to ensure no dependency
2789 	 * has ENABLED state, which would allow recursion deadlocks.
2790 	 *
2791 	 * mark ENABLED has to look backwards -- to ensure no dependee
2792 	 * has USED_IN state, which, again, would allow  recursion deadlocks.
2793 	 */
2794 	check_usage_f usage = dir ?
2795 		check_usage_backwards : check_usage_forwards;
2796 
2797 	/*
2798 	 * Validate that this particular lock does not have conflicting
2799 	 * usage states.
2800 	 */
2801 	if (!valid_state(curr, this, new_bit, excl_bit))
2802 		return 0;
2803 
2804 	/*
2805 	 * Validate that the lock dependencies don't have conflicting usage
2806 	 * states.
2807 	 */
2808 	if ((!read || !dir || STRICT_READ_CHECKS) &&
2809 			!usage(curr, this, excl_bit, state_name(new_bit & ~1)))
2810 		return 0;
2811 
2812 	/*
2813 	 * Check for read in write conflicts
2814 	 */
2815 	if (!read) {
2816 		if (!valid_state(curr, this, new_bit, excl_bit + 1))
2817 			return 0;
2818 
2819 		if (STRICT_READ_CHECKS &&
2820 			!usage(curr, this, excl_bit + 1,
2821 				state_name(new_bit + 1)))
2822 			return 0;
2823 	}
2824 
2825 	if (state_verbose(new_bit, hlock_class(this)))
2826 		return 2;
2827 
2828 	return 1;
2829 }
2830 
2831 enum mark_type {
2832 #define LOCKDEP_STATE(__STATE)	__STATE,
2833 #include "lockdep_states.h"
2834 #undef LOCKDEP_STATE
2835 };
2836 
2837 /*
2838  * Mark all held locks with a usage bit:
2839  */
2840 static int
2841 mark_held_locks(struct task_struct *curr, enum mark_type mark)
2842 {
2843 	enum lock_usage_bit usage_bit;
2844 	struct held_lock *hlock;
2845 	int i;
2846 
2847 	for (i = 0; i < curr->lockdep_depth; i++) {
2848 		hlock = curr->held_locks + i;
2849 
2850 		usage_bit = 2 + (mark << 2); /* ENABLED */
2851 		if (hlock->read)
2852 			usage_bit += 1; /* READ */
2853 
2854 		BUG_ON(usage_bit >= LOCK_USAGE_STATES);
2855 
2856 		if (!hlock->check)
2857 			continue;
2858 
2859 		if (!mark_lock(curr, hlock, usage_bit))
2860 			return 0;
2861 	}
2862 
2863 	return 1;
2864 }
2865 
2866 /*
2867  * Hardirqs will be enabled:
2868  */
2869 static void __trace_hardirqs_on_caller(unsigned long ip)
2870 {
2871 	struct task_struct *curr = current;
2872 
2873 	/* we'll do an OFF -> ON transition: */
2874 	curr->hardirqs_enabled = 1;
2875 
2876 	/*
2877 	 * We are going to turn hardirqs on, so set the
2878 	 * usage bit for all held locks:
2879 	 */
2880 	if (!mark_held_locks(curr, HARDIRQ))
2881 		return;
2882 	/*
2883 	 * If we have softirqs enabled, then set the usage
2884 	 * bit for all held locks. (disabled hardirqs prevented
2885 	 * this bit from being set before)
2886 	 */
2887 	if (curr->softirqs_enabled)
2888 		if (!mark_held_locks(curr, SOFTIRQ))
2889 			return;
2890 
2891 	curr->hardirq_enable_ip = ip;
2892 	curr->hardirq_enable_event = ++curr->irq_events;
2893 	debug_atomic_inc(hardirqs_on_events);
2894 }
2895 
2896 __visible void trace_hardirqs_on_caller(unsigned long ip)
2897 {
2898 	time_hardirqs_on(CALLER_ADDR0, ip);
2899 
2900 	if (unlikely(!debug_locks || current->lockdep_recursion))
2901 		return;
2902 
2903 	if (unlikely(current->hardirqs_enabled)) {
2904 		/*
2905 		 * Neither irq nor preemption are disabled here
2906 		 * so this is racy by nature but losing one hit
2907 		 * in a stat is not a big deal.
2908 		 */
2909 		__debug_atomic_inc(redundant_hardirqs_on);
2910 		return;
2911 	}
2912 
2913 	/*
2914 	 * We're enabling irqs and according to our state above irqs weren't
2915 	 * already enabled, yet we find the hardware thinks they are in fact
2916 	 * enabled.. someone messed up their IRQ state tracing.
2917 	 */
2918 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2919 		return;
2920 
2921 	/*
2922 	 * See the fine text that goes along with this variable definition.
2923 	 */
2924 	if (DEBUG_LOCKS_WARN_ON(unlikely(early_boot_irqs_disabled)))
2925 		return;
2926 
2927 	/*
2928 	 * Can't allow enabling interrupts while in an interrupt handler,
2929 	 * that's general bad form and such. Recursion, limited stack etc..
2930 	 */
2931 	if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
2932 		return;
2933 
2934 	current->lockdep_recursion = 1;
2935 	__trace_hardirqs_on_caller(ip);
2936 	current->lockdep_recursion = 0;
2937 }
2938 EXPORT_SYMBOL(trace_hardirqs_on_caller);
2939 
2940 void trace_hardirqs_on(void)
2941 {
2942 	trace_hardirqs_on_caller(CALLER_ADDR0);
2943 }
2944 EXPORT_SYMBOL(trace_hardirqs_on);
2945 
2946 /*
2947  * Hardirqs were disabled:
2948  */
2949 __visible void trace_hardirqs_off_caller(unsigned long ip)
2950 {
2951 	struct task_struct *curr = current;
2952 
2953 	time_hardirqs_off(CALLER_ADDR0, ip);
2954 
2955 	if (unlikely(!debug_locks || current->lockdep_recursion))
2956 		return;
2957 
2958 	/*
2959 	 * So we're supposed to get called after you mask local IRQs, but for
2960 	 * some reason the hardware doesn't quite think you did a proper job.
2961 	 */
2962 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2963 		return;
2964 
2965 	if (curr->hardirqs_enabled) {
2966 		/*
2967 		 * We have done an ON -> OFF transition:
2968 		 */
2969 		curr->hardirqs_enabled = 0;
2970 		curr->hardirq_disable_ip = ip;
2971 		curr->hardirq_disable_event = ++curr->irq_events;
2972 		debug_atomic_inc(hardirqs_off_events);
2973 	} else
2974 		debug_atomic_inc(redundant_hardirqs_off);
2975 }
2976 EXPORT_SYMBOL(trace_hardirqs_off_caller);
2977 
2978 void trace_hardirqs_off(void)
2979 {
2980 	trace_hardirqs_off_caller(CALLER_ADDR0);
2981 }
2982 EXPORT_SYMBOL(trace_hardirqs_off);
2983 
2984 /*
2985  * Softirqs will be enabled:
2986  */
2987 void trace_softirqs_on(unsigned long ip)
2988 {
2989 	struct task_struct *curr = current;
2990 
2991 	if (unlikely(!debug_locks || current->lockdep_recursion))
2992 		return;
2993 
2994 	/*
2995 	 * We fancy IRQs being disabled here, see softirq.c, avoids
2996 	 * funny state and nesting things.
2997 	 */
2998 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2999 		return;
3000 
3001 	if (curr->softirqs_enabled) {
3002 		debug_atomic_inc(redundant_softirqs_on);
3003 		return;
3004 	}
3005 
3006 	current->lockdep_recursion = 1;
3007 	/*
3008 	 * We'll do an OFF -> ON transition:
3009 	 */
3010 	curr->softirqs_enabled = 1;
3011 	curr->softirq_enable_ip = ip;
3012 	curr->softirq_enable_event = ++curr->irq_events;
3013 	debug_atomic_inc(softirqs_on_events);
3014 	/*
3015 	 * We are going to turn softirqs on, so set the
3016 	 * usage bit for all held locks, if hardirqs are
3017 	 * enabled too:
3018 	 */
3019 	if (curr->hardirqs_enabled)
3020 		mark_held_locks(curr, SOFTIRQ);
3021 	current->lockdep_recursion = 0;
3022 }
3023 
3024 /*
3025  * Softirqs were disabled:
3026  */
3027 void trace_softirqs_off(unsigned long ip)
3028 {
3029 	struct task_struct *curr = current;
3030 
3031 	if (unlikely(!debug_locks || current->lockdep_recursion))
3032 		return;
3033 
3034 	/*
3035 	 * We fancy IRQs being disabled here, see softirq.c
3036 	 */
3037 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3038 		return;
3039 
3040 	if (curr->softirqs_enabled) {
3041 		/*
3042 		 * We have done an ON -> OFF transition:
3043 		 */
3044 		curr->softirqs_enabled = 0;
3045 		curr->softirq_disable_ip = ip;
3046 		curr->softirq_disable_event = ++curr->irq_events;
3047 		debug_atomic_inc(softirqs_off_events);
3048 		/*
3049 		 * Whoops, we wanted softirqs off, so why aren't they?
3050 		 */
3051 		DEBUG_LOCKS_WARN_ON(!softirq_count());
3052 	} else
3053 		debug_atomic_inc(redundant_softirqs_off);
3054 }
3055 
3056 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock)
3057 {
3058 	/*
3059 	 * If non-trylock use in a hardirq or softirq context, then
3060 	 * mark the lock as used in these contexts:
3061 	 */
3062 	if (!hlock->trylock) {
3063 		if (hlock->read) {
3064 			if (curr->hardirq_context)
3065 				if (!mark_lock(curr, hlock,
3066 						LOCK_USED_IN_HARDIRQ_READ))
3067 					return 0;
3068 			if (curr->softirq_context)
3069 				if (!mark_lock(curr, hlock,
3070 						LOCK_USED_IN_SOFTIRQ_READ))
3071 					return 0;
3072 		} else {
3073 			if (curr->hardirq_context)
3074 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
3075 					return 0;
3076 			if (curr->softirq_context)
3077 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
3078 					return 0;
3079 		}
3080 	}
3081 	if (!hlock->hardirqs_off) {
3082 		if (hlock->read) {
3083 			if (!mark_lock(curr, hlock,
3084 					LOCK_ENABLED_HARDIRQ_READ))
3085 				return 0;
3086 			if (curr->softirqs_enabled)
3087 				if (!mark_lock(curr, hlock,
3088 						LOCK_ENABLED_SOFTIRQ_READ))
3089 					return 0;
3090 		} else {
3091 			if (!mark_lock(curr, hlock,
3092 					LOCK_ENABLED_HARDIRQ))
3093 				return 0;
3094 			if (curr->softirqs_enabled)
3095 				if (!mark_lock(curr, hlock,
3096 						LOCK_ENABLED_SOFTIRQ))
3097 					return 0;
3098 		}
3099 	}
3100 
3101 	return 1;
3102 }
3103 
3104 static inline unsigned int task_irq_context(struct task_struct *task)
3105 {
3106 	return 2 * !!task->hardirq_context + !!task->softirq_context;
3107 }
3108 
3109 static int separate_irq_context(struct task_struct *curr,
3110 		struct held_lock *hlock)
3111 {
3112 	unsigned int depth = curr->lockdep_depth;
3113 
3114 	/*
3115 	 * Keep track of points where we cross into an interrupt context:
3116 	 */
3117 	if (depth) {
3118 		struct held_lock *prev_hlock;
3119 
3120 		prev_hlock = curr->held_locks + depth-1;
3121 		/*
3122 		 * If we cross into another context, reset the
3123 		 * hash key (this also prevents the checking and the
3124 		 * adding of the dependency to 'prev'):
3125 		 */
3126 		if (prev_hlock->irq_context != hlock->irq_context)
3127 			return 1;
3128 	}
3129 	return 0;
3130 }
3131 
3132 #else /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */
3133 
3134 static inline
3135 int mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3136 		enum lock_usage_bit new_bit)
3137 {
3138 	WARN_ON(1); /* Impossible innit? when we don't have TRACE_IRQFLAG */
3139 	return 1;
3140 }
3141 
3142 static inline int mark_irqflags(struct task_struct *curr,
3143 		struct held_lock *hlock)
3144 {
3145 	return 1;
3146 }
3147 
3148 static inline unsigned int task_irq_context(struct task_struct *task)
3149 {
3150 	return 0;
3151 }
3152 
3153 static inline int separate_irq_context(struct task_struct *curr,
3154 		struct held_lock *hlock)
3155 {
3156 	return 0;
3157 }
3158 
3159 #endif /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */
3160 
3161 /*
3162  * Mark a lock with a usage bit, and validate the state transition:
3163  */
3164 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3165 			     enum lock_usage_bit new_bit)
3166 {
3167 	unsigned int new_mask = 1 << new_bit, ret = 1;
3168 
3169 	/*
3170 	 * If already set then do not dirty the cacheline,
3171 	 * nor do any checks:
3172 	 */
3173 	if (likely(hlock_class(this)->usage_mask & new_mask))
3174 		return 1;
3175 
3176 	if (!graph_lock())
3177 		return 0;
3178 	/*
3179 	 * Make sure we didn't race:
3180 	 */
3181 	if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3182 		graph_unlock();
3183 		return 1;
3184 	}
3185 
3186 	hlock_class(this)->usage_mask |= new_mask;
3187 
3188 	if (!save_trace(hlock_class(this)->usage_traces + new_bit))
3189 		return 0;
3190 
3191 	switch (new_bit) {
3192 #define LOCKDEP_STATE(__STATE)			\
3193 	case LOCK_USED_IN_##__STATE:		\
3194 	case LOCK_USED_IN_##__STATE##_READ:	\
3195 	case LOCK_ENABLED_##__STATE:		\
3196 	case LOCK_ENABLED_##__STATE##_READ:
3197 #include "lockdep_states.h"
3198 #undef LOCKDEP_STATE
3199 		ret = mark_lock_irq(curr, this, new_bit);
3200 		if (!ret)
3201 			return 0;
3202 		break;
3203 	case LOCK_USED:
3204 		debug_atomic_dec(nr_unused_locks);
3205 		break;
3206 	default:
3207 		if (!debug_locks_off_graph_unlock())
3208 			return 0;
3209 		WARN_ON(1);
3210 		return 0;
3211 	}
3212 
3213 	graph_unlock();
3214 
3215 	/*
3216 	 * We must printk outside of the graph_lock:
3217 	 */
3218 	if (ret == 2) {
3219 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
3220 		print_lock(this);
3221 		print_irqtrace_events(curr);
3222 		dump_stack();
3223 	}
3224 
3225 	return ret;
3226 }
3227 
3228 /*
3229  * Initialize a lock instance's lock-class mapping info:
3230  */
3231 static void __lockdep_init_map(struct lockdep_map *lock, const char *name,
3232 		      struct lock_class_key *key, int subclass)
3233 {
3234 	int i;
3235 
3236 	kmemcheck_mark_initialized(lock, sizeof(*lock));
3237 
3238 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
3239 		lock->class_cache[i] = NULL;
3240 
3241 #ifdef CONFIG_LOCK_STAT
3242 	lock->cpu = raw_smp_processor_id();
3243 #endif
3244 
3245 	/*
3246 	 * Can't be having no nameless bastards around this place!
3247 	 */
3248 	if (DEBUG_LOCKS_WARN_ON(!name)) {
3249 		lock->name = "NULL";
3250 		return;
3251 	}
3252 
3253 	lock->name = name;
3254 
3255 	/*
3256 	 * No key, no joy, we need to hash something.
3257 	 */
3258 	if (DEBUG_LOCKS_WARN_ON(!key))
3259 		return;
3260 	/*
3261 	 * Sanity check, the lock-class key must be persistent:
3262 	 */
3263 	if (!static_obj(key)) {
3264 		printk("BUG: key %p not in .data!\n", key);
3265 		/*
3266 		 * What it says above ^^^^^, I suggest you read it.
3267 		 */
3268 		DEBUG_LOCKS_WARN_ON(1);
3269 		return;
3270 	}
3271 	lock->key = key;
3272 
3273 	if (unlikely(!debug_locks))
3274 		return;
3275 
3276 	if (subclass) {
3277 		unsigned long flags;
3278 
3279 		if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
3280 			return;
3281 
3282 		raw_local_irq_save(flags);
3283 		current->lockdep_recursion = 1;
3284 		register_lock_class(lock, subclass, 1);
3285 		current->lockdep_recursion = 0;
3286 		raw_local_irq_restore(flags);
3287 	}
3288 }
3289 
3290 void lockdep_init_map(struct lockdep_map *lock, const char *name,
3291 		      struct lock_class_key *key, int subclass)
3292 {
3293 	cross_init(lock, 0);
3294 	__lockdep_init_map(lock, name, key, subclass);
3295 }
3296 EXPORT_SYMBOL_GPL(lockdep_init_map);
3297 
3298 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
3299 void lockdep_init_map_crosslock(struct lockdep_map *lock, const char *name,
3300 		      struct lock_class_key *key, int subclass)
3301 {
3302 	cross_init(lock, 1);
3303 	__lockdep_init_map(lock, name, key, subclass);
3304 }
3305 EXPORT_SYMBOL_GPL(lockdep_init_map_crosslock);
3306 #endif
3307 
3308 struct lock_class_key __lockdep_no_validate__;
3309 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
3310 
3311 static int
3312 print_lock_nested_lock_not_held(struct task_struct *curr,
3313 				struct held_lock *hlock,
3314 				unsigned long ip)
3315 {
3316 	if (!debug_locks_off())
3317 		return 0;
3318 	if (debug_locks_silent)
3319 		return 0;
3320 
3321 	pr_warn("\n");
3322 	pr_warn("==================================\n");
3323 	pr_warn("WARNING: Nested lock was not taken\n");
3324 	print_kernel_ident();
3325 	pr_warn("----------------------------------\n");
3326 
3327 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3328 	print_lock(hlock);
3329 
3330 	pr_warn("\nbut this task is not holding:\n");
3331 	pr_warn("%s\n", hlock->nest_lock->name);
3332 
3333 	pr_warn("\nstack backtrace:\n");
3334 	dump_stack();
3335 
3336 	pr_warn("\nother info that might help us debug this:\n");
3337 	lockdep_print_held_locks(curr);
3338 
3339 	pr_warn("\nstack backtrace:\n");
3340 	dump_stack();
3341 
3342 	return 0;
3343 }
3344 
3345 static int __lock_is_held(struct lockdep_map *lock, int read);
3346 
3347 /*
3348  * This gets called for every mutex_lock*()/spin_lock*() operation.
3349  * We maintain the dependency maps and validate the locking attempt:
3350  */
3351 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3352 			  int trylock, int read, int check, int hardirqs_off,
3353 			  struct lockdep_map *nest_lock, unsigned long ip,
3354 			  int references, int pin_count)
3355 {
3356 	struct task_struct *curr = current;
3357 	struct lock_class *class = NULL;
3358 	struct held_lock *hlock;
3359 	unsigned int depth;
3360 	int chain_head = 0;
3361 	int class_idx;
3362 	u64 chain_key;
3363 	int ret;
3364 
3365 	if (unlikely(!debug_locks))
3366 		return 0;
3367 
3368 	/*
3369 	 * Lockdep should run with IRQs disabled, otherwise we could
3370 	 * get an interrupt which would want to take locks, which would
3371 	 * end up in lockdep and have you got a head-ache already?
3372 	 */
3373 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3374 		return 0;
3375 
3376 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
3377 		check = 0;
3378 
3379 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
3380 		class = lock->class_cache[subclass];
3381 	/*
3382 	 * Not cached?
3383 	 */
3384 	if (unlikely(!class)) {
3385 		class = register_lock_class(lock, subclass, 0);
3386 		if (!class)
3387 			return 0;
3388 	}
3389 	atomic_inc((atomic_t *)&class->ops);
3390 	if (very_verbose(class)) {
3391 		printk("\nacquire class [%p] %s", class->key, class->name);
3392 		if (class->name_version > 1)
3393 			printk(KERN_CONT "#%d", class->name_version);
3394 		printk(KERN_CONT "\n");
3395 		dump_stack();
3396 	}
3397 
3398 	/*
3399 	 * Add the lock to the list of currently held locks.
3400 	 * (we dont increase the depth just yet, up until the
3401 	 * dependency checks are done)
3402 	 */
3403 	depth = curr->lockdep_depth;
3404 	/*
3405 	 * Ran out of static storage for our per-task lock stack again have we?
3406 	 */
3407 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
3408 		return 0;
3409 
3410 	class_idx = class - lock_classes + 1;
3411 
3412 	/* TODO: nest_lock is not implemented for crosslock yet. */
3413 	if (depth && !cross_lock(lock)) {
3414 		hlock = curr->held_locks + depth - 1;
3415 		if (hlock->class_idx == class_idx && nest_lock) {
3416 			if (hlock->references) {
3417 				/*
3418 				 * Check: unsigned int references:12, overflow.
3419 				 */
3420 				if (DEBUG_LOCKS_WARN_ON(hlock->references == (1 << 12)-1))
3421 					return 0;
3422 
3423 				hlock->references++;
3424 			} else {
3425 				hlock->references = 2;
3426 			}
3427 
3428 			return 1;
3429 		}
3430 	}
3431 
3432 	hlock = curr->held_locks + depth;
3433 	/*
3434 	 * Plain impossible, we just registered it and checked it weren't no
3435 	 * NULL like.. I bet this mushroom I ate was good!
3436 	 */
3437 	if (DEBUG_LOCKS_WARN_ON(!class))
3438 		return 0;
3439 	hlock->class_idx = class_idx;
3440 	hlock->acquire_ip = ip;
3441 	hlock->instance = lock;
3442 	hlock->nest_lock = nest_lock;
3443 	hlock->irq_context = task_irq_context(curr);
3444 	hlock->trylock = trylock;
3445 	hlock->read = read;
3446 	hlock->check = check;
3447 	hlock->hardirqs_off = !!hardirqs_off;
3448 	hlock->references = references;
3449 #ifdef CONFIG_LOCK_STAT
3450 	hlock->waittime_stamp = 0;
3451 	hlock->holdtime_stamp = lockstat_clock();
3452 #endif
3453 	hlock->pin_count = pin_count;
3454 
3455 	if (check && !mark_irqflags(curr, hlock))
3456 		return 0;
3457 
3458 	/* mark it as used: */
3459 	if (!mark_lock(curr, hlock, LOCK_USED))
3460 		return 0;
3461 
3462 	/*
3463 	 * Calculate the chain hash: it's the combined hash of all the
3464 	 * lock keys along the dependency chain. We save the hash value
3465 	 * at every step so that we can get the current hash easily
3466 	 * after unlock. The chain hash is then used to cache dependency
3467 	 * results.
3468 	 *
3469 	 * The 'key ID' is what is the most compact key value to drive
3470 	 * the hash, not class->key.
3471 	 */
3472 	/*
3473 	 * Whoops, we did it again.. ran straight out of our static allocation.
3474 	 */
3475 	if (DEBUG_LOCKS_WARN_ON(class_idx > MAX_LOCKDEP_KEYS))
3476 		return 0;
3477 
3478 	chain_key = curr->curr_chain_key;
3479 	if (!depth) {
3480 		/*
3481 		 * How can we have a chain hash when we ain't got no keys?!
3482 		 */
3483 		if (DEBUG_LOCKS_WARN_ON(chain_key != 0))
3484 			return 0;
3485 		chain_head = 1;
3486 	}
3487 
3488 	hlock->prev_chain_key = chain_key;
3489 	if (separate_irq_context(curr, hlock)) {
3490 		chain_key = 0;
3491 		chain_head = 1;
3492 	}
3493 	chain_key = iterate_chain_key(chain_key, class_idx);
3494 
3495 	if (nest_lock && !__lock_is_held(nest_lock, -1))
3496 		return print_lock_nested_lock_not_held(curr, hlock, ip);
3497 
3498 	if (!validate_chain(curr, lock, hlock, chain_head, chain_key))
3499 		return 0;
3500 
3501 	ret = lock_acquire_crosslock(hlock);
3502 	/*
3503 	 * 2 means normal acquire operations are needed. Otherwise, it's
3504 	 * ok just to return with '0:fail, 1:success'.
3505 	 */
3506 	if (ret != 2)
3507 		return ret;
3508 
3509 	curr->curr_chain_key = chain_key;
3510 	curr->lockdep_depth++;
3511 	check_chain_key(curr);
3512 #ifdef CONFIG_DEBUG_LOCKDEP
3513 	if (unlikely(!debug_locks))
3514 		return 0;
3515 #endif
3516 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
3517 		debug_locks_off();
3518 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
3519 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
3520 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
3521 
3522 		lockdep_print_held_locks(current);
3523 		debug_show_all_locks();
3524 		dump_stack();
3525 
3526 		return 0;
3527 	}
3528 
3529 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
3530 		max_lockdep_depth = curr->lockdep_depth;
3531 
3532 	return 1;
3533 }
3534 
3535 static int
3536 print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock,
3537 			   unsigned long ip)
3538 {
3539 	if (!debug_locks_off())
3540 		return 0;
3541 	if (debug_locks_silent)
3542 		return 0;
3543 
3544 	pr_warn("\n");
3545 	pr_warn("=====================================\n");
3546 	pr_warn("WARNING: bad unlock balance detected!\n");
3547 	print_kernel_ident();
3548 	pr_warn("-------------------------------------\n");
3549 	pr_warn("%s/%d is trying to release lock (",
3550 		curr->comm, task_pid_nr(curr));
3551 	print_lockdep_cache(lock);
3552 	pr_cont(") at:\n");
3553 	print_ip_sym(ip);
3554 	pr_warn("but there are no more locks to release!\n");
3555 	pr_warn("\nother info that might help us debug this:\n");
3556 	lockdep_print_held_locks(curr);
3557 
3558 	pr_warn("\nstack backtrace:\n");
3559 	dump_stack();
3560 
3561 	return 0;
3562 }
3563 
3564 static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock)
3565 {
3566 	if (hlock->instance == lock)
3567 		return 1;
3568 
3569 	if (hlock->references) {
3570 		struct lock_class *class = lock->class_cache[0];
3571 
3572 		if (!class)
3573 			class = look_up_lock_class(lock, 0);
3574 
3575 		/*
3576 		 * If look_up_lock_class() failed to find a class, we're trying
3577 		 * to test if we hold a lock that has never yet been acquired.
3578 		 * Clearly if the lock hasn't been acquired _ever_, we're not
3579 		 * holding it either, so report failure.
3580 		 */
3581 		if (IS_ERR_OR_NULL(class))
3582 			return 0;
3583 
3584 		/*
3585 		 * References, but not a lock we're actually ref-counting?
3586 		 * State got messed up, follow the sites that change ->references
3587 		 * and try to make sense of it.
3588 		 */
3589 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
3590 			return 0;
3591 
3592 		if (hlock->class_idx == class - lock_classes + 1)
3593 			return 1;
3594 	}
3595 
3596 	return 0;
3597 }
3598 
3599 /* @depth must not be zero */
3600 static struct held_lock *find_held_lock(struct task_struct *curr,
3601 					struct lockdep_map *lock,
3602 					unsigned int depth, int *idx)
3603 {
3604 	struct held_lock *ret, *hlock, *prev_hlock;
3605 	int i;
3606 
3607 	i = depth - 1;
3608 	hlock = curr->held_locks + i;
3609 	ret = hlock;
3610 	if (match_held_lock(hlock, lock))
3611 		goto out;
3612 
3613 	ret = NULL;
3614 	for (i--, prev_hlock = hlock--;
3615 	     i >= 0;
3616 	     i--, prev_hlock = hlock--) {
3617 		/*
3618 		 * We must not cross into another context:
3619 		 */
3620 		if (prev_hlock->irq_context != hlock->irq_context) {
3621 			ret = NULL;
3622 			break;
3623 		}
3624 		if (match_held_lock(hlock, lock)) {
3625 			ret = hlock;
3626 			break;
3627 		}
3628 	}
3629 
3630 out:
3631 	*idx = i;
3632 	return ret;
3633 }
3634 
3635 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
3636 			      int idx)
3637 {
3638 	struct held_lock *hlock;
3639 
3640 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
3641 		if (!__lock_acquire(hlock->instance,
3642 				    hlock_class(hlock)->subclass,
3643 				    hlock->trylock,
3644 				    hlock->read, hlock->check,
3645 				    hlock->hardirqs_off,
3646 				    hlock->nest_lock, hlock->acquire_ip,
3647 				    hlock->references, hlock->pin_count))
3648 			return 1;
3649 	}
3650 	return 0;
3651 }
3652 
3653 static int
3654 __lock_set_class(struct lockdep_map *lock, const char *name,
3655 		 struct lock_class_key *key, unsigned int subclass,
3656 		 unsigned long ip)
3657 {
3658 	struct task_struct *curr = current;
3659 	struct held_lock *hlock;
3660 	struct lock_class *class;
3661 	unsigned int depth;
3662 	int i;
3663 
3664 	depth = curr->lockdep_depth;
3665 	/*
3666 	 * This function is about (re)setting the class of a held lock,
3667 	 * yet we're not actually holding any locks. Naughty user!
3668 	 */
3669 	if (DEBUG_LOCKS_WARN_ON(!depth))
3670 		return 0;
3671 
3672 	hlock = find_held_lock(curr, lock, depth, &i);
3673 	if (!hlock)
3674 		return print_unlock_imbalance_bug(curr, lock, ip);
3675 
3676 	lockdep_init_map(lock, name, key, 0);
3677 	class = register_lock_class(lock, subclass, 0);
3678 	hlock->class_idx = class - lock_classes + 1;
3679 
3680 	curr->lockdep_depth = i;
3681 	curr->curr_chain_key = hlock->prev_chain_key;
3682 
3683 	if (reacquire_held_locks(curr, depth, i))
3684 		return 0;
3685 
3686 	/*
3687 	 * I took it apart and put it back together again, except now I have
3688 	 * these 'spare' parts.. where shall I put them.
3689 	 */
3690 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
3691 		return 0;
3692 	return 1;
3693 }
3694 
3695 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
3696 {
3697 	struct task_struct *curr = current;
3698 	struct held_lock *hlock;
3699 	unsigned int depth;
3700 	int i;
3701 
3702 	depth = curr->lockdep_depth;
3703 	/*
3704 	 * This function is about (re)setting the class of a held lock,
3705 	 * yet we're not actually holding any locks. Naughty user!
3706 	 */
3707 	if (DEBUG_LOCKS_WARN_ON(!depth))
3708 		return 0;
3709 
3710 	hlock = find_held_lock(curr, lock, depth, &i);
3711 	if (!hlock)
3712 		return print_unlock_imbalance_bug(curr, lock, ip);
3713 
3714 	curr->lockdep_depth = i;
3715 	curr->curr_chain_key = hlock->prev_chain_key;
3716 
3717 	WARN(hlock->read, "downgrading a read lock");
3718 	hlock->read = 1;
3719 	hlock->acquire_ip = ip;
3720 
3721 	if (reacquire_held_locks(curr, depth, i))
3722 		return 0;
3723 
3724 	/*
3725 	 * I took it apart and put it back together again, except now I have
3726 	 * these 'spare' parts.. where shall I put them.
3727 	 */
3728 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
3729 		return 0;
3730 	return 1;
3731 }
3732 
3733 /*
3734  * Remove the lock to the list of currently held locks - this gets
3735  * called on mutex_unlock()/spin_unlock*() (or on a failed
3736  * mutex_lock_interruptible()).
3737  *
3738  * @nested is an hysterical artifact, needs a tree wide cleanup.
3739  */
3740 static int
3741 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip)
3742 {
3743 	struct task_struct *curr = current;
3744 	struct held_lock *hlock;
3745 	unsigned int depth;
3746 	int ret, i;
3747 
3748 	if (unlikely(!debug_locks))
3749 		return 0;
3750 
3751 	ret = lock_release_crosslock(lock);
3752 	/*
3753 	 * 2 means normal release operations are needed. Otherwise, it's
3754 	 * ok just to return with '0:fail, 1:success'.
3755 	 */
3756 	if (ret != 2)
3757 		return ret;
3758 
3759 	depth = curr->lockdep_depth;
3760 	/*
3761 	 * So we're all set to release this lock.. wait what lock? We don't
3762 	 * own any locks, you've been drinking again?
3763 	 */
3764 	if (DEBUG_LOCKS_WARN_ON(depth <= 0))
3765 		 return print_unlock_imbalance_bug(curr, lock, ip);
3766 
3767 	/*
3768 	 * Check whether the lock exists in the current stack
3769 	 * of held locks:
3770 	 */
3771 	hlock = find_held_lock(curr, lock, depth, &i);
3772 	if (!hlock)
3773 		return print_unlock_imbalance_bug(curr, lock, ip);
3774 
3775 	if (hlock->instance == lock)
3776 		lock_release_holdtime(hlock);
3777 
3778 	WARN(hlock->pin_count, "releasing a pinned lock\n");
3779 
3780 	if (hlock->references) {
3781 		hlock->references--;
3782 		if (hlock->references) {
3783 			/*
3784 			 * We had, and after removing one, still have
3785 			 * references, the current lock stack is still
3786 			 * valid. We're done!
3787 			 */
3788 			return 1;
3789 		}
3790 	}
3791 
3792 	/*
3793 	 * We have the right lock to unlock, 'hlock' points to it.
3794 	 * Now we remove it from the stack, and add back the other
3795 	 * entries (if any), recalculating the hash along the way:
3796 	 */
3797 
3798 	curr->lockdep_depth = i;
3799 	curr->curr_chain_key = hlock->prev_chain_key;
3800 
3801 	if (reacquire_held_locks(curr, depth, i + 1))
3802 		return 0;
3803 
3804 	/*
3805 	 * We had N bottles of beer on the wall, we drank one, but now
3806 	 * there's not N-1 bottles of beer left on the wall...
3807 	 */
3808 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1))
3809 		return 0;
3810 
3811 	return 1;
3812 }
3813 
3814 static int __lock_is_held(struct lockdep_map *lock, int read)
3815 {
3816 	struct task_struct *curr = current;
3817 	int i;
3818 
3819 	for (i = 0; i < curr->lockdep_depth; i++) {
3820 		struct held_lock *hlock = curr->held_locks + i;
3821 
3822 		if (match_held_lock(hlock, lock)) {
3823 			if (read == -1 || hlock->read == read)
3824 				return 1;
3825 
3826 			return 0;
3827 		}
3828 	}
3829 
3830 	return 0;
3831 }
3832 
3833 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
3834 {
3835 	struct pin_cookie cookie = NIL_COOKIE;
3836 	struct task_struct *curr = current;
3837 	int i;
3838 
3839 	if (unlikely(!debug_locks))
3840 		return cookie;
3841 
3842 	for (i = 0; i < curr->lockdep_depth; i++) {
3843 		struct held_lock *hlock = curr->held_locks + i;
3844 
3845 		if (match_held_lock(hlock, lock)) {
3846 			/*
3847 			 * Grab 16bits of randomness; this is sufficient to not
3848 			 * be guessable and still allows some pin nesting in
3849 			 * our u32 pin_count.
3850 			 */
3851 			cookie.val = 1 + (prandom_u32() >> 16);
3852 			hlock->pin_count += cookie.val;
3853 			return cookie;
3854 		}
3855 	}
3856 
3857 	WARN(1, "pinning an unheld lock\n");
3858 	return cookie;
3859 }
3860 
3861 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
3862 {
3863 	struct task_struct *curr = current;
3864 	int i;
3865 
3866 	if (unlikely(!debug_locks))
3867 		return;
3868 
3869 	for (i = 0; i < curr->lockdep_depth; i++) {
3870 		struct held_lock *hlock = curr->held_locks + i;
3871 
3872 		if (match_held_lock(hlock, lock)) {
3873 			hlock->pin_count += cookie.val;
3874 			return;
3875 		}
3876 	}
3877 
3878 	WARN(1, "pinning an unheld lock\n");
3879 }
3880 
3881 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
3882 {
3883 	struct task_struct *curr = current;
3884 	int i;
3885 
3886 	if (unlikely(!debug_locks))
3887 		return;
3888 
3889 	for (i = 0; i < curr->lockdep_depth; i++) {
3890 		struct held_lock *hlock = curr->held_locks + i;
3891 
3892 		if (match_held_lock(hlock, lock)) {
3893 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
3894 				return;
3895 
3896 			hlock->pin_count -= cookie.val;
3897 
3898 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
3899 				hlock->pin_count = 0;
3900 
3901 			return;
3902 		}
3903 	}
3904 
3905 	WARN(1, "unpinning an unheld lock\n");
3906 }
3907 
3908 /*
3909  * Check whether we follow the irq-flags state precisely:
3910  */
3911 static void check_flags(unsigned long flags)
3912 {
3913 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \
3914     defined(CONFIG_TRACE_IRQFLAGS)
3915 	if (!debug_locks)
3916 		return;
3917 
3918 	if (irqs_disabled_flags(flags)) {
3919 		if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
3920 			printk("possible reason: unannotated irqs-off.\n");
3921 		}
3922 	} else {
3923 		if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
3924 			printk("possible reason: unannotated irqs-on.\n");
3925 		}
3926 	}
3927 
3928 	/*
3929 	 * We dont accurately track softirq state in e.g.
3930 	 * hardirq contexts (such as on 4KSTACKS), so only
3931 	 * check if not in hardirq contexts:
3932 	 */
3933 	if (!hardirq_count()) {
3934 		if (softirq_count()) {
3935 			/* like the above, but with softirqs */
3936 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
3937 		} else {
3938 			/* lick the above, does it taste good? */
3939 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
3940 		}
3941 	}
3942 
3943 	if (!debug_locks)
3944 		print_irqtrace_events(current);
3945 #endif
3946 }
3947 
3948 void lock_set_class(struct lockdep_map *lock, const char *name,
3949 		    struct lock_class_key *key, unsigned int subclass,
3950 		    unsigned long ip)
3951 {
3952 	unsigned long flags;
3953 
3954 	if (unlikely(current->lockdep_recursion))
3955 		return;
3956 
3957 	raw_local_irq_save(flags);
3958 	current->lockdep_recursion = 1;
3959 	check_flags(flags);
3960 	if (__lock_set_class(lock, name, key, subclass, ip))
3961 		check_chain_key(current);
3962 	current->lockdep_recursion = 0;
3963 	raw_local_irq_restore(flags);
3964 }
3965 EXPORT_SYMBOL_GPL(lock_set_class);
3966 
3967 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
3968 {
3969 	unsigned long flags;
3970 
3971 	if (unlikely(current->lockdep_recursion))
3972 		return;
3973 
3974 	raw_local_irq_save(flags);
3975 	current->lockdep_recursion = 1;
3976 	check_flags(flags);
3977 	if (__lock_downgrade(lock, ip))
3978 		check_chain_key(current);
3979 	current->lockdep_recursion = 0;
3980 	raw_local_irq_restore(flags);
3981 }
3982 EXPORT_SYMBOL_GPL(lock_downgrade);
3983 
3984 /*
3985  * We are not always called with irqs disabled - do that here,
3986  * and also avoid lockdep recursion:
3987  */
3988 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3989 			  int trylock, int read, int check,
3990 			  struct lockdep_map *nest_lock, unsigned long ip)
3991 {
3992 	unsigned long flags;
3993 
3994 	if (unlikely(current->lockdep_recursion))
3995 		return;
3996 
3997 	raw_local_irq_save(flags);
3998 	check_flags(flags);
3999 
4000 	current->lockdep_recursion = 1;
4001 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
4002 	__lock_acquire(lock, subclass, trylock, read, check,
4003 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
4004 	current->lockdep_recursion = 0;
4005 	raw_local_irq_restore(flags);
4006 }
4007 EXPORT_SYMBOL_GPL(lock_acquire);
4008 
4009 void lock_release(struct lockdep_map *lock, int nested,
4010 			  unsigned long ip)
4011 {
4012 	unsigned long flags;
4013 
4014 	if (unlikely(current->lockdep_recursion))
4015 		return;
4016 
4017 	raw_local_irq_save(flags);
4018 	check_flags(flags);
4019 	current->lockdep_recursion = 1;
4020 	trace_lock_release(lock, ip);
4021 	if (__lock_release(lock, nested, ip))
4022 		check_chain_key(current);
4023 	current->lockdep_recursion = 0;
4024 	raw_local_irq_restore(flags);
4025 }
4026 EXPORT_SYMBOL_GPL(lock_release);
4027 
4028 int lock_is_held_type(struct lockdep_map *lock, int read)
4029 {
4030 	unsigned long flags;
4031 	int ret = 0;
4032 
4033 	if (unlikely(current->lockdep_recursion))
4034 		return 1; /* avoid false negative lockdep_assert_held() */
4035 
4036 	raw_local_irq_save(flags);
4037 	check_flags(flags);
4038 
4039 	current->lockdep_recursion = 1;
4040 	ret = __lock_is_held(lock, read);
4041 	current->lockdep_recursion = 0;
4042 	raw_local_irq_restore(flags);
4043 
4044 	return ret;
4045 }
4046 EXPORT_SYMBOL_GPL(lock_is_held_type);
4047 
4048 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
4049 {
4050 	struct pin_cookie cookie = NIL_COOKIE;
4051 	unsigned long flags;
4052 
4053 	if (unlikely(current->lockdep_recursion))
4054 		return cookie;
4055 
4056 	raw_local_irq_save(flags);
4057 	check_flags(flags);
4058 
4059 	current->lockdep_recursion = 1;
4060 	cookie = __lock_pin_lock(lock);
4061 	current->lockdep_recursion = 0;
4062 	raw_local_irq_restore(flags);
4063 
4064 	return cookie;
4065 }
4066 EXPORT_SYMBOL_GPL(lock_pin_lock);
4067 
4068 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4069 {
4070 	unsigned long flags;
4071 
4072 	if (unlikely(current->lockdep_recursion))
4073 		return;
4074 
4075 	raw_local_irq_save(flags);
4076 	check_flags(flags);
4077 
4078 	current->lockdep_recursion = 1;
4079 	__lock_repin_lock(lock, cookie);
4080 	current->lockdep_recursion = 0;
4081 	raw_local_irq_restore(flags);
4082 }
4083 EXPORT_SYMBOL_GPL(lock_repin_lock);
4084 
4085 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4086 {
4087 	unsigned long flags;
4088 
4089 	if (unlikely(current->lockdep_recursion))
4090 		return;
4091 
4092 	raw_local_irq_save(flags);
4093 	check_flags(flags);
4094 
4095 	current->lockdep_recursion = 1;
4096 	__lock_unpin_lock(lock, cookie);
4097 	current->lockdep_recursion = 0;
4098 	raw_local_irq_restore(flags);
4099 }
4100 EXPORT_SYMBOL_GPL(lock_unpin_lock);
4101 
4102 #ifdef CONFIG_LOCK_STAT
4103 static int
4104 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock,
4105 			   unsigned long ip)
4106 {
4107 	if (!debug_locks_off())
4108 		return 0;
4109 	if (debug_locks_silent)
4110 		return 0;
4111 
4112 	pr_warn("\n");
4113 	pr_warn("=================================\n");
4114 	pr_warn("WARNING: bad contention detected!\n");
4115 	print_kernel_ident();
4116 	pr_warn("---------------------------------\n");
4117 	pr_warn("%s/%d is trying to contend lock (",
4118 		curr->comm, task_pid_nr(curr));
4119 	print_lockdep_cache(lock);
4120 	pr_cont(") at:\n");
4121 	print_ip_sym(ip);
4122 	pr_warn("but there are no locks held!\n");
4123 	pr_warn("\nother info that might help us debug this:\n");
4124 	lockdep_print_held_locks(curr);
4125 
4126 	pr_warn("\nstack backtrace:\n");
4127 	dump_stack();
4128 
4129 	return 0;
4130 }
4131 
4132 static void
4133 __lock_contended(struct lockdep_map *lock, unsigned long ip)
4134 {
4135 	struct task_struct *curr = current;
4136 	struct held_lock *hlock;
4137 	struct lock_class_stats *stats;
4138 	unsigned int depth;
4139 	int i, contention_point, contending_point;
4140 
4141 	depth = curr->lockdep_depth;
4142 	/*
4143 	 * Whee, we contended on this lock, except it seems we're not
4144 	 * actually trying to acquire anything much at all..
4145 	 */
4146 	if (DEBUG_LOCKS_WARN_ON(!depth))
4147 		return;
4148 
4149 	hlock = find_held_lock(curr, lock, depth, &i);
4150 	if (!hlock) {
4151 		print_lock_contention_bug(curr, lock, ip);
4152 		return;
4153 	}
4154 
4155 	if (hlock->instance != lock)
4156 		return;
4157 
4158 	hlock->waittime_stamp = lockstat_clock();
4159 
4160 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
4161 	contending_point = lock_point(hlock_class(hlock)->contending_point,
4162 				      lock->ip);
4163 
4164 	stats = get_lock_stats(hlock_class(hlock));
4165 	if (contention_point < LOCKSTAT_POINTS)
4166 		stats->contention_point[contention_point]++;
4167 	if (contending_point < LOCKSTAT_POINTS)
4168 		stats->contending_point[contending_point]++;
4169 	if (lock->cpu != smp_processor_id())
4170 		stats->bounces[bounce_contended + !!hlock->read]++;
4171 	put_lock_stats(stats);
4172 }
4173 
4174 static void
4175 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
4176 {
4177 	struct task_struct *curr = current;
4178 	struct held_lock *hlock;
4179 	struct lock_class_stats *stats;
4180 	unsigned int depth;
4181 	u64 now, waittime = 0;
4182 	int i, cpu;
4183 
4184 	depth = curr->lockdep_depth;
4185 	/*
4186 	 * Yay, we acquired ownership of this lock we didn't try to
4187 	 * acquire, how the heck did that happen?
4188 	 */
4189 	if (DEBUG_LOCKS_WARN_ON(!depth))
4190 		return;
4191 
4192 	hlock = find_held_lock(curr, lock, depth, &i);
4193 	if (!hlock) {
4194 		print_lock_contention_bug(curr, lock, _RET_IP_);
4195 		return;
4196 	}
4197 
4198 	if (hlock->instance != lock)
4199 		return;
4200 
4201 	cpu = smp_processor_id();
4202 	if (hlock->waittime_stamp) {
4203 		now = lockstat_clock();
4204 		waittime = now - hlock->waittime_stamp;
4205 		hlock->holdtime_stamp = now;
4206 	}
4207 
4208 	trace_lock_acquired(lock, ip);
4209 
4210 	stats = get_lock_stats(hlock_class(hlock));
4211 	if (waittime) {
4212 		if (hlock->read)
4213 			lock_time_inc(&stats->read_waittime, waittime);
4214 		else
4215 			lock_time_inc(&stats->write_waittime, waittime);
4216 	}
4217 	if (lock->cpu != cpu)
4218 		stats->bounces[bounce_acquired + !!hlock->read]++;
4219 	put_lock_stats(stats);
4220 
4221 	lock->cpu = cpu;
4222 	lock->ip = ip;
4223 }
4224 
4225 void lock_contended(struct lockdep_map *lock, unsigned long ip)
4226 {
4227 	unsigned long flags;
4228 
4229 	if (unlikely(!lock_stat))
4230 		return;
4231 
4232 	if (unlikely(current->lockdep_recursion))
4233 		return;
4234 
4235 	raw_local_irq_save(flags);
4236 	check_flags(flags);
4237 	current->lockdep_recursion = 1;
4238 	trace_lock_contended(lock, ip);
4239 	__lock_contended(lock, ip);
4240 	current->lockdep_recursion = 0;
4241 	raw_local_irq_restore(flags);
4242 }
4243 EXPORT_SYMBOL_GPL(lock_contended);
4244 
4245 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
4246 {
4247 	unsigned long flags;
4248 
4249 	if (unlikely(!lock_stat))
4250 		return;
4251 
4252 	if (unlikely(current->lockdep_recursion))
4253 		return;
4254 
4255 	raw_local_irq_save(flags);
4256 	check_flags(flags);
4257 	current->lockdep_recursion = 1;
4258 	__lock_acquired(lock, ip);
4259 	current->lockdep_recursion = 0;
4260 	raw_local_irq_restore(flags);
4261 }
4262 EXPORT_SYMBOL_GPL(lock_acquired);
4263 #endif
4264 
4265 /*
4266  * Used by the testsuite, sanitize the validator state
4267  * after a simulated failure:
4268  */
4269 
4270 void lockdep_reset(void)
4271 {
4272 	unsigned long flags;
4273 	int i;
4274 
4275 	raw_local_irq_save(flags);
4276 	current->curr_chain_key = 0;
4277 	current->lockdep_depth = 0;
4278 	current->lockdep_recursion = 0;
4279 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
4280 	nr_hardirq_chains = 0;
4281 	nr_softirq_chains = 0;
4282 	nr_process_chains = 0;
4283 	debug_locks = 1;
4284 	for (i = 0; i < CHAINHASH_SIZE; i++)
4285 		INIT_HLIST_HEAD(chainhash_table + i);
4286 	raw_local_irq_restore(flags);
4287 }
4288 
4289 static void zap_class(struct lock_class *class)
4290 {
4291 	int i;
4292 
4293 	/*
4294 	 * Remove all dependencies this lock is
4295 	 * involved in:
4296 	 */
4297 	for (i = 0; i < nr_list_entries; i++) {
4298 		if (list_entries[i].class == class)
4299 			list_del_rcu(&list_entries[i].entry);
4300 	}
4301 	/*
4302 	 * Unhash the class and remove it from the all_lock_classes list:
4303 	 */
4304 	hlist_del_rcu(&class->hash_entry);
4305 	list_del_rcu(&class->lock_entry);
4306 
4307 	RCU_INIT_POINTER(class->key, NULL);
4308 	RCU_INIT_POINTER(class->name, NULL);
4309 }
4310 
4311 static inline int within(const void *addr, void *start, unsigned long size)
4312 {
4313 	return addr >= start && addr < start + size;
4314 }
4315 
4316 /*
4317  * Used in module.c to remove lock classes from memory that is going to be
4318  * freed; and possibly re-used by other modules.
4319  *
4320  * We will have had one sync_sched() before getting here, so we're guaranteed
4321  * nobody will look up these exact classes -- they're properly dead but still
4322  * allocated.
4323  */
4324 void lockdep_free_key_range(void *start, unsigned long size)
4325 {
4326 	struct lock_class *class;
4327 	struct hlist_head *head;
4328 	unsigned long flags;
4329 	int i;
4330 	int locked;
4331 
4332 	raw_local_irq_save(flags);
4333 	locked = graph_lock();
4334 
4335 	/*
4336 	 * Unhash all classes that were created by this module:
4337 	 */
4338 	for (i = 0; i < CLASSHASH_SIZE; i++) {
4339 		head = classhash_table + i;
4340 		hlist_for_each_entry_rcu(class, head, hash_entry) {
4341 			if (within(class->key, start, size))
4342 				zap_class(class);
4343 			else if (within(class->name, start, size))
4344 				zap_class(class);
4345 		}
4346 	}
4347 
4348 	if (locked)
4349 		graph_unlock();
4350 	raw_local_irq_restore(flags);
4351 
4352 	/*
4353 	 * Wait for any possible iterators from look_up_lock_class() to pass
4354 	 * before continuing to free the memory they refer to.
4355 	 *
4356 	 * sync_sched() is sufficient because the read-side is IRQ disable.
4357 	 */
4358 	synchronize_sched();
4359 
4360 	/*
4361 	 * XXX at this point we could return the resources to the pool;
4362 	 * instead we leak them. We would need to change to bitmap allocators
4363 	 * instead of the linear allocators we have now.
4364 	 */
4365 }
4366 
4367 void lockdep_reset_lock(struct lockdep_map *lock)
4368 {
4369 	struct lock_class *class;
4370 	struct hlist_head *head;
4371 	unsigned long flags;
4372 	int i, j;
4373 	int locked;
4374 
4375 	raw_local_irq_save(flags);
4376 
4377 	/*
4378 	 * Remove all classes this lock might have:
4379 	 */
4380 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
4381 		/*
4382 		 * If the class exists we look it up and zap it:
4383 		 */
4384 		class = look_up_lock_class(lock, j);
4385 		if (!IS_ERR_OR_NULL(class))
4386 			zap_class(class);
4387 	}
4388 	/*
4389 	 * Debug check: in the end all mapped classes should
4390 	 * be gone.
4391 	 */
4392 	locked = graph_lock();
4393 	for (i = 0; i < CLASSHASH_SIZE; i++) {
4394 		head = classhash_table + i;
4395 		hlist_for_each_entry_rcu(class, head, hash_entry) {
4396 			int match = 0;
4397 
4398 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
4399 				match |= class == lock->class_cache[j];
4400 
4401 			if (unlikely(match)) {
4402 				if (debug_locks_off_graph_unlock()) {
4403 					/*
4404 					 * We all just reset everything, how did it match?
4405 					 */
4406 					WARN_ON(1);
4407 				}
4408 				goto out_restore;
4409 			}
4410 		}
4411 	}
4412 	if (locked)
4413 		graph_unlock();
4414 
4415 out_restore:
4416 	raw_local_irq_restore(flags);
4417 }
4418 
4419 void __init lockdep_info(void)
4420 {
4421 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
4422 
4423 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
4424 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
4425 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
4426 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
4427 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
4428 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
4429 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
4430 
4431 	printk(" memory used by lock dependency info: %lu kB\n",
4432 		(sizeof(struct lock_class) * MAX_LOCKDEP_KEYS +
4433 		sizeof(struct list_head) * CLASSHASH_SIZE +
4434 		sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES +
4435 		sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS +
4436 		sizeof(struct list_head) * CHAINHASH_SIZE
4437 #ifdef CONFIG_PROVE_LOCKING
4438 		+ sizeof(struct circular_queue)
4439 #endif
4440 		) / 1024
4441 		);
4442 
4443 	printk(" per task-struct memory footprint: %lu bytes\n",
4444 		sizeof(struct held_lock) * MAX_LOCK_DEPTH);
4445 }
4446 
4447 static void
4448 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
4449 		     const void *mem_to, struct held_lock *hlock)
4450 {
4451 	if (!debug_locks_off())
4452 		return;
4453 	if (debug_locks_silent)
4454 		return;
4455 
4456 	pr_warn("\n");
4457 	pr_warn("=========================\n");
4458 	pr_warn("WARNING: held lock freed!\n");
4459 	print_kernel_ident();
4460 	pr_warn("-------------------------\n");
4461 	pr_warn("%s/%d is freeing memory %p-%p, with a lock still held there!\n",
4462 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
4463 	print_lock(hlock);
4464 	lockdep_print_held_locks(curr);
4465 
4466 	pr_warn("\nstack backtrace:\n");
4467 	dump_stack();
4468 }
4469 
4470 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
4471 				const void* lock_from, unsigned long lock_len)
4472 {
4473 	return lock_from + lock_len <= mem_from ||
4474 		mem_from + mem_len <= lock_from;
4475 }
4476 
4477 /*
4478  * Called when kernel memory is freed (or unmapped), or if a lock
4479  * is destroyed or reinitialized - this code checks whether there is
4480  * any held lock in the memory range of <from> to <to>:
4481  */
4482 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
4483 {
4484 	struct task_struct *curr = current;
4485 	struct held_lock *hlock;
4486 	unsigned long flags;
4487 	int i;
4488 
4489 	if (unlikely(!debug_locks))
4490 		return;
4491 
4492 	local_irq_save(flags);
4493 	for (i = 0; i < curr->lockdep_depth; i++) {
4494 		hlock = curr->held_locks + i;
4495 
4496 		if (not_in_range(mem_from, mem_len, hlock->instance,
4497 					sizeof(*hlock->instance)))
4498 			continue;
4499 
4500 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
4501 		break;
4502 	}
4503 	local_irq_restore(flags);
4504 }
4505 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
4506 
4507 static void print_held_locks_bug(void)
4508 {
4509 	if (!debug_locks_off())
4510 		return;
4511 	if (debug_locks_silent)
4512 		return;
4513 
4514 	pr_warn("\n");
4515 	pr_warn("====================================\n");
4516 	pr_warn("WARNING: %s/%d still has locks held!\n",
4517 	       current->comm, task_pid_nr(current));
4518 	print_kernel_ident();
4519 	pr_warn("------------------------------------\n");
4520 	lockdep_print_held_locks(current);
4521 	pr_warn("\nstack backtrace:\n");
4522 	dump_stack();
4523 }
4524 
4525 void debug_check_no_locks_held(void)
4526 {
4527 	if (unlikely(current->lockdep_depth > 0))
4528 		print_held_locks_bug();
4529 }
4530 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
4531 
4532 #ifdef __KERNEL__
4533 void debug_show_all_locks(void)
4534 {
4535 	struct task_struct *g, *p;
4536 	int count = 10;
4537 	int unlock = 1;
4538 
4539 	if (unlikely(!debug_locks)) {
4540 		pr_warn("INFO: lockdep is turned off.\n");
4541 		return;
4542 	}
4543 	pr_warn("\nShowing all locks held in the system:\n");
4544 
4545 	/*
4546 	 * Here we try to get the tasklist_lock as hard as possible,
4547 	 * if not successful after 2 seconds we ignore it (but keep
4548 	 * trying). This is to enable a debug printout even if a
4549 	 * tasklist_lock-holding task deadlocks or crashes.
4550 	 */
4551 retry:
4552 	if (!read_trylock(&tasklist_lock)) {
4553 		if (count == 10)
4554 			pr_warn("hm, tasklist_lock locked, retrying... ");
4555 		if (count) {
4556 			count--;
4557 			pr_cont(" #%d", 10-count);
4558 			mdelay(200);
4559 			goto retry;
4560 		}
4561 		pr_cont(" ignoring it.\n");
4562 		unlock = 0;
4563 	} else {
4564 		if (count != 10)
4565 			pr_cont(" locked it.\n");
4566 	}
4567 
4568 	do_each_thread(g, p) {
4569 		/*
4570 		 * It's not reliable to print a task's held locks
4571 		 * if it's not sleeping (or if it's not the current
4572 		 * task):
4573 		 */
4574 		if (p->state == TASK_RUNNING && p != current)
4575 			continue;
4576 		if (p->lockdep_depth)
4577 			lockdep_print_held_locks(p);
4578 		if (!unlock)
4579 			if (read_trylock(&tasklist_lock))
4580 				unlock = 1;
4581 	} while_each_thread(g, p);
4582 
4583 	pr_warn("\n");
4584 	pr_warn("=============================================\n\n");
4585 
4586 	if (unlock)
4587 		read_unlock(&tasklist_lock);
4588 }
4589 EXPORT_SYMBOL_GPL(debug_show_all_locks);
4590 #endif
4591 
4592 /*
4593  * Careful: only use this function if you are sure that
4594  * the task cannot run in parallel!
4595  */
4596 void debug_show_held_locks(struct task_struct *task)
4597 {
4598 	if (unlikely(!debug_locks)) {
4599 		printk("INFO: lockdep is turned off.\n");
4600 		return;
4601 	}
4602 	lockdep_print_held_locks(task);
4603 }
4604 EXPORT_SYMBOL_GPL(debug_show_held_locks);
4605 
4606 asmlinkage __visible void lockdep_sys_exit(void)
4607 {
4608 	struct task_struct *curr = current;
4609 
4610 	if (unlikely(curr->lockdep_depth)) {
4611 		if (!debug_locks_off())
4612 			return;
4613 		pr_warn("\n");
4614 		pr_warn("================================================\n");
4615 		pr_warn("WARNING: lock held when returning to user space!\n");
4616 		print_kernel_ident();
4617 		pr_warn("------------------------------------------------\n");
4618 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
4619 				curr->comm, curr->pid);
4620 		lockdep_print_held_locks(curr);
4621 	}
4622 
4623 	/*
4624 	 * The lock history for each syscall should be independent. So wipe the
4625 	 * slate clean on return to userspace.
4626 	 */
4627 	lockdep_invariant_state(false);
4628 }
4629 
4630 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
4631 {
4632 	struct task_struct *curr = current;
4633 
4634 	/* Note: the following can be executed concurrently, so be careful. */
4635 	pr_warn("\n");
4636 	pr_warn("=============================\n");
4637 	pr_warn("WARNING: suspicious RCU usage\n");
4638 	print_kernel_ident();
4639 	pr_warn("-----------------------------\n");
4640 	pr_warn("%s:%d %s!\n", file, line, s);
4641 	pr_warn("\nother info that might help us debug this:\n\n");
4642 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
4643 	       !rcu_lockdep_current_cpu_online()
4644 			? "RCU used illegally from offline CPU!\n"
4645 			: !rcu_is_watching()
4646 				? "RCU used illegally from idle CPU!\n"
4647 				: "",
4648 	       rcu_scheduler_active, debug_locks);
4649 
4650 	/*
4651 	 * If a CPU is in the RCU-free window in idle (ie: in the section
4652 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
4653 	 * considers that CPU to be in an "extended quiescent state",
4654 	 * which means that RCU will be completely ignoring that CPU.
4655 	 * Therefore, rcu_read_lock() and friends have absolutely no
4656 	 * effect on a CPU running in that state. In other words, even if
4657 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
4658 	 * delete data structures out from under it.  RCU really has no
4659 	 * choice here: we need to keep an RCU-free window in idle where
4660 	 * the CPU may possibly enter into low power mode. This way we can
4661 	 * notice an extended quiescent state to other CPUs that started a grace
4662 	 * period. Otherwise we would delay any grace period as long as we run
4663 	 * in the idle task.
4664 	 *
4665 	 * So complain bitterly if someone does call rcu_read_lock(),
4666 	 * rcu_read_lock_bh() and so on from extended quiescent states.
4667 	 */
4668 	if (!rcu_is_watching())
4669 		pr_warn("RCU used illegally from extended quiescent state!\n");
4670 
4671 	lockdep_print_held_locks(curr);
4672 	pr_warn("\nstack backtrace:\n");
4673 	dump_stack();
4674 }
4675 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
4676 
4677 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
4678 
4679 /*
4680  * Crossrelease works by recording a lock history for each thread and
4681  * connecting those historic locks that were taken after the
4682  * wait_for_completion() in the complete() context.
4683  *
4684  * Task-A				Task-B
4685  *
4686  *					mutex_lock(&A);
4687  *					mutex_unlock(&A);
4688  *
4689  * wait_for_completion(&C);
4690  *   lock_acquire_crosslock();
4691  *     atomic_inc_return(&cross_gen_id);
4692  *                                |
4693  *				  |	mutex_lock(&B);
4694  *				  |	mutex_unlock(&B);
4695  *                                |
4696  *				  |	complete(&C);
4697  *				  `--	  lock_commit_crosslock();
4698  *
4699  * Which will then add a dependency between B and C.
4700  */
4701 
4702 #define xhlock(i)         (current->xhlocks[(i) % MAX_XHLOCKS_NR])
4703 
4704 /*
4705  * Whenever a crosslock is held, cross_gen_id will be increased.
4706  */
4707 static atomic_t cross_gen_id; /* Can be wrapped */
4708 
4709 /*
4710  * Make an entry of the ring buffer invalid.
4711  */
4712 static inline void invalidate_xhlock(struct hist_lock *xhlock)
4713 {
4714 	/*
4715 	 * Normally, xhlock->hlock.instance must be !NULL.
4716 	 */
4717 	xhlock->hlock.instance = NULL;
4718 }
4719 
4720 /*
4721  * Lock history stacks; we have 2 nested lock history stacks:
4722  *
4723  *   HARD(IRQ)
4724  *   SOFT(IRQ)
4725  *
4726  * The thing is that once we complete a HARD/SOFT IRQ the future task locks
4727  * should not depend on any of the locks observed while running the IRQ.  So
4728  * what we do is rewind the history buffer and erase all our knowledge of that
4729  * temporal event.
4730  */
4731 
4732 void crossrelease_hist_start(enum xhlock_context_t c)
4733 {
4734 	struct task_struct *cur = current;
4735 
4736 	if (!cur->xhlocks)
4737 		return;
4738 
4739 	cur->xhlock_idx_hist[c] = cur->xhlock_idx;
4740 	cur->hist_id_save[c]    = cur->hist_id;
4741 }
4742 
4743 void crossrelease_hist_end(enum xhlock_context_t c)
4744 {
4745 	struct task_struct *cur = current;
4746 
4747 	if (cur->xhlocks) {
4748 		unsigned int idx = cur->xhlock_idx_hist[c];
4749 		struct hist_lock *h = &xhlock(idx);
4750 
4751 		cur->xhlock_idx = idx;
4752 
4753 		/* Check if the ring was overwritten. */
4754 		if (h->hist_id != cur->hist_id_save[c])
4755 			invalidate_xhlock(h);
4756 	}
4757 }
4758 
4759 /*
4760  * lockdep_invariant_state() is used to annotate independence inside a task, to
4761  * make one task look like multiple independent 'tasks'.
4762  *
4763  * Take for instance workqueues; each work is independent of the last. The
4764  * completion of a future work does not depend on the completion of a past work
4765  * (in general). Therefore we must not carry that (lock) dependency across
4766  * works.
4767  *
4768  * This is true for many things; pretty much all kthreads fall into this
4769  * pattern, where they have an invariant state and future completions do not
4770  * depend on past completions. Its just that since they all have the 'same'
4771  * form -- the kthread does the same over and over -- it doesn't typically
4772  * matter.
4773  *
4774  * The same is true for system-calls, once a system call is completed (we've
4775  * returned to userspace) the next system call does not depend on the lock
4776  * history of the previous system call.
4777  *
4778  * They key property for independence, this invariant state, is that it must be
4779  * a point where we hold no locks and have no history. Because if we were to
4780  * hold locks, the restore at _end() would not necessarily recover it's history
4781  * entry. Similarly, independence per-definition means it does not depend on
4782  * prior state.
4783  */
4784 void lockdep_invariant_state(bool force)
4785 {
4786 	/*
4787 	 * We call this at an invariant point, no current state, no history.
4788 	 * Verify the former, enforce the latter.
4789 	 */
4790 	WARN_ON_ONCE(!force && current->lockdep_depth);
4791 	invalidate_xhlock(&xhlock(current->xhlock_idx));
4792 }
4793 
4794 static int cross_lock(struct lockdep_map *lock)
4795 {
4796 	return lock ? lock->cross : 0;
4797 }
4798 
4799 /*
4800  * This is needed to decide the relationship between wrapable variables.
4801  */
4802 static inline int before(unsigned int a, unsigned int b)
4803 {
4804 	return (int)(a - b) < 0;
4805 }
4806 
4807 static inline struct lock_class *xhlock_class(struct hist_lock *xhlock)
4808 {
4809 	return hlock_class(&xhlock->hlock);
4810 }
4811 
4812 static inline struct lock_class *xlock_class(struct cross_lock *xlock)
4813 {
4814 	return hlock_class(&xlock->hlock);
4815 }
4816 
4817 /*
4818  * Should we check a dependency with previous one?
4819  */
4820 static inline int depend_before(struct held_lock *hlock)
4821 {
4822 	return hlock->read != 2 && hlock->check && !hlock->trylock;
4823 }
4824 
4825 /*
4826  * Should we check a dependency with next one?
4827  */
4828 static inline int depend_after(struct held_lock *hlock)
4829 {
4830 	return hlock->read != 2 && hlock->check;
4831 }
4832 
4833 /*
4834  * Check if the xhlock is valid, which would be false if,
4835  *
4836  *    1. Has not used after initializaion yet.
4837  *    2. Got invalidated.
4838  *
4839  * Remind hist_lock is implemented as a ring buffer.
4840  */
4841 static inline int xhlock_valid(struct hist_lock *xhlock)
4842 {
4843 	/*
4844 	 * xhlock->hlock.instance must be !NULL.
4845 	 */
4846 	return !!xhlock->hlock.instance;
4847 }
4848 
4849 /*
4850  * Record a hist_lock entry.
4851  *
4852  * Irq disable is only required.
4853  */
4854 static void add_xhlock(struct held_lock *hlock)
4855 {
4856 	unsigned int idx = ++current->xhlock_idx;
4857 	struct hist_lock *xhlock = &xhlock(idx);
4858 
4859 #ifdef CONFIG_DEBUG_LOCKDEP
4860 	/*
4861 	 * This can be done locklessly because they are all task-local
4862 	 * state, we must however ensure IRQs are disabled.
4863 	 */
4864 	WARN_ON_ONCE(!irqs_disabled());
4865 #endif
4866 
4867 	/* Initialize hist_lock's members */
4868 	xhlock->hlock = *hlock;
4869 	xhlock->hist_id = ++current->hist_id;
4870 
4871 	xhlock->trace.nr_entries = 0;
4872 	xhlock->trace.max_entries = MAX_XHLOCK_TRACE_ENTRIES;
4873 	xhlock->trace.entries = xhlock->trace_entries;
4874 	xhlock->trace.skip = 3;
4875 	save_stack_trace(&xhlock->trace);
4876 }
4877 
4878 static inline int same_context_xhlock(struct hist_lock *xhlock)
4879 {
4880 	return xhlock->hlock.irq_context == task_irq_context(current);
4881 }
4882 
4883 /*
4884  * This should be lockless as far as possible because this would be
4885  * called very frequently.
4886  */
4887 static void check_add_xhlock(struct held_lock *hlock)
4888 {
4889 	/*
4890 	 * Record a hist_lock, only in case that acquisitions ahead
4891 	 * could depend on the held_lock. For example, if the held_lock
4892 	 * is trylock then acquisitions ahead never depends on that.
4893 	 * In that case, we don't need to record it. Just return.
4894 	 */
4895 	if (!current->xhlocks || !depend_before(hlock))
4896 		return;
4897 
4898 	add_xhlock(hlock);
4899 }
4900 
4901 /*
4902  * For crosslock.
4903  */
4904 static int add_xlock(struct held_lock *hlock)
4905 {
4906 	struct cross_lock *xlock;
4907 	unsigned int gen_id;
4908 
4909 	if (!graph_lock())
4910 		return 0;
4911 
4912 	xlock = &((struct lockdep_map_cross *)hlock->instance)->xlock;
4913 
4914 	/*
4915 	 * When acquisitions for a crosslock are overlapped, we use
4916 	 * nr_acquire to perform commit for them, based on cross_gen_id
4917 	 * of the first acquisition, which allows to add additional
4918 	 * dependencies.
4919 	 *
4920 	 * Moreover, when no acquisition of a crosslock is in progress,
4921 	 * we should not perform commit because the lock might not exist
4922 	 * any more, which might cause incorrect memory access. So we
4923 	 * have to track the number of acquisitions of a crosslock.
4924 	 *
4925 	 * depend_after() is necessary to initialize only the first
4926 	 * valid xlock so that the xlock can be used on its commit.
4927 	 */
4928 	if (xlock->nr_acquire++ && depend_after(&xlock->hlock))
4929 		goto unlock;
4930 
4931 	gen_id = (unsigned int)atomic_inc_return(&cross_gen_id);
4932 	xlock->hlock = *hlock;
4933 	xlock->hlock.gen_id = gen_id;
4934 unlock:
4935 	graph_unlock();
4936 	return 1;
4937 }
4938 
4939 /*
4940  * Called for both normal and crosslock acquires. Normal locks will be
4941  * pushed on the hist_lock queue. Cross locks will record state and
4942  * stop regular lock_acquire() to avoid being placed on the held_lock
4943  * stack.
4944  *
4945  * Return: 0 - failure;
4946  *         1 - crosslock, done;
4947  *         2 - normal lock, continue to held_lock[] ops.
4948  */
4949 static int lock_acquire_crosslock(struct held_lock *hlock)
4950 {
4951 	/*
4952 	 *	CONTEXT 1		CONTEXT 2
4953 	 *	---------		---------
4954 	 *	lock A (cross)
4955 	 *	X = atomic_inc_return(&cross_gen_id)
4956 	 *	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4957 	 *				Y = atomic_read_acquire(&cross_gen_id)
4958 	 *				lock B
4959 	 *
4960 	 * atomic_read_acquire() is for ordering between A and B,
4961 	 * IOW, A happens before B, when CONTEXT 2 see Y >= X.
4962 	 *
4963 	 * Pairs with atomic_inc_return() in add_xlock().
4964 	 */
4965 	hlock->gen_id = (unsigned int)atomic_read_acquire(&cross_gen_id);
4966 
4967 	if (cross_lock(hlock->instance))
4968 		return add_xlock(hlock);
4969 
4970 	check_add_xhlock(hlock);
4971 	return 2;
4972 }
4973 
4974 static int copy_trace(struct stack_trace *trace)
4975 {
4976 	unsigned long *buf = stack_trace + nr_stack_trace_entries;
4977 	unsigned int max_nr = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
4978 	unsigned int nr = min(max_nr, trace->nr_entries);
4979 
4980 	trace->nr_entries = nr;
4981 	memcpy(buf, trace->entries, nr * sizeof(trace->entries[0]));
4982 	trace->entries = buf;
4983 	nr_stack_trace_entries += nr;
4984 
4985 	if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
4986 		if (!debug_locks_off_graph_unlock())
4987 			return 0;
4988 
4989 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
4990 		dump_stack();
4991 
4992 		return 0;
4993 	}
4994 
4995 	return 1;
4996 }
4997 
4998 static int commit_xhlock(struct cross_lock *xlock, struct hist_lock *xhlock)
4999 {
5000 	unsigned int xid, pid;
5001 	u64 chain_key;
5002 
5003 	xid = xlock_class(xlock) - lock_classes;
5004 	chain_key = iterate_chain_key((u64)0, xid);
5005 	pid = xhlock_class(xhlock) - lock_classes;
5006 	chain_key = iterate_chain_key(chain_key, pid);
5007 
5008 	if (lookup_chain_cache(chain_key))
5009 		return 1;
5010 
5011 	if (!add_chain_cache_classes(xid, pid, xhlock->hlock.irq_context,
5012 				chain_key))
5013 		return 0;
5014 
5015 	if (!check_prev_add(current, &xlock->hlock, &xhlock->hlock, 1,
5016 			    &xhlock->trace, copy_trace))
5017 		return 0;
5018 
5019 	return 1;
5020 }
5021 
5022 static void commit_xhlocks(struct cross_lock *xlock)
5023 {
5024 	unsigned int cur = current->xhlock_idx;
5025 	unsigned int prev_hist_id = xhlock(cur).hist_id;
5026 	unsigned int i;
5027 
5028 	if (!graph_lock())
5029 		return;
5030 
5031 	if (xlock->nr_acquire) {
5032 		for (i = 0; i < MAX_XHLOCKS_NR; i++) {
5033 			struct hist_lock *xhlock = &xhlock(cur - i);
5034 
5035 			if (!xhlock_valid(xhlock))
5036 				break;
5037 
5038 			if (before(xhlock->hlock.gen_id, xlock->hlock.gen_id))
5039 				break;
5040 
5041 			if (!same_context_xhlock(xhlock))
5042 				break;
5043 
5044 			/*
5045 			 * Filter out the cases where the ring buffer was
5046 			 * overwritten and the current entry has a bigger
5047 			 * hist_id than the previous one, which is impossible
5048 			 * otherwise:
5049 			 */
5050 			if (unlikely(before(prev_hist_id, xhlock->hist_id)))
5051 				break;
5052 
5053 			prev_hist_id = xhlock->hist_id;
5054 
5055 			/*
5056 			 * commit_xhlock() returns 0 with graph_lock already
5057 			 * released if fail.
5058 			 */
5059 			if (!commit_xhlock(xlock, xhlock))
5060 				return;
5061 		}
5062 	}
5063 
5064 	graph_unlock();
5065 }
5066 
5067 void lock_commit_crosslock(struct lockdep_map *lock)
5068 {
5069 	struct cross_lock *xlock;
5070 	unsigned long flags;
5071 
5072 	if (unlikely(!debug_locks || current->lockdep_recursion))
5073 		return;
5074 
5075 	if (!current->xhlocks)
5076 		return;
5077 
5078 	/*
5079 	 * Do commit hist_locks with the cross_lock, only in case that
5080 	 * the cross_lock could depend on acquisitions after that.
5081 	 *
5082 	 * For example, if the cross_lock does not have the 'check' flag
5083 	 * then we don't need to check dependencies and commit for that.
5084 	 * Just skip it. In that case, of course, the cross_lock does
5085 	 * not depend on acquisitions ahead, either.
5086 	 *
5087 	 * WARNING: Don't do that in add_xlock() in advance. When an
5088 	 * acquisition context is different from the commit context,
5089 	 * invalid(skipped) cross_lock might be accessed.
5090 	 */
5091 	if (!depend_after(&((struct lockdep_map_cross *)lock)->xlock.hlock))
5092 		return;
5093 
5094 	raw_local_irq_save(flags);
5095 	check_flags(flags);
5096 	current->lockdep_recursion = 1;
5097 	xlock = &((struct lockdep_map_cross *)lock)->xlock;
5098 	commit_xhlocks(xlock);
5099 	current->lockdep_recursion = 0;
5100 	raw_local_irq_restore(flags);
5101 }
5102 EXPORT_SYMBOL_GPL(lock_commit_crosslock);
5103 
5104 /*
5105  * Return: 0 - failure;
5106  *         1 - crosslock, done;
5107  *         2 - normal lock, continue to held_lock[] ops.
5108  */
5109 static int lock_release_crosslock(struct lockdep_map *lock)
5110 {
5111 	if (cross_lock(lock)) {
5112 		if (!graph_lock())
5113 			return 0;
5114 		((struct lockdep_map_cross *)lock)->xlock.nr_acquire--;
5115 		graph_unlock();
5116 		return 1;
5117 	}
5118 	return 2;
5119 }
5120 
5121 static void cross_init(struct lockdep_map *lock, int cross)
5122 {
5123 	if (cross)
5124 		((struct lockdep_map_cross *)lock)->xlock.nr_acquire = 0;
5125 
5126 	lock->cross = cross;
5127 
5128 	/*
5129 	 * Crossrelease assumes that the ring buffer size of xhlocks
5130 	 * is aligned with power of 2. So force it on build.
5131 	 */
5132 	BUILD_BUG_ON(MAX_XHLOCKS_NR & (MAX_XHLOCKS_NR - 1));
5133 }
5134 
5135 void lockdep_init_task(struct task_struct *task)
5136 {
5137 	int i;
5138 
5139 	task->xhlock_idx = UINT_MAX;
5140 	task->hist_id = 0;
5141 
5142 	for (i = 0; i < XHLOCK_CTX_NR; i++) {
5143 		task->xhlock_idx_hist[i] = UINT_MAX;
5144 		task->hist_id_save[i] = 0;
5145 	}
5146 
5147 	task->xhlocks = kzalloc(sizeof(struct hist_lock) * MAX_XHLOCKS_NR,
5148 				GFP_KERNEL);
5149 }
5150 
5151 void lockdep_free_task(struct task_struct *task)
5152 {
5153 	if (task->xhlocks) {
5154 		void *tmp = task->xhlocks;
5155 		/* Diable crossrelease for current */
5156 		task->xhlocks = NULL;
5157 		kfree(tmp);
5158 	}
5159 }
5160 #endif
5161