xref: /openbmc/linux/kernel/locking/lockdep.c (revision 6aa7de05)
1 /*
2  * kernel/lockdep.c
3  *
4  * Runtime locking correctness validator
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
10  *
11  * this code maps all the lock dependencies as they occur in a live kernel
12  * and will warn about the following classes of locking bugs:
13  *
14  * - lock inversion scenarios
15  * - circular lock dependencies
16  * - hardirq/softirq safe/unsafe locking bugs
17  *
18  * Bugs are reported even if the current locking scenario does not cause
19  * any deadlock at this point.
20  *
21  * I.e. if anytime in the past two locks were taken in a different order,
22  * even if it happened for another task, even if those were different
23  * locks (but of the same class as this lock), this code will detect it.
24  *
25  * Thanks to Arjan van de Ven for coming up with the initial idea of
26  * mapping lock dependencies runtime.
27  */
28 #define DISABLE_BRANCH_PROFILING
29 #include <linux/mutex.h>
30 #include <linux/sched.h>
31 #include <linux/sched/clock.h>
32 #include <linux/sched/task.h>
33 #include <linux/sched/mm.h>
34 #include <linux/delay.h>
35 #include <linux/module.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/spinlock.h>
39 #include <linux/kallsyms.h>
40 #include <linux/interrupt.h>
41 #include <linux/stacktrace.h>
42 #include <linux/debug_locks.h>
43 #include <linux/irqflags.h>
44 #include <linux/utsname.h>
45 #include <linux/hash.h>
46 #include <linux/ftrace.h>
47 #include <linux/stringify.h>
48 #include <linux/bitops.h>
49 #include <linux/gfp.h>
50 #include <linux/kmemcheck.h>
51 #include <linux/random.h>
52 #include <linux/jhash.h>
53 
54 #include <asm/sections.h>
55 
56 #include "lockdep_internals.h"
57 
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/lock.h>
60 
61 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
62 #include <linux/slab.h>
63 #endif
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 /*
80  * lockdep_lock: protects the lockdep graph, the hashes and the
81  *               class/list/hash allocators.
82  *
83  * This is one of the rare exceptions where it's justified
84  * to use a raw spinlock - we really dont want the spinlock
85  * code to recurse back into the lockdep code...
86  */
87 static arch_spinlock_t lockdep_lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
88 
89 static int graph_lock(void)
90 {
91 	arch_spin_lock(&lockdep_lock);
92 	/*
93 	 * Make sure that if another CPU detected a bug while
94 	 * walking the graph we dont change it (while the other
95 	 * CPU is busy printing out stuff with the graph lock
96 	 * dropped already)
97 	 */
98 	if (!debug_locks) {
99 		arch_spin_unlock(&lockdep_lock);
100 		return 0;
101 	}
102 	/* prevent any recursions within lockdep from causing deadlocks */
103 	current->lockdep_recursion++;
104 	return 1;
105 }
106 
107 static inline int graph_unlock(void)
108 {
109 	if (debug_locks && !arch_spin_is_locked(&lockdep_lock)) {
110 		/*
111 		 * The lockdep graph lock isn't locked while we expect it to
112 		 * be, we're confused now, bye!
113 		 */
114 		return DEBUG_LOCKS_WARN_ON(1);
115 	}
116 
117 	current->lockdep_recursion--;
118 	arch_spin_unlock(&lockdep_lock);
119 	return 0;
120 }
121 
122 /*
123  * Turn lock debugging off and return with 0 if it was off already,
124  * and also release the graph lock:
125  */
126 static inline int debug_locks_off_graph_unlock(void)
127 {
128 	int ret = debug_locks_off();
129 
130 	arch_spin_unlock(&lockdep_lock);
131 
132 	return ret;
133 }
134 
135 unsigned long nr_list_entries;
136 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
137 
138 /*
139  * All data structures here are protected by the global debug_lock.
140  *
141  * Mutex key structs only get allocated, once during bootup, and never
142  * get freed - this significantly simplifies the debugging code.
143  */
144 unsigned long nr_lock_classes;
145 static struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
146 
147 static inline struct lock_class *hlock_class(struct held_lock *hlock)
148 {
149 	if (!hlock->class_idx) {
150 		/*
151 		 * Someone passed in garbage, we give up.
152 		 */
153 		DEBUG_LOCKS_WARN_ON(1);
154 		return NULL;
155 	}
156 	return lock_classes + hlock->class_idx - 1;
157 }
158 
159 #ifdef CONFIG_LOCK_STAT
160 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
161 
162 static inline u64 lockstat_clock(void)
163 {
164 	return local_clock();
165 }
166 
167 static int lock_point(unsigned long points[], unsigned long ip)
168 {
169 	int i;
170 
171 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
172 		if (points[i] == 0) {
173 			points[i] = ip;
174 			break;
175 		}
176 		if (points[i] == ip)
177 			break;
178 	}
179 
180 	return i;
181 }
182 
183 static void lock_time_inc(struct lock_time *lt, u64 time)
184 {
185 	if (time > lt->max)
186 		lt->max = time;
187 
188 	if (time < lt->min || !lt->nr)
189 		lt->min = time;
190 
191 	lt->total += time;
192 	lt->nr++;
193 }
194 
195 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
196 {
197 	if (!src->nr)
198 		return;
199 
200 	if (src->max > dst->max)
201 		dst->max = src->max;
202 
203 	if (src->min < dst->min || !dst->nr)
204 		dst->min = src->min;
205 
206 	dst->total += src->total;
207 	dst->nr += src->nr;
208 }
209 
210 struct lock_class_stats lock_stats(struct lock_class *class)
211 {
212 	struct lock_class_stats stats;
213 	int cpu, i;
214 
215 	memset(&stats, 0, sizeof(struct lock_class_stats));
216 	for_each_possible_cpu(cpu) {
217 		struct lock_class_stats *pcs =
218 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
219 
220 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
221 			stats.contention_point[i] += pcs->contention_point[i];
222 
223 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
224 			stats.contending_point[i] += pcs->contending_point[i];
225 
226 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
227 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
228 
229 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
230 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
231 
232 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
233 			stats.bounces[i] += pcs->bounces[i];
234 	}
235 
236 	return stats;
237 }
238 
239 void clear_lock_stats(struct lock_class *class)
240 {
241 	int cpu;
242 
243 	for_each_possible_cpu(cpu) {
244 		struct lock_class_stats *cpu_stats =
245 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
246 
247 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
248 	}
249 	memset(class->contention_point, 0, sizeof(class->contention_point));
250 	memset(class->contending_point, 0, sizeof(class->contending_point));
251 }
252 
253 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
254 {
255 	return &get_cpu_var(cpu_lock_stats)[class - lock_classes];
256 }
257 
258 static void put_lock_stats(struct lock_class_stats *stats)
259 {
260 	put_cpu_var(cpu_lock_stats);
261 }
262 
263 static void lock_release_holdtime(struct held_lock *hlock)
264 {
265 	struct lock_class_stats *stats;
266 	u64 holdtime;
267 
268 	if (!lock_stat)
269 		return;
270 
271 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
272 
273 	stats = get_lock_stats(hlock_class(hlock));
274 	if (hlock->read)
275 		lock_time_inc(&stats->read_holdtime, holdtime);
276 	else
277 		lock_time_inc(&stats->write_holdtime, holdtime);
278 	put_lock_stats(stats);
279 }
280 #else
281 static inline void lock_release_holdtime(struct held_lock *hlock)
282 {
283 }
284 #endif
285 
286 /*
287  * We keep a global list of all lock classes. The list only grows,
288  * never shrinks. The list is only accessed with the lockdep
289  * spinlock lock held.
290  */
291 LIST_HEAD(all_lock_classes);
292 
293 /*
294  * The lockdep classes are in a hash-table as well, for fast lookup:
295  */
296 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
297 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
298 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
299 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
300 
301 static struct hlist_head classhash_table[CLASSHASH_SIZE];
302 
303 /*
304  * We put the lock dependency chains into a hash-table as well, to cache
305  * their existence:
306  */
307 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
308 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
309 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
310 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
311 
312 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
313 
314 /*
315  * The hash key of the lock dependency chains is a hash itself too:
316  * it's a hash of all locks taken up to that lock, including that lock.
317  * It's a 64-bit hash, because it's important for the keys to be
318  * unique.
319  */
320 static inline u64 iterate_chain_key(u64 key, u32 idx)
321 {
322 	u32 k0 = key, k1 = key >> 32;
323 
324 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
325 
326 	return k0 | (u64)k1 << 32;
327 }
328 
329 void lockdep_off(void)
330 {
331 	current->lockdep_recursion++;
332 }
333 EXPORT_SYMBOL(lockdep_off);
334 
335 void lockdep_on(void)
336 {
337 	current->lockdep_recursion--;
338 }
339 EXPORT_SYMBOL(lockdep_on);
340 
341 /*
342  * Debugging switches:
343  */
344 
345 #define VERBOSE			0
346 #define VERY_VERBOSE		0
347 
348 #if VERBOSE
349 # define HARDIRQ_VERBOSE	1
350 # define SOFTIRQ_VERBOSE	1
351 #else
352 # define HARDIRQ_VERBOSE	0
353 # define SOFTIRQ_VERBOSE	0
354 #endif
355 
356 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
357 /*
358  * Quick filtering for interesting events:
359  */
360 static int class_filter(struct lock_class *class)
361 {
362 #if 0
363 	/* Example */
364 	if (class->name_version == 1 &&
365 			!strcmp(class->name, "lockname"))
366 		return 1;
367 	if (class->name_version == 1 &&
368 			!strcmp(class->name, "&struct->lockfield"))
369 		return 1;
370 #endif
371 	/* Filter everything else. 1 would be to allow everything else */
372 	return 0;
373 }
374 #endif
375 
376 static int verbose(struct lock_class *class)
377 {
378 #if VERBOSE
379 	return class_filter(class);
380 #endif
381 	return 0;
382 }
383 
384 /*
385  * Stack-trace: tightly packed array of stack backtrace
386  * addresses. Protected by the graph_lock.
387  */
388 unsigned long nr_stack_trace_entries;
389 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
390 
391 static void print_lockdep_off(const char *bug_msg)
392 {
393 	printk(KERN_DEBUG "%s\n", bug_msg);
394 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
395 #ifdef CONFIG_LOCK_STAT
396 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
397 #endif
398 }
399 
400 static int save_trace(struct stack_trace *trace)
401 {
402 	trace->nr_entries = 0;
403 	trace->max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
404 	trace->entries = stack_trace + nr_stack_trace_entries;
405 
406 	trace->skip = 3;
407 
408 	save_stack_trace(trace);
409 
410 	/*
411 	 * Some daft arches put -1 at the end to indicate its a full trace.
412 	 *
413 	 * <rant> this is buggy anyway, since it takes a whole extra entry so a
414 	 * complete trace that maxes out the entries provided will be reported
415 	 * as incomplete, friggin useless </rant>
416 	 */
417 	if (trace->nr_entries != 0 &&
418 	    trace->entries[trace->nr_entries-1] == ULONG_MAX)
419 		trace->nr_entries--;
420 
421 	trace->max_entries = trace->nr_entries;
422 
423 	nr_stack_trace_entries += trace->nr_entries;
424 
425 	if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
426 		if (!debug_locks_off_graph_unlock())
427 			return 0;
428 
429 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
430 		dump_stack();
431 
432 		return 0;
433 	}
434 
435 	return 1;
436 }
437 
438 unsigned int nr_hardirq_chains;
439 unsigned int nr_softirq_chains;
440 unsigned int nr_process_chains;
441 unsigned int max_lockdep_depth;
442 
443 #ifdef CONFIG_DEBUG_LOCKDEP
444 /*
445  * Various lockdep statistics:
446  */
447 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
448 #endif
449 
450 /*
451  * Locking printouts:
452  */
453 
454 #define __USAGE(__STATE)						\
455 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
456 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
457 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
458 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
459 
460 static const char *usage_str[] =
461 {
462 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
463 #include "lockdep_states.h"
464 #undef LOCKDEP_STATE
465 	[LOCK_USED] = "INITIAL USE",
466 };
467 
468 const char * __get_key_name(struct lockdep_subclass_key *key, char *str)
469 {
470 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
471 }
472 
473 static inline unsigned long lock_flag(enum lock_usage_bit bit)
474 {
475 	return 1UL << bit;
476 }
477 
478 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
479 {
480 	char c = '.';
481 
482 	if (class->usage_mask & lock_flag(bit + 2))
483 		c = '+';
484 	if (class->usage_mask & lock_flag(bit)) {
485 		c = '-';
486 		if (class->usage_mask & lock_flag(bit + 2))
487 			c = '?';
488 	}
489 
490 	return c;
491 }
492 
493 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
494 {
495 	int i = 0;
496 
497 #define LOCKDEP_STATE(__STATE) 						\
498 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
499 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
500 #include "lockdep_states.h"
501 #undef LOCKDEP_STATE
502 
503 	usage[i] = '\0';
504 }
505 
506 static void __print_lock_name(struct lock_class *class)
507 {
508 	char str[KSYM_NAME_LEN];
509 	const char *name;
510 
511 	name = class->name;
512 	if (!name) {
513 		name = __get_key_name(class->key, str);
514 		printk(KERN_CONT "%s", name);
515 	} else {
516 		printk(KERN_CONT "%s", name);
517 		if (class->name_version > 1)
518 			printk(KERN_CONT "#%d", class->name_version);
519 		if (class->subclass)
520 			printk(KERN_CONT "/%d", class->subclass);
521 	}
522 }
523 
524 static void print_lock_name(struct lock_class *class)
525 {
526 	char usage[LOCK_USAGE_CHARS];
527 
528 	get_usage_chars(class, usage);
529 
530 	printk(KERN_CONT " (");
531 	__print_lock_name(class);
532 	printk(KERN_CONT "){%s}", usage);
533 }
534 
535 static void print_lockdep_cache(struct lockdep_map *lock)
536 {
537 	const char *name;
538 	char str[KSYM_NAME_LEN];
539 
540 	name = lock->name;
541 	if (!name)
542 		name = __get_key_name(lock->key->subkeys, str);
543 
544 	printk(KERN_CONT "%s", name);
545 }
546 
547 static void print_lock(struct held_lock *hlock)
548 {
549 	/*
550 	 * We can be called locklessly through debug_show_all_locks() so be
551 	 * extra careful, the hlock might have been released and cleared.
552 	 */
553 	unsigned int class_idx = hlock->class_idx;
554 
555 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfields: */
556 	barrier();
557 
558 	if (!class_idx || (class_idx - 1) >= MAX_LOCKDEP_KEYS) {
559 		printk(KERN_CONT "<RELEASED>\n");
560 		return;
561 	}
562 
563 	print_lock_name(lock_classes + class_idx - 1);
564 	printk(KERN_CONT ", at: [<%p>] %pS\n",
565 		(void *)hlock->acquire_ip, (void *)hlock->acquire_ip);
566 }
567 
568 static void lockdep_print_held_locks(struct task_struct *curr)
569 {
570 	int i, depth = curr->lockdep_depth;
571 
572 	if (!depth) {
573 		printk("no locks held by %s/%d.\n", curr->comm, task_pid_nr(curr));
574 		return;
575 	}
576 	printk("%d lock%s held by %s/%d:\n",
577 		depth, depth > 1 ? "s" : "", curr->comm, task_pid_nr(curr));
578 
579 	for (i = 0; i < depth; i++) {
580 		printk(" #%d: ", i);
581 		print_lock(curr->held_locks + i);
582 	}
583 }
584 
585 static void print_kernel_ident(void)
586 {
587 	printk("%s %.*s %s\n", init_utsname()->release,
588 		(int)strcspn(init_utsname()->version, " "),
589 		init_utsname()->version,
590 		print_tainted());
591 }
592 
593 static int very_verbose(struct lock_class *class)
594 {
595 #if VERY_VERBOSE
596 	return class_filter(class);
597 #endif
598 	return 0;
599 }
600 
601 /*
602  * Is this the address of a static object:
603  */
604 #ifdef __KERNEL__
605 static int static_obj(void *obj)
606 {
607 	unsigned long start = (unsigned long) &_stext,
608 		      end   = (unsigned long) &_end,
609 		      addr  = (unsigned long) obj;
610 
611 	/*
612 	 * static variable?
613 	 */
614 	if ((addr >= start) && (addr < end))
615 		return 1;
616 
617 	if (arch_is_kernel_data(addr))
618 		return 1;
619 
620 	/*
621 	 * in-kernel percpu var?
622 	 */
623 	if (is_kernel_percpu_address(addr))
624 		return 1;
625 
626 	/*
627 	 * module static or percpu var?
628 	 */
629 	return is_module_address(addr) || is_module_percpu_address(addr);
630 }
631 #endif
632 
633 /*
634  * To make lock name printouts unique, we calculate a unique
635  * class->name_version generation counter:
636  */
637 static int count_matching_names(struct lock_class *new_class)
638 {
639 	struct lock_class *class;
640 	int count = 0;
641 
642 	if (!new_class->name)
643 		return 0;
644 
645 	list_for_each_entry_rcu(class, &all_lock_classes, lock_entry) {
646 		if (new_class->key - new_class->subclass == class->key)
647 			return class->name_version;
648 		if (class->name && !strcmp(class->name, new_class->name))
649 			count = max(count, class->name_version);
650 	}
651 
652 	return count + 1;
653 }
654 
655 /*
656  * Register a lock's class in the hash-table, if the class is not present
657  * yet. Otherwise we look it up. We cache the result in the lock object
658  * itself, so actual lookup of the hash should be once per lock object.
659  */
660 static inline struct lock_class *
661 look_up_lock_class(struct lockdep_map *lock, unsigned int subclass)
662 {
663 	struct lockdep_subclass_key *key;
664 	struct hlist_head *hash_head;
665 	struct lock_class *class;
666 	bool is_static = false;
667 
668 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
669 		debug_locks_off();
670 		printk(KERN_ERR
671 			"BUG: looking up invalid subclass: %u\n", subclass);
672 		printk(KERN_ERR
673 			"turning off the locking correctness validator.\n");
674 		dump_stack();
675 		return NULL;
676 	}
677 
678 	/*
679 	 * Static locks do not have their class-keys yet - for them the key
680 	 * is the lock object itself. If the lock is in the per cpu area,
681 	 * the canonical address of the lock (per cpu offset removed) is
682 	 * used.
683 	 */
684 	if (unlikely(!lock->key)) {
685 		unsigned long can_addr, addr = (unsigned long)lock;
686 
687 		if (__is_kernel_percpu_address(addr, &can_addr))
688 			lock->key = (void *)can_addr;
689 		else if (__is_module_percpu_address(addr, &can_addr))
690 			lock->key = (void *)can_addr;
691 		else if (static_obj(lock))
692 			lock->key = (void *)lock;
693 		else
694 			return ERR_PTR(-EINVAL);
695 		is_static = true;
696 	}
697 
698 	/*
699 	 * NOTE: the class-key must be unique. For dynamic locks, a static
700 	 * lock_class_key variable is passed in through the mutex_init()
701 	 * (or spin_lock_init()) call - which acts as the key. For static
702 	 * locks we use the lock object itself as the key.
703 	 */
704 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
705 			sizeof(struct lockdep_map));
706 
707 	key = lock->key->subkeys + subclass;
708 
709 	hash_head = classhashentry(key);
710 
711 	/*
712 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
713 	 */
714 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
715 		return NULL;
716 
717 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
718 		if (class->key == key) {
719 			/*
720 			 * Huh! same key, different name? Did someone trample
721 			 * on some memory? We're most confused.
722 			 */
723 			WARN_ON_ONCE(class->name != lock->name);
724 			return class;
725 		}
726 	}
727 
728 	return is_static || static_obj(lock->key) ? NULL : ERR_PTR(-EINVAL);
729 }
730 
731 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
732 static void cross_init(struct lockdep_map *lock, int cross);
733 static int cross_lock(struct lockdep_map *lock);
734 static int lock_acquire_crosslock(struct held_lock *hlock);
735 static int lock_release_crosslock(struct lockdep_map *lock);
736 #else
737 static inline void cross_init(struct lockdep_map *lock, int cross) {}
738 static inline int cross_lock(struct lockdep_map *lock) { return 0; }
739 static inline int lock_acquire_crosslock(struct held_lock *hlock) { return 2; }
740 static inline int lock_release_crosslock(struct lockdep_map *lock) { return 2; }
741 #endif
742 
743 /*
744  * Register a lock's class in the hash-table, if the class is not present
745  * yet. Otherwise we look it up. We cache the result in the lock object
746  * itself, so actual lookup of the hash should be once per lock object.
747  */
748 static struct lock_class *
749 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
750 {
751 	struct lockdep_subclass_key *key;
752 	struct hlist_head *hash_head;
753 	struct lock_class *class;
754 
755 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
756 
757 	class = look_up_lock_class(lock, subclass);
758 	if (likely(!IS_ERR_OR_NULL(class)))
759 		goto out_set_class_cache;
760 
761 	/*
762 	 * Debug-check: all keys must be persistent!
763 	 */
764 	if (IS_ERR(class)) {
765 		debug_locks_off();
766 		printk("INFO: trying to register non-static key.\n");
767 		printk("the code is fine but needs lockdep annotation.\n");
768 		printk("turning off the locking correctness validator.\n");
769 		dump_stack();
770 		return NULL;
771 	}
772 
773 	key = lock->key->subkeys + subclass;
774 	hash_head = classhashentry(key);
775 
776 	if (!graph_lock()) {
777 		return NULL;
778 	}
779 	/*
780 	 * We have to do the hash-walk again, to avoid races
781 	 * with another CPU:
782 	 */
783 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
784 		if (class->key == key)
785 			goto out_unlock_set;
786 	}
787 
788 	/*
789 	 * Allocate a new key from the static array, and add it to
790 	 * the hash:
791 	 */
792 	if (nr_lock_classes >= MAX_LOCKDEP_KEYS) {
793 		if (!debug_locks_off_graph_unlock()) {
794 			return NULL;
795 		}
796 
797 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
798 		dump_stack();
799 		return NULL;
800 	}
801 	class = lock_classes + nr_lock_classes++;
802 	debug_atomic_inc(nr_unused_locks);
803 	class->key = key;
804 	class->name = lock->name;
805 	class->subclass = subclass;
806 	INIT_LIST_HEAD(&class->lock_entry);
807 	INIT_LIST_HEAD(&class->locks_before);
808 	INIT_LIST_HEAD(&class->locks_after);
809 	class->name_version = count_matching_names(class);
810 	/*
811 	 * We use RCU's safe list-add method to make
812 	 * parallel walking of the hash-list safe:
813 	 */
814 	hlist_add_head_rcu(&class->hash_entry, hash_head);
815 	/*
816 	 * Add it to the global list of classes:
817 	 */
818 	list_add_tail_rcu(&class->lock_entry, &all_lock_classes);
819 
820 	if (verbose(class)) {
821 		graph_unlock();
822 
823 		printk("\nnew class %p: %s", class->key, class->name);
824 		if (class->name_version > 1)
825 			printk(KERN_CONT "#%d", class->name_version);
826 		printk(KERN_CONT "\n");
827 		dump_stack();
828 
829 		if (!graph_lock()) {
830 			return NULL;
831 		}
832 	}
833 out_unlock_set:
834 	graph_unlock();
835 
836 out_set_class_cache:
837 	if (!subclass || force)
838 		lock->class_cache[0] = class;
839 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
840 		lock->class_cache[subclass] = class;
841 
842 	/*
843 	 * Hash collision, did we smoke some? We found a class with a matching
844 	 * hash but the subclass -- which is hashed in -- didn't match.
845 	 */
846 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
847 		return NULL;
848 
849 	return class;
850 }
851 
852 #ifdef CONFIG_PROVE_LOCKING
853 /*
854  * Allocate a lockdep entry. (assumes the graph_lock held, returns
855  * with NULL on failure)
856  */
857 static struct lock_list *alloc_list_entry(void)
858 {
859 	if (nr_list_entries >= MAX_LOCKDEP_ENTRIES) {
860 		if (!debug_locks_off_graph_unlock())
861 			return NULL;
862 
863 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
864 		dump_stack();
865 		return NULL;
866 	}
867 	return list_entries + nr_list_entries++;
868 }
869 
870 /*
871  * Add a new dependency to the head of the list:
872  */
873 static int add_lock_to_list(struct lock_class *this, struct list_head *head,
874 			    unsigned long ip, int distance,
875 			    struct stack_trace *trace)
876 {
877 	struct lock_list *entry;
878 	/*
879 	 * Lock not present yet - get a new dependency struct and
880 	 * add it to the list:
881 	 */
882 	entry = alloc_list_entry();
883 	if (!entry)
884 		return 0;
885 
886 	entry->class = this;
887 	entry->distance = distance;
888 	entry->trace = *trace;
889 	/*
890 	 * Both allocation and removal are done under the graph lock; but
891 	 * iteration is under RCU-sched; see look_up_lock_class() and
892 	 * lockdep_free_key_range().
893 	 */
894 	list_add_tail_rcu(&entry->entry, head);
895 
896 	return 1;
897 }
898 
899 /*
900  * For good efficiency of modular, we use power of 2
901  */
902 #define MAX_CIRCULAR_QUEUE_SIZE		4096UL
903 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
904 
905 /*
906  * The circular_queue and helpers is used to implement the
907  * breadth-first search(BFS)algorithem, by which we can build
908  * the shortest path from the next lock to be acquired to the
909  * previous held lock if there is a circular between them.
910  */
911 struct circular_queue {
912 	unsigned long element[MAX_CIRCULAR_QUEUE_SIZE];
913 	unsigned int  front, rear;
914 };
915 
916 static struct circular_queue lock_cq;
917 
918 unsigned int max_bfs_queue_depth;
919 
920 static unsigned int lockdep_dependency_gen_id;
921 
922 static inline void __cq_init(struct circular_queue *cq)
923 {
924 	cq->front = cq->rear = 0;
925 	lockdep_dependency_gen_id++;
926 }
927 
928 static inline int __cq_empty(struct circular_queue *cq)
929 {
930 	return (cq->front == cq->rear);
931 }
932 
933 static inline int __cq_full(struct circular_queue *cq)
934 {
935 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
936 }
937 
938 static inline int __cq_enqueue(struct circular_queue *cq, unsigned long elem)
939 {
940 	if (__cq_full(cq))
941 		return -1;
942 
943 	cq->element[cq->rear] = elem;
944 	cq->rear = (cq->rear + 1) & CQ_MASK;
945 	return 0;
946 }
947 
948 static inline int __cq_dequeue(struct circular_queue *cq, unsigned long *elem)
949 {
950 	if (__cq_empty(cq))
951 		return -1;
952 
953 	*elem = cq->element[cq->front];
954 	cq->front = (cq->front + 1) & CQ_MASK;
955 	return 0;
956 }
957 
958 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
959 {
960 	return (cq->rear - cq->front) & CQ_MASK;
961 }
962 
963 static inline void mark_lock_accessed(struct lock_list *lock,
964 					struct lock_list *parent)
965 {
966 	unsigned long nr;
967 
968 	nr = lock - list_entries;
969 	WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */
970 	lock->parent = parent;
971 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
972 }
973 
974 static inline unsigned long lock_accessed(struct lock_list *lock)
975 {
976 	unsigned long nr;
977 
978 	nr = lock - list_entries;
979 	WARN_ON(nr >= nr_list_entries); /* Out-of-bounds, input fail */
980 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
981 }
982 
983 static inline struct lock_list *get_lock_parent(struct lock_list *child)
984 {
985 	return child->parent;
986 }
987 
988 static inline int get_lock_depth(struct lock_list *child)
989 {
990 	int depth = 0;
991 	struct lock_list *parent;
992 
993 	while ((parent = get_lock_parent(child))) {
994 		child = parent;
995 		depth++;
996 	}
997 	return depth;
998 }
999 
1000 static int __bfs(struct lock_list *source_entry,
1001 		 void *data,
1002 		 int (*match)(struct lock_list *entry, void *data),
1003 		 struct lock_list **target_entry,
1004 		 int forward)
1005 {
1006 	struct lock_list *entry;
1007 	struct list_head *head;
1008 	struct circular_queue *cq = &lock_cq;
1009 	int ret = 1;
1010 
1011 	if (match(source_entry, data)) {
1012 		*target_entry = source_entry;
1013 		ret = 0;
1014 		goto exit;
1015 	}
1016 
1017 	if (forward)
1018 		head = &source_entry->class->locks_after;
1019 	else
1020 		head = &source_entry->class->locks_before;
1021 
1022 	if (list_empty(head))
1023 		goto exit;
1024 
1025 	__cq_init(cq);
1026 	__cq_enqueue(cq, (unsigned long)source_entry);
1027 
1028 	while (!__cq_empty(cq)) {
1029 		struct lock_list *lock;
1030 
1031 		__cq_dequeue(cq, (unsigned long *)&lock);
1032 
1033 		if (!lock->class) {
1034 			ret = -2;
1035 			goto exit;
1036 		}
1037 
1038 		if (forward)
1039 			head = &lock->class->locks_after;
1040 		else
1041 			head = &lock->class->locks_before;
1042 
1043 		DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1044 
1045 		list_for_each_entry_rcu(entry, head, entry) {
1046 			if (!lock_accessed(entry)) {
1047 				unsigned int cq_depth;
1048 				mark_lock_accessed(entry, lock);
1049 				if (match(entry, data)) {
1050 					*target_entry = entry;
1051 					ret = 0;
1052 					goto exit;
1053 				}
1054 
1055 				if (__cq_enqueue(cq, (unsigned long)entry)) {
1056 					ret = -1;
1057 					goto exit;
1058 				}
1059 				cq_depth = __cq_get_elem_count(cq);
1060 				if (max_bfs_queue_depth < cq_depth)
1061 					max_bfs_queue_depth = cq_depth;
1062 			}
1063 		}
1064 	}
1065 exit:
1066 	return ret;
1067 }
1068 
1069 static inline int __bfs_forwards(struct lock_list *src_entry,
1070 			void *data,
1071 			int (*match)(struct lock_list *entry, void *data),
1072 			struct lock_list **target_entry)
1073 {
1074 	return __bfs(src_entry, data, match, target_entry, 1);
1075 
1076 }
1077 
1078 static inline int __bfs_backwards(struct lock_list *src_entry,
1079 			void *data,
1080 			int (*match)(struct lock_list *entry, void *data),
1081 			struct lock_list **target_entry)
1082 {
1083 	return __bfs(src_entry, data, match, target_entry, 0);
1084 
1085 }
1086 
1087 /*
1088  * Recursive, forwards-direction lock-dependency checking, used for
1089  * both noncyclic checking and for hardirq-unsafe/softirq-unsafe
1090  * checking.
1091  */
1092 
1093 /*
1094  * Print a dependency chain entry (this is only done when a deadlock
1095  * has been detected):
1096  */
1097 static noinline int
1098 print_circular_bug_entry(struct lock_list *target, int depth)
1099 {
1100 	if (debug_locks_silent)
1101 		return 0;
1102 	printk("\n-> #%u", depth);
1103 	print_lock_name(target->class);
1104 	printk(KERN_CONT ":\n");
1105 	print_stack_trace(&target->trace, 6);
1106 
1107 	return 0;
1108 }
1109 
1110 static void
1111 print_circular_lock_scenario(struct held_lock *src,
1112 			     struct held_lock *tgt,
1113 			     struct lock_list *prt)
1114 {
1115 	struct lock_class *source = hlock_class(src);
1116 	struct lock_class *target = hlock_class(tgt);
1117 	struct lock_class *parent = prt->class;
1118 
1119 	/*
1120 	 * A direct locking problem where unsafe_class lock is taken
1121 	 * directly by safe_class lock, then all we need to show
1122 	 * is the deadlock scenario, as it is obvious that the
1123 	 * unsafe lock is taken under the safe lock.
1124 	 *
1125 	 * But if there is a chain instead, where the safe lock takes
1126 	 * an intermediate lock (middle_class) where this lock is
1127 	 * not the same as the safe lock, then the lock chain is
1128 	 * used to describe the problem. Otherwise we would need
1129 	 * to show a different CPU case for each link in the chain
1130 	 * from the safe_class lock to the unsafe_class lock.
1131 	 */
1132 	if (parent != source) {
1133 		printk("Chain exists of:\n  ");
1134 		__print_lock_name(source);
1135 		printk(KERN_CONT " --> ");
1136 		__print_lock_name(parent);
1137 		printk(KERN_CONT " --> ");
1138 		__print_lock_name(target);
1139 		printk(KERN_CONT "\n\n");
1140 	}
1141 
1142 	if (cross_lock(tgt->instance)) {
1143 		printk(" Possible unsafe locking scenario by crosslock:\n\n");
1144 		printk("       CPU0                    CPU1\n");
1145 		printk("       ----                    ----\n");
1146 		printk("  lock(");
1147 		__print_lock_name(parent);
1148 		printk(KERN_CONT ");\n");
1149 		printk("  lock(");
1150 		__print_lock_name(target);
1151 		printk(KERN_CONT ");\n");
1152 		printk("                               lock(");
1153 		__print_lock_name(source);
1154 		printk(KERN_CONT ");\n");
1155 		printk("                               unlock(");
1156 		__print_lock_name(target);
1157 		printk(KERN_CONT ");\n");
1158 		printk("\n *** DEADLOCK ***\n\n");
1159 	} else {
1160 		printk(" Possible unsafe locking scenario:\n\n");
1161 		printk("       CPU0                    CPU1\n");
1162 		printk("       ----                    ----\n");
1163 		printk("  lock(");
1164 		__print_lock_name(target);
1165 		printk(KERN_CONT ");\n");
1166 		printk("                               lock(");
1167 		__print_lock_name(parent);
1168 		printk(KERN_CONT ");\n");
1169 		printk("                               lock(");
1170 		__print_lock_name(target);
1171 		printk(KERN_CONT ");\n");
1172 		printk("  lock(");
1173 		__print_lock_name(source);
1174 		printk(KERN_CONT ");\n");
1175 		printk("\n *** DEADLOCK ***\n\n");
1176 	}
1177 }
1178 
1179 /*
1180  * When a circular dependency is detected, print the
1181  * header first:
1182  */
1183 static noinline int
1184 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1185 			struct held_lock *check_src,
1186 			struct held_lock *check_tgt)
1187 {
1188 	struct task_struct *curr = current;
1189 
1190 	if (debug_locks_silent)
1191 		return 0;
1192 
1193 	pr_warn("\n");
1194 	pr_warn("======================================================\n");
1195 	pr_warn("WARNING: possible circular locking dependency detected\n");
1196 	print_kernel_ident();
1197 	pr_warn("------------------------------------------------------\n");
1198 	pr_warn("%s/%d is trying to acquire lock:\n",
1199 		curr->comm, task_pid_nr(curr));
1200 	print_lock(check_src);
1201 
1202 	if (cross_lock(check_tgt->instance))
1203 		pr_warn("\nbut now in release context of a crosslock acquired at the following:\n");
1204 	else
1205 		pr_warn("\nbut task is already holding lock:\n");
1206 
1207 	print_lock(check_tgt);
1208 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1209 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1210 
1211 	print_circular_bug_entry(entry, depth);
1212 
1213 	return 0;
1214 }
1215 
1216 static inline int class_equal(struct lock_list *entry, void *data)
1217 {
1218 	return entry->class == data;
1219 }
1220 
1221 static noinline int print_circular_bug(struct lock_list *this,
1222 				struct lock_list *target,
1223 				struct held_lock *check_src,
1224 				struct held_lock *check_tgt,
1225 				struct stack_trace *trace)
1226 {
1227 	struct task_struct *curr = current;
1228 	struct lock_list *parent;
1229 	struct lock_list *first_parent;
1230 	int depth;
1231 
1232 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1233 		return 0;
1234 
1235 	if (cross_lock(check_tgt->instance))
1236 		this->trace = *trace;
1237 	else if (!save_trace(&this->trace))
1238 		return 0;
1239 
1240 	depth = get_lock_depth(target);
1241 
1242 	print_circular_bug_header(target, depth, check_src, check_tgt);
1243 
1244 	parent = get_lock_parent(target);
1245 	first_parent = parent;
1246 
1247 	while (parent) {
1248 		print_circular_bug_entry(parent, --depth);
1249 		parent = get_lock_parent(parent);
1250 	}
1251 
1252 	printk("\nother info that might help us debug this:\n\n");
1253 	print_circular_lock_scenario(check_src, check_tgt,
1254 				     first_parent);
1255 
1256 	lockdep_print_held_locks(curr);
1257 
1258 	printk("\nstack backtrace:\n");
1259 	dump_stack();
1260 
1261 	return 0;
1262 }
1263 
1264 static noinline int print_bfs_bug(int ret)
1265 {
1266 	if (!debug_locks_off_graph_unlock())
1267 		return 0;
1268 
1269 	/*
1270 	 * Breadth-first-search failed, graph got corrupted?
1271 	 */
1272 	WARN(1, "lockdep bfs error:%d\n", ret);
1273 
1274 	return 0;
1275 }
1276 
1277 static int noop_count(struct lock_list *entry, void *data)
1278 {
1279 	(*(unsigned long *)data)++;
1280 	return 0;
1281 }
1282 
1283 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1284 {
1285 	unsigned long  count = 0;
1286 	struct lock_list *uninitialized_var(target_entry);
1287 
1288 	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1289 
1290 	return count;
1291 }
1292 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1293 {
1294 	unsigned long ret, flags;
1295 	struct lock_list this;
1296 
1297 	this.parent = NULL;
1298 	this.class = class;
1299 
1300 	local_irq_save(flags);
1301 	arch_spin_lock(&lockdep_lock);
1302 	ret = __lockdep_count_forward_deps(&this);
1303 	arch_spin_unlock(&lockdep_lock);
1304 	local_irq_restore(flags);
1305 
1306 	return ret;
1307 }
1308 
1309 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1310 {
1311 	unsigned long  count = 0;
1312 	struct lock_list *uninitialized_var(target_entry);
1313 
1314 	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1315 
1316 	return count;
1317 }
1318 
1319 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1320 {
1321 	unsigned long ret, flags;
1322 	struct lock_list this;
1323 
1324 	this.parent = NULL;
1325 	this.class = class;
1326 
1327 	local_irq_save(flags);
1328 	arch_spin_lock(&lockdep_lock);
1329 	ret = __lockdep_count_backward_deps(&this);
1330 	arch_spin_unlock(&lockdep_lock);
1331 	local_irq_restore(flags);
1332 
1333 	return ret;
1334 }
1335 
1336 /*
1337  * Prove that the dependency graph starting at <entry> can not
1338  * lead to <target>. Print an error and return 0 if it does.
1339  */
1340 static noinline int
1341 check_noncircular(struct lock_list *root, struct lock_class *target,
1342 		struct lock_list **target_entry)
1343 {
1344 	int result;
1345 
1346 	debug_atomic_inc(nr_cyclic_checks);
1347 
1348 	result = __bfs_forwards(root, target, class_equal, target_entry);
1349 
1350 	return result;
1351 }
1352 
1353 static noinline int
1354 check_redundant(struct lock_list *root, struct lock_class *target,
1355 		struct lock_list **target_entry)
1356 {
1357 	int result;
1358 
1359 	debug_atomic_inc(nr_redundant_checks);
1360 
1361 	result = __bfs_forwards(root, target, class_equal, target_entry);
1362 
1363 	return result;
1364 }
1365 
1366 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
1367 /*
1368  * Forwards and backwards subgraph searching, for the purposes of
1369  * proving that two subgraphs can be connected by a new dependency
1370  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1371  */
1372 
1373 static inline int usage_match(struct lock_list *entry, void *bit)
1374 {
1375 	return entry->class->usage_mask & (1 << (enum lock_usage_bit)bit);
1376 }
1377 
1378 
1379 
1380 /*
1381  * Find a node in the forwards-direction dependency sub-graph starting
1382  * at @root->class that matches @bit.
1383  *
1384  * Return 0 if such a node exists in the subgraph, and put that node
1385  * into *@target_entry.
1386  *
1387  * Return 1 otherwise and keep *@target_entry unchanged.
1388  * Return <0 on error.
1389  */
1390 static int
1391 find_usage_forwards(struct lock_list *root, enum lock_usage_bit bit,
1392 			struct lock_list **target_entry)
1393 {
1394 	int result;
1395 
1396 	debug_atomic_inc(nr_find_usage_forwards_checks);
1397 
1398 	result = __bfs_forwards(root, (void *)bit, usage_match, target_entry);
1399 
1400 	return result;
1401 }
1402 
1403 /*
1404  * Find a node in the backwards-direction dependency sub-graph starting
1405  * at @root->class that matches @bit.
1406  *
1407  * Return 0 if such a node exists in the subgraph, and put that node
1408  * into *@target_entry.
1409  *
1410  * Return 1 otherwise and keep *@target_entry unchanged.
1411  * Return <0 on error.
1412  */
1413 static int
1414 find_usage_backwards(struct lock_list *root, enum lock_usage_bit bit,
1415 			struct lock_list **target_entry)
1416 {
1417 	int result;
1418 
1419 	debug_atomic_inc(nr_find_usage_backwards_checks);
1420 
1421 	result = __bfs_backwards(root, (void *)bit, usage_match, target_entry);
1422 
1423 	return result;
1424 }
1425 
1426 static void print_lock_class_header(struct lock_class *class, int depth)
1427 {
1428 	int bit;
1429 
1430 	printk("%*s->", depth, "");
1431 	print_lock_name(class);
1432 	printk(KERN_CONT " ops: %lu", class->ops);
1433 	printk(KERN_CONT " {\n");
1434 
1435 	for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1436 		if (class->usage_mask & (1 << bit)) {
1437 			int len = depth;
1438 
1439 			len += printk("%*s   %s", depth, "", usage_str[bit]);
1440 			len += printk(KERN_CONT " at:\n");
1441 			print_stack_trace(class->usage_traces + bit, len);
1442 		}
1443 	}
1444 	printk("%*s }\n", depth, "");
1445 
1446 	printk("%*s ... key      at: [<%p>] %pS\n",
1447 		depth, "", class->key, class->key);
1448 }
1449 
1450 /*
1451  * printk the shortest lock dependencies from @start to @end in reverse order:
1452  */
1453 static void __used
1454 print_shortest_lock_dependencies(struct lock_list *leaf,
1455 				struct lock_list *root)
1456 {
1457 	struct lock_list *entry = leaf;
1458 	int depth;
1459 
1460 	/*compute depth from generated tree by BFS*/
1461 	depth = get_lock_depth(leaf);
1462 
1463 	do {
1464 		print_lock_class_header(entry->class, depth);
1465 		printk("%*s ... acquired at:\n", depth, "");
1466 		print_stack_trace(&entry->trace, 2);
1467 		printk("\n");
1468 
1469 		if (depth == 0 && (entry != root)) {
1470 			printk("lockdep:%s bad path found in chain graph\n", __func__);
1471 			break;
1472 		}
1473 
1474 		entry = get_lock_parent(entry);
1475 		depth--;
1476 	} while (entry && (depth >= 0));
1477 
1478 	return;
1479 }
1480 
1481 static void
1482 print_irq_lock_scenario(struct lock_list *safe_entry,
1483 			struct lock_list *unsafe_entry,
1484 			struct lock_class *prev_class,
1485 			struct lock_class *next_class)
1486 {
1487 	struct lock_class *safe_class = safe_entry->class;
1488 	struct lock_class *unsafe_class = unsafe_entry->class;
1489 	struct lock_class *middle_class = prev_class;
1490 
1491 	if (middle_class == safe_class)
1492 		middle_class = next_class;
1493 
1494 	/*
1495 	 * A direct locking problem where unsafe_class lock is taken
1496 	 * directly by safe_class lock, then all we need to show
1497 	 * is the deadlock scenario, as it is obvious that the
1498 	 * unsafe lock is taken under the safe lock.
1499 	 *
1500 	 * But if there is a chain instead, where the safe lock takes
1501 	 * an intermediate lock (middle_class) where this lock is
1502 	 * not the same as the safe lock, then the lock chain is
1503 	 * used to describe the problem. Otherwise we would need
1504 	 * to show a different CPU case for each link in the chain
1505 	 * from the safe_class lock to the unsafe_class lock.
1506 	 */
1507 	if (middle_class != unsafe_class) {
1508 		printk("Chain exists of:\n  ");
1509 		__print_lock_name(safe_class);
1510 		printk(KERN_CONT " --> ");
1511 		__print_lock_name(middle_class);
1512 		printk(KERN_CONT " --> ");
1513 		__print_lock_name(unsafe_class);
1514 		printk(KERN_CONT "\n\n");
1515 	}
1516 
1517 	printk(" Possible interrupt unsafe locking scenario:\n\n");
1518 	printk("       CPU0                    CPU1\n");
1519 	printk("       ----                    ----\n");
1520 	printk("  lock(");
1521 	__print_lock_name(unsafe_class);
1522 	printk(KERN_CONT ");\n");
1523 	printk("                               local_irq_disable();\n");
1524 	printk("                               lock(");
1525 	__print_lock_name(safe_class);
1526 	printk(KERN_CONT ");\n");
1527 	printk("                               lock(");
1528 	__print_lock_name(middle_class);
1529 	printk(KERN_CONT ");\n");
1530 	printk("  <Interrupt>\n");
1531 	printk("    lock(");
1532 	__print_lock_name(safe_class);
1533 	printk(KERN_CONT ");\n");
1534 	printk("\n *** DEADLOCK ***\n\n");
1535 }
1536 
1537 static int
1538 print_bad_irq_dependency(struct task_struct *curr,
1539 			 struct lock_list *prev_root,
1540 			 struct lock_list *next_root,
1541 			 struct lock_list *backwards_entry,
1542 			 struct lock_list *forwards_entry,
1543 			 struct held_lock *prev,
1544 			 struct held_lock *next,
1545 			 enum lock_usage_bit bit1,
1546 			 enum lock_usage_bit bit2,
1547 			 const char *irqclass)
1548 {
1549 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1550 		return 0;
1551 
1552 	pr_warn("\n");
1553 	pr_warn("=====================================================\n");
1554 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
1555 		irqclass, irqclass);
1556 	print_kernel_ident();
1557 	pr_warn("-----------------------------------------------------\n");
1558 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
1559 		curr->comm, task_pid_nr(curr),
1560 		curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
1561 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
1562 		curr->hardirqs_enabled,
1563 		curr->softirqs_enabled);
1564 	print_lock(next);
1565 
1566 	pr_warn("\nand this task is already holding:\n");
1567 	print_lock(prev);
1568 	pr_warn("which would create a new lock dependency:\n");
1569 	print_lock_name(hlock_class(prev));
1570 	pr_cont(" ->");
1571 	print_lock_name(hlock_class(next));
1572 	pr_cont("\n");
1573 
1574 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
1575 		irqclass);
1576 	print_lock_name(backwards_entry->class);
1577 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
1578 
1579 	print_stack_trace(backwards_entry->class->usage_traces + bit1, 1);
1580 
1581 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
1582 	print_lock_name(forwards_entry->class);
1583 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
1584 	pr_warn("...");
1585 
1586 	print_stack_trace(forwards_entry->class->usage_traces + bit2, 1);
1587 
1588 	pr_warn("\nother info that might help us debug this:\n\n");
1589 	print_irq_lock_scenario(backwards_entry, forwards_entry,
1590 				hlock_class(prev), hlock_class(next));
1591 
1592 	lockdep_print_held_locks(curr);
1593 
1594 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
1595 	if (!save_trace(&prev_root->trace))
1596 		return 0;
1597 	print_shortest_lock_dependencies(backwards_entry, prev_root);
1598 
1599 	pr_warn("\nthe dependencies between the lock to be acquired");
1600 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
1601 	if (!save_trace(&next_root->trace))
1602 		return 0;
1603 	print_shortest_lock_dependencies(forwards_entry, next_root);
1604 
1605 	pr_warn("\nstack backtrace:\n");
1606 	dump_stack();
1607 
1608 	return 0;
1609 }
1610 
1611 static int
1612 check_usage(struct task_struct *curr, struct held_lock *prev,
1613 	    struct held_lock *next, enum lock_usage_bit bit_backwards,
1614 	    enum lock_usage_bit bit_forwards, const char *irqclass)
1615 {
1616 	int ret;
1617 	struct lock_list this, that;
1618 	struct lock_list *uninitialized_var(target_entry);
1619 	struct lock_list *uninitialized_var(target_entry1);
1620 
1621 	this.parent = NULL;
1622 
1623 	this.class = hlock_class(prev);
1624 	ret = find_usage_backwards(&this, bit_backwards, &target_entry);
1625 	if (ret < 0)
1626 		return print_bfs_bug(ret);
1627 	if (ret == 1)
1628 		return ret;
1629 
1630 	that.parent = NULL;
1631 	that.class = hlock_class(next);
1632 	ret = find_usage_forwards(&that, bit_forwards, &target_entry1);
1633 	if (ret < 0)
1634 		return print_bfs_bug(ret);
1635 	if (ret == 1)
1636 		return ret;
1637 
1638 	return print_bad_irq_dependency(curr, &this, &that,
1639 			target_entry, target_entry1,
1640 			prev, next,
1641 			bit_backwards, bit_forwards, irqclass);
1642 }
1643 
1644 static const char *state_names[] = {
1645 #define LOCKDEP_STATE(__STATE) \
1646 	__stringify(__STATE),
1647 #include "lockdep_states.h"
1648 #undef LOCKDEP_STATE
1649 };
1650 
1651 static const char *state_rnames[] = {
1652 #define LOCKDEP_STATE(__STATE) \
1653 	__stringify(__STATE)"-READ",
1654 #include "lockdep_states.h"
1655 #undef LOCKDEP_STATE
1656 };
1657 
1658 static inline const char *state_name(enum lock_usage_bit bit)
1659 {
1660 	return (bit & 1) ? state_rnames[bit >> 2] : state_names[bit >> 2];
1661 }
1662 
1663 static int exclusive_bit(int new_bit)
1664 {
1665 	/*
1666 	 * USED_IN
1667 	 * USED_IN_READ
1668 	 * ENABLED
1669 	 * ENABLED_READ
1670 	 *
1671 	 * bit 0 - write/read
1672 	 * bit 1 - used_in/enabled
1673 	 * bit 2+  state
1674 	 */
1675 
1676 	int state = new_bit & ~3;
1677 	int dir = new_bit & 2;
1678 
1679 	/*
1680 	 * keep state, bit flip the direction and strip read.
1681 	 */
1682 	return state | (dir ^ 2);
1683 }
1684 
1685 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
1686 			   struct held_lock *next, enum lock_usage_bit bit)
1687 {
1688 	/*
1689 	 * Prove that the new dependency does not connect a hardirq-safe
1690 	 * lock with a hardirq-unsafe lock - to achieve this we search
1691 	 * the backwards-subgraph starting at <prev>, and the
1692 	 * forwards-subgraph starting at <next>:
1693 	 */
1694 	if (!check_usage(curr, prev, next, bit,
1695 			   exclusive_bit(bit), state_name(bit)))
1696 		return 0;
1697 
1698 	bit++; /* _READ */
1699 
1700 	/*
1701 	 * Prove that the new dependency does not connect a hardirq-safe-read
1702 	 * lock with a hardirq-unsafe lock - to achieve this we search
1703 	 * the backwards-subgraph starting at <prev>, and the
1704 	 * forwards-subgraph starting at <next>:
1705 	 */
1706 	if (!check_usage(curr, prev, next, bit,
1707 			   exclusive_bit(bit), state_name(bit)))
1708 		return 0;
1709 
1710 	return 1;
1711 }
1712 
1713 static int
1714 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1715 		struct held_lock *next)
1716 {
1717 #define LOCKDEP_STATE(__STATE)						\
1718 	if (!check_irq_usage(curr, prev, next, LOCK_USED_IN_##__STATE))	\
1719 		return 0;
1720 #include "lockdep_states.h"
1721 #undef LOCKDEP_STATE
1722 
1723 	return 1;
1724 }
1725 
1726 static void inc_chains(void)
1727 {
1728 	if (current->hardirq_context)
1729 		nr_hardirq_chains++;
1730 	else {
1731 		if (current->softirq_context)
1732 			nr_softirq_chains++;
1733 		else
1734 			nr_process_chains++;
1735 	}
1736 }
1737 
1738 #else
1739 
1740 static inline int
1741 check_prev_add_irq(struct task_struct *curr, struct held_lock *prev,
1742 		struct held_lock *next)
1743 {
1744 	return 1;
1745 }
1746 
1747 static inline void inc_chains(void)
1748 {
1749 	nr_process_chains++;
1750 }
1751 
1752 #endif
1753 
1754 static void
1755 print_deadlock_scenario(struct held_lock *nxt,
1756 			     struct held_lock *prv)
1757 {
1758 	struct lock_class *next = hlock_class(nxt);
1759 	struct lock_class *prev = hlock_class(prv);
1760 
1761 	printk(" Possible unsafe locking scenario:\n\n");
1762 	printk("       CPU0\n");
1763 	printk("       ----\n");
1764 	printk("  lock(");
1765 	__print_lock_name(prev);
1766 	printk(KERN_CONT ");\n");
1767 	printk("  lock(");
1768 	__print_lock_name(next);
1769 	printk(KERN_CONT ");\n");
1770 	printk("\n *** DEADLOCK ***\n\n");
1771 	printk(" May be due to missing lock nesting notation\n\n");
1772 }
1773 
1774 static int
1775 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
1776 		   struct held_lock *next)
1777 {
1778 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1779 		return 0;
1780 
1781 	pr_warn("\n");
1782 	pr_warn("============================================\n");
1783 	pr_warn("WARNING: possible recursive locking detected\n");
1784 	print_kernel_ident();
1785 	pr_warn("--------------------------------------------\n");
1786 	pr_warn("%s/%d is trying to acquire lock:\n",
1787 		curr->comm, task_pid_nr(curr));
1788 	print_lock(next);
1789 	pr_warn("\nbut task is already holding lock:\n");
1790 	print_lock(prev);
1791 
1792 	pr_warn("\nother info that might help us debug this:\n");
1793 	print_deadlock_scenario(next, prev);
1794 	lockdep_print_held_locks(curr);
1795 
1796 	pr_warn("\nstack backtrace:\n");
1797 	dump_stack();
1798 
1799 	return 0;
1800 }
1801 
1802 /*
1803  * Check whether we are holding such a class already.
1804  *
1805  * (Note that this has to be done separately, because the graph cannot
1806  * detect such classes of deadlocks.)
1807  *
1808  * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
1809  */
1810 static int
1811 check_deadlock(struct task_struct *curr, struct held_lock *next,
1812 	       struct lockdep_map *next_instance, int read)
1813 {
1814 	struct held_lock *prev;
1815 	struct held_lock *nest = NULL;
1816 	int i;
1817 
1818 	for (i = 0; i < curr->lockdep_depth; i++) {
1819 		prev = curr->held_locks + i;
1820 
1821 		if (prev->instance == next->nest_lock)
1822 			nest = prev;
1823 
1824 		if (hlock_class(prev) != hlock_class(next))
1825 			continue;
1826 
1827 		/*
1828 		 * Allow read-after-read recursion of the same
1829 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
1830 		 */
1831 		if ((read == 2) && prev->read)
1832 			return 2;
1833 
1834 		/*
1835 		 * We're holding the nest_lock, which serializes this lock's
1836 		 * nesting behaviour.
1837 		 */
1838 		if (nest)
1839 			return 2;
1840 
1841 		if (cross_lock(prev->instance))
1842 			continue;
1843 
1844 		return print_deadlock_bug(curr, prev, next);
1845 	}
1846 	return 1;
1847 }
1848 
1849 /*
1850  * There was a chain-cache miss, and we are about to add a new dependency
1851  * to a previous lock. We recursively validate the following rules:
1852  *
1853  *  - would the adding of the <prev> -> <next> dependency create a
1854  *    circular dependency in the graph? [== circular deadlock]
1855  *
1856  *  - does the new prev->next dependency connect any hardirq-safe lock
1857  *    (in the full backwards-subgraph starting at <prev>) with any
1858  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
1859  *    <next>)? [== illegal lock inversion with hardirq contexts]
1860  *
1861  *  - does the new prev->next dependency connect any softirq-safe lock
1862  *    (in the full backwards-subgraph starting at <prev>) with any
1863  *    softirq-unsafe lock (in the full forwards-subgraph starting at
1864  *    <next>)? [== illegal lock inversion with softirq contexts]
1865  *
1866  * any of these scenarios could lead to a deadlock.
1867  *
1868  * Then if all the validations pass, we add the forwards and backwards
1869  * dependency.
1870  */
1871 static int
1872 check_prev_add(struct task_struct *curr, struct held_lock *prev,
1873 	       struct held_lock *next, int distance, struct stack_trace *trace,
1874 	       int (*save)(struct stack_trace *trace))
1875 {
1876 	struct lock_list *uninitialized_var(target_entry);
1877 	struct lock_list *entry;
1878 	struct lock_list this;
1879 	int ret;
1880 
1881 	/*
1882 	 * Prove that the new <prev> -> <next> dependency would not
1883 	 * create a circular dependency in the graph. (We do this by
1884 	 * forward-recursing into the graph starting at <next>, and
1885 	 * checking whether we can reach <prev>.)
1886 	 *
1887 	 * We are using global variables to control the recursion, to
1888 	 * keep the stackframe size of the recursive functions low:
1889 	 */
1890 	this.class = hlock_class(next);
1891 	this.parent = NULL;
1892 	ret = check_noncircular(&this, hlock_class(prev), &target_entry);
1893 	if (unlikely(!ret)) {
1894 		if (!trace->entries) {
1895 			/*
1896 			 * If @save fails here, the printing might trigger
1897 			 * a WARN but because of the !nr_entries it should
1898 			 * not do bad things.
1899 			 */
1900 			save(trace);
1901 		}
1902 		return print_circular_bug(&this, target_entry, next, prev, trace);
1903 	}
1904 	else if (unlikely(ret < 0))
1905 		return print_bfs_bug(ret);
1906 
1907 	if (!check_prev_add_irq(curr, prev, next))
1908 		return 0;
1909 
1910 	/*
1911 	 * For recursive read-locks we do all the dependency checks,
1912 	 * but we dont store read-triggered dependencies (only
1913 	 * write-triggered dependencies). This ensures that only the
1914 	 * write-side dependencies matter, and that if for example a
1915 	 * write-lock never takes any other locks, then the reads are
1916 	 * equivalent to a NOP.
1917 	 */
1918 	if (next->read == 2 || prev->read == 2)
1919 		return 1;
1920 	/*
1921 	 * Is the <prev> -> <next> dependency already present?
1922 	 *
1923 	 * (this may occur even though this is a new chain: consider
1924 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
1925 	 *  chains - the second one will be new, but L1 already has
1926 	 *  L2 added to its dependency list, due to the first chain.)
1927 	 */
1928 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
1929 		if (entry->class == hlock_class(next)) {
1930 			if (distance == 1)
1931 				entry->distance = 1;
1932 			return 1;
1933 		}
1934 	}
1935 
1936 	/*
1937 	 * Is the <prev> -> <next> link redundant?
1938 	 */
1939 	this.class = hlock_class(prev);
1940 	this.parent = NULL;
1941 	ret = check_redundant(&this, hlock_class(next), &target_entry);
1942 	if (!ret) {
1943 		debug_atomic_inc(nr_redundant);
1944 		return 2;
1945 	}
1946 	if (ret < 0)
1947 		return print_bfs_bug(ret);
1948 
1949 
1950 	if (!trace->entries && !save(trace))
1951 		return 0;
1952 
1953 	/*
1954 	 * Ok, all validations passed, add the new lock
1955 	 * to the previous lock's dependency list:
1956 	 */
1957 	ret = add_lock_to_list(hlock_class(next),
1958 			       &hlock_class(prev)->locks_after,
1959 			       next->acquire_ip, distance, trace);
1960 
1961 	if (!ret)
1962 		return 0;
1963 
1964 	ret = add_lock_to_list(hlock_class(prev),
1965 			       &hlock_class(next)->locks_before,
1966 			       next->acquire_ip, distance, trace);
1967 	if (!ret)
1968 		return 0;
1969 
1970 	return 2;
1971 }
1972 
1973 /*
1974  * Add the dependency to all directly-previous locks that are 'relevant'.
1975  * The ones that are relevant are (in increasing distance from curr):
1976  * all consecutive trylock entries and the final non-trylock entry - or
1977  * the end of this context's lock-chain - whichever comes first.
1978  */
1979 static int
1980 check_prevs_add(struct task_struct *curr, struct held_lock *next)
1981 {
1982 	int depth = curr->lockdep_depth;
1983 	struct held_lock *hlock;
1984 	struct stack_trace trace = {
1985 		.nr_entries = 0,
1986 		.max_entries = 0,
1987 		.entries = NULL,
1988 		.skip = 0,
1989 	};
1990 
1991 	/*
1992 	 * Debugging checks.
1993 	 *
1994 	 * Depth must not be zero for a non-head lock:
1995 	 */
1996 	if (!depth)
1997 		goto out_bug;
1998 	/*
1999 	 * At least two relevant locks must exist for this
2000 	 * to be a head:
2001 	 */
2002 	if (curr->held_locks[depth].irq_context !=
2003 			curr->held_locks[depth-1].irq_context)
2004 		goto out_bug;
2005 
2006 	for (;;) {
2007 		int distance = curr->lockdep_depth - depth + 1;
2008 		hlock = curr->held_locks + depth - 1;
2009 		/*
2010 		 * Only non-crosslock entries get new dependencies added.
2011 		 * Crosslock entries will be added by commit later:
2012 		 */
2013 		if (!cross_lock(hlock->instance)) {
2014 			/*
2015 			 * Only non-recursive-read entries get new dependencies
2016 			 * added:
2017 			 */
2018 			if (hlock->read != 2 && hlock->check) {
2019 				int ret = check_prev_add(curr, hlock, next,
2020 							 distance, &trace, save_trace);
2021 				if (!ret)
2022 					return 0;
2023 
2024 				/*
2025 				 * Stop after the first non-trylock entry,
2026 				 * as non-trylock entries have added their
2027 				 * own direct dependencies already, so this
2028 				 * lock is connected to them indirectly:
2029 				 */
2030 				if (!hlock->trylock)
2031 					break;
2032 			}
2033 		}
2034 		depth--;
2035 		/*
2036 		 * End of lock-stack?
2037 		 */
2038 		if (!depth)
2039 			break;
2040 		/*
2041 		 * Stop the search if we cross into another context:
2042 		 */
2043 		if (curr->held_locks[depth].irq_context !=
2044 				curr->held_locks[depth-1].irq_context)
2045 			break;
2046 	}
2047 	return 1;
2048 out_bug:
2049 	if (!debug_locks_off_graph_unlock())
2050 		return 0;
2051 
2052 	/*
2053 	 * Clearly we all shouldn't be here, but since we made it we
2054 	 * can reliable say we messed up our state. See the above two
2055 	 * gotos for reasons why we could possibly end up here.
2056 	 */
2057 	WARN_ON(1);
2058 
2059 	return 0;
2060 }
2061 
2062 unsigned long nr_lock_chains;
2063 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
2064 int nr_chain_hlocks;
2065 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
2066 
2067 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
2068 {
2069 	return lock_classes + chain_hlocks[chain->base + i];
2070 }
2071 
2072 /*
2073  * Returns the index of the first held_lock of the current chain
2074  */
2075 static inline int get_first_held_lock(struct task_struct *curr,
2076 					struct held_lock *hlock)
2077 {
2078 	int i;
2079 	struct held_lock *hlock_curr;
2080 
2081 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2082 		hlock_curr = curr->held_locks + i;
2083 		if (hlock_curr->irq_context != hlock->irq_context)
2084 			break;
2085 
2086 	}
2087 
2088 	return ++i;
2089 }
2090 
2091 #ifdef CONFIG_DEBUG_LOCKDEP
2092 /*
2093  * Returns the next chain_key iteration
2094  */
2095 static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2096 {
2097 	u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2098 
2099 	printk(" class_idx:%d -> chain_key:%016Lx",
2100 		class_idx,
2101 		(unsigned long long)new_chain_key);
2102 	return new_chain_key;
2103 }
2104 
2105 static void
2106 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2107 {
2108 	struct held_lock *hlock;
2109 	u64 chain_key = 0;
2110 	int depth = curr->lockdep_depth;
2111 	int i;
2112 
2113 	printk("depth: %u\n", depth + 1);
2114 	for (i = get_first_held_lock(curr, hlock_next); i < depth; i++) {
2115 		hlock = curr->held_locks + i;
2116 		chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2117 
2118 		print_lock(hlock);
2119 	}
2120 
2121 	print_chain_key_iteration(hlock_next->class_idx, chain_key);
2122 	print_lock(hlock_next);
2123 }
2124 
2125 static void print_chain_keys_chain(struct lock_chain *chain)
2126 {
2127 	int i;
2128 	u64 chain_key = 0;
2129 	int class_id;
2130 
2131 	printk("depth: %u\n", chain->depth);
2132 	for (i = 0; i < chain->depth; i++) {
2133 		class_id = chain_hlocks[chain->base + i];
2134 		chain_key = print_chain_key_iteration(class_id + 1, chain_key);
2135 
2136 		print_lock_name(lock_classes + class_id);
2137 		printk("\n");
2138 	}
2139 }
2140 
2141 static void print_collision(struct task_struct *curr,
2142 			struct held_lock *hlock_next,
2143 			struct lock_chain *chain)
2144 {
2145 	pr_warn("\n");
2146 	pr_warn("============================\n");
2147 	pr_warn("WARNING: chain_key collision\n");
2148 	print_kernel_ident();
2149 	pr_warn("----------------------------\n");
2150 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
2151 	pr_warn("Hash chain already cached but the contents don't match!\n");
2152 
2153 	pr_warn("Held locks:");
2154 	print_chain_keys_held_locks(curr, hlock_next);
2155 
2156 	pr_warn("Locks in cached chain:");
2157 	print_chain_keys_chain(chain);
2158 
2159 	pr_warn("\nstack backtrace:\n");
2160 	dump_stack();
2161 }
2162 #endif
2163 
2164 /*
2165  * Checks whether the chain and the current held locks are consistent
2166  * in depth and also in content. If they are not it most likely means
2167  * that there was a collision during the calculation of the chain_key.
2168  * Returns: 0 not passed, 1 passed
2169  */
2170 static int check_no_collision(struct task_struct *curr,
2171 			struct held_lock *hlock,
2172 			struct lock_chain *chain)
2173 {
2174 #ifdef CONFIG_DEBUG_LOCKDEP
2175 	int i, j, id;
2176 
2177 	i = get_first_held_lock(curr, hlock);
2178 
2179 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
2180 		print_collision(curr, hlock, chain);
2181 		return 0;
2182 	}
2183 
2184 	for (j = 0; j < chain->depth - 1; j++, i++) {
2185 		id = curr->held_locks[i].class_idx - 1;
2186 
2187 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
2188 			print_collision(curr, hlock, chain);
2189 			return 0;
2190 		}
2191 	}
2192 #endif
2193 	return 1;
2194 }
2195 
2196 /*
2197  * This is for building a chain between just two different classes,
2198  * instead of adding a new hlock upon current, which is done by
2199  * add_chain_cache().
2200  *
2201  * This can be called in any context with two classes, while
2202  * add_chain_cache() must be done within the lock owener's context
2203  * since it uses hlock which might be racy in another context.
2204  */
2205 static inline int add_chain_cache_classes(unsigned int prev,
2206 					  unsigned int next,
2207 					  unsigned int irq_context,
2208 					  u64 chain_key)
2209 {
2210 	struct hlist_head *hash_head = chainhashentry(chain_key);
2211 	struct lock_chain *chain;
2212 
2213 	/*
2214 	 * Allocate a new chain entry from the static array, and add
2215 	 * it to the hash:
2216 	 */
2217 
2218 	/*
2219 	 * We might need to take the graph lock, ensure we've got IRQs
2220 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
2221 	 * lockdep won't complain about its own locking errors.
2222 	 */
2223 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2224 		return 0;
2225 
2226 	if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) {
2227 		if (!debug_locks_off_graph_unlock())
2228 			return 0;
2229 
2230 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2231 		dump_stack();
2232 		return 0;
2233 	}
2234 
2235 	chain = lock_chains + nr_lock_chains++;
2236 	chain->chain_key = chain_key;
2237 	chain->irq_context = irq_context;
2238 	chain->depth = 2;
2239 	if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2240 		chain->base = nr_chain_hlocks;
2241 		nr_chain_hlocks += chain->depth;
2242 		chain_hlocks[chain->base] = prev - 1;
2243 		chain_hlocks[chain->base + 1] = next -1;
2244 	}
2245 #ifdef CONFIG_DEBUG_LOCKDEP
2246 	/*
2247 	 * Important for check_no_collision().
2248 	 */
2249 	else {
2250 		if (!debug_locks_off_graph_unlock())
2251 			return 0;
2252 
2253 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2254 		dump_stack();
2255 		return 0;
2256 	}
2257 #endif
2258 
2259 	hlist_add_head_rcu(&chain->entry, hash_head);
2260 	debug_atomic_inc(chain_lookup_misses);
2261 	inc_chains();
2262 
2263 	return 1;
2264 }
2265 
2266 /*
2267  * Adds a dependency chain into chain hashtable. And must be called with
2268  * graph_lock held.
2269  *
2270  * Return 0 if fail, and graph_lock is released.
2271  * Return 1 if succeed, with graph_lock held.
2272  */
2273 static inline int add_chain_cache(struct task_struct *curr,
2274 				  struct held_lock *hlock,
2275 				  u64 chain_key)
2276 {
2277 	struct lock_class *class = hlock_class(hlock);
2278 	struct hlist_head *hash_head = chainhashentry(chain_key);
2279 	struct lock_chain *chain;
2280 	int i, j;
2281 
2282 	/*
2283 	 * Allocate a new chain entry from the static array, and add
2284 	 * it to the hash:
2285 	 */
2286 
2287 	/*
2288 	 * We might need to take the graph lock, ensure we've got IRQs
2289 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
2290 	 * lockdep won't complain about its own locking errors.
2291 	 */
2292 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2293 		return 0;
2294 
2295 	if (unlikely(nr_lock_chains >= MAX_LOCKDEP_CHAINS)) {
2296 		if (!debug_locks_off_graph_unlock())
2297 			return 0;
2298 
2299 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
2300 		dump_stack();
2301 		return 0;
2302 	}
2303 	chain = lock_chains + nr_lock_chains++;
2304 	chain->chain_key = chain_key;
2305 	chain->irq_context = hlock->irq_context;
2306 	i = get_first_held_lock(curr, hlock);
2307 	chain->depth = curr->lockdep_depth + 1 - i;
2308 
2309 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
2310 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
2311 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
2312 
2313 	if (likely(nr_chain_hlocks + chain->depth <= MAX_LOCKDEP_CHAIN_HLOCKS)) {
2314 		chain->base = nr_chain_hlocks;
2315 		for (j = 0; j < chain->depth - 1; j++, i++) {
2316 			int lock_id = curr->held_locks[i].class_idx - 1;
2317 			chain_hlocks[chain->base + j] = lock_id;
2318 		}
2319 		chain_hlocks[chain->base + j] = class - lock_classes;
2320 	}
2321 
2322 	if (nr_chain_hlocks < MAX_LOCKDEP_CHAIN_HLOCKS)
2323 		nr_chain_hlocks += chain->depth;
2324 
2325 #ifdef CONFIG_DEBUG_LOCKDEP
2326 	/*
2327 	 * Important for check_no_collision().
2328 	 */
2329 	if (unlikely(nr_chain_hlocks > MAX_LOCKDEP_CHAIN_HLOCKS)) {
2330 		if (!debug_locks_off_graph_unlock())
2331 			return 0;
2332 
2333 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
2334 		dump_stack();
2335 		return 0;
2336 	}
2337 #endif
2338 
2339 	hlist_add_head_rcu(&chain->entry, hash_head);
2340 	debug_atomic_inc(chain_lookup_misses);
2341 	inc_chains();
2342 
2343 	return 1;
2344 }
2345 
2346 /*
2347  * Look up a dependency chain.
2348  */
2349 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
2350 {
2351 	struct hlist_head *hash_head = chainhashentry(chain_key);
2352 	struct lock_chain *chain;
2353 
2354 	/*
2355 	 * We can walk it lock-free, because entries only get added
2356 	 * to the hash:
2357 	 */
2358 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
2359 		if (chain->chain_key == chain_key) {
2360 			debug_atomic_inc(chain_lookup_hits);
2361 			return chain;
2362 		}
2363 	}
2364 	return NULL;
2365 }
2366 
2367 /*
2368  * If the key is not present yet in dependency chain cache then
2369  * add it and return 1 - in this case the new dependency chain is
2370  * validated. If the key is already hashed, return 0.
2371  * (On return with 1 graph_lock is held.)
2372  */
2373 static inline int lookup_chain_cache_add(struct task_struct *curr,
2374 					 struct held_lock *hlock,
2375 					 u64 chain_key)
2376 {
2377 	struct lock_class *class = hlock_class(hlock);
2378 	struct lock_chain *chain = lookup_chain_cache(chain_key);
2379 
2380 	if (chain) {
2381 cache_hit:
2382 		if (!check_no_collision(curr, hlock, chain))
2383 			return 0;
2384 
2385 		if (very_verbose(class)) {
2386 			printk("\nhash chain already cached, key: "
2387 					"%016Lx tail class: [%p] %s\n",
2388 					(unsigned long long)chain_key,
2389 					class->key, class->name);
2390 		}
2391 
2392 		return 0;
2393 	}
2394 
2395 	if (very_verbose(class)) {
2396 		printk("\nnew hash chain, key: %016Lx tail class: [%p] %s\n",
2397 			(unsigned long long)chain_key, class->key, class->name);
2398 	}
2399 
2400 	if (!graph_lock())
2401 		return 0;
2402 
2403 	/*
2404 	 * We have to walk the chain again locked - to avoid duplicates:
2405 	 */
2406 	chain = lookup_chain_cache(chain_key);
2407 	if (chain) {
2408 		graph_unlock();
2409 		goto cache_hit;
2410 	}
2411 
2412 	if (!add_chain_cache(curr, hlock, chain_key))
2413 		return 0;
2414 
2415 	return 1;
2416 }
2417 
2418 static int validate_chain(struct task_struct *curr, struct lockdep_map *lock,
2419 		struct held_lock *hlock, int chain_head, u64 chain_key)
2420 {
2421 	/*
2422 	 * Trylock needs to maintain the stack of held locks, but it
2423 	 * does not add new dependencies, because trylock can be done
2424 	 * in any order.
2425 	 *
2426 	 * We look up the chain_key and do the O(N^2) check and update of
2427 	 * the dependencies only if this is a new dependency chain.
2428 	 * (If lookup_chain_cache_add() return with 1 it acquires
2429 	 * graph_lock for us)
2430 	 */
2431 	if (!hlock->trylock && hlock->check &&
2432 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
2433 		/*
2434 		 * Check whether last held lock:
2435 		 *
2436 		 * - is irq-safe, if this lock is irq-unsafe
2437 		 * - is softirq-safe, if this lock is hardirq-unsafe
2438 		 *
2439 		 * And check whether the new lock's dependency graph
2440 		 * could lead back to the previous lock.
2441 		 *
2442 		 * any of these scenarios could lead to a deadlock. If
2443 		 * All validations
2444 		 */
2445 		int ret = check_deadlock(curr, hlock, lock, hlock->read);
2446 
2447 		if (!ret)
2448 			return 0;
2449 		/*
2450 		 * Mark recursive read, as we jump over it when
2451 		 * building dependencies (just like we jump over
2452 		 * trylock entries):
2453 		 */
2454 		if (ret == 2)
2455 			hlock->read = 2;
2456 		/*
2457 		 * Add dependency only if this lock is not the head
2458 		 * of the chain, and if it's not a secondary read-lock:
2459 		 */
2460 		if (!chain_head && ret != 2) {
2461 			if (!check_prevs_add(curr, hlock))
2462 				return 0;
2463 		}
2464 
2465 		graph_unlock();
2466 	} else {
2467 		/* after lookup_chain_cache_add(): */
2468 		if (unlikely(!debug_locks))
2469 			return 0;
2470 	}
2471 
2472 	return 1;
2473 }
2474 #else
2475 static inline int validate_chain(struct task_struct *curr,
2476 	       	struct lockdep_map *lock, struct held_lock *hlock,
2477 		int chain_head, u64 chain_key)
2478 {
2479 	return 1;
2480 }
2481 #endif
2482 
2483 /*
2484  * We are building curr_chain_key incrementally, so double-check
2485  * it from scratch, to make sure that it's done correctly:
2486  */
2487 static void check_chain_key(struct task_struct *curr)
2488 {
2489 #ifdef CONFIG_DEBUG_LOCKDEP
2490 	struct held_lock *hlock, *prev_hlock = NULL;
2491 	unsigned int i;
2492 	u64 chain_key = 0;
2493 
2494 	for (i = 0; i < curr->lockdep_depth; i++) {
2495 		hlock = curr->held_locks + i;
2496 		if (chain_key != hlock->prev_chain_key) {
2497 			debug_locks_off();
2498 			/*
2499 			 * We got mighty confused, our chain keys don't match
2500 			 * with what we expect, someone trample on our task state?
2501 			 */
2502 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
2503 				curr->lockdep_depth, i,
2504 				(unsigned long long)chain_key,
2505 				(unsigned long long)hlock->prev_chain_key);
2506 			return;
2507 		}
2508 		/*
2509 		 * Whoops ran out of static storage again?
2510 		 */
2511 		if (DEBUG_LOCKS_WARN_ON(hlock->class_idx > MAX_LOCKDEP_KEYS))
2512 			return;
2513 
2514 		if (prev_hlock && (prev_hlock->irq_context !=
2515 							hlock->irq_context))
2516 			chain_key = 0;
2517 		chain_key = iterate_chain_key(chain_key, hlock->class_idx);
2518 		prev_hlock = hlock;
2519 	}
2520 	if (chain_key != curr->curr_chain_key) {
2521 		debug_locks_off();
2522 		/*
2523 		 * More smoking hash instead of calculating it, damn see these
2524 		 * numbers float.. I bet that a pink elephant stepped on my memory.
2525 		 */
2526 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
2527 			curr->lockdep_depth, i,
2528 			(unsigned long long)chain_key,
2529 			(unsigned long long)curr->curr_chain_key);
2530 	}
2531 #endif
2532 }
2533 
2534 static void
2535 print_usage_bug_scenario(struct held_lock *lock)
2536 {
2537 	struct lock_class *class = hlock_class(lock);
2538 
2539 	printk(" Possible unsafe locking scenario:\n\n");
2540 	printk("       CPU0\n");
2541 	printk("       ----\n");
2542 	printk("  lock(");
2543 	__print_lock_name(class);
2544 	printk(KERN_CONT ");\n");
2545 	printk("  <Interrupt>\n");
2546 	printk("    lock(");
2547 	__print_lock_name(class);
2548 	printk(KERN_CONT ");\n");
2549 	printk("\n *** DEADLOCK ***\n\n");
2550 }
2551 
2552 static int
2553 print_usage_bug(struct task_struct *curr, struct held_lock *this,
2554 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
2555 {
2556 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2557 		return 0;
2558 
2559 	pr_warn("\n");
2560 	pr_warn("================================\n");
2561 	pr_warn("WARNING: inconsistent lock state\n");
2562 	print_kernel_ident();
2563 	pr_warn("--------------------------------\n");
2564 
2565 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
2566 		usage_str[prev_bit], usage_str[new_bit]);
2567 
2568 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
2569 		curr->comm, task_pid_nr(curr),
2570 		trace_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
2571 		trace_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
2572 		trace_hardirqs_enabled(curr),
2573 		trace_softirqs_enabled(curr));
2574 	print_lock(this);
2575 
2576 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
2577 	print_stack_trace(hlock_class(this)->usage_traces + prev_bit, 1);
2578 
2579 	print_irqtrace_events(curr);
2580 	pr_warn("\nother info that might help us debug this:\n");
2581 	print_usage_bug_scenario(this);
2582 
2583 	lockdep_print_held_locks(curr);
2584 
2585 	pr_warn("\nstack backtrace:\n");
2586 	dump_stack();
2587 
2588 	return 0;
2589 }
2590 
2591 /*
2592  * Print out an error if an invalid bit is set:
2593  */
2594 static inline int
2595 valid_state(struct task_struct *curr, struct held_lock *this,
2596 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
2597 {
2598 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit)))
2599 		return print_usage_bug(curr, this, bad_bit, new_bit);
2600 	return 1;
2601 }
2602 
2603 static int mark_lock(struct task_struct *curr, struct held_lock *this,
2604 		     enum lock_usage_bit new_bit);
2605 
2606 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
2607 
2608 /*
2609  * print irq inversion bug:
2610  */
2611 static int
2612 print_irq_inversion_bug(struct task_struct *curr,
2613 			struct lock_list *root, struct lock_list *other,
2614 			struct held_lock *this, int forwards,
2615 			const char *irqclass)
2616 {
2617 	struct lock_list *entry = other;
2618 	struct lock_list *middle = NULL;
2619 	int depth;
2620 
2621 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2622 		return 0;
2623 
2624 	pr_warn("\n");
2625 	pr_warn("========================================================\n");
2626 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
2627 	print_kernel_ident();
2628 	pr_warn("--------------------------------------------------------\n");
2629 	pr_warn("%s/%d just changed the state of lock:\n",
2630 		curr->comm, task_pid_nr(curr));
2631 	print_lock(this);
2632 	if (forwards)
2633 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
2634 	else
2635 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
2636 	print_lock_name(other->class);
2637 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
2638 
2639 	pr_warn("\nother info that might help us debug this:\n");
2640 
2641 	/* Find a middle lock (if one exists) */
2642 	depth = get_lock_depth(other);
2643 	do {
2644 		if (depth == 0 && (entry != root)) {
2645 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
2646 			break;
2647 		}
2648 		middle = entry;
2649 		entry = get_lock_parent(entry);
2650 		depth--;
2651 	} while (entry && entry != root && (depth >= 0));
2652 	if (forwards)
2653 		print_irq_lock_scenario(root, other,
2654 			middle ? middle->class : root->class, other->class);
2655 	else
2656 		print_irq_lock_scenario(other, root,
2657 			middle ? middle->class : other->class, root->class);
2658 
2659 	lockdep_print_held_locks(curr);
2660 
2661 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
2662 	if (!save_trace(&root->trace))
2663 		return 0;
2664 	print_shortest_lock_dependencies(other, root);
2665 
2666 	pr_warn("\nstack backtrace:\n");
2667 	dump_stack();
2668 
2669 	return 0;
2670 }
2671 
2672 /*
2673  * Prove that in the forwards-direction subgraph starting at <this>
2674  * there is no lock matching <mask>:
2675  */
2676 static int
2677 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
2678 		     enum lock_usage_bit bit, const char *irqclass)
2679 {
2680 	int ret;
2681 	struct lock_list root;
2682 	struct lock_list *uninitialized_var(target_entry);
2683 
2684 	root.parent = NULL;
2685 	root.class = hlock_class(this);
2686 	ret = find_usage_forwards(&root, bit, &target_entry);
2687 	if (ret < 0)
2688 		return print_bfs_bug(ret);
2689 	if (ret == 1)
2690 		return ret;
2691 
2692 	return print_irq_inversion_bug(curr, &root, target_entry,
2693 					this, 1, irqclass);
2694 }
2695 
2696 /*
2697  * Prove that in the backwards-direction subgraph starting at <this>
2698  * there is no lock matching <mask>:
2699  */
2700 static int
2701 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
2702 		      enum lock_usage_bit bit, const char *irqclass)
2703 {
2704 	int ret;
2705 	struct lock_list root;
2706 	struct lock_list *uninitialized_var(target_entry);
2707 
2708 	root.parent = NULL;
2709 	root.class = hlock_class(this);
2710 	ret = find_usage_backwards(&root, bit, &target_entry);
2711 	if (ret < 0)
2712 		return print_bfs_bug(ret);
2713 	if (ret == 1)
2714 		return ret;
2715 
2716 	return print_irq_inversion_bug(curr, &root, target_entry,
2717 					this, 0, irqclass);
2718 }
2719 
2720 void print_irqtrace_events(struct task_struct *curr)
2721 {
2722 	printk("irq event stamp: %u\n", curr->irq_events);
2723 	printk("hardirqs last  enabled at (%u): [<%p>] %pS\n",
2724 		curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
2725 		(void *)curr->hardirq_enable_ip);
2726 	printk("hardirqs last disabled at (%u): [<%p>] %pS\n",
2727 		curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
2728 		(void *)curr->hardirq_disable_ip);
2729 	printk("softirqs last  enabled at (%u): [<%p>] %pS\n",
2730 		curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
2731 		(void *)curr->softirq_enable_ip);
2732 	printk("softirqs last disabled at (%u): [<%p>] %pS\n",
2733 		curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
2734 		(void *)curr->softirq_disable_ip);
2735 }
2736 
2737 static int HARDIRQ_verbose(struct lock_class *class)
2738 {
2739 #if HARDIRQ_VERBOSE
2740 	return class_filter(class);
2741 #endif
2742 	return 0;
2743 }
2744 
2745 static int SOFTIRQ_verbose(struct lock_class *class)
2746 {
2747 #if SOFTIRQ_VERBOSE
2748 	return class_filter(class);
2749 #endif
2750 	return 0;
2751 }
2752 
2753 #define STRICT_READ_CHECKS	1
2754 
2755 static int (*state_verbose_f[])(struct lock_class *class) = {
2756 #define LOCKDEP_STATE(__STATE) \
2757 	__STATE##_verbose,
2758 #include "lockdep_states.h"
2759 #undef LOCKDEP_STATE
2760 };
2761 
2762 static inline int state_verbose(enum lock_usage_bit bit,
2763 				struct lock_class *class)
2764 {
2765 	return state_verbose_f[bit >> 2](class);
2766 }
2767 
2768 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
2769 			     enum lock_usage_bit bit, const char *name);
2770 
2771 static int
2772 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
2773 		enum lock_usage_bit new_bit)
2774 {
2775 	int excl_bit = exclusive_bit(new_bit);
2776 	int read = new_bit & 1;
2777 	int dir = new_bit & 2;
2778 
2779 	/*
2780 	 * mark USED_IN has to look forwards -- to ensure no dependency
2781 	 * has ENABLED state, which would allow recursion deadlocks.
2782 	 *
2783 	 * mark ENABLED has to look backwards -- to ensure no dependee
2784 	 * has USED_IN state, which, again, would allow  recursion deadlocks.
2785 	 */
2786 	check_usage_f usage = dir ?
2787 		check_usage_backwards : check_usage_forwards;
2788 
2789 	/*
2790 	 * Validate that this particular lock does not have conflicting
2791 	 * usage states.
2792 	 */
2793 	if (!valid_state(curr, this, new_bit, excl_bit))
2794 		return 0;
2795 
2796 	/*
2797 	 * Validate that the lock dependencies don't have conflicting usage
2798 	 * states.
2799 	 */
2800 	if ((!read || !dir || STRICT_READ_CHECKS) &&
2801 			!usage(curr, this, excl_bit, state_name(new_bit & ~1)))
2802 		return 0;
2803 
2804 	/*
2805 	 * Check for read in write conflicts
2806 	 */
2807 	if (!read) {
2808 		if (!valid_state(curr, this, new_bit, excl_bit + 1))
2809 			return 0;
2810 
2811 		if (STRICT_READ_CHECKS &&
2812 			!usage(curr, this, excl_bit + 1,
2813 				state_name(new_bit + 1)))
2814 			return 0;
2815 	}
2816 
2817 	if (state_verbose(new_bit, hlock_class(this)))
2818 		return 2;
2819 
2820 	return 1;
2821 }
2822 
2823 enum mark_type {
2824 #define LOCKDEP_STATE(__STATE)	__STATE,
2825 #include "lockdep_states.h"
2826 #undef LOCKDEP_STATE
2827 };
2828 
2829 /*
2830  * Mark all held locks with a usage bit:
2831  */
2832 static int
2833 mark_held_locks(struct task_struct *curr, enum mark_type mark)
2834 {
2835 	enum lock_usage_bit usage_bit;
2836 	struct held_lock *hlock;
2837 	int i;
2838 
2839 	for (i = 0; i < curr->lockdep_depth; i++) {
2840 		hlock = curr->held_locks + i;
2841 
2842 		usage_bit = 2 + (mark << 2); /* ENABLED */
2843 		if (hlock->read)
2844 			usage_bit += 1; /* READ */
2845 
2846 		BUG_ON(usage_bit >= LOCK_USAGE_STATES);
2847 
2848 		if (!hlock->check)
2849 			continue;
2850 
2851 		if (!mark_lock(curr, hlock, usage_bit))
2852 			return 0;
2853 	}
2854 
2855 	return 1;
2856 }
2857 
2858 /*
2859  * Hardirqs will be enabled:
2860  */
2861 static void __trace_hardirqs_on_caller(unsigned long ip)
2862 {
2863 	struct task_struct *curr = current;
2864 
2865 	/* we'll do an OFF -> ON transition: */
2866 	curr->hardirqs_enabled = 1;
2867 
2868 	/*
2869 	 * We are going to turn hardirqs on, so set the
2870 	 * usage bit for all held locks:
2871 	 */
2872 	if (!mark_held_locks(curr, HARDIRQ))
2873 		return;
2874 	/*
2875 	 * If we have softirqs enabled, then set the usage
2876 	 * bit for all held locks. (disabled hardirqs prevented
2877 	 * this bit from being set before)
2878 	 */
2879 	if (curr->softirqs_enabled)
2880 		if (!mark_held_locks(curr, SOFTIRQ))
2881 			return;
2882 
2883 	curr->hardirq_enable_ip = ip;
2884 	curr->hardirq_enable_event = ++curr->irq_events;
2885 	debug_atomic_inc(hardirqs_on_events);
2886 }
2887 
2888 __visible void trace_hardirqs_on_caller(unsigned long ip)
2889 {
2890 	time_hardirqs_on(CALLER_ADDR0, ip);
2891 
2892 	if (unlikely(!debug_locks || current->lockdep_recursion))
2893 		return;
2894 
2895 	if (unlikely(current->hardirqs_enabled)) {
2896 		/*
2897 		 * Neither irq nor preemption are disabled here
2898 		 * so this is racy by nature but losing one hit
2899 		 * in a stat is not a big deal.
2900 		 */
2901 		__debug_atomic_inc(redundant_hardirqs_on);
2902 		return;
2903 	}
2904 
2905 	/*
2906 	 * We're enabling irqs and according to our state above irqs weren't
2907 	 * already enabled, yet we find the hardware thinks they are in fact
2908 	 * enabled.. someone messed up their IRQ state tracing.
2909 	 */
2910 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2911 		return;
2912 
2913 	/*
2914 	 * See the fine text that goes along with this variable definition.
2915 	 */
2916 	if (DEBUG_LOCKS_WARN_ON(unlikely(early_boot_irqs_disabled)))
2917 		return;
2918 
2919 	/*
2920 	 * Can't allow enabling interrupts while in an interrupt handler,
2921 	 * that's general bad form and such. Recursion, limited stack etc..
2922 	 */
2923 	if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
2924 		return;
2925 
2926 	current->lockdep_recursion = 1;
2927 	__trace_hardirqs_on_caller(ip);
2928 	current->lockdep_recursion = 0;
2929 }
2930 EXPORT_SYMBOL(trace_hardirqs_on_caller);
2931 
2932 void trace_hardirqs_on(void)
2933 {
2934 	trace_hardirqs_on_caller(CALLER_ADDR0);
2935 }
2936 EXPORT_SYMBOL(trace_hardirqs_on);
2937 
2938 /*
2939  * Hardirqs were disabled:
2940  */
2941 __visible void trace_hardirqs_off_caller(unsigned long ip)
2942 {
2943 	struct task_struct *curr = current;
2944 
2945 	time_hardirqs_off(CALLER_ADDR0, ip);
2946 
2947 	if (unlikely(!debug_locks || current->lockdep_recursion))
2948 		return;
2949 
2950 	/*
2951 	 * So we're supposed to get called after you mask local IRQs, but for
2952 	 * some reason the hardware doesn't quite think you did a proper job.
2953 	 */
2954 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2955 		return;
2956 
2957 	if (curr->hardirqs_enabled) {
2958 		/*
2959 		 * We have done an ON -> OFF transition:
2960 		 */
2961 		curr->hardirqs_enabled = 0;
2962 		curr->hardirq_disable_ip = ip;
2963 		curr->hardirq_disable_event = ++curr->irq_events;
2964 		debug_atomic_inc(hardirqs_off_events);
2965 	} else
2966 		debug_atomic_inc(redundant_hardirqs_off);
2967 }
2968 EXPORT_SYMBOL(trace_hardirqs_off_caller);
2969 
2970 void trace_hardirqs_off(void)
2971 {
2972 	trace_hardirqs_off_caller(CALLER_ADDR0);
2973 }
2974 EXPORT_SYMBOL(trace_hardirqs_off);
2975 
2976 /*
2977  * Softirqs will be enabled:
2978  */
2979 void trace_softirqs_on(unsigned long ip)
2980 {
2981 	struct task_struct *curr = current;
2982 
2983 	if (unlikely(!debug_locks || current->lockdep_recursion))
2984 		return;
2985 
2986 	/*
2987 	 * We fancy IRQs being disabled here, see softirq.c, avoids
2988 	 * funny state and nesting things.
2989 	 */
2990 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
2991 		return;
2992 
2993 	if (curr->softirqs_enabled) {
2994 		debug_atomic_inc(redundant_softirqs_on);
2995 		return;
2996 	}
2997 
2998 	current->lockdep_recursion = 1;
2999 	/*
3000 	 * We'll do an OFF -> ON transition:
3001 	 */
3002 	curr->softirqs_enabled = 1;
3003 	curr->softirq_enable_ip = ip;
3004 	curr->softirq_enable_event = ++curr->irq_events;
3005 	debug_atomic_inc(softirqs_on_events);
3006 	/*
3007 	 * We are going to turn softirqs on, so set the
3008 	 * usage bit for all held locks, if hardirqs are
3009 	 * enabled too:
3010 	 */
3011 	if (curr->hardirqs_enabled)
3012 		mark_held_locks(curr, SOFTIRQ);
3013 	current->lockdep_recursion = 0;
3014 }
3015 
3016 /*
3017  * Softirqs were disabled:
3018  */
3019 void trace_softirqs_off(unsigned long ip)
3020 {
3021 	struct task_struct *curr = current;
3022 
3023 	if (unlikely(!debug_locks || current->lockdep_recursion))
3024 		return;
3025 
3026 	/*
3027 	 * We fancy IRQs being disabled here, see softirq.c
3028 	 */
3029 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3030 		return;
3031 
3032 	if (curr->softirqs_enabled) {
3033 		/*
3034 		 * We have done an ON -> OFF transition:
3035 		 */
3036 		curr->softirqs_enabled = 0;
3037 		curr->softirq_disable_ip = ip;
3038 		curr->softirq_disable_event = ++curr->irq_events;
3039 		debug_atomic_inc(softirqs_off_events);
3040 		/*
3041 		 * Whoops, we wanted softirqs off, so why aren't they?
3042 		 */
3043 		DEBUG_LOCKS_WARN_ON(!softirq_count());
3044 	} else
3045 		debug_atomic_inc(redundant_softirqs_off);
3046 }
3047 
3048 static int mark_irqflags(struct task_struct *curr, struct held_lock *hlock)
3049 {
3050 	/*
3051 	 * If non-trylock use in a hardirq or softirq context, then
3052 	 * mark the lock as used in these contexts:
3053 	 */
3054 	if (!hlock->trylock) {
3055 		if (hlock->read) {
3056 			if (curr->hardirq_context)
3057 				if (!mark_lock(curr, hlock,
3058 						LOCK_USED_IN_HARDIRQ_READ))
3059 					return 0;
3060 			if (curr->softirq_context)
3061 				if (!mark_lock(curr, hlock,
3062 						LOCK_USED_IN_SOFTIRQ_READ))
3063 					return 0;
3064 		} else {
3065 			if (curr->hardirq_context)
3066 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
3067 					return 0;
3068 			if (curr->softirq_context)
3069 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
3070 					return 0;
3071 		}
3072 	}
3073 	if (!hlock->hardirqs_off) {
3074 		if (hlock->read) {
3075 			if (!mark_lock(curr, hlock,
3076 					LOCK_ENABLED_HARDIRQ_READ))
3077 				return 0;
3078 			if (curr->softirqs_enabled)
3079 				if (!mark_lock(curr, hlock,
3080 						LOCK_ENABLED_SOFTIRQ_READ))
3081 					return 0;
3082 		} else {
3083 			if (!mark_lock(curr, hlock,
3084 					LOCK_ENABLED_HARDIRQ))
3085 				return 0;
3086 			if (curr->softirqs_enabled)
3087 				if (!mark_lock(curr, hlock,
3088 						LOCK_ENABLED_SOFTIRQ))
3089 					return 0;
3090 		}
3091 	}
3092 
3093 	return 1;
3094 }
3095 
3096 static inline unsigned int task_irq_context(struct task_struct *task)
3097 {
3098 	return 2 * !!task->hardirq_context + !!task->softirq_context;
3099 }
3100 
3101 static int separate_irq_context(struct task_struct *curr,
3102 		struct held_lock *hlock)
3103 {
3104 	unsigned int depth = curr->lockdep_depth;
3105 
3106 	/*
3107 	 * Keep track of points where we cross into an interrupt context:
3108 	 */
3109 	if (depth) {
3110 		struct held_lock *prev_hlock;
3111 
3112 		prev_hlock = curr->held_locks + depth-1;
3113 		/*
3114 		 * If we cross into another context, reset the
3115 		 * hash key (this also prevents the checking and the
3116 		 * adding of the dependency to 'prev'):
3117 		 */
3118 		if (prev_hlock->irq_context != hlock->irq_context)
3119 			return 1;
3120 	}
3121 	return 0;
3122 }
3123 
3124 #else /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */
3125 
3126 static inline
3127 int mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3128 		enum lock_usage_bit new_bit)
3129 {
3130 	WARN_ON(1); /* Impossible innit? when we don't have TRACE_IRQFLAG */
3131 	return 1;
3132 }
3133 
3134 static inline int mark_irqflags(struct task_struct *curr,
3135 		struct held_lock *hlock)
3136 {
3137 	return 1;
3138 }
3139 
3140 static inline unsigned int task_irq_context(struct task_struct *task)
3141 {
3142 	return 0;
3143 }
3144 
3145 static inline int separate_irq_context(struct task_struct *curr,
3146 		struct held_lock *hlock)
3147 {
3148 	return 0;
3149 }
3150 
3151 #endif /* defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) */
3152 
3153 /*
3154  * Mark a lock with a usage bit, and validate the state transition:
3155  */
3156 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3157 			     enum lock_usage_bit new_bit)
3158 {
3159 	unsigned int new_mask = 1 << new_bit, ret = 1;
3160 
3161 	/*
3162 	 * If already set then do not dirty the cacheline,
3163 	 * nor do any checks:
3164 	 */
3165 	if (likely(hlock_class(this)->usage_mask & new_mask))
3166 		return 1;
3167 
3168 	if (!graph_lock())
3169 		return 0;
3170 	/*
3171 	 * Make sure we didn't race:
3172 	 */
3173 	if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3174 		graph_unlock();
3175 		return 1;
3176 	}
3177 
3178 	hlock_class(this)->usage_mask |= new_mask;
3179 
3180 	if (!save_trace(hlock_class(this)->usage_traces + new_bit))
3181 		return 0;
3182 
3183 	switch (new_bit) {
3184 #define LOCKDEP_STATE(__STATE)			\
3185 	case LOCK_USED_IN_##__STATE:		\
3186 	case LOCK_USED_IN_##__STATE##_READ:	\
3187 	case LOCK_ENABLED_##__STATE:		\
3188 	case LOCK_ENABLED_##__STATE##_READ:
3189 #include "lockdep_states.h"
3190 #undef LOCKDEP_STATE
3191 		ret = mark_lock_irq(curr, this, new_bit);
3192 		if (!ret)
3193 			return 0;
3194 		break;
3195 	case LOCK_USED:
3196 		debug_atomic_dec(nr_unused_locks);
3197 		break;
3198 	default:
3199 		if (!debug_locks_off_graph_unlock())
3200 			return 0;
3201 		WARN_ON(1);
3202 		return 0;
3203 	}
3204 
3205 	graph_unlock();
3206 
3207 	/*
3208 	 * We must printk outside of the graph_lock:
3209 	 */
3210 	if (ret == 2) {
3211 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
3212 		print_lock(this);
3213 		print_irqtrace_events(curr);
3214 		dump_stack();
3215 	}
3216 
3217 	return ret;
3218 }
3219 
3220 /*
3221  * Initialize a lock instance's lock-class mapping info:
3222  */
3223 static void __lockdep_init_map(struct lockdep_map *lock, const char *name,
3224 		      struct lock_class_key *key, int subclass)
3225 {
3226 	int i;
3227 
3228 	kmemcheck_mark_initialized(lock, sizeof(*lock));
3229 
3230 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
3231 		lock->class_cache[i] = NULL;
3232 
3233 #ifdef CONFIG_LOCK_STAT
3234 	lock->cpu = raw_smp_processor_id();
3235 #endif
3236 
3237 	/*
3238 	 * Can't be having no nameless bastards around this place!
3239 	 */
3240 	if (DEBUG_LOCKS_WARN_ON(!name)) {
3241 		lock->name = "NULL";
3242 		return;
3243 	}
3244 
3245 	lock->name = name;
3246 
3247 	/*
3248 	 * No key, no joy, we need to hash something.
3249 	 */
3250 	if (DEBUG_LOCKS_WARN_ON(!key))
3251 		return;
3252 	/*
3253 	 * Sanity check, the lock-class key must be persistent:
3254 	 */
3255 	if (!static_obj(key)) {
3256 		printk("BUG: key %p not in .data!\n", key);
3257 		/*
3258 		 * What it says above ^^^^^, I suggest you read it.
3259 		 */
3260 		DEBUG_LOCKS_WARN_ON(1);
3261 		return;
3262 	}
3263 	lock->key = key;
3264 
3265 	if (unlikely(!debug_locks))
3266 		return;
3267 
3268 	if (subclass) {
3269 		unsigned long flags;
3270 
3271 		if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
3272 			return;
3273 
3274 		raw_local_irq_save(flags);
3275 		current->lockdep_recursion = 1;
3276 		register_lock_class(lock, subclass, 1);
3277 		current->lockdep_recursion = 0;
3278 		raw_local_irq_restore(flags);
3279 	}
3280 }
3281 
3282 void lockdep_init_map(struct lockdep_map *lock, const char *name,
3283 		      struct lock_class_key *key, int subclass)
3284 {
3285 	cross_init(lock, 0);
3286 	__lockdep_init_map(lock, name, key, subclass);
3287 }
3288 EXPORT_SYMBOL_GPL(lockdep_init_map);
3289 
3290 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
3291 void lockdep_init_map_crosslock(struct lockdep_map *lock, const char *name,
3292 		      struct lock_class_key *key, int subclass)
3293 {
3294 	cross_init(lock, 1);
3295 	__lockdep_init_map(lock, name, key, subclass);
3296 }
3297 EXPORT_SYMBOL_GPL(lockdep_init_map_crosslock);
3298 #endif
3299 
3300 struct lock_class_key __lockdep_no_validate__;
3301 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
3302 
3303 static int
3304 print_lock_nested_lock_not_held(struct task_struct *curr,
3305 				struct held_lock *hlock,
3306 				unsigned long ip)
3307 {
3308 	if (!debug_locks_off())
3309 		return 0;
3310 	if (debug_locks_silent)
3311 		return 0;
3312 
3313 	pr_warn("\n");
3314 	pr_warn("==================================\n");
3315 	pr_warn("WARNING: Nested lock was not taken\n");
3316 	print_kernel_ident();
3317 	pr_warn("----------------------------------\n");
3318 
3319 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3320 	print_lock(hlock);
3321 
3322 	pr_warn("\nbut this task is not holding:\n");
3323 	pr_warn("%s\n", hlock->nest_lock->name);
3324 
3325 	pr_warn("\nstack backtrace:\n");
3326 	dump_stack();
3327 
3328 	pr_warn("\nother info that might help us debug this:\n");
3329 	lockdep_print_held_locks(curr);
3330 
3331 	pr_warn("\nstack backtrace:\n");
3332 	dump_stack();
3333 
3334 	return 0;
3335 }
3336 
3337 static int __lock_is_held(struct lockdep_map *lock, int read);
3338 
3339 /*
3340  * This gets called for every mutex_lock*()/spin_lock*() operation.
3341  * We maintain the dependency maps and validate the locking attempt:
3342  */
3343 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3344 			  int trylock, int read, int check, int hardirqs_off,
3345 			  struct lockdep_map *nest_lock, unsigned long ip,
3346 			  int references, int pin_count)
3347 {
3348 	struct task_struct *curr = current;
3349 	struct lock_class *class = NULL;
3350 	struct held_lock *hlock;
3351 	unsigned int depth;
3352 	int chain_head = 0;
3353 	int class_idx;
3354 	u64 chain_key;
3355 	int ret;
3356 
3357 	if (unlikely(!debug_locks))
3358 		return 0;
3359 
3360 	/*
3361 	 * Lockdep should run with IRQs disabled, otherwise we could
3362 	 * get an interrupt which would want to take locks, which would
3363 	 * end up in lockdep and have you got a head-ache already?
3364 	 */
3365 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3366 		return 0;
3367 
3368 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
3369 		check = 0;
3370 
3371 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
3372 		class = lock->class_cache[subclass];
3373 	/*
3374 	 * Not cached?
3375 	 */
3376 	if (unlikely(!class)) {
3377 		class = register_lock_class(lock, subclass, 0);
3378 		if (!class)
3379 			return 0;
3380 	}
3381 	atomic_inc((atomic_t *)&class->ops);
3382 	if (very_verbose(class)) {
3383 		printk("\nacquire class [%p] %s", class->key, class->name);
3384 		if (class->name_version > 1)
3385 			printk(KERN_CONT "#%d", class->name_version);
3386 		printk(KERN_CONT "\n");
3387 		dump_stack();
3388 	}
3389 
3390 	/*
3391 	 * Add the lock to the list of currently held locks.
3392 	 * (we dont increase the depth just yet, up until the
3393 	 * dependency checks are done)
3394 	 */
3395 	depth = curr->lockdep_depth;
3396 	/*
3397 	 * Ran out of static storage for our per-task lock stack again have we?
3398 	 */
3399 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
3400 		return 0;
3401 
3402 	class_idx = class - lock_classes + 1;
3403 
3404 	/* TODO: nest_lock is not implemented for crosslock yet. */
3405 	if (depth && !cross_lock(lock)) {
3406 		hlock = curr->held_locks + depth - 1;
3407 		if (hlock->class_idx == class_idx && nest_lock) {
3408 			if (hlock->references) {
3409 				/*
3410 				 * Check: unsigned int references:12, overflow.
3411 				 */
3412 				if (DEBUG_LOCKS_WARN_ON(hlock->references == (1 << 12)-1))
3413 					return 0;
3414 
3415 				hlock->references++;
3416 			} else {
3417 				hlock->references = 2;
3418 			}
3419 
3420 			return 1;
3421 		}
3422 	}
3423 
3424 	hlock = curr->held_locks + depth;
3425 	/*
3426 	 * Plain impossible, we just registered it and checked it weren't no
3427 	 * NULL like.. I bet this mushroom I ate was good!
3428 	 */
3429 	if (DEBUG_LOCKS_WARN_ON(!class))
3430 		return 0;
3431 	hlock->class_idx = class_idx;
3432 	hlock->acquire_ip = ip;
3433 	hlock->instance = lock;
3434 	hlock->nest_lock = nest_lock;
3435 	hlock->irq_context = task_irq_context(curr);
3436 	hlock->trylock = trylock;
3437 	hlock->read = read;
3438 	hlock->check = check;
3439 	hlock->hardirqs_off = !!hardirqs_off;
3440 	hlock->references = references;
3441 #ifdef CONFIG_LOCK_STAT
3442 	hlock->waittime_stamp = 0;
3443 	hlock->holdtime_stamp = lockstat_clock();
3444 #endif
3445 	hlock->pin_count = pin_count;
3446 
3447 	if (check && !mark_irqflags(curr, hlock))
3448 		return 0;
3449 
3450 	/* mark it as used: */
3451 	if (!mark_lock(curr, hlock, LOCK_USED))
3452 		return 0;
3453 
3454 	/*
3455 	 * Calculate the chain hash: it's the combined hash of all the
3456 	 * lock keys along the dependency chain. We save the hash value
3457 	 * at every step so that we can get the current hash easily
3458 	 * after unlock. The chain hash is then used to cache dependency
3459 	 * results.
3460 	 *
3461 	 * The 'key ID' is what is the most compact key value to drive
3462 	 * the hash, not class->key.
3463 	 */
3464 	/*
3465 	 * Whoops, we did it again.. ran straight out of our static allocation.
3466 	 */
3467 	if (DEBUG_LOCKS_WARN_ON(class_idx > MAX_LOCKDEP_KEYS))
3468 		return 0;
3469 
3470 	chain_key = curr->curr_chain_key;
3471 	if (!depth) {
3472 		/*
3473 		 * How can we have a chain hash when we ain't got no keys?!
3474 		 */
3475 		if (DEBUG_LOCKS_WARN_ON(chain_key != 0))
3476 			return 0;
3477 		chain_head = 1;
3478 	}
3479 
3480 	hlock->prev_chain_key = chain_key;
3481 	if (separate_irq_context(curr, hlock)) {
3482 		chain_key = 0;
3483 		chain_head = 1;
3484 	}
3485 	chain_key = iterate_chain_key(chain_key, class_idx);
3486 
3487 	if (nest_lock && !__lock_is_held(nest_lock, -1))
3488 		return print_lock_nested_lock_not_held(curr, hlock, ip);
3489 
3490 	if (!validate_chain(curr, lock, hlock, chain_head, chain_key))
3491 		return 0;
3492 
3493 	ret = lock_acquire_crosslock(hlock);
3494 	/*
3495 	 * 2 means normal acquire operations are needed. Otherwise, it's
3496 	 * ok just to return with '0:fail, 1:success'.
3497 	 */
3498 	if (ret != 2)
3499 		return ret;
3500 
3501 	curr->curr_chain_key = chain_key;
3502 	curr->lockdep_depth++;
3503 	check_chain_key(curr);
3504 #ifdef CONFIG_DEBUG_LOCKDEP
3505 	if (unlikely(!debug_locks))
3506 		return 0;
3507 #endif
3508 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
3509 		debug_locks_off();
3510 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
3511 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
3512 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
3513 
3514 		lockdep_print_held_locks(current);
3515 		debug_show_all_locks();
3516 		dump_stack();
3517 
3518 		return 0;
3519 	}
3520 
3521 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
3522 		max_lockdep_depth = curr->lockdep_depth;
3523 
3524 	return 1;
3525 }
3526 
3527 static int
3528 print_unlock_imbalance_bug(struct task_struct *curr, struct lockdep_map *lock,
3529 			   unsigned long ip)
3530 {
3531 	if (!debug_locks_off())
3532 		return 0;
3533 	if (debug_locks_silent)
3534 		return 0;
3535 
3536 	pr_warn("\n");
3537 	pr_warn("=====================================\n");
3538 	pr_warn("WARNING: bad unlock balance detected!\n");
3539 	print_kernel_ident();
3540 	pr_warn("-------------------------------------\n");
3541 	pr_warn("%s/%d is trying to release lock (",
3542 		curr->comm, task_pid_nr(curr));
3543 	print_lockdep_cache(lock);
3544 	pr_cont(") at:\n");
3545 	print_ip_sym(ip);
3546 	pr_warn("but there are no more locks to release!\n");
3547 	pr_warn("\nother info that might help us debug this:\n");
3548 	lockdep_print_held_locks(curr);
3549 
3550 	pr_warn("\nstack backtrace:\n");
3551 	dump_stack();
3552 
3553 	return 0;
3554 }
3555 
3556 static int match_held_lock(struct held_lock *hlock, struct lockdep_map *lock)
3557 {
3558 	if (hlock->instance == lock)
3559 		return 1;
3560 
3561 	if (hlock->references) {
3562 		struct lock_class *class = lock->class_cache[0];
3563 
3564 		if (!class)
3565 			class = look_up_lock_class(lock, 0);
3566 
3567 		/*
3568 		 * If look_up_lock_class() failed to find a class, we're trying
3569 		 * to test if we hold a lock that has never yet been acquired.
3570 		 * Clearly if the lock hasn't been acquired _ever_, we're not
3571 		 * holding it either, so report failure.
3572 		 */
3573 		if (IS_ERR_OR_NULL(class))
3574 			return 0;
3575 
3576 		/*
3577 		 * References, but not a lock we're actually ref-counting?
3578 		 * State got messed up, follow the sites that change ->references
3579 		 * and try to make sense of it.
3580 		 */
3581 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
3582 			return 0;
3583 
3584 		if (hlock->class_idx == class - lock_classes + 1)
3585 			return 1;
3586 	}
3587 
3588 	return 0;
3589 }
3590 
3591 /* @depth must not be zero */
3592 static struct held_lock *find_held_lock(struct task_struct *curr,
3593 					struct lockdep_map *lock,
3594 					unsigned int depth, int *idx)
3595 {
3596 	struct held_lock *ret, *hlock, *prev_hlock;
3597 	int i;
3598 
3599 	i = depth - 1;
3600 	hlock = curr->held_locks + i;
3601 	ret = hlock;
3602 	if (match_held_lock(hlock, lock))
3603 		goto out;
3604 
3605 	ret = NULL;
3606 	for (i--, prev_hlock = hlock--;
3607 	     i >= 0;
3608 	     i--, prev_hlock = hlock--) {
3609 		/*
3610 		 * We must not cross into another context:
3611 		 */
3612 		if (prev_hlock->irq_context != hlock->irq_context) {
3613 			ret = NULL;
3614 			break;
3615 		}
3616 		if (match_held_lock(hlock, lock)) {
3617 			ret = hlock;
3618 			break;
3619 		}
3620 	}
3621 
3622 out:
3623 	*idx = i;
3624 	return ret;
3625 }
3626 
3627 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
3628 			      int idx)
3629 {
3630 	struct held_lock *hlock;
3631 
3632 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
3633 		if (!__lock_acquire(hlock->instance,
3634 				    hlock_class(hlock)->subclass,
3635 				    hlock->trylock,
3636 				    hlock->read, hlock->check,
3637 				    hlock->hardirqs_off,
3638 				    hlock->nest_lock, hlock->acquire_ip,
3639 				    hlock->references, hlock->pin_count))
3640 			return 1;
3641 	}
3642 	return 0;
3643 }
3644 
3645 static int
3646 __lock_set_class(struct lockdep_map *lock, const char *name,
3647 		 struct lock_class_key *key, unsigned int subclass,
3648 		 unsigned long ip)
3649 {
3650 	struct task_struct *curr = current;
3651 	struct held_lock *hlock;
3652 	struct lock_class *class;
3653 	unsigned int depth;
3654 	int i;
3655 
3656 	depth = curr->lockdep_depth;
3657 	/*
3658 	 * This function is about (re)setting the class of a held lock,
3659 	 * yet we're not actually holding any locks. Naughty user!
3660 	 */
3661 	if (DEBUG_LOCKS_WARN_ON(!depth))
3662 		return 0;
3663 
3664 	hlock = find_held_lock(curr, lock, depth, &i);
3665 	if (!hlock)
3666 		return print_unlock_imbalance_bug(curr, lock, ip);
3667 
3668 	lockdep_init_map(lock, name, key, 0);
3669 	class = register_lock_class(lock, subclass, 0);
3670 	hlock->class_idx = class - lock_classes + 1;
3671 
3672 	curr->lockdep_depth = i;
3673 	curr->curr_chain_key = hlock->prev_chain_key;
3674 
3675 	if (reacquire_held_locks(curr, depth, i))
3676 		return 0;
3677 
3678 	/*
3679 	 * I took it apart and put it back together again, except now I have
3680 	 * these 'spare' parts.. where shall I put them.
3681 	 */
3682 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
3683 		return 0;
3684 	return 1;
3685 }
3686 
3687 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
3688 {
3689 	struct task_struct *curr = current;
3690 	struct held_lock *hlock;
3691 	unsigned int depth;
3692 	int i;
3693 
3694 	depth = curr->lockdep_depth;
3695 	/*
3696 	 * This function is about (re)setting the class of a held lock,
3697 	 * yet we're not actually holding any locks. Naughty user!
3698 	 */
3699 	if (DEBUG_LOCKS_WARN_ON(!depth))
3700 		return 0;
3701 
3702 	hlock = find_held_lock(curr, lock, depth, &i);
3703 	if (!hlock)
3704 		return print_unlock_imbalance_bug(curr, lock, ip);
3705 
3706 	curr->lockdep_depth = i;
3707 	curr->curr_chain_key = hlock->prev_chain_key;
3708 
3709 	WARN(hlock->read, "downgrading a read lock");
3710 	hlock->read = 1;
3711 	hlock->acquire_ip = ip;
3712 
3713 	if (reacquire_held_locks(curr, depth, i))
3714 		return 0;
3715 
3716 	/*
3717 	 * I took it apart and put it back together again, except now I have
3718 	 * these 'spare' parts.. where shall I put them.
3719 	 */
3720 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
3721 		return 0;
3722 	return 1;
3723 }
3724 
3725 /*
3726  * Remove the lock to the list of currently held locks - this gets
3727  * called on mutex_unlock()/spin_unlock*() (or on a failed
3728  * mutex_lock_interruptible()).
3729  *
3730  * @nested is an hysterical artifact, needs a tree wide cleanup.
3731  */
3732 static int
3733 __lock_release(struct lockdep_map *lock, int nested, unsigned long ip)
3734 {
3735 	struct task_struct *curr = current;
3736 	struct held_lock *hlock;
3737 	unsigned int depth;
3738 	int ret, i;
3739 
3740 	if (unlikely(!debug_locks))
3741 		return 0;
3742 
3743 	ret = lock_release_crosslock(lock);
3744 	/*
3745 	 * 2 means normal release operations are needed. Otherwise, it's
3746 	 * ok just to return with '0:fail, 1:success'.
3747 	 */
3748 	if (ret != 2)
3749 		return ret;
3750 
3751 	depth = curr->lockdep_depth;
3752 	/*
3753 	 * So we're all set to release this lock.. wait what lock? We don't
3754 	 * own any locks, you've been drinking again?
3755 	 */
3756 	if (DEBUG_LOCKS_WARN_ON(depth <= 0))
3757 		 return print_unlock_imbalance_bug(curr, lock, ip);
3758 
3759 	/*
3760 	 * Check whether the lock exists in the current stack
3761 	 * of held locks:
3762 	 */
3763 	hlock = find_held_lock(curr, lock, depth, &i);
3764 	if (!hlock)
3765 		return print_unlock_imbalance_bug(curr, lock, ip);
3766 
3767 	if (hlock->instance == lock)
3768 		lock_release_holdtime(hlock);
3769 
3770 	WARN(hlock->pin_count, "releasing a pinned lock\n");
3771 
3772 	if (hlock->references) {
3773 		hlock->references--;
3774 		if (hlock->references) {
3775 			/*
3776 			 * We had, and after removing one, still have
3777 			 * references, the current lock stack is still
3778 			 * valid. We're done!
3779 			 */
3780 			return 1;
3781 		}
3782 	}
3783 
3784 	/*
3785 	 * We have the right lock to unlock, 'hlock' points to it.
3786 	 * Now we remove it from the stack, and add back the other
3787 	 * entries (if any), recalculating the hash along the way:
3788 	 */
3789 
3790 	curr->lockdep_depth = i;
3791 	curr->curr_chain_key = hlock->prev_chain_key;
3792 
3793 	if (reacquire_held_locks(curr, depth, i + 1))
3794 		return 0;
3795 
3796 	/*
3797 	 * We had N bottles of beer on the wall, we drank one, but now
3798 	 * there's not N-1 bottles of beer left on the wall...
3799 	 */
3800 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - 1))
3801 		return 0;
3802 
3803 	return 1;
3804 }
3805 
3806 static int __lock_is_held(struct lockdep_map *lock, int read)
3807 {
3808 	struct task_struct *curr = current;
3809 	int i;
3810 
3811 	for (i = 0; i < curr->lockdep_depth; i++) {
3812 		struct held_lock *hlock = curr->held_locks + i;
3813 
3814 		if (match_held_lock(hlock, lock)) {
3815 			if (read == -1 || hlock->read == read)
3816 				return 1;
3817 
3818 			return 0;
3819 		}
3820 	}
3821 
3822 	return 0;
3823 }
3824 
3825 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
3826 {
3827 	struct pin_cookie cookie = NIL_COOKIE;
3828 	struct task_struct *curr = current;
3829 	int i;
3830 
3831 	if (unlikely(!debug_locks))
3832 		return cookie;
3833 
3834 	for (i = 0; i < curr->lockdep_depth; i++) {
3835 		struct held_lock *hlock = curr->held_locks + i;
3836 
3837 		if (match_held_lock(hlock, lock)) {
3838 			/*
3839 			 * Grab 16bits of randomness; this is sufficient to not
3840 			 * be guessable and still allows some pin nesting in
3841 			 * our u32 pin_count.
3842 			 */
3843 			cookie.val = 1 + (prandom_u32() >> 16);
3844 			hlock->pin_count += cookie.val;
3845 			return cookie;
3846 		}
3847 	}
3848 
3849 	WARN(1, "pinning an unheld lock\n");
3850 	return cookie;
3851 }
3852 
3853 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
3854 {
3855 	struct task_struct *curr = current;
3856 	int i;
3857 
3858 	if (unlikely(!debug_locks))
3859 		return;
3860 
3861 	for (i = 0; i < curr->lockdep_depth; i++) {
3862 		struct held_lock *hlock = curr->held_locks + i;
3863 
3864 		if (match_held_lock(hlock, lock)) {
3865 			hlock->pin_count += cookie.val;
3866 			return;
3867 		}
3868 	}
3869 
3870 	WARN(1, "pinning an unheld lock\n");
3871 }
3872 
3873 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
3874 {
3875 	struct task_struct *curr = current;
3876 	int i;
3877 
3878 	if (unlikely(!debug_locks))
3879 		return;
3880 
3881 	for (i = 0; i < curr->lockdep_depth; i++) {
3882 		struct held_lock *hlock = curr->held_locks + i;
3883 
3884 		if (match_held_lock(hlock, lock)) {
3885 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
3886 				return;
3887 
3888 			hlock->pin_count -= cookie.val;
3889 
3890 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
3891 				hlock->pin_count = 0;
3892 
3893 			return;
3894 		}
3895 	}
3896 
3897 	WARN(1, "unpinning an unheld lock\n");
3898 }
3899 
3900 /*
3901  * Check whether we follow the irq-flags state precisely:
3902  */
3903 static void check_flags(unsigned long flags)
3904 {
3905 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) && \
3906     defined(CONFIG_TRACE_IRQFLAGS)
3907 	if (!debug_locks)
3908 		return;
3909 
3910 	if (irqs_disabled_flags(flags)) {
3911 		if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
3912 			printk("possible reason: unannotated irqs-off.\n");
3913 		}
3914 	} else {
3915 		if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
3916 			printk("possible reason: unannotated irqs-on.\n");
3917 		}
3918 	}
3919 
3920 	/*
3921 	 * We dont accurately track softirq state in e.g.
3922 	 * hardirq contexts (such as on 4KSTACKS), so only
3923 	 * check if not in hardirq contexts:
3924 	 */
3925 	if (!hardirq_count()) {
3926 		if (softirq_count()) {
3927 			/* like the above, but with softirqs */
3928 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
3929 		} else {
3930 			/* lick the above, does it taste good? */
3931 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
3932 		}
3933 	}
3934 
3935 	if (!debug_locks)
3936 		print_irqtrace_events(current);
3937 #endif
3938 }
3939 
3940 void lock_set_class(struct lockdep_map *lock, const char *name,
3941 		    struct lock_class_key *key, unsigned int subclass,
3942 		    unsigned long ip)
3943 {
3944 	unsigned long flags;
3945 
3946 	if (unlikely(current->lockdep_recursion))
3947 		return;
3948 
3949 	raw_local_irq_save(flags);
3950 	current->lockdep_recursion = 1;
3951 	check_flags(flags);
3952 	if (__lock_set_class(lock, name, key, subclass, ip))
3953 		check_chain_key(current);
3954 	current->lockdep_recursion = 0;
3955 	raw_local_irq_restore(flags);
3956 }
3957 EXPORT_SYMBOL_GPL(lock_set_class);
3958 
3959 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
3960 {
3961 	unsigned long flags;
3962 
3963 	if (unlikely(current->lockdep_recursion))
3964 		return;
3965 
3966 	raw_local_irq_save(flags);
3967 	current->lockdep_recursion = 1;
3968 	check_flags(flags);
3969 	if (__lock_downgrade(lock, ip))
3970 		check_chain_key(current);
3971 	current->lockdep_recursion = 0;
3972 	raw_local_irq_restore(flags);
3973 }
3974 EXPORT_SYMBOL_GPL(lock_downgrade);
3975 
3976 /*
3977  * We are not always called with irqs disabled - do that here,
3978  * and also avoid lockdep recursion:
3979  */
3980 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
3981 			  int trylock, int read, int check,
3982 			  struct lockdep_map *nest_lock, unsigned long ip)
3983 {
3984 	unsigned long flags;
3985 
3986 	if (unlikely(current->lockdep_recursion))
3987 		return;
3988 
3989 	raw_local_irq_save(flags);
3990 	check_flags(flags);
3991 
3992 	current->lockdep_recursion = 1;
3993 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
3994 	__lock_acquire(lock, subclass, trylock, read, check,
3995 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
3996 	current->lockdep_recursion = 0;
3997 	raw_local_irq_restore(flags);
3998 }
3999 EXPORT_SYMBOL_GPL(lock_acquire);
4000 
4001 void lock_release(struct lockdep_map *lock, int nested,
4002 			  unsigned long ip)
4003 {
4004 	unsigned long flags;
4005 
4006 	if (unlikely(current->lockdep_recursion))
4007 		return;
4008 
4009 	raw_local_irq_save(flags);
4010 	check_flags(flags);
4011 	current->lockdep_recursion = 1;
4012 	trace_lock_release(lock, ip);
4013 	if (__lock_release(lock, nested, ip))
4014 		check_chain_key(current);
4015 	current->lockdep_recursion = 0;
4016 	raw_local_irq_restore(flags);
4017 }
4018 EXPORT_SYMBOL_GPL(lock_release);
4019 
4020 int lock_is_held_type(struct lockdep_map *lock, int read)
4021 {
4022 	unsigned long flags;
4023 	int ret = 0;
4024 
4025 	if (unlikely(current->lockdep_recursion))
4026 		return 1; /* avoid false negative lockdep_assert_held() */
4027 
4028 	raw_local_irq_save(flags);
4029 	check_flags(flags);
4030 
4031 	current->lockdep_recursion = 1;
4032 	ret = __lock_is_held(lock, read);
4033 	current->lockdep_recursion = 0;
4034 	raw_local_irq_restore(flags);
4035 
4036 	return ret;
4037 }
4038 EXPORT_SYMBOL_GPL(lock_is_held_type);
4039 
4040 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
4041 {
4042 	struct pin_cookie cookie = NIL_COOKIE;
4043 	unsigned long flags;
4044 
4045 	if (unlikely(current->lockdep_recursion))
4046 		return cookie;
4047 
4048 	raw_local_irq_save(flags);
4049 	check_flags(flags);
4050 
4051 	current->lockdep_recursion = 1;
4052 	cookie = __lock_pin_lock(lock);
4053 	current->lockdep_recursion = 0;
4054 	raw_local_irq_restore(flags);
4055 
4056 	return cookie;
4057 }
4058 EXPORT_SYMBOL_GPL(lock_pin_lock);
4059 
4060 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4061 {
4062 	unsigned long flags;
4063 
4064 	if (unlikely(current->lockdep_recursion))
4065 		return;
4066 
4067 	raw_local_irq_save(flags);
4068 	check_flags(flags);
4069 
4070 	current->lockdep_recursion = 1;
4071 	__lock_repin_lock(lock, cookie);
4072 	current->lockdep_recursion = 0;
4073 	raw_local_irq_restore(flags);
4074 }
4075 EXPORT_SYMBOL_GPL(lock_repin_lock);
4076 
4077 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4078 {
4079 	unsigned long flags;
4080 
4081 	if (unlikely(current->lockdep_recursion))
4082 		return;
4083 
4084 	raw_local_irq_save(flags);
4085 	check_flags(flags);
4086 
4087 	current->lockdep_recursion = 1;
4088 	__lock_unpin_lock(lock, cookie);
4089 	current->lockdep_recursion = 0;
4090 	raw_local_irq_restore(flags);
4091 }
4092 EXPORT_SYMBOL_GPL(lock_unpin_lock);
4093 
4094 #ifdef CONFIG_LOCK_STAT
4095 static int
4096 print_lock_contention_bug(struct task_struct *curr, struct lockdep_map *lock,
4097 			   unsigned long ip)
4098 {
4099 	if (!debug_locks_off())
4100 		return 0;
4101 	if (debug_locks_silent)
4102 		return 0;
4103 
4104 	pr_warn("\n");
4105 	pr_warn("=================================\n");
4106 	pr_warn("WARNING: bad contention detected!\n");
4107 	print_kernel_ident();
4108 	pr_warn("---------------------------------\n");
4109 	pr_warn("%s/%d is trying to contend lock (",
4110 		curr->comm, task_pid_nr(curr));
4111 	print_lockdep_cache(lock);
4112 	pr_cont(") at:\n");
4113 	print_ip_sym(ip);
4114 	pr_warn("but there are no locks held!\n");
4115 	pr_warn("\nother info that might help us debug this:\n");
4116 	lockdep_print_held_locks(curr);
4117 
4118 	pr_warn("\nstack backtrace:\n");
4119 	dump_stack();
4120 
4121 	return 0;
4122 }
4123 
4124 static void
4125 __lock_contended(struct lockdep_map *lock, unsigned long ip)
4126 {
4127 	struct task_struct *curr = current;
4128 	struct held_lock *hlock;
4129 	struct lock_class_stats *stats;
4130 	unsigned int depth;
4131 	int i, contention_point, contending_point;
4132 
4133 	depth = curr->lockdep_depth;
4134 	/*
4135 	 * Whee, we contended on this lock, except it seems we're not
4136 	 * actually trying to acquire anything much at all..
4137 	 */
4138 	if (DEBUG_LOCKS_WARN_ON(!depth))
4139 		return;
4140 
4141 	hlock = find_held_lock(curr, lock, depth, &i);
4142 	if (!hlock) {
4143 		print_lock_contention_bug(curr, lock, ip);
4144 		return;
4145 	}
4146 
4147 	if (hlock->instance != lock)
4148 		return;
4149 
4150 	hlock->waittime_stamp = lockstat_clock();
4151 
4152 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
4153 	contending_point = lock_point(hlock_class(hlock)->contending_point,
4154 				      lock->ip);
4155 
4156 	stats = get_lock_stats(hlock_class(hlock));
4157 	if (contention_point < LOCKSTAT_POINTS)
4158 		stats->contention_point[contention_point]++;
4159 	if (contending_point < LOCKSTAT_POINTS)
4160 		stats->contending_point[contending_point]++;
4161 	if (lock->cpu != smp_processor_id())
4162 		stats->bounces[bounce_contended + !!hlock->read]++;
4163 	put_lock_stats(stats);
4164 }
4165 
4166 static void
4167 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
4168 {
4169 	struct task_struct *curr = current;
4170 	struct held_lock *hlock;
4171 	struct lock_class_stats *stats;
4172 	unsigned int depth;
4173 	u64 now, waittime = 0;
4174 	int i, cpu;
4175 
4176 	depth = curr->lockdep_depth;
4177 	/*
4178 	 * Yay, we acquired ownership of this lock we didn't try to
4179 	 * acquire, how the heck did that happen?
4180 	 */
4181 	if (DEBUG_LOCKS_WARN_ON(!depth))
4182 		return;
4183 
4184 	hlock = find_held_lock(curr, lock, depth, &i);
4185 	if (!hlock) {
4186 		print_lock_contention_bug(curr, lock, _RET_IP_);
4187 		return;
4188 	}
4189 
4190 	if (hlock->instance != lock)
4191 		return;
4192 
4193 	cpu = smp_processor_id();
4194 	if (hlock->waittime_stamp) {
4195 		now = lockstat_clock();
4196 		waittime = now - hlock->waittime_stamp;
4197 		hlock->holdtime_stamp = now;
4198 	}
4199 
4200 	trace_lock_acquired(lock, ip);
4201 
4202 	stats = get_lock_stats(hlock_class(hlock));
4203 	if (waittime) {
4204 		if (hlock->read)
4205 			lock_time_inc(&stats->read_waittime, waittime);
4206 		else
4207 			lock_time_inc(&stats->write_waittime, waittime);
4208 	}
4209 	if (lock->cpu != cpu)
4210 		stats->bounces[bounce_acquired + !!hlock->read]++;
4211 	put_lock_stats(stats);
4212 
4213 	lock->cpu = cpu;
4214 	lock->ip = ip;
4215 }
4216 
4217 void lock_contended(struct lockdep_map *lock, unsigned long ip)
4218 {
4219 	unsigned long flags;
4220 
4221 	if (unlikely(!lock_stat))
4222 		return;
4223 
4224 	if (unlikely(current->lockdep_recursion))
4225 		return;
4226 
4227 	raw_local_irq_save(flags);
4228 	check_flags(flags);
4229 	current->lockdep_recursion = 1;
4230 	trace_lock_contended(lock, ip);
4231 	__lock_contended(lock, ip);
4232 	current->lockdep_recursion = 0;
4233 	raw_local_irq_restore(flags);
4234 }
4235 EXPORT_SYMBOL_GPL(lock_contended);
4236 
4237 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
4238 {
4239 	unsigned long flags;
4240 
4241 	if (unlikely(!lock_stat))
4242 		return;
4243 
4244 	if (unlikely(current->lockdep_recursion))
4245 		return;
4246 
4247 	raw_local_irq_save(flags);
4248 	check_flags(flags);
4249 	current->lockdep_recursion = 1;
4250 	__lock_acquired(lock, ip);
4251 	current->lockdep_recursion = 0;
4252 	raw_local_irq_restore(flags);
4253 }
4254 EXPORT_SYMBOL_GPL(lock_acquired);
4255 #endif
4256 
4257 /*
4258  * Used by the testsuite, sanitize the validator state
4259  * after a simulated failure:
4260  */
4261 
4262 void lockdep_reset(void)
4263 {
4264 	unsigned long flags;
4265 	int i;
4266 
4267 	raw_local_irq_save(flags);
4268 	current->curr_chain_key = 0;
4269 	current->lockdep_depth = 0;
4270 	current->lockdep_recursion = 0;
4271 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
4272 	nr_hardirq_chains = 0;
4273 	nr_softirq_chains = 0;
4274 	nr_process_chains = 0;
4275 	debug_locks = 1;
4276 	for (i = 0; i < CHAINHASH_SIZE; i++)
4277 		INIT_HLIST_HEAD(chainhash_table + i);
4278 	raw_local_irq_restore(flags);
4279 }
4280 
4281 static void zap_class(struct lock_class *class)
4282 {
4283 	int i;
4284 
4285 	/*
4286 	 * Remove all dependencies this lock is
4287 	 * involved in:
4288 	 */
4289 	for (i = 0; i < nr_list_entries; i++) {
4290 		if (list_entries[i].class == class)
4291 			list_del_rcu(&list_entries[i].entry);
4292 	}
4293 	/*
4294 	 * Unhash the class and remove it from the all_lock_classes list:
4295 	 */
4296 	hlist_del_rcu(&class->hash_entry);
4297 	list_del_rcu(&class->lock_entry);
4298 
4299 	RCU_INIT_POINTER(class->key, NULL);
4300 	RCU_INIT_POINTER(class->name, NULL);
4301 }
4302 
4303 static inline int within(const void *addr, void *start, unsigned long size)
4304 {
4305 	return addr >= start && addr < start + size;
4306 }
4307 
4308 /*
4309  * Used in module.c to remove lock classes from memory that is going to be
4310  * freed; and possibly re-used by other modules.
4311  *
4312  * We will have had one sync_sched() before getting here, so we're guaranteed
4313  * nobody will look up these exact classes -- they're properly dead but still
4314  * allocated.
4315  */
4316 void lockdep_free_key_range(void *start, unsigned long size)
4317 {
4318 	struct lock_class *class;
4319 	struct hlist_head *head;
4320 	unsigned long flags;
4321 	int i;
4322 	int locked;
4323 
4324 	raw_local_irq_save(flags);
4325 	locked = graph_lock();
4326 
4327 	/*
4328 	 * Unhash all classes that were created by this module:
4329 	 */
4330 	for (i = 0; i < CLASSHASH_SIZE; i++) {
4331 		head = classhash_table + i;
4332 		hlist_for_each_entry_rcu(class, head, hash_entry) {
4333 			if (within(class->key, start, size))
4334 				zap_class(class);
4335 			else if (within(class->name, start, size))
4336 				zap_class(class);
4337 		}
4338 	}
4339 
4340 	if (locked)
4341 		graph_unlock();
4342 	raw_local_irq_restore(flags);
4343 
4344 	/*
4345 	 * Wait for any possible iterators from look_up_lock_class() to pass
4346 	 * before continuing to free the memory they refer to.
4347 	 *
4348 	 * sync_sched() is sufficient because the read-side is IRQ disable.
4349 	 */
4350 	synchronize_sched();
4351 
4352 	/*
4353 	 * XXX at this point we could return the resources to the pool;
4354 	 * instead we leak them. We would need to change to bitmap allocators
4355 	 * instead of the linear allocators we have now.
4356 	 */
4357 }
4358 
4359 void lockdep_reset_lock(struct lockdep_map *lock)
4360 {
4361 	struct lock_class *class;
4362 	struct hlist_head *head;
4363 	unsigned long flags;
4364 	int i, j;
4365 	int locked;
4366 
4367 	raw_local_irq_save(flags);
4368 
4369 	/*
4370 	 * Remove all classes this lock might have:
4371 	 */
4372 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
4373 		/*
4374 		 * If the class exists we look it up and zap it:
4375 		 */
4376 		class = look_up_lock_class(lock, j);
4377 		if (!IS_ERR_OR_NULL(class))
4378 			zap_class(class);
4379 	}
4380 	/*
4381 	 * Debug check: in the end all mapped classes should
4382 	 * be gone.
4383 	 */
4384 	locked = graph_lock();
4385 	for (i = 0; i < CLASSHASH_SIZE; i++) {
4386 		head = classhash_table + i;
4387 		hlist_for_each_entry_rcu(class, head, hash_entry) {
4388 			int match = 0;
4389 
4390 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
4391 				match |= class == lock->class_cache[j];
4392 
4393 			if (unlikely(match)) {
4394 				if (debug_locks_off_graph_unlock()) {
4395 					/*
4396 					 * We all just reset everything, how did it match?
4397 					 */
4398 					WARN_ON(1);
4399 				}
4400 				goto out_restore;
4401 			}
4402 		}
4403 	}
4404 	if (locked)
4405 		graph_unlock();
4406 
4407 out_restore:
4408 	raw_local_irq_restore(flags);
4409 }
4410 
4411 void __init lockdep_info(void)
4412 {
4413 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
4414 
4415 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
4416 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
4417 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
4418 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
4419 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
4420 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
4421 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
4422 
4423 	printk(" memory used by lock dependency info: %lu kB\n",
4424 		(sizeof(struct lock_class) * MAX_LOCKDEP_KEYS +
4425 		sizeof(struct list_head) * CLASSHASH_SIZE +
4426 		sizeof(struct lock_list) * MAX_LOCKDEP_ENTRIES +
4427 		sizeof(struct lock_chain) * MAX_LOCKDEP_CHAINS +
4428 		sizeof(struct list_head) * CHAINHASH_SIZE
4429 #ifdef CONFIG_PROVE_LOCKING
4430 		+ sizeof(struct circular_queue)
4431 #endif
4432 		) / 1024
4433 		);
4434 
4435 	printk(" per task-struct memory footprint: %lu bytes\n",
4436 		sizeof(struct held_lock) * MAX_LOCK_DEPTH);
4437 }
4438 
4439 static void
4440 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
4441 		     const void *mem_to, struct held_lock *hlock)
4442 {
4443 	if (!debug_locks_off())
4444 		return;
4445 	if (debug_locks_silent)
4446 		return;
4447 
4448 	pr_warn("\n");
4449 	pr_warn("=========================\n");
4450 	pr_warn("WARNING: held lock freed!\n");
4451 	print_kernel_ident();
4452 	pr_warn("-------------------------\n");
4453 	pr_warn("%s/%d is freeing memory %p-%p, with a lock still held there!\n",
4454 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
4455 	print_lock(hlock);
4456 	lockdep_print_held_locks(curr);
4457 
4458 	pr_warn("\nstack backtrace:\n");
4459 	dump_stack();
4460 }
4461 
4462 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
4463 				const void* lock_from, unsigned long lock_len)
4464 {
4465 	return lock_from + lock_len <= mem_from ||
4466 		mem_from + mem_len <= lock_from;
4467 }
4468 
4469 /*
4470  * Called when kernel memory is freed (or unmapped), or if a lock
4471  * is destroyed or reinitialized - this code checks whether there is
4472  * any held lock in the memory range of <from> to <to>:
4473  */
4474 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
4475 {
4476 	struct task_struct *curr = current;
4477 	struct held_lock *hlock;
4478 	unsigned long flags;
4479 	int i;
4480 
4481 	if (unlikely(!debug_locks))
4482 		return;
4483 
4484 	local_irq_save(flags);
4485 	for (i = 0; i < curr->lockdep_depth; i++) {
4486 		hlock = curr->held_locks + i;
4487 
4488 		if (not_in_range(mem_from, mem_len, hlock->instance,
4489 					sizeof(*hlock->instance)))
4490 			continue;
4491 
4492 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
4493 		break;
4494 	}
4495 	local_irq_restore(flags);
4496 }
4497 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
4498 
4499 static void print_held_locks_bug(void)
4500 {
4501 	if (!debug_locks_off())
4502 		return;
4503 	if (debug_locks_silent)
4504 		return;
4505 
4506 	pr_warn("\n");
4507 	pr_warn("====================================\n");
4508 	pr_warn("WARNING: %s/%d still has locks held!\n",
4509 	       current->comm, task_pid_nr(current));
4510 	print_kernel_ident();
4511 	pr_warn("------------------------------------\n");
4512 	lockdep_print_held_locks(current);
4513 	pr_warn("\nstack backtrace:\n");
4514 	dump_stack();
4515 }
4516 
4517 void debug_check_no_locks_held(void)
4518 {
4519 	if (unlikely(current->lockdep_depth > 0))
4520 		print_held_locks_bug();
4521 }
4522 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
4523 
4524 #ifdef __KERNEL__
4525 void debug_show_all_locks(void)
4526 {
4527 	struct task_struct *g, *p;
4528 	int count = 10;
4529 	int unlock = 1;
4530 
4531 	if (unlikely(!debug_locks)) {
4532 		pr_warn("INFO: lockdep is turned off.\n");
4533 		return;
4534 	}
4535 	pr_warn("\nShowing all locks held in the system:\n");
4536 
4537 	/*
4538 	 * Here we try to get the tasklist_lock as hard as possible,
4539 	 * if not successful after 2 seconds we ignore it (but keep
4540 	 * trying). This is to enable a debug printout even if a
4541 	 * tasklist_lock-holding task deadlocks or crashes.
4542 	 */
4543 retry:
4544 	if (!read_trylock(&tasklist_lock)) {
4545 		if (count == 10)
4546 			pr_warn("hm, tasklist_lock locked, retrying... ");
4547 		if (count) {
4548 			count--;
4549 			pr_cont(" #%d", 10-count);
4550 			mdelay(200);
4551 			goto retry;
4552 		}
4553 		pr_cont(" ignoring it.\n");
4554 		unlock = 0;
4555 	} else {
4556 		if (count != 10)
4557 			pr_cont(" locked it.\n");
4558 	}
4559 
4560 	do_each_thread(g, p) {
4561 		/*
4562 		 * It's not reliable to print a task's held locks
4563 		 * if it's not sleeping (or if it's not the current
4564 		 * task):
4565 		 */
4566 		if (p->state == TASK_RUNNING && p != current)
4567 			continue;
4568 		if (p->lockdep_depth)
4569 			lockdep_print_held_locks(p);
4570 		if (!unlock)
4571 			if (read_trylock(&tasklist_lock))
4572 				unlock = 1;
4573 	} while_each_thread(g, p);
4574 
4575 	pr_warn("\n");
4576 	pr_warn("=============================================\n\n");
4577 
4578 	if (unlock)
4579 		read_unlock(&tasklist_lock);
4580 }
4581 EXPORT_SYMBOL_GPL(debug_show_all_locks);
4582 #endif
4583 
4584 /*
4585  * Careful: only use this function if you are sure that
4586  * the task cannot run in parallel!
4587  */
4588 void debug_show_held_locks(struct task_struct *task)
4589 {
4590 	if (unlikely(!debug_locks)) {
4591 		printk("INFO: lockdep is turned off.\n");
4592 		return;
4593 	}
4594 	lockdep_print_held_locks(task);
4595 }
4596 EXPORT_SYMBOL_GPL(debug_show_held_locks);
4597 
4598 asmlinkage __visible void lockdep_sys_exit(void)
4599 {
4600 	struct task_struct *curr = current;
4601 
4602 	if (unlikely(curr->lockdep_depth)) {
4603 		if (!debug_locks_off())
4604 			return;
4605 		pr_warn("\n");
4606 		pr_warn("================================================\n");
4607 		pr_warn("WARNING: lock held when returning to user space!\n");
4608 		print_kernel_ident();
4609 		pr_warn("------------------------------------------------\n");
4610 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
4611 				curr->comm, curr->pid);
4612 		lockdep_print_held_locks(curr);
4613 	}
4614 
4615 	/*
4616 	 * The lock history for each syscall should be independent. So wipe the
4617 	 * slate clean on return to userspace.
4618 	 */
4619 	lockdep_invariant_state(false);
4620 }
4621 
4622 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
4623 {
4624 	struct task_struct *curr = current;
4625 
4626 	/* Note: the following can be executed concurrently, so be careful. */
4627 	pr_warn("\n");
4628 	pr_warn("=============================\n");
4629 	pr_warn("WARNING: suspicious RCU usage\n");
4630 	print_kernel_ident();
4631 	pr_warn("-----------------------------\n");
4632 	pr_warn("%s:%d %s!\n", file, line, s);
4633 	pr_warn("\nother info that might help us debug this:\n\n");
4634 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
4635 	       !rcu_lockdep_current_cpu_online()
4636 			? "RCU used illegally from offline CPU!\n"
4637 			: !rcu_is_watching()
4638 				? "RCU used illegally from idle CPU!\n"
4639 				: "",
4640 	       rcu_scheduler_active, debug_locks);
4641 
4642 	/*
4643 	 * If a CPU is in the RCU-free window in idle (ie: in the section
4644 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
4645 	 * considers that CPU to be in an "extended quiescent state",
4646 	 * which means that RCU will be completely ignoring that CPU.
4647 	 * Therefore, rcu_read_lock() and friends have absolutely no
4648 	 * effect on a CPU running in that state. In other words, even if
4649 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
4650 	 * delete data structures out from under it.  RCU really has no
4651 	 * choice here: we need to keep an RCU-free window in idle where
4652 	 * the CPU may possibly enter into low power mode. This way we can
4653 	 * notice an extended quiescent state to other CPUs that started a grace
4654 	 * period. Otherwise we would delay any grace period as long as we run
4655 	 * in the idle task.
4656 	 *
4657 	 * So complain bitterly if someone does call rcu_read_lock(),
4658 	 * rcu_read_lock_bh() and so on from extended quiescent states.
4659 	 */
4660 	if (!rcu_is_watching())
4661 		pr_warn("RCU used illegally from extended quiescent state!\n");
4662 
4663 	lockdep_print_held_locks(curr);
4664 	pr_warn("\nstack backtrace:\n");
4665 	dump_stack();
4666 }
4667 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
4668 
4669 #ifdef CONFIG_LOCKDEP_CROSSRELEASE
4670 
4671 /*
4672  * Crossrelease works by recording a lock history for each thread and
4673  * connecting those historic locks that were taken after the
4674  * wait_for_completion() in the complete() context.
4675  *
4676  * Task-A				Task-B
4677  *
4678  *					mutex_lock(&A);
4679  *					mutex_unlock(&A);
4680  *
4681  * wait_for_completion(&C);
4682  *   lock_acquire_crosslock();
4683  *     atomic_inc_return(&cross_gen_id);
4684  *                                |
4685  *				  |	mutex_lock(&B);
4686  *				  |	mutex_unlock(&B);
4687  *                                |
4688  *				  |	complete(&C);
4689  *				  `--	  lock_commit_crosslock();
4690  *
4691  * Which will then add a dependency between B and C.
4692  */
4693 
4694 #define xhlock(i)         (current->xhlocks[(i) % MAX_XHLOCKS_NR])
4695 
4696 /*
4697  * Whenever a crosslock is held, cross_gen_id will be increased.
4698  */
4699 static atomic_t cross_gen_id; /* Can be wrapped */
4700 
4701 /*
4702  * Make an entry of the ring buffer invalid.
4703  */
4704 static inline void invalidate_xhlock(struct hist_lock *xhlock)
4705 {
4706 	/*
4707 	 * Normally, xhlock->hlock.instance must be !NULL.
4708 	 */
4709 	xhlock->hlock.instance = NULL;
4710 }
4711 
4712 /*
4713  * Lock history stacks; we have 2 nested lock history stacks:
4714  *
4715  *   HARD(IRQ)
4716  *   SOFT(IRQ)
4717  *
4718  * The thing is that once we complete a HARD/SOFT IRQ the future task locks
4719  * should not depend on any of the locks observed while running the IRQ.  So
4720  * what we do is rewind the history buffer and erase all our knowledge of that
4721  * temporal event.
4722  */
4723 
4724 void crossrelease_hist_start(enum xhlock_context_t c)
4725 {
4726 	struct task_struct *cur = current;
4727 
4728 	if (!cur->xhlocks)
4729 		return;
4730 
4731 	cur->xhlock_idx_hist[c] = cur->xhlock_idx;
4732 	cur->hist_id_save[c]    = cur->hist_id;
4733 }
4734 
4735 void crossrelease_hist_end(enum xhlock_context_t c)
4736 {
4737 	struct task_struct *cur = current;
4738 
4739 	if (cur->xhlocks) {
4740 		unsigned int idx = cur->xhlock_idx_hist[c];
4741 		struct hist_lock *h = &xhlock(idx);
4742 
4743 		cur->xhlock_idx = idx;
4744 
4745 		/* Check if the ring was overwritten. */
4746 		if (h->hist_id != cur->hist_id_save[c])
4747 			invalidate_xhlock(h);
4748 	}
4749 }
4750 
4751 /*
4752  * lockdep_invariant_state() is used to annotate independence inside a task, to
4753  * make one task look like multiple independent 'tasks'.
4754  *
4755  * Take for instance workqueues; each work is independent of the last. The
4756  * completion of a future work does not depend on the completion of a past work
4757  * (in general). Therefore we must not carry that (lock) dependency across
4758  * works.
4759  *
4760  * This is true for many things; pretty much all kthreads fall into this
4761  * pattern, where they have an invariant state and future completions do not
4762  * depend on past completions. Its just that since they all have the 'same'
4763  * form -- the kthread does the same over and over -- it doesn't typically
4764  * matter.
4765  *
4766  * The same is true for system-calls, once a system call is completed (we've
4767  * returned to userspace) the next system call does not depend on the lock
4768  * history of the previous system call.
4769  *
4770  * They key property for independence, this invariant state, is that it must be
4771  * a point where we hold no locks and have no history. Because if we were to
4772  * hold locks, the restore at _end() would not necessarily recover it's history
4773  * entry. Similarly, independence per-definition means it does not depend on
4774  * prior state.
4775  */
4776 void lockdep_invariant_state(bool force)
4777 {
4778 	/*
4779 	 * We call this at an invariant point, no current state, no history.
4780 	 * Verify the former, enforce the latter.
4781 	 */
4782 	WARN_ON_ONCE(!force && current->lockdep_depth);
4783 	invalidate_xhlock(&xhlock(current->xhlock_idx));
4784 }
4785 
4786 static int cross_lock(struct lockdep_map *lock)
4787 {
4788 	return lock ? lock->cross : 0;
4789 }
4790 
4791 /*
4792  * This is needed to decide the relationship between wrapable variables.
4793  */
4794 static inline int before(unsigned int a, unsigned int b)
4795 {
4796 	return (int)(a - b) < 0;
4797 }
4798 
4799 static inline struct lock_class *xhlock_class(struct hist_lock *xhlock)
4800 {
4801 	return hlock_class(&xhlock->hlock);
4802 }
4803 
4804 static inline struct lock_class *xlock_class(struct cross_lock *xlock)
4805 {
4806 	return hlock_class(&xlock->hlock);
4807 }
4808 
4809 /*
4810  * Should we check a dependency with previous one?
4811  */
4812 static inline int depend_before(struct held_lock *hlock)
4813 {
4814 	return hlock->read != 2 && hlock->check && !hlock->trylock;
4815 }
4816 
4817 /*
4818  * Should we check a dependency with next one?
4819  */
4820 static inline int depend_after(struct held_lock *hlock)
4821 {
4822 	return hlock->read != 2 && hlock->check;
4823 }
4824 
4825 /*
4826  * Check if the xhlock is valid, which would be false if,
4827  *
4828  *    1. Has not used after initializaion yet.
4829  *    2. Got invalidated.
4830  *
4831  * Remind hist_lock is implemented as a ring buffer.
4832  */
4833 static inline int xhlock_valid(struct hist_lock *xhlock)
4834 {
4835 	/*
4836 	 * xhlock->hlock.instance must be !NULL.
4837 	 */
4838 	return !!xhlock->hlock.instance;
4839 }
4840 
4841 /*
4842  * Record a hist_lock entry.
4843  *
4844  * Irq disable is only required.
4845  */
4846 static void add_xhlock(struct held_lock *hlock)
4847 {
4848 	unsigned int idx = ++current->xhlock_idx;
4849 	struct hist_lock *xhlock = &xhlock(idx);
4850 
4851 #ifdef CONFIG_DEBUG_LOCKDEP
4852 	/*
4853 	 * This can be done locklessly because they are all task-local
4854 	 * state, we must however ensure IRQs are disabled.
4855 	 */
4856 	WARN_ON_ONCE(!irqs_disabled());
4857 #endif
4858 
4859 	/* Initialize hist_lock's members */
4860 	xhlock->hlock = *hlock;
4861 	xhlock->hist_id = ++current->hist_id;
4862 
4863 	xhlock->trace.nr_entries = 0;
4864 	xhlock->trace.max_entries = MAX_XHLOCK_TRACE_ENTRIES;
4865 	xhlock->trace.entries = xhlock->trace_entries;
4866 	xhlock->trace.skip = 3;
4867 	save_stack_trace(&xhlock->trace);
4868 }
4869 
4870 static inline int same_context_xhlock(struct hist_lock *xhlock)
4871 {
4872 	return xhlock->hlock.irq_context == task_irq_context(current);
4873 }
4874 
4875 /*
4876  * This should be lockless as far as possible because this would be
4877  * called very frequently.
4878  */
4879 static void check_add_xhlock(struct held_lock *hlock)
4880 {
4881 	/*
4882 	 * Record a hist_lock, only in case that acquisitions ahead
4883 	 * could depend on the held_lock. For example, if the held_lock
4884 	 * is trylock then acquisitions ahead never depends on that.
4885 	 * In that case, we don't need to record it. Just return.
4886 	 */
4887 	if (!current->xhlocks || !depend_before(hlock))
4888 		return;
4889 
4890 	add_xhlock(hlock);
4891 }
4892 
4893 /*
4894  * For crosslock.
4895  */
4896 static int add_xlock(struct held_lock *hlock)
4897 {
4898 	struct cross_lock *xlock;
4899 	unsigned int gen_id;
4900 
4901 	if (!graph_lock())
4902 		return 0;
4903 
4904 	xlock = &((struct lockdep_map_cross *)hlock->instance)->xlock;
4905 
4906 	/*
4907 	 * When acquisitions for a crosslock are overlapped, we use
4908 	 * nr_acquire to perform commit for them, based on cross_gen_id
4909 	 * of the first acquisition, which allows to add additional
4910 	 * dependencies.
4911 	 *
4912 	 * Moreover, when no acquisition of a crosslock is in progress,
4913 	 * we should not perform commit because the lock might not exist
4914 	 * any more, which might cause incorrect memory access. So we
4915 	 * have to track the number of acquisitions of a crosslock.
4916 	 *
4917 	 * depend_after() is necessary to initialize only the first
4918 	 * valid xlock so that the xlock can be used on its commit.
4919 	 */
4920 	if (xlock->nr_acquire++ && depend_after(&xlock->hlock))
4921 		goto unlock;
4922 
4923 	gen_id = (unsigned int)atomic_inc_return(&cross_gen_id);
4924 	xlock->hlock = *hlock;
4925 	xlock->hlock.gen_id = gen_id;
4926 unlock:
4927 	graph_unlock();
4928 	return 1;
4929 }
4930 
4931 /*
4932  * Called for both normal and crosslock acquires. Normal locks will be
4933  * pushed on the hist_lock queue. Cross locks will record state and
4934  * stop regular lock_acquire() to avoid being placed on the held_lock
4935  * stack.
4936  *
4937  * Return: 0 - failure;
4938  *         1 - crosslock, done;
4939  *         2 - normal lock, continue to held_lock[] ops.
4940  */
4941 static int lock_acquire_crosslock(struct held_lock *hlock)
4942 {
4943 	/*
4944 	 *	CONTEXT 1		CONTEXT 2
4945 	 *	---------		---------
4946 	 *	lock A (cross)
4947 	 *	X = atomic_inc_return(&cross_gen_id)
4948 	 *	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4949 	 *				Y = atomic_read_acquire(&cross_gen_id)
4950 	 *				lock B
4951 	 *
4952 	 * atomic_read_acquire() is for ordering between A and B,
4953 	 * IOW, A happens before B, when CONTEXT 2 see Y >= X.
4954 	 *
4955 	 * Pairs with atomic_inc_return() in add_xlock().
4956 	 */
4957 	hlock->gen_id = (unsigned int)atomic_read_acquire(&cross_gen_id);
4958 
4959 	if (cross_lock(hlock->instance))
4960 		return add_xlock(hlock);
4961 
4962 	check_add_xhlock(hlock);
4963 	return 2;
4964 }
4965 
4966 static int copy_trace(struct stack_trace *trace)
4967 {
4968 	unsigned long *buf = stack_trace + nr_stack_trace_entries;
4969 	unsigned int max_nr = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries;
4970 	unsigned int nr = min(max_nr, trace->nr_entries);
4971 
4972 	trace->nr_entries = nr;
4973 	memcpy(buf, trace->entries, nr * sizeof(trace->entries[0]));
4974 	trace->entries = buf;
4975 	nr_stack_trace_entries += nr;
4976 
4977 	if (nr_stack_trace_entries >= MAX_STACK_TRACE_ENTRIES-1) {
4978 		if (!debug_locks_off_graph_unlock())
4979 			return 0;
4980 
4981 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
4982 		dump_stack();
4983 
4984 		return 0;
4985 	}
4986 
4987 	return 1;
4988 }
4989 
4990 static int commit_xhlock(struct cross_lock *xlock, struct hist_lock *xhlock)
4991 {
4992 	unsigned int xid, pid;
4993 	u64 chain_key;
4994 
4995 	xid = xlock_class(xlock) - lock_classes;
4996 	chain_key = iterate_chain_key((u64)0, xid);
4997 	pid = xhlock_class(xhlock) - lock_classes;
4998 	chain_key = iterate_chain_key(chain_key, pid);
4999 
5000 	if (lookup_chain_cache(chain_key))
5001 		return 1;
5002 
5003 	if (!add_chain_cache_classes(xid, pid, xhlock->hlock.irq_context,
5004 				chain_key))
5005 		return 0;
5006 
5007 	if (!check_prev_add(current, &xlock->hlock, &xhlock->hlock, 1,
5008 			    &xhlock->trace, copy_trace))
5009 		return 0;
5010 
5011 	return 1;
5012 }
5013 
5014 static void commit_xhlocks(struct cross_lock *xlock)
5015 {
5016 	unsigned int cur = current->xhlock_idx;
5017 	unsigned int prev_hist_id = xhlock(cur).hist_id;
5018 	unsigned int i;
5019 
5020 	if (!graph_lock())
5021 		return;
5022 
5023 	if (xlock->nr_acquire) {
5024 		for (i = 0; i < MAX_XHLOCKS_NR; i++) {
5025 			struct hist_lock *xhlock = &xhlock(cur - i);
5026 
5027 			if (!xhlock_valid(xhlock))
5028 				break;
5029 
5030 			if (before(xhlock->hlock.gen_id, xlock->hlock.gen_id))
5031 				break;
5032 
5033 			if (!same_context_xhlock(xhlock))
5034 				break;
5035 
5036 			/*
5037 			 * Filter out the cases where the ring buffer was
5038 			 * overwritten and the current entry has a bigger
5039 			 * hist_id than the previous one, which is impossible
5040 			 * otherwise:
5041 			 */
5042 			if (unlikely(before(prev_hist_id, xhlock->hist_id)))
5043 				break;
5044 
5045 			prev_hist_id = xhlock->hist_id;
5046 
5047 			/*
5048 			 * commit_xhlock() returns 0 with graph_lock already
5049 			 * released if fail.
5050 			 */
5051 			if (!commit_xhlock(xlock, xhlock))
5052 				return;
5053 		}
5054 	}
5055 
5056 	graph_unlock();
5057 }
5058 
5059 void lock_commit_crosslock(struct lockdep_map *lock)
5060 {
5061 	struct cross_lock *xlock;
5062 	unsigned long flags;
5063 
5064 	if (unlikely(!debug_locks || current->lockdep_recursion))
5065 		return;
5066 
5067 	if (!current->xhlocks)
5068 		return;
5069 
5070 	/*
5071 	 * Do commit hist_locks with the cross_lock, only in case that
5072 	 * the cross_lock could depend on acquisitions after that.
5073 	 *
5074 	 * For example, if the cross_lock does not have the 'check' flag
5075 	 * then we don't need to check dependencies and commit for that.
5076 	 * Just skip it. In that case, of course, the cross_lock does
5077 	 * not depend on acquisitions ahead, either.
5078 	 *
5079 	 * WARNING: Don't do that in add_xlock() in advance. When an
5080 	 * acquisition context is different from the commit context,
5081 	 * invalid(skipped) cross_lock might be accessed.
5082 	 */
5083 	if (!depend_after(&((struct lockdep_map_cross *)lock)->xlock.hlock))
5084 		return;
5085 
5086 	raw_local_irq_save(flags);
5087 	check_flags(flags);
5088 	current->lockdep_recursion = 1;
5089 	xlock = &((struct lockdep_map_cross *)lock)->xlock;
5090 	commit_xhlocks(xlock);
5091 	current->lockdep_recursion = 0;
5092 	raw_local_irq_restore(flags);
5093 }
5094 EXPORT_SYMBOL_GPL(lock_commit_crosslock);
5095 
5096 /*
5097  * Return: 0 - failure;
5098  *         1 - crosslock, done;
5099  *         2 - normal lock, continue to held_lock[] ops.
5100  */
5101 static int lock_release_crosslock(struct lockdep_map *lock)
5102 {
5103 	if (cross_lock(lock)) {
5104 		if (!graph_lock())
5105 			return 0;
5106 		((struct lockdep_map_cross *)lock)->xlock.nr_acquire--;
5107 		graph_unlock();
5108 		return 1;
5109 	}
5110 	return 2;
5111 }
5112 
5113 static void cross_init(struct lockdep_map *lock, int cross)
5114 {
5115 	if (cross)
5116 		((struct lockdep_map_cross *)lock)->xlock.nr_acquire = 0;
5117 
5118 	lock->cross = cross;
5119 
5120 	/*
5121 	 * Crossrelease assumes that the ring buffer size of xhlocks
5122 	 * is aligned with power of 2. So force it on build.
5123 	 */
5124 	BUILD_BUG_ON(MAX_XHLOCKS_NR & (MAX_XHLOCKS_NR - 1));
5125 }
5126 
5127 void lockdep_init_task(struct task_struct *task)
5128 {
5129 	int i;
5130 
5131 	task->xhlock_idx = UINT_MAX;
5132 	task->hist_id = 0;
5133 
5134 	for (i = 0; i < XHLOCK_CTX_NR; i++) {
5135 		task->xhlock_idx_hist[i] = UINT_MAX;
5136 		task->hist_id_save[i] = 0;
5137 	}
5138 
5139 	task->xhlocks = kzalloc(sizeof(struct hist_lock) * MAX_XHLOCKS_NR,
5140 				GFP_KERNEL);
5141 }
5142 
5143 void lockdep_free_task(struct task_struct *task)
5144 {
5145 	if (task->xhlocks) {
5146 		void *tmp = task->xhlocks;
5147 		/* Diable crossrelease for current */
5148 		task->xhlocks = NULL;
5149 		kfree(tmp);
5150 	}
5151 }
5152 #endif
5153