xref: /openbmc/linux/kernel/locking/lockdep.c (revision 68d8904b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 
58 #include <asm/sections.h>
59 
60 #include "lockdep_internals.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 /*
80  * lockdep_lock: protects the lockdep graph, the hashes and the
81  *               class/list/hash allocators.
82  *
83  * This is one of the rare exceptions where it's justified
84  * to use a raw spinlock - we really dont want the spinlock
85  * code to recurse back into the lockdep code...
86  */
87 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
88 static struct task_struct *__owner;
89 
90 static inline void lockdep_lock(void)
91 {
92 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
93 
94 	arch_spin_lock(&__lock);
95 	__owner = current;
96 	current->lockdep_recursion++;
97 }
98 
99 static inline void lockdep_unlock(void)
100 {
101 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
102 		return;
103 
104 	current->lockdep_recursion--;
105 	__owner = NULL;
106 	arch_spin_unlock(&__lock);
107 }
108 
109 static inline bool lockdep_assert_locked(void)
110 {
111 	return DEBUG_LOCKS_WARN_ON(__owner != current);
112 }
113 
114 static struct task_struct *lockdep_selftest_task_struct;
115 
116 
117 static int graph_lock(void)
118 {
119 	lockdep_lock();
120 	/*
121 	 * Make sure that if another CPU detected a bug while
122 	 * walking the graph we dont change it (while the other
123 	 * CPU is busy printing out stuff with the graph lock
124 	 * dropped already)
125 	 */
126 	if (!debug_locks) {
127 		lockdep_unlock();
128 		return 0;
129 	}
130 	return 1;
131 }
132 
133 static inline void graph_unlock(void)
134 {
135 	lockdep_unlock();
136 }
137 
138 /*
139  * Turn lock debugging off and return with 0 if it was off already,
140  * and also release the graph lock:
141  */
142 static inline int debug_locks_off_graph_unlock(void)
143 {
144 	int ret = debug_locks_off();
145 
146 	lockdep_unlock();
147 
148 	return ret;
149 }
150 
151 unsigned long nr_list_entries;
152 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
153 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
154 
155 /*
156  * All data structures here are protected by the global debug_lock.
157  *
158  * nr_lock_classes is the number of elements of lock_classes[] that is
159  * in use.
160  */
161 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
162 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
163 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
164 unsigned long nr_lock_classes;
165 unsigned long nr_zapped_classes;
166 #ifndef CONFIG_DEBUG_LOCKDEP
167 static
168 #endif
169 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
170 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
171 
172 static inline struct lock_class *hlock_class(struct held_lock *hlock)
173 {
174 	unsigned int class_idx = hlock->class_idx;
175 
176 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
177 	barrier();
178 
179 	if (!test_bit(class_idx, lock_classes_in_use)) {
180 		/*
181 		 * Someone passed in garbage, we give up.
182 		 */
183 		DEBUG_LOCKS_WARN_ON(1);
184 		return NULL;
185 	}
186 
187 	/*
188 	 * At this point, if the passed hlock->class_idx is still garbage,
189 	 * we just have to live with it
190 	 */
191 	return lock_classes + class_idx;
192 }
193 
194 #ifdef CONFIG_LOCK_STAT
195 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
196 
197 static inline u64 lockstat_clock(void)
198 {
199 	return local_clock();
200 }
201 
202 static int lock_point(unsigned long points[], unsigned long ip)
203 {
204 	int i;
205 
206 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
207 		if (points[i] == 0) {
208 			points[i] = ip;
209 			break;
210 		}
211 		if (points[i] == ip)
212 			break;
213 	}
214 
215 	return i;
216 }
217 
218 static void lock_time_inc(struct lock_time *lt, u64 time)
219 {
220 	if (time > lt->max)
221 		lt->max = time;
222 
223 	if (time < lt->min || !lt->nr)
224 		lt->min = time;
225 
226 	lt->total += time;
227 	lt->nr++;
228 }
229 
230 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
231 {
232 	if (!src->nr)
233 		return;
234 
235 	if (src->max > dst->max)
236 		dst->max = src->max;
237 
238 	if (src->min < dst->min || !dst->nr)
239 		dst->min = src->min;
240 
241 	dst->total += src->total;
242 	dst->nr += src->nr;
243 }
244 
245 struct lock_class_stats lock_stats(struct lock_class *class)
246 {
247 	struct lock_class_stats stats;
248 	int cpu, i;
249 
250 	memset(&stats, 0, sizeof(struct lock_class_stats));
251 	for_each_possible_cpu(cpu) {
252 		struct lock_class_stats *pcs =
253 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
254 
255 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
256 			stats.contention_point[i] += pcs->contention_point[i];
257 
258 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
259 			stats.contending_point[i] += pcs->contending_point[i];
260 
261 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
262 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
263 
264 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
265 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
266 
267 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
268 			stats.bounces[i] += pcs->bounces[i];
269 	}
270 
271 	return stats;
272 }
273 
274 void clear_lock_stats(struct lock_class *class)
275 {
276 	int cpu;
277 
278 	for_each_possible_cpu(cpu) {
279 		struct lock_class_stats *cpu_stats =
280 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
281 
282 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
283 	}
284 	memset(class->contention_point, 0, sizeof(class->contention_point));
285 	memset(class->contending_point, 0, sizeof(class->contending_point));
286 }
287 
288 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
289 {
290 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
291 }
292 
293 static void lock_release_holdtime(struct held_lock *hlock)
294 {
295 	struct lock_class_stats *stats;
296 	u64 holdtime;
297 
298 	if (!lock_stat)
299 		return;
300 
301 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
302 
303 	stats = get_lock_stats(hlock_class(hlock));
304 	if (hlock->read)
305 		lock_time_inc(&stats->read_holdtime, holdtime);
306 	else
307 		lock_time_inc(&stats->write_holdtime, holdtime);
308 }
309 #else
310 static inline void lock_release_holdtime(struct held_lock *hlock)
311 {
312 }
313 #endif
314 
315 /*
316  * We keep a global list of all lock classes. The list is only accessed with
317  * the lockdep spinlock lock held. free_lock_classes is a list with free
318  * elements. These elements are linked together by the lock_entry member in
319  * struct lock_class.
320  */
321 LIST_HEAD(all_lock_classes);
322 static LIST_HEAD(free_lock_classes);
323 
324 /**
325  * struct pending_free - information about data structures about to be freed
326  * @zapped: Head of a list with struct lock_class elements.
327  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
328  *	are about to be freed.
329  */
330 struct pending_free {
331 	struct list_head zapped;
332 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
333 };
334 
335 /**
336  * struct delayed_free - data structures used for delayed freeing
337  *
338  * A data structure for delayed freeing of data structures that may be
339  * accessed by RCU readers at the time these were freed.
340  *
341  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
342  * @index:     Index of @pf to which freed data structures are added.
343  * @scheduled: Whether or not an RCU callback has been scheduled.
344  * @pf:        Array with information about data structures about to be freed.
345  */
346 static struct delayed_free {
347 	struct rcu_head		rcu_head;
348 	int			index;
349 	int			scheduled;
350 	struct pending_free	pf[2];
351 } delayed_free;
352 
353 /*
354  * The lockdep classes are in a hash-table as well, for fast lookup:
355  */
356 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
357 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
358 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
359 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
360 
361 static struct hlist_head classhash_table[CLASSHASH_SIZE];
362 
363 /*
364  * We put the lock dependency chains into a hash-table as well, to cache
365  * their existence:
366  */
367 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
368 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
369 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
370 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
371 
372 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
373 
374 /*
375  * The hash key of the lock dependency chains is a hash itself too:
376  * it's a hash of all locks taken up to that lock, including that lock.
377  * It's a 64-bit hash, because it's important for the keys to be
378  * unique.
379  */
380 static inline u64 iterate_chain_key(u64 key, u32 idx)
381 {
382 	u32 k0 = key, k1 = key >> 32;
383 
384 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
385 
386 	return k0 | (u64)k1 << 32;
387 }
388 
389 void lockdep_init_task(struct task_struct *task)
390 {
391 	task->lockdep_depth = 0; /* no locks held yet */
392 	task->curr_chain_key = INITIAL_CHAIN_KEY;
393 	task->lockdep_recursion = 0;
394 }
395 
396 static __always_inline void lockdep_recursion_finish(void)
397 {
398 	if (WARN_ON_ONCE((--current->lockdep_recursion) & LOCKDEP_RECURSION_MASK))
399 		current->lockdep_recursion = 0;
400 }
401 
402 void lockdep_set_selftest_task(struct task_struct *task)
403 {
404 	lockdep_selftest_task_struct = task;
405 }
406 
407 /*
408  * Debugging switches:
409  */
410 
411 #define VERBOSE			0
412 #define VERY_VERBOSE		0
413 
414 #if VERBOSE
415 # define HARDIRQ_VERBOSE	1
416 # define SOFTIRQ_VERBOSE	1
417 #else
418 # define HARDIRQ_VERBOSE	0
419 # define SOFTIRQ_VERBOSE	0
420 #endif
421 
422 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
423 /*
424  * Quick filtering for interesting events:
425  */
426 static int class_filter(struct lock_class *class)
427 {
428 #if 0
429 	/* Example */
430 	if (class->name_version == 1 &&
431 			!strcmp(class->name, "lockname"))
432 		return 1;
433 	if (class->name_version == 1 &&
434 			!strcmp(class->name, "&struct->lockfield"))
435 		return 1;
436 #endif
437 	/* Filter everything else. 1 would be to allow everything else */
438 	return 0;
439 }
440 #endif
441 
442 static int verbose(struct lock_class *class)
443 {
444 #if VERBOSE
445 	return class_filter(class);
446 #endif
447 	return 0;
448 }
449 
450 static void print_lockdep_off(const char *bug_msg)
451 {
452 	printk(KERN_DEBUG "%s\n", bug_msg);
453 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
454 #ifdef CONFIG_LOCK_STAT
455 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
456 #endif
457 }
458 
459 unsigned long nr_stack_trace_entries;
460 
461 #ifdef CONFIG_PROVE_LOCKING
462 /**
463  * struct lock_trace - single stack backtrace
464  * @hash_entry:	Entry in a stack_trace_hash[] list.
465  * @hash:	jhash() of @entries.
466  * @nr_entries:	Number of entries in @entries.
467  * @entries:	Actual stack backtrace.
468  */
469 struct lock_trace {
470 	struct hlist_node	hash_entry;
471 	u32			hash;
472 	u32			nr_entries;
473 	unsigned long		entries[] __aligned(sizeof(unsigned long));
474 };
475 #define LOCK_TRACE_SIZE_IN_LONGS				\
476 	(sizeof(struct lock_trace) / sizeof(unsigned long))
477 /*
478  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
479  */
480 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
481 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
482 
483 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
484 {
485 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
486 		memcmp(t1->entries, t2->entries,
487 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
488 }
489 
490 static struct lock_trace *save_trace(void)
491 {
492 	struct lock_trace *trace, *t2;
493 	struct hlist_head *hash_head;
494 	u32 hash;
495 	int max_entries;
496 
497 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
498 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
499 
500 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
501 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
502 		LOCK_TRACE_SIZE_IN_LONGS;
503 
504 	if (max_entries <= 0) {
505 		if (!debug_locks_off_graph_unlock())
506 			return NULL;
507 
508 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
509 		dump_stack();
510 
511 		return NULL;
512 	}
513 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
514 
515 	hash = jhash(trace->entries, trace->nr_entries *
516 		     sizeof(trace->entries[0]), 0);
517 	trace->hash = hash;
518 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
519 	hlist_for_each_entry(t2, hash_head, hash_entry) {
520 		if (traces_identical(trace, t2))
521 			return t2;
522 	}
523 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
524 	hlist_add_head(&trace->hash_entry, hash_head);
525 
526 	return trace;
527 }
528 
529 /* Return the number of stack traces in the stack_trace[] array. */
530 u64 lockdep_stack_trace_count(void)
531 {
532 	struct lock_trace *trace;
533 	u64 c = 0;
534 	int i;
535 
536 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
537 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
538 			c++;
539 		}
540 	}
541 
542 	return c;
543 }
544 
545 /* Return the number of stack hash chains that have at least one stack trace. */
546 u64 lockdep_stack_hash_count(void)
547 {
548 	u64 c = 0;
549 	int i;
550 
551 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
552 		if (!hlist_empty(&stack_trace_hash[i]))
553 			c++;
554 
555 	return c;
556 }
557 #endif
558 
559 unsigned int nr_hardirq_chains;
560 unsigned int nr_softirq_chains;
561 unsigned int nr_process_chains;
562 unsigned int max_lockdep_depth;
563 
564 #ifdef CONFIG_DEBUG_LOCKDEP
565 /*
566  * Various lockdep statistics:
567  */
568 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
569 #endif
570 
571 #ifdef CONFIG_PROVE_LOCKING
572 /*
573  * Locking printouts:
574  */
575 
576 #define __USAGE(__STATE)						\
577 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
578 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
579 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
580 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
581 
582 static const char *usage_str[] =
583 {
584 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
585 #include "lockdep_states.h"
586 #undef LOCKDEP_STATE
587 	[LOCK_USED] = "INITIAL USE",
588 	[LOCK_USAGE_STATES] = "IN-NMI",
589 };
590 #endif
591 
592 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
593 {
594 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
595 }
596 
597 static inline unsigned long lock_flag(enum lock_usage_bit bit)
598 {
599 	return 1UL << bit;
600 }
601 
602 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
603 {
604 	/*
605 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
606 	 * irq context), which is the safest usage category.
607 	 */
608 	char c = '.';
609 
610 	/*
611 	 * The order of the following usage checks matters, which will
612 	 * result in the outcome character as follows:
613 	 *
614 	 * - '+': irq is enabled and not in irq context
615 	 * - '-': in irq context and irq is disabled
616 	 * - '?': in irq context and irq is enabled
617 	 */
618 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
619 		c = '+';
620 		if (class->usage_mask & lock_flag(bit))
621 			c = '?';
622 	} else if (class->usage_mask & lock_flag(bit))
623 		c = '-';
624 
625 	return c;
626 }
627 
628 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
629 {
630 	int i = 0;
631 
632 #define LOCKDEP_STATE(__STATE) 						\
633 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
634 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
635 #include "lockdep_states.h"
636 #undef LOCKDEP_STATE
637 
638 	usage[i] = '\0';
639 }
640 
641 static void __print_lock_name(struct lock_class *class)
642 {
643 	char str[KSYM_NAME_LEN];
644 	const char *name;
645 
646 	name = class->name;
647 	if (!name) {
648 		name = __get_key_name(class->key, str);
649 		printk(KERN_CONT "%s", name);
650 	} else {
651 		printk(KERN_CONT "%s", name);
652 		if (class->name_version > 1)
653 			printk(KERN_CONT "#%d", class->name_version);
654 		if (class->subclass)
655 			printk(KERN_CONT "/%d", class->subclass);
656 	}
657 }
658 
659 static void print_lock_name(struct lock_class *class)
660 {
661 	char usage[LOCK_USAGE_CHARS];
662 
663 	get_usage_chars(class, usage);
664 
665 	printk(KERN_CONT " (");
666 	__print_lock_name(class);
667 	printk(KERN_CONT "){%s}-{%hd:%hd}", usage,
668 			class->wait_type_outer ?: class->wait_type_inner,
669 			class->wait_type_inner);
670 }
671 
672 static void print_lockdep_cache(struct lockdep_map *lock)
673 {
674 	const char *name;
675 	char str[KSYM_NAME_LEN];
676 
677 	name = lock->name;
678 	if (!name)
679 		name = __get_key_name(lock->key->subkeys, str);
680 
681 	printk(KERN_CONT "%s", name);
682 }
683 
684 static void print_lock(struct held_lock *hlock)
685 {
686 	/*
687 	 * We can be called locklessly through debug_show_all_locks() so be
688 	 * extra careful, the hlock might have been released and cleared.
689 	 *
690 	 * If this indeed happens, lets pretend it does not hurt to continue
691 	 * to print the lock unless the hlock class_idx does not point to a
692 	 * registered class. The rationale here is: since we don't attempt
693 	 * to distinguish whether we are in this situation, if it just
694 	 * happened we can't count on class_idx to tell either.
695 	 */
696 	struct lock_class *lock = hlock_class(hlock);
697 
698 	if (!lock) {
699 		printk(KERN_CONT "<RELEASED>\n");
700 		return;
701 	}
702 
703 	printk(KERN_CONT "%px", hlock->instance);
704 	print_lock_name(lock);
705 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
706 }
707 
708 static void lockdep_print_held_locks(struct task_struct *p)
709 {
710 	int i, depth = READ_ONCE(p->lockdep_depth);
711 
712 	if (!depth)
713 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
714 	else
715 		printk("%d lock%s held by %s/%d:\n", depth,
716 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
717 	/*
718 	 * It's not reliable to print a task's held locks if it's not sleeping
719 	 * and it's not the current task.
720 	 */
721 	if (p->state == TASK_RUNNING && p != current)
722 		return;
723 	for (i = 0; i < depth; i++) {
724 		printk(" #%d: ", i);
725 		print_lock(p->held_locks + i);
726 	}
727 }
728 
729 static void print_kernel_ident(void)
730 {
731 	printk("%s %.*s %s\n", init_utsname()->release,
732 		(int)strcspn(init_utsname()->version, " "),
733 		init_utsname()->version,
734 		print_tainted());
735 }
736 
737 static int very_verbose(struct lock_class *class)
738 {
739 #if VERY_VERBOSE
740 	return class_filter(class);
741 #endif
742 	return 0;
743 }
744 
745 /*
746  * Is this the address of a static object:
747  */
748 #ifdef __KERNEL__
749 static int static_obj(const void *obj)
750 {
751 	unsigned long start = (unsigned long) &_stext,
752 		      end   = (unsigned long) &_end,
753 		      addr  = (unsigned long) obj;
754 
755 	if (arch_is_kernel_initmem_freed(addr))
756 		return 0;
757 
758 	/*
759 	 * static variable?
760 	 */
761 	if ((addr >= start) && (addr < end))
762 		return 1;
763 
764 	if (arch_is_kernel_data(addr))
765 		return 1;
766 
767 	/*
768 	 * in-kernel percpu var?
769 	 */
770 	if (is_kernel_percpu_address(addr))
771 		return 1;
772 
773 	/*
774 	 * module static or percpu var?
775 	 */
776 	return is_module_address(addr) || is_module_percpu_address(addr);
777 }
778 #endif
779 
780 /*
781  * To make lock name printouts unique, we calculate a unique
782  * class->name_version generation counter. The caller must hold the graph
783  * lock.
784  */
785 static int count_matching_names(struct lock_class *new_class)
786 {
787 	struct lock_class *class;
788 	int count = 0;
789 
790 	if (!new_class->name)
791 		return 0;
792 
793 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
794 		if (new_class->key - new_class->subclass == class->key)
795 			return class->name_version;
796 		if (class->name && !strcmp(class->name, new_class->name))
797 			count = max(count, class->name_version);
798 	}
799 
800 	return count + 1;
801 }
802 
803 /* used from NMI context -- must be lockless */
804 static __always_inline struct lock_class *
805 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
806 {
807 	struct lockdep_subclass_key *key;
808 	struct hlist_head *hash_head;
809 	struct lock_class *class;
810 
811 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
812 		debug_locks_off();
813 		printk(KERN_ERR
814 			"BUG: looking up invalid subclass: %u\n", subclass);
815 		printk(KERN_ERR
816 			"turning off the locking correctness validator.\n");
817 		dump_stack();
818 		return NULL;
819 	}
820 
821 	/*
822 	 * If it is not initialised then it has never been locked,
823 	 * so it won't be present in the hash table.
824 	 */
825 	if (unlikely(!lock->key))
826 		return NULL;
827 
828 	/*
829 	 * NOTE: the class-key must be unique. For dynamic locks, a static
830 	 * lock_class_key variable is passed in through the mutex_init()
831 	 * (or spin_lock_init()) call - which acts as the key. For static
832 	 * locks we use the lock object itself as the key.
833 	 */
834 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
835 			sizeof(struct lockdep_map));
836 
837 	key = lock->key->subkeys + subclass;
838 
839 	hash_head = classhashentry(key);
840 
841 	/*
842 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
843 	 */
844 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
845 		return NULL;
846 
847 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
848 		if (class->key == key) {
849 			/*
850 			 * Huh! same key, different name? Did someone trample
851 			 * on some memory? We're most confused.
852 			 */
853 			WARN_ON_ONCE(class->name != lock->name &&
854 				     lock->key != &__lockdep_no_validate__);
855 			return class;
856 		}
857 	}
858 
859 	return NULL;
860 }
861 
862 /*
863  * Static locks do not have their class-keys yet - for them the key is
864  * the lock object itself. If the lock is in the per cpu area, the
865  * canonical address of the lock (per cpu offset removed) is used.
866  */
867 static bool assign_lock_key(struct lockdep_map *lock)
868 {
869 	unsigned long can_addr, addr = (unsigned long)lock;
870 
871 #ifdef __KERNEL__
872 	/*
873 	 * lockdep_free_key_range() assumes that struct lock_class_key
874 	 * objects do not overlap. Since we use the address of lock
875 	 * objects as class key for static objects, check whether the
876 	 * size of lock_class_key objects does not exceed the size of
877 	 * the smallest lock object.
878 	 */
879 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
880 #endif
881 
882 	if (__is_kernel_percpu_address(addr, &can_addr))
883 		lock->key = (void *)can_addr;
884 	else if (__is_module_percpu_address(addr, &can_addr))
885 		lock->key = (void *)can_addr;
886 	else if (static_obj(lock))
887 		lock->key = (void *)lock;
888 	else {
889 		/* Debug-check: all keys must be persistent! */
890 		debug_locks_off();
891 		pr_err("INFO: trying to register non-static key.\n");
892 		pr_err("the code is fine but needs lockdep annotation.\n");
893 		pr_err("turning off the locking correctness validator.\n");
894 		dump_stack();
895 		return false;
896 	}
897 
898 	return true;
899 }
900 
901 #ifdef CONFIG_DEBUG_LOCKDEP
902 
903 /* Check whether element @e occurs in list @h */
904 static bool in_list(struct list_head *e, struct list_head *h)
905 {
906 	struct list_head *f;
907 
908 	list_for_each(f, h) {
909 		if (e == f)
910 			return true;
911 	}
912 
913 	return false;
914 }
915 
916 /*
917  * Check whether entry @e occurs in any of the locks_after or locks_before
918  * lists.
919  */
920 static bool in_any_class_list(struct list_head *e)
921 {
922 	struct lock_class *class;
923 	int i;
924 
925 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
926 		class = &lock_classes[i];
927 		if (in_list(e, &class->locks_after) ||
928 		    in_list(e, &class->locks_before))
929 			return true;
930 	}
931 	return false;
932 }
933 
934 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
935 {
936 	struct lock_list *e;
937 
938 	list_for_each_entry(e, h, entry) {
939 		if (e->links_to != c) {
940 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
941 			       c->name ? : "(?)",
942 			       (unsigned long)(e - list_entries),
943 			       e->links_to && e->links_to->name ?
944 			       e->links_to->name : "(?)",
945 			       e->class && e->class->name ? e->class->name :
946 			       "(?)");
947 			return false;
948 		}
949 	}
950 	return true;
951 }
952 
953 #ifdef CONFIG_PROVE_LOCKING
954 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
955 #endif
956 
957 static bool check_lock_chain_key(struct lock_chain *chain)
958 {
959 #ifdef CONFIG_PROVE_LOCKING
960 	u64 chain_key = INITIAL_CHAIN_KEY;
961 	int i;
962 
963 	for (i = chain->base; i < chain->base + chain->depth; i++)
964 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
965 	/*
966 	 * The 'unsigned long long' casts avoid that a compiler warning
967 	 * is reported when building tools/lib/lockdep.
968 	 */
969 	if (chain->chain_key != chain_key) {
970 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
971 		       (unsigned long long)(chain - lock_chains),
972 		       (unsigned long long)chain->chain_key,
973 		       (unsigned long long)chain_key);
974 		return false;
975 	}
976 #endif
977 	return true;
978 }
979 
980 static bool in_any_zapped_class_list(struct lock_class *class)
981 {
982 	struct pending_free *pf;
983 	int i;
984 
985 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
986 		if (in_list(&class->lock_entry, &pf->zapped))
987 			return true;
988 	}
989 
990 	return false;
991 }
992 
993 static bool __check_data_structures(void)
994 {
995 	struct lock_class *class;
996 	struct lock_chain *chain;
997 	struct hlist_head *head;
998 	struct lock_list *e;
999 	int i;
1000 
1001 	/* Check whether all classes occur in a lock list. */
1002 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1003 		class = &lock_classes[i];
1004 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1005 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1006 		    !in_any_zapped_class_list(class)) {
1007 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1008 			       class, class->name ? : "(?)");
1009 			return false;
1010 		}
1011 	}
1012 
1013 	/* Check whether all classes have valid lock lists. */
1014 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1015 		class = &lock_classes[i];
1016 		if (!class_lock_list_valid(class, &class->locks_before))
1017 			return false;
1018 		if (!class_lock_list_valid(class, &class->locks_after))
1019 			return false;
1020 	}
1021 
1022 	/* Check the chain_key of all lock chains. */
1023 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1024 		head = chainhash_table + i;
1025 		hlist_for_each_entry_rcu(chain, head, entry) {
1026 			if (!check_lock_chain_key(chain))
1027 				return false;
1028 		}
1029 	}
1030 
1031 	/*
1032 	 * Check whether all list entries that are in use occur in a class
1033 	 * lock list.
1034 	 */
1035 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1036 		e = list_entries + i;
1037 		if (!in_any_class_list(&e->entry)) {
1038 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1039 			       (unsigned int)(e - list_entries),
1040 			       e->class->name ? : "(?)",
1041 			       e->links_to->name ? : "(?)");
1042 			return false;
1043 		}
1044 	}
1045 
1046 	/*
1047 	 * Check whether all list entries that are not in use do not occur in
1048 	 * a class lock list.
1049 	 */
1050 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1051 		e = list_entries + i;
1052 		if (in_any_class_list(&e->entry)) {
1053 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1054 			       (unsigned int)(e - list_entries),
1055 			       e->class && e->class->name ? e->class->name :
1056 			       "(?)",
1057 			       e->links_to && e->links_to->name ?
1058 			       e->links_to->name : "(?)");
1059 			return false;
1060 		}
1061 	}
1062 
1063 	return true;
1064 }
1065 
1066 int check_consistency = 0;
1067 module_param(check_consistency, int, 0644);
1068 
1069 static void check_data_structures(void)
1070 {
1071 	static bool once = false;
1072 
1073 	if (check_consistency && !once) {
1074 		if (!__check_data_structures()) {
1075 			once = true;
1076 			WARN_ON(once);
1077 		}
1078 	}
1079 }
1080 
1081 #else /* CONFIG_DEBUG_LOCKDEP */
1082 
1083 static inline void check_data_structures(void) { }
1084 
1085 #endif /* CONFIG_DEBUG_LOCKDEP */
1086 
1087 static void init_chain_block_buckets(void);
1088 
1089 /*
1090  * Initialize the lock_classes[] array elements, the free_lock_classes list
1091  * and also the delayed_free structure.
1092  */
1093 static void init_data_structures_once(void)
1094 {
1095 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1096 	int i;
1097 
1098 	if (likely(rcu_head_initialized))
1099 		return;
1100 
1101 	if (system_state >= SYSTEM_SCHEDULING) {
1102 		init_rcu_head(&delayed_free.rcu_head);
1103 		rcu_head_initialized = true;
1104 	}
1105 
1106 	if (ds_initialized)
1107 		return;
1108 
1109 	ds_initialized = true;
1110 
1111 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1112 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1113 
1114 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1115 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1116 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1117 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1118 	}
1119 	init_chain_block_buckets();
1120 }
1121 
1122 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1123 {
1124 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1125 
1126 	return lock_keys_hash + hash;
1127 }
1128 
1129 /* Register a dynamically allocated key. */
1130 void lockdep_register_key(struct lock_class_key *key)
1131 {
1132 	struct hlist_head *hash_head;
1133 	struct lock_class_key *k;
1134 	unsigned long flags;
1135 
1136 	if (WARN_ON_ONCE(static_obj(key)))
1137 		return;
1138 	hash_head = keyhashentry(key);
1139 
1140 	raw_local_irq_save(flags);
1141 	if (!graph_lock())
1142 		goto restore_irqs;
1143 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1144 		if (WARN_ON_ONCE(k == key))
1145 			goto out_unlock;
1146 	}
1147 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1148 out_unlock:
1149 	graph_unlock();
1150 restore_irqs:
1151 	raw_local_irq_restore(flags);
1152 }
1153 EXPORT_SYMBOL_GPL(lockdep_register_key);
1154 
1155 /* Check whether a key has been registered as a dynamic key. */
1156 static bool is_dynamic_key(const struct lock_class_key *key)
1157 {
1158 	struct hlist_head *hash_head;
1159 	struct lock_class_key *k;
1160 	bool found = false;
1161 
1162 	if (WARN_ON_ONCE(static_obj(key)))
1163 		return false;
1164 
1165 	/*
1166 	 * If lock debugging is disabled lock_keys_hash[] may contain
1167 	 * pointers to memory that has already been freed. Avoid triggering
1168 	 * a use-after-free in that case by returning early.
1169 	 */
1170 	if (!debug_locks)
1171 		return true;
1172 
1173 	hash_head = keyhashentry(key);
1174 
1175 	rcu_read_lock();
1176 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1177 		if (k == key) {
1178 			found = true;
1179 			break;
1180 		}
1181 	}
1182 	rcu_read_unlock();
1183 
1184 	return found;
1185 }
1186 
1187 /*
1188  * Register a lock's class in the hash-table, if the class is not present
1189  * yet. Otherwise we look it up. We cache the result in the lock object
1190  * itself, so actual lookup of the hash should be once per lock object.
1191  */
1192 static struct lock_class *
1193 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1194 {
1195 	struct lockdep_subclass_key *key;
1196 	struct hlist_head *hash_head;
1197 	struct lock_class *class;
1198 
1199 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1200 
1201 	class = look_up_lock_class(lock, subclass);
1202 	if (likely(class))
1203 		goto out_set_class_cache;
1204 
1205 	if (!lock->key) {
1206 		if (!assign_lock_key(lock))
1207 			return NULL;
1208 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1209 		return NULL;
1210 	}
1211 
1212 	key = lock->key->subkeys + subclass;
1213 	hash_head = classhashentry(key);
1214 
1215 	if (!graph_lock()) {
1216 		return NULL;
1217 	}
1218 	/*
1219 	 * We have to do the hash-walk again, to avoid races
1220 	 * with another CPU:
1221 	 */
1222 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1223 		if (class->key == key)
1224 			goto out_unlock_set;
1225 	}
1226 
1227 	init_data_structures_once();
1228 
1229 	/* Allocate a new lock class and add it to the hash. */
1230 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1231 					 lock_entry);
1232 	if (!class) {
1233 		if (!debug_locks_off_graph_unlock()) {
1234 			return NULL;
1235 		}
1236 
1237 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1238 		dump_stack();
1239 		return NULL;
1240 	}
1241 	nr_lock_classes++;
1242 	__set_bit(class - lock_classes, lock_classes_in_use);
1243 	debug_atomic_inc(nr_unused_locks);
1244 	class->key = key;
1245 	class->name = lock->name;
1246 	class->subclass = subclass;
1247 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1248 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1249 	class->name_version = count_matching_names(class);
1250 	class->wait_type_inner = lock->wait_type_inner;
1251 	class->wait_type_outer = lock->wait_type_outer;
1252 	/*
1253 	 * We use RCU's safe list-add method to make
1254 	 * parallel walking of the hash-list safe:
1255 	 */
1256 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1257 	/*
1258 	 * Remove the class from the free list and add it to the global list
1259 	 * of classes.
1260 	 */
1261 	list_move_tail(&class->lock_entry, &all_lock_classes);
1262 
1263 	if (verbose(class)) {
1264 		graph_unlock();
1265 
1266 		printk("\nnew class %px: %s", class->key, class->name);
1267 		if (class->name_version > 1)
1268 			printk(KERN_CONT "#%d", class->name_version);
1269 		printk(KERN_CONT "\n");
1270 		dump_stack();
1271 
1272 		if (!graph_lock()) {
1273 			return NULL;
1274 		}
1275 	}
1276 out_unlock_set:
1277 	graph_unlock();
1278 
1279 out_set_class_cache:
1280 	if (!subclass || force)
1281 		lock->class_cache[0] = class;
1282 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1283 		lock->class_cache[subclass] = class;
1284 
1285 	/*
1286 	 * Hash collision, did we smoke some? We found a class with a matching
1287 	 * hash but the subclass -- which is hashed in -- didn't match.
1288 	 */
1289 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1290 		return NULL;
1291 
1292 	return class;
1293 }
1294 
1295 #ifdef CONFIG_PROVE_LOCKING
1296 /*
1297  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1298  * with NULL on failure)
1299  */
1300 static struct lock_list *alloc_list_entry(void)
1301 {
1302 	int idx = find_first_zero_bit(list_entries_in_use,
1303 				      ARRAY_SIZE(list_entries));
1304 
1305 	if (idx >= ARRAY_SIZE(list_entries)) {
1306 		if (!debug_locks_off_graph_unlock())
1307 			return NULL;
1308 
1309 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1310 		dump_stack();
1311 		return NULL;
1312 	}
1313 	nr_list_entries++;
1314 	__set_bit(idx, list_entries_in_use);
1315 	return list_entries + idx;
1316 }
1317 
1318 /*
1319  * Add a new dependency to the head of the list:
1320  */
1321 static int add_lock_to_list(struct lock_class *this,
1322 			    struct lock_class *links_to, struct list_head *head,
1323 			    unsigned long ip, int distance,
1324 			    const struct lock_trace *trace)
1325 {
1326 	struct lock_list *entry;
1327 	/*
1328 	 * Lock not present yet - get a new dependency struct and
1329 	 * add it to the list:
1330 	 */
1331 	entry = alloc_list_entry();
1332 	if (!entry)
1333 		return 0;
1334 
1335 	entry->class = this;
1336 	entry->links_to = links_to;
1337 	entry->distance = distance;
1338 	entry->trace = trace;
1339 	/*
1340 	 * Both allocation and removal are done under the graph lock; but
1341 	 * iteration is under RCU-sched; see look_up_lock_class() and
1342 	 * lockdep_free_key_range().
1343 	 */
1344 	list_add_tail_rcu(&entry->entry, head);
1345 
1346 	return 1;
1347 }
1348 
1349 /*
1350  * For good efficiency of modular, we use power of 2
1351  */
1352 #define MAX_CIRCULAR_QUEUE_SIZE		4096UL
1353 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1354 
1355 /*
1356  * The circular_queue and helpers are used to implement graph
1357  * breadth-first search (BFS) algorithm, by which we can determine
1358  * whether there is a path from a lock to another. In deadlock checks,
1359  * a path from the next lock to be acquired to a previous held lock
1360  * indicates that adding the <prev> -> <next> lock dependency will
1361  * produce a circle in the graph. Breadth-first search instead of
1362  * depth-first search is used in order to find the shortest (circular)
1363  * path.
1364  */
1365 struct circular_queue {
1366 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1367 	unsigned int  front, rear;
1368 };
1369 
1370 static struct circular_queue lock_cq;
1371 
1372 unsigned int max_bfs_queue_depth;
1373 
1374 static unsigned int lockdep_dependency_gen_id;
1375 
1376 static inline void __cq_init(struct circular_queue *cq)
1377 {
1378 	cq->front = cq->rear = 0;
1379 	lockdep_dependency_gen_id++;
1380 }
1381 
1382 static inline int __cq_empty(struct circular_queue *cq)
1383 {
1384 	return (cq->front == cq->rear);
1385 }
1386 
1387 static inline int __cq_full(struct circular_queue *cq)
1388 {
1389 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1390 }
1391 
1392 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1393 {
1394 	if (__cq_full(cq))
1395 		return -1;
1396 
1397 	cq->element[cq->rear] = elem;
1398 	cq->rear = (cq->rear + 1) & CQ_MASK;
1399 	return 0;
1400 }
1401 
1402 /*
1403  * Dequeue an element from the circular_queue, return a lock_list if
1404  * the queue is not empty, or NULL if otherwise.
1405  */
1406 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1407 {
1408 	struct lock_list * lock;
1409 
1410 	if (__cq_empty(cq))
1411 		return NULL;
1412 
1413 	lock = cq->element[cq->front];
1414 	cq->front = (cq->front + 1) & CQ_MASK;
1415 
1416 	return lock;
1417 }
1418 
1419 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1420 {
1421 	return (cq->rear - cq->front) & CQ_MASK;
1422 }
1423 
1424 static inline void mark_lock_accessed(struct lock_list *lock,
1425 					struct lock_list *parent)
1426 {
1427 	unsigned long nr;
1428 
1429 	nr = lock - list_entries;
1430 	WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1431 	lock->parent = parent;
1432 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1433 }
1434 
1435 static inline unsigned long lock_accessed(struct lock_list *lock)
1436 {
1437 	unsigned long nr;
1438 
1439 	nr = lock - list_entries;
1440 	WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1441 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1442 }
1443 
1444 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1445 {
1446 	return child->parent;
1447 }
1448 
1449 static inline int get_lock_depth(struct lock_list *child)
1450 {
1451 	int depth = 0;
1452 	struct lock_list *parent;
1453 
1454 	while ((parent = get_lock_parent(child))) {
1455 		child = parent;
1456 		depth++;
1457 	}
1458 	return depth;
1459 }
1460 
1461 /*
1462  * Return the forward or backward dependency list.
1463  *
1464  * @lock:   the lock_list to get its class's dependency list
1465  * @offset: the offset to struct lock_class to determine whether it is
1466  *          locks_after or locks_before
1467  */
1468 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1469 {
1470 	void *lock_class = lock->class;
1471 
1472 	return lock_class + offset;
1473 }
1474 
1475 /*
1476  * Forward- or backward-dependency search, used for both circular dependency
1477  * checking and hardirq-unsafe/softirq-unsafe checking.
1478  */
1479 static int __bfs(struct lock_list *source_entry,
1480 		 void *data,
1481 		 int (*match)(struct lock_list *entry, void *data),
1482 		 struct lock_list **target_entry,
1483 		 int offset)
1484 {
1485 	struct lock_list *entry;
1486 	struct lock_list *lock;
1487 	struct list_head *head;
1488 	struct circular_queue *cq = &lock_cq;
1489 	int ret = 1;
1490 
1491 	lockdep_assert_locked();
1492 
1493 	if (match(source_entry, data)) {
1494 		*target_entry = source_entry;
1495 		ret = 0;
1496 		goto exit;
1497 	}
1498 
1499 	head = get_dep_list(source_entry, offset);
1500 	if (list_empty(head))
1501 		goto exit;
1502 
1503 	__cq_init(cq);
1504 	__cq_enqueue(cq, source_entry);
1505 
1506 	while ((lock = __cq_dequeue(cq))) {
1507 
1508 		if (!lock->class) {
1509 			ret = -2;
1510 			goto exit;
1511 		}
1512 
1513 		head = get_dep_list(lock, offset);
1514 
1515 		list_for_each_entry_rcu(entry, head, entry) {
1516 			if (!lock_accessed(entry)) {
1517 				unsigned int cq_depth;
1518 				mark_lock_accessed(entry, lock);
1519 				if (match(entry, data)) {
1520 					*target_entry = entry;
1521 					ret = 0;
1522 					goto exit;
1523 				}
1524 
1525 				if (__cq_enqueue(cq, entry)) {
1526 					ret = -1;
1527 					goto exit;
1528 				}
1529 				cq_depth = __cq_get_elem_count(cq);
1530 				if (max_bfs_queue_depth < cq_depth)
1531 					max_bfs_queue_depth = cq_depth;
1532 			}
1533 		}
1534 	}
1535 exit:
1536 	return ret;
1537 }
1538 
1539 static inline int __bfs_forwards(struct lock_list *src_entry,
1540 			void *data,
1541 			int (*match)(struct lock_list *entry, void *data),
1542 			struct lock_list **target_entry)
1543 {
1544 	return __bfs(src_entry, data, match, target_entry,
1545 		     offsetof(struct lock_class, locks_after));
1546 
1547 }
1548 
1549 static inline int __bfs_backwards(struct lock_list *src_entry,
1550 			void *data,
1551 			int (*match)(struct lock_list *entry, void *data),
1552 			struct lock_list **target_entry)
1553 {
1554 	return __bfs(src_entry, data, match, target_entry,
1555 		     offsetof(struct lock_class, locks_before));
1556 
1557 }
1558 
1559 static void print_lock_trace(const struct lock_trace *trace,
1560 			     unsigned int spaces)
1561 {
1562 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1563 }
1564 
1565 /*
1566  * Print a dependency chain entry (this is only done when a deadlock
1567  * has been detected):
1568  */
1569 static noinline void
1570 print_circular_bug_entry(struct lock_list *target, int depth)
1571 {
1572 	if (debug_locks_silent)
1573 		return;
1574 	printk("\n-> #%u", depth);
1575 	print_lock_name(target->class);
1576 	printk(KERN_CONT ":\n");
1577 	print_lock_trace(target->trace, 6);
1578 }
1579 
1580 static void
1581 print_circular_lock_scenario(struct held_lock *src,
1582 			     struct held_lock *tgt,
1583 			     struct lock_list *prt)
1584 {
1585 	struct lock_class *source = hlock_class(src);
1586 	struct lock_class *target = hlock_class(tgt);
1587 	struct lock_class *parent = prt->class;
1588 
1589 	/*
1590 	 * A direct locking problem where unsafe_class lock is taken
1591 	 * directly by safe_class lock, then all we need to show
1592 	 * is the deadlock scenario, as it is obvious that the
1593 	 * unsafe lock is taken under the safe lock.
1594 	 *
1595 	 * But if there is a chain instead, where the safe lock takes
1596 	 * an intermediate lock (middle_class) where this lock is
1597 	 * not the same as the safe lock, then the lock chain is
1598 	 * used to describe the problem. Otherwise we would need
1599 	 * to show a different CPU case for each link in the chain
1600 	 * from the safe_class lock to the unsafe_class lock.
1601 	 */
1602 	if (parent != source) {
1603 		printk("Chain exists of:\n  ");
1604 		__print_lock_name(source);
1605 		printk(KERN_CONT " --> ");
1606 		__print_lock_name(parent);
1607 		printk(KERN_CONT " --> ");
1608 		__print_lock_name(target);
1609 		printk(KERN_CONT "\n\n");
1610 	}
1611 
1612 	printk(" Possible unsafe locking scenario:\n\n");
1613 	printk("       CPU0                    CPU1\n");
1614 	printk("       ----                    ----\n");
1615 	printk("  lock(");
1616 	__print_lock_name(target);
1617 	printk(KERN_CONT ");\n");
1618 	printk("                               lock(");
1619 	__print_lock_name(parent);
1620 	printk(KERN_CONT ");\n");
1621 	printk("                               lock(");
1622 	__print_lock_name(target);
1623 	printk(KERN_CONT ");\n");
1624 	printk("  lock(");
1625 	__print_lock_name(source);
1626 	printk(KERN_CONT ");\n");
1627 	printk("\n *** DEADLOCK ***\n\n");
1628 }
1629 
1630 /*
1631  * When a circular dependency is detected, print the
1632  * header first:
1633  */
1634 static noinline void
1635 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1636 			struct held_lock *check_src,
1637 			struct held_lock *check_tgt)
1638 {
1639 	struct task_struct *curr = current;
1640 
1641 	if (debug_locks_silent)
1642 		return;
1643 
1644 	pr_warn("\n");
1645 	pr_warn("======================================================\n");
1646 	pr_warn("WARNING: possible circular locking dependency detected\n");
1647 	print_kernel_ident();
1648 	pr_warn("------------------------------------------------------\n");
1649 	pr_warn("%s/%d is trying to acquire lock:\n",
1650 		curr->comm, task_pid_nr(curr));
1651 	print_lock(check_src);
1652 
1653 	pr_warn("\nbut task is already holding lock:\n");
1654 
1655 	print_lock(check_tgt);
1656 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1657 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1658 
1659 	print_circular_bug_entry(entry, depth);
1660 }
1661 
1662 static inline int class_equal(struct lock_list *entry, void *data)
1663 {
1664 	return entry->class == data;
1665 }
1666 
1667 static noinline void print_circular_bug(struct lock_list *this,
1668 					struct lock_list *target,
1669 					struct held_lock *check_src,
1670 					struct held_lock *check_tgt)
1671 {
1672 	struct task_struct *curr = current;
1673 	struct lock_list *parent;
1674 	struct lock_list *first_parent;
1675 	int depth;
1676 
1677 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1678 		return;
1679 
1680 	this->trace = save_trace();
1681 	if (!this->trace)
1682 		return;
1683 
1684 	depth = get_lock_depth(target);
1685 
1686 	print_circular_bug_header(target, depth, check_src, check_tgt);
1687 
1688 	parent = get_lock_parent(target);
1689 	first_parent = parent;
1690 
1691 	while (parent) {
1692 		print_circular_bug_entry(parent, --depth);
1693 		parent = get_lock_parent(parent);
1694 	}
1695 
1696 	printk("\nother info that might help us debug this:\n\n");
1697 	print_circular_lock_scenario(check_src, check_tgt,
1698 				     first_parent);
1699 
1700 	lockdep_print_held_locks(curr);
1701 
1702 	printk("\nstack backtrace:\n");
1703 	dump_stack();
1704 }
1705 
1706 static noinline void print_bfs_bug(int ret)
1707 {
1708 	if (!debug_locks_off_graph_unlock())
1709 		return;
1710 
1711 	/*
1712 	 * Breadth-first-search failed, graph got corrupted?
1713 	 */
1714 	WARN(1, "lockdep bfs error:%d\n", ret);
1715 }
1716 
1717 static int noop_count(struct lock_list *entry, void *data)
1718 {
1719 	(*(unsigned long *)data)++;
1720 	return 0;
1721 }
1722 
1723 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1724 {
1725 	unsigned long  count = 0;
1726 	struct lock_list *target_entry;
1727 
1728 	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1729 
1730 	return count;
1731 }
1732 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1733 {
1734 	unsigned long ret, flags;
1735 	struct lock_list this;
1736 
1737 	this.parent = NULL;
1738 	this.class = class;
1739 
1740 	raw_local_irq_save(flags);
1741 	lockdep_lock();
1742 	ret = __lockdep_count_forward_deps(&this);
1743 	lockdep_unlock();
1744 	raw_local_irq_restore(flags);
1745 
1746 	return ret;
1747 }
1748 
1749 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1750 {
1751 	unsigned long  count = 0;
1752 	struct lock_list *target_entry;
1753 
1754 	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1755 
1756 	return count;
1757 }
1758 
1759 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1760 {
1761 	unsigned long ret, flags;
1762 	struct lock_list this;
1763 
1764 	this.parent = NULL;
1765 	this.class = class;
1766 
1767 	raw_local_irq_save(flags);
1768 	lockdep_lock();
1769 	ret = __lockdep_count_backward_deps(&this);
1770 	lockdep_unlock();
1771 	raw_local_irq_restore(flags);
1772 
1773 	return ret;
1774 }
1775 
1776 /*
1777  * Check that the dependency graph starting at <src> can lead to
1778  * <target> or not. Print an error and return 0 if it does.
1779  */
1780 static noinline int
1781 check_path(struct lock_class *target, struct lock_list *src_entry,
1782 	   struct lock_list **target_entry)
1783 {
1784 	int ret;
1785 
1786 	ret = __bfs_forwards(src_entry, (void *)target, class_equal,
1787 			     target_entry);
1788 
1789 	if (unlikely(ret < 0))
1790 		print_bfs_bug(ret);
1791 
1792 	return ret;
1793 }
1794 
1795 /*
1796  * Prove that the dependency graph starting at <src> can not
1797  * lead to <target>. If it can, there is a circle when adding
1798  * <target> -> <src> dependency.
1799  *
1800  * Print an error and return 0 if it does.
1801  */
1802 static noinline int
1803 check_noncircular(struct held_lock *src, struct held_lock *target,
1804 		  struct lock_trace **const trace)
1805 {
1806 	int ret;
1807 	struct lock_list *target_entry;
1808 	struct lock_list src_entry = {
1809 		.class = hlock_class(src),
1810 		.parent = NULL,
1811 	};
1812 
1813 	debug_atomic_inc(nr_cyclic_checks);
1814 
1815 	ret = check_path(hlock_class(target), &src_entry, &target_entry);
1816 
1817 	if (unlikely(!ret)) {
1818 		if (!*trace) {
1819 			/*
1820 			 * If save_trace fails here, the printing might
1821 			 * trigger a WARN but because of the !nr_entries it
1822 			 * should not do bad things.
1823 			 */
1824 			*trace = save_trace();
1825 		}
1826 
1827 		print_circular_bug(&src_entry, target_entry, src, target);
1828 	}
1829 
1830 	return ret;
1831 }
1832 
1833 #ifdef CONFIG_LOCKDEP_SMALL
1834 /*
1835  * Check that the dependency graph starting at <src> can lead to
1836  * <target> or not. If it can, <src> -> <target> dependency is already
1837  * in the graph.
1838  *
1839  * Print an error and return 2 if it does or 1 if it does not.
1840  */
1841 static noinline int
1842 check_redundant(struct held_lock *src, struct held_lock *target)
1843 {
1844 	int ret;
1845 	struct lock_list *target_entry;
1846 	struct lock_list src_entry = {
1847 		.class = hlock_class(src),
1848 		.parent = NULL,
1849 	};
1850 
1851 	debug_atomic_inc(nr_redundant_checks);
1852 
1853 	ret = check_path(hlock_class(target), &src_entry, &target_entry);
1854 
1855 	if (!ret) {
1856 		debug_atomic_inc(nr_redundant);
1857 		ret = 2;
1858 	} else if (ret < 0)
1859 		ret = 0;
1860 
1861 	return ret;
1862 }
1863 #endif
1864 
1865 #ifdef CONFIG_TRACE_IRQFLAGS
1866 
1867 static inline int usage_accumulate(struct lock_list *entry, void *mask)
1868 {
1869 	*(unsigned long *)mask |= entry->class->usage_mask;
1870 
1871 	return 0;
1872 }
1873 
1874 /*
1875  * Forwards and backwards subgraph searching, for the purposes of
1876  * proving that two subgraphs can be connected by a new dependency
1877  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1878  */
1879 
1880 static inline int usage_match(struct lock_list *entry, void *mask)
1881 {
1882 	return entry->class->usage_mask & *(unsigned long *)mask;
1883 }
1884 
1885 /*
1886  * Find a node in the forwards-direction dependency sub-graph starting
1887  * at @root->class that matches @bit.
1888  *
1889  * Return 0 if such a node exists in the subgraph, and put that node
1890  * into *@target_entry.
1891  *
1892  * Return 1 otherwise and keep *@target_entry unchanged.
1893  * Return <0 on error.
1894  */
1895 static int
1896 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
1897 			struct lock_list **target_entry)
1898 {
1899 	int result;
1900 
1901 	debug_atomic_inc(nr_find_usage_forwards_checks);
1902 
1903 	result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
1904 
1905 	return result;
1906 }
1907 
1908 /*
1909  * Find a node in the backwards-direction dependency sub-graph starting
1910  * at @root->class that matches @bit.
1911  *
1912  * Return 0 if such a node exists in the subgraph, and put that node
1913  * into *@target_entry.
1914  *
1915  * Return 1 otherwise and keep *@target_entry unchanged.
1916  * Return <0 on error.
1917  */
1918 static int
1919 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
1920 			struct lock_list **target_entry)
1921 {
1922 	int result;
1923 
1924 	debug_atomic_inc(nr_find_usage_backwards_checks);
1925 
1926 	result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
1927 
1928 	return result;
1929 }
1930 
1931 static void print_lock_class_header(struct lock_class *class, int depth)
1932 {
1933 	int bit;
1934 
1935 	printk("%*s->", depth, "");
1936 	print_lock_name(class);
1937 #ifdef CONFIG_DEBUG_LOCKDEP
1938 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
1939 #endif
1940 	printk(KERN_CONT " {\n");
1941 
1942 	for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1943 		if (class->usage_mask & (1 << bit)) {
1944 			int len = depth;
1945 
1946 			len += printk("%*s   %s", depth, "", usage_str[bit]);
1947 			len += printk(KERN_CONT " at:\n");
1948 			print_lock_trace(class->usage_traces[bit], len);
1949 		}
1950 	}
1951 	printk("%*s }\n", depth, "");
1952 
1953 	printk("%*s ... key      at: [<%px>] %pS\n",
1954 		depth, "", class->key, class->key);
1955 }
1956 
1957 /*
1958  * printk the shortest lock dependencies from @start to @end in reverse order:
1959  */
1960 static void __used
1961 print_shortest_lock_dependencies(struct lock_list *leaf,
1962 				 struct lock_list *root)
1963 {
1964 	struct lock_list *entry = leaf;
1965 	int depth;
1966 
1967 	/*compute depth from generated tree by BFS*/
1968 	depth = get_lock_depth(leaf);
1969 
1970 	do {
1971 		print_lock_class_header(entry->class, depth);
1972 		printk("%*s ... acquired at:\n", depth, "");
1973 		print_lock_trace(entry->trace, 2);
1974 		printk("\n");
1975 
1976 		if (depth == 0 && (entry != root)) {
1977 			printk("lockdep:%s bad path found in chain graph\n", __func__);
1978 			break;
1979 		}
1980 
1981 		entry = get_lock_parent(entry);
1982 		depth--;
1983 	} while (entry && (depth >= 0));
1984 }
1985 
1986 static void
1987 print_irq_lock_scenario(struct lock_list *safe_entry,
1988 			struct lock_list *unsafe_entry,
1989 			struct lock_class *prev_class,
1990 			struct lock_class *next_class)
1991 {
1992 	struct lock_class *safe_class = safe_entry->class;
1993 	struct lock_class *unsafe_class = unsafe_entry->class;
1994 	struct lock_class *middle_class = prev_class;
1995 
1996 	if (middle_class == safe_class)
1997 		middle_class = next_class;
1998 
1999 	/*
2000 	 * A direct locking problem where unsafe_class lock is taken
2001 	 * directly by safe_class lock, then all we need to show
2002 	 * is the deadlock scenario, as it is obvious that the
2003 	 * unsafe lock is taken under the safe lock.
2004 	 *
2005 	 * But if there is a chain instead, where the safe lock takes
2006 	 * an intermediate lock (middle_class) where this lock is
2007 	 * not the same as the safe lock, then the lock chain is
2008 	 * used to describe the problem. Otherwise we would need
2009 	 * to show a different CPU case for each link in the chain
2010 	 * from the safe_class lock to the unsafe_class lock.
2011 	 */
2012 	if (middle_class != unsafe_class) {
2013 		printk("Chain exists of:\n  ");
2014 		__print_lock_name(safe_class);
2015 		printk(KERN_CONT " --> ");
2016 		__print_lock_name(middle_class);
2017 		printk(KERN_CONT " --> ");
2018 		__print_lock_name(unsafe_class);
2019 		printk(KERN_CONT "\n\n");
2020 	}
2021 
2022 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2023 	printk("       CPU0                    CPU1\n");
2024 	printk("       ----                    ----\n");
2025 	printk("  lock(");
2026 	__print_lock_name(unsafe_class);
2027 	printk(KERN_CONT ");\n");
2028 	printk("                               local_irq_disable();\n");
2029 	printk("                               lock(");
2030 	__print_lock_name(safe_class);
2031 	printk(KERN_CONT ");\n");
2032 	printk("                               lock(");
2033 	__print_lock_name(middle_class);
2034 	printk(KERN_CONT ");\n");
2035 	printk("  <Interrupt>\n");
2036 	printk("    lock(");
2037 	__print_lock_name(safe_class);
2038 	printk(KERN_CONT ");\n");
2039 	printk("\n *** DEADLOCK ***\n\n");
2040 }
2041 
2042 static void
2043 print_bad_irq_dependency(struct task_struct *curr,
2044 			 struct lock_list *prev_root,
2045 			 struct lock_list *next_root,
2046 			 struct lock_list *backwards_entry,
2047 			 struct lock_list *forwards_entry,
2048 			 struct held_lock *prev,
2049 			 struct held_lock *next,
2050 			 enum lock_usage_bit bit1,
2051 			 enum lock_usage_bit bit2,
2052 			 const char *irqclass)
2053 {
2054 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2055 		return;
2056 
2057 	pr_warn("\n");
2058 	pr_warn("=====================================================\n");
2059 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2060 		irqclass, irqclass);
2061 	print_kernel_ident();
2062 	pr_warn("-----------------------------------------------------\n");
2063 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2064 		curr->comm, task_pid_nr(curr),
2065 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2066 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2067 		lockdep_hardirqs_enabled(),
2068 		curr->softirqs_enabled);
2069 	print_lock(next);
2070 
2071 	pr_warn("\nand this task is already holding:\n");
2072 	print_lock(prev);
2073 	pr_warn("which would create a new lock dependency:\n");
2074 	print_lock_name(hlock_class(prev));
2075 	pr_cont(" ->");
2076 	print_lock_name(hlock_class(next));
2077 	pr_cont("\n");
2078 
2079 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2080 		irqclass);
2081 	print_lock_name(backwards_entry->class);
2082 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2083 
2084 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2085 
2086 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2087 	print_lock_name(forwards_entry->class);
2088 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2089 	pr_warn("...");
2090 
2091 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2092 
2093 	pr_warn("\nother info that might help us debug this:\n\n");
2094 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2095 				hlock_class(prev), hlock_class(next));
2096 
2097 	lockdep_print_held_locks(curr);
2098 
2099 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2100 	prev_root->trace = save_trace();
2101 	if (!prev_root->trace)
2102 		return;
2103 	print_shortest_lock_dependencies(backwards_entry, prev_root);
2104 
2105 	pr_warn("\nthe dependencies between the lock to be acquired");
2106 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2107 	next_root->trace = save_trace();
2108 	if (!next_root->trace)
2109 		return;
2110 	print_shortest_lock_dependencies(forwards_entry, next_root);
2111 
2112 	pr_warn("\nstack backtrace:\n");
2113 	dump_stack();
2114 }
2115 
2116 static const char *state_names[] = {
2117 #define LOCKDEP_STATE(__STATE) \
2118 	__stringify(__STATE),
2119 #include "lockdep_states.h"
2120 #undef LOCKDEP_STATE
2121 };
2122 
2123 static const char *state_rnames[] = {
2124 #define LOCKDEP_STATE(__STATE) \
2125 	__stringify(__STATE)"-READ",
2126 #include "lockdep_states.h"
2127 #undef LOCKDEP_STATE
2128 };
2129 
2130 static inline const char *state_name(enum lock_usage_bit bit)
2131 {
2132 	if (bit & LOCK_USAGE_READ_MASK)
2133 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2134 	else
2135 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2136 }
2137 
2138 /*
2139  * The bit number is encoded like:
2140  *
2141  *  bit0: 0 exclusive, 1 read lock
2142  *  bit1: 0 used in irq, 1 irq enabled
2143  *  bit2-n: state
2144  */
2145 static int exclusive_bit(int new_bit)
2146 {
2147 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2148 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2149 
2150 	/*
2151 	 * keep state, bit flip the direction and strip read.
2152 	 */
2153 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2154 }
2155 
2156 /*
2157  * Observe that when given a bitmask where each bitnr is encoded as above, a
2158  * right shift of the mask transforms the individual bitnrs as -1 and
2159  * conversely, a left shift transforms into +1 for the individual bitnrs.
2160  *
2161  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2162  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2163  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2164  *
2165  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2166  *
2167  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2168  * all bits set) and recompose with bitnr1 flipped.
2169  */
2170 static unsigned long invert_dir_mask(unsigned long mask)
2171 {
2172 	unsigned long excl = 0;
2173 
2174 	/* Invert dir */
2175 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2176 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2177 
2178 	return excl;
2179 }
2180 
2181 /*
2182  * As above, we clear bitnr0 (LOCK_*_READ off) with bitmask ops. First, for all
2183  * bits with bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*).
2184  * And then mask out all bitnr0.
2185  */
2186 static unsigned long exclusive_mask(unsigned long mask)
2187 {
2188 	unsigned long excl = invert_dir_mask(mask);
2189 
2190 	/* Strip read */
2191 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2192 	excl &= ~LOCKF_IRQ_READ;
2193 
2194 	return excl;
2195 }
2196 
2197 /*
2198  * Retrieve the _possible_ original mask to which @mask is
2199  * exclusive. Ie: this is the opposite of exclusive_mask().
2200  * Note that 2 possible original bits can match an exclusive
2201  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2202  * cleared. So both are returned for each exclusive bit.
2203  */
2204 static unsigned long original_mask(unsigned long mask)
2205 {
2206 	unsigned long excl = invert_dir_mask(mask);
2207 
2208 	/* Include read in existing usages */
2209 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2210 
2211 	return excl;
2212 }
2213 
2214 /*
2215  * Find the first pair of bit match between an original
2216  * usage mask and an exclusive usage mask.
2217  */
2218 static int find_exclusive_match(unsigned long mask,
2219 				unsigned long excl_mask,
2220 				enum lock_usage_bit *bitp,
2221 				enum lock_usage_bit *excl_bitp)
2222 {
2223 	int bit, excl;
2224 
2225 	for_each_set_bit(bit, &mask, LOCK_USED) {
2226 		excl = exclusive_bit(bit);
2227 		if (excl_mask & lock_flag(excl)) {
2228 			*bitp = bit;
2229 			*excl_bitp = excl;
2230 			return 0;
2231 		}
2232 	}
2233 	return -1;
2234 }
2235 
2236 /*
2237  * Prove that the new dependency does not connect a hardirq-safe(-read)
2238  * lock with a hardirq-unsafe lock - to achieve this we search
2239  * the backwards-subgraph starting at <prev>, and the
2240  * forwards-subgraph starting at <next>:
2241  */
2242 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2243 			   struct held_lock *next)
2244 {
2245 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2246 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2247 	struct lock_list *target_entry1;
2248 	struct lock_list *target_entry;
2249 	struct lock_list this, that;
2250 	int ret;
2251 
2252 	/*
2253 	 * Step 1: gather all hard/soft IRQs usages backward in an
2254 	 * accumulated usage mask.
2255 	 */
2256 	this.parent = NULL;
2257 	this.class = hlock_class(prev);
2258 
2259 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2260 	if (ret < 0) {
2261 		print_bfs_bug(ret);
2262 		return 0;
2263 	}
2264 
2265 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2266 	if (!usage_mask)
2267 		return 1;
2268 
2269 	/*
2270 	 * Step 2: find exclusive uses forward that match the previous
2271 	 * backward accumulated mask.
2272 	 */
2273 	forward_mask = exclusive_mask(usage_mask);
2274 
2275 	that.parent = NULL;
2276 	that.class = hlock_class(next);
2277 
2278 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2279 	if (ret < 0) {
2280 		print_bfs_bug(ret);
2281 		return 0;
2282 	}
2283 	if (ret == 1)
2284 		return ret;
2285 
2286 	/*
2287 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2288 	 * list whose usage mask matches the exclusive usage mask from the
2289 	 * lock found on the forward list.
2290 	 */
2291 	backward_mask = original_mask(target_entry1->class->usage_mask);
2292 
2293 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2294 	if (ret < 0) {
2295 		print_bfs_bug(ret);
2296 		return 0;
2297 	}
2298 	if (DEBUG_LOCKS_WARN_ON(ret == 1))
2299 		return 1;
2300 
2301 	/*
2302 	 * Step 4: narrow down to a pair of incompatible usage bits
2303 	 * and report it.
2304 	 */
2305 	ret = find_exclusive_match(target_entry->class->usage_mask,
2306 				   target_entry1->class->usage_mask,
2307 				   &backward_bit, &forward_bit);
2308 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2309 		return 1;
2310 
2311 	print_bad_irq_dependency(curr, &this, &that,
2312 				 target_entry, target_entry1,
2313 				 prev, next,
2314 				 backward_bit, forward_bit,
2315 				 state_name(backward_bit));
2316 
2317 	return 0;
2318 }
2319 
2320 #else
2321 
2322 static inline int check_irq_usage(struct task_struct *curr,
2323 				  struct held_lock *prev, struct held_lock *next)
2324 {
2325 	return 1;
2326 }
2327 #endif /* CONFIG_TRACE_IRQFLAGS */
2328 
2329 static void inc_chains(int irq_context)
2330 {
2331 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2332 		nr_hardirq_chains++;
2333 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2334 		nr_softirq_chains++;
2335 	else
2336 		nr_process_chains++;
2337 }
2338 
2339 static void dec_chains(int irq_context)
2340 {
2341 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2342 		nr_hardirq_chains--;
2343 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2344 		nr_softirq_chains--;
2345 	else
2346 		nr_process_chains--;
2347 }
2348 
2349 static void
2350 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2351 {
2352 	struct lock_class *next = hlock_class(nxt);
2353 	struct lock_class *prev = hlock_class(prv);
2354 
2355 	printk(" Possible unsafe locking scenario:\n\n");
2356 	printk("       CPU0\n");
2357 	printk("       ----\n");
2358 	printk("  lock(");
2359 	__print_lock_name(prev);
2360 	printk(KERN_CONT ");\n");
2361 	printk("  lock(");
2362 	__print_lock_name(next);
2363 	printk(KERN_CONT ");\n");
2364 	printk("\n *** DEADLOCK ***\n\n");
2365 	printk(" May be due to missing lock nesting notation\n\n");
2366 }
2367 
2368 static void
2369 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2370 		   struct held_lock *next)
2371 {
2372 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2373 		return;
2374 
2375 	pr_warn("\n");
2376 	pr_warn("============================================\n");
2377 	pr_warn("WARNING: possible recursive locking detected\n");
2378 	print_kernel_ident();
2379 	pr_warn("--------------------------------------------\n");
2380 	pr_warn("%s/%d is trying to acquire lock:\n",
2381 		curr->comm, task_pid_nr(curr));
2382 	print_lock(next);
2383 	pr_warn("\nbut task is already holding lock:\n");
2384 	print_lock(prev);
2385 
2386 	pr_warn("\nother info that might help us debug this:\n");
2387 	print_deadlock_scenario(next, prev);
2388 	lockdep_print_held_locks(curr);
2389 
2390 	pr_warn("\nstack backtrace:\n");
2391 	dump_stack();
2392 }
2393 
2394 /*
2395  * Check whether we are holding such a class already.
2396  *
2397  * (Note that this has to be done separately, because the graph cannot
2398  * detect such classes of deadlocks.)
2399  *
2400  * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
2401  */
2402 static int
2403 check_deadlock(struct task_struct *curr, struct held_lock *next)
2404 {
2405 	struct held_lock *prev;
2406 	struct held_lock *nest = NULL;
2407 	int i;
2408 
2409 	for (i = 0; i < curr->lockdep_depth; i++) {
2410 		prev = curr->held_locks + i;
2411 
2412 		if (prev->instance == next->nest_lock)
2413 			nest = prev;
2414 
2415 		if (hlock_class(prev) != hlock_class(next))
2416 			continue;
2417 
2418 		/*
2419 		 * Allow read-after-read recursion of the same
2420 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2421 		 */
2422 		if ((next->read == 2) && prev->read)
2423 			return 2;
2424 
2425 		/*
2426 		 * We're holding the nest_lock, which serializes this lock's
2427 		 * nesting behaviour.
2428 		 */
2429 		if (nest)
2430 			return 2;
2431 
2432 		print_deadlock_bug(curr, prev, next);
2433 		return 0;
2434 	}
2435 	return 1;
2436 }
2437 
2438 /*
2439  * There was a chain-cache miss, and we are about to add a new dependency
2440  * to a previous lock. We validate the following rules:
2441  *
2442  *  - would the adding of the <prev> -> <next> dependency create a
2443  *    circular dependency in the graph? [== circular deadlock]
2444  *
2445  *  - does the new prev->next dependency connect any hardirq-safe lock
2446  *    (in the full backwards-subgraph starting at <prev>) with any
2447  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2448  *    <next>)? [== illegal lock inversion with hardirq contexts]
2449  *
2450  *  - does the new prev->next dependency connect any softirq-safe lock
2451  *    (in the full backwards-subgraph starting at <prev>) with any
2452  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2453  *    <next>)? [== illegal lock inversion with softirq contexts]
2454  *
2455  * any of these scenarios could lead to a deadlock.
2456  *
2457  * Then if all the validations pass, we add the forwards and backwards
2458  * dependency.
2459  */
2460 static int
2461 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2462 	       struct held_lock *next, int distance,
2463 	       struct lock_trace **const trace)
2464 {
2465 	struct lock_list *entry;
2466 	int ret;
2467 
2468 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2469 		/*
2470 		 * The warning statements below may trigger a use-after-free
2471 		 * of the class name. It is better to trigger a use-after free
2472 		 * and to have the class name most of the time instead of not
2473 		 * having the class name available.
2474 		 */
2475 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2476 			  "Detected use-after-free of lock class %px/%s\n",
2477 			  hlock_class(prev),
2478 			  hlock_class(prev)->name);
2479 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2480 			  "Detected use-after-free of lock class %px/%s\n",
2481 			  hlock_class(next),
2482 			  hlock_class(next)->name);
2483 		return 2;
2484 	}
2485 
2486 	/*
2487 	 * Prove that the new <prev> -> <next> dependency would not
2488 	 * create a circular dependency in the graph. (We do this by
2489 	 * a breadth-first search into the graph starting at <next>,
2490 	 * and check whether we can reach <prev>.)
2491 	 *
2492 	 * The search is limited by the size of the circular queue (i.e.,
2493 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2494 	 * in the graph whose neighbours are to be checked.
2495 	 */
2496 	ret = check_noncircular(next, prev, trace);
2497 	if (unlikely(ret <= 0))
2498 		return 0;
2499 
2500 	if (!check_irq_usage(curr, prev, next))
2501 		return 0;
2502 
2503 	/*
2504 	 * For recursive read-locks we do all the dependency checks,
2505 	 * but we dont store read-triggered dependencies (only
2506 	 * write-triggered dependencies). This ensures that only the
2507 	 * write-side dependencies matter, and that if for example a
2508 	 * write-lock never takes any other locks, then the reads are
2509 	 * equivalent to a NOP.
2510 	 */
2511 	if (next->read == 2 || prev->read == 2)
2512 		return 1;
2513 	/*
2514 	 * Is the <prev> -> <next> dependency already present?
2515 	 *
2516 	 * (this may occur even though this is a new chain: consider
2517 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2518 	 *  chains - the second one will be new, but L1 already has
2519 	 *  L2 added to its dependency list, due to the first chain.)
2520 	 */
2521 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2522 		if (entry->class == hlock_class(next)) {
2523 			if (distance == 1)
2524 				entry->distance = 1;
2525 			return 1;
2526 		}
2527 	}
2528 
2529 #ifdef CONFIG_LOCKDEP_SMALL
2530 	/*
2531 	 * Is the <prev> -> <next> link redundant?
2532 	 */
2533 	ret = check_redundant(prev, next);
2534 	if (ret != 1)
2535 		return ret;
2536 #endif
2537 
2538 	if (!*trace) {
2539 		*trace = save_trace();
2540 		if (!*trace)
2541 			return 0;
2542 	}
2543 
2544 	/*
2545 	 * Ok, all validations passed, add the new lock
2546 	 * to the previous lock's dependency list:
2547 	 */
2548 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2549 			       &hlock_class(prev)->locks_after,
2550 			       next->acquire_ip, distance, *trace);
2551 
2552 	if (!ret)
2553 		return 0;
2554 
2555 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2556 			       &hlock_class(next)->locks_before,
2557 			       next->acquire_ip, distance, *trace);
2558 	if (!ret)
2559 		return 0;
2560 
2561 	return 2;
2562 }
2563 
2564 /*
2565  * Add the dependency to all directly-previous locks that are 'relevant'.
2566  * The ones that are relevant are (in increasing distance from curr):
2567  * all consecutive trylock entries and the final non-trylock entry - or
2568  * the end of this context's lock-chain - whichever comes first.
2569  */
2570 static int
2571 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2572 {
2573 	struct lock_trace *trace = NULL;
2574 	int depth = curr->lockdep_depth;
2575 	struct held_lock *hlock;
2576 
2577 	/*
2578 	 * Debugging checks.
2579 	 *
2580 	 * Depth must not be zero for a non-head lock:
2581 	 */
2582 	if (!depth)
2583 		goto out_bug;
2584 	/*
2585 	 * At least two relevant locks must exist for this
2586 	 * to be a head:
2587 	 */
2588 	if (curr->held_locks[depth].irq_context !=
2589 			curr->held_locks[depth-1].irq_context)
2590 		goto out_bug;
2591 
2592 	for (;;) {
2593 		int distance = curr->lockdep_depth - depth + 1;
2594 		hlock = curr->held_locks + depth - 1;
2595 
2596 		/*
2597 		 * Only non-recursive-read entries get new dependencies
2598 		 * added:
2599 		 */
2600 		if (hlock->read != 2 && hlock->check) {
2601 			int ret = check_prev_add(curr, hlock, next, distance,
2602 						 &trace);
2603 			if (!ret)
2604 				return 0;
2605 
2606 			/*
2607 			 * Stop after the first non-trylock entry,
2608 			 * as non-trylock entries have added their
2609 			 * own direct dependencies already, so this
2610 			 * lock is connected to them indirectly:
2611 			 */
2612 			if (!hlock->trylock)
2613 				break;
2614 		}
2615 
2616 		depth--;
2617 		/*
2618 		 * End of lock-stack?
2619 		 */
2620 		if (!depth)
2621 			break;
2622 		/*
2623 		 * Stop the search if we cross into another context:
2624 		 */
2625 		if (curr->held_locks[depth].irq_context !=
2626 				curr->held_locks[depth-1].irq_context)
2627 			break;
2628 	}
2629 	return 1;
2630 out_bug:
2631 	if (!debug_locks_off_graph_unlock())
2632 		return 0;
2633 
2634 	/*
2635 	 * Clearly we all shouldn't be here, but since we made it we
2636 	 * can reliable say we messed up our state. See the above two
2637 	 * gotos for reasons why we could possibly end up here.
2638 	 */
2639 	WARN_ON(1);
2640 
2641 	return 0;
2642 }
2643 
2644 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
2645 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
2646 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
2647 unsigned long nr_zapped_lock_chains;
2648 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
2649 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
2650 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
2651 
2652 /*
2653  * The first 2 chain_hlocks entries in the chain block in the bucket
2654  * list contains the following meta data:
2655  *
2656  *   entry[0]:
2657  *     Bit    15 - always set to 1 (it is not a class index)
2658  *     Bits 0-14 - upper 15 bits of the next block index
2659  *   entry[1]    - lower 16 bits of next block index
2660  *
2661  * A next block index of all 1 bits means it is the end of the list.
2662  *
2663  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
2664  * the chain block size:
2665  *
2666  *   entry[2] - upper 16 bits of the chain block size
2667  *   entry[3] - lower 16 bits of the chain block size
2668  */
2669 #define MAX_CHAIN_BUCKETS	16
2670 #define CHAIN_BLK_FLAG		(1U << 15)
2671 #define CHAIN_BLK_LIST_END	0xFFFFU
2672 
2673 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
2674 
2675 static inline int size_to_bucket(int size)
2676 {
2677 	if (size > MAX_CHAIN_BUCKETS)
2678 		return 0;
2679 
2680 	return size - 1;
2681 }
2682 
2683 /*
2684  * Iterate all the chain blocks in a bucket.
2685  */
2686 #define for_each_chain_block(bucket, prev, curr)		\
2687 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
2688 	     (curr) >= 0;					\
2689 	     (prev) = (curr), (curr) = chain_block_next(curr))
2690 
2691 /*
2692  * next block or -1
2693  */
2694 static inline int chain_block_next(int offset)
2695 {
2696 	int next = chain_hlocks[offset];
2697 
2698 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
2699 
2700 	if (next == CHAIN_BLK_LIST_END)
2701 		return -1;
2702 
2703 	next &= ~CHAIN_BLK_FLAG;
2704 	next <<= 16;
2705 	next |= chain_hlocks[offset + 1];
2706 
2707 	return next;
2708 }
2709 
2710 /*
2711  * bucket-0 only
2712  */
2713 static inline int chain_block_size(int offset)
2714 {
2715 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
2716 }
2717 
2718 static inline void init_chain_block(int offset, int next, int bucket, int size)
2719 {
2720 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
2721 	chain_hlocks[offset + 1] = (u16)next;
2722 
2723 	if (size && !bucket) {
2724 		chain_hlocks[offset + 2] = size >> 16;
2725 		chain_hlocks[offset + 3] = (u16)size;
2726 	}
2727 }
2728 
2729 static inline void add_chain_block(int offset, int size)
2730 {
2731 	int bucket = size_to_bucket(size);
2732 	int next = chain_block_buckets[bucket];
2733 	int prev, curr;
2734 
2735 	if (unlikely(size < 2)) {
2736 		/*
2737 		 * We can't store single entries on the freelist. Leak them.
2738 		 *
2739 		 * One possible way out would be to uniquely mark them, other
2740 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
2741 		 * the block before it is re-added.
2742 		 */
2743 		if (size)
2744 			nr_lost_chain_hlocks++;
2745 		return;
2746 	}
2747 
2748 	nr_free_chain_hlocks += size;
2749 	if (!bucket) {
2750 		nr_large_chain_blocks++;
2751 
2752 		/*
2753 		 * Variable sized, sort large to small.
2754 		 */
2755 		for_each_chain_block(0, prev, curr) {
2756 			if (size >= chain_block_size(curr))
2757 				break;
2758 		}
2759 		init_chain_block(offset, curr, 0, size);
2760 		if (prev < 0)
2761 			chain_block_buckets[0] = offset;
2762 		else
2763 			init_chain_block(prev, offset, 0, 0);
2764 		return;
2765 	}
2766 	/*
2767 	 * Fixed size, add to head.
2768 	 */
2769 	init_chain_block(offset, next, bucket, size);
2770 	chain_block_buckets[bucket] = offset;
2771 }
2772 
2773 /*
2774  * Only the first block in the list can be deleted.
2775  *
2776  * For the variable size bucket[0], the first block (the largest one) is
2777  * returned, broken up and put back into the pool. So if a chain block of
2778  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
2779  * queued up after the primordial chain block and never be used until the
2780  * hlock entries in the primordial chain block is almost used up. That
2781  * causes fragmentation and reduce allocation efficiency. That can be
2782  * monitored by looking at the "large chain blocks" number in lockdep_stats.
2783  */
2784 static inline void del_chain_block(int bucket, int size, int next)
2785 {
2786 	nr_free_chain_hlocks -= size;
2787 	chain_block_buckets[bucket] = next;
2788 
2789 	if (!bucket)
2790 		nr_large_chain_blocks--;
2791 }
2792 
2793 static void init_chain_block_buckets(void)
2794 {
2795 	int i;
2796 
2797 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
2798 		chain_block_buckets[i] = -1;
2799 
2800 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
2801 }
2802 
2803 /*
2804  * Return offset of a chain block of the right size or -1 if not found.
2805  *
2806  * Fairly simple worst-fit allocator with the addition of a number of size
2807  * specific free lists.
2808  */
2809 static int alloc_chain_hlocks(int req)
2810 {
2811 	int bucket, curr, size;
2812 
2813 	/*
2814 	 * We rely on the MSB to act as an escape bit to denote freelist
2815 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
2816 	 */
2817 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
2818 
2819 	init_data_structures_once();
2820 
2821 	if (nr_free_chain_hlocks < req)
2822 		return -1;
2823 
2824 	/*
2825 	 * We require a minimum of 2 (u16) entries to encode a freelist
2826 	 * 'pointer'.
2827 	 */
2828 	req = max(req, 2);
2829 	bucket = size_to_bucket(req);
2830 	curr = chain_block_buckets[bucket];
2831 
2832 	if (bucket) {
2833 		if (curr >= 0) {
2834 			del_chain_block(bucket, req, chain_block_next(curr));
2835 			return curr;
2836 		}
2837 		/* Try bucket 0 */
2838 		curr = chain_block_buckets[0];
2839 	}
2840 
2841 	/*
2842 	 * The variable sized freelist is sorted by size; the first entry is
2843 	 * the largest. Use it if it fits.
2844 	 */
2845 	if (curr >= 0) {
2846 		size = chain_block_size(curr);
2847 		if (likely(size >= req)) {
2848 			del_chain_block(0, size, chain_block_next(curr));
2849 			add_chain_block(curr + req, size - req);
2850 			return curr;
2851 		}
2852 	}
2853 
2854 	/*
2855 	 * Last resort, split a block in a larger sized bucket.
2856 	 */
2857 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
2858 		bucket = size_to_bucket(size);
2859 		curr = chain_block_buckets[bucket];
2860 		if (curr < 0)
2861 			continue;
2862 
2863 		del_chain_block(bucket, size, chain_block_next(curr));
2864 		add_chain_block(curr + req, size - req);
2865 		return curr;
2866 	}
2867 
2868 	return -1;
2869 }
2870 
2871 static inline void free_chain_hlocks(int base, int size)
2872 {
2873 	add_chain_block(base, max(size, 2));
2874 }
2875 
2876 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
2877 {
2878 	return lock_classes + chain_hlocks[chain->base + i];
2879 }
2880 
2881 /*
2882  * Returns the index of the first held_lock of the current chain
2883  */
2884 static inline int get_first_held_lock(struct task_struct *curr,
2885 					struct held_lock *hlock)
2886 {
2887 	int i;
2888 	struct held_lock *hlock_curr;
2889 
2890 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2891 		hlock_curr = curr->held_locks + i;
2892 		if (hlock_curr->irq_context != hlock->irq_context)
2893 			break;
2894 
2895 	}
2896 
2897 	return ++i;
2898 }
2899 
2900 #ifdef CONFIG_DEBUG_LOCKDEP
2901 /*
2902  * Returns the next chain_key iteration
2903  */
2904 static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2905 {
2906 	u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2907 
2908 	printk(" class_idx:%d -> chain_key:%016Lx",
2909 		class_idx,
2910 		(unsigned long long)new_chain_key);
2911 	return new_chain_key;
2912 }
2913 
2914 static void
2915 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2916 {
2917 	struct held_lock *hlock;
2918 	u64 chain_key = INITIAL_CHAIN_KEY;
2919 	int depth = curr->lockdep_depth;
2920 	int i = get_first_held_lock(curr, hlock_next);
2921 
2922 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
2923 		hlock_next->irq_context);
2924 	for (; i < depth; i++) {
2925 		hlock = curr->held_locks + i;
2926 		chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2927 
2928 		print_lock(hlock);
2929 	}
2930 
2931 	print_chain_key_iteration(hlock_next->class_idx, chain_key);
2932 	print_lock(hlock_next);
2933 }
2934 
2935 static void print_chain_keys_chain(struct lock_chain *chain)
2936 {
2937 	int i;
2938 	u64 chain_key = INITIAL_CHAIN_KEY;
2939 	int class_id;
2940 
2941 	printk("depth: %u\n", chain->depth);
2942 	for (i = 0; i < chain->depth; i++) {
2943 		class_id = chain_hlocks[chain->base + i];
2944 		chain_key = print_chain_key_iteration(class_id, chain_key);
2945 
2946 		print_lock_name(lock_classes + class_id);
2947 		printk("\n");
2948 	}
2949 }
2950 
2951 static void print_collision(struct task_struct *curr,
2952 			struct held_lock *hlock_next,
2953 			struct lock_chain *chain)
2954 {
2955 	pr_warn("\n");
2956 	pr_warn("============================\n");
2957 	pr_warn("WARNING: chain_key collision\n");
2958 	print_kernel_ident();
2959 	pr_warn("----------------------------\n");
2960 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
2961 	pr_warn("Hash chain already cached but the contents don't match!\n");
2962 
2963 	pr_warn("Held locks:");
2964 	print_chain_keys_held_locks(curr, hlock_next);
2965 
2966 	pr_warn("Locks in cached chain:");
2967 	print_chain_keys_chain(chain);
2968 
2969 	pr_warn("\nstack backtrace:\n");
2970 	dump_stack();
2971 }
2972 #endif
2973 
2974 /*
2975  * Checks whether the chain and the current held locks are consistent
2976  * in depth and also in content. If they are not it most likely means
2977  * that there was a collision during the calculation of the chain_key.
2978  * Returns: 0 not passed, 1 passed
2979  */
2980 static int check_no_collision(struct task_struct *curr,
2981 			struct held_lock *hlock,
2982 			struct lock_chain *chain)
2983 {
2984 #ifdef CONFIG_DEBUG_LOCKDEP
2985 	int i, j, id;
2986 
2987 	i = get_first_held_lock(curr, hlock);
2988 
2989 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
2990 		print_collision(curr, hlock, chain);
2991 		return 0;
2992 	}
2993 
2994 	for (j = 0; j < chain->depth - 1; j++, i++) {
2995 		id = curr->held_locks[i].class_idx;
2996 
2997 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
2998 			print_collision(curr, hlock, chain);
2999 			return 0;
3000 		}
3001 	}
3002 #endif
3003 	return 1;
3004 }
3005 
3006 /*
3007  * Given an index that is >= -1, return the index of the next lock chain.
3008  * Return -2 if there is no next lock chain.
3009  */
3010 long lockdep_next_lockchain(long i)
3011 {
3012 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3013 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3014 }
3015 
3016 unsigned long lock_chain_count(void)
3017 {
3018 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3019 }
3020 
3021 /* Must be called with the graph lock held. */
3022 static struct lock_chain *alloc_lock_chain(void)
3023 {
3024 	int idx = find_first_zero_bit(lock_chains_in_use,
3025 				      ARRAY_SIZE(lock_chains));
3026 
3027 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3028 		return NULL;
3029 	__set_bit(idx, lock_chains_in_use);
3030 	return lock_chains + idx;
3031 }
3032 
3033 /*
3034  * Adds a dependency chain into chain hashtable. And must be called with
3035  * graph_lock held.
3036  *
3037  * Return 0 if fail, and graph_lock is released.
3038  * Return 1 if succeed, with graph_lock held.
3039  */
3040 static inline int add_chain_cache(struct task_struct *curr,
3041 				  struct held_lock *hlock,
3042 				  u64 chain_key)
3043 {
3044 	struct lock_class *class = hlock_class(hlock);
3045 	struct hlist_head *hash_head = chainhashentry(chain_key);
3046 	struct lock_chain *chain;
3047 	int i, j;
3048 
3049 	/*
3050 	 * The caller must hold the graph lock, ensure we've got IRQs
3051 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3052 	 * lockdep won't complain about its own locking errors.
3053 	 */
3054 	if (lockdep_assert_locked())
3055 		return 0;
3056 
3057 	chain = alloc_lock_chain();
3058 	if (!chain) {
3059 		if (!debug_locks_off_graph_unlock())
3060 			return 0;
3061 
3062 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3063 		dump_stack();
3064 		return 0;
3065 	}
3066 	chain->chain_key = chain_key;
3067 	chain->irq_context = hlock->irq_context;
3068 	i = get_first_held_lock(curr, hlock);
3069 	chain->depth = curr->lockdep_depth + 1 - i;
3070 
3071 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3072 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3073 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3074 
3075 	j = alloc_chain_hlocks(chain->depth);
3076 	if (j < 0) {
3077 		if (!debug_locks_off_graph_unlock())
3078 			return 0;
3079 
3080 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3081 		dump_stack();
3082 		return 0;
3083 	}
3084 
3085 	chain->base = j;
3086 	for (j = 0; j < chain->depth - 1; j++, i++) {
3087 		int lock_id = curr->held_locks[i].class_idx;
3088 
3089 		chain_hlocks[chain->base + j] = lock_id;
3090 	}
3091 	chain_hlocks[chain->base + j] = class - lock_classes;
3092 	hlist_add_head_rcu(&chain->entry, hash_head);
3093 	debug_atomic_inc(chain_lookup_misses);
3094 	inc_chains(chain->irq_context);
3095 
3096 	return 1;
3097 }
3098 
3099 /*
3100  * Look up a dependency chain. Must be called with either the graph lock or
3101  * the RCU read lock held.
3102  */
3103 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3104 {
3105 	struct hlist_head *hash_head = chainhashentry(chain_key);
3106 	struct lock_chain *chain;
3107 
3108 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3109 		if (READ_ONCE(chain->chain_key) == chain_key) {
3110 			debug_atomic_inc(chain_lookup_hits);
3111 			return chain;
3112 		}
3113 	}
3114 	return NULL;
3115 }
3116 
3117 /*
3118  * If the key is not present yet in dependency chain cache then
3119  * add it and return 1 - in this case the new dependency chain is
3120  * validated. If the key is already hashed, return 0.
3121  * (On return with 1 graph_lock is held.)
3122  */
3123 static inline int lookup_chain_cache_add(struct task_struct *curr,
3124 					 struct held_lock *hlock,
3125 					 u64 chain_key)
3126 {
3127 	struct lock_class *class = hlock_class(hlock);
3128 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3129 
3130 	if (chain) {
3131 cache_hit:
3132 		if (!check_no_collision(curr, hlock, chain))
3133 			return 0;
3134 
3135 		if (very_verbose(class)) {
3136 			printk("\nhash chain already cached, key: "
3137 					"%016Lx tail class: [%px] %s\n",
3138 					(unsigned long long)chain_key,
3139 					class->key, class->name);
3140 		}
3141 
3142 		return 0;
3143 	}
3144 
3145 	if (very_verbose(class)) {
3146 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3147 			(unsigned long long)chain_key, class->key, class->name);
3148 	}
3149 
3150 	if (!graph_lock())
3151 		return 0;
3152 
3153 	/*
3154 	 * We have to walk the chain again locked - to avoid duplicates:
3155 	 */
3156 	chain = lookup_chain_cache(chain_key);
3157 	if (chain) {
3158 		graph_unlock();
3159 		goto cache_hit;
3160 	}
3161 
3162 	if (!add_chain_cache(curr, hlock, chain_key))
3163 		return 0;
3164 
3165 	return 1;
3166 }
3167 
3168 static int validate_chain(struct task_struct *curr,
3169 			  struct held_lock *hlock,
3170 			  int chain_head, u64 chain_key)
3171 {
3172 	/*
3173 	 * Trylock needs to maintain the stack of held locks, but it
3174 	 * does not add new dependencies, because trylock can be done
3175 	 * in any order.
3176 	 *
3177 	 * We look up the chain_key and do the O(N^2) check and update of
3178 	 * the dependencies only if this is a new dependency chain.
3179 	 * (If lookup_chain_cache_add() return with 1 it acquires
3180 	 * graph_lock for us)
3181 	 */
3182 	if (!hlock->trylock && hlock->check &&
3183 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3184 		/*
3185 		 * Check whether last held lock:
3186 		 *
3187 		 * - is irq-safe, if this lock is irq-unsafe
3188 		 * - is softirq-safe, if this lock is hardirq-unsafe
3189 		 *
3190 		 * And check whether the new lock's dependency graph
3191 		 * could lead back to the previous lock:
3192 		 *
3193 		 * - within the current held-lock stack
3194 		 * - across our accumulated lock dependency records
3195 		 *
3196 		 * any of these scenarios could lead to a deadlock.
3197 		 */
3198 		/*
3199 		 * The simple case: does the current hold the same lock
3200 		 * already?
3201 		 */
3202 		int ret = check_deadlock(curr, hlock);
3203 
3204 		if (!ret)
3205 			return 0;
3206 		/*
3207 		 * Mark recursive read, as we jump over it when
3208 		 * building dependencies (just like we jump over
3209 		 * trylock entries):
3210 		 */
3211 		if (ret == 2)
3212 			hlock->read = 2;
3213 		/*
3214 		 * Add dependency only if this lock is not the head
3215 		 * of the chain, and if it's not a secondary read-lock:
3216 		 */
3217 		if (!chain_head && ret != 2) {
3218 			if (!check_prevs_add(curr, hlock))
3219 				return 0;
3220 		}
3221 
3222 		graph_unlock();
3223 	} else {
3224 		/* after lookup_chain_cache_add(): */
3225 		if (unlikely(!debug_locks))
3226 			return 0;
3227 	}
3228 
3229 	return 1;
3230 }
3231 #else
3232 static inline int validate_chain(struct task_struct *curr,
3233 				 struct held_lock *hlock,
3234 				 int chain_head, u64 chain_key)
3235 {
3236 	return 1;
3237 }
3238 
3239 static void init_chain_block_buckets(void)	{ }
3240 #endif /* CONFIG_PROVE_LOCKING */
3241 
3242 /*
3243  * We are building curr_chain_key incrementally, so double-check
3244  * it from scratch, to make sure that it's done correctly:
3245  */
3246 static void check_chain_key(struct task_struct *curr)
3247 {
3248 #ifdef CONFIG_DEBUG_LOCKDEP
3249 	struct held_lock *hlock, *prev_hlock = NULL;
3250 	unsigned int i;
3251 	u64 chain_key = INITIAL_CHAIN_KEY;
3252 
3253 	for (i = 0; i < curr->lockdep_depth; i++) {
3254 		hlock = curr->held_locks + i;
3255 		if (chain_key != hlock->prev_chain_key) {
3256 			debug_locks_off();
3257 			/*
3258 			 * We got mighty confused, our chain keys don't match
3259 			 * with what we expect, someone trample on our task state?
3260 			 */
3261 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3262 				curr->lockdep_depth, i,
3263 				(unsigned long long)chain_key,
3264 				(unsigned long long)hlock->prev_chain_key);
3265 			return;
3266 		}
3267 
3268 		/*
3269 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3270 		 * it registered lock class index?
3271 		 */
3272 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3273 			return;
3274 
3275 		if (prev_hlock && (prev_hlock->irq_context !=
3276 							hlock->irq_context))
3277 			chain_key = INITIAL_CHAIN_KEY;
3278 		chain_key = iterate_chain_key(chain_key, hlock->class_idx);
3279 		prev_hlock = hlock;
3280 	}
3281 	if (chain_key != curr->curr_chain_key) {
3282 		debug_locks_off();
3283 		/*
3284 		 * More smoking hash instead of calculating it, damn see these
3285 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3286 		 */
3287 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3288 			curr->lockdep_depth, i,
3289 			(unsigned long long)chain_key,
3290 			(unsigned long long)curr->curr_chain_key);
3291 	}
3292 #endif
3293 }
3294 
3295 #ifdef CONFIG_PROVE_LOCKING
3296 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3297 		     enum lock_usage_bit new_bit);
3298 
3299 static void print_usage_bug_scenario(struct held_lock *lock)
3300 {
3301 	struct lock_class *class = hlock_class(lock);
3302 
3303 	printk(" Possible unsafe locking scenario:\n\n");
3304 	printk("       CPU0\n");
3305 	printk("       ----\n");
3306 	printk("  lock(");
3307 	__print_lock_name(class);
3308 	printk(KERN_CONT ");\n");
3309 	printk("  <Interrupt>\n");
3310 	printk("    lock(");
3311 	__print_lock_name(class);
3312 	printk(KERN_CONT ");\n");
3313 	printk("\n *** DEADLOCK ***\n\n");
3314 }
3315 
3316 static void
3317 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3318 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3319 {
3320 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3321 		return;
3322 
3323 	pr_warn("\n");
3324 	pr_warn("================================\n");
3325 	pr_warn("WARNING: inconsistent lock state\n");
3326 	print_kernel_ident();
3327 	pr_warn("--------------------------------\n");
3328 
3329 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3330 		usage_str[prev_bit], usage_str[new_bit]);
3331 
3332 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3333 		curr->comm, task_pid_nr(curr),
3334 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3335 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3336 		lockdep_hardirqs_enabled(),
3337 		lockdep_softirqs_enabled(curr));
3338 	print_lock(this);
3339 
3340 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3341 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3342 
3343 	print_irqtrace_events(curr);
3344 	pr_warn("\nother info that might help us debug this:\n");
3345 	print_usage_bug_scenario(this);
3346 
3347 	lockdep_print_held_locks(curr);
3348 
3349 	pr_warn("\nstack backtrace:\n");
3350 	dump_stack();
3351 }
3352 
3353 /*
3354  * Print out an error if an invalid bit is set:
3355  */
3356 static inline int
3357 valid_state(struct task_struct *curr, struct held_lock *this,
3358 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3359 {
3360 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3361 		print_usage_bug(curr, this, bad_bit, new_bit);
3362 		return 0;
3363 	}
3364 	return 1;
3365 }
3366 
3367 
3368 /*
3369  * print irq inversion bug:
3370  */
3371 static void
3372 print_irq_inversion_bug(struct task_struct *curr,
3373 			struct lock_list *root, struct lock_list *other,
3374 			struct held_lock *this, int forwards,
3375 			const char *irqclass)
3376 {
3377 	struct lock_list *entry = other;
3378 	struct lock_list *middle = NULL;
3379 	int depth;
3380 
3381 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3382 		return;
3383 
3384 	pr_warn("\n");
3385 	pr_warn("========================================================\n");
3386 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3387 	print_kernel_ident();
3388 	pr_warn("--------------------------------------------------------\n");
3389 	pr_warn("%s/%d just changed the state of lock:\n",
3390 		curr->comm, task_pid_nr(curr));
3391 	print_lock(this);
3392 	if (forwards)
3393 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3394 	else
3395 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3396 	print_lock_name(other->class);
3397 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3398 
3399 	pr_warn("\nother info that might help us debug this:\n");
3400 
3401 	/* Find a middle lock (if one exists) */
3402 	depth = get_lock_depth(other);
3403 	do {
3404 		if (depth == 0 && (entry != root)) {
3405 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3406 			break;
3407 		}
3408 		middle = entry;
3409 		entry = get_lock_parent(entry);
3410 		depth--;
3411 	} while (entry && entry != root && (depth >= 0));
3412 	if (forwards)
3413 		print_irq_lock_scenario(root, other,
3414 			middle ? middle->class : root->class, other->class);
3415 	else
3416 		print_irq_lock_scenario(other, root,
3417 			middle ? middle->class : other->class, root->class);
3418 
3419 	lockdep_print_held_locks(curr);
3420 
3421 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3422 	root->trace = save_trace();
3423 	if (!root->trace)
3424 		return;
3425 	print_shortest_lock_dependencies(other, root);
3426 
3427 	pr_warn("\nstack backtrace:\n");
3428 	dump_stack();
3429 }
3430 
3431 /*
3432  * Prove that in the forwards-direction subgraph starting at <this>
3433  * there is no lock matching <mask>:
3434  */
3435 static int
3436 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3437 		     enum lock_usage_bit bit, const char *irqclass)
3438 {
3439 	int ret;
3440 	struct lock_list root;
3441 	struct lock_list *target_entry;
3442 
3443 	root.parent = NULL;
3444 	root.class = hlock_class(this);
3445 	ret = find_usage_forwards(&root, lock_flag(bit), &target_entry);
3446 	if (ret < 0) {
3447 		print_bfs_bug(ret);
3448 		return 0;
3449 	}
3450 	if (ret == 1)
3451 		return ret;
3452 
3453 	print_irq_inversion_bug(curr, &root, target_entry,
3454 				this, 1, irqclass);
3455 	return 0;
3456 }
3457 
3458 /*
3459  * Prove that in the backwards-direction subgraph starting at <this>
3460  * there is no lock matching <mask>:
3461  */
3462 static int
3463 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3464 		      enum lock_usage_bit bit, const char *irqclass)
3465 {
3466 	int ret;
3467 	struct lock_list root;
3468 	struct lock_list *target_entry;
3469 
3470 	root.parent = NULL;
3471 	root.class = hlock_class(this);
3472 	ret = find_usage_backwards(&root, lock_flag(bit), &target_entry);
3473 	if (ret < 0) {
3474 		print_bfs_bug(ret);
3475 		return 0;
3476 	}
3477 	if (ret == 1)
3478 		return ret;
3479 
3480 	print_irq_inversion_bug(curr, &root, target_entry,
3481 				this, 0, irqclass);
3482 	return 0;
3483 }
3484 
3485 void print_irqtrace_events(struct task_struct *curr)
3486 {
3487 	const struct irqtrace_events *trace = &curr->irqtrace;
3488 
3489 	printk("irq event stamp: %u\n", trace->irq_events);
3490 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3491 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3492 		(void *)trace->hardirq_enable_ip);
3493 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3494 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3495 		(void *)trace->hardirq_disable_ip);
3496 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3497 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3498 		(void *)trace->softirq_enable_ip);
3499 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3500 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3501 		(void *)trace->softirq_disable_ip);
3502 }
3503 
3504 static int HARDIRQ_verbose(struct lock_class *class)
3505 {
3506 #if HARDIRQ_VERBOSE
3507 	return class_filter(class);
3508 #endif
3509 	return 0;
3510 }
3511 
3512 static int SOFTIRQ_verbose(struct lock_class *class)
3513 {
3514 #if SOFTIRQ_VERBOSE
3515 	return class_filter(class);
3516 #endif
3517 	return 0;
3518 }
3519 
3520 #define STRICT_READ_CHECKS	1
3521 
3522 static int (*state_verbose_f[])(struct lock_class *class) = {
3523 #define LOCKDEP_STATE(__STATE) \
3524 	__STATE##_verbose,
3525 #include "lockdep_states.h"
3526 #undef LOCKDEP_STATE
3527 };
3528 
3529 static inline int state_verbose(enum lock_usage_bit bit,
3530 				struct lock_class *class)
3531 {
3532 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3533 }
3534 
3535 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3536 			     enum lock_usage_bit bit, const char *name);
3537 
3538 static int
3539 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3540 		enum lock_usage_bit new_bit)
3541 {
3542 	int excl_bit = exclusive_bit(new_bit);
3543 	int read = new_bit & LOCK_USAGE_READ_MASK;
3544 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
3545 
3546 	/*
3547 	 * mark USED_IN has to look forwards -- to ensure no dependency
3548 	 * has ENABLED state, which would allow recursion deadlocks.
3549 	 *
3550 	 * mark ENABLED has to look backwards -- to ensure no dependee
3551 	 * has USED_IN state, which, again, would allow  recursion deadlocks.
3552 	 */
3553 	check_usage_f usage = dir ?
3554 		check_usage_backwards : check_usage_forwards;
3555 
3556 	/*
3557 	 * Validate that this particular lock does not have conflicting
3558 	 * usage states.
3559 	 */
3560 	if (!valid_state(curr, this, new_bit, excl_bit))
3561 		return 0;
3562 
3563 	/*
3564 	 * Validate that the lock dependencies don't have conflicting usage
3565 	 * states.
3566 	 */
3567 	if ((!read || STRICT_READ_CHECKS) &&
3568 			!usage(curr, this, excl_bit, state_name(new_bit & ~LOCK_USAGE_READ_MASK)))
3569 		return 0;
3570 
3571 	/*
3572 	 * Check for read in write conflicts
3573 	 */
3574 	if (!read) {
3575 		if (!valid_state(curr, this, new_bit, excl_bit + LOCK_USAGE_READ_MASK))
3576 			return 0;
3577 
3578 		if (STRICT_READ_CHECKS &&
3579 			!usage(curr, this, excl_bit + LOCK_USAGE_READ_MASK,
3580 				state_name(new_bit + LOCK_USAGE_READ_MASK)))
3581 			return 0;
3582 	}
3583 
3584 	if (state_verbose(new_bit, hlock_class(this)))
3585 		return 2;
3586 
3587 	return 1;
3588 }
3589 
3590 /*
3591  * Mark all held locks with a usage bit:
3592  */
3593 static int
3594 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3595 {
3596 	struct held_lock *hlock;
3597 	int i;
3598 
3599 	for (i = 0; i < curr->lockdep_depth; i++) {
3600 		enum lock_usage_bit hlock_bit = base_bit;
3601 		hlock = curr->held_locks + i;
3602 
3603 		if (hlock->read)
3604 			hlock_bit += LOCK_USAGE_READ_MASK;
3605 
3606 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
3607 
3608 		if (!hlock->check)
3609 			continue;
3610 
3611 		if (!mark_lock(curr, hlock, hlock_bit))
3612 			return 0;
3613 	}
3614 
3615 	return 1;
3616 }
3617 
3618 /*
3619  * Hardirqs will be enabled:
3620  */
3621 static void __trace_hardirqs_on_caller(void)
3622 {
3623 	struct task_struct *curr = current;
3624 
3625 	/*
3626 	 * We are going to turn hardirqs on, so set the
3627 	 * usage bit for all held locks:
3628 	 */
3629 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
3630 		return;
3631 	/*
3632 	 * If we have softirqs enabled, then set the usage
3633 	 * bit for all held locks. (disabled hardirqs prevented
3634 	 * this bit from being set before)
3635 	 */
3636 	if (curr->softirqs_enabled)
3637 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
3638 }
3639 
3640 /**
3641  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
3642  * @ip:		Caller address
3643  *
3644  * Invoked before a possible transition to RCU idle from exit to user or
3645  * guest mode. This ensures that all RCU operations are done before RCU
3646  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
3647  * invoked to set the final state.
3648  */
3649 void lockdep_hardirqs_on_prepare(unsigned long ip)
3650 {
3651 	if (unlikely(!debug_locks))
3652 		return;
3653 
3654 	/*
3655 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
3656 	 */
3657 	if (unlikely(in_nmi()))
3658 		return;
3659 
3660 	if (unlikely(current->lockdep_recursion & LOCKDEP_RECURSION_MASK))
3661 		return;
3662 
3663 	if (unlikely(lockdep_hardirqs_enabled())) {
3664 		/*
3665 		 * Neither irq nor preemption are disabled here
3666 		 * so this is racy by nature but losing one hit
3667 		 * in a stat is not a big deal.
3668 		 */
3669 		__debug_atomic_inc(redundant_hardirqs_on);
3670 		return;
3671 	}
3672 
3673 	/*
3674 	 * We're enabling irqs and according to our state above irqs weren't
3675 	 * already enabled, yet we find the hardware thinks they are in fact
3676 	 * enabled.. someone messed up their IRQ state tracing.
3677 	 */
3678 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3679 		return;
3680 
3681 	/*
3682 	 * See the fine text that goes along with this variable definition.
3683 	 */
3684 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
3685 		return;
3686 
3687 	/*
3688 	 * Can't allow enabling interrupts while in an interrupt handler,
3689 	 * that's general bad form and such. Recursion, limited stack etc..
3690 	 */
3691 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
3692 		return;
3693 
3694 	current->hardirq_chain_key = current->curr_chain_key;
3695 
3696 	current->lockdep_recursion++;
3697 	__trace_hardirqs_on_caller();
3698 	lockdep_recursion_finish();
3699 }
3700 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
3701 
3702 void noinstr lockdep_hardirqs_on(unsigned long ip)
3703 {
3704 	struct irqtrace_events *trace = &current->irqtrace;
3705 
3706 	if (unlikely(!debug_locks))
3707 		return;
3708 
3709 	/*
3710 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
3711 	 * tracking state and hardware state are out of sync.
3712 	 *
3713 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
3714 	 * and not rely on hardware state like normal interrupts.
3715 	 */
3716 	if (unlikely(in_nmi())) {
3717 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
3718 			return;
3719 
3720 		/*
3721 		 * Skip:
3722 		 *  - recursion check, because NMI can hit lockdep;
3723 		 *  - hardware state check, because above;
3724 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
3725 		 */
3726 		goto skip_checks;
3727 	}
3728 
3729 	if (unlikely(current->lockdep_recursion & LOCKDEP_RECURSION_MASK))
3730 		return;
3731 
3732 	if (lockdep_hardirqs_enabled()) {
3733 		/*
3734 		 * Neither irq nor preemption are disabled here
3735 		 * so this is racy by nature but losing one hit
3736 		 * in a stat is not a big deal.
3737 		 */
3738 		__debug_atomic_inc(redundant_hardirqs_on);
3739 		return;
3740 	}
3741 
3742 	/*
3743 	 * We're enabling irqs and according to our state above irqs weren't
3744 	 * already enabled, yet we find the hardware thinks they are in fact
3745 	 * enabled.. someone messed up their IRQ state tracing.
3746 	 */
3747 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3748 		return;
3749 
3750 	/*
3751 	 * Ensure the lock stack remained unchanged between
3752 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
3753 	 */
3754 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
3755 			    current->curr_chain_key);
3756 
3757 skip_checks:
3758 	/* we'll do an OFF -> ON transition: */
3759 	this_cpu_write(hardirqs_enabled, 1);
3760 	trace->hardirq_enable_ip = ip;
3761 	trace->hardirq_enable_event = ++trace->irq_events;
3762 	debug_atomic_inc(hardirqs_on_events);
3763 }
3764 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
3765 
3766 /*
3767  * Hardirqs were disabled:
3768  */
3769 void noinstr lockdep_hardirqs_off(unsigned long ip)
3770 {
3771 	if (unlikely(!debug_locks))
3772 		return;
3773 
3774 	/*
3775 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
3776 	 * they will restore the software state. This ensures the software
3777 	 * state is consistent inside NMIs as well.
3778 	 */
3779 	if (in_nmi()) {
3780 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
3781 			return;
3782 	} else if (current->lockdep_recursion & LOCKDEP_RECURSION_MASK)
3783 		return;
3784 
3785 	/*
3786 	 * So we're supposed to get called after you mask local IRQs, but for
3787 	 * some reason the hardware doesn't quite think you did a proper job.
3788 	 */
3789 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3790 		return;
3791 
3792 	if (lockdep_hardirqs_enabled()) {
3793 		struct irqtrace_events *trace = &current->irqtrace;
3794 
3795 		/*
3796 		 * We have done an ON -> OFF transition:
3797 		 */
3798 		this_cpu_write(hardirqs_enabled, 0);
3799 		trace->hardirq_disable_ip = ip;
3800 		trace->hardirq_disable_event = ++trace->irq_events;
3801 		debug_atomic_inc(hardirqs_off_events);
3802 	} else {
3803 		debug_atomic_inc(redundant_hardirqs_off);
3804 	}
3805 }
3806 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
3807 
3808 /*
3809  * Softirqs will be enabled:
3810  */
3811 void lockdep_softirqs_on(unsigned long ip)
3812 {
3813 	struct irqtrace_events *trace = &current->irqtrace;
3814 
3815 	if (unlikely(!debug_locks || current->lockdep_recursion))
3816 		return;
3817 
3818 	/*
3819 	 * We fancy IRQs being disabled here, see softirq.c, avoids
3820 	 * funny state and nesting things.
3821 	 */
3822 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3823 		return;
3824 
3825 	if (current->softirqs_enabled) {
3826 		debug_atomic_inc(redundant_softirqs_on);
3827 		return;
3828 	}
3829 
3830 	current->lockdep_recursion++;
3831 	/*
3832 	 * We'll do an OFF -> ON transition:
3833 	 */
3834 	current->softirqs_enabled = 1;
3835 	trace->softirq_enable_ip = ip;
3836 	trace->softirq_enable_event = ++trace->irq_events;
3837 	debug_atomic_inc(softirqs_on_events);
3838 	/*
3839 	 * We are going to turn softirqs on, so set the
3840 	 * usage bit for all held locks, if hardirqs are
3841 	 * enabled too:
3842 	 */
3843 	if (lockdep_hardirqs_enabled())
3844 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
3845 	lockdep_recursion_finish();
3846 }
3847 
3848 /*
3849  * Softirqs were disabled:
3850  */
3851 void lockdep_softirqs_off(unsigned long ip)
3852 {
3853 	if (unlikely(!debug_locks || current->lockdep_recursion))
3854 		return;
3855 
3856 	/*
3857 	 * We fancy IRQs being disabled here, see softirq.c
3858 	 */
3859 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3860 		return;
3861 
3862 	if (current->softirqs_enabled) {
3863 		struct irqtrace_events *trace = &current->irqtrace;
3864 
3865 		/*
3866 		 * We have done an ON -> OFF transition:
3867 		 */
3868 		current->softirqs_enabled = 0;
3869 		trace->softirq_disable_ip = ip;
3870 		trace->softirq_disable_event = ++trace->irq_events;
3871 		debug_atomic_inc(softirqs_off_events);
3872 		/*
3873 		 * Whoops, we wanted softirqs off, so why aren't they?
3874 		 */
3875 		DEBUG_LOCKS_WARN_ON(!softirq_count());
3876 	} else
3877 		debug_atomic_inc(redundant_softirqs_off);
3878 }
3879 
3880 static int
3881 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3882 {
3883 	if (!check)
3884 		goto lock_used;
3885 
3886 	/*
3887 	 * If non-trylock use in a hardirq or softirq context, then
3888 	 * mark the lock as used in these contexts:
3889 	 */
3890 	if (!hlock->trylock) {
3891 		if (hlock->read) {
3892 			if (lockdep_hardirq_context())
3893 				if (!mark_lock(curr, hlock,
3894 						LOCK_USED_IN_HARDIRQ_READ))
3895 					return 0;
3896 			if (curr->softirq_context)
3897 				if (!mark_lock(curr, hlock,
3898 						LOCK_USED_IN_SOFTIRQ_READ))
3899 					return 0;
3900 		} else {
3901 			if (lockdep_hardirq_context())
3902 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
3903 					return 0;
3904 			if (curr->softirq_context)
3905 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
3906 					return 0;
3907 		}
3908 	}
3909 	if (!hlock->hardirqs_off) {
3910 		if (hlock->read) {
3911 			if (!mark_lock(curr, hlock,
3912 					LOCK_ENABLED_HARDIRQ_READ))
3913 				return 0;
3914 			if (curr->softirqs_enabled)
3915 				if (!mark_lock(curr, hlock,
3916 						LOCK_ENABLED_SOFTIRQ_READ))
3917 					return 0;
3918 		} else {
3919 			if (!mark_lock(curr, hlock,
3920 					LOCK_ENABLED_HARDIRQ))
3921 				return 0;
3922 			if (curr->softirqs_enabled)
3923 				if (!mark_lock(curr, hlock,
3924 						LOCK_ENABLED_SOFTIRQ))
3925 					return 0;
3926 		}
3927 	}
3928 
3929 lock_used:
3930 	/* mark it as used: */
3931 	if (!mark_lock(curr, hlock, LOCK_USED))
3932 		return 0;
3933 
3934 	return 1;
3935 }
3936 
3937 static inline unsigned int task_irq_context(struct task_struct *task)
3938 {
3939 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
3940 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
3941 }
3942 
3943 static int separate_irq_context(struct task_struct *curr,
3944 		struct held_lock *hlock)
3945 {
3946 	unsigned int depth = curr->lockdep_depth;
3947 
3948 	/*
3949 	 * Keep track of points where we cross into an interrupt context:
3950 	 */
3951 	if (depth) {
3952 		struct held_lock *prev_hlock;
3953 
3954 		prev_hlock = curr->held_locks + depth-1;
3955 		/*
3956 		 * If we cross into another context, reset the
3957 		 * hash key (this also prevents the checking and the
3958 		 * adding of the dependency to 'prev'):
3959 		 */
3960 		if (prev_hlock->irq_context != hlock->irq_context)
3961 			return 1;
3962 	}
3963 	return 0;
3964 }
3965 
3966 /*
3967  * Mark a lock with a usage bit, and validate the state transition:
3968  */
3969 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3970 			     enum lock_usage_bit new_bit)
3971 {
3972 	unsigned int new_mask = 1 << new_bit, ret = 1;
3973 
3974 	if (new_bit >= LOCK_USAGE_STATES) {
3975 		DEBUG_LOCKS_WARN_ON(1);
3976 		return 0;
3977 	}
3978 
3979 	/*
3980 	 * If already set then do not dirty the cacheline,
3981 	 * nor do any checks:
3982 	 */
3983 	if (likely(hlock_class(this)->usage_mask & new_mask))
3984 		return 1;
3985 
3986 	if (!graph_lock())
3987 		return 0;
3988 	/*
3989 	 * Make sure we didn't race:
3990 	 */
3991 	if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3992 		graph_unlock();
3993 		return 1;
3994 	}
3995 
3996 	hlock_class(this)->usage_mask |= new_mask;
3997 
3998 	if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
3999 		return 0;
4000 
4001 	switch (new_bit) {
4002 	case LOCK_USED:
4003 		debug_atomic_dec(nr_unused_locks);
4004 		break;
4005 	default:
4006 		ret = mark_lock_irq(curr, this, new_bit);
4007 		if (!ret)
4008 			return 0;
4009 	}
4010 
4011 	graph_unlock();
4012 
4013 	/*
4014 	 * We must printk outside of the graph_lock:
4015 	 */
4016 	if (ret == 2) {
4017 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4018 		print_lock(this);
4019 		print_irqtrace_events(curr);
4020 		dump_stack();
4021 	}
4022 
4023 	return ret;
4024 }
4025 
4026 static inline short task_wait_context(struct task_struct *curr)
4027 {
4028 	/*
4029 	 * Set appropriate wait type for the context; for IRQs we have to take
4030 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4031 	 */
4032 	if (lockdep_hardirq_context()) {
4033 		/*
4034 		 * Check if force_irqthreads will run us threaded.
4035 		 */
4036 		if (curr->hardirq_threaded || curr->irq_config)
4037 			return LD_WAIT_CONFIG;
4038 
4039 		return LD_WAIT_SPIN;
4040 	} else if (curr->softirq_context) {
4041 		/*
4042 		 * Softirqs are always threaded.
4043 		 */
4044 		return LD_WAIT_CONFIG;
4045 	}
4046 
4047 	return LD_WAIT_MAX;
4048 }
4049 
4050 static int
4051 print_lock_invalid_wait_context(struct task_struct *curr,
4052 				struct held_lock *hlock)
4053 {
4054 	short curr_inner;
4055 
4056 	if (!debug_locks_off())
4057 		return 0;
4058 	if (debug_locks_silent)
4059 		return 0;
4060 
4061 	pr_warn("\n");
4062 	pr_warn("=============================\n");
4063 	pr_warn("[ BUG: Invalid wait context ]\n");
4064 	print_kernel_ident();
4065 	pr_warn("-----------------------------\n");
4066 
4067 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4068 	print_lock(hlock);
4069 
4070 	pr_warn("other info that might help us debug this:\n");
4071 
4072 	curr_inner = task_wait_context(curr);
4073 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4074 
4075 	lockdep_print_held_locks(curr);
4076 
4077 	pr_warn("stack backtrace:\n");
4078 	dump_stack();
4079 
4080 	return 0;
4081 }
4082 
4083 /*
4084  * Verify the wait_type context.
4085  *
4086  * This check validates we takes locks in the right wait-type order; that is it
4087  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4088  * acquire spinlocks inside raw_spinlocks and the sort.
4089  *
4090  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4091  * can be taken from (pretty much) any context but also has constraints.
4092  * However when taken in a stricter environment the RCU lock does not loosen
4093  * the constraints.
4094  *
4095  * Therefore we must look for the strictest environment in the lock stack and
4096  * compare that to the lock we're trying to acquire.
4097  */
4098 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4099 {
4100 	short next_inner = hlock_class(next)->wait_type_inner;
4101 	short next_outer = hlock_class(next)->wait_type_outer;
4102 	short curr_inner;
4103 	int depth;
4104 
4105 	if (!curr->lockdep_depth || !next_inner || next->trylock)
4106 		return 0;
4107 
4108 	if (!next_outer)
4109 		next_outer = next_inner;
4110 
4111 	/*
4112 	 * Find start of current irq_context..
4113 	 */
4114 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4115 		struct held_lock *prev = curr->held_locks + depth;
4116 		if (prev->irq_context != next->irq_context)
4117 			break;
4118 	}
4119 	depth++;
4120 
4121 	curr_inner = task_wait_context(curr);
4122 
4123 	for (; depth < curr->lockdep_depth; depth++) {
4124 		struct held_lock *prev = curr->held_locks + depth;
4125 		short prev_inner = hlock_class(prev)->wait_type_inner;
4126 
4127 		if (prev_inner) {
4128 			/*
4129 			 * We can have a bigger inner than a previous one
4130 			 * when outer is smaller than inner, as with RCU.
4131 			 *
4132 			 * Also due to trylocks.
4133 			 */
4134 			curr_inner = min(curr_inner, prev_inner);
4135 		}
4136 	}
4137 
4138 	if (next_outer > curr_inner)
4139 		return print_lock_invalid_wait_context(curr, next);
4140 
4141 	return 0;
4142 }
4143 
4144 #else /* CONFIG_PROVE_LOCKING */
4145 
4146 static inline int
4147 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4148 {
4149 	return 1;
4150 }
4151 
4152 static inline unsigned int task_irq_context(struct task_struct *task)
4153 {
4154 	return 0;
4155 }
4156 
4157 static inline int separate_irq_context(struct task_struct *curr,
4158 		struct held_lock *hlock)
4159 {
4160 	return 0;
4161 }
4162 
4163 static inline int check_wait_context(struct task_struct *curr,
4164 				     struct held_lock *next)
4165 {
4166 	return 0;
4167 }
4168 
4169 #endif /* CONFIG_PROVE_LOCKING */
4170 
4171 /*
4172  * Initialize a lock instance's lock-class mapping info:
4173  */
4174 void lockdep_init_map_waits(struct lockdep_map *lock, const char *name,
4175 			    struct lock_class_key *key, int subclass,
4176 			    short inner, short outer)
4177 {
4178 	int i;
4179 
4180 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4181 		lock->class_cache[i] = NULL;
4182 
4183 #ifdef CONFIG_LOCK_STAT
4184 	lock->cpu = raw_smp_processor_id();
4185 #endif
4186 
4187 	/*
4188 	 * Can't be having no nameless bastards around this place!
4189 	 */
4190 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4191 		lock->name = "NULL";
4192 		return;
4193 	}
4194 
4195 	lock->name = name;
4196 
4197 	lock->wait_type_outer = outer;
4198 	lock->wait_type_inner = inner;
4199 
4200 	/*
4201 	 * No key, no joy, we need to hash something.
4202 	 */
4203 	if (DEBUG_LOCKS_WARN_ON(!key))
4204 		return;
4205 	/*
4206 	 * Sanity check, the lock-class key must either have been allocated
4207 	 * statically or must have been registered as a dynamic key.
4208 	 */
4209 	if (!static_obj(key) && !is_dynamic_key(key)) {
4210 		if (debug_locks)
4211 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4212 		DEBUG_LOCKS_WARN_ON(1);
4213 		return;
4214 	}
4215 	lock->key = key;
4216 
4217 	if (unlikely(!debug_locks))
4218 		return;
4219 
4220 	if (subclass) {
4221 		unsigned long flags;
4222 
4223 		if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
4224 			return;
4225 
4226 		raw_local_irq_save(flags);
4227 		current->lockdep_recursion++;
4228 		register_lock_class(lock, subclass, 1);
4229 		lockdep_recursion_finish();
4230 		raw_local_irq_restore(flags);
4231 	}
4232 }
4233 EXPORT_SYMBOL_GPL(lockdep_init_map_waits);
4234 
4235 struct lock_class_key __lockdep_no_validate__;
4236 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4237 
4238 static void
4239 print_lock_nested_lock_not_held(struct task_struct *curr,
4240 				struct held_lock *hlock,
4241 				unsigned long ip)
4242 {
4243 	if (!debug_locks_off())
4244 		return;
4245 	if (debug_locks_silent)
4246 		return;
4247 
4248 	pr_warn("\n");
4249 	pr_warn("==================================\n");
4250 	pr_warn("WARNING: Nested lock was not taken\n");
4251 	print_kernel_ident();
4252 	pr_warn("----------------------------------\n");
4253 
4254 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4255 	print_lock(hlock);
4256 
4257 	pr_warn("\nbut this task is not holding:\n");
4258 	pr_warn("%s\n", hlock->nest_lock->name);
4259 
4260 	pr_warn("\nstack backtrace:\n");
4261 	dump_stack();
4262 
4263 	pr_warn("\nother info that might help us debug this:\n");
4264 	lockdep_print_held_locks(curr);
4265 
4266 	pr_warn("\nstack backtrace:\n");
4267 	dump_stack();
4268 }
4269 
4270 static int __lock_is_held(const struct lockdep_map *lock, int read);
4271 
4272 /*
4273  * This gets called for every mutex_lock*()/spin_lock*() operation.
4274  * We maintain the dependency maps and validate the locking attempt:
4275  *
4276  * The callers must make sure that IRQs are disabled before calling it,
4277  * otherwise we could get an interrupt which would want to take locks,
4278  * which would end up in lockdep again.
4279  */
4280 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4281 			  int trylock, int read, int check, int hardirqs_off,
4282 			  struct lockdep_map *nest_lock, unsigned long ip,
4283 			  int references, int pin_count)
4284 {
4285 	struct task_struct *curr = current;
4286 	struct lock_class *class = NULL;
4287 	struct held_lock *hlock;
4288 	unsigned int depth;
4289 	int chain_head = 0;
4290 	int class_idx;
4291 	u64 chain_key;
4292 
4293 	if (unlikely(!debug_locks))
4294 		return 0;
4295 
4296 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4297 		check = 0;
4298 
4299 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4300 		class = lock->class_cache[subclass];
4301 	/*
4302 	 * Not cached?
4303 	 */
4304 	if (unlikely(!class)) {
4305 		class = register_lock_class(lock, subclass, 0);
4306 		if (!class)
4307 			return 0;
4308 	}
4309 
4310 	debug_class_ops_inc(class);
4311 
4312 	if (very_verbose(class)) {
4313 		printk("\nacquire class [%px] %s", class->key, class->name);
4314 		if (class->name_version > 1)
4315 			printk(KERN_CONT "#%d", class->name_version);
4316 		printk(KERN_CONT "\n");
4317 		dump_stack();
4318 	}
4319 
4320 	/*
4321 	 * Add the lock to the list of currently held locks.
4322 	 * (we dont increase the depth just yet, up until the
4323 	 * dependency checks are done)
4324 	 */
4325 	depth = curr->lockdep_depth;
4326 	/*
4327 	 * Ran out of static storage for our per-task lock stack again have we?
4328 	 */
4329 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4330 		return 0;
4331 
4332 	class_idx = class - lock_classes;
4333 
4334 	if (depth) { /* we're holding locks */
4335 		hlock = curr->held_locks + depth - 1;
4336 		if (hlock->class_idx == class_idx && nest_lock) {
4337 			if (!references)
4338 				references++;
4339 
4340 			if (!hlock->references)
4341 				hlock->references++;
4342 
4343 			hlock->references += references;
4344 
4345 			/* Overflow */
4346 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4347 				return 0;
4348 
4349 			return 2;
4350 		}
4351 	}
4352 
4353 	hlock = curr->held_locks + depth;
4354 	/*
4355 	 * Plain impossible, we just registered it and checked it weren't no
4356 	 * NULL like.. I bet this mushroom I ate was good!
4357 	 */
4358 	if (DEBUG_LOCKS_WARN_ON(!class))
4359 		return 0;
4360 	hlock->class_idx = class_idx;
4361 	hlock->acquire_ip = ip;
4362 	hlock->instance = lock;
4363 	hlock->nest_lock = nest_lock;
4364 	hlock->irq_context = task_irq_context(curr);
4365 	hlock->trylock = trylock;
4366 	hlock->read = read;
4367 	hlock->check = check;
4368 	hlock->hardirqs_off = !!hardirqs_off;
4369 	hlock->references = references;
4370 #ifdef CONFIG_LOCK_STAT
4371 	hlock->waittime_stamp = 0;
4372 	hlock->holdtime_stamp = lockstat_clock();
4373 #endif
4374 	hlock->pin_count = pin_count;
4375 
4376 	if (check_wait_context(curr, hlock))
4377 		return 0;
4378 
4379 	/* Initialize the lock usage bit */
4380 	if (!mark_usage(curr, hlock, check))
4381 		return 0;
4382 
4383 	/*
4384 	 * Calculate the chain hash: it's the combined hash of all the
4385 	 * lock keys along the dependency chain. We save the hash value
4386 	 * at every step so that we can get the current hash easily
4387 	 * after unlock. The chain hash is then used to cache dependency
4388 	 * results.
4389 	 *
4390 	 * The 'key ID' is what is the most compact key value to drive
4391 	 * the hash, not class->key.
4392 	 */
4393 	/*
4394 	 * Whoops, we did it again.. class_idx is invalid.
4395 	 */
4396 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4397 		return 0;
4398 
4399 	chain_key = curr->curr_chain_key;
4400 	if (!depth) {
4401 		/*
4402 		 * How can we have a chain hash when we ain't got no keys?!
4403 		 */
4404 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4405 			return 0;
4406 		chain_head = 1;
4407 	}
4408 
4409 	hlock->prev_chain_key = chain_key;
4410 	if (separate_irq_context(curr, hlock)) {
4411 		chain_key = INITIAL_CHAIN_KEY;
4412 		chain_head = 1;
4413 	}
4414 	chain_key = iterate_chain_key(chain_key, class_idx);
4415 
4416 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4417 		print_lock_nested_lock_not_held(curr, hlock, ip);
4418 		return 0;
4419 	}
4420 
4421 	if (!debug_locks_silent) {
4422 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4423 		WARN_ON_ONCE(!hlock_class(hlock)->key);
4424 	}
4425 
4426 	if (!validate_chain(curr, hlock, chain_head, chain_key))
4427 		return 0;
4428 
4429 	curr->curr_chain_key = chain_key;
4430 	curr->lockdep_depth++;
4431 	check_chain_key(curr);
4432 #ifdef CONFIG_DEBUG_LOCKDEP
4433 	if (unlikely(!debug_locks))
4434 		return 0;
4435 #endif
4436 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4437 		debug_locks_off();
4438 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4439 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4440 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
4441 
4442 		lockdep_print_held_locks(current);
4443 		debug_show_all_locks();
4444 		dump_stack();
4445 
4446 		return 0;
4447 	}
4448 
4449 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4450 		max_lockdep_depth = curr->lockdep_depth;
4451 
4452 	return 1;
4453 }
4454 
4455 static void print_unlock_imbalance_bug(struct task_struct *curr,
4456 				       struct lockdep_map *lock,
4457 				       unsigned long ip)
4458 {
4459 	if (!debug_locks_off())
4460 		return;
4461 	if (debug_locks_silent)
4462 		return;
4463 
4464 	pr_warn("\n");
4465 	pr_warn("=====================================\n");
4466 	pr_warn("WARNING: bad unlock balance detected!\n");
4467 	print_kernel_ident();
4468 	pr_warn("-------------------------------------\n");
4469 	pr_warn("%s/%d is trying to release lock (",
4470 		curr->comm, task_pid_nr(curr));
4471 	print_lockdep_cache(lock);
4472 	pr_cont(") at:\n");
4473 	print_ip_sym(KERN_WARNING, ip);
4474 	pr_warn("but there are no more locks to release!\n");
4475 	pr_warn("\nother info that might help us debug this:\n");
4476 	lockdep_print_held_locks(curr);
4477 
4478 	pr_warn("\nstack backtrace:\n");
4479 	dump_stack();
4480 }
4481 
4482 static noinstr int match_held_lock(const struct held_lock *hlock,
4483 				   const struct lockdep_map *lock)
4484 {
4485 	if (hlock->instance == lock)
4486 		return 1;
4487 
4488 	if (hlock->references) {
4489 		const struct lock_class *class = lock->class_cache[0];
4490 
4491 		if (!class)
4492 			class = look_up_lock_class(lock, 0);
4493 
4494 		/*
4495 		 * If look_up_lock_class() failed to find a class, we're trying
4496 		 * to test if we hold a lock that has never yet been acquired.
4497 		 * Clearly if the lock hasn't been acquired _ever_, we're not
4498 		 * holding it either, so report failure.
4499 		 */
4500 		if (!class)
4501 			return 0;
4502 
4503 		/*
4504 		 * References, but not a lock we're actually ref-counting?
4505 		 * State got messed up, follow the sites that change ->references
4506 		 * and try to make sense of it.
4507 		 */
4508 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4509 			return 0;
4510 
4511 		if (hlock->class_idx == class - lock_classes)
4512 			return 1;
4513 	}
4514 
4515 	return 0;
4516 }
4517 
4518 /* @depth must not be zero */
4519 static struct held_lock *find_held_lock(struct task_struct *curr,
4520 					struct lockdep_map *lock,
4521 					unsigned int depth, int *idx)
4522 {
4523 	struct held_lock *ret, *hlock, *prev_hlock;
4524 	int i;
4525 
4526 	i = depth - 1;
4527 	hlock = curr->held_locks + i;
4528 	ret = hlock;
4529 	if (match_held_lock(hlock, lock))
4530 		goto out;
4531 
4532 	ret = NULL;
4533 	for (i--, prev_hlock = hlock--;
4534 	     i >= 0;
4535 	     i--, prev_hlock = hlock--) {
4536 		/*
4537 		 * We must not cross into another context:
4538 		 */
4539 		if (prev_hlock->irq_context != hlock->irq_context) {
4540 			ret = NULL;
4541 			break;
4542 		}
4543 		if (match_held_lock(hlock, lock)) {
4544 			ret = hlock;
4545 			break;
4546 		}
4547 	}
4548 
4549 out:
4550 	*idx = i;
4551 	return ret;
4552 }
4553 
4554 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4555 				int idx, unsigned int *merged)
4556 {
4557 	struct held_lock *hlock;
4558 	int first_idx = idx;
4559 
4560 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4561 		return 0;
4562 
4563 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4564 		switch (__lock_acquire(hlock->instance,
4565 				    hlock_class(hlock)->subclass,
4566 				    hlock->trylock,
4567 				    hlock->read, hlock->check,
4568 				    hlock->hardirqs_off,
4569 				    hlock->nest_lock, hlock->acquire_ip,
4570 				    hlock->references, hlock->pin_count)) {
4571 		case 0:
4572 			return 1;
4573 		case 1:
4574 			break;
4575 		case 2:
4576 			*merged += (idx == first_idx);
4577 			break;
4578 		default:
4579 			WARN_ON(1);
4580 			return 0;
4581 		}
4582 	}
4583 	return 0;
4584 }
4585 
4586 static int
4587 __lock_set_class(struct lockdep_map *lock, const char *name,
4588 		 struct lock_class_key *key, unsigned int subclass,
4589 		 unsigned long ip)
4590 {
4591 	struct task_struct *curr = current;
4592 	unsigned int depth, merged = 0;
4593 	struct held_lock *hlock;
4594 	struct lock_class *class;
4595 	int i;
4596 
4597 	if (unlikely(!debug_locks))
4598 		return 0;
4599 
4600 	depth = curr->lockdep_depth;
4601 	/*
4602 	 * This function is about (re)setting the class of a held lock,
4603 	 * yet we're not actually holding any locks. Naughty user!
4604 	 */
4605 	if (DEBUG_LOCKS_WARN_ON(!depth))
4606 		return 0;
4607 
4608 	hlock = find_held_lock(curr, lock, depth, &i);
4609 	if (!hlock) {
4610 		print_unlock_imbalance_bug(curr, lock, ip);
4611 		return 0;
4612 	}
4613 
4614 	lockdep_init_map_waits(lock, name, key, 0,
4615 			       lock->wait_type_inner,
4616 			       lock->wait_type_outer);
4617 	class = register_lock_class(lock, subclass, 0);
4618 	hlock->class_idx = class - lock_classes;
4619 
4620 	curr->lockdep_depth = i;
4621 	curr->curr_chain_key = hlock->prev_chain_key;
4622 
4623 	if (reacquire_held_locks(curr, depth, i, &merged))
4624 		return 0;
4625 
4626 	/*
4627 	 * I took it apart and put it back together again, except now I have
4628 	 * these 'spare' parts.. where shall I put them.
4629 	 */
4630 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
4631 		return 0;
4632 	return 1;
4633 }
4634 
4635 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4636 {
4637 	struct task_struct *curr = current;
4638 	unsigned int depth, merged = 0;
4639 	struct held_lock *hlock;
4640 	int i;
4641 
4642 	if (unlikely(!debug_locks))
4643 		return 0;
4644 
4645 	depth = curr->lockdep_depth;
4646 	/*
4647 	 * This function is about (re)setting the class of a held lock,
4648 	 * yet we're not actually holding any locks. Naughty user!
4649 	 */
4650 	if (DEBUG_LOCKS_WARN_ON(!depth))
4651 		return 0;
4652 
4653 	hlock = find_held_lock(curr, lock, depth, &i);
4654 	if (!hlock) {
4655 		print_unlock_imbalance_bug(curr, lock, ip);
4656 		return 0;
4657 	}
4658 
4659 	curr->lockdep_depth = i;
4660 	curr->curr_chain_key = hlock->prev_chain_key;
4661 
4662 	WARN(hlock->read, "downgrading a read lock");
4663 	hlock->read = 1;
4664 	hlock->acquire_ip = ip;
4665 
4666 	if (reacquire_held_locks(curr, depth, i, &merged))
4667 		return 0;
4668 
4669 	/* Merging can't happen with unchanged classes.. */
4670 	if (DEBUG_LOCKS_WARN_ON(merged))
4671 		return 0;
4672 
4673 	/*
4674 	 * I took it apart and put it back together again, except now I have
4675 	 * these 'spare' parts.. where shall I put them.
4676 	 */
4677 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
4678 		return 0;
4679 
4680 	return 1;
4681 }
4682 
4683 /*
4684  * Remove the lock from the list of currently held locks - this gets
4685  * called on mutex_unlock()/spin_unlock*() (or on a failed
4686  * mutex_lock_interruptible()).
4687  */
4688 static int
4689 __lock_release(struct lockdep_map *lock, unsigned long ip)
4690 {
4691 	struct task_struct *curr = current;
4692 	unsigned int depth, merged = 1;
4693 	struct held_lock *hlock;
4694 	int i;
4695 
4696 	if (unlikely(!debug_locks))
4697 		return 0;
4698 
4699 	depth = curr->lockdep_depth;
4700 	/*
4701 	 * So we're all set to release this lock.. wait what lock? We don't
4702 	 * own any locks, you've been drinking again?
4703 	 */
4704 	if (depth <= 0) {
4705 		print_unlock_imbalance_bug(curr, lock, ip);
4706 		return 0;
4707 	}
4708 
4709 	/*
4710 	 * Check whether the lock exists in the current stack
4711 	 * of held locks:
4712 	 */
4713 	hlock = find_held_lock(curr, lock, depth, &i);
4714 	if (!hlock) {
4715 		print_unlock_imbalance_bug(curr, lock, ip);
4716 		return 0;
4717 	}
4718 
4719 	if (hlock->instance == lock)
4720 		lock_release_holdtime(hlock);
4721 
4722 	WARN(hlock->pin_count, "releasing a pinned lock\n");
4723 
4724 	if (hlock->references) {
4725 		hlock->references--;
4726 		if (hlock->references) {
4727 			/*
4728 			 * We had, and after removing one, still have
4729 			 * references, the current lock stack is still
4730 			 * valid. We're done!
4731 			 */
4732 			return 1;
4733 		}
4734 	}
4735 
4736 	/*
4737 	 * We have the right lock to unlock, 'hlock' points to it.
4738 	 * Now we remove it from the stack, and add back the other
4739 	 * entries (if any), recalculating the hash along the way:
4740 	 */
4741 
4742 	curr->lockdep_depth = i;
4743 	curr->curr_chain_key = hlock->prev_chain_key;
4744 
4745 	/*
4746 	 * The most likely case is when the unlock is on the innermost
4747 	 * lock. In this case, we are done!
4748 	 */
4749 	if (i == depth-1)
4750 		return 1;
4751 
4752 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
4753 		return 0;
4754 
4755 	/*
4756 	 * We had N bottles of beer on the wall, we drank one, but now
4757 	 * there's not N-1 bottles of beer left on the wall...
4758 	 * Pouring two of the bottles together is acceptable.
4759 	 */
4760 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
4761 
4762 	/*
4763 	 * Since reacquire_held_locks() would have called check_chain_key()
4764 	 * indirectly via __lock_acquire(), we don't need to do it again
4765 	 * on return.
4766 	 */
4767 	return 0;
4768 }
4769 
4770 static __always_inline
4771 int __lock_is_held(const struct lockdep_map *lock, int read)
4772 {
4773 	struct task_struct *curr = current;
4774 	int i;
4775 
4776 	for (i = 0; i < curr->lockdep_depth; i++) {
4777 		struct held_lock *hlock = curr->held_locks + i;
4778 
4779 		if (match_held_lock(hlock, lock)) {
4780 			if (read == -1 || hlock->read == read)
4781 				return 1;
4782 
4783 			return 0;
4784 		}
4785 	}
4786 
4787 	return 0;
4788 }
4789 
4790 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
4791 {
4792 	struct pin_cookie cookie = NIL_COOKIE;
4793 	struct task_struct *curr = current;
4794 	int i;
4795 
4796 	if (unlikely(!debug_locks))
4797 		return cookie;
4798 
4799 	for (i = 0; i < curr->lockdep_depth; i++) {
4800 		struct held_lock *hlock = curr->held_locks + i;
4801 
4802 		if (match_held_lock(hlock, lock)) {
4803 			/*
4804 			 * Grab 16bits of randomness; this is sufficient to not
4805 			 * be guessable and still allows some pin nesting in
4806 			 * our u32 pin_count.
4807 			 */
4808 			cookie.val = 1 + (prandom_u32() >> 16);
4809 			hlock->pin_count += cookie.val;
4810 			return cookie;
4811 		}
4812 	}
4813 
4814 	WARN(1, "pinning an unheld lock\n");
4815 	return cookie;
4816 }
4817 
4818 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4819 {
4820 	struct task_struct *curr = current;
4821 	int i;
4822 
4823 	if (unlikely(!debug_locks))
4824 		return;
4825 
4826 	for (i = 0; i < curr->lockdep_depth; i++) {
4827 		struct held_lock *hlock = curr->held_locks + i;
4828 
4829 		if (match_held_lock(hlock, lock)) {
4830 			hlock->pin_count += cookie.val;
4831 			return;
4832 		}
4833 	}
4834 
4835 	WARN(1, "pinning an unheld lock\n");
4836 }
4837 
4838 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4839 {
4840 	struct task_struct *curr = current;
4841 	int i;
4842 
4843 	if (unlikely(!debug_locks))
4844 		return;
4845 
4846 	for (i = 0; i < curr->lockdep_depth; i++) {
4847 		struct held_lock *hlock = curr->held_locks + i;
4848 
4849 		if (match_held_lock(hlock, lock)) {
4850 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
4851 				return;
4852 
4853 			hlock->pin_count -= cookie.val;
4854 
4855 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
4856 				hlock->pin_count = 0;
4857 
4858 			return;
4859 		}
4860 	}
4861 
4862 	WARN(1, "unpinning an unheld lock\n");
4863 }
4864 
4865 /*
4866  * Check whether we follow the irq-flags state precisely:
4867  */
4868 static void check_flags(unsigned long flags)
4869 {
4870 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
4871 	if (!debug_locks)
4872 		return;
4873 
4874 	if (irqs_disabled_flags(flags)) {
4875 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
4876 			printk("possible reason: unannotated irqs-off.\n");
4877 		}
4878 	} else {
4879 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
4880 			printk("possible reason: unannotated irqs-on.\n");
4881 		}
4882 	}
4883 
4884 	/*
4885 	 * We dont accurately track softirq state in e.g.
4886 	 * hardirq contexts (such as on 4KSTACKS), so only
4887 	 * check if not in hardirq contexts:
4888 	 */
4889 	if (!hardirq_count()) {
4890 		if (softirq_count()) {
4891 			/* like the above, but with softirqs */
4892 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
4893 		} else {
4894 			/* lick the above, does it taste good? */
4895 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
4896 		}
4897 	}
4898 
4899 	if (!debug_locks)
4900 		print_irqtrace_events(current);
4901 #endif
4902 }
4903 
4904 void lock_set_class(struct lockdep_map *lock, const char *name,
4905 		    struct lock_class_key *key, unsigned int subclass,
4906 		    unsigned long ip)
4907 {
4908 	unsigned long flags;
4909 
4910 	if (unlikely(current->lockdep_recursion))
4911 		return;
4912 
4913 	raw_local_irq_save(flags);
4914 	current->lockdep_recursion++;
4915 	check_flags(flags);
4916 	if (__lock_set_class(lock, name, key, subclass, ip))
4917 		check_chain_key(current);
4918 	lockdep_recursion_finish();
4919 	raw_local_irq_restore(flags);
4920 }
4921 EXPORT_SYMBOL_GPL(lock_set_class);
4922 
4923 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4924 {
4925 	unsigned long flags;
4926 
4927 	if (unlikely(current->lockdep_recursion))
4928 		return;
4929 
4930 	raw_local_irq_save(flags);
4931 	current->lockdep_recursion++;
4932 	check_flags(flags);
4933 	if (__lock_downgrade(lock, ip))
4934 		check_chain_key(current);
4935 	lockdep_recursion_finish();
4936 	raw_local_irq_restore(flags);
4937 }
4938 EXPORT_SYMBOL_GPL(lock_downgrade);
4939 
4940 /* NMI context !!! */
4941 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
4942 {
4943 #ifdef CONFIG_PROVE_LOCKING
4944 	struct lock_class *class = look_up_lock_class(lock, subclass);
4945 
4946 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
4947 	if (!class)
4948 		return;
4949 
4950 	if (!(class->usage_mask & LOCK_USED))
4951 		return;
4952 
4953 	hlock->class_idx = class - lock_classes;
4954 
4955 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
4956 #endif
4957 }
4958 
4959 static bool lockdep_nmi(void)
4960 {
4961 	if (current->lockdep_recursion & LOCKDEP_RECURSION_MASK)
4962 		return false;
4963 
4964 	if (!in_nmi())
4965 		return false;
4966 
4967 	return true;
4968 }
4969 
4970 /*
4971  * We are not always called with irqs disabled - do that here,
4972  * and also avoid lockdep recursion:
4973  */
4974 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4975 			  int trylock, int read, int check,
4976 			  struct lockdep_map *nest_lock, unsigned long ip)
4977 {
4978 	unsigned long flags;
4979 
4980 	if (unlikely(current->lockdep_recursion)) {
4981 		/* XXX allow trylock from NMI ?!? */
4982 		if (lockdep_nmi() && !trylock) {
4983 			struct held_lock hlock;
4984 
4985 			hlock.acquire_ip = ip;
4986 			hlock.instance = lock;
4987 			hlock.nest_lock = nest_lock;
4988 			hlock.irq_context = 2; // XXX
4989 			hlock.trylock = trylock;
4990 			hlock.read = read;
4991 			hlock.check = check;
4992 			hlock.hardirqs_off = true;
4993 			hlock.references = 0;
4994 
4995 			verify_lock_unused(lock, &hlock, subclass);
4996 		}
4997 		return;
4998 	}
4999 
5000 	raw_local_irq_save(flags);
5001 	check_flags(flags);
5002 
5003 	current->lockdep_recursion++;
5004 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5005 	__lock_acquire(lock, subclass, trylock, read, check,
5006 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5007 	lockdep_recursion_finish();
5008 	raw_local_irq_restore(flags);
5009 }
5010 EXPORT_SYMBOL_GPL(lock_acquire);
5011 
5012 void lock_release(struct lockdep_map *lock, unsigned long ip)
5013 {
5014 	unsigned long flags;
5015 
5016 	if (unlikely(current->lockdep_recursion))
5017 		return;
5018 
5019 	raw_local_irq_save(flags);
5020 	check_flags(flags);
5021 	current->lockdep_recursion++;
5022 	trace_lock_release(lock, ip);
5023 	if (__lock_release(lock, ip))
5024 		check_chain_key(current);
5025 	lockdep_recursion_finish();
5026 	raw_local_irq_restore(flags);
5027 }
5028 EXPORT_SYMBOL_GPL(lock_release);
5029 
5030 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5031 {
5032 	unsigned long flags;
5033 	int ret = 0;
5034 
5035 	if (unlikely(current->lockdep_recursion))
5036 		return 1; /* avoid false negative lockdep_assert_held() */
5037 
5038 	raw_local_irq_save(flags);
5039 	check_flags(flags);
5040 
5041 	current->lockdep_recursion++;
5042 	ret = __lock_is_held(lock, read);
5043 	lockdep_recursion_finish();
5044 	raw_local_irq_restore(flags);
5045 
5046 	return ret;
5047 }
5048 EXPORT_SYMBOL_GPL(lock_is_held_type);
5049 NOKPROBE_SYMBOL(lock_is_held_type);
5050 
5051 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5052 {
5053 	struct pin_cookie cookie = NIL_COOKIE;
5054 	unsigned long flags;
5055 
5056 	if (unlikely(current->lockdep_recursion))
5057 		return cookie;
5058 
5059 	raw_local_irq_save(flags);
5060 	check_flags(flags);
5061 
5062 	current->lockdep_recursion++;
5063 	cookie = __lock_pin_lock(lock);
5064 	lockdep_recursion_finish();
5065 	raw_local_irq_restore(flags);
5066 
5067 	return cookie;
5068 }
5069 EXPORT_SYMBOL_GPL(lock_pin_lock);
5070 
5071 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5072 {
5073 	unsigned long flags;
5074 
5075 	if (unlikely(current->lockdep_recursion))
5076 		return;
5077 
5078 	raw_local_irq_save(flags);
5079 	check_flags(flags);
5080 
5081 	current->lockdep_recursion++;
5082 	__lock_repin_lock(lock, cookie);
5083 	lockdep_recursion_finish();
5084 	raw_local_irq_restore(flags);
5085 }
5086 EXPORT_SYMBOL_GPL(lock_repin_lock);
5087 
5088 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5089 {
5090 	unsigned long flags;
5091 
5092 	if (unlikely(current->lockdep_recursion))
5093 		return;
5094 
5095 	raw_local_irq_save(flags);
5096 	check_flags(flags);
5097 
5098 	current->lockdep_recursion++;
5099 	__lock_unpin_lock(lock, cookie);
5100 	lockdep_recursion_finish();
5101 	raw_local_irq_restore(flags);
5102 }
5103 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5104 
5105 #ifdef CONFIG_LOCK_STAT
5106 static void print_lock_contention_bug(struct task_struct *curr,
5107 				      struct lockdep_map *lock,
5108 				      unsigned long ip)
5109 {
5110 	if (!debug_locks_off())
5111 		return;
5112 	if (debug_locks_silent)
5113 		return;
5114 
5115 	pr_warn("\n");
5116 	pr_warn("=================================\n");
5117 	pr_warn("WARNING: bad contention detected!\n");
5118 	print_kernel_ident();
5119 	pr_warn("---------------------------------\n");
5120 	pr_warn("%s/%d is trying to contend lock (",
5121 		curr->comm, task_pid_nr(curr));
5122 	print_lockdep_cache(lock);
5123 	pr_cont(") at:\n");
5124 	print_ip_sym(KERN_WARNING, ip);
5125 	pr_warn("but there are no locks held!\n");
5126 	pr_warn("\nother info that might help us debug this:\n");
5127 	lockdep_print_held_locks(curr);
5128 
5129 	pr_warn("\nstack backtrace:\n");
5130 	dump_stack();
5131 }
5132 
5133 static void
5134 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5135 {
5136 	struct task_struct *curr = current;
5137 	struct held_lock *hlock;
5138 	struct lock_class_stats *stats;
5139 	unsigned int depth;
5140 	int i, contention_point, contending_point;
5141 
5142 	depth = curr->lockdep_depth;
5143 	/*
5144 	 * Whee, we contended on this lock, except it seems we're not
5145 	 * actually trying to acquire anything much at all..
5146 	 */
5147 	if (DEBUG_LOCKS_WARN_ON(!depth))
5148 		return;
5149 
5150 	hlock = find_held_lock(curr, lock, depth, &i);
5151 	if (!hlock) {
5152 		print_lock_contention_bug(curr, lock, ip);
5153 		return;
5154 	}
5155 
5156 	if (hlock->instance != lock)
5157 		return;
5158 
5159 	hlock->waittime_stamp = lockstat_clock();
5160 
5161 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5162 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5163 				      lock->ip);
5164 
5165 	stats = get_lock_stats(hlock_class(hlock));
5166 	if (contention_point < LOCKSTAT_POINTS)
5167 		stats->contention_point[contention_point]++;
5168 	if (contending_point < LOCKSTAT_POINTS)
5169 		stats->contending_point[contending_point]++;
5170 	if (lock->cpu != smp_processor_id())
5171 		stats->bounces[bounce_contended + !!hlock->read]++;
5172 }
5173 
5174 static void
5175 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5176 {
5177 	struct task_struct *curr = current;
5178 	struct held_lock *hlock;
5179 	struct lock_class_stats *stats;
5180 	unsigned int depth;
5181 	u64 now, waittime = 0;
5182 	int i, cpu;
5183 
5184 	depth = curr->lockdep_depth;
5185 	/*
5186 	 * Yay, we acquired ownership of this lock we didn't try to
5187 	 * acquire, how the heck did that happen?
5188 	 */
5189 	if (DEBUG_LOCKS_WARN_ON(!depth))
5190 		return;
5191 
5192 	hlock = find_held_lock(curr, lock, depth, &i);
5193 	if (!hlock) {
5194 		print_lock_contention_bug(curr, lock, _RET_IP_);
5195 		return;
5196 	}
5197 
5198 	if (hlock->instance != lock)
5199 		return;
5200 
5201 	cpu = smp_processor_id();
5202 	if (hlock->waittime_stamp) {
5203 		now = lockstat_clock();
5204 		waittime = now - hlock->waittime_stamp;
5205 		hlock->holdtime_stamp = now;
5206 	}
5207 
5208 	trace_lock_acquired(lock, ip);
5209 
5210 	stats = get_lock_stats(hlock_class(hlock));
5211 	if (waittime) {
5212 		if (hlock->read)
5213 			lock_time_inc(&stats->read_waittime, waittime);
5214 		else
5215 			lock_time_inc(&stats->write_waittime, waittime);
5216 	}
5217 	if (lock->cpu != cpu)
5218 		stats->bounces[bounce_acquired + !!hlock->read]++;
5219 
5220 	lock->cpu = cpu;
5221 	lock->ip = ip;
5222 }
5223 
5224 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5225 {
5226 	unsigned long flags;
5227 
5228 	if (unlikely(!lock_stat || !debug_locks))
5229 		return;
5230 
5231 	if (unlikely(current->lockdep_recursion))
5232 		return;
5233 
5234 	raw_local_irq_save(flags);
5235 	check_flags(flags);
5236 	current->lockdep_recursion++;
5237 	trace_lock_contended(lock, ip);
5238 	__lock_contended(lock, ip);
5239 	lockdep_recursion_finish();
5240 	raw_local_irq_restore(flags);
5241 }
5242 EXPORT_SYMBOL_GPL(lock_contended);
5243 
5244 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5245 {
5246 	unsigned long flags;
5247 
5248 	if (unlikely(!lock_stat || !debug_locks))
5249 		return;
5250 
5251 	if (unlikely(current->lockdep_recursion))
5252 		return;
5253 
5254 	raw_local_irq_save(flags);
5255 	check_flags(flags);
5256 	current->lockdep_recursion++;
5257 	__lock_acquired(lock, ip);
5258 	lockdep_recursion_finish();
5259 	raw_local_irq_restore(flags);
5260 }
5261 EXPORT_SYMBOL_GPL(lock_acquired);
5262 #endif
5263 
5264 /*
5265  * Used by the testsuite, sanitize the validator state
5266  * after a simulated failure:
5267  */
5268 
5269 void lockdep_reset(void)
5270 {
5271 	unsigned long flags;
5272 	int i;
5273 
5274 	raw_local_irq_save(flags);
5275 	lockdep_init_task(current);
5276 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5277 	nr_hardirq_chains = 0;
5278 	nr_softirq_chains = 0;
5279 	nr_process_chains = 0;
5280 	debug_locks = 1;
5281 	for (i = 0; i < CHAINHASH_SIZE; i++)
5282 		INIT_HLIST_HEAD(chainhash_table + i);
5283 	raw_local_irq_restore(flags);
5284 }
5285 
5286 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5287 static void remove_class_from_lock_chain(struct pending_free *pf,
5288 					 struct lock_chain *chain,
5289 					 struct lock_class *class)
5290 {
5291 #ifdef CONFIG_PROVE_LOCKING
5292 	int i;
5293 
5294 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5295 		if (chain_hlocks[i] != class - lock_classes)
5296 			continue;
5297 		/*
5298 		 * Each lock class occurs at most once in a lock chain so once
5299 		 * we found a match we can break out of this loop.
5300 		 */
5301 		goto free_lock_chain;
5302 	}
5303 	/* Since the chain has not been modified, return. */
5304 	return;
5305 
5306 free_lock_chain:
5307 	free_chain_hlocks(chain->base, chain->depth);
5308 	/* Overwrite the chain key for concurrent RCU readers. */
5309 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5310 	dec_chains(chain->irq_context);
5311 
5312 	/*
5313 	 * Note: calling hlist_del_rcu() from inside a
5314 	 * hlist_for_each_entry_rcu() loop is safe.
5315 	 */
5316 	hlist_del_rcu(&chain->entry);
5317 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5318 	nr_zapped_lock_chains++;
5319 #endif
5320 }
5321 
5322 /* Must be called with the graph lock held. */
5323 static void remove_class_from_lock_chains(struct pending_free *pf,
5324 					  struct lock_class *class)
5325 {
5326 	struct lock_chain *chain;
5327 	struct hlist_head *head;
5328 	int i;
5329 
5330 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5331 		head = chainhash_table + i;
5332 		hlist_for_each_entry_rcu(chain, head, entry) {
5333 			remove_class_from_lock_chain(pf, chain, class);
5334 		}
5335 	}
5336 }
5337 
5338 /*
5339  * Remove all references to a lock class. The caller must hold the graph lock.
5340  */
5341 static void zap_class(struct pending_free *pf, struct lock_class *class)
5342 {
5343 	struct lock_list *entry;
5344 	int i;
5345 
5346 	WARN_ON_ONCE(!class->key);
5347 
5348 	/*
5349 	 * Remove all dependencies this lock is
5350 	 * involved in:
5351 	 */
5352 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5353 		entry = list_entries + i;
5354 		if (entry->class != class && entry->links_to != class)
5355 			continue;
5356 		__clear_bit(i, list_entries_in_use);
5357 		nr_list_entries--;
5358 		list_del_rcu(&entry->entry);
5359 	}
5360 	if (list_empty(&class->locks_after) &&
5361 	    list_empty(&class->locks_before)) {
5362 		list_move_tail(&class->lock_entry, &pf->zapped);
5363 		hlist_del_rcu(&class->hash_entry);
5364 		WRITE_ONCE(class->key, NULL);
5365 		WRITE_ONCE(class->name, NULL);
5366 		nr_lock_classes--;
5367 		__clear_bit(class - lock_classes, lock_classes_in_use);
5368 	} else {
5369 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5370 			  class->name);
5371 	}
5372 
5373 	remove_class_from_lock_chains(pf, class);
5374 	nr_zapped_classes++;
5375 }
5376 
5377 static void reinit_class(struct lock_class *class)
5378 {
5379 	void *const p = class;
5380 	const unsigned int offset = offsetof(struct lock_class, key);
5381 
5382 	WARN_ON_ONCE(!class->lock_entry.next);
5383 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5384 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5385 	memset(p + offset, 0, sizeof(*class) - offset);
5386 	WARN_ON_ONCE(!class->lock_entry.next);
5387 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5388 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5389 }
5390 
5391 static inline int within(const void *addr, void *start, unsigned long size)
5392 {
5393 	return addr >= start && addr < start + size;
5394 }
5395 
5396 static bool inside_selftest(void)
5397 {
5398 	return current == lockdep_selftest_task_struct;
5399 }
5400 
5401 /* The caller must hold the graph lock. */
5402 static struct pending_free *get_pending_free(void)
5403 {
5404 	return delayed_free.pf + delayed_free.index;
5405 }
5406 
5407 static void free_zapped_rcu(struct rcu_head *cb);
5408 
5409 /*
5410  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5411  * the graph lock held.
5412  */
5413 static void call_rcu_zapped(struct pending_free *pf)
5414 {
5415 	WARN_ON_ONCE(inside_selftest());
5416 
5417 	if (list_empty(&pf->zapped))
5418 		return;
5419 
5420 	if (delayed_free.scheduled)
5421 		return;
5422 
5423 	delayed_free.scheduled = true;
5424 
5425 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5426 	delayed_free.index ^= 1;
5427 
5428 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5429 }
5430 
5431 /* The caller must hold the graph lock. May be called from RCU context. */
5432 static void __free_zapped_classes(struct pending_free *pf)
5433 {
5434 	struct lock_class *class;
5435 
5436 	check_data_structures();
5437 
5438 	list_for_each_entry(class, &pf->zapped, lock_entry)
5439 		reinit_class(class);
5440 
5441 	list_splice_init(&pf->zapped, &free_lock_classes);
5442 
5443 #ifdef CONFIG_PROVE_LOCKING
5444 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5445 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5446 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5447 #endif
5448 }
5449 
5450 static void free_zapped_rcu(struct rcu_head *ch)
5451 {
5452 	struct pending_free *pf;
5453 	unsigned long flags;
5454 
5455 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5456 		return;
5457 
5458 	raw_local_irq_save(flags);
5459 	lockdep_lock();
5460 
5461 	/* closed head */
5462 	pf = delayed_free.pf + (delayed_free.index ^ 1);
5463 	__free_zapped_classes(pf);
5464 	delayed_free.scheduled = false;
5465 
5466 	/*
5467 	 * If there's anything on the open list, close and start a new callback.
5468 	 */
5469 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
5470 
5471 	lockdep_unlock();
5472 	raw_local_irq_restore(flags);
5473 }
5474 
5475 /*
5476  * Remove all lock classes from the class hash table and from the
5477  * all_lock_classes list whose key or name is in the address range [start,
5478  * start + size). Move these lock classes to the zapped_classes list. Must
5479  * be called with the graph lock held.
5480  */
5481 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5482 				     unsigned long size)
5483 {
5484 	struct lock_class *class;
5485 	struct hlist_head *head;
5486 	int i;
5487 
5488 	/* Unhash all classes that were created by a module. */
5489 	for (i = 0; i < CLASSHASH_SIZE; i++) {
5490 		head = classhash_table + i;
5491 		hlist_for_each_entry_rcu(class, head, hash_entry) {
5492 			if (!within(class->key, start, size) &&
5493 			    !within(class->name, start, size))
5494 				continue;
5495 			zap_class(pf, class);
5496 		}
5497 	}
5498 }
5499 
5500 /*
5501  * Used in module.c to remove lock classes from memory that is going to be
5502  * freed; and possibly re-used by other modules.
5503  *
5504  * We will have had one synchronize_rcu() before getting here, so we're
5505  * guaranteed nobody will look up these exact classes -- they're properly dead
5506  * but still allocated.
5507  */
5508 static void lockdep_free_key_range_reg(void *start, unsigned long size)
5509 {
5510 	struct pending_free *pf;
5511 	unsigned long flags;
5512 
5513 	init_data_structures_once();
5514 
5515 	raw_local_irq_save(flags);
5516 	lockdep_lock();
5517 	pf = get_pending_free();
5518 	__lockdep_free_key_range(pf, start, size);
5519 	call_rcu_zapped(pf);
5520 	lockdep_unlock();
5521 	raw_local_irq_restore(flags);
5522 
5523 	/*
5524 	 * Wait for any possible iterators from look_up_lock_class() to pass
5525 	 * before continuing to free the memory they refer to.
5526 	 */
5527 	synchronize_rcu();
5528 }
5529 
5530 /*
5531  * Free all lockdep keys in the range [start, start+size). Does not sleep.
5532  * Ignores debug_locks. Must only be used by the lockdep selftests.
5533  */
5534 static void lockdep_free_key_range_imm(void *start, unsigned long size)
5535 {
5536 	struct pending_free *pf = delayed_free.pf;
5537 	unsigned long flags;
5538 
5539 	init_data_structures_once();
5540 
5541 	raw_local_irq_save(flags);
5542 	lockdep_lock();
5543 	__lockdep_free_key_range(pf, start, size);
5544 	__free_zapped_classes(pf);
5545 	lockdep_unlock();
5546 	raw_local_irq_restore(flags);
5547 }
5548 
5549 void lockdep_free_key_range(void *start, unsigned long size)
5550 {
5551 	init_data_structures_once();
5552 
5553 	if (inside_selftest())
5554 		lockdep_free_key_range_imm(start, size);
5555 	else
5556 		lockdep_free_key_range_reg(start, size);
5557 }
5558 
5559 /*
5560  * Check whether any element of the @lock->class_cache[] array refers to a
5561  * registered lock class. The caller must hold either the graph lock or the
5562  * RCU read lock.
5563  */
5564 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5565 {
5566 	struct lock_class *class;
5567 	struct hlist_head *head;
5568 	int i, j;
5569 
5570 	for (i = 0; i < CLASSHASH_SIZE; i++) {
5571 		head = classhash_table + i;
5572 		hlist_for_each_entry_rcu(class, head, hash_entry) {
5573 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
5574 				if (lock->class_cache[j] == class)
5575 					return true;
5576 		}
5577 	}
5578 	return false;
5579 }
5580 
5581 /* The caller must hold the graph lock. Does not sleep. */
5582 static void __lockdep_reset_lock(struct pending_free *pf,
5583 				 struct lockdep_map *lock)
5584 {
5585 	struct lock_class *class;
5586 	int j;
5587 
5588 	/*
5589 	 * Remove all classes this lock might have:
5590 	 */
5591 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
5592 		/*
5593 		 * If the class exists we look it up and zap it:
5594 		 */
5595 		class = look_up_lock_class(lock, j);
5596 		if (class)
5597 			zap_class(pf, class);
5598 	}
5599 	/*
5600 	 * Debug check: in the end all mapped classes should
5601 	 * be gone.
5602 	 */
5603 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
5604 		debug_locks_off();
5605 }
5606 
5607 /*
5608  * Remove all information lockdep has about a lock if debug_locks == 1. Free
5609  * released data structures from RCU context.
5610  */
5611 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
5612 {
5613 	struct pending_free *pf;
5614 	unsigned long flags;
5615 	int locked;
5616 
5617 	raw_local_irq_save(flags);
5618 	locked = graph_lock();
5619 	if (!locked)
5620 		goto out_irq;
5621 
5622 	pf = get_pending_free();
5623 	__lockdep_reset_lock(pf, lock);
5624 	call_rcu_zapped(pf);
5625 
5626 	graph_unlock();
5627 out_irq:
5628 	raw_local_irq_restore(flags);
5629 }
5630 
5631 /*
5632  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
5633  * lockdep selftests.
5634  */
5635 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
5636 {
5637 	struct pending_free *pf = delayed_free.pf;
5638 	unsigned long flags;
5639 
5640 	raw_local_irq_save(flags);
5641 	lockdep_lock();
5642 	__lockdep_reset_lock(pf, lock);
5643 	__free_zapped_classes(pf);
5644 	lockdep_unlock();
5645 	raw_local_irq_restore(flags);
5646 }
5647 
5648 void lockdep_reset_lock(struct lockdep_map *lock)
5649 {
5650 	init_data_structures_once();
5651 
5652 	if (inside_selftest())
5653 		lockdep_reset_lock_imm(lock);
5654 	else
5655 		lockdep_reset_lock_reg(lock);
5656 }
5657 
5658 /* Unregister a dynamically allocated key. */
5659 void lockdep_unregister_key(struct lock_class_key *key)
5660 {
5661 	struct hlist_head *hash_head = keyhashentry(key);
5662 	struct lock_class_key *k;
5663 	struct pending_free *pf;
5664 	unsigned long flags;
5665 	bool found = false;
5666 
5667 	might_sleep();
5668 
5669 	if (WARN_ON_ONCE(static_obj(key)))
5670 		return;
5671 
5672 	raw_local_irq_save(flags);
5673 	if (!graph_lock())
5674 		goto out_irq;
5675 
5676 	pf = get_pending_free();
5677 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
5678 		if (k == key) {
5679 			hlist_del_rcu(&k->hash_entry);
5680 			found = true;
5681 			break;
5682 		}
5683 	}
5684 	WARN_ON_ONCE(!found);
5685 	__lockdep_free_key_range(pf, key, 1);
5686 	call_rcu_zapped(pf);
5687 	graph_unlock();
5688 out_irq:
5689 	raw_local_irq_restore(flags);
5690 
5691 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
5692 	synchronize_rcu();
5693 }
5694 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
5695 
5696 void __init lockdep_init(void)
5697 {
5698 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
5699 
5700 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
5701 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
5702 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
5703 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
5704 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
5705 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
5706 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
5707 
5708 	printk(" memory used by lock dependency info: %zu kB\n",
5709 	       (sizeof(lock_classes) +
5710 		sizeof(lock_classes_in_use) +
5711 		sizeof(classhash_table) +
5712 		sizeof(list_entries) +
5713 		sizeof(list_entries_in_use) +
5714 		sizeof(chainhash_table) +
5715 		sizeof(delayed_free)
5716 #ifdef CONFIG_PROVE_LOCKING
5717 		+ sizeof(lock_cq)
5718 		+ sizeof(lock_chains)
5719 		+ sizeof(lock_chains_in_use)
5720 		+ sizeof(chain_hlocks)
5721 #endif
5722 		) / 1024
5723 		);
5724 
5725 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
5726 	printk(" memory used for stack traces: %zu kB\n",
5727 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
5728 	       );
5729 #endif
5730 
5731 	printk(" per task-struct memory footprint: %zu bytes\n",
5732 	       sizeof(((struct task_struct *)NULL)->held_locks));
5733 }
5734 
5735 static void
5736 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
5737 		     const void *mem_to, struct held_lock *hlock)
5738 {
5739 	if (!debug_locks_off())
5740 		return;
5741 	if (debug_locks_silent)
5742 		return;
5743 
5744 	pr_warn("\n");
5745 	pr_warn("=========================\n");
5746 	pr_warn("WARNING: held lock freed!\n");
5747 	print_kernel_ident();
5748 	pr_warn("-------------------------\n");
5749 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
5750 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
5751 	print_lock(hlock);
5752 	lockdep_print_held_locks(curr);
5753 
5754 	pr_warn("\nstack backtrace:\n");
5755 	dump_stack();
5756 }
5757 
5758 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
5759 				const void* lock_from, unsigned long lock_len)
5760 {
5761 	return lock_from + lock_len <= mem_from ||
5762 		mem_from + mem_len <= lock_from;
5763 }
5764 
5765 /*
5766  * Called when kernel memory is freed (or unmapped), or if a lock
5767  * is destroyed or reinitialized - this code checks whether there is
5768  * any held lock in the memory range of <from> to <to>:
5769  */
5770 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
5771 {
5772 	struct task_struct *curr = current;
5773 	struct held_lock *hlock;
5774 	unsigned long flags;
5775 	int i;
5776 
5777 	if (unlikely(!debug_locks))
5778 		return;
5779 
5780 	raw_local_irq_save(flags);
5781 	for (i = 0; i < curr->lockdep_depth; i++) {
5782 		hlock = curr->held_locks + i;
5783 
5784 		if (not_in_range(mem_from, mem_len, hlock->instance,
5785 					sizeof(*hlock->instance)))
5786 			continue;
5787 
5788 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
5789 		break;
5790 	}
5791 	raw_local_irq_restore(flags);
5792 }
5793 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
5794 
5795 static void print_held_locks_bug(void)
5796 {
5797 	if (!debug_locks_off())
5798 		return;
5799 	if (debug_locks_silent)
5800 		return;
5801 
5802 	pr_warn("\n");
5803 	pr_warn("====================================\n");
5804 	pr_warn("WARNING: %s/%d still has locks held!\n",
5805 	       current->comm, task_pid_nr(current));
5806 	print_kernel_ident();
5807 	pr_warn("------------------------------------\n");
5808 	lockdep_print_held_locks(current);
5809 	pr_warn("\nstack backtrace:\n");
5810 	dump_stack();
5811 }
5812 
5813 void debug_check_no_locks_held(void)
5814 {
5815 	if (unlikely(current->lockdep_depth > 0))
5816 		print_held_locks_bug();
5817 }
5818 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
5819 
5820 #ifdef __KERNEL__
5821 void debug_show_all_locks(void)
5822 {
5823 	struct task_struct *g, *p;
5824 
5825 	if (unlikely(!debug_locks)) {
5826 		pr_warn("INFO: lockdep is turned off.\n");
5827 		return;
5828 	}
5829 	pr_warn("\nShowing all locks held in the system:\n");
5830 
5831 	rcu_read_lock();
5832 	for_each_process_thread(g, p) {
5833 		if (!p->lockdep_depth)
5834 			continue;
5835 		lockdep_print_held_locks(p);
5836 		touch_nmi_watchdog();
5837 		touch_all_softlockup_watchdogs();
5838 	}
5839 	rcu_read_unlock();
5840 
5841 	pr_warn("\n");
5842 	pr_warn("=============================================\n\n");
5843 }
5844 EXPORT_SYMBOL_GPL(debug_show_all_locks);
5845 #endif
5846 
5847 /*
5848  * Careful: only use this function if you are sure that
5849  * the task cannot run in parallel!
5850  */
5851 void debug_show_held_locks(struct task_struct *task)
5852 {
5853 	if (unlikely(!debug_locks)) {
5854 		printk("INFO: lockdep is turned off.\n");
5855 		return;
5856 	}
5857 	lockdep_print_held_locks(task);
5858 }
5859 EXPORT_SYMBOL_GPL(debug_show_held_locks);
5860 
5861 asmlinkage __visible void lockdep_sys_exit(void)
5862 {
5863 	struct task_struct *curr = current;
5864 
5865 	if (unlikely(curr->lockdep_depth)) {
5866 		if (!debug_locks_off())
5867 			return;
5868 		pr_warn("\n");
5869 		pr_warn("================================================\n");
5870 		pr_warn("WARNING: lock held when returning to user space!\n");
5871 		print_kernel_ident();
5872 		pr_warn("------------------------------------------------\n");
5873 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
5874 				curr->comm, curr->pid);
5875 		lockdep_print_held_locks(curr);
5876 	}
5877 
5878 	/*
5879 	 * The lock history for each syscall should be independent. So wipe the
5880 	 * slate clean on return to userspace.
5881 	 */
5882 	lockdep_invariant_state(false);
5883 }
5884 
5885 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
5886 {
5887 	struct task_struct *curr = current;
5888 
5889 	/* Note: the following can be executed concurrently, so be careful. */
5890 	pr_warn("\n");
5891 	pr_warn("=============================\n");
5892 	pr_warn("WARNING: suspicious RCU usage\n");
5893 	print_kernel_ident();
5894 	pr_warn("-----------------------------\n");
5895 	pr_warn("%s:%d %s!\n", file, line, s);
5896 	pr_warn("\nother info that might help us debug this:\n\n");
5897 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
5898 	       !rcu_lockdep_current_cpu_online()
5899 			? "RCU used illegally from offline CPU!\n"
5900 			: "",
5901 	       rcu_scheduler_active, debug_locks);
5902 
5903 	/*
5904 	 * If a CPU is in the RCU-free window in idle (ie: in the section
5905 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
5906 	 * considers that CPU to be in an "extended quiescent state",
5907 	 * which means that RCU will be completely ignoring that CPU.
5908 	 * Therefore, rcu_read_lock() and friends have absolutely no
5909 	 * effect on a CPU running in that state. In other words, even if
5910 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
5911 	 * delete data structures out from under it.  RCU really has no
5912 	 * choice here: we need to keep an RCU-free window in idle where
5913 	 * the CPU may possibly enter into low power mode. This way we can
5914 	 * notice an extended quiescent state to other CPUs that started a grace
5915 	 * period. Otherwise we would delay any grace period as long as we run
5916 	 * in the idle task.
5917 	 *
5918 	 * So complain bitterly if someone does call rcu_read_lock(),
5919 	 * rcu_read_lock_bh() and so on from extended quiescent states.
5920 	 */
5921 	if (!rcu_is_watching())
5922 		pr_warn("RCU used illegally from extended quiescent state!\n");
5923 
5924 	lockdep_print_held_locks(curr);
5925 	pr_warn("\nstack backtrace:\n");
5926 	dump_stack();
5927 }
5928 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
5929