1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 58 #include <asm/sections.h> 59 60 #include "lockdep_internals.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/lock.h> 64 65 #ifdef CONFIG_PROVE_LOCKING 66 int prove_locking = 1; 67 module_param(prove_locking, int, 0644); 68 #else 69 #define prove_locking 0 70 #endif 71 72 #ifdef CONFIG_LOCK_STAT 73 int lock_stat = 1; 74 module_param(lock_stat, int, 0644); 75 #else 76 #define lock_stat 0 77 #endif 78 79 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 81 82 static __always_inline bool lockdep_enabled(void) 83 { 84 if (!debug_locks) 85 return false; 86 87 if (this_cpu_read(lockdep_recursion)) 88 return false; 89 90 if (current->lockdep_recursion) 91 return false; 92 93 return true; 94 } 95 96 /* 97 * lockdep_lock: protects the lockdep graph, the hashes and the 98 * class/list/hash allocators. 99 * 100 * This is one of the rare exceptions where it's justified 101 * to use a raw spinlock - we really dont want the spinlock 102 * code to recurse back into the lockdep code... 103 */ 104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 105 static struct task_struct *__owner; 106 107 static inline void lockdep_lock(void) 108 { 109 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 110 111 __this_cpu_inc(lockdep_recursion); 112 arch_spin_lock(&__lock); 113 __owner = current; 114 } 115 116 static inline void lockdep_unlock(void) 117 { 118 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 119 120 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 121 return; 122 123 __owner = NULL; 124 arch_spin_unlock(&__lock); 125 __this_cpu_dec(lockdep_recursion); 126 } 127 128 static inline bool lockdep_assert_locked(void) 129 { 130 return DEBUG_LOCKS_WARN_ON(__owner != current); 131 } 132 133 static struct task_struct *lockdep_selftest_task_struct; 134 135 136 static int graph_lock(void) 137 { 138 lockdep_lock(); 139 /* 140 * Make sure that if another CPU detected a bug while 141 * walking the graph we dont change it (while the other 142 * CPU is busy printing out stuff with the graph lock 143 * dropped already) 144 */ 145 if (!debug_locks) { 146 lockdep_unlock(); 147 return 0; 148 } 149 return 1; 150 } 151 152 static inline void graph_unlock(void) 153 { 154 lockdep_unlock(); 155 } 156 157 /* 158 * Turn lock debugging off and return with 0 if it was off already, 159 * and also release the graph lock: 160 */ 161 static inline int debug_locks_off_graph_unlock(void) 162 { 163 int ret = debug_locks_off(); 164 165 lockdep_unlock(); 166 167 return ret; 168 } 169 170 unsigned long nr_list_entries; 171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 173 174 /* 175 * All data structures here are protected by the global debug_lock. 176 * 177 * nr_lock_classes is the number of elements of lock_classes[] that is 178 * in use. 179 */ 180 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 181 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 183 unsigned long nr_lock_classes; 184 unsigned long nr_zapped_classes; 185 #ifndef CONFIG_DEBUG_LOCKDEP 186 static 187 #endif 188 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 189 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 190 191 static inline struct lock_class *hlock_class(struct held_lock *hlock) 192 { 193 unsigned int class_idx = hlock->class_idx; 194 195 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 196 barrier(); 197 198 if (!test_bit(class_idx, lock_classes_in_use)) { 199 /* 200 * Someone passed in garbage, we give up. 201 */ 202 DEBUG_LOCKS_WARN_ON(1); 203 return NULL; 204 } 205 206 /* 207 * At this point, if the passed hlock->class_idx is still garbage, 208 * we just have to live with it 209 */ 210 return lock_classes + class_idx; 211 } 212 213 #ifdef CONFIG_LOCK_STAT 214 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 215 216 static inline u64 lockstat_clock(void) 217 { 218 return local_clock(); 219 } 220 221 static int lock_point(unsigned long points[], unsigned long ip) 222 { 223 int i; 224 225 for (i = 0; i < LOCKSTAT_POINTS; i++) { 226 if (points[i] == 0) { 227 points[i] = ip; 228 break; 229 } 230 if (points[i] == ip) 231 break; 232 } 233 234 return i; 235 } 236 237 static void lock_time_inc(struct lock_time *lt, u64 time) 238 { 239 if (time > lt->max) 240 lt->max = time; 241 242 if (time < lt->min || !lt->nr) 243 lt->min = time; 244 245 lt->total += time; 246 lt->nr++; 247 } 248 249 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 250 { 251 if (!src->nr) 252 return; 253 254 if (src->max > dst->max) 255 dst->max = src->max; 256 257 if (src->min < dst->min || !dst->nr) 258 dst->min = src->min; 259 260 dst->total += src->total; 261 dst->nr += src->nr; 262 } 263 264 struct lock_class_stats lock_stats(struct lock_class *class) 265 { 266 struct lock_class_stats stats; 267 int cpu, i; 268 269 memset(&stats, 0, sizeof(struct lock_class_stats)); 270 for_each_possible_cpu(cpu) { 271 struct lock_class_stats *pcs = 272 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 273 274 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 275 stats.contention_point[i] += pcs->contention_point[i]; 276 277 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 278 stats.contending_point[i] += pcs->contending_point[i]; 279 280 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 281 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 282 283 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 284 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 285 286 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 287 stats.bounces[i] += pcs->bounces[i]; 288 } 289 290 return stats; 291 } 292 293 void clear_lock_stats(struct lock_class *class) 294 { 295 int cpu; 296 297 for_each_possible_cpu(cpu) { 298 struct lock_class_stats *cpu_stats = 299 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 300 301 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 302 } 303 memset(class->contention_point, 0, sizeof(class->contention_point)); 304 memset(class->contending_point, 0, sizeof(class->contending_point)); 305 } 306 307 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 308 { 309 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 310 } 311 312 static void lock_release_holdtime(struct held_lock *hlock) 313 { 314 struct lock_class_stats *stats; 315 u64 holdtime; 316 317 if (!lock_stat) 318 return; 319 320 holdtime = lockstat_clock() - hlock->holdtime_stamp; 321 322 stats = get_lock_stats(hlock_class(hlock)); 323 if (hlock->read) 324 lock_time_inc(&stats->read_holdtime, holdtime); 325 else 326 lock_time_inc(&stats->write_holdtime, holdtime); 327 } 328 #else 329 static inline void lock_release_holdtime(struct held_lock *hlock) 330 { 331 } 332 #endif 333 334 /* 335 * We keep a global list of all lock classes. The list is only accessed with 336 * the lockdep spinlock lock held. free_lock_classes is a list with free 337 * elements. These elements are linked together by the lock_entry member in 338 * struct lock_class. 339 */ 340 LIST_HEAD(all_lock_classes); 341 static LIST_HEAD(free_lock_classes); 342 343 /** 344 * struct pending_free - information about data structures about to be freed 345 * @zapped: Head of a list with struct lock_class elements. 346 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 347 * are about to be freed. 348 */ 349 struct pending_free { 350 struct list_head zapped; 351 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 352 }; 353 354 /** 355 * struct delayed_free - data structures used for delayed freeing 356 * 357 * A data structure for delayed freeing of data structures that may be 358 * accessed by RCU readers at the time these were freed. 359 * 360 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 361 * @index: Index of @pf to which freed data structures are added. 362 * @scheduled: Whether or not an RCU callback has been scheduled. 363 * @pf: Array with information about data structures about to be freed. 364 */ 365 static struct delayed_free { 366 struct rcu_head rcu_head; 367 int index; 368 int scheduled; 369 struct pending_free pf[2]; 370 } delayed_free; 371 372 /* 373 * The lockdep classes are in a hash-table as well, for fast lookup: 374 */ 375 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 376 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 377 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 378 #define classhashentry(key) (classhash_table + __classhashfn((key))) 379 380 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 381 382 /* 383 * We put the lock dependency chains into a hash-table as well, to cache 384 * their existence: 385 */ 386 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 387 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 388 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 389 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 390 391 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 392 393 /* 394 * the id of held_lock 395 */ 396 static inline u16 hlock_id(struct held_lock *hlock) 397 { 398 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 399 400 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 401 } 402 403 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 404 { 405 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 406 } 407 408 /* 409 * The hash key of the lock dependency chains is a hash itself too: 410 * it's a hash of all locks taken up to that lock, including that lock. 411 * It's a 64-bit hash, because it's important for the keys to be 412 * unique. 413 */ 414 static inline u64 iterate_chain_key(u64 key, u32 idx) 415 { 416 u32 k0 = key, k1 = key >> 32; 417 418 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 419 420 return k0 | (u64)k1 << 32; 421 } 422 423 void lockdep_init_task(struct task_struct *task) 424 { 425 task->lockdep_depth = 0; /* no locks held yet */ 426 task->curr_chain_key = INITIAL_CHAIN_KEY; 427 task->lockdep_recursion = 0; 428 } 429 430 static __always_inline void lockdep_recursion_inc(void) 431 { 432 __this_cpu_inc(lockdep_recursion); 433 } 434 435 static __always_inline void lockdep_recursion_finish(void) 436 { 437 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 438 __this_cpu_write(lockdep_recursion, 0); 439 } 440 441 void lockdep_set_selftest_task(struct task_struct *task) 442 { 443 lockdep_selftest_task_struct = task; 444 } 445 446 /* 447 * Debugging switches: 448 */ 449 450 #define VERBOSE 0 451 #define VERY_VERBOSE 0 452 453 #if VERBOSE 454 # define HARDIRQ_VERBOSE 1 455 # define SOFTIRQ_VERBOSE 1 456 #else 457 # define HARDIRQ_VERBOSE 0 458 # define SOFTIRQ_VERBOSE 0 459 #endif 460 461 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 462 /* 463 * Quick filtering for interesting events: 464 */ 465 static int class_filter(struct lock_class *class) 466 { 467 #if 0 468 /* Example */ 469 if (class->name_version == 1 && 470 !strcmp(class->name, "lockname")) 471 return 1; 472 if (class->name_version == 1 && 473 !strcmp(class->name, "&struct->lockfield")) 474 return 1; 475 #endif 476 /* Filter everything else. 1 would be to allow everything else */ 477 return 0; 478 } 479 #endif 480 481 static int verbose(struct lock_class *class) 482 { 483 #if VERBOSE 484 return class_filter(class); 485 #endif 486 return 0; 487 } 488 489 static void print_lockdep_off(const char *bug_msg) 490 { 491 printk(KERN_DEBUG "%s\n", bug_msg); 492 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 493 #ifdef CONFIG_LOCK_STAT 494 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 495 #endif 496 } 497 498 unsigned long nr_stack_trace_entries; 499 500 #ifdef CONFIG_PROVE_LOCKING 501 /** 502 * struct lock_trace - single stack backtrace 503 * @hash_entry: Entry in a stack_trace_hash[] list. 504 * @hash: jhash() of @entries. 505 * @nr_entries: Number of entries in @entries. 506 * @entries: Actual stack backtrace. 507 */ 508 struct lock_trace { 509 struct hlist_node hash_entry; 510 u32 hash; 511 u32 nr_entries; 512 unsigned long entries[] __aligned(sizeof(unsigned long)); 513 }; 514 #define LOCK_TRACE_SIZE_IN_LONGS \ 515 (sizeof(struct lock_trace) / sizeof(unsigned long)) 516 /* 517 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 518 */ 519 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 520 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 521 522 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 523 { 524 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 525 memcmp(t1->entries, t2->entries, 526 t1->nr_entries * sizeof(t1->entries[0])) == 0; 527 } 528 529 static struct lock_trace *save_trace(void) 530 { 531 struct lock_trace *trace, *t2; 532 struct hlist_head *hash_head; 533 u32 hash; 534 int max_entries; 535 536 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 537 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 538 539 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 540 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 541 LOCK_TRACE_SIZE_IN_LONGS; 542 543 if (max_entries <= 0) { 544 if (!debug_locks_off_graph_unlock()) 545 return NULL; 546 547 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 548 dump_stack(); 549 550 return NULL; 551 } 552 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 553 554 hash = jhash(trace->entries, trace->nr_entries * 555 sizeof(trace->entries[0]), 0); 556 trace->hash = hash; 557 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 558 hlist_for_each_entry(t2, hash_head, hash_entry) { 559 if (traces_identical(trace, t2)) 560 return t2; 561 } 562 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 563 hlist_add_head(&trace->hash_entry, hash_head); 564 565 return trace; 566 } 567 568 /* Return the number of stack traces in the stack_trace[] array. */ 569 u64 lockdep_stack_trace_count(void) 570 { 571 struct lock_trace *trace; 572 u64 c = 0; 573 int i; 574 575 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 576 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 577 c++; 578 } 579 } 580 581 return c; 582 } 583 584 /* Return the number of stack hash chains that have at least one stack trace. */ 585 u64 lockdep_stack_hash_count(void) 586 { 587 u64 c = 0; 588 int i; 589 590 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 591 if (!hlist_empty(&stack_trace_hash[i])) 592 c++; 593 594 return c; 595 } 596 #endif 597 598 unsigned int nr_hardirq_chains; 599 unsigned int nr_softirq_chains; 600 unsigned int nr_process_chains; 601 unsigned int max_lockdep_depth; 602 603 #ifdef CONFIG_DEBUG_LOCKDEP 604 /* 605 * Various lockdep statistics: 606 */ 607 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 608 #endif 609 610 #ifdef CONFIG_PROVE_LOCKING 611 /* 612 * Locking printouts: 613 */ 614 615 #define __USAGE(__STATE) \ 616 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 617 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 618 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 619 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 620 621 static const char *usage_str[] = 622 { 623 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 624 #include "lockdep_states.h" 625 #undef LOCKDEP_STATE 626 [LOCK_USED] = "INITIAL USE", 627 [LOCK_USED_READ] = "INITIAL READ USE", 628 /* abused as string storage for verify_lock_unused() */ 629 [LOCK_USAGE_STATES] = "IN-NMI", 630 }; 631 #endif 632 633 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 634 { 635 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 636 } 637 638 static inline unsigned long lock_flag(enum lock_usage_bit bit) 639 { 640 return 1UL << bit; 641 } 642 643 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 644 { 645 /* 646 * The usage character defaults to '.' (i.e., irqs disabled and not in 647 * irq context), which is the safest usage category. 648 */ 649 char c = '.'; 650 651 /* 652 * The order of the following usage checks matters, which will 653 * result in the outcome character as follows: 654 * 655 * - '+': irq is enabled and not in irq context 656 * - '-': in irq context and irq is disabled 657 * - '?': in irq context and irq is enabled 658 */ 659 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 660 c = '+'; 661 if (class->usage_mask & lock_flag(bit)) 662 c = '?'; 663 } else if (class->usage_mask & lock_flag(bit)) 664 c = '-'; 665 666 return c; 667 } 668 669 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 670 { 671 int i = 0; 672 673 #define LOCKDEP_STATE(__STATE) \ 674 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 675 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 676 #include "lockdep_states.h" 677 #undef LOCKDEP_STATE 678 679 usage[i] = '\0'; 680 } 681 682 static void __print_lock_name(struct lock_class *class) 683 { 684 char str[KSYM_NAME_LEN]; 685 const char *name; 686 687 name = class->name; 688 if (!name) { 689 name = __get_key_name(class->key, str); 690 printk(KERN_CONT "%s", name); 691 } else { 692 printk(KERN_CONT "%s", name); 693 if (class->name_version > 1) 694 printk(KERN_CONT "#%d", class->name_version); 695 if (class->subclass) 696 printk(KERN_CONT "/%d", class->subclass); 697 } 698 } 699 700 static void print_lock_name(struct lock_class *class) 701 { 702 char usage[LOCK_USAGE_CHARS]; 703 704 get_usage_chars(class, usage); 705 706 printk(KERN_CONT " ("); 707 __print_lock_name(class); 708 printk(KERN_CONT "){%s}-{%hd:%hd}", usage, 709 class->wait_type_outer ?: class->wait_type_inner, 710 class->wait_type_inner); 711 } 712 713 static void print_lockdep_cache(struct lockdep_map *lock) 714 { 715 const char *name; 716 char str[KSYM_NAME_LEN]; 717 718 name = lock->name; 719 if (!name) 720 name = __get_key_name(lock->key->subkeys, str); 721 722 printk(KERN_CONT "%s", name); 723 } 724 725 static void print_lock(struct held_lock *hlock) 726 { 727 /* 728 * We can be called locklessly through debug_show_all_locks() so be 729 * extra careful, the hlock might have been released and cleared. 730 * 731 * If this indeed happens, lets pretend it does not hurt to continue 732 * to print the lock unless the hlock class_idx does not point to a 733 * registered class. The rationale here is: since we don't attempt 734 * to distinguish whether we are in this situation, if it just 735 * happened we can't count on class_idx to tell either. 736 */ 737 struct lock_class *lock = hlock_class(hlock); 738 739 if (!lock) { 740 printk(KERN_CONT "<RELEASED>\n"); 741 return; 742 } 743 744 printk(KERN_CONT "%px", hlock->instance); 745 print_lock_name(lock); 746 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 747 } 748 749 static void lockdep_print_held_locks(struct task_struct *p) 750 { 751 int i, depth = READ_ONCE(p->lockdep_depth); 752 753 if (!depth) 754 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 755 else 756 printk("%d lock%s held by %s/%d:\n", depth, 757 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 758 /* 759 * It's not reliable to print a task's held locks if it's not sleeping 760 * and it's not the current task. 761 */ 762 if (p->state == TASK_RUNNING && p != current) 763 return; 764 for (i = 0; i < depth; i++) { 765 printk(" #%d: ", i); 766 print_lock(p->held_locks + i); 767 } 768 } 769 770 static void print_kernel_ident(void) 771 { 772 printk("%s %.*s %s\n", init_utsname()->release, 773 (int)strcspn(init_utsname()->version, " "), 774 init_utsname()->version, 775 print_tainted()); 776 } 777 778 static int very_verbose(struct lock_class *class) 779 { 780 #if VERY_VERBOSE 781 return class_filter(class); 782 #endif 783 return 0; 784 } 785 786 /* 787 * Is this the address of a static object: 788 */ 789 #ifdef __KERNEL__ 790 static int static_obj(const void *obj) 791 { 792 unsigned long start = (unsigned long) &_stext, 793 end = (unsigned long) &_end, 794 addr = (unsigned long) obj; 795 796 if (arch_is_kernel_initmem_freed(addr)) 797 return 0; 798 799 /* 800 * static variable? 801 */ 802 if ((addr >= start) && (addr < end)) 803 return 1; 804 805 if (arch_is_kernel_data(addr)) 806 return 1; 807 808 /* 809 * in-kernel percpu var? 810 */ 811 if (is_kernel_percpu_address(addr)) 812 return 1; 813 814 /* 815 * module static or percpu var? 816 */ 817 return is_module_address(addr) || is_module_percpu_address(addr); 818 } 819 #endif 820 821 /* 822 * To make lock name printouts unique, we calculate a unique 823 * class->name_version generation counter. The caller must hold the graph 824 * lock. 825 */ 826 static int count_matching_names(struct lock_class *new_class) 827 { 828 struct lock_class *class; 829 int count = 0; 830 831 if (!new_class->name) 832 return 0; 833 834 list_for_each_entry(class, &all_lock_classes, lock_entry) { 835 if (new_class->key - new_class->subclass == class->key) 836 return class->name_version; 837 if (class->name && !strcmp(class->name, new_class->name)) 838 count = max(count, class->name_version); 839 } 840 841 return count + 1; 842 } 843 844 /* used from NMI context -- must be lockless */ 845 static __always_inline struct lock_class * 846 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 847 { 848 struct lockdep_subclass_key *key; 849 struct hlist_head *hash_head; 850 struct lock_class *class; 851 852 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 853 debug_locks_off(); 854 printk(KERN_ERR 855 "BUG: looking up invalid subclass: %u\n", subclass); 856 printk(KERN_ERR 857 "turning off the locking correctness validator.\n"); 858 dump_stack(); 859 return NULL; 860 } 861 862 /* 863 * If it is not initialised then it has never been locked, 864 * so it won't be present in the hash table. 865 */ 866 if (unlikely(!lock->key)) 867 return NULL; 868 869 /* 870 * NOTE: the class-key must be unique. For dynamic locks, a static 871 * lock_class_key variable is passed in through the mutex_init() 872 * (or spin_lock_init()) call - which acts as the key. For static 873 * locks we use the lock object itself as the key. 874 */ 875 BUILD_BUG_ON(sizeof(struct lock_class_key) > 876 sizeof(struct lockdep_map)); 877 878 key = lock->key->subkeys + subclass; 879 880 hash_head = classhashentry(key); 881 882 /* 883 * We do an RCU walk of the hash, see lockdep_free_key_range(). 884 */ 885 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 886 return NULL; 887 888 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 889 if (class->key == key) { 890 /* 891 * Huh! same key, different name? Did someone trample 892 * on some memory? We're most confused. 893 */ 894 WARN_ON_ONCE(class->name != lock->name && 895 lock->key != &__lockdep_no_validate__); 896 return class; 897 } 898 } 899 900 return NULL; 901 } 902 903 /* 904 * Static locks do not have their class-keys yet - for them the key is 905 * the lock object itself. If the lock is in the per cpu area, the 906 * canonical address of the lock (per cpu offset removed) is used. 907 */ 908 static bool assign_lock_key(struct lockdep_map *lock) 909 { 910 unsigned long can_addr, addr = (unsigned long)lock; 911 912 #ifdef __KERNEL__ 913 /* 914 * lockdep_free_key_range() assumes that struct lock_class_key 915 * objects do not overlap. Since we use the address of lock 916 * objects as class key for static objects, check whether the 917 * size of lock_class_key objects does not exceed the size of 918 * the smallest lock object. 919 */ 920 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 921 #endif 922 923 if (__is_kernel_percpu_address(addr, &can_addr)) 924 lock->key = (void *)can_addr; 925 else if (__is_module_percpu_address(addr, &can_addr)) 926 lock->key = (void *)can_addr; 927 else if (static_obj(lock)) 928 lock->key = (void *)lock; 929 else { 930 /* Debug-check: all keys must be persistent! */ 931 debug_locks_off(); 932 pr_err("INFO: trying to register non-static key.\n"); 933 pr_err("the code is fine but needs lockdep annotation.\n"); 934 pr_err("turning off the locking correctness validator.\n"); 935 dump_stack(); 936 return false; 937 } 938 939 return true; 940 } 941 942 #ifdef CONFIG_DEBUG_LOCKDEP 943 944 /* Check whether element @e occurs in list @h */ 945 static bool in_list(struct list_head *e, struct list_head *h) 946 { 947 struct list_head *f; 948 949 list_for_each(f, h) { 950 if (e == f) 951 return true; 952 } 953 954 return false; 955 } 956 957 /* 958 * Check whether entry @e occurs in any of the locks_after or locks_before 959 * lists. 960 */ 961 static bool in_any_class_list(struct list_head *e) 962 { 963 struct lock_class *class; 964 int i; 965 966 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 967 class = &lock_classes[i]; 968 if (in_list(e, &class->locks_after) || 969 in_list(e, &class->locks_before)) 970 return true; 971 } 972 return false; 973 } 974 975 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 976 { 977 struct lock_list *e; 978 979 list_for_each_entry(e, h, entry) { 980 if (e->links_to != c) { 981 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 982 c->name ? : "(?)", 983 (unsigned long)(e - list_entries), 984 e->links_to && e->links_to->name ? 985 e->links_to->name : "(?)", 986 e->class && e->class->name ? e->class->name : 987 "(?)"); 988 return false; 989 } 990 } 991 return true; 992 } 993 994 #ifdef CONFIG_PROVE_LOCKING 995 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 996 #endif 997 998 static bool check_lock_chain_key(struct lock_chain *chain) 999 { 1000 #ifdef CONFIG_PROVE_LOCKING 1001 u64 chain_key = INITIAL_CHAIN_KEY; 1002 int i; 1003 1004 for (i = chain->base; i < chain->base + chain->depth; i++) 1005 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1006 /* 1007 * The 'unsigned long long' casts avoid that a compiler warning 1008 * is reported when building tools/lib/lockdep. 1009 */ 1010 if (chain->chain_key != chain_key) { 1011 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1012 (unsigned long long)(chain - lock_chains), 1013 (unsigned long long)chain->chain_key, 1014 (unsigned long long)chain_key); 1015 return false; 1016 } 1017 #endif 1018 return true; 1019 } 1020 1021 static bool in_any_zapped_class_list(struct lock_class *class) 1022 { 1023 struct pending_free *pf; 1024 int i; 1025 1026 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1027 if (in_list(&class->lock_entry, &pf->zapped)) 1028 return true; 1029 } 1030 1031 return false; 1032 } 1033 1034 static bool __check_data_structures(void) 1035 { 1036 struct lock_class *class; 1037 struct lock_chain *chain; 1038 struct hlist_head *head; 1039 struct lock_list *e; 1040 int i; 1041 1042 /* Check whether all classes occur in a lock list. */ 1043 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1044 class = &lock_classes[i]; 1045 if (!in_list(&class->lock_entry, &all_lock_classes) && 1046 !in_list(&class->lock_entry, &free_lock_classes) && 1047 !in_any_zapped_class_list(class)) { 1048 printk(KERN_INFO "class %px/%s is not in any class list\n", 1049 class, class->name ? : "(?)"); 1050 return false; 1051 } 1052 } 1053 1054 /* Check whether all classes have valid lock lists. */ 1055 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1056 class = &lock_classes[i]; 1057 if (!class_lock_list_valid(class, &class->locks_before)) 1058 return false; 1059 if (!class_lock_list_valid(class, &class->locks_after)) 1060 return false; 1061 } 1062 1063 /* Check the chain_key of all lock chains. */ 1064 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1065 head = chainhash_table + i; 1066 hlist_for_each_entry_rcu(chain, head, entry) { 1067 if (!check_lock_chain_key(chain)) 1068 return false; 1069 } 1070 } 1071 1072 /* 1073 * Check whether all list entries that are in use occur in a class 1074 * lock list. 1075 */ 1076 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1077 e = list_entries + i; 1078 if (!in_any_class_list(&e->entry)) { 1079 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1080 (unsigned int)(e - list_entries), 1081 e->class->name ? : "(?)", 1082 e->links_to->name ? : "(?)"); 1083 return false; 1084 } 1085 } 1086 1087 /* 1088 * Check whether all list entries that are not in use do not occur in 1089 * a class lock list. 1090 */ 1091 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1092 e = list_entries + i; 1093 if (in_any_class_list(&e->entry)) { 1094 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1095 (unsigned int)(e - list_entries), 1096 e->class && e->class->name ? e->class->name : 1097 "(?)", 1098 e->links_to && e->links_to->name ? 1099 e->links_to->name : "(?)"); 1100 return false; 1101 } 1102 } 1103 1104 return true; 1105 } 1106 1107 int check_consistency = 0; 1108 module_param(check_consistency, int, 0644); 1109 1110 static void check_data_structures(void) 1111 { 1112 static bool once = false; 1113 1114 if (check_consistency && !once) { 1115 if (!__check_data_structures()) { 1116 once = true; 1117 WARN_ON(once); 1118 } 1119 } 1120 } 1121 1122 #else /* CONFIG_DEBUG_LOCKDEP */ 1123 1124 static inline void check_data_structures(void) { } 1125 1126 #endif /* CONFIG_DEBUG_LOCKDEP */ 1127 1128 static void init_chain_block_buckets(void); 1129 1130 /* 1131 * Initialize the lock_classes[] array elements, the free_lock_classes list 1132 * and also the delayed_free structure. 1133 */ 1134 static void init_data_structures_once(void) 1135 { 1136 static bool __read_mostly ds_initialized, rcu_head_initialized; 1137 int i; 1138 1139 if (likely(rcu_head_initialized)) 1140 return; 1141 1142 if (system_state >= SYSTEM_SCHEDULING) { 1143 init_rcu_head(&delayed_free.rcu_head); 1144 rcu_head_initialized = true; 1145 } 1146 1147 if (ds_initialized) 1148 return; 1149 1150 ds_initialized = true; 1151 1152 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1153 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1154 1155 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1156 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1157 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1158 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1159 } 1160 init_chain_block_buckets(); 1161 } 1162 1163 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1164 { 1165 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1166 1167 return lock_keys_hash + hash; 1168 } 1169 1170 /* Register a dynamically allocated key. */ 1171 void lockdep_register_key(struct lock_class_key *key) 1172 { 1173 struct hlist_head *hash_head; 1174 struct lock_class_key *k; 1175 unsigned long flags; 1176 1177 if (WARN_ON_ONCE(static_obj(key))) 1178 return; 1179 hash_head = keyhashentry(key); 1180 1181 raw_local_irq_save(flags); 1182 if (!graph_lock()) 1183 goto restore_irqs; 1184 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1185 if (WARN_ON_ONCE(k == key)) 1186 goto out_unlock; 1187 } 1188 hlist_add_head_rcu(&key->hash_entry, hash_head); 1189 out_unlock: 1190 graph_unlock(); 1191 restore_irqs: 1192 raw_local_irq_restore(flags); 1193 } 1194 EXPORT_SYMBOL_GPL(lockdep_register_key); 1195 1196 /* Check whether a key has been registered as a dynamic key. */ 1197 static bool is_dynamic_key(const struct lock_class_key *key) 1198 { 1199 struct hlist_head *hash_head; 1200 struct lock_class_key *k; 1201 bool found = false; 1202 1203 if (WARN_ON_ONCE(static_obj(key))) 1204 return false; 1205 1206 /* 1207 * If lock debugging is disabled lock_keys_hash[] may contain 1208 * pointers to memory that has already been freed. Avoid triggering 1209 * a use-after-free in that case by returning early. 1210 */ 1211 if (!debug_locks) 1212 return true; 1213 1214 hash_head = keyhashentry(key); 1215 1216 rcu_read_lock(); 1217 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1218 if (k == key) { 1219 found = true; 1220 break; 1221 } 1222 } 1223 rcu_read_unlock(); 1224 1225 return found; 1226 } 1227 1228 /* 1229 * Register a lock's class in the hash-table, if the class is not present 1230 * yet. Otherwise we look it up. We cache the result in the lock object 1231 * itself, so actual lookup of the hash should be once per lock object. 1232 */ 1233 static struct lock_class * 1234 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1235 { 1236 struct lockdep_subclass_key *key; 1237 struct hlist_head *hash_head; 1238 struct lock_class *class; 1239 1240 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1241 1242 class = look_up_lock_class(lock, subclass); 1243 if (likely(class)) 1244 goto out_set_class_cache; 1245 1246 if (!lock->key) { 1247 if (!assign_lock_key(lock)) 1248 return NULL; 1249 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1250 return NULL; 1251 } 1252 1253 key = lock->key->subkeys + subclass; 1254 hash_head = classhashentry(key); 1255 1256 if (!graph_lock()) { 1257 return NULL; 1258 } 1259 /* 1260 * We have to do the hash-walk again, to avoid races 1261 * with another CPU: 1262 */ 1263 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1264 if (class->key == key) 1265 goto out_unlock_set; 1266 } 1267 1268 init_data_structures_once(); 1269 1270 /* Allocate a new lock class and add it to the hash. */ 1271 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1272 lock_entry); 1273 if (!class) { 1274 if (!debug_locks_off_graph_unlock()) { 1275 return NULL; 1276 } 1277 1278 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1279 dump_stack(); 1280 return NULL; 1281 } 1282 nr_lock_classes++; 1283 __set_bit(class - lock_classes, lock_classes_in_use); 1284 debug_atomic_inc(nr_unused_locks); 1285 class->key = key; 1286 class->name = lock->name; 1287 class->subclass = subclass; 1288 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1289 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1290 class->name_version = count_matching_names(class); 1291 class->wait_type_inner = lock->wait_type_inner; 1292 class->wait_type_outer = lock->wait_type_outer; 1293 class->lock_type = lock->lock_type; 1294 /* 1295 * We use RCU's safe list-add method to make 1296 * parallel walking of the hash-list safe: 1297 */ 1298 hlist_add_head_rcu(&class->hash_entry, hash_head); 1299 /* 1300 * Remove the class from the free list and add it to the global list 1301 * of classes. 1302 */ 1303 list_move_tail(&class->lock_entry, &all_lock_classes); 1304 1305 if (verbose(class)) { 1306 graph_unlock(); 1307 1308 printk("\nnew class %px: %s", class->key, class->name); 1309 if (class->name_version > 1) 1310 printk(KERN_CONT "#%d", class->name_version); 1311 printk(KERN_CONT "\n"); 1312 dump_stack(); 1313 1314 if (!graph_lock()) { 1315 return NULL; 1316 } 1317 } 1318 out_unlock_set: 1319 graph_unlock(); 1320 1321 out_set_class_cache: 1322 if (!subclass || force) 1323 lock->class_cache[0] = class; 1324 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1325 lock->class_cache[subclass] = class; 1326 1327 /* 1328 * Hash collision, did we smoke some? We found a class with a matching 1329 * hash but the subclass -- which is hashed in -- didn't match. 1330 */ 1331 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1332 return NULL; 1333 1334 return class; 1335 } 1336 1337 #ifdef CONFIG_PROVE_LOCKING 1338 /* 1339 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1340 * with NULL on failure) 1341 */ 1342 static struct lock_list *alloc_list_entry(void) 1343 { 1344 int idx = find_first_zero_bit(list_entries_in_use, 1345 ARRAY_SIZE(list_entries)); 1346 1347 if (idx >= ARRAY_SIZE(list_entries)) { 1348 if (!debug_locks_off_graph_unlock()) 1349 return NULL; 1350 1351 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1352 dump_stack(); 1353 return NULL; 1354 } 1355 nr_list_entries++; 1356 __set_bit(idx, list_entries_in_use); 1357 return list_entries + idx; 1358 } 1359 1360 /* 1361 * Add a new dependency to the head of the list: 1362 */ 1363 static int add_lock_to_list(struct lock_class *this, 1364 struct lock_class *links_to, struct list_head *head, 1365 unsigned long ip, u16 distance, u8 dep, 1366 const struct lock_trace *trace) 1367 { 1368 struct lock_list *entry; 1369 /* 1370 * Lock not present yet - get a new dependency struct and 1371 * add it to the list: 1372 */ 1373 entry = alloc_list_entry(); 1374 if (!entry) 1375 return 0; 1376 1377 entry->class = this; 1378 entry->links_to = links_to; 1379 entry->dep = dep; 1380 entry->distance = distance; 1381 entry->trace = trace; 1382 /* 1383 * Both allocation and removal are done under the graph lock; but 1384 * iteration is under RCU-sched; see look_up_lock_class() and 1385 * lockdep_free_key_range(). 1386 */ 1387 list_add_tail_rcu(&entry->entry, head); 1388 1389 return 1; 1390 } 1391 1392 /* 1393 * For good efficiency of modular, we use power of 2 1394 */ 1395 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL 1396 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1397 1398 /* 1399 * The circular_queue and helpers are used to implement graph 1400 * breadth-first search (BFS) algorithm, by which we can determine 1401 * whether there is a path from a lock to another. In deadlock checks, 1402 * a path from the next lock to be acquired to a previous held lock 1403 * indicates that adding the <prev> -> <next> lock dependency will 1404 * produce a circle in the graph. Breadth-first search instead of 1405 * depth-first search is used in order to find the shortest (circular) 1406 * path. 1407 */ 1408 struct circular_queue { 1409 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1410 unsigned int front, rear; 1411 }; 1412 1413 static struct circular_queue lock_cq; 1414 1415 unsigned int max_bfs_queue_depth; 1416 1417 static unsigned int lockdep_dependency_gen_id; 1418 1419 static inline void __cq_init(struct circular_queue *cq) 1420 { 1421 cq->front = cq->rear = 0; 1422 lockdep_dependency_gen_id++; 1423 } 1424 1425 static inline int __cq_empty(struct circular_queue *cq) 1426 { 1427 return (cq->front == cq->rear); 1428 } 1429 1430 static inline int __cq_full(struct circular_queue *cq) 1431 { 1432 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1433 } 1434 1435 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1436 { 1437 if (__cq_full(cq)) 1438 return -1; 1439 1440 cq->element[cq->rear] = elem; 1441 cq->rear = (cq->rear + 1) & CQ_MASK; 1442 return 0; 1443 } 1444 1445 /* 1446 * Dequeue an element from the circular_queue, return a lock_list if 1447 * the queue is not empty, or NULL if otherwise. 1448 */ 1449 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1450 { 1451 struct lock_list * lock; 1452 1453 if (__cq_empty(cq)) 1454 return NULL; 1455 1456 lock = cq->element[cq->front]; 1457 cq->front = (cq->front + 1) & CQ_MASK; 1458 1459 return lock; 1460 } 1461 1462 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1463 { 1464 return (cq->rear - cq->front) & CQ_MASK; 1465 } 1466 1467 static inline void mark_lock_accessed(struct lock_list *lock) 1468 { 1469 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1470 } 1471 1472 static inline void visit_lock_entry(struct lock_list *lock, 1473 struct lock_list *parent) 1474 { 1475 lock->parent = parent; 1476 } 1477 1478 static inline unsigned long lock_accessed(struct lock_list *lock) 1479 { 1480 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1481 } 1482 1483 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1484 { 1485 return child->parent; 1486 } 1487 1488 static inline int get_lock_depth(struct lock_list *child) 1489 { 1490 int depth = 0; 1491 struct lock_list *parent; 1492 1493 while ((parent = get_lock_parent(child))) { 1494 child = parent; 1495 depth++; 1496 } 1497 return depth; 1498 } 1499 1500 /* 1501 * Return the forward or backward dependency list. 1502 * 1503 * @lock: the lock_list to get its class's dependency list 1504 * @offset: the offset to struct lock_class to determine whether it is 1505 * locks_after or locks_before 1506 */ 1507 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1508 { 1509 void *lock_class = lock->class; 1510 1511 return lock_class + offset; 1512 } 1513 /* 1514 * Return values of a bfs search: 1515 * 1516 * BFS_E* indicates an error 1517 * BFS_R* indicates a result (match or not) 1518 * 1519 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1520 * 1521 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1522 * 1523 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1524 * *@target_entry. 1525 * 1526 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1527 * _unchanged_. 1528 */ 1529 enum bfs_result { 1530 BFS_EINVALIDNODE = -2, 1531 BFS_EQUEUEFULL = -1, 1532 BFS_RMATCH = 0, 1533 BFS_RNOMATCH = 1, 1534 }; 1535 1536 /* 1537 * bfs_result < 0 means error 1538 */ 1539 static inline bool bfs_error(enum bfs_result res) 1540 { 1541 return res < 0; 1542 } 1543 1544 /* 1545 * DEP_*_BIT in lock_list::dep 1546 * 1547 * For dependency @prev -> @next: 1548 * 1549 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1550 * (->read == 2) 1551 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1552 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1553 * EN: @prev is exclusive locker and @next is non-recursive locker 1554 * 1555 * Note that we define the value of DEP_*_BITs so that: 1556 * bit0 is prev->read == 0 1557 * bit1 is next->read != 2 1558 */ 1559 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1560 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1561 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1562 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1563 1564 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1565 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1566 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1567 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1568 1569 static inline unsigned int 1570 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1571 { 1572 return (prev->read == 0) + ((next->read != 2) << 1); 1573 } 1574 1575 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1576 { 1577 return 1U << __calc_dep_bit(prev, next); 1578 } 1579 1580 /* 1581 * calculate the dep_bit for backwards edges. We care about whether @prev is 1582 * shared and whether @next is recursive. 1583 */ 1584 static inline unsigned int 1585 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1586 { 1587 return (next->read != 2) + ((prev->read == 0) << 1); 1588 } 1589 1590 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1591 { 1592 return 1U << __calc_dep_bitb(prev, next); 1593 } 1594 1595 /* 1596 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1597 * search. 1598 */ 1599 static inline void __bfs_init_root(struct lock_list *lock, 1600 struct lock_class *class) 1601 { 1602 lock->class = class; 1603 lock->parent = NULL; 1604 lock->only_xr = 0; 1605 } 1606 1607 /* 1608 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1609 * root for a BFS search. 1610 * 1611 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1612 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1613 * and -(S*)->. 1614 */ 1615 static inline void bfs_init_root(struct lock_list *lock, 1616 struct held_lock *hlock) 1617 { 1618 __bfs_init_root(lock, hlock_class(hlock)); 1619 lock->only_xr = (hlock->read == 2); 1620 } 1621 1622 /* 1623 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1624 * 1625 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1626 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1627 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1628 */ 1629 static inline void bfs_init_rootb(struct lock_list *lock, 1630 struct held_lock *hlock) 1631 { 1632 __bfs_init_root(lock, hlock_class(hlock)); 1633 lock->only_xr = (hlock->read != 0); 1634 } 1635 1636 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1637 { 1638 if (!lock || !lock->parent) 1639 return NULL; 1640 1641 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1642 &lock->entry, struct lock_list, entry); 1643 } 1644 1645 /* 1646 * Breadth-First Search to find a strong path in the dependency graph. 1647 * 1648 * @source_entry: the source of the path we are searching for. 1649 * @data: data used for the second parameter of @match function 1650 * @match: match function for the search 1651 * @target_entry: pointer to the target of a matched path 1652 * @offset: the offset to struct lock_class to determine whether it is 1653 * locks_after or locks_before 1654 * 1655 * We may have multiple edges (considering different kinds of dependencies, 1656 * e.g. ER and SN) between two nodes in the dependency graph. But 1657 * only the strong dependency path in the graph is relevant to deadlocks. A 1658 * strong dependency path is a dependency path that doesn't have two adjacent 1659 * dependencies as -(*R)-> -(S*)->, please see: 1660 * 1661 * Documentation/locking/lockdep-design.rst 1662 * 1663 * for more explanation of the definition of strong dependency paths 1664 * 1665 * In __bfs(), we only traverse in the strong dependency path: 1666 * 1667 * In lock_list::only_xr, we record whether the previous dependency only 1668 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1669 * filter out any -(S*)-> in the current dependency and after that, the 1670 * ->only_xr is set according to whether we only have -(*R)-> left. 1671 */ 1672 static enum bfs_result __bfs(struct lock_list *source_entry, 1673 void *data, 1674 bool (*match)(struct lock_list *entry, void *data), 1675 bool (*skip)(struct lock_list *entry, void *data), 1676 struct lock_list **target_entry, 1677 int offset) 1678 { 1679 struct circular_queue *cq = &lock_cq; 1680 struct lock_list *lock = NULL; 1681 struct lock_list *entry; 1682 struct list_head *head; 1683 unsigned int cq_depth; 1684 bool first; 1685 1686 lockdep_assert_locked(); 1687 1688 __cq_init(cq); 1689 __cq_enqueue(cq, source_entry); 1690 1691 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1692 if (!lock->class) 1693 return BFS_EINVALIDNODE; 1694 1695 /* 1696 * Step 1: check whether we already finish on this one. 1697 * 1698 * If we have visited all the dependencies from this @lock to 1699 * others (iow, if we have visited all lock_list entries in 1700 * @lock->class->locks_{after,before}) we skip, otherwise go 1701 * and visit all the dependencies in the list and mark this 1702 * list accessed. 1703 */ 1704 if (lock_accessed(lock)) 1705 continue; 1706 else 1707 mark_lock_accessed(lock); 1708 1709 /* 1710 * Step 2: check whether prev dependency and this form a strong 1711 * dependency path. 1712 */ 1713 if (lock->parent) { /* Parent exists, check prev dependency */ 1714 u8 dep = lock->dep; 1715 bool prev_only_xr = lock->parent->only_xr; 1716 1717 /* 1718 * Mask out all -(S*)-> if we only have *R in previous 1719 * step, because -(*R)-> -(S*)-> don't make up a strong 1720 * dependency. 1721 */ 1722 if (prev_only_xr) 1723 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1724 1725 /* If nothing left, we skip */ 1726 if (!dep) 1727 continue; 1728 1729 /* If there are only -(*R)-> left, set that for the next step */ 1730 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1731 } 1732 1733 /* 1734 * Step 3: we haven't visited this and there is a strong 1735 * dependency path to this, so check with @match. 1736 * If @skip is provide and returns true, we skip this 1737 * lock (and any path this lock is in). 1738 */ 1739 if (skip && skip(lock, data)) 1740 continue; 1741 1742 if (match(lock, data)) { 1743 *target_entry = lock; 1744 return BFS_RMATCH; 1745 } 1746 1747 /* 1748 * Step 4: if not match, expand the path by adding the 1749 * forward or backwards dependencis in the search 1750 * 1751 */ 1752 first = true; 1753 head = get_dep_list(lock, offset); 1754 list_for_each_entry_rcu(entry, head, entry) { 1755 visit_lock_entry(entry, lock); 1756 1757 /* 1758 * Note we only enqueue the first of the list into the 1759 * queue, because we can always find a sibling 1760 * dependency from one (see __bfs_next()), as a result 1761 * the space of queue is saved. 1762 */ 1763 if (!first) 1764 continue; 1765 1766 first = false; 1767 1768 if (__cq_enqueue(cq, entry)) 1769 return BFS_EQUEUEFULL; 1770 1771 cq_depth = __cq_get_elem_count(cq); 1772 if (max_bfs_queue_depth < cq_depth) 1773 max_bfs_queue_depth = cq_depth; 1774 } 1775 } 1776 1777 return BFS_RNOMATCH; 1778 } 1779 1780 static inline enum bfs_result 1781 __bfs_forwards(struct lock_list *src_entry, 1782 void *data, 1783 bool (*match)(struct lock_list *entry, void *data), 1784 bool (*skip)(struct lock_list *entry, void *data), 1785 struct lock_list **target_entry) 1786 { 1787 return __bfs(src_entry, data, match, skip, target_entry, 1788 offsetof(struct lock_class, locks_after)); 1789 1790 } 1791 1792 static inline enum bfs_result 1793 __bfs_backwards(struct lock_list *src_entry, 1794 void *data, 1795 bool (*match)(struct lock_list *entry, void *data), 1796 bool (*skip)(struct lock_list *entry, void *data), 1797 struct lock_list **target_entry) 1798 { 1799 return __bfs(src_entry, data, match, skip, target_entry, 1800 offsetof(struct lock_class, locks_before)); 1801 1802 } 1803 1804 static void print_lock_trace(const struct lock_trace *trace, 1805 unsigned int spaces) 1806 { 1807 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1808 } 1809 1810 /* 1811 * Print a dependency chain entry (this is only done when a deadlock 1812 * has been detected): 1813 */ 1814 static noinline void 1815 print_circular_bug_entry(struct lock_list *target, int depth) 1816 { 1817 if (debug_locks_silent) 1818 return; 1819 printk("\n-> #%u", depth); 1820 print_lock_name(target->class); 1821 printk(KERN_CONT ":\n"); 1822 print_lock_trace(target->trace, 6); 1823 } 1824 1825 static void 1826 print_circular_lock_scenario(struct held_lock *src, 1827 struct held_lock *tgt, 1828 struct lock_list *prt) 1829 { 1830 struct lock_class *source = hlock_class(src); 1831 struct lock_class *target = hlock_class(tgt); 1832 struct lock_class *parent = prt->class; 1833 1834 /* 1835 * A direct locking problem where unsafe_class lock is taken 1836 * directly by safe_class lock, then all we need to show 1837 * is the deadlock scenario, as it is obvious that the 1838 * unsafe lock is taken under the safe lock. 1839 * 1840 * But if there is a chain instead, where the safe lock takes 1841 * an intermediate lock (middle_class) where this lock is 1842 * not the same as the safe lock, then the lock chain is 1843 * used to describe the problem. Otherwise we would need 1844 * to show a different CPU case for each link in the chain 1845 * from the safe_class lock to the unsafe_class lock. 1846 */ 1847 if (parent != source) { 1848 printk("Chain exists of:\n "); 1849 __print_lock_name(source); 1850 printk(KERN_CONT " --> "); 1851 __print_lock_name(parent); 1852 printk(KERN_CONT " --> "); 1853 __print_lock_name(target); 1854 printk(KERN_CONT "\n\n"); 1855 } 1856 1857 printk(" Possible unsafe locking scenario:\n\n"); 1858 printk(" CPU0 CPU1\n"); 1859 printk(" ---- ----\n"); 1860 printk(" lock("); 1861 __print_lock_name(target); 1862 printk(KERN_CONT ");\n"); 1863 printk(" lock("); 1864 __print_lock_name(parent); 1865 printk(KERN_CONT ");\n"); 1866 printk(" lock("); 1867 __print_lock_name(target); 1868 printk(KERN_CONT ");\n"); 1869 printk(" lock("); 1870 __print_lock_name(source); 1871 printk(KERN_CONT ");\n"); 1872 printk("\n *** DEADLOCK ***\n\n"); 1873 } 1874 1875 /* 1876 * When a circular dependency is detected, print the 1877 * header first: 1878 */ 1879 static noinline void 1880 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1881 struct held_lock *check_src, 1882 struct held_lock *check_tgt) 1883 { 1884 struct task_struct *curr = current; 1885 1886 if (debug_locks_silent) 1887 return; 1888 1889 pr_warn("\n"); 1890 pr_warn("======================================================\n"); 1891 pr_warn("WARNING: possible circular locking dependency detected\n"); 1892 print_kernel_ident(); 1893 pr_warn("------------------------------------------------------\n"); 1894 pr_warn("%s/%d is trying to acquire lock:\n", 1895 curr->comm, task_pid_nr(curr)); 1896 print_lock(check_src); 1897 1898 pr_warn("\nbut task is already holding lock:\n"); 1899 1900 print_lock(check_tgt); 1901 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1902 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1903 1904 print_circular_bug_entry(entry, depth); 1905 } 1906 1907 /* 1908 * We are about to add A -> B into the dependency graph, and in __bfs() a 1909 * strong dependency path A -> .. -> B is found: hlock_class equals 1910 * entry->class. 1911 * 1912 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1913 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1914 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1915 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1916 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1917 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1918 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant. 1919 * 1920 * We need to make sure both the start and the end of A -> .. -> B is not 1921 * weaker than A -> B. For the start part, please see the comment in 1922 * check_redundant(). For the end part, we need: 1923 * 1924 * Either 1925 * 1926 * a) A -> B is -(*R)-> (everything is not weaker than that) 1927 * 1928 * or 1929 * 1930 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1931 * 1932 */ 1933 static inline bool hlock_equal(struct lock_list *entry, void *data) 1934 { 1935 struct held_lock *hlock = (struct held_lock *)data; 1936 1937 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1938 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1939 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1940 } 1941 1942 /* 1943 * We are about to add B -> A into the dependency graph, and in __bfs() a 1944 * strong dependency path A -> .. -> B is found: hlock_class equals 1945 * entry->class. 1946 * 1947 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1948 * dependency cycle, that means: 1949 * 1950 * Either 1951 * 1952 * a) B -> A is -(E*)-> 1953 * 1954 * or 1955 * 1956 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 1957 * 1958 * as then we don't have -(*R)-> -(S*)-> in the cycle. 1959 */ 1960 static inline bool hlock_conflict(struct lock_list *entry, void *data) 1961 { 1962 struct held_lock *hlock = (struct held_lock *)data; 1963 1964 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1965 (hlock->read == 0 || /* B -> A is -(E*)-> */ 1966 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1967 } 1968 1969 static noinline void print_circular_bug(struct lock_list *this, 1970 struct lock_list *target, 1971 struct held_lock *check_src, 1972 struct held_lock *check_tgt) 1973 { 1974 struct task_struct *curr = current; 1975 struct lock_list *parent; 1976 struct lock_list *first_parent; 1977 int depth; 1978 1979 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1980 return; 1981 1982 this->trace = save_trace(); 1983 if (!this->trace) 1984 return; 1985 1986 depth = get_lock_depth(target); 1987 1988 print_circular_bug_header(target, depth, check_src, check_tgt); 1989 1990 parent = get_lock_parent(target); 1991 first_parent = parent; 1992 1993 while (parent) { 1994 print_circular_bug_entry(parent, --depth); 1995 parent = get_lock_parent(parent); 1996 } 1997 1998 printk("\nother info that might help us debug this:\n\n"); 1999 print_circular_lock_scenario(check_src, check_tgt, 2000 first_parent); 2001 2002 lockdep_print_held_locks(curr); 2003 2004 printk("\nstack backtrace:\n"); 2005 dump_stack(); 2006 } 2007 2008 static noinline void print_bfs_bug(int ret) 2009 { 2010 if (!debug_locks_off_graph_unlock()) 2011 return; 2012 2013 /* 2014 * Breadth-first-search failed, graph got corrupted? 2015 */ 2016 WARN(1, "lockdep bfs error:%d\n", ret); 2017 } 2018 2019 static bool noop_count(struct lock_list *entry, void *data) 2020 { 2021 (*(unsigned long *)data)++; 2022 return false; 2023 } 2024 2025 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2026 { 2027 unsigned long count = 0; 2028 struct lock_list *target_entry; 2029 2030 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2031 2032 return count; 2033 } 2034 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2035 { 2036 unsigned long ret, flags; 2037 struct lock_list this; 2038 2039 __bfs_init_root(&this, class); 2040 2041 raw_local_irq_save(flags); 2042 lockdep_lock(); 2043 ret = __lockdep_count_forward_deps(&this); 2044 lockdep_unlock(); 2045 raw_local_irq_restore(flags); 2046 2047 return ret; 2048 } 2049 2050 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2051 { 2052 unsigned long count = 0; 2053 struct lock_list *target_entry; 2054 2055 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2056 2057 return count; 2058 } 2059 2060 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2061 { 2062 unsigned long ret, flags; 2063 struct lock_list this; 2064 2065 __bfs_init_root(&this, class); 2066 2067 raw_local_irq_save(flags); 2068 lockdep_lock(); 2069 ret = __lockdep_count_backward_deps(&this); 2070 lockdep_unlock(); 2071 raw_local_irq_restore(flags); 2072 2073 return ret; 2074 } 2075 2076 /* 2077 * Check that the dependency graph starting at <src> can lead to 2078 * <target> or not. 2079 */ 2080 static noinline enum bfs_result 2081 check_path(struct held_lock *target, struct lock_list *src_entry, 2082 bool (*match)(struct lock_list *entry, void *data), 2083 bool (*skip)(struct lock_list *entry, void *data), 2084 struct lock_list **target_entry) 2085 { 2086 enum bfs_result ret; 2087 2088 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2089 2090 if (unlikely(bfs_error(ret))) 2091 print_bfs_bug(ret); 2092 2093 return ret; 2094 } 2095 2096 /* 2097 * Prove that the dependency graph starting at <src> can not 2098 * lead to <target>. If it can, there is a circle when adding 2099 * <target> -> <src> dependency. 2100 * 2101 * Print an error and return BFS_RMATCH if it does. 2102 */ 2103 static noinline enum bfs_result 2104 check_noncircular(struct held_lock *src, struct held_lock *target, 2105 struct lock_trace **const trace) 2106 { 2107 enum bfs_result ret; 2108 struct lock_list *target_entry; 2109 struct lock_list src_entry; 2110 2111 bfs_init_root(&src_entry, src); 2112 2113 debug_atomic_inc(nr_cyclic_checks); 2114 2115 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2116 2117 if (unlikely(ret == BFS_RMATCH)) { 2118 if (!*trace) { 2119 /* 2120 * If save_trace fails here, the printing might 2121 * trigger a WARN but because of the !nr_entries it 2122 * should not do bad things. 2123 */ 2124 *trace = save_trace(); 2125 } 2126 2127 print_circular_bug(&src_entry, target_entry, src, target); 2128 } 2129 2130 return ret; 2131 } 2132 2133 #ifdef CONFIG_TRACE_IRQFLAGS 2134 2135 /* 2136 * Forwards and backwards subgraph searching, for the purposes of 2137 * proving that two subgraphs can be connected by a new dependency 2138 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2139 * 2140 * A irq safe->unsafe deadlock happens with the following conditions: 2141 * 2142 * 1) We have a strong dependency path A -> ... -> B 2143 * 2144 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2145 * irq can create a new dependency B -> A (consider the case that a holder 2146 * of B gets interrupted by an irq whose handler will try to acquire A). 2147 * 2148 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2149 * strong circle: 2150 * 2151 * For the usage bits of B: 2152 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2153 * ENABLED_IRQ usage suffices. 2154 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2155 * ENABLED_IRQ_*_READ usage suffices. 2156 * 2157 * For the usage bits of A: 2158 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2159 * USED_IN_IRQ usage suffices. 2160 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2161 * USED_IN_IRQ_*_READ usage suffices. 2162 */ 2163 2164 /* 2165 * There is a strong dependency path in the dependency graph: A -> B, and now 2166 * we need to decide which usage bit of A should be accumulated to detect 2167 * safe->unsafe bugs. 2168 * 2169 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2170 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2171 * 2172 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2173 * path, any usage of A should be considered. Otherwise, we should only 2174 * consider _READ usage. 2175 */ 2176 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2177 { 2178 if (!entry->only_xr) 2179 *(unsigned long *)mask |= entry->class->usage_mask; 2180 else /* Mask out _READ usage bits */ 2181 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2182 2183 return false; 2184 } 2185 2186 /* 2187 * There is a strong dependency path in the dependency graph: A -> B, and now 2188 * we need to decide which usage bit of B conflicts with the usage bits of A, 2189 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2190 * 2191 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2192 * path, any usage of B should be considered. Otherwise, we should only 2193 * consider _READ usage. 2194 */ 2195 static inline bool usage_match(struct lock_list *entry, void *mask) 2196 { 2197 if (!entry->only_xr) 2198 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2199 else /* Mask out _READ usage bits */ 2200 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2201 } 2202 2203 static inline bool usage_skip(struct lock_list *entry, void *mask) 2204 { 2205 /* 2206 * Skip local_lock() for irq inversion detection. 2207 * 2208 * For !RT, local_lock() is not a real lock, so it won't carry any 2209 * dependency. 2210 * 2211 * For RT, an irq inversion happens when we have lock A and B, and on 2212 * some CPU we can have: 2213 * 2214 * lock(A); 2215 * <interrupted> 2216 * lock(B); 2217 * 2218 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2219 * 2220 * Now we prove local_lock() cannot exist in that dependency. First we 2221 * have the observation for any lock chain L1 -> ... -> Ln, for any 2222 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2223 * wait context check will complain. And since B is not a sleep lock, 2224 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2225 * local_lock() is 3, which is greater than 2, therefore there is no 2226 * way the local_lock() exists in the dependency B -> ... -> A. 2227 * 2228 * As a result, we will skip local_lock(), when we search for irq 2229 * inversion bugs. 2230 */ 2231 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2232 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2233 return false; 2234 2235 return true; 2236 } 2237 2238 return false; 2239 } 2240 2241 /* 2242 * Find a node in the forwards-direction dependency sub-graph starting 2243 * at @root->class that matches @bit. 2244 * 2245 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2246 * into *@target_entry. 2247 */ 2248 static enum bfs_result 2249 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2250 struct lock_list **target_entry) 2251 { 2252 enum bfs_result result; 2253 2254 debug_atomic_inc(nr_find_usage_forwards_checks); 2255 2256 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2257 2258 return result; 2259 } 2260 2261 /* 2262 * Find a node in the backwards-direction dependency sub-graph starting 2263 * at @root->class that matches @bit. 2264 */ 2265 static enum bfs_result 2266 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2267 struct lock_list **target_entry) 2268 { 2269 enum bfs_result result; 2270 2271 debug_atomic_inc(nr_find_usage_backwards_checks); 2272 2273 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2274 2275 return result; 2276 } 2277 2278 static void print_lock_class_header(struct lock_class *class, int depth) 2279 { 2280 int bit; 2281 2282 printk("%*s->", depth, ""); 2283 print_lock_name(class); 2284 #ifdef CONFIG_DEBUG_LOCKDEP 2285 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2286 #endif 2287 printk(KERN_CONT " {\n"); 2288 2289 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2290 if (class->usage_mask & (1 << bit)) { 2291 int len = depth; 2292 2293 len += printk("%*s %s", depth, "", usage_str[bit]); 2294 len += printk(KERN_CONT " at:\n"); 2295 print_lock_trace(class->usage_traces[bit], len); 2296 } 2297 } 2298 printk("%*s }\n", depth, ""); 2299 2300 printk("%*s ... key at: [<%px>] %pS\n", 2301 depth, "", class->key, class->key); 2302 } 2303 2304 /* 2305 * printk the shortest lock dependencies from @start to @end in reverse order: 2306 */ 2307 static void __used 2308 print_shortest_lock_dependencies(struct lock_list *leaf, 2309 struct lock_list *root) 2310 { 2311 struct lock_list *entry = leaf; 2312 int depth; 2313 2314 /*compute depth from generated tree by BFS*/ 2315 depth = get_lock_depth(leaf); 2316 2317 do { 2318 print_lock_class_header(entry->class, depth); 2319 printk("%*s ... acquired at:\n", depth, ""); 2320 print_lock_trace(entry->trace, 2); 2321 printk("\n"); 2322 2323 if (depth == 0 && (entry != root)) { 2324 printk("lockdep:%s bad path found in chain graph\n", __func__); 2325 break; 2326 } 2327 2328 entry = get_lock_parent(entry); 2329 depth--; 2330 } while (entry && (depth >= 0)); 2331 } 2332 2333 static void 2334 print_irq_lock_scenario(struct lock_list *safe_entry, 2335 struct lock_list *unsafe_entry, 2336 struct lock_class *prev_class, 2337 struct lock_class *next_class) 2338 { 2339 struct lock_class *safe_class = safe_entry->class; 2340 struct lock_class *unsafe_class = unsafe_entry->class; 2341 struct lock_class *middle_class = prev_class; 2342 2343 if (middle_class == safe_class) 2344 middle_class = next_class; 2345 2346 /* 2347 * A direct locking problem where unsafe_class lock is taken 2348 * directly by safe_class lock, then all we need to show 2349 * is the deadlock scenario, as it is obvious that the 2350 * unsafe lock is taken under the safe lock. 2351 * 2352 * But if there is a chain instead, where the safe lock takes 2353 * an intermediate lock (middle_class) where this lock is 2354 * not the same as the safe lock, then the lock chain is 2355 * used to describe the problem. Otherwise we would need 2356 * to show a different CPU case for each link in the chain 2357 * from the safe_class lock to the unsafe_class lock. 2358 */ 2359 if (middle_class != unsafe_class) { 2360 printk("Chain exists of:\n "); 2361 __print_lock_name(safe_class); 2362 printk(KERN_CONT " --> "); 2363 __print_lock_name(middle_class); 2364 printk(KERN_CONT " --> "); 2365 __print_lock_name(unsafe_class); 2366 printk(KERN_CONT "\n\n"); 2367 } 2368 2369 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2370 printk(" CPU0 CPU1\n"); 2371 printk(" ---- ----\n"); 2372 printk(" lock("); 2373 __print_lock_name(unsafe_class); 2374 printk(KERN_CONT ");\n"); 2375 printk(" local_irq_disable();\n"); 2376 printk(" lock("); 2377 __print_lock_name(safe_class); 2378 printk(KERN_CONT ");\n"); 2379 printk(" lock("); 2380 __print_lock_name(middle_class); 2381 printk(KERN_CONT ");\n"); 2382 printk(" <Interrupt>\n"); 2383 printk(" lock("); 2384 __print_lock_name(safe_class); 2385 printk(KERN_CONT ");\n"); 2386 printk("\n *** DEADLOCK ***\n\n"); 2387 } 2388 2389 static void 2390 print_bad_irq_dependency(struct task_struct *curr, 2391 struct lock_list *prev_root, 2392 struct lock_list *next_root, 2393 struct lock_list *backwards_entry, 2394 struct lock_list *forwards_entry, 2395 struct held_lock *prev, 2396 struct held_lock *next, 2397 enum lock_usage_bit bit1, 2398 enum lock_usage_bit bit2, 2399 const char *irqclass) 2400 { 2401 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2402 return; 2403 2404 pr_warn("\n"); 2405 pr_warn("=====================================================\n"); 2406 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2407 irqclass, irqclass); 2408 print_kernel_ident(); 2409 pr_warn("-----------------------------------------------------\n"); 2410 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2411 curr->comm, task_pid_nr(curr), 2412 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2413 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2414 lockdep_hardirqs_enabled(), 2415 curr->softirqs_enabled); 2416 print_lock(next); 2417 2418 pr_warn("\nand this task is already holding:\n"); 2419 print_lock(prev); 2420 pr_warn("which would create a new lock dependency:\n"); 2421 print_lock_name(hlock_class(prev)); 2422 pr_cont(" ->"); 2423 print_lock_name(hlock_class(next)); 2424 pr_cont("\n"); 2425 2426 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2427 irqclass); 2428 print_lock_name(backwards_entry->class); 2429 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2430 2431 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2432 2433 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2434 print_lock_name(forwards_entry->class); 2435 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2436 pr_warn("..."); 2437 2438 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2439 2440 pr_warn("\nother info that might help us debug this:\n\n"); 2441 print_irq_lock_scenario(backwards_entry, forwards_entry, 2442 hlock_class(prev), hlock_class(next)); 2443 2444 lockdep_print_held_locks(curr); 2445 2446 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2447 prev_root->trace = save_trace(); 2448 if (!prev_root->trace) 2449 return; 2450 print_shortest_lock_dependencies(backwards_entry, prev_root); 2451 2452 pr_warn("\nthe dependencies between the lock to be acquired"); 2453 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2454 next_root->trace = save_trace(); 2455 if (!next_root->trace) 2456 return; 2457 print_shortest_lock_dependencies(forwards_entry, next_root); 2458 2459 pr_warn("\nstack backtrace:\n"); 2460 dump_stack(); 2461 } 2462 2463 static const char *state_names[] = { 2464 #define LOCKDEP_STATE(__STATE) \ 2465 __stringify(__STATE), 2466 #include "lockdep_states.h" 2467 #undef LOCKDEP_STATE 2468 }; 2469 2470 static const char *state_rnames[] = { 2471 #define LOCKDEP_STATE(__STATE) \ 2472 __stringify(__STATE)"-READ", 2473 #include "lockdep_states.h" 2474 #undef LOCKDEP_STATE 2475 }; 2476 2477 static inline const char *state_name(enum lock_usage_bit bit) 2478 { 2479 if (bit & LOCK_USAGE_READ_MASK) 2480 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2481 else 2482 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2483 } 2484 2485 /* 2486 * The bit number is encoded like: 2487 * 2488 * bit0: 0 exclusive, 1 read lock 2489 * bit1: 0 used in irq, 1 irq enabled 2490 * bit2-n: state 2491 */ 2492 static int exclusive_bit(int new_bit) 2493 { 2494 int state = new_bit & LOCK_USAGE_STATE_MASK; 2495 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2496 2497 /* 2498 * keep state, bit flip the direction and strip read. 2499 */ 2500 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2501 } 2502 2503 /* 2504 * Observe that when given a bitmask where each bitnr is encoded as above, a 2505 * right shift of the mask transforms the individual bitnrs as -1 and 2506 * conversely, a left shift transforms into +1 for the individual bitnrs. 2507 * 2508 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2509 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2510 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2511 * 2512 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2513 * 2514 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2515 * all bits set) and recompose with bitnr1 flipped. 2516 */ 2517 static unsigned long invert_dir_mask(unsigned long mask) 2518 { 2519 unsigned long excl = 0; 2520 2521 /* Invert dir */ 2522 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2523 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2524 2525 return excl; 2526 } 2527 2528 /* 2529 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2530 * usage may cause deadlock too, for example: 2531 * 2532 * P1 P2 2533 * <irq disabled> 2534 * write_lock(l1); <irq enabled> 2535 * read_lock(l2); 2536 * write_lock(l2); 2537 * <in irq> 2538 * read_lock(l1); 2539 * 2540 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2541 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2542 * deadlock. 2543 * 2544 * In fact, all of the following cases may cause deadlocks: 2545 * 2546 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2547 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2548 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2549 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2550 * 2551 * As a result, to calculate the "exclusive mask", first we invert the 2552 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2553 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2554 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2555 */ 2556 static unsigned long exclusive_mask(unsigned long mask) 2557 { 2558 unsigned long excl = invert_dir_mask(mask); 2559 2560 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2561 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2562 2563 return excl; 2564 } 2565 2566 /* 2567 * Retrieve the _possible_ original mask to which @mask is 2568 * exclusive. Ie: this is the opposite of exclusive_mask(). 2569 * Note that 2 possible original bits can match an exclusive 2570 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2571 * cleared. So both are returned for each exclusive bit. 2572 */ 2573 static unsigned long original_mask(unsigned long mask) 2574 { 2575 unsigned long excl = invert_dir_mask(mask); 2576 2577 /* Include read in existing usages */ 2578 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2579 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2580 2581 return excl; 2582 } 2583 2584 /* 2585 * Find the first pair of bit match between an original 2586 * usage mask and an exclusive usage mask. 2587 */ 2588 static int find_exclusive_match(unsigned long mask, 2589 unsigned long excl_mask, 2590 enum lock_usage_bit *bitp, 2591 enum lock_usage_bit *excl_bitp) 2592 { 2593 int bit, excl, excl_read; 2594 2595 for_each_set_bit(bit, &mask, LOCK_USED) { 2596 /* 2597 * exclusive_bit() strips the read bit, however, 2598 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2599 * to search excl | LOCK_USAGE_READ_MASK as well. 2600 */ 2601 excl = exclusive_bit(bit); 2602 excl_read = excl | LOCK_USAGE_READ_MASK; 2603 if (excl_mask & lock_flag(excl)) { 2604 *bitp = bit; 2605 *excl_bitp = excl; 2606 return 0; 2607 } else if (excl_mask & lock_flag(excl_read)) { 2608 *bitp = bit; 2609 *excl_bitp = excl_read; 2610 return 0; 2611 } 2612 } 2613 return -1; 2614 } 2615 2616 /* 2617 * Prove that the new dependency does not connect a hardirq-safe(-read) 2618 * lock with a hardirq-unsafe lock - to achieve this we search 2619 * the backwards-subgraph starting at <prev>, and the 2620 * forwards-subgraph starting at <next>: 2621 */ 2622 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2623 struct held_lock *next) 2624 { 2625 unsigned long usage_mask = 0, forward_mask, backward_mask; 2626 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2627 struct lock_list *target_entry1; 2628 struct lock_list *target_entry; 2629 struct lock_list this, that; 2630 enum bfs_result ret; 2631 2632 /* 2633 * Step 1: gather all hard/soft IRQs usages backward in an 2634 * accumulated usage mask. 2635 */ 2636 bfs_init_rootb(&this, prev); 2637 2638 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2639 if (bfs_error(ret)) { 2640 print_bfs_bug(ret); 2641 return 0; 2642 } 2643 2644 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2645 if (!usage_mask) 2646 return 1; 2647 2648 /* 2649 * Step 2: find exclusive uses forward that match the previous 2650 * backward accumulated mask. 2651 */ 2652 forward_mask = exclusive_mask(usage_mask); 2653 2654 bfs_init_root(&that, next); 2655 2656 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2657 if (bfs_error(ret)) { 2658 print_bfs_bug(ret); 2659 return 0; 2660 } 2661 if (ret == BFS_RNOMATCH) 2662 return 1; 2663 2664 /* 2665 * Step 3: we found a bad match! Now retrieve a lock from the backward 2666 * list whose usage mask matches the exclusive usage mask from the 2667 * lock found on the forward list. 2668 */ 2669 backward_mask = original_mask(target_entry1->class->usage_mask); 2670 2671 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2672 if (bfs_error(ret)) { 2673 print_bfs_bug(ret); 2674 return 0; 2675 } 2676 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2677 return 1; 2678 2679 /* 2680 * Step 4: narrow down to a pair of incompatible usage bits 2681 * and report it. 2682 */ 2683 ret = find_exclusive_match(target_entry->class->usage_mask, 2684 target_entry1->class->usage_mask, 2685 &backward_bit, &forward_bit); 2686 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2687 return 1; 2688 2689 print_bad_irq_dependency(curr, &this, &that, 2690 target_entry, target_entry1, 2691 prev, next, 2692 backward_bit, forward_bit, 2693 state_name(backward_bit)); 2694 2695 return 0; 2696 } 2697 2698 #else 2699 2700 static inline int check_irq_usage(struct task_struct *curr, 2701 struct held_lock *prev, struct held_lock *next) 2702 { 2703 return 1; 2704 } 2705 2706 static inline bool usage_skip(struct lock_list *entry, void *mask) 2707 { 2708 return false; 2709 } 2710 2711 #endif /* CONFIG_TRACE_IRQFLAGS */ 2712 2713 #ifdef CONFIG_LOCKDEP_SMALL 2714 /* 2715 * Check that the dependency graph starting at <src> can lead to 2716 * <target> or not. If it can, <src> -> <target> dependency is already 2717 * in the graph. 2718 * 2719 * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if 2720 * any error appears in the bfs search. 2721 */ 2722 static noinline enum bfs_result 2723 check_redundant(struct held_lock *src, struct held_lock *target) 2724 { 2725 enum bfs_result ret; 2726 struct lock_list *target_entry; 2727 struct lock_list src_entry; 2728 2729 bfs_init_root(&src_entry, src); 2730 /* 2731 * Special setup for check_redundant(). 2732 * 2733 * To report redundant, we need to find a strong dependency path that 2734 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2735 * we need to let __bfs() only search for a path starting at a -(E*)->, 2736 * we achieve this by setting the initial node's ->only_xr to true in 2737 * that case. And if <prev> is S, we set initial ->only_xr to false 2738 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2739 */ 2740 src_entry.only_xr = src->read == 0; 2741 2742 debug_atomic_inc(nr_redundant_checks); 2743 2744 /* 2745 * Note: we skip local_lock() for redundant check, because as the 2746 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2747 * the same. 2748 */ 2749 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2750 2751 if (ret == BFS_RMATCH) 2752 debug_atomic_inc(nr_redundant); 2753 2754 return ret; 2755 } 2756 2757 #else 2758 2759 static inline enum bfs_result 2760 check_redundant(struct held_lock *src, struct held_lock *target) 2761 { 2762 return BFS_RNOMATCH; 2763 } 2764 2765 #endif 2766 2767 static void inc_chains(int irq_context) 2768 { 2769 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2770 nr_hardirq_chains++; 2771 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2772 nr_softirq_chains++; 2773 else 2774 nr_process_chains++; 2775 } 2776 2777 static void dec_chains(int irq_context) 2778 { 2779 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2780 nr_hardirq_chains--; 2781 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2782 nr_softirq_chains--; 2783 else 2784 nr_process_chains--; 2785 } 2786 2787 static void 2788 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2789 { 2790 struct lock_class *next = hlock_class(nxt); 2791 struct lock_class *prev = hlock_class(prv); 2792 2793 printk(" Possible unsafe locking scenario:\n\n"); 2794 printk(" CPU0\n"); 2795 printk(" ----\n"); 2796 printk(" lock("); 2797 __print_lock_name(prev); 2798 printk(KERN_CONT ");\n"); 2799 printk(" lock("); 2800 __print_lock_name(next); 2801 printk(KERN_CONT ");\n"); 2802 printk("\n *** DEADLOCK ***\n\n"); 2803 printk(" May be due to missing lock nesting notation\n\n"); 2804 } 2805 2806 static void 2807 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2808 struct held_lock *next) 2809 { 2810 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2811 return; 2812 2813 pr_warn("\n"); 2814 pr_warn("============================================\n"); 2815 pr_warn("WARNING: possible recursive locking detected\n"); 2816 print_kernel_ident(); 2817 pr_warn("--------------------------------------------\n"); 2818 pr_warn("%s/%d is trying to acquire lock:\n", 2819 curr->comm, task_pid_nr(curr)); 2820 print_lock(next); 2821 pr_warn("\nbut task is already holding lock:\n"); 2822 print_lock(prev); 2823 2824 pr_warn("\nother info that might help us debug this:\n"); 2825 print_deadlock_scenario(next, prev); 2826 lockdep_print_held_locks(curr); 2827 2828 pr_warn("\nstack backtrace:\n"); 2829 dump_stack(); 2830 } 2831 2832 /* 2833 * Check whether we are holding such a class already. 2834 * 2835 * (Note that this has to be done separately, because the graph cannot 2836 * detect such classes of deadlocks.) 2837 * 2838 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 2839 * lock class is held but nest_lock is also held, i.e. we rely on the 2840 * nest_lock to avoid the deadlock. 2841 */ 2842 static int 2843 check_deadlock(struct task_struct *curr, struct held_lock *next) 2844 { 2845 struct held_lock *prev; 2846 struct held_lock *nest = NULL; 2847 int i; 2848 2849 for (i = 0; i < curr->lockdep_depth; i++) { 2850 prev = curr->held_locks + i; 2851 2852 if (prev->instance == next->nest_lock) 2853 nest = prev; 2854 2855 if (hlock_class(prev) != hlock_class(next)) 2856 continue; 2857 2858 /* 2859 * Allow read-after-read recursion of the same 2860 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2861 */ 2862 if ((next->read == 2) && prev->read) 2863 continue; 2864 2865 /* 2866 * We're holding the nest_lock, which serializes this lock's 2867 * nesting behaviour. 2868 */ 2869 if (nest) 2870 return 2; 2871 2872 print_deadlock_bug(curr, prev, next); 2873 return 0; 2874 } 2875 return 1; 2876 } 2877 2878 /* 2879 * There was a chain-cache miss, and we are about to add a new dependency 2880 * to a previous lock. We validate the following rules: 2881 * 2882 * - would the adding of the <prev> -> <next> dependency create a 2883 * circular dependency in the graph? [== circular deadlock] 2884 * 2885 * - does the new prev->next dependency connect any hardirq-safe lock 2886 * (in the full backwards-subgraph starting at <prev>) with any 2887 * hardirq-unsafe lock (in the full forwards-subgraph starting at 2888 * <next>)? [== illegal lock inversion with hardirq contexts] 2889 * 2890 * - does the new prev->next dependency connect any softirq-safe lock 2891 * (in the full backwards-subgraph starting at <prev>) with any 2892 * softirq-unsafe lock (in the full forwards-subgraph starting at 2893 * <next>)? [== illegal lock inversion with softirq contexts] 2894 * 2895 * any of these scenarios could lead to a deadlock. 2896 * 2897 * Then if all the validations pass, we add the forwards and backwards 2898 * dependency. 2899 */ 2900 static int 2901 check_prev_add(struct task_struct *curr, struct held_lock *prev, 2902 struct held_lock *next, u16 distance, 2903 struct lock_trace **const trace) 2904 { 2905 struct lock_list *entry; 2906 enum bfs_result ret; 2907 2908 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 2909 /* 2910 * The warning statements below may trigger a use-after-free 2911 * of the class name. It is better to trigger a use-after free 2912 * and to have the class name most of the time instead of not 2913 * having the class name available. 2914 */ 2915 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 2916 "Detected use-after-free of lock class %px/%s\n", 2917 hlock_class(prev), 2918 hlock_class(prev)->name); 2919 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 2920 "Detected use-after-free of lock class %px/%s\n", 2921 hlock_class(next), 2922 hlock_class(next)->name); 2923 return 2; 2924 } 2925 2926 /* 2927 * Prove that the new <prev> -> <next> dependency would not 2928 * create a circular dependency in the graph. (We do this by 2929 * a breadth-first search into the graph starting at <next>, 2930 * and check whether we can reach <prev>.) 2931 * 2932 * The search is limited by the size of the circular queue (i.e., 2933 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 2934 * in the graph whose neighbours are to be checked. 2935 */ 2936 ret = check_noncircular(next, prev, trace); 2937 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 2938 return 0; 2939 2940 if (!check_irq_usage(curr, prev, next)) 2941 return 0; 2942 2943 /* 2944 * Is the <prev> -> <next> dependency already present? 2945 * 2946 * (this may occur even though this is a new chain: consider 2947 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 2948 * chains - the second one will be new, but L1 already has 2949 * L2 added to its dependency list, due to the first chain.) 2950 */ 2951 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 2952 if (entry->class == hlock_class(next)) { 2953 if (distance == 1) 2954 entry->distance = 1; 2955 entry->dep |= calc_dep(prev, next); 2956 2957 /* 2958 * Also, update the reverse dependency in @next's 2959 * ->locks_before list. 2960 * 2961 * Here we reuse @entry as the cursor, which is fine 2962 * because we won't go to the next iteration of the 2963 * outer loop: 2964 * 2965 * For normal cases, we return in the inner loop. 2966 * 2967 * If we fail to return, we have inconsistency, i.e. 2968 * <prev>::locks_after contains <next> while 2969 * <next>::locks_before doesn't contain <prev>. In 2970 * that case, we return after the inner and indicate 2971 * something is wrong. 2972 */ 2973 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 2974 if (entry->class == hlock_class(prev)) { 2975 if (distance == 1) 2976 entry->distance = 1; 2977 entry->dep |= calc_depb(prev, next); 2978 return 1; 2979 } 2980 } 2981 2982 /* <prev> is not found in <next>::locks_before */ 2983 return 0; 2984 } 2985 } 2986 2987 /* 2988 * Is the <prev> -> <next> link redundant? 2989 */ 2990 ret = check_redundant(prev, next); 2991 if (bfs_error(ret)) 2992 return 0; 2993 else if (ret == BFS_RMATCH) 2994 return 2; 2995 2996 if (!*trace) { 2997 *trace = save_trace(); 2998 if (!*trace) 2999 return 0; 3000 } 3001 3002 /* 3003 * Ok, all validations passed, add the new lock 3004 * to the previous lock's dependency list: 3005 */ 3006 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3007 &hlock_class(prev)->locks_after, 3008 next->acquire_ip, distance, 3009 calc_dep(prev, next), 3010 *trace); 3011 3012 if (!ret) 3013 return 0; 3014 3015 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3016 &hlock_class(next)->locks_before, 3017 next->acquire_ip, distance, 3018 calc_depb(prev, next), 3019 *trace); 3020 if (!ret) 3021 return 0; 3022 3023 return 2; 3024 } 3025 3026 /* 3027 * Add the dependency to all directly-previous locks that are 'relevant'. 3028 * The ones that are relevant are (in increasing distance from curr): 3029 * all consecutive trylock entries and the final non-trylock entry - or 3030 * the end of this context's lock-chain - whichever comes first. 3031 */ 3032 static int 3033 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3034 { 3035 struct lock_trace *trace = NULL; 3036 int depth = curr->lockdep_depth; 3037 struct held_lock *hlock; 3038 3039 /* 3040 * Debugging checks. 3041 * 3042 * Depth must not be zero for a non-head lock: 3043 */ 3044 if (!depth) 3045 goto out_bug; 3046 /* 3047 * At least two relevant locks must exist for this 3048 * to be a head: 3049 */ 3050 if (curr->held_locks[depth].irq_context != 3051 curr->held_locks[depth-1].irq_context) 3052 goto out_bug; 3053 3054 for (;;) { 3055 u16 distance = curr->lockdep_depth - depth + 1; 3056 hlock = curr->held_locks + depth - 1; 3057 3058 if (hlock->check) { 3059 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3060 if (!ret) 3061 return 0; 3062 3063 /* 3064 * Stop after the first non-trylock entry, 3065 * as non-trylock entries have added their 3066 * own direct dependencies already, so this 3067 * lock is connected to them indirectly: 3068 */ 3069 if (!hlock->trylock) 3070 break; 3071 } 3072 3073 depth--; 3074 /* 3075 * End of lock-stack? 3076 */ 3077 if (!depth) 3078 break; 3079 /* 3080 * Stop the search if we cross into another context: 3081 */ 3082 if (curr->held_locks[depth].irq_context != 3083 curr->held_locks[depth-1].irq_context) 3084 break; 3085 } 3086 return 1; 3087 out_bug: 3088 if (!debug_locks_off_graph_unlock()) 3089 return 0; 3090 3091 /* 3092 * Clearly we all shouldn't be here, but since we made it we 3093 * can reliable say we messed up our state. See the above two 3094 * gotos for reasons why we could possibly end up here. 3095 */ 3096 WARN_ON(1); 3097 3098 return 0; 3099 } 3100 3101 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3102 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3103 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3104 unsigned long nr_zapped_lock_chains; 3105 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3106 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3107 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3108 3109 /* 3110 * The first 2 chain_hlocks entries in the chain block in the bucket 3111 * list contains the following meta data: 3112 * 3113 * entry[0]: 3114 * Bit 15 - always set to 1 (it is not a class index) 3115 * Bits 0-14 - upper 15 bits of the next block index 3116 * entry[1] - lower 16 bits of next block index 3117 * 3118 * A next block index of all 1 bits means it is the end of the list. 3119 * 3120 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3121 * the chain block size: 3122 * 3123 * entry[2] - upper 16 bits of the chain block size 3124 * entry[3] - lower 16 bits of the chain block size 3125 */ 3126 #define MAX_CHAIN_BUCKETS 16 3127 #define CHAIN_BLK_FLAG (1U << 15) 3128 #define CHAIN_BLK_LIST_END 0xFFFFU 3129 3130 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3131 3132 static inline int size_to_bucket(int size) 3133 { 3134 if (size > MAX_CHAIN_BUCKETS) 3135 return 0; 3136 3137 return size - 1; 3138 } 3139 3140 /* 3141 * Iterate all the chain blocks in a bucket. 3142 */ 3143 #define for_each_chain_block(bucket, prev, curr) \ 3144 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3145 (curr) >= 0; \ 3146 (prev) = (curr), (curr) = chain_block_next(curr)) 3147 3148 /* 3149 * next block or -1 3150 */ 3151 static inline int chain_block_next(int offset) 3152 { 3153 int next = chain_hlocks[offset]; 3154 3155 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3156 3157 if (next == CHAIN_BLK_LIST_END) 3158 return -1; 3159 3160 next &= ~CHAIN_BLK_FLAG; 3161 next <<= 16; 3162 next |= chain_hlocks[offset + 1]; 3163 3164 return next; 3165 } 3166 3167 /* 3168 * bucket-0 only 3169 */ 3170 static inline int chain_block_size(int offset) 3171 { 3172 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3173 } 3174 3175 static inline void init_chain_block(int offset, int next, int bucket, int size) 3176 { 3177 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3178 chain_hlocks[offset + 1] = (u16)next; 3179 3180 if (size && !bucket) { 3181 chain_hlocks[offset + 2] = size >> 16; 3182 chain_hlocks[offset + 3] = (u16)size; 3183 } 3184 } 3185 3186 static inline void add_chain_block(int offset, int size) 3187 { 3188 int bucket = size_to_bucket(size); 3189 int next = chain_block_buckets[bucket]; 3190 int prev, curr; 3191 3192 if (unlikely(size < 2)) { 3193 /* 3194 * We can't store single entries on the freelist. Leak them. 3195 * 3196 * One possible way out would be to uniquely mark them, other 3197 * than with CHAIN_BLK_FLAG, such that we can recover them when 3198 * the block before it is re-added. 3199 */ 3200 if (size) 3201 nr_lost_chain_hlocks++; 3202 return; 3203 } 3204 3205 nr_free_chain_hlocks += size; 3206 if (!bucket) { 3207 nr_large_chain_blocks++; 3208 3209 /* 3210 * Variable sized, sort large to small. 3211 */ 3212 for_each_chain_block(0, prev, curr) { 3213 if (size >= chain_block_size(curr)) 3214 break; 3215 } 3216 init_chain_block(offset, curr, 0, size); 3217 if (prev < 0) 3218 chain_block_buckets[0] = offset; 3219 else 3220 init_chain_block(prev, offset, 0, 0); 3221 return; 3222 } 3223 /* 3224 * Fixed size, add to head. 3225 */ 3226 init_chain_block(offset, next, bucket, size); 3227 chain_block_buckets[bucket] = offset; 3228 } 3229 3230 /* 3231 * Only the first block in the list can be deleted. 3232 * 3233 * For the variable size bucket[0], the first block (the largest one) is 3234 * returned, broken up and put back into the pool. So if a chain block of 3235 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3236 * queued up after the primordial chain block and never be used until the 3237 * hlock entries in the primordial chain block is almost used up. That 3238 * causes fragmentation and reduce allocation efficiency. That can be 3239 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3240 */ 3241 static inline void del_chain_block(int bucket, int size, int next) 3242 { 3243 nr_free_chain_hlocks -= size; 3244 chain_block_buckets[bucket] = next; 3245 3246 if (!bucket) 3247 nr_large_chain_blocks--; 3248 } 3249 3250 static void init_chain_block_buckets(void) 3251 { 3252 int i; 3253 3254 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3255 chain_block_buckets[i] = -1; 3256 3257 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3258 } 3259 3260 /* 3261 * Return offset of a chain block of the right size or -1 if not found. 3262 * 3263 * Fairly simple worst-fit allocator with the addition of a number of size 3264 * specific free lists. 3265 */ 3266 static int alloc_chain_hlocks(int req) 3267 { 3268 int bucket, curr, size; 3269 3270 /* 3271 * We rely on the MSB to act as an escape bit to denote freelist 3272 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3273 */ 3274 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3275 3276 init_data_structures_once(); 3277 3278 if (nr_free_chain_hlocks < req) 3279 return -1; 3280 3281 /* 3282 * We require a minimum of 2 (u16) entries to encode a freelist 3283 * 'pointer'. 3284 */ 3285 req = max(req, 2); 3286 bucket = size_to_bucket(req); 3287 curr = chain_block_buckets[bucket]; 3288 3289 if (bucket) { 3290 if (curr >= 0) { 3291 del_chain_block(bucket, req, chain_block_next(curr)); 3292 return curr; 3293 } 3294 /* Try bucket 0 */ 3295 curr = chain_block_buckets[0]; 3296 } 3297 3298 /* 3299 * The variable sized freelist is sorted by size; the first entry is 3300 * the largest. Use it if it fits. 3301 */ 3302 if (curr >= 0) { 3303 size = chain_block_size(curr); 3304 if (likely(size >= req)) { 3305 del_chain_block(0, size, chain_block_next(curr)); 3306 add_chain_block(curr + req, size - req); 3307 return curr; 3308 } 3309 } 3310 3311 /* 3312 * Last resort, split a block in a larger sized bucket. 3313 */ 3314 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3315 bucket = size_to_bucket(size); 3316 curr = chain_block_buckets[bucket]; 3317 if (curr < 0) 3318 continue; 3319 3320 del_chain_block(bucket, size, chain_block_next(curr)); 3321 add_chain_block(curr + req, size - req); 3322 return curr; 3323 } 3324 3325 return -1; 3326 } 3327 3328 static inline void free_chain_hlocks(int base, int size) 3329 { 3330 add_chain_block(base, max(size, 2)); 3331 } 3332 3333 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3334 { 3335 u16 chain_hlock = chain_hlocks[chain->base + i]; 3336 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3337 3338 return lock_classes + class_idx - 1; 3339 } 3340 3341 /* 3342 * Returns the index of the first held_lock of the current chain 3343 */ 3344 static inline int get_first_held_lock(struct task_struct *curr, 3345 struct held_lock *hlock) 3346 { 3347 int i; 3348 struct held_lock *hlock_curr; 3349 3350 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3351 hlock_curr = curr->held_locks + i; 3352 if (hlock_curr->irq_context != hlock->irq_context) 3353 break; 3354 3355 } 3356 3357 return ++i; 3358 } 3359 3360 #ifdef CONFIG_DEBUG_LOCKDEP 3361 /* 3362 * Returns the next chain_key iteration 3363 */ 3364 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3365 { 3366 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3367 3368 printk(" hlock_id:%d -> chain_key:%016Lx", 3369 (unsigned int)hlock_id, 3370 (unsigned long long)new_chain_key); 3371 return new_chain_key; 3372 } 3373 3374 static void 3375 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3376 { 3377 struct held_lock *hlock; 3378 u64 chain_key = INITIAL_CHAIN_KEY; 3379 int depth = curr->lockdep_depth; 3380 int i = get_first_held_lock(curr, hlock_next); 3381 3382 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3383 hlock_next->irq_context); 3384 for (; i < depth; i++) { 3385 hlock = curr->held_locks + i; 3386 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3387 3388 print_lock(hlock); 3389 } 3390 3391 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3392 print_lock(hlock_next); 3393 } 3394 3395 static void print_chain_keys_chain(struct lock_chain *chain) 3396 { 3397 int i; 3398 u64 chain_key = INITIAL_CHAIN_KEY; 3399 u16 hlock_id; 3400 3401 printk("depth: %u\n", chain->depth); 3402 for (i = 0; i < chain->depth; i++) { 3403 hlock_id = chain_hlocks[chain->base + i]; 3404 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3405 3406 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1); 3407 printk("\n"); 3408 } 3409 } 3410 3411 static void print_collision(struct task_struct *curr, 3412 struct held_lock *hlock_next, 3413 struct lock_chain *chain) 3414 { 3415 pr_warn("\n"); 3416 pr_warn("============================\n"); 3417 pr_warn("WARNING: chain_key collision\n"); 3418 print_kernel_ident(); 3419 pr_warn("----------------------------\n"); 3420 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3421 pr_warn("Hash chain already cached but the contents don't match!\n"); 3422 3423 pr_warn("Held locks:"); 3424 print_chain_keys_held_locks(curr, hlock_next); 3425 3426 pr_warn("Locks in cached chain:"); 3427 print_chain_keys_chain(chain); 3428 3429 pr_warn("\nstack backtrace:\n"); 3430 dump_stack(); 3431 } 3432 #endif 3433 3434 /* 3435 * Checks whether the chain and the current held locks are consistent 3436 * in depth and also in content. If they are not it most likely means 3437 * that there was a collision during the calculation of the chain_key. 3438 * Returns: 0 not passed, 1 passed 3439 */ 3440 static int check_no_collision(struct task_struct *curr, 3441 struct held_lock *hlock, 3442 struct lock_chain *chain) 3443 { 3444 #ifdef CONFIG_DEBUG_LOCKDEP 3445 int i, j, id; 3446 3447 i = get_first_held_lock(curr, hlock); 3448 3449 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3450 print_collision(curr, hlock, chain); 3451 return 0; 3452 } 3453 3454 for (j = 0; j < chain->depth - 1; j++, i++) { 3455 id = hlock_id(&curr->held_locks[i]); 3456 3457 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3458 print_collision(curr, hlock, chain); 3459 return 0; 3460 } 3461 } 3462 #endif 3463 return 1; 3464 } 3465 3466 /* 3467 * Given an index that is >= -1, return the index of the next lock chain. 3468 * Return -2 if there is no next lock chain. 3469 */ 3470 long lockdep_next_lockchain(long i) 3471 { 3472 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3473 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3474 } 3475 3476 unsigned long lock_chain_count(void) 3477 { 3478 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3479 } 3480 3481 /* Must be called with the graph lock held. */ 3482 static struct lock_chain *alloc_lock_chain(void) 3483 { 3484 int idx = find_first_zero_bit(lock_chains_in_use, 3485 ARRAY_SIZE(lock_chains)); 3486 3487 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3488 return NULL; 3489 __set_bit(idx, lock_chains_in_use); 3490 return lock_chains + idx; 3491 } 3492 3493 /* 3494 * Adds a dependency chain into chain hashtable. And must be called with 3495 * graph_lock held. 3496 * 3497 * Return 0 if fail, and graph_lock is released. 3498 * Return 1 if succeed, with graph_lock held. 3499 */ 3500 static inline int add_chain_cache(struct task_struct *curr, 3501 struct held_lock *hlock, 3502 u64 chain_key) 3503 { 3504 struct hlist_head *hash_head = chainhashentry(chain_key); 3505 struct lock_chain *chain; 3506 int i, j; 3507 3508 /* 3509 * The caller must hold the graph lock, ensure we've got IRQs 3510 * disabled to make this an IRQ-safe lock.. for recursion reasons 3511 * lockdep won't complain about its own locking errors. 3512 */ 3513 if (lockdep_assert_locked()) 3514 return 0; 3515 3516 chain = alloc_lock_chain(); 3517 if (!chain) { 3518 if (!debug_locks_off_graph_unlock()) 3519 return 0; 3520 3521 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3522 dump_stack(); 3523 return 0; 3524 } 3525 chain->chain_key = chain_key; 3526 chain->irq_context = hlock->irq_context; 3527 i = get_first_held_lock(curr, hlock); 3528 chain->depth = curr->lockdep_depth + 1 - i; 3529 3530 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3531 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3532 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3533 3534 j = alloc_chain_hlocks(chain->depth); 3535 if (j < 0) { 3536 if (!debug_locks_off_graph_unlock()) 3537 return 0; 3538 3539 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3540 dump_stack(); 3541 return 0; 3542 } 3543 3544 chain->base = j; 3545 for (j = 0; j < chain->depth - 1; j++, i++) { 3546 int lock_id = hlock_id(curr->held_locks + i); 3547 3548 chain_hlocks[chain->base + j] = lock_id; 3549 } 3550 chain_hlocks[chain->base + j] = hlock_id(hlock); 3551 hlist_add_head_rcu(&chain->entry, hash_head); 3552 debug_atomic_inc(chain_lookup_misses); 3553 inc_chains(chain->irq_context); 3554 3555 return 1; 3556 } 3557 3558 /* 3559 * Look up a dependency chain. Must be called with either the graph lock or 3560 * the RCU read lock held. 3561 */ 3562 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3563 { 3564 struct hlist_head *hash_head = chainhashentry(chain_key); 3565 struct lock_chain *chain; 3566 3567 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3568 if (READ_ONCE(chain->chain_key) == chain_key) { 3569 debug_atomic_inc(chain_lookup_hits); 3570 return chain; 3571 } 3572 } 3573 return NULL; 3574 } 3575 3576 /* 3577 * If the key is not present yet in dependency chain cache then 3578 * add it and return 1 - in this case the new dependency chain is 3579 * validated. If the key is already hashed, return 0. 3580 * (On return with 1 graph_lock is held.) 3581 */ 3582 static inline int lookup_chain_cache_add(struct task_struct *curr, 3583 struct held_lock *hlock, 3584 u64 chain_key) 3585 { 3586 struct lock_class *class = hlock_class(hlock); 3587 struct lock_chain *chain = lookup_chain_cache(chain_key); 3588 3589 if (chain) { 3590 cache_hit: 3591 if (!check_no_collision(curr, hlock, chain)) 3592 return 0; 3593 3594 if (very_verbose(class)) { 3595 printk("\nhash chain already cached, key: " 3596 "%016Lx tail class: [%px] %s\n", 3597 (unsigned long long)chain_key, 3598 class->key, class->name); 3599 } 3600 3601 return 0; 3602 } 3603 3604 if (very_verbose(class)) { 3605 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3606 (unsigned long long)chain_key, class->key, class->name); 3607 } 3608 3609 if (!graph_lock()) 3610 return 0; 3611 3612 /* 3613 * We have to walk the chain again locked - to avoid duplicates: 3614 */ 3615 chain = lookup_chain_cache(chain_key); 3616 if (chain) { 3617 graph_unlock(); 3618 goto cache_hit; 3619 } 3620 3621 if (!add_chain_cache(curr, hlock, chain_key)) 3622 return 0; 3623 3624 return 1; 3625 } 3626 3627 static int validate_chain(struct task_struct *curr, 3628 struct held_lock *hlock, 3629 int chain_head, u64 chain_key) 3630 { 3631 /* 3632 * Trylock needs to maintain the stack of held locks, but it 3633 * does not add new dependencies, because trylock can be done 3634 * in any order. 3635 * 3636 * We look up the chain_key and do the O(N^2) check and update of 3637 * the dependencies only if this is a new dependency chain. 3638 * (If lookup_chain_cache_add() return with 1 it acquires 3639 * graph_lock for us) 3640 */ 3641 if (!hlock->trylock && hlock->check && 3642 lookup_chain_cache_add(curr, hlock, chain_key)) { 3643 /* 3644 * Check whether last held lock: 3645 * 3646 * - is irq-safe, if this lock is irq-unsafe 3647 * - is softirq-safe, if this lock is hardirq-unsafe 3648 * 3649 * And check whether the new lock's dependency graph 3650 * could lead back to the previous lock: 3651 * 3652 * - within the current held-lock stack 3653 * - across our accumulated lock dependency records 3654 * 3655 * any of these scenarios could lead to a deadlock. 3656 */ 3657 /* 3658 * The simple case: does the current hold the same lock 3659 * already? 3660 */ 3661 int ret = check_deadlock(curr, hlock); 3662 3663 if (!ret) 3664 return 0; 3665 /* 3666 * Add dependency only if this lock is not the head 3667 * of the chain, and if the new lock introduces no more 3668 * lock dependency (because we already hold a lock with the 3669 * same lock class) nor deadlock (because the nest_lock 3670 * serializes nesting locks), see the comments for 3671 * check_deadlock(). 3672 */ 3673 if (!chain_head && ret != 2) { 3674 if (!check_prevs_add(curr, hlock)) 3675 return 0; 3676 } 3677 3678 graph_unlock(); 3679 } else { 3680 /* after lookup_chain_cache_add(): */ 3681 if (unlikely(!debug_locks)) 3682 return 0; 3683 } 3684 3685 return 1; 3686 } 3687 #else 3688 static inline int validate_chain(struct task_struct *curr, 3689 struct held_lock *hlock, 3690 int chain_head, u64 chain_key) 3691 { 3692 return 1; 3693 } 3694 3695 static void init_chain_block_buckets(void) { } 3696 #endif /* CONFIG_PROVE_LOCKING */ 3697 3698 /* 3699 * We are building curr_chain_key incrementally, so double-check 3700 * it from scratch, to make sure that it's done correctly: 3701 */ 3702 static void check_chain_key(struct task_struct *curr) 3703 { 3704 #ifdef CONFIG_DEBUG_LOCKDEP 3705 struct held_lock *hlock, *prev_hlock = NULL; 3706 unsigned int i; 3707 u64 chain_key = INITIAL_CHAIN_KEY; 3708 3709 for (i = 0; i < curr->lockdep_depth; i++) { 3710 hlock = curr->held_locks + i; 3711 if (chain_key != hlock->prev_chain_key) { 3712 debug_locks_off(); 3713 /* 3714 * We got mighty confused, our chain keys don't match 3715 * with what we expect, someone trample on our task state? 3716 */ 3717 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3718 curr->lockdep_depth, i, 3719 (unsigned long long)chain_key, 3720 (unsigned long long)hlock->prev_chain_key); 3721 return; 3722 } 3723 3724 /* 3725 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3726 * it registered lock class index? 3727 */ 3728 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3729 return; 3730 3731 if (prev_hlock && (prev_hlock->irq_context != 3732 hlock->irq_context)) 3733 chain_key = INITIAL_CHAIN_KEY; 3734 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3735 prev_hlock = hlock; 3736 } 3737 if (chain_key != curr->curr_chain_key) { 3738 debug_locks_off(); 3739 /* 3740 * More smoking hash instead of calculating it, damn see these 3741 * numbers float.. I bet that a pink elephant stepped on my memory. 3742 */ 3743 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3744 curr->lockdep_depth, i, 3745 (unsigned long long)chain_key, 3746 (unsigned long long)curr->curr_chain_key); 3747 } 3748 #endif 3749 } 3750 3751 #ifdef CONFIG_PROVE_LOCKING 3752 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3753 enum lock_usage_bit new_bit); 3754 3755 static void print_usage_bug_scenario(struct held_lock *lock) 3756 { 3757 struct lock_class *class = hlock_class(lock); 3758 3759 printk(" Possible unsafe locking scenario:\n\n"); 3760 printk(" CPU0\n"); 3761 printk(" ----\n"); 3762 printk(" lock("); 3763 __print_lock_name(class); 3764 printk(KERN_CONT ");\n"); 3765 printk(" <Interrupt>\n"); 3766 printk(" lock("); 3767 __print_lock_name(class); 3768 printk(KERN_CONT ");\n"); 3769 printk("\n *** DEADLOCK ***\n\n"); 3770 } 3771 3772 static void 3773 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3774 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3775 { 3776 if (!debug_locks_off() || debug_locks_silent) 3777 return; 3778 3779 pr_warn("\n"); 3780 pr_warn("================================\n"); 3781 pr_warn("WARNING: inconsistent lock state\n"); 3782 print_kernel_ident(); 3783 pr_warn("--------------------------------\n"); 3784 3785 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3786 usage_str[prev_bit], usage_str[new_bit]); 3787 3788 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3789 curr->comm, task_pid_nr(curr), 3790 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3791 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3792 lockdep_hardirqs_enabled(), 3793 lockdep_softirqs_enabled(curr)); 3794 print_lock(this); 3795 3796 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3797 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3798 3799 print_irqtrace_events(curr); 3800 pr_warn("\nother info that might help us debug this:\n"); 3801 print_usage_bug_scenario(this); 3802 3803 lockdep_print_held_locks(curr); 3804 3805 pr_warn("\nstack backtrace:\n"); 3806 dump_stack(); 3807 } 3808 3809 /* 3810 * Print out an error if an invalid bit is set: 3811 */ 3812 static inline int 3813 valid_state(struct task_struct *curr, struct held_lock *this, 3814 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3815 { 3816 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3817 graph_unlock(); 3818 print_usage_bug(curr, this, bad_bit, new_bit); 3819 return 0; 3820 } 3821 return 1; 3822 } 3823 3824 3825 /* 3826 * print irq inversion bug: 3827 */ 3828 static void 3829 print_irq_inversion_bug(struct task_struct *curr, 3830 struct lock_list *root, struct lock_list *other, 3831 struct held_lock *this, int forwards, 3832 const char *irqclass) 3833 { 3834 struct lock_list *entry = other; 3835 struct lock_list *middle = NULL; 3836 int depth; 3837 3838 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3839 return; 3840 3841 pr_warn("\n"); 3842 pr_warn("========================================================\n"); 3843 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3844 print_kernel_ident(); 3845 pr_warn("--------------------------------------------------------\n"); 3846 pr_warn("%s/%d just changed the state of lock:\n", 3847 curr->comm, task_pid_nr(curr)); 3848 print_lock(this); 3849 if (forwards) 3850 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3851 else 3852 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3853 print_lock_name(other->class); 3854 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3855 3856 pr_warn("\nother info that might help us debug this:\n"); 3857 3858 /* Find a middle lock (if one exists) */ 3859 depth = get_lock_depth(other); 3860 do { 3861 if (depth == 0 && (entry != root)) { 3862 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3863 break; 3864 } 3865 middle = entry; 3866 entry = get_lock_parent(entry); 3867 depth--; 3868 } while (entry && entry != root && (depth >= 0)); 3869 if (forwards) 3870 print_irq_lock_scenario(root, other, 3871 middle ? middle->class : root->class, other->class); 3872 else 3873 print_irq_lock_scenario(other, root, 3874 middle ? middle->class : other->class, root->class); 3875 3876 lockdep_print_held_locks(curr); 3877 3878 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 3879 root->trace = save_trace(); 3880 if (!root->trace) 3881 return; 3882 print_shortest_lock_dependencies(other, root); 3883 3884 pr_warn("\nstack backtrace:\n"); 3885 dump_stack(); 3886 } 3887 3888 /* 3889 * Prove that in the forwards-direction subgraph starting at <this> 3890 * there is no lock matching <mask>: 3891 */ 3892 static int 3893 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 3894 enum lock_usage_bit bit) 3895 { 3896 enum bfs_result ret; 3897 struct lock_list root; 3898 struct lock_list *target_entry; 3899 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 3900 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 3901 3902 bfs_init_root(&root, this); 3903 ret = find_usage_forwards(&root, usage_mask, &target_entry); 3904 if (bfs_error(ret)) { 3905 print_bfs_bug(ret); 3906 return 0; 3907 } 3908 if (ret == BFS_RNOMATCH) 3909 return 1; 3910 3911 /* Check whether write or read usage is the match */ 3912 if (target_entry->class->usage_mask & lock_flag(bit)) { 3913 print_irq_inversion_bug(curr, &root, target_entry, 3914 this, 1, state_name(bit)); 3915 } else { 3916 print_irq_inversion_bug(curr, &root, target_entry, 3917 this, 1, state_name(read_bit)); 3918 } 3919 3920 return 0; 3921 } 3922 3923 /* 3924 * Prove that in the backwards-direction subgraph starting at <this> 3925 * there is no lock matching <mask>: 3926 */ 3927 static int 3928 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 3929 enum lock_usage_bit bit) 3930 { 3931 enum bfs_result ret; 3932 struct lock_list root; 3933 struct lock_list *target_entry; 3934 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 3935 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 3936 3937 bfs_init_rootb(&root, this); 3938 ret = find_usage_backwards(&root, usage_mask, &target_entry); 3939 if (bfs_error(ret)) { 3940 print_bfs_bug(ret); 3941 return 0; 3942 } 3943 if (ret == BFS_RNOMATCH) 3944 return 1; 3945 3946 /* Check whether write or read usage is the match */ 3947 if (target_entry->class->usage_mask & lock_flag(bit)) { 3948 print_irq_inversion_bug(curr, &root, target_entry, 3949 this, 0, state_name(bit)); 3950 } else { 3951 print_irq_inversion_bug(curr, &root, target_entry, 3952 this, 0, state_name(read_bit)); 3953 } 3954 3955 return 0; 3956 } 3957 3958 void print_irqtrace_events(struct task_struct *curr) 3959 { 3960 const struct irqtrace_events *trace = &curr->irqtrace; 3961 3962 printk("irq event stamp: %u\n", trace->irq_events); 3963 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 3964 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 3965 (void *)trace->hardirq_enable_ip); 3966 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 3967 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 3968 (void *)trace->hardirq_disable_ip); 3969 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 3970 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 3971 (void *)trace->softirq_enable_ip); 3972 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 3973 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 3974 (void *)trace->softirq_disable_ip); 3975 } 3976 3977 static int HARDIRQ_verbose(struct lock_class *class) 3978 { 3979 #if HARDIRQ_VERBOSE 3980 return class_filter(class); 3981 #endif 3982 return 0; 3983 } 3984 3985 static int SOFTIRQ_verbose(struct lock_class *class) 3986 { 3987 #if SOFTIRQ_VERBOSE 3988 return class_filter(class); 3989 #endif 3990 return 0; 3991 } 3992 3993 static int (*state_verbose_f[])(struct lock_class *class) = { 3994 #define LOCKDEP_STATE(__STATE) \ 3995 __STATE##_verbose, 3996 #include "lockdep_states.h" 3997 #undef LOCKDEP_STATE 3998 }; 3999 4000 static inline int state_verbose(enum lock_usage_bit bit, 4001 struct lock_class *class) 4002 { 4003 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4004 } 4005 4006 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4007 enum lock_usage_bit bit, const char *name); 4008 4009 static int 4010 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4011 enum lock_usage_bit new_bit) 4012 { 4013 int excl_bit = exclusive_bit(new_bit); 4014 int read = new_bit & LOCK_USAGE_READ_MASK; 4015 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4016 4017 /* 4018 * Validate that this particular lock does not have conflicting 4019 * usage states. 4020 */ 4021 if (!valid_state(curr, this, new_bit, excl_bit)) 4022 return 0; 4023 4024 /* 4025 * Check for read in write conflicts 4026 */ 4027 if (!read && !valid_state(curr, this, new_bit, 4028 excl_bit + LOCK_USAGE_READ_MASK)) 4029 return 0; 4030 4031 4032 /* 4033 * Validate that the lock dependencies don't have conflicting usage 4034 * states. 4035 */ 4036 if (dir) { 4037 /* 4038 * mark ENABLED has to look backwards -- to ensure no dependee 4039 * has USED_IN state, which, again, would allow recursion deadlocks. 4040 */ 4041 if (!check_usage_backwards(curr, this, excl_bit)) 4042 return 0; 4043 } else { 4044 /* 4045 * mark USED_IN has to look forwards -- to ensure no dependency 4046 * has ENABLED state, which would allow recursion deadlocks. 4047 */ 4048 if (!check_usage_forwards(curr, this, excl_bit)) 4049 return 0; 4050 } 4051 4052 if (state_verbose(new_bit, hlock_class(this))) 4053 return 2; 4054 4055 return 1; 4056 } 4057 4058 /* 4059 * Mark all held locks with a usage bit: 4060 */ 4061 static int 4062 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4063 { 4064 struct held_lock *hlock; 4065 int i; 4066 4067 for (i = 0; i < curr->lockdep_depth; i++) { 4068 enum lock_usage_bit hlock_bit = base_bit; 4069 hlock = curr->held_locks + i; 4070 4071 if (hlock->read) 4072 hlock_bit += LOCK_USAGE_READ_MASK; 4073 4074 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4075 4076 if (!hlock->check) 4077 continue; 4078 4079 if (!mark_lock(curr, hlock, hlock_bit)) 4080 return 0; 4081 } 4082 4083 return 1; 4084 } 4085 4086 /* 4087 * Hardirqs will be enabled: 4088 */ 4089 static void __trace_hardirqs_on_caller(void) 4090 { 4091 struct task_struct *curr = current; 4092 4093 /* 4094 * We are going to turn hardirqs on, so set the 4095 * usage bit for all held locks: 4096 */ 4097 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4098 return; 4099 /* 4100 * If we have softirqs enabled, then set the usage 4101 * bit for all held locks. (disabled hardirqs prevented 4102 * this bit from being set before) 4103 */ 4104 if (curr->softirqs_enabled) 4105 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4106 } 4107 4108 /** 4109 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4110 * @ip: Caller address 4111 * 4112 * Invoked before a possible transition to RCU idle from exit to user or 4113 * guest mode. This ensures that all RCU operations are done before RCU 4114 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4115 * invoked to set the final state. 4116 */ 4117 void lockdep_hardirqs_on_prepare(unsigned long ip) 4118 { 4119 if (unlikely(!debug_locks)) 4120 return; 4121 4122 /* 4123 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4124 */ 4125 if (unlikely(in_nmi())) 4126 return; 4127 4128 if (unlikely(this_cpu_read(lockdep_recursion))) 4129 return; 4130 4131 if (unlikely(lockdep_hardirqs_enabled())) { 4132 /* 4133 * Neither irq nor preemption are disabled here 4134 * so this is racy by nature but losing one hit 4135 * in a stat is not a big deal. 4136 */ 4137 __debug_atomic_inc(redundant_hardirqs_on); 4138 return; 4139 } 4140 4141 /* 4142 * We're enabling irqs and according to our state above irqs weren't 4143 * already enabled, yet we find the hardware thinks they are in fact 4144 * enabled.. someone messed up their IRQ state tracing. 4145 */ 4146 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4147 return; 4148 4149 /* 4150 * See the fine text that goes along with this variable definition. 4151 */ 4152 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4153 return; 4154 4155 /* 4156 * Can't allow enabling interrupts while in an interrupt handler, 4157 * that's general bad form and such. Recursion, limited stack etc.. 4158 */ 4159 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4160 return; 4161 4162 current->hardirq_chain_key = current->curr_chain_key; 4163 4164 lockdep_recursion_inc(); 4165 __trace_hardirqs_on_caller(); 4166 lockdep_recursion_finish(); 4167 } 4168 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4169 4170 void noinstr lockdep_hardirqs_on(unsigned long ip) 4171 { 4172 struct irqtrace_events *trace = ¤t->irqtrace; 4173 4174 if (unlikely(!debug_locks)) 4175 return; 4176 4177 /* 4178 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4179 * tracking state and hardware state are out of sync. 4180 * 4181 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4182 * and not rely on hardware state like normal interrupts. 4183 */ 4184 if (unlikely(in_nmi())) { 4185 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4186 return; 4187 4188 /* 4189 * Skip: 4190 * - recursion check, because NMI can hit lockdep; 4191 * - hardware state check, because above; 4192 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4193 */ 4194 goto skip_checks; 4195 } 4196 4197 if (unlikely(this_cpu_read(lockdep_recursion))) 4198 return; 4199 4200 if (lockdep_hardirqs_enabled()) { 4201 /* 4202 * Neither irq nor preemption are disabled here 4203 * so this is racy by nature but losing one hit 4204 * in a stat is not a big deal. 4205 */ 4206 __debug_atomic_inc(redundant_hardirqs_on); 4207 return; 4208 } 4209 4210 /* 4211 * We're enabling irqs and according to our state above irqs weren't 4212 * already enabled, yet we find the hardware thinks they are in fact 4213 * enabled.. someone messed up their IRQ state tracing. 4214 */ 4215 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4216 return; 4217 4218 /* 4219 * Ensure the lock stack remained unchanged between 4220 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4221 */ 4222 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4223 current->curr_chain_key); 4224 4225 skip_checks: 4226 /* we'll do an OFF -> ON transition: */ 4227 __this_cpu_write(hardirqs_enabled, 1); 4228 trace->hardirq_enable_ip = ip; 4229 trace->hardirq_enable_event = ++trace->irq_events; 4230 debug_atomic_inc(hardirqs_on_events); 4231 } 4232 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4233 4234 /* 4235 * Hardirqs were disabled: 4236 */ 4237 void noinstr lockdep_hardirqs_off(unsigned long ip) 4238 { 4239 if (unlikely(!debug_locks)) 4240 return; 4241 4242 /* 4243 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4244 * they will restore the software state. This ensures the software 4245 * state is consistent inside NMIs as well. 4246 */ 4247 if (in_nmi()) { 4248 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4249 return; 4250 } else if (__this_cpu_read(lockdep_recursion)) 4251 return; 4252 4253 /* 4254 * So we're supposed to get called after you mask local IRQs, but for 4255 * some reason the hardware doesn't quite think you did a proper job. 4256 */ 4257 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4258 return; 4259 4260 if (lockdep_hardirqs_enabled()) { 4261 struct irqtrace_events *trace = ¤t->irqtrace; 4262 4263 /* 4264 * We have done an ON -> OFF transition: 4265 */ 4266 __this_cpu_write(hardirqs_enabled, 0); 4267 trace->hardirq_disable_ip = ip; 4268 trace->hardirq_disable_event = ++trace->irq_events; 4269 debug_atomic_inc(hardirqs_off_events); 4270 } else { 4271 debug_atomic_inc(redundant_hardirqs_off); 4272 } 4273 } 4274 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4275 4276 /* 4277 * Softirqs will be enabled: 4278 */ 4279 void lockdep_softirqs_on(unsigned long ip) 4280 { 4281 struct irqtrace_events *trace = ¤t->irqtrace; 4282 4283 if (unlikely(!lockdep_enabled())) 4284 return; 4285 4286 /* 4287 * We fancy IRQs being disabled here, see softirq.c, avoids 4288 * funny state and nesting things. 4289 */ 4290 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4291 return; 4292 4293 if (current->softirqs_enabled) { 4294 debug_atomic_inc(redundant_softirqs_on); 4295 return; 4296 } 4297 4298 lockdep_recursion_inc(); 4299 /* 4300 * We'll do an OFF -> ON transition: 4301 */ 4302 current->softirqs_enabled = 1; 4303 trace->softirq_enable_ip = ip; 4304 trace->softirq_enable_event = ++trace->irq_events; 4305 debug_atomic_inc(softirqs_on_events); 4306 /* 4307 * We are going to turn softirqs on, so set the 4308 * usage bit for all held locks, if hardirqs are 4309 * enabled too: 4310 */ 4311 if (lockdep_hardirqs_enabled()) 4312 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4313 lockdep_recursion_finish(); 4314 } 4315 4316 /* 4317 * Softirqs were disabled: 4318 */ 4319 void lockdep_softirqs_off(unsigned long ip) 4320 { 4321 if (unlikely(!lockdep_enabled())) 4322 return; 4323 4324 /* 4325 * We fancy IRQs being disabled here, see softirq.c 4326 */ 4327 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4328 return; 4329 4330 if (current->softirqs_enabled) { 4331 struct irqtrace_events *trace = ¤t->irqtrace; 4332 4333 /* 4334 * We have done an ON -> OFF transition: 4335 */ 4336 current->softirqs_enabled = 0; 4337 trace->softirq_disable_ip = ip; 4338 trace->softirq_disable_event = ++trace->irq_events; 4339 debug_atomic_inc(softirqs_off_events); 4340 /* 4341 * Whoops, we wanted softirqs off, so why aren't they? 4342 */ 4343 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4344 } else 4345 debug_atomic_inc(redundant_softirqs_off); 4346 } 4347 4348 static int 4349 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4350 { 4351 if (!check) 4352 goto lock_used; 4353 4354 /* 4355 * If non-trylock use in a hardirq or softirq context, then 4356 * mark the lock as used in these contexts: 4357 */ 4358 if (!hlock->trylock) { 4359 if (hlock->read) { 4360 if (lockdep_hardirq_context()) 4361 if (!mark_lock(curr, hlock, 4362 LOCK_USED_IN_HARDIRQ_READ)) 4363 return 0; 4364 if (curr->softirq_context) 4365 if (!mark_lock(curr, hlock, 4366 LOCK_USED_IN_SOFTIRQ_READ)) 4367 return 0; 4368 } else { 4369 if (lockdep_hardirq_context()) 4370 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4371 return 0; 4372 if (curr->softirq_context) 4373 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4374 return 0; 4375 } 4376 } 4377 if (!hlock->hardirqs_off) { 4378 if (hlock->read) { 4379 if (!mark_lock(curr, hlock, 4380 LOCK_ENABLED_HARDIRQ_READ)) 4381 return 0; 4382 if (curr->softirqs_enabled) 4383 if (!mark_lock(curr, hlock, 4384 LOCK_ENABLED_SOFTIRQ_READ)) 4385 return 0; 4386 } else { 4387 if (!mark_lock(curr, hlock, 4388 LOCK_ENABLED_HARDIRQ)) 4389 return 0; 4390 if (curr->softirqs_enabled) 4391 if (!mark_lock(curr, hlock, 4392 LOCK_ENABLED_SOFTIRQ)) 4393 return 0; 4394 } 4395 } 4396 4397 lock_used: 4398 /* mark it as used: */ 4399 if (!mark_lock(curr, hlock, LOCK_USED)) 4400 return 0; 4401 4402 return 1; 4403 } 4404 4405 static inline unsigned int task_irq_context(struct task_struct *task) 4406 { 4407 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4408 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4409 } 4410 4411 static int separate_irq_context(struct task_struct *curr, 4412 struct held_lock *hlock) 4413 { 4414 unsigned int depth = curr->lockdep_depth; 4415 4416 /* 4417 * Keep track of points where we cross into an interrupt context: 4418 */ 4419 if (depth) { 4420 struct held_lock *prev_hlock; 4421 4422 prev_hlock = curr->held_locks + depth-1; 4423 /* 4424 * If we cross into another context, reset the 4425 * hash key (this also prevents the checking and the 4426 * adding of the dependency to 'prev'): 4427 */ 4428 if (prev_hlock->irq_context != hlock->irq_context) 4429 return 1; 4430 } 4431 return 0; 4432 } 4433 4434 /* 4435 * Mark a lock with a usage bit, and validate the state transition: 4436 */ 4437 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4438 enum lock_usage_bit new_bit) 4439 { 4440 unsigned int new_mask, ret = 1; 4441 4442 if (new_bit >= LOCK_USAGE_STATES) { 4443 DEBUG_LOCKS_WARN_ON(1); 4444 return 0; 4445 } 4446 4447 if (new_bit == LOCK_USED && this->read) 4448 new_bit = LOCK_USED_READ; 4449 4450 new_mask = 1 << new_bit; 4451 4452 /* 4453 * If already set then do not dirty the cacheline, 4454 * nor do any checks: 4455 */ 4456 if (likely(hlock_class(this)->usage_mask & new_mask)) 4457 return 1; 4458 4459 if (!graph_lock()) 4460 return 0; 4461 /* 4462 * Make sure we didn't race: 4463 */ 4464 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4465 goto unlock; 4466 4467 if (!hlock_class(this)->usage_mask) 4468 debug_atomic_dec(nr_unused_locks); 4469 4470 hlock_class(this)->usage_mask |= new_mask; 4471 4472 if (new_bit < LOCK_TRACE_STATES) { 4473 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4474 return 0; 4475 } 4476 4477 if (new_bit < LOCK_USED) { 4478 ret = mark_lock_irq(curr, this, new_bit); 4479 if (!ret) 4480 return 0; 4481 } 4482 4483 unlock: 4484 graph_unlock(); 4485 4486 /* 4487 * We must printk outside of the graph_lock: 4488 */ 4489 if (ret == 2) { 4490 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4491 print_lock(this); 4492 print_irqtrace_events(curr); 4493 dump_stack(); 4494 } 4495 4496 return ret; 4497 } 4498 4499 static inline short task_wait_context(struct task_struct *curr) 4500 { 4501 /* 4502 * Set appropriate wait type for the context; for IRQs we have to take 4503 * into account force_irqthread as that is implied by PREEMPT_RT. 4504 */ 4505 if (lockdep_hardirq_context()) { 4506 /* 4507 * Check if force_irqthreads will run us threaded. 4508 */ 4509 if (curr->hardirq_threaded || curr->irq_config) 4510 return LD_WAIT_CONFIG; 4511 4512 return LD_WAIT_SPIN; 4513 } else if (curr->softirq_context) { 4514 /* 4515 * Softirqs are always threaded. 4516 */ 4517 return LD_WAIT_CONFIG; 4518 } 4519 4520 return LD_WAIT_MAX; 4521 } 4522 4523 static int 4524 print_lock_invalid_wait_context(struct task_struct *curr, 4525 struct held_lock *hlock) 4526 { 4527 short curr_inner; 4528 4529 if (!debug_locks_off()) 4530 return 0; 4531 if (debug_locks_silent) 4532 return 0; 4533 4534 pr_warn("\n"); 4535 pr_warn("=============================\n"); 4536 pr_warn("[ BUG: Invalid wait context ]\n"); 4537 print_kernel_ident(); 4538 pr_warn("-----------------------------\n"); 4539 4540 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4541 print_lock(hlock); 4542 4543 pr_warn("other info that might help us debug this:\n"); 4544 4545 curr_inner = task_wait_context(curr); 4546 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4547 4548 lockdep_print_held_locks(curr); 4549 4550 pr_warn("stack backtrace:\n"); 4551 dump_stack(); 4552 4553 return 0; 4554 } 4555 4556 /* 4557 * Verify the wait_type context. 4558 * 4559 * This check validates we takes locks in the right wait-type order; that is it 4560 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4561 * acquire spinlocks inside raw_spinlocks and the sort. 4562 * 4563 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4564 * can be taken from (pretty much) any context but also has constraints. 4565 * However when taken in a stricter environment the RCU lock does not loosen 4566 * the constraints. 4567 * 4568 * Therefore we must look for the strictest environment in the lock stack and 4569 * compare that to the lock we're trying to acquire. 4570 */ 4571 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4572 { 4573 u8 next_inner = hlock_class(next)->wait_type_inner; 4574 u8 next_outer = hlock_class(next)->wait_type_outer; 4575 u8 curr_inner; 4576 int depth; 4577 4578 if (!curr->lockdep_depth || !next_inner || next->trylock) 4579 return 0; 4580 4581 if (!next_outer) 4582 next_outer = next_inner; 4583 4584 /* 4585 * Find start of current irq_context.. 4586 */ 4587 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4588 struct held_lock *prev = curr->held_locks + depth; 4589 if (prev->irq_context != next->irq_context) 4590 break; 4591 } 4592 depth++; 4593 4594 curr_inner = task_wait_context(curr); 4595 4596 for (; depth < curr->lockdep_depth; depth++) { 4597 struct held_lock *prev = curr->held_locks + depth; 4598 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4599 4600 if (prev_inner) { 4601 /* 4602 * We can have a bigger inner than a previous one 4603 * when outer is smaller than inner, as with RCU. 4604 * 4605 * Also due to trylocks. 4606 */ 4607 curr_inner = min(curr_inner, prev_inner); 4608 } 4609 } 4610 4611 if (next_outer > curr_inner) 4612 return print_lock_invalid_wait_context(curr, next); 4613 4614 return 0; 4615 } 4616 4617 #else /* CONFIG_PROVE_LOCKING */ 4618 4619 static inline int 4620 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4621 { 4622 return 1; 4623 } 4624 4625 static inline unsigned int task_irq_context(struct task_struct *task) 4626 { 4627 return 0; 4628 } 4629 4630 static inline int separate_irq_context(struct task_struct *curr, 4631 struct held_lock *hlock) 4632 { 4633 return 0; 4634 } 4635 4636 static inline int check_wait_context(struct task_struct *curr, 4637 struct held_lock *next) 4638 { 4639 return 0; 4640 } 4641 4642 #endif /* CONFIG_PROVE_LOCKING */ 4643 4644 /* 4645 * Initialize a lock instance's lock-class mapping info: 4646 */ 4647 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4648 struct lock_class_key *key, int subclass, 4649 u8 inner, u8 outer, u8 lock_type) 4650 { 4651 int i; 4652 4653 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4654 lock->class_cache[i] = NULL; 4655 4656 #ifdef CONFIG_LOCK_STAT 4657 lock->cpu = raw_smp_processor_id(); 4658 #endif 4659 4660 /* 4661 * Can't be having no nameless bastards around this place! 4662 */ 4663 if (DEBUG_LOCKS_WARN_ON(!name)) { 4664 lock->name = "NULL"; 4665 return; 4666 } 4667 4668 lock->name = name; 4669 4670 lock->wait_type_outer = outer; 4671 lock->wait_type_inner = inner; 4672 lock->lock_type = lock_type; 4673 4674 /* 4675 * No key, no joy, we need to hash something. 4676 */ 4677 if (DEBUG_LOCKS_WARN_ON(!key)) 4678 return; 4679 /* 4680 * Sanity check, the lock-class key must either have been allocated 4681 * statically or must have been registered as a dynamic key. 4682 */ 4683 if (!static_obj(key) && !is_dynamic_key(key)) { 4684 if (debug_locks) 4685 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4686 DEBUG_LOCKS_WARN_ON(1); 4687 return; 4688 } 4689 lock->key = key; 4690 4691 if (unlikely(!debug_locks)) 4692 return; 4693 4694 if (subclass) { 4695 unsigned long flags; 4696 4697 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4698 return; 4699 4700 raw_local_irq_save(flags); 4701 lockdep_recursion_inc(); 4702 register_lock_class(lock, subclass, 1); 4703 lockdep_recursion_finish(); 4704 raw_local_irq_restore(flags); 4705 } 4706 } 4707 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4708 4709 struct lock_class_key __lockdep_no_validate__; 4710 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4711 4712 static void 4713 print_lock_nested_lock_not_held(struct task_struct *curr, 4714 struct held_lock *hlock, 4715 unsigned long ip) 4716 { 4717 if (!debug_locks_off()) 4718 return; 4719 if (debug_locks_silent) 4720 return; 4721 4722 pr_warn("\n"); 4723 pr_warn("==================================\n"); 4724 pr_warn("WARNING: Nested lock was not taken\n"); 4725 print_kernel_ident(); 4726 pr_warn("----------------------------------\n"); 4727 4728 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4729 print_lock(hlock); 4730 4731 pr_warn("\nbut this task is not holding:\n"); 4732 pr_warn("%s\n", hlock->nest_lock->name); 4733 4734 pr_warn("\nstack backtrace:\n"); 4735 dump_stack(); 4736 4737 pr_warn("\nother info that might help us debug this:\n"); 4738 lockdep_print_held_locks(curr); 4739 4740 pr_warn("\nstack backtrace:\n"); 4741 dump_stack(); 4742 } 4743 4744 static int __lock_is_held(const struct lockdep_map *lock, int read); 4745 4746 /* 4747 * This gets called for every mutex_lock*()/spin_lock*() operation. 4748 * We maintain the dependency maps and validate the locking attempt: 4749 * 4750 * The callers must make sure that IRQs are disabled before calling it, 4751 * otherwise we could get an interrupt which would want to take locks, 4752 * which would end up in lockdep again. 4753 */ 4754 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4755 int trylock, int read, int check, int hardirqs_off, 4756 struct lockdep_map *nest_lock, unsigned long ip, 4757 int references, int pin_count) 4758 { 4759 struct task_struct *curr = current; 4760 struct lock_class *class = NULL; 4761 struct held_lock *hlock; 4762 unsigned int depth; 4763 int chain_head = 0; 4764 int class_idx; 4765 u64 chain_key; 4766 4767 if (unlikely(!debug_locks)) 4768 return 0; 4769 4770 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4771 check = 0; 4772 4773 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4774 class = lock->class_cache[subclass]; 4775 /* 4776 * Not cached? 4777 */ 4778 if (unlikely(!class)) { 4779 class = register_lock_class(lock, subclass, 0); 4780 if (!class) 4781 return 0; 4782 } 4783 4784 debug_class_ops_inc(class); 4785 4786 if (very_verbose(class)) { 4787 printk("\nacquire class [%px] %s", class->key, class->name); 4788 if (class->name_version > 1) 4789 printk(KERN_CONT "#%d", class->name_version); 4790 printk(KERN_CONT "\n"); 4791 dump_stack(); 4792 } 4793 4794 /* 4795 * Add the lock to the list of currently held locks. 4796 * (we dont increase the depth just yet, up until the 4797 * dependency checks are done) 4798 */ 4799 depth = curr->lockdep_depth; 4800 /* 4801 * Ran out of static storage for our per-task lock stack again have we? 4802 */ 4803 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4804 return 0; 4805 4806 class_idx = class - lock_classes; 4807 4808 if (depth) { /* we're holding locks */ 4809 hlock = curr->held_locks + depth - 1; 4810 if (hlock->class_idx == class_idx && nest_lock) { 4811 if (!references) 4812 references++; 4813 4814 if (!hlock->references) 4815 hlock->references++; 4816 4817 hlock->references += references; 4818 4819 /* Overflow */ 4820 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4821 return 0; 4822 4823 return 2; 4824 } 4825 } 4826 4827 hlock = curr->held_locks + depth; 4828 /* 4829 * Plain impossible, we just registered it and checked it weren't no 4830 * NULL like.. I bet this mushroom I ate was good! 4831 */ 4832 if (DEBUG_LOCKS_WARN_ON(!class)) 4833 return 0; 4834 hlock->class_idx = class_idx; 4835 hlock->acquire_ip = ip; 4836 hlock->instance = lock; 4837 hlock->nest_lock = nest_lock; 4838 hlock->irq_context = task_irq_context(curr); 4839 hlock->trylock = trylock; 4840 hlock->read = read; 4841 hlock->check = check; 4842 hlock->hardirqs_off = !!hardirqs_off; 4843 hlock->references = references; 4844 #ifdef CONFIG_LOCK_STAT 4845 hlock->waittime_stamp = 0; 4846 hlock->holdtime_stamp = lockstat_clock(); 4847 #endif 4848 hlock->pin_count = pin_count; 4849 4850 if (check_wait_context(curr, hlock)) 4851 return 0; 4852 4853 /* Initialize the lock usage bit */ 4854 if (!mark_usage(curr, hlock, check)) 4855 return 0; 4856 4857 /* 4858 * Calculate the chain hash: it's the combined hash of all the 4859 * lock keys along the dependency chain. We save the hash value 4860 * at every step so that we can get the current hash easily 4861 * after unlock. The chain hash is then used to cache dependency 4862 * results. 4863 * 4864 * The 'key ID' is what is the most compact key value to drive 4865 * the hash, not class->key. 4866 */ 4867 /* 4868 * Whoops, we did it again.. class_idx is invalid. 4869 */ 4870 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 4871 return 0; 4872 4873 chain_key = curr->curr_chain_key; 4874 if (!depth) { 4875 /* 4876 * How can we have a chain hash when we ain't got no keys?! 4877 */ 4878 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 4879 return 0; 4880 chain_head = 1; 4881 } 4882 4883 hlock->prev_chain_key = chain_key; 4884 if (separate_irq_context(curr, hlock)) { 4885 chain_key = INITIAL_CHAIN_KEY; 4886 chain_head = 1; 4887 } 4888 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 4889 4890 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 4891 print_lock_nested_lock_not_held(curr, hlock, ip); 4892 return 0; 4893 } 4894 4895 if (!debug_locks_silent) { 4896 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 4897 WARN_ON_ONCE(!hlock_class(hlock)->key); 4898 } 4899 4900 if (!validate_chain(curr, hlock, chain_head, chain_key)) 4901 return 0; 4902 4903 curr->curr_chain_key = chain_key; 4904 curr->lockdep_depth++; 4905 check_chain_key(curr); 4906 #ifdef CONFIG_DEBUG_LOCKDEP 4907 if (unlikely(!debug_locks)) 4908 return 0; 4909 #endif 4910 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 4911 debug_locks_off(); 4912 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 4913 printk(KERN_DEBUG "depth: %i max: %lu!\n", 4914 curr->lockdep_depth, MAX_LOCK_DEPTH); 4915 4916 lockdep_print_held_locks(current); 4917 debug_show_all_locks(); 4918 dump_stack(); 4919 4920 return 0; 4921 } 4922 4923 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 4924 max_lockdep_depth = curr->lockdep_depth; 4925 4926 return 1; 4927 } 4928 4929 static void print_unlock_imbalance_bug(struct task_struct *curr, 4930 struct lockdep_map *lock, 4931 unsigned long ip) 4932 { 4933 if (!debug_locks_off()) 4934 return; 4935 if (debug_locks_silent) 4936 return; 4937 4938 pr_warn("\n"); 4939 pr_warn("=====================================\n"); 4940 pr_warn("WARNING: bad unlock balance detected!\n"); 4941 print_kernel_ident(); 4942 pr_warn("-------------------------------------\n"); 4943 pr_warn("%s/%d is trying to release lock (", 4944 curr->comm, task_pid_nr(curr)); 4945 print_lockdep_cache(lock); 4946 pr_cont(") at:\n"); 4947 print_ip_sym(KERN_WARNING, ip); 4948 pr_warn("but there are no more locks to release!\n"); 4949 pr_warn("\nother info that might help us debug this:\n"); 4950 lockdep_print_held_locks(curr); 4951 4952 pr_warn("\nstack backtrace:\n"); 4953 dump_stack(); 4954 } 4955 4956 static noinstr int match_held_lock(const struct held_lock *hlock, 4957 const struct lockdep_map *lock) 4958 { 4959 if (hlock->instance == lock) 4960 return 1; 4961 4962 if (hlock->references) { 4963 const struct lock_class *class = lock->class_cache[0]; 4964 4965 if (!class) 4966 class = look_up_lock_class(lock, 0); 4967 4968 /* 4969 * If look_up_lock_class() failed to find a class, we're trying 4970 * to test if we hold a lock that has never yet been acquired. 4971 * Clearly if the lock hasn't been acquired _ever_, we're not 4972 * holding it either, so report failure. 4973 */ 4974 if (!class) 4975 return 0; 4976 4977 /* 4978 * References, but not a lock we're actually ref-counting? 4979 * State got messed up, follow the sites that change ->references 4980 * and try to make sense of it. 4981 */ 4982 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 4983 return 0; 4984 4985 if (hlock->class_idx == class - lock_classes) 4986 return 1; 4987 } 4988 4989 return 0; 4990 } 4991 4992 /* @depth must not be zero */ 4993 static struct held_lock *find_held_lock(struct task_struct *curr, 4994 struct lockdep_map *lock, 4995 unsigned int depth, int *idx) 4996 { 4997 struct held_lock *ret, *hlock, *prev_hlock; 4998 int i; 4999 5000 i = depth - 1; 5001 hlock = curr->held_locks + i; 5002 ret = hlock; 5003 if (match_held_lock(hlock, lock)) 5004 goto out; 5005 5006 ret = NULL; 5007 for (i--, prev_hlock = hlock--; 5008 i >= 0; 5009 i--, prev_hlock = hlock--) { 5010 /* 5011 * We must not cross into another context: 5012 */ 5013 if (prev_hlock->irq_context != hlock->irq_context) { 5014 ret = NULL; 5015 break; 5016 } 5017 if (match_held_lock(hlock, lock)) { 5018 ret = hlock; 5019 break; 5020 } 5021 } 5022 5023 out: 5024 *idx = i; 5025 return ret; 5026 } 5027 5028 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5029 int idx, unsigned int *merged) 5030 { 5031 struct held_lock *hlock; 5032 int first_idx = idx; 5033 5034 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5035 return 0; 5036 5037 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5038 switch (__lock_acquire(hlock->instance, 5039 hlock_class(hlock)->subclass, 5040 hlock->trylock, 5041 hlock->read, hlock->check, 5042 hlock->hardirqs_off, 5043 hlock->nest_lock, hlock->acquire_ip, 5044 hlock->references, hlock->pin_count)) { 5045 case 0: 5046 return 1; 5047 case 1: 5048 break; 5049 case 2: 5050 *merged += (idx == first_idx); 5051 break; 5052 default: 5053 WARN_ON(1); 5054 return 0; 5055 } 5056 } 5057 return 0; 5058 } 5059 5060 static int 5061 __lock_set_class(struct lockdep_map *lock, const char *name, 5062 struct lock_class_key *key, unsigned int subclass, 5063 unsigned long ip) 5064 { 5065 struct task_struct *curr = current; 5066 unsigned int depth, merged = 0; 5067 struct held_lock *hlock; 5068 struct lock_class *class; 5069 int i; 5070 5071 if (unlikely(!debug_locks)) 5072 return 0; 5073 5074 depth = curr->lockdep_depth; 5075 /* 5076 * This function is about (re)setting the class of a held lock, 5077 * yet we're not actually holding any locks. Naughty user! 5078 */ 5079 if (DEBUG_LOCKS_WARN_ON(!depth)) 5080 return 0; 5081 5082 hlock = find_held_lock(curr, lock, depth, &i); 5083 if (!hlock) { 5084 print_unlock_imbalance_bug(curr, lock, ip); 5085 return 0; 5086 } 5087 5088 lockdep_init_map_waits(lock, name, key, 0, 5089 lock->wait_type_inner, 5090 lock->wait_type_outer); 5091 class = register_lock_class(lock, subclass, 0); 5092 hlock->class_idx = class - lock_classes; 5093 5094 curr->lockdep_depth = i; 5095 curr->curr_chain_key = hlock->prev_chain_key; 5096 5097 if (reacquire_held_locks(curr, depth, i, &merged)) 5098 return 0; 5099 5100 /* 5101 * I took it apart and put it back together again, except now I have 5102 * these 'spare' parts.. where shall I put them. 5103 */ 5104 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5105 return 0; 5106 return 1; 5107 } 5108 5109 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5110 { 5111 struct task_struct *curr = current; 5112 unsigned int depth, merged = 0; 5113 struct held_lock *hlock; 5114 int i; 5115 5116 if (unlikely(!debug_locks)) 5117 return 0; 5118 5119 depth = curr->lockdep_depth; 5120 /* 5121 * This function is about (re)setting the class of a held lock, 5122 * yet we're not actually holding any locks. Naughty user! 5123 */ 5124 if (DEBUG_LOCKS_WARN_ON(!depth)) 5125 return 0; 5126 5127 hlock = find_held_lock(curr, lock, depth, &i); 5128 if (!hlock) { 5129 print_unlock_imbalance_bug(curr, lock, ip); 5130 return 0; 5131 } 5132 5133 curr->lockdep_depth = i; 5134 curr->curr_chain_key = hlock->prev_chain_key; 5135 5136 WARN(hlock->read, "downgrading a read lock"); 5137 hlock->read = 1; 5138 hlock->acquire_ip = ip; 5139 5140 if (reacquire_held_locks(curr, depth, i, &merged)) 5141 return 0; 5142 5143 /* Merging can't happen with unchanged classes.. */ 5144 if (DEBUG_LOCKS_WARN_ON(merged)) 5145 return 0; 5146 5147 /* 5148 * I took it apart and put it back together again, except now I have 5149 * these 'spare' parts.. where shall I put them. 5150 */ 5151 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5152 return 0; 5153 5154 return 1; 5155 } 5156 5157 /* 5158 * Remove the lock from the list of currently held locks - this gets 5159 * called on mutex_unlock()/spin_unlock*() (or on a failed 5160 * mutex_lock_interruptible()). 5161 */ 5162 static int 5163 __lock_release(struct lockdep_map *lock, unsigned long ip) 5164 { 5165 struct task_struct *curr = current; 5166 unsigned int depth, merged = 1; 5167 struct held_lock *hlock; 5168 int i; 5169 5170 if (unlikely(!debug_locks)) 5171 return 0; 5172 5173 depth = curr->lockdep_depth; 5174 /* 5175 * So we're all set to release this lock.. wait what lock? We don't 5176 * own any locks, you've been drinking again? 5177 */ 5178 if (depth <= 0) { 5179 print_unlock_imbalance_bug(curr, lock, ip); 5180 return 0; 5181 } 5182 5183 /* 5184 * Check whether the lock exists in the current stack 5185 * of held locks: 5186 */ 5187 hlock = find_held_lock(curr, lock, depth, &i); 5188 if (!hlock) { 5189 print_unlock_imbalance_bug(curr, lock, ip); 5190 return 0; 5191 } 5192 5193 if (hlock->instance == lock) 5194 lock_release_holdtime(hlock); 5195 5196 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5197 5198 if (hlock->references) { 5199 hlock->references--; 5200 if (hlock->references) { 5201 /* 5202 * We had, and after removing one, still have 5203 * references, the current lock stack is still 5204 * valid. We're done! 5205 */ 5206 return 1; 5207 } 5208 } 5209 5210 /* 5211 * We have the right lock to unlock, 'hlock' points to it. 5212 * Now we remove it from the stack, and add back the other 5213 * entries (if any), recalculating the hash along the way: 5214 */ 5215 5216 curr->lockdep_depth = i; 5217 curr->curr_chain_key = hlock->prev_chain_key; 5218 5219 /* 5220 * The most likely case is when the unlock is on the innermost 5221 * lock. In this case, we are done! 5222 */ 5223 if (i == depth-1) 5224 return 1; 5225 5226 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5227 return 0; 5228 5229 /* 5230 * We had N bottles of beer on the wall, we drank one, but now 5231 * there's not N-1 bottles of beer left on the wall... 5232 * Pouring two of the bottles together is acceptable. 5233 */ 5234 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5235 5236 /* 5237 * Since reacquire_held_locks() would have called check_chain_key() 5238 * indirectly via __lock_acquire(), we don't need to do it again 5239 * on return. 5240 */ 5241 return 0; 5242 } 5243 5244 static __always_inline 5245 int __lock_is_held(const struct lockdep_map *lock, int read) 5246 { 5247 struct task_struct *curr = current; 5248 int i; 5249 5250 for (i = 0; i < curr->lockdep_depth; i++) { 5251 struct held_lock *hlock = curr->held_locks + i; 5252 5253 if (match_held_lock(hlock, lock)) { 5254 if (read == -1 || hlock->read == read) 5255 return 1; 5256 5257 return 0; 5258 } 5259 } 5260 5261 return 0; 5262 } 5263 5264 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5265 { 5266 struct pin_cookie cookie = NIL_COOKIE; 5267 struct task_struct *curr = current; 5268 int i; 5269 5270 if (unlikely(!debug_locks)) 5271 return cookie; 5272 5273 for (i = 0; i < curr->lockdep_depth; i++) { 5274 struct held_lock *hlock = curr->held_locks + i; 5275 5276 if (match_held_lock(hlock, lock)) { 5277 /* 5278 * Grab 16bits of randomness; this is sufficient to not 5279 * be guessable and still allows some pin nesting in 5280 * our u32 pin_count. 5281 */ 5282 cookie.val = 1 + (prandom_u32() >> 16); 5283 hlock->pin_count += cookie.val; 5284 return cookie; 5285 } 5286 } 5287 5288 WARN(1, "pinning an unheld lock\n"); 5289 return cookie; 5290 } 5291 5292 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5293 { 5294 struct task_struct *curr = current; 5295 int i; 5296 5297 if (unlikely(!debug_locks)) 5298 return; 5299 5300 for (i = 0; i < curr->lockdep_depth; i++) { 5301 struct held_lock *hlock = curr->held_locks + i; 5302 5303 if (match_held_lock(hlock, lock)) { 5304 hlock->pin_count += cookie.val; 5305 return; 5306 } 5307 } 5308 5309 WARN(1, "pinning an unheld lock\n"); 5310 } 5311 5312 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5313 { 5314 struct task_struct *curr = current; 5315 int i; 5316 5317 if (unlikely(!debug_locks)) 5318 return; 5319 5320 for (i = 0; i < curr->lockdep_depth; i++) { 5321 struct held_lock *hlock = curr->held_locks + i; 5322 5323 if (match_held_lock(hlock, lock)) { 5324 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5325 return; 5326 5327 hlock->pin_count -= cookie.val; 5328 5329 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5330 hlock->pin_count = 0; 5331 5332 return; 5333 } 5334 } 5335 5336 WARN(1, "unpinning an unheld lock\n"); 5337 } 5338 5339 /* 5340 * Check whether we follow the irq-flags state precisely: 5341 */ 5342 static noinstr void check_flags(unsigned long flags) 5343 { 5344 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5345 if (!debug_locks) 5346 return; 5347 5348 /* Get the warning out.. */ 5349 instrumentation_begin(); 5350 5351 if (irqs_disabled_flags(flags)) { 5352 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5353 printk("possible reason: unannotated irqs-off.\n"); 5354 } 5355 } else { 5356 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5357 printk("possible reason: unannotated irqs-on.\n"); 5358 } 5359 } 5360 5361 /* 5362 * We dont accurately track softirq state in e.g. 5363 * hardirq contexts (such as on 4KSTACKS), so only 5364 * check if not in hardirq contexts: 5365 */ 5366 if (!hardirq_count()) { 5367 if (softirq_count()) { 5368 /* like the above, but with softirqs */ 5369 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5370 } else { 5371 /* lick the above, does it taste good? */ 5372 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5373 } 5374 } 5375 5376 if (!debug_locks) 5377 print_irqtrace_events(current); 5378 5379 instrumentation_end(); 5380 #endif 5381 } 5382 5383 void lock_set_class(struct lockdep_map *lock, const char *name, 5384 struct lock_class_key *key, unsigned int subclass, 5385 unsigned long ip) 5386 { 5387 unsigned long flags; 5388 5389 if (unlikely(!lockdep_enabled())) 5390 return; 5391 5392 raw_local_irq_save(flags); 5393 lockdep_recursion_inc(); 5394 check_flags(flags); 5395 if (__lock_set_class(lock, name, key, subclass, ip)) 5396 check_chain_key(current); 5397 lockdep_recursion_finish(); 5398 raw_local_irq_restore(flags); 5399 } 5400 EXPORT_SYMBOL_GPL(lock_set_class); 5401 5402 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5403 { 5404 unsigned long flags; 5405 5406 if (unlikely(!lockdep_enabled())) 5407 return; 5408 5409 raw_local_irq_save(flags); 5410 lockdep_recursion_inc(); 5411 check_flags(flags); 5412 if (__lock_downgrade(lock, ip)) 5413 check_chain_key(current); 5414 lockdep_recursion_finish(); 5415 raw_local_irq_restore(flags); 5416 } 5417 EXPORT_SYMBOL_GPL(lock_downgrade); 5418 5419 /* NMI context !!! */ 5420 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5421 { 5422 #ifdef CONFIG_PROVE_LOCKING 5423 struct lock_class *class = look_up_lock_class(lock, subclass); 5424 unsigned long mask = LOCKF_USED; 5425 5426 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5427 if (!class) 5428 return; 5429 5430 /* 5431 * READ locks only conflict with USED, such that if we only ever use 5432 * READ locks, there is no deadlock possible -- RCU. 5433 */ 5434 if (!hlock->read) 5435 mask |= LOCKF_USED_READ; 5436 5437 if (!(class->usage_mask & mask)) 5438 return; 5439 5440 hlock->class_idx = class - lock_classes; 5441 5442 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5443 #endif 5444 } 5445 5446 static bool lockdep_nmi(void) 5447 { 5448 if (raw_cpu_read(lockdep_recursion)) 5449 return false; 5450 5451 if (!in_nmi()) 5452 return false; 5453 5454 return true; 5455 } 5456 5457 /* 5458 * read_lock() is recursive if: 5459 * 1. We force lockdep think this way in selftests or 5460 * 2. The implementation is not queued read/write lock or 5461 * 3. The locker is at an in_interrupt() context. 5462 */ 5463 bool read_lock_is_recursive(void) 5464 { 5465 return force_read_lock_recursive || 5466 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5467 in_interrupt(); 5468 } 5469 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5470 5471 /* 5472 * We are not always called with irqs disabled - do that here, 5473 * and also avoid lockdep recursion: 5474 */ 5475 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5476 int trylock, int read, int check, 5477 struct lockdep_map *nest_lock, unsigned long ip) 5478 { 5479 unsigned long flags; 5480 5481 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5482 5483 if (!debug_locks) 5484 return; 5485 5486 if (unlikely(!lockdep_enabled())) { 5487 /* XXX allow trylock from NMI ?!? */ 5488 if (lockdep_nmi() && !trylock) { 5489 struct held_lock hlock; 5490 5491 hlock.acquire_ip = ip; 5492 hlock.instance = lock; 5493 hlock.nest_lock = nest_lock; 5494 hlock.irq_context = 2; // XXX 5495 hlock.trylock = trylock; 5496 hlock.read = read; 5497 hlock.check = check; 5498 hlock.hardirqs_off = true; 5499 hlock.references = 0; 5500 5501 verify_lock_unused(lock, &hlock, subclass); 5502 } 5503 return; 5504 } 5505 5506 raw_local_irq_save(flags); 5507 check_flags(flags); 5508 5509 lockdep_recursion_inc(); 5510 __lock_acquire(lock, subclass, trylock, read, check, 5511 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5512 lockdep_recursion_finish(); 5513 raw_local_irq_restore(flags); 5514 } 5515 EXPORT_SYMBOL_GPL(lock_acquire); 5516 5517 void lock_release(struct lockdep_map *lock, unsigned long ip) 5518 { 5519 unsigned long flags; 5520 5521 trace_lock_release(lock, ip); 5522 5523 if (unlikely(!lockdep_enabled())) 5524 return; 5525 5526 raw_local_irq_save(flags); 5527 check_flags(flags); 5528 5529 lockdep_recursion_inc(); 5530 if (__lock_release(lock, ip)) 5531 check_chain_key(current); 5532 lockdep_recursion_finish(); 5533 raw_local_irq_restore(flags); 5534 } 5535 EXPORT_SYMBOL_GPL(lock_release); 5536 5537 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5538 { 5539 unsigned long flags; 5540 int ret = 0; 5541 5542 if (unlikely(!lockdep_enabled())) 5543 return 1; /* avoid false negative lockdep_assert_held() */ 5544 5545 raw_local_irq_save(flags); 5546 check_flags(flags); 5547 5548 lockdep_recursion_inc(); 5549 ret = __lock_is_held(lock, read); 5550 lockdep_recursion_finish(); 5551 raw_local_irq_restore(flags); 5552 5553 return ret; 5554 } 5555 EXPORT_SYMBOL_GPL(lock_is_held_type); 5556 NOKPROBE_SYMBOL(lock_is_held_type); 5557 5558 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5559 { 5560 struct pin_cookie cookie = NIL_COOKIE; 5561 unsigned long flags; 5562 5563 if (unlikely(!lockdep_enabled())) 5564 return cookie; 5565 5566 raw_local_irq_save(flags); 5567 check_flags(flags); 5568 5569 lockdep_recursion_inc(); 5570 cookie = __lock_pin_lock(lock); 5571 lockdep_recursion_finish(); 5572 raw_local_irq_restore(flags); 5573 5574 return cookie; 5575 } 5576 EXPORT_SYMBOL_GPL(lock_pin_lock); 5577 5578 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5579 { 5580 unsigned long flags; 5581 5582 if (unlikely(!lockdep_enabled())) 5583 return; 5584 5585 raw_local_irq_save(flags); 5586 check_flags(flags); 5587 5588 lockdep_recursion_inc(); 5589 __lock_repin_lock(lock, cookie); 5590 lockdep_recursion_finish(); 5591 raw_local_irq_restore(flags); 5592 } 5593 EXPORT_SYMBOL_GPL(lock_repin_lock); 5594 5595 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5596 { 5597 unsigned long flags; 5598 5599 if (unlikely(!lockdep_enabled())) 5600 return; 5601 5602 raw_local_irq_save(flags); 5603 check_flags(flags); 5604 5605 lockdep_recursion_inc(); 5606 __lock_unpin_lock(lock, cookie); 5607 lockdep_recursion_finish(); 5608 raw_local_irq_restore(flags); 5609 } 5610 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5611 5612 #ifdef CONFIG_LOCK_STAT 5613 static void print_lock_contention_bug(struct task_struct *curr, 5614 struct lockdep_map *lock, 5615 unsigned long ip) 5616 { 5617 if (!debug_locks_off()) 5618 return; 5619 if (debug_locks_silent) 5620 return; 5621 5622 pr_warn("\n"); 5623 pr_warn("=================================\n"); 5624 pr_warn("WARNING: bad contention detected!\n"); 5625 print_kernel_ident(); 5626 pr_warn("---------------------------------\n"); 5627 pr_warn("%s/%d is trying to contend lock (", 5628 curr->comm, task_pid_nr(curr)); 5629 print_lockdep_cache(lock); 5630 pr_cont(") at:\n"); 5631 print_ip_sym(KERN_WARNING, ip); 5632 pr_warn("but there are no locks held!\n"); 5633 pr_warn("\nother info that might help us debug this:\n"); 5634 lockdep_print_held_locks(curr); 5635 5636 pr_warn("\nstack backtrace:\n"); 5637 dump_stack(); 5638 } 5639 5640 static void 5641 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5642 { 5643 struct task_struct *curr = current; 5644 struct held_lock *hlock; 5645 struct lock_class_stats *stats; 5646 unsigned int depth; 5647 int i, contention_point, contending_point; 5648 5649 depth = curr->lockdep_depth; 5650 /* 5651 * Whee, we contended on this lock, except it seems we're not 5652 * actually trying to acquire anything much at all.. 5653 */ 5654 if (DEBUG_LOCKS_WARN_ON(!depth)) 5655 return; 5656 5657 hlock = find_held_lock(curr, lock, depth, &i); 5658 if (!hlock) { 5659 print_lock_contention_bug(curr, lock, ip); 5660 return; 5661 } 5662 5663 if (hlock->instance != lock) 5664 return; 5665 5666 hlock->waittime_stamp = lockstat_clock(); 5667 5668 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5669 contending_point = lock_point(hlock_class(hlock)->contending_point, 5670 lock->ip); 5671 5672 stats = get_lock_stats(hlock_class(hlock)); 5673 if (contention_point < LOCKSTAT_POINTS) 5674 stats->contention_point[contention_point]++; 5675 if (contending_point < LOCKSTAT_POINTS) 5676 stats->contending_point[contending_point]++; 5677 if (lock->cpu != smp_processor_id()) 5678 stats->bounces[bounce_contended + !!hlock->read]++; 5679 } 5680 5681 static void 5682 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5683 { 5684 struct task_struct *curr = current; 5685 struct held_lock *hlock; 5686 struct lock_class_stats *stats; 5687 unsigned int depth; 5688 u64 now, waittime = 0; 5689 int i, cpu; 5690 5691 depth = curr->lockdep_depth; 5692 /* 5693 * Yay, we acquired ownership of this lock we didn't try to 5694 * acquire, how the heck did that happen? 5695 */ 5696 if (DEBUG_LOCKS_WARN_ON(!depth)) 5697 return; 5698 5699 hlock = find_held_lock(curr, lock, depth, &i); 5700 if (!hlock) { 5701 print_lock_contention_bug(curr, lock, _RET_IP_); 5702 return; 5703 } 5704 5705 if (hlock->instance != lock) 5706 return; 5707 5708 cpu = smp_processor_id(); 5709 if (hlock->waittime_stamp) { 5710 now = lockstat_clock(); 5711 waittime = now - hlock->waittime_stamp; 5712 hlock->holdtime_stamp = now; 5713 } 5714 5715 stats = get_lock_stats(hlock_class(hlock)); 5716 if (waittime) { 5717 if (hlock->read) 5718 lock_time_inc(&stats->read_waittime, waittime); 5719 else 5720 lock_time_inc(&stats->write_waittime, waittime); 5721 } 5722 if (lock->cpu != cpu) 5723 stats->bounces[bounce_acquired + !!hlock->read]++; 5724 5725 lock->cpu = cpu; 5726 lock->ip = ip; 5727 } 5728 5729 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5730 { 5731 unsigned long flags; 5732 5733 trace_lock_acquired(lock, ip); 5734 5735 if (unlikely(!lock_stat || !lockdep_enabled())) 5736 return; 5737 5738 raw_local_irq_save(flags); 5739 check_flags(flags); 5740 lockdep_recursion_inc(); 5741 __lock_contended(lock, ip); 5742 lockdep_recursion_finish(); 5743 raw_local_irq_restore(flags); 5744 } 5745 EXPORT_SYMBOL_GPL(lock_contended); 5746 5747 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5748 { 5749 unsigned long flags; 5750 5751 trace_lock_contended(lock, ip); 5752 5753 if (unlikely(!lock_stat || !lockdep_enabled())) 5754 return; 5755 5756 raw_local_irq_save(flags); 5757 check_flags(flags); 5758 lockdep_recursion_inc(); 5759 __lock_acquired(lock, ip); 5760 lockdep_recursion_finish(); 5761 raw_local_irq_restore(flags); 5762 } 5763 EXPORT_SYMBOL_GPL(lock_acquired); 5764 #endif 5765 5766 /* 5767 * Used by the testsuite, sanitize the validator state 5768 * after a simulated failure: 5769 */ 5770 5771 void lockdep_reset(void) 5772 { 5773 unsigned long flags; 5774 int i; 5775 5776 raw_local_irq_save(flags); 5777 lockdep_init_task(current); 5778 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5779 nr_hardirq_chains = 0; 5780 nr_softirq_chains = 0; 5781 nr_process_chains = 0; 5782 debug_locks = 1; 5783 for (i = 0; i < CHAINHASH_SIZE; i++) 5784 INIT_HLIST_HEAD(chainhash_table + i); 5785 raw_local_irq_restore(flags); 5786 } 5787 5788 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5789 static void remove_class_from_lock_chain(struct pending_free *pf, 5790 struct lock_chain *chain, 5791 struct lock_class *class) 5792 { 5793 #ifdef CONFIG_PROVE_LOCKING 5794 int i; 5795 5796 for (i = chain->base; i < chain->base + chain->depth; i++) { 5797 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5798 continue; 5799 /* 5800 * Each lock class occurs at most once in a lock chain so once 5801 * we found a match we can break out of this loop. 5802 */ 5803 goto free_lock_chain; 5804 } 5805 /* Since the chain has not been modified, return. */ 5806 return; 5807 5808 free_lock_chain: 5809 free_chain_hlocks(chain->base, chain->depth); 5810 /* Overwrite the chain key for concurrent RCU readers. */ 5811 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5812 dec_chains(chain->irq_context); 5813 5814 /* 5815 * Note: calling hlist_del_rcu() from inside a 5816 * hlist_for_each_entry_rcu() loop is safe. 5817 */ 5818 hlist_del_rcu(&chain->entry); 5819 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5820 nr_zapped_lock_chains++; 5821 #endif 5822 } 5823 5824 /* Must be called with the graph lock held. */ 5825 static void remove_class_from_lock_chains(struct pending_free *pf, 5826 struct lock_class *class) 5827 { 5828 struct lock_chain *chain; 5829 struct hlist_head *head; 5830 int i; 5831 5832 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5833 head = chainhash_table + i; 5834 hlist_for_each_entry_rcu(chain, head, entry) { 5835 remove_class_from_lock_chain(pf, chain, class); 5836 } 5837 } 5838 } 5839 5840 /* 5841 * Remove all references to a lock class. The caller must hold the graph lock. 5842 */ 5843 static void zap_class(struct pending_free *pf, struct lock_class *class) 5844 { 5845 struct lock_list *entry; 5846 int i; 5847 5848 WARN_ON_ONCE(!class->key); 5849 5850 /* 5851 * Remove all dependencies this lock is 5852 * involved in: 5853 */ 5854 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5855 entry = list_entries + i; 5856 if (entry->class != class && entry->links_to != class) 5857 continue; 5858 __clear_bit(i, list_entries_in_use); 5859 nr_list_entries--; 5860 list_del_rcu(&entry->entry); 5861 } 5862 if (list_empty(&class->locks_after) && 5863 list_empty(&class->locks_before)) { 5864 list_move_tail(&class->lock_entry, &pf->zapped); 5865 hlist_del_rcu(&class->hash_entry); 5866 WRITE_ONCE(class->key, NULL); 5867 WRITE_ONCE(class->name, NULL); 5868 nr_lock_classes--; 5869 __clear_bit(class - lock_classes, lock_classes_in_use); 5870 } else { 5871 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 5872 class->name); 5873 } 5874 5875 remove_class_from_lock_chains(pf, class); 5876 nr_zapped_classes++; 5877 } 5878 5879 static void reinit_class(struct lock_class *class) 5880 { 5881 void *const p = class; 5882 const unsigned int offset = offsetof(struct lock_class, key); 5883 5884 WARN_ON_ONCE(!class->lock_entry.next); 5885 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5886 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5887 memset(p + offset, 0, sizeof(*class) - offset); 5888 WARN_ON_ONCE(!class->lock_entry.next); 5889 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5890 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5891 } 5892 5893 static inline int within(const void *addr, void *start, unsigned long size) 5894 { 5895 return addr >= start && addr < start + size; 5896 } 5897 5898 static bool inside_selftest(void) 5899 { 5900 return current == lockdep_selftest_task_struct; 5901 } 5902 5903 /* The caller must hold the graph lock. */ 5904 static struct pending_free *get_pending_free(void) 5905 { 5906 return delayed_free.pf + delayed_free.index; 5907 } 5908 5909 static void free_zapped_rcu(struct rcu_head *cb); 5910 5911 /* 5912 * Schedule an RCU callback if no RCU callback is pending. Must be called with 5913 * the graph lock held. 5914 */ 5915 static void call_rcu_zapped(struct pending_free *pf) 5916 { 5917 WARN_ON_ONCE(inside_selftest()); 5918 5919 if (list_empty(&pf->zapped)) 5920 return; 5921 5922 if (delayed_free.scheduled) 5923 return; 5924 5925 delayed_free.scheduled = true; 5926 5927 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 5928 delayed_free.index ^= 1; 5929 5930 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 5931 } 5932 5933 /* The caller must hold the graph lock. May be called from RCU context. */ 5934 static void __free_zapped_classes(struct pending_free *pf) 5935 { 5936 struct lock_class *class; 5937 5938 check_data_structures(); 5939 5940 list_for_each_entry(class, &pf->zapped, lock_entry) 5941 reinit_class(class); 5942 5943 list_splice_init(&pf->zapped, &free_lock_classes); 5944 5945 #ifdef CONFIG_PROVE_LOCKING 5946 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 5947 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 5948 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 5949 #endif 5950 } 5951 5952 static void free_zapped_rcu(struct rcu_head *ch) 5953 { 5954 struct pending_free *pf; 5955 unsigned long flags; 5956 5957 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 5958 return; 5959 5960 raw_local_irq_save(flags); 5961 lockdep_lock(); 5962 5963 /* closed head */ 5964 pf = delayed_free.pf + (delayed_free.index ^ 1); 5965 __free_zapped_classes(pf); 5966 delayed_free.scheduled = false; 5967 5968 /* 5969 * If there's anything on the open list, close and start a new callback. 5970 */ 5971 call_rcu_zapped(delayed_free.pf + delayed_free.index); 5972 5973 lockdep_unlock(); 5974 raw_local_irq_restore(flags); 5975 } 5976 5977 /* 5978 * Remove all lock classes from the class hash table and from the 5979 * all_lock_classes list whose key or name is in the address range [start, 5980 * start + size). Move these lock classes to the zapped_classes list. Must 5981 * be called with the graph lock held. 5982 */ 5983 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 5984 unsigned long size) 5985 { 5986 struct lock_class *class; 5987 struct hlist_head *head; 5988 int i; 5989 5990 /* Unhash all classes that were created by a module. */ 5991 for (i = 0; i < CLASSHASH_SIZE; i++) { 5992 head = classhash_table + i; 5993 hlist_for_each_entry_rcu(class, head, hash_entry) { 5994 if (!within(class->key, start, size) && 5995 !within(class->name, start, size)) 5996 continue; 5997 zap_class(pf, class); 5998 } 5999 } 6000 } 6001 6002 /* 6003 * Used in module.c to remove lock classes from memory that is going to be 6004 * freed; and possibly re-used by other modules. 6005 * 6006 * We will have had one synchronize_rcu() before getting here, so we're 6007 * guaranteed nobody will look up these exact classes -- they're properly dead 6008 * but still allocated. 6009 */ 6010 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6011 { 6012 struct pending_free *pf; 6013 unsigned long flags; 6014 6015 init_data_structures_once(); 6016 6017 raw_local_irq_save(flags); 6018 lockdep_lock(); 6019 pf = get_pending_free(); 6020 __lockdep_free_key_range(pf, start, size); 6021 call_rcu_zapped(pf); 6022 lockdep_unlock(); 6023 raw_local_irq_restore(flags); 6024 6025 /* 6026 * Wait for any possible iterators from look_up_lock_class() to pass 6027 * before continuing to free the memory they refer to. 6028 */ 6029 synchronize_rcu(); 6030 } 6031 6032 /* 6033 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6034 * Ignores debug_locks. Must only be used by the lockdep selftests. 6035 */ 6036 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6037 { 6038 struct pending_free *pf = delayed_free.pf; 6039 unsigned long flags; 6040 6041 init_data_structures_once(); 6042 6043 raw_local_irq_save(flags); 6044 lockdep_lock(); 6045 __lockdep_free_key_range(pf, start, size); 6046 __free_zapped_classes(pf); 6047 lockdep_unlock(); 6048 raw_local_irq_restore(flags); 6049 } 6050 6051 void lockdep_free_key_range(void *start, unsigned long size) 6052 { 6053 init_data_structures_once(); 6054 6055 if (inside_selftest()) 6056 lockdep_free_key_range_imm(start, size); 6057 else 6058 lockdep_free_key_range_reg(start, size); 6059 } 6060 6061 /* 6062 * Check whether any element of the @lock->class_cache[] array refers to a 6063 * registered lock class. The caller must hold either the graph lock or the 6064 * RCU read lock. 6065 */ 6066 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6067 { 6068 struct lock_class *class; 6069 struct hlist_head *head; 6070 int i, j; 6071 6072 for (i = 0; i < CLASSHASH_SIZE; i++) { 6073 head = classhash_table + i; 6074 hlist_for_each_entry_rcu(class, head, hash_entry) { 6075 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6076 if (lock->class_cache[j] == class) 6077 return true; 6078 } 6079 } 6080 return false; 6081 } 6082 6083 /* The caller must hold the graph lock. Does not sleep. */ 6084 static void __lockdep_reset_lock(struct pending_free *pf, 6085 struct lockdep_map *lock) 6086 { 6087 struct lock_class *class; 6088 int j; 6089 6090 /* 6091 * Remove all classes this lock might have: 6092 */ 6093 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6094 /* 6095 * If the class exists we look it up and zap it: 6096 */ 6097 class = look_up_lock_class(lock, j); 6098 if (class) 6099 zap_class(pf, class); 6100 } 6101 /* 6102 * Debug check: in the end all mapped classes should 6103 * be gone. 6104 */ 6105 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6106 debug_locks_off(); 6107 } 6108 6109 /* 6110 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6111 * released data structures from RCU context. 6112 */ 6113 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6114 { 6115 struct pending_free *pf; 6116 unsigned long flags; 6117 int locked; 6118 6119 raw_local_irq_save(flags); 6120 locked = graph_lock(); 6121 if (!locked) 6122 goto out_irq; 6123 6124 pf = get_pending_free(); 6125 __lockdep_reset_lock(pf, lock); 6126 call_rcu_zapped(pf); 6127 6128 graph_unlock(); 6129 out_irq: 6130 raw_local_irq_restore(flags); 6131 } 6132 6133 /* 6134 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6135 * lockdep selftests. 6136 */ 6137 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6138 { 6139 struct pending_free *pf = delayed_free.pf; 6140 unsigned long flags; 6141 6142 raw_local_irq_save(flags); 6143 lockdep_lock(); 6144 __lockdep_reset_lock(pf, lock); 6145 __free_zapped_classes(pf); 6146 lockdep_unlock(); 6147 raw_local_irq_restore(flags); 6148 } 6149 6150 void lockdep_reset_lock(struct lockdep_map *lock) 6151 { 6152 init_data_structures_once(); 6153 6154 if (inside_selftest()) 6155 lockdep_reset_lock_imm(lock); 6156 else 6157 lockdep_reset_lock_reg(lock); 6158 } 6159 6160 /* Unregister a dynamically allocated key. */ 6161 void lockdep_unregister_key(struct lock_class_key *key) 6162 { 6163 struct hlist_head *hash_head = keyhashentry(key); 6164 struct lock_class_key *k; 6165 struct pending_free *pf; 6166 unsigned long flags; 6167 bool found = false; 6168 6169 might_sleep(); 6170 6171 if (WARN_ON_ONCE(static_obj(key))) 6172 return; 6173 6174 raw_local_irq_save(flags); 6175 if (!graph_lock()) 6176 goto out_irq; 6177 6178 pf = get_pending_free(); 6179 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6180 if (k == key) { 6181 hlist_del_rcu(&k->hash_entry); 6182 found = true; 6183 break; 6184 } 6185 } 6186 WARN_ON_ONCE(!found); 6187 __lockdep_free_key_range(pf, key, 1); 6188 call_rcu_zapped(pf); 6189 graph_unlock(); 6190 out_irq: 6191 raw_local_irq_restore(flags); 6192 6193 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6194 synchronize_rcu(); 6195 } 6196 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6197 6198 void __init lockdep_init(void) 6199 { 6200 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6201 6202 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6203 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6204 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6205 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6206 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6207 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6208 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6209 6210 printk(" memory used by lock dependency info: %zu kB\n", 6211 (sizeof(lock_classes) + 6212 sizeof(lock_classes_in_use) + 6213 sizeof(classhash_table) + 6214 sizeof(list_entries) + 6215 sizeof(list_entries_in_use) + 6216 sizeof(chainhash_table) + 6217 sizeof(delayed_free) 6218 #ifdef CONFIG_PROVE_LOCKING 6219 + sizeof(lock_cq) 6220 + sizeof(lock_chains) 6221 + sizeof(lock_chains_in_use) 6222 + sizeof(chain_hlocks) 6223 #endif 6224 ) / 1024 6225 ); 6226 6227 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6228 printk(" memory used for stack traces: %zu kB\n", 6229 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6230 ); 6231 #endif 6232 6233 printk(" per task-struct memory footprint: %zu bytes\n", 6234 sizeof(((struct task_struct *)NULL)->held_locks)); 6235 } 6236 6237 static void 6238 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6239 const void *mem_to, struct held_lock *hlock) 6240 { 6241 if (!debug_locks_off()) 6242 return; 6243 if (debug_locks_silent) 6244 return; 6245 6246 pr_warn("\n"); 6247 pr_warn("=========================\n"); 6248 pr_warn("WARNING: held lock freed!\n"); 6249 print_kernel_ident(); 6250 pr_warn("-------------------------\n"); 6251 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6252 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6253 print_lock(hlock); 6254 lockdep_print_held_locks(curr); 6255 6256 pr_warn("\nstack backtrace:\n"); 6257 dump_stack(); 6258 } 6259 6260 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6261 const void* lock_from, unsigned long lock_len) 6262 { 6263 return lock_from + lock_len <= mem_from || 6264 mem_from + mem_len <= lock_from; 6265 } 6266 6267 /* 6268 * Called when kernel memory is freed (or unmapped), or if a lock 6269 * is destroyed or reinitialized - this code checks whether there is 6270 * any held lock in the memory range of <from> to <to>: 6271 */ 6272 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6273 { 6274 struct task_struct *curr = current; 6275 struct held_lock *hlock; 6276 unsigned long flags; 6277 int i; 6278 6279 if (unlikely(!debug_locks)) 6280 return; 6281 6282 raw_local_irq_save(flags); 6283 for (i = 0; i < curr->lockdep_depth; i++) { 6284 hlock = curr->held_locks + i; 6285 6286 if (not_in_range(mem_from, mem_len, hlock->instance, 6287 sizeof(*hlock->instance))) 6288 continue; 6289 6290 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6291 break; 6292 } 6293 raw_local_irq_restore(flags); 6294 } 6295 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6296 6297 static void print_held_locks_bug(void) 6298 { 6299 if (!debug_locks_off()) 6300 return; 6301 if (debug_locks_silent) 6302 return; 6303 6304 pr_warn("\n"); 6305 pr_warn("====================================\n"); 6306 pr_warn("WARNING: %s/%d still has locks held!\n", 6307 current->comm, task_pid_nr(current)); 6308 print_kernel_ident(); 6309 pr_warn("------------------------------------\n"); 6310 lockdep_print_held_locks(current); 6311 pr_warn("\nstack backtrace:\n"); 6312 dump_stack(); 6313 } 6314 6315 void debug_check_no_locks_held(void) 6316 { 6317 if (unlikely(current->lockdep_depth > 0)) 6318 print_held_locks_bug(); 6319 } 6320 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6321 6322 #ifdef __KERNEL__ 6323 void debug_show_all_locks(void) 6324 { 6325 struct task_struct *g, *p; 6326 6327 if (unlikely(!debug_locks)) { 6328 pr_warn("INFO: lockdep is turned off.\n"); 6329 return; 6330 } 6331 pr_warn("\nShowing all locks held in the system:\n"); 6332 6333 rcu_read_lock(); 6334 for_each_process_thread(g, p) { 6335 if (!p->lockdep_depth) 6336 continue; 6337 lockdep_print_held_locks(p); 6338 touch_nmi_watchdog(); 6339 touch_all_softlockup_watchdogs(); 6340 } 6341 rcu_read_unlock(); 6342 6343 pr_warn("\n"); 6344 pr_warn("=============================================\n\n"); 6345 } 6346 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6347 #endif 6348 6349 /* 6350 * Careful: only use this function if you are sure that 6351 * the task cannot run in parallel! 6352 */ 6353 void debug_show_held_locks(struct task_struct *task) 6354 { 6355 if (unlikely(!debug_locks)) { 6356 printk("INFO: lockdep is turned off.\n"); 6357 return; 6358 } 6359 lockdep_print_held_locks(task); 6360 } 6361 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6362 6363 asmlinkage __visible void lockdep_sys_exit(void) 6364 { 6365 struct task_struct *curr = current; 6366 6367 if (unlikely(curr->lockdep_depth)) { 6368 if (!debug_locks_off()) 6369 return; 6370 pr_warn("\n"); 6371 pr_warn("================================================\n"); 6372 pr_warn("WARNING: lock held when returning to user space!\n"); 6373 print_kernel_ident(); 6374 pr_warn("------------------------------------------------\n"); 6375 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6376 curr->comm, curr->pid); 6377 lockdep_print_held_locks(curr); 6378 } 6379 6380 /* 6381 * The lock history for each syscall should be independent. So wipe the 6382 * slate clean on return to userspace. 6383 */ 6384 lockdep_invariant_state(false); 6385 } 6386 6387 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6388 { 6389 struct task_struct *curr = current; 6390 6391 /* Note: the following can be executed concurrently, so be careful. */ 6392 pr_warn("\n"); 6393 pr_warn("=============================\n"); 6394 pr_warn("WARNING: suspicious RCU usage\n"); 6395 print_kernel_ident(); 6396 pr_warn("-----------------------------\n"); 6397 pr_warn("%s:%d %s!\n", file, line, s); 6398 pr_warn("\nother info that might help us debug this:\n\n"); 6399 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 6400 !rcu_lockdep_current_cpu_online() 6401 ? "RCU used illegally from offline CPU!\n" 6402 : "", 6403 rcu_scheduler_active, debug_locks); 6404 6405 /* 6406 * If a CPU is in the RCU-free window in idle (ie: in the section 6407 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 6408 * considers that CPU to be in an "extended quiescent state", 6409 * which means that RCU will be completely ignoring that CPU. 6410 * Therefore, rcu_read_lock() and friends have absolutely no 6411 * effect on a CPU running in that state. In other words, even if 6412 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6413 * delete data structures out from under it. RCU really has no 6414 * choice here: we need to keep an RCU-free window in idle where 6415 * the CPU may possibly enter into low power mode. This way we can 6416 * notice an extended quiescent state to other CPUs that started a grace 6417 * period. Otherwise we would delay any grace period as long as we run 6418 * in the idle task. 6419 * 6420 * So complain bitterly if someone does call rcu_read_lock(), 6421 * rcu_read_lock_bh() and so on from extended quiescent states. 6422 */ 6423 if (!rcu_is_watching()) 6424 pr_warn("RCU used illegally from extended quiescent state!\n"); 6425 6426 lockdep_print_held_locks(curr); 6427 pr_warn("\nstack backtrace:\n"); 6428 dump_stack(); 6429 } 6430 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6431