xref: /openbmc/linux/kernel/locking/lockdep.c (revision 32daa5d7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 
58 #include <asm/sections.h>
59 
60 #include "lockdep_internals.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81 
82 static __always_inline bool lockdep_enabled(void)
83 {
84 	if (!debug_locks)
85 		return false;
86 
87 	if (this_cpu_read(lockdep_recursion))
88 		return false;
89 
90 	if (current->lockdep_recursion)
91 		return false;
92 
93 	return true;
94 }
95 
96 /*
97  * lockdep_lock: protects the lockdep graph, the hashes and the
98  *               class/list/hash allocators.
99  *
100  * This is one of the rare exceptions where it's justified
101  * to use a raw spinlock - we really dont want the spinlock
102  * code to recurse back into the lockdep code...
103  */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106 
107 static inline void lockdep_lock(void)
108 {
109 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110 
111 	__this_cpu_inc(lockdep_recursion);
112 	arch_spin_lock(&__lock);
113 	__owner = current;
114 }
115 
116 static inline void lockdep_unlock(void)
117 {
118 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
119 
120 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
121 		return;
122 
123 	__owner = NULL;
124 	arch_spin_unlock(&__lock);
125 	__this_cpu_dec(lockdep_recursion);
126 }
127 
128 static inline bool lockdep_assert_locked(void)
129 {
130 	return DEBUG_LOCKS_WARN_ON(__owner != current);
131 }
132 
133 static struct task_struct *lockdep_selftest_task_struct;
134 
135 
136 static int graph_lock(void)
137 {
138 	lockdep_lock();
139 	/*
140 	 * Make sure that if another CPU detected a bug while
141 	 * walking the graph we dont change it (while the other
142 	 * CPU is busy printing out stuff with the graph lock
143 	 * dropped already)
144 	 */
145 	if (!debug_locks) {
146 		lockdep_unlock();
147 		return 0;
148 	}
149 	return 1;
150 }
151 
152 static inline void graph_unlock(void)
153 {
154 	lockdep_unlock();
155 }
156 
157 /*
158  * Turn lock debugging off and return with 0 if it was off already,
159  * and also release the graph lock:
160  */
161 static inline int debug_locks_off_graph_unlock(void)
162 {
163 	int ret = debug_locks_off();
164 
165 	lockdep_unlock();
166 
167 	return ret;
168 }
169 
170 unsigned long nr_list_entries;
171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
173 
174 /*
175  * All data structures here are protected by the global debug_lock.
176  *
177  * nr_lock_classes is the number of elements of lock_classes[] that is
178  * in use.
179  */
180 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
181 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
183 unsigned long nr_lock_classes;
184 unsigned long nr_zapped_classes;
185 #ifndef CONFIG_DEBUG_LOCKDEP
186 static
187 #endif
188 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
189 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
190 
191 static inline struct lock_class *hlock_class(struct held_lock *hlock)
192 {
193 	unsigned int class_idx = hlock->class_idx;
194 
195 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
196 	barrier();
197 
198 	if (!test_bit(class_idx, lock_classes_in_use)) {
199 		/*
200 		 * Someone passed in garbage, we give up.
201 		 */
202 		DEBUG_LOCKS_WARN_ON(1);
203 		return NULL;
204 	}
205 
206 	/*
207 	 * At this point, if the passed hlock->class_idx is still garbage,
208 	 * we just have to live with it
209 	 */
210 	return lock_classes + class_idx;
211 }
212 
213 #ifdef CONFIG_LOCK_STAT
214 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
215 
216 static inline u64 lockstat_clock(void)
217 {
218 	return local_clock();
219 }
220 
221 static int lock_point(unsigned long points[], unsigned long ip)
222 {
223 	int i;
224 
225 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
226 		if (points[i] == 0) {
227 			points[i] = ip;
228 			break;
229 		}
230 		if (points[i] == ip)
231 			break;
232 	}
233 
234 	return i;
235 }
236 
237 static void lock_time_inc(struct lock_time *lt, u64 time)
238 {
239 	if (time > lt->max)
240 		lt->max = time;
241 
242 	if (time < lt->min || !lt->nr)
243 		lt->min = time;
244 
245 	lt->total += time;
246 	lt->nr++;
247 }
248 
249 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
250 {
251 	if (!src->nr)
252 		return;
253 
254 	if (src->max > dst->max)
255 		dst->max = src->max;
256 
257 	if (src->min < dst->min || !dst->nr)
258 		dst->min = src->min;
259 
260 	dst->total += src->total;
261 	dst->nr += src->nr;
262 }
263 
264 struct lock_class_stats lock_stats(struct lock_class *class)
265 {
266 	struct lock_class_stats stats;
267 	int cpu, i;
268 
269 	memset(&stats, 0, sizeof(struct lock_class_stats));
270 	for_each_possible_cpu(cpu) {
271 		struct lock_class_stats *pcs =
272 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
273 
274 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
275 			stats.contention_point[i] += pcs->contention_point[i];
276 
277 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
278 			stats.contending_point[i] += pcs->contending_point[i];
279 
280 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
281 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
282 
283 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
284 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
285 
286 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
287 			stats.bounces[i] += pcs->bounces[i];
288 	}
289 
290 	return stats;
291 }
292 
293 void clear_lock_stats(struct lock_class *class)
294 {
295 	int cpu;
296 
297 	for_each_possible_cpu(cpu) {
298 		struct lock_class_stats *cpu_stats =
299 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
300 
301 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
302 	}
303 	memset(class->contention_point, 0, sizeof(class->contention_point));
304 	memset(class->contending_point, 0, sizeof(class->contending_point));
305 }
306 
307 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
308 {
309 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
310 }
311 
312 static void lock_release_holdtime(struct held_lock *hlock)
313 {
314 	struct lock_class_stats *stats;
315 	u64 holdtime;
316 
317 	if (!lock_stat)
318 		return;
319 
320 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
321 
322 	stats = get_lock_stats(hlock_class(hlock));
323 	if (hlock->read)
324 		lock_time_inc(&stats->read_holdtime, holdtime);
325 	else
326 		lock_time_inc(&stats->write_holdtime, holdtime);
327 }
328 #else
329 static inline void lock_release_holdtime(struct held_lock *hlock)
330 {
331 }
332 #endif
333 
334 /*
335  * We keep a global list of all lock classes. The list is only accessed with
336  * the lockdep spinlock lock held. free_lock_classes is a list with free
337  * elements. These elements are linked together by the lock_entry member in
338  * struct lock_class.
339  */
340 LIST_HEAD(all_lock_classes);
341 static LIST_HEAD(free_lock_classes);
342 
343 /**
344  * struct pending_free - information about data structures about to be freed
345  * @zapped: Head of a list with struct lock_class elements.
346  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
347  *	are about to be freed.
348  */
349 struct pending_free {
350 	struct list_head zapped;
351 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
352 };
353 
354 /**
355  * struct delayed_free - data structures used for delayed freeing
356  *
357  * A data structure for delayed freeing of data structures that may be
358  * accessed by RCU readers at the time these were freed.
359  *
360  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
361  * @index:     Index of @pf to which freed data structures are added.
362  * @scheduled: Whether or not an RCU callback has been scheduled.
363  * @pf:        Array with information about data structures about to be freed.
364  */
365 static struct delayed_free {
366 	struct rcu_head		rcu_head;
367 	int			index;
368 	int			scheduled;
369 	struct pending_free	pf[2];
370 } delayed_free;
371 
372 /*
373  * The lockdep classes are in a hash-table as well, for fast lookup:
374  */
375 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
376 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
377 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
378 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
379 
380 static struct hlist_head classhash_table[CLASSHASH_SIZE];
381 
382 /*
383  * We put the lock dependency chains into a hash-table as well, to cache
384  * their existence:
385  */
386 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
387 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
388 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
389 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
390 
391 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
392 
393 /*
394  * the id of held_lock
395  */
396 static inline u16 hlock_id(struct held_lock *hlock)
397 {
398 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
399 
400 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
401 }
402 
403 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
404 {
405 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
406 }
407 
408 /*
409  * The hash key of the lock dependency chains is a hash itself too:
410  * it's a hash of all locks taken up to that lock, including that lock.
411  * It's a 64-bit hash, because it's important for the keys to be
412  * unique.
413  */
414 static inline u64 iterate_chain_key(u64 key, u32 idx)
415 {
416 	u32 k0 = key, k1 = key >> 32;
417 
418 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
419 
420 	return k0 | (u64)k1 << 32;
421 }
422 
423 void lockdep_init_task(struct task_struct *task)
424 {
425 	task->lockdep_depth = 0; /* no locks held yet */
426 	task->curr_chain_key = INITIAL_CHAIN_KEY;
427 	task->lockdep_recursion = 0;
428 }
429 
430 static __always_inline void lockdep_recursion_inc(void)
431 {
432 	__this_cpu_inc(lockdep_recursion);
433 }
434 
435 static __always_inline void lockdep_recursion_finish(void)
436 {
437 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
438 		__this_cpu_write(lockdep_recursion, 0);
439 }
440 
441 void lockdep_set_selftest_task(struct task_struct *task)
442 {
443 	lockdep_selftest_task_struct = task;
444 }
445 
446 /*
447  * Debugging switches:
448  */
449 
450 #define VERBOSE			0
451 #define VERY_VERBOSE		0
452 
453 #if VERBOSE
454 # define HARDIRQ_VERBOSE	1
455 # define SOFTIRQ_VERBOSE	1
456 #else
457 # define HARDIRQ_VERBOSE	0
458 # define SOFTIRQ_VERBOSE	0
459 #endif
460 
461 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
462 /*
463  * Quick filtering for interesting events:
464  */
465 static int class_filter(struct lock_class *class)
466 {
467 #if 0
468 	/* Example */
469 	if (class->name_version == 1 &&
470 			!strcmp(class->name, "lockname"))
471 		return 1;
472 	if (class->name_version == 1 &&
473 			!strcmp(class->name, "&struct->lockfield"))
474 		return 1;
475 #endif
476 	/* Filter everything else. 1 would be to allow everything else */
477 	return 0;
478 }
479 #endif
480 
481 static int verbose(struct lock_class *class)
482 {
483 #if VERBOSE
484 	return class_filter(class);
485 #endif
486 	return 0;
487 }
488 
489 static void print_lockdep_off(const char *bug_msg)
490 {
491 	printk(KERN_DEBUG "%s\n", bug_msg);
492 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
493 #ifdef CONFIG_LOCK_STAT
494 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
495 #endif
496 }
497 
498 unsigned long nr_stack_trace_entries;
499 
500 #ifdef CONFIG_PROVE_LOCKING
501 /**
502  * struct lock_trace - single stack backtrace
503  * @hash_entry:	Entry in a stack_trace_hash[] list.
504  * @hash:	jhash() of @entries.
505  * @nr_entries:	Number of entries in @entries.
506  * @entries:	Actual stack backtrace.
507  */
508 struct lock_trace {
509 	struct hlist_node	hash_entry;
510 	u32			hash;
511 	u32			nr_entries;
512 	unsigned long		entries[] __aligned(sizeof(unsigned long));
513 };
514 #define LOCK_TRACE_SIZE_IN_LONGS				\
515 	(sizeof(struct lock_trace) / sizeof(unsigned long))
516 /*
517  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
518  */
519 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
520 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
521 
522 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
523 {
524 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
525 		memcmp(t1->entries, t2->entries,
526 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
527 }
528 
529 static struct lock_trace *save_trace(void)
530 {
531 	struct lock_trace *trace, *t2;
532 	struct hlist_head *hash_head;
533 	u32 hash;
534 	int max_entries;
535 
536 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
537 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
538 
539 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
540 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
541 		LOCK_TRACE_SIZE_IN_LONGS;
542 
543 	if (max_entries <= 0) {
544 		if (!debug_locks_off_graph_unlock())
545 			return NULL;
546 
547 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
548 		dump_stack();
549 
550 		return NULL;
551 	}
552 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
553 
554 	hash = jhash(trace->entries, trace->nr_entries *
555 		     sizeof(trace->entries[0]), 0);
556 	trace->hash = hash;
557 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
558 	hlist_for_each_entry(t2, hash_head, hash_entry) {
559 		if (traces_identical(trace, t2))
560 			return t2;
561 	}
562 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
563 	hlist_add_head(&trace->hash_entry, hash_head);
564 
565 	return trace;
566 }
567 
568 /* Return the number of stack traces in the stack_trace[] array. */
569 u64 lockdep_stack_trace_count(void)
570 {
571 	struct lock_trace *trace;
572 	u64 c = 0;
573 	int i;
574 
575 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
576 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
577 			c++;
578 		}
579 	}
580 
581 	return c;
582 }
583 
584 /* Return the number of stack hash chains that have at least one stack trace. */
585 u64 lockdep_stack_hash_count(void)
586 {
587 	u64 c = 0;
588 	int i;
589 
590 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
591 		if (!hlist_empty(&stack_trace_hash[i]))
592 			c++;
593 
594 	return c;
595 }
596 #endif
597 
598 unsigned int nr_hardirq_chains;
599 unsigned int nr_softirq_chains;
600 unsigned int nr_process_chains;
601 unsigned int max_lockdep_depth;
602 
603 #ifdef CONFIG_DEBUG_LOCKDEP
604 /*
605  * Various lockdep statistics:
606  */
607 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
608 #endif
609 
610 #ifdef CONFIG_PROVE_LOCKING
611 /*
612  * Locking printouts:
613  */
614 
615 #define __USAGE(__STATE)						\
616 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
617 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
618 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
619 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
620 
621 static const char *usage_str[] =
622 {
623 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
624 #include "lockdep_states.h"
625 #undef LOCKDEP_STATE
626 	[LOCK_USED] = "INITIAL USE",
627 	[LOCK_USED_READ] = "INITIAL READ USE",
628 	/* abused as string storage for verify_lock_unused() */
629 	[LOCK_USAGE_STATES] = "IN-NMI",
630 };
631 #endif
632 
633 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
634 {
635 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
636 }
637 
638 static inline unsigned long lock_flag(enum lock_usage_bit bit)
639 {
640 	return 1UL << bit;
641 }
642 
643 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
644 {
645 	/*
646 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
647 	 * irq context), which is the safest usage category.
648 	 */
649 	char c = '.';
650 
651 	/*
652 	 * The order of the following usage checks matters, which will
653 	 * result in the outcome character as follows:
654 	 *
655 	 * - '+': irq is enabled and not in irq context
656 	 * - '-': in irq context and irq is disabled
657 	 * - '?': in irq context and irq is enabled
658 	 */
659 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
660 		c = '+';
661 		if (class->usage_mask & lock_flag(bit))
662 			c = '?';
663 	} else if (class->usage_mask & lock_flag(bit))
664 		c = '-';
665 
666 	return c;
667 }
668 
669 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
670 {
671 	int i = 0;
672 
673 #define LOCKDEP_STATE(__STATE) 						\
674 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
675 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
676 #include "lockdep_states.h"
677 #undef LOCKDEP_STATE
678 
679 	usage[i] = '\0';
680 }
681 
682 static void __print_lock_name(struct lock_class *class)
683 {
684 	char str[KSYM_NAME_LEN];
685 	const char *name;
686 
687 	name = class->name;
688 	if (!name) {
689 		name = __get_key_name(class->key, str);
690 		printk(KERN_CONT "%s", name);
691 	} else {
692 		printk(KERN_CONT "%s", name);
693 		if (class->name_version > 1)
694 			printk(KERN_CONT "#%d", class->name_version);
695 		if (class->subclass)
696 			printk(KERN_CONT "/%d", class->subclass);
697 	}
698 }
699 
700 static void print_lock_name(struct lock_class *class)
701 {
702 	char usage[LOCK_USAGE_CHARS];
703 
704 	get_usage_chars(class, usage);
705 
706 	printk(KERN_CONT " (");
707 	__print_lock_name(class);
708 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
709 			class->wait_type_outer ?: class->wait_type_inner,
710 			class->wait_type_inner);
711 }
712 
713 static void print_lockdep_cache(struct lockdep_map *lock)
714 {
715 	const char *name;
716 	char str[KSYM_NAME_LEN];
717 
718 	name = lock->name;
719 	if (!name)
720 		name = __get_key_name(lock->key->subkeys, str);
721 
722 	printk(KERN_CONT "%s", name);
723 }
724 
725 static void print_lock(struct held_lock *hlock)
726 {
727 	/*
728 	 * We can be called locklessly through debug_show_all_locks() so be
729 	 * extra careful, the hlock might have been released and cleared.
730 	 *
731 	 * If this indeed happens, lets pretend it does not hurt to continue
732 	 * to print the lock unless the hlock class_idx does not point to a
733 	 * registered class. The rationale here is: since we don't attempt
734 	 * to distinguish whether we are in this situation, if it just
735 	 * happened we can't count on class_idx to tell either.
736 	 */
737 	struct lock_class *lock = hlock_class(hlock);
738 
739 	if (!lock) {
740 		printk(KERN_CONT "<RELEASED>\n");
741 		return;
742 	}
743 
744 	printk(KERN_CONT "%px", hlock->instance);
745 	print_lock_name(lock);
746 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
747 }
748 
749 static void lockdep_print_held_locks(struct task_struct *p)
750 {
751 	int i, depth = READ_ONCE(p->lockdep_depth);
752 
753 	if (!depth)
754 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
755 	else
756 		printk("%d lock%s held by %s/%d:\n", depth,
757 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
758 	/*
759 	 * It's not reliable to print a task's held locks if it's not sleeping
760 	 * and it's not the current task.
761 	 */
762 	if (p->state == TASK_RUNNING && p != current)
763 		return;
764 	for (i = 0; i < depth; i++) {
765 		printk(" #%d: ", i);
766 		print_lock(p->held_locks + i);
767 	}
768 }
769 
770 static void print_kernel_ident(void)
771 {
772 	printk("%s %.*s %s\n", init_utsname()->release,
773 		(int)strcspn(init_utsname()->version, " "),
774 		init_utsname()->version,
775 		print_tainted());
776 }
777 
778 static int very_verbose(struct lock_class *class)
779 {
780 #if VERY_VERBOSE
781 	return class_filter(class);
782 #endif
783 	return 0;
784 }
785 
786 /*
787  * Is this the address of a static object:
788  */
789 #ifdef __KERNEL__
790 static int static_obj(const void *obj)
791 {
792 	unsigned long start = (unsigned long) &_stext,
793 		      end   = (unsigned long) &_end,
794 		      addr  = (unsigned long) obj;
795 
796 	if (arch_is_kernel_initmem_freed(addr))
797 		return 0;
798 
799 	/*
800 	 * static variable?
801 	 */
802 	if ((addr >= start) && (addr < end))
803 		return 1;
804 
805 	if (arch_is_kernel_data(addr))
806 		return 1;
807 
808 	/*
809 	 * in-kernel percpu var?
810 	 */
811 	if (is_kernel_percpu_address(addr))
812 		return 1;
813 
814 	/*
815 	 * module static or percpu var?
816 	 */
817 	return is_module_address(addr) || is_module_percpu_address(addr);
818 }
819 #endif
820 
821 /*
822  * To make lock name printouts unique, we calculate a unique
823  * class->name_version generation counter. The caller must hold the graph
824  * lock.
825  */
826 static int count_matching_names(struct lock_class *new_class)
827 {
828 	struct lock_class *class;
829 	int count = 0;
830 
831 	if (!new_class->name)
832 		return 0;
833 
834 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
835 		if (new_class->key - new_class->subclass == class->key)
836 			return class->name_version;
837 		if (class->name && !strcmp(class->name, new_class->name))
838 			count = max(count, class->name_version);
839 	}
840 
841 	return count + 1;
842 }
843 
844 /* used from NMI context -- must be lockless */
845 static __always_inline struct lock_class *
846 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
847 {
848 	struct lockdep_subclass_key *key;
849 	struct hlist_head *hash_head;
850 	struct lock_class *class;
851 
852 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
853 		debug_locks_off();
854 		printk(KERN_ERR
855 			"BUG: looking up invalid subclass: %u\n", subclass);
856 		printk(KERN_ERR
857 			"turning off the locking correctness validator.\n");
858 		dump_stack();
859 		return NULL;
860 	}
861 
862 	/*
863 	 * If it is not initialised then it has never been locked,
864 	 * so it won't be present in the hash table.
865 	 */
866 	if (unlikely(!lock->key))
867 		return NULL;
868 
869 	/*
870 	 * NOTE: the class-key must be unique. For dynamic locks, a static
871 	 * lock_class_key variable is passed in through the mutex_init()
872 	 * (or spin_lock_init()) call - which acts as the key. For static
873 	 * locks we use the lock object itself as the key.
874 	 */
875 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
876 			sizeof(struct lockdep_map));
877 
878 	key = lock->key->subkeys + subclass;
879 
880 	hash_head = classhashentry(key);
881 
882 	/*
883 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
884 	 */
885 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
886 		return NULL;
887 
888 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
889 		if (class->key == key) {
890 			/*
891 			 * Huh! same key, different name? Did someone trample
892 			 * on some memory? We're most confused.
893 			 */
894 			WARN_ON_ONCE(class->name != lock->name &&
895 				     lock->key != &__lockdep_no_validate__);
896 			return class;
897 		}
898 	}
899 
900 	return NULL;
901 }
902 
903 /*
904  * Static locks do not have their class-keys yet - for them the key is
905  * the lock object itself. If the lock is in the per cpu area, the
906  * canonical address of the lock (per cpu offset removed) is used.
907  */
908 static bool assign_lock_key(struct lockdep_map *lock)
909 {
910 	unsigned long can_addr, addr = (unsigned long)lock;
911 
912 #ifdef __KERNEL__
913 	/*
914 	 * lockdep_free_key_range() assumes that struct lock_class_key
915 	 * objects do not overlap. Since we use the address of lock
916 	 * objects as class key for static objects, check whether the
917 	 * size of lock_class_key objects does not exceed the size of
918 	 * the smallest lock object.
919 	 */
920 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
921 #endif
922 
923 	if (__is_kernel_percpu_address(addr, &can_addr))
924 		lock->key = (void *)can_addr;
925 	else if (__is_module_percpu_address(addr, &can_addr))
926 		lock->key = (void *)can_addr;
927 	else if (static_obj(lock))
928 		lock->key = (void *)lock;
929 	else {
930 		/* Debug-check: all keys must be persistent! */
931 		debug_locks_off();
932 		pr_err("INFO: trying to register non-static key.\n");
933 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
934 		pr_err("you didn't initialize this object before use?\n");
935 		pr_err("turning off the locking correctness validator.\n");
936 		dump_stack();
937 		return false;
938 	}
939 
940 	return true;
941 }
942 
943 #ifdef CONFIG_DEBUG_LOCKDEP
944 
945 /* Check whether element @e occurs in list @h */
946 static bool in_list(struct list_head *e, struct list_head *h)
947 {
948 	struct list_head *f;
949 
950 	list_for_each(f, h) {
951 		if (e == f)
952 			return true;
953 	}
954 
955 	return false;
956 }
957 
958 /*
959  * Check whether entry @e occurs in any of the locks_after or locks_before
960  * lists.
961  */
962 static bool in_any_class_list(struct list_head *e)
963 {
964 	struct lock_class *class;
965 	int i;
966 
967 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
968 		class = &lock_classes[i];
969 		if (in_list(e, &class->locks_after) ||
970 		    in_list(e, &class->locks_before))
971 			return true;
972 	}
973 	return false;
974 }
975 
976 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
977 {
978 	struct lock_list *e;
979 
980 	list_for_each_entry(e, h, entry) {
981 		if (e->links_to != c) {
982 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
983 			       c->name ? : "(?)",
984 			       (unsigned long)(e - list_entries),
985 			       e->links_to && e->links_to->name ?
986 			       e->links_to->name : "(?)",
987 			       e->class && e->class->name ? e->class->name :
988 			       "(?)");
989 			return false;
990 		}
991 	}
992 	return true;
993 }
994 
995 #ifdef CONFIG_PROVE_LOCKING
996 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
997 #endif
998 
999 static bool check_lock_chain_key(struct lock_chain *chain)
1000 {
1001 #ifdef CONFIG_PROVE_LOCKING
1002 	u64 chain_key = INITIAL_CHAIN_KEY;
1003 	int i;
1004 
1005 	for (i = chain->base; i < chain->base + chain->depth; i++)
1006 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1007 	/*
1008 	 * The 'unsigned long long' casts avoid that a compiler warning
1009 	 * is reported when building tools/lib/lockdep.
1010 	 */
1011 	if (chain->chain_key != chain_key) {
1012 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1013 		       (unsigned long long)(chain - lock_chains),
1014 		       (unsigned long long)chain->chain_key,
1015 		       (unsigned long long)chain_key);
1016 		return false;
1017 	}
1018 #endif
1019 	return true;
1020 }
1021 
1022 static bool in_any_zapped_class_list(struct lock_class *class)
1023 {
1024 	struct pending_free *pf;
1025 	int i;
1026 
1027 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1028 		if (in_list(&class->lock_entry, &pf->zapped))
1029 			return true;
1030 	}
1031 
1032 	return false;
1033 }
1034 
1035 static bool __check_data_structures(void)
1036 {
1037 	struct lock_class *class;
1038 	struct lock_chain *chain;
1039 	struct hlist_head *head;
1040 	struct lock_list *e;
1041 	int i;
1042 
1043 	/* Check whether all classes occur in a lock list. */
1044 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1045 		class = &lock_classes[i];
1046 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1047 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1048 		    !in_any_zapped_class_list(class)) {
1049 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1050 			       class, class->name ? : "(?)");
1051 			return false;
1052 		}
1053 	}
1054 
1055 	/* Check whether all classes have valid lock lists. */
1056 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1057 		class = &lock_classes[i];
1058 		if (!class_lock_list_valid(class, &class->locks_before))
1059 			return false;
1060 		if (!class_lock_list_valid(class, &class->locks_after))
1061 			return false;
1062 	}
1063 
1064 	/* Check the chain_key of all lock chains. */
1065 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1066 		head = chainhash_table + i;
1067 		hlist_for_each_entry_rcu(chain, head, entry) {
1068 			if (!check_lock_chain_key(chain))
1069 				return false;
1070 		}
1071 	}
1072 
1073 	/*
1074 	 * Check whether all list entries that are in use occur in a class
1075 	 * lock list.
1076 	 */
1077 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1078 		e = list_entries + i;
1079 		if (!in_any_class_list(&e->entry)) {
1080 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1081 			       (unsigned int)(e - list_entries),
1082 			       e->class->name ? : "(?)",
1083 			       e->links_to->name ? : "(?)");
1084 			return false;
1085 		}
1086 	}
1087 
1088 	/*
1089 	 * Check whether all list entries that are not in use do not occur in
1090 	 * a class lock list.
1091 	 */
1092 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1093 		e = list_entries + i;
1094 		if (in_any_class_list(&e->entry)) {
1095 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1096 			       (unsigned int)(e - list_entries),
1097 			       e->class && e->class->name ? e->class->name :
1098 			       "(?)",
1099 			       e->links_to && e->links_to->name ?
1100 			       e->links_to->name : "(?)");
1101 			return false;
1102 		}
1103 	}
1104 
1105 	return true;
1106 }
1107 
1108 int check_consistency = 0;
1109 module_param(check_consistency, int, 0644);
1110 
1111 static void check_data_structures(void)
1112 {
1113 	static bool once = false;
1114 
1115 	if (check_consistency && !once) {
1116 		if (!__check_data_structures()) {
1117 			once = true;
1118 			WARN_ON(once);
1119 		}
1120 	}
1121 }
1122 
1123 #else /* CONFIG_DEBUG_LOCKDEP */
1124 
1125 static inline void check_data_structures(void) { }
1126 
1127 #endif /* CONFIG_DEBUG_LOCKDEP */
1128 
1129 static void init_chain_block_buckets(void);
1130 
1131 /*
1132  * Initialize the lock_classes[] array elements, the free_lock_classes list
1133  * and also the delayed_free structure.
1134  */
1135 static void init_data_structures_once(void)
1136 {
1137 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1138 	int i;
1139 
1140 	if (likely(rcu_head_initialized))
1141 		return;
1142 
1143 	if (system_state >= SYSTEM_SCHEDULING) {
1144 		init_rcu_head(&delayed_free.rcu_head);
1145 		rcu_head_initialized = true;
1146 	}
1147 
1148 	if (ds_initialized)
1149 		return;
1150 
1151 	ds_initialized = true;
1152 
1153 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1154 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1155 
1156 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1157 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1158 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1159 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1160 	}
1161 	init_chain_block_buckets();
1162 }
1163 
1164 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1165 {
1166 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1167 
1168 	return lock_keys_hash + hash;
1169 }
1170 
1171 /* Register a dynamically allocated key. */
1172 void lockdep_register_key(struct lock_class_key *key)
1173 {
1174 	struct hlist_head *hash_head;
1175 	struct lock_class_key *k;
1176 	unsigned long flags;
1177 
1178 	if (WARN_ON_ONCE(static_obj(key)))
1179 		return;
1180 	hash_head = keyhashentry(key);
1181 
1182 	raw_local_irq_save(flags);
1183 	if (!graph_lock())
1184 		goto restore_irqs;
1185 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1186 		if (WARN_ON_ONCE(k == key))
1187 			goto out_unlock;
1188 	}
1189 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1190 out_unlock:
1191 	graph_unlock();
1192 restore_irqs:
1193 	raw_local_irq_restore(flags);
1194 }
1195 EXPORT_SYMBOL_GPL(lockdep_register_key);
1196 
1197 /* Check whether a key has been registered as a dynamic key. */
1198 static bool is_dynamic_key(const struct lock_class_key *key)
1199 {
1200 	struct hlist_head *hash_head;
1201 	struct lock_class_key *k;
1202 	bool found = false;
1203 
1204 	if (WARN_ON_ONCE(static_obj(key)))
1205 		return false;
1206 
1207 	/*
1208 	 * If lock debugging is disabled lock_keys_hash[] may contain
1209 	 * pointers to memory that has already been freed. Avoid triggering
1210 	 * a use-after-free in that case by returning early.
1211 	 */
1212 	if (!debug_locks)
1213 		return true;
1214 
1215 	hash_head = keyhashentry(key);
1216 
1217 	rcu_read_lock();
1218 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1219 		if (k == key) {
1220 			found = true;
1221 			break;
1222 		}
1223 	}
1224 	rcu_read_unlock();
1225 
1226 	return found;
1227 }
1228 
1229 /*
1230  * Register a lock's class in the hash-table, if the class is not present
1231  * yet. Otherwise we look it up. We cache the result in the lock object
1232  * itself, so actual lookup of the hash should be once per lock object.
1233  */
1234 static struct lock_class *
1235 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1236 {
1237 	struct lockdep_subclass_key *key;
1238 	struct hlist_head *hash_head;
1239 	struct lock_class *class;
1240 
1241 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1242 
1243 	class = look_up_lock_class(lock, subclass);
1244 	if (likely(class))
1245 		goto out_set_class_cache;
1246 
1247 	if (!lock->key) {
1248 		if (!assign_lock_key(lock))
1249 			return NULL;
1250 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1251 		return NULL;
1252 	}
1253 
1254 	key = lock->key->subkeys + subclass;
1255 	hash_head = classhashentry(key);
1256 
1257 	if (!graph_lock()) {
1258 		return NULL;
1259 	}
1260 	/*
1261 	 * We have to do the hash-walk again, to avoid races
1262 	 * with another CPU:
1263 	 */
1264 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1265 		if (class->key == key)
1266 			goto out_unlock_set;
1267 	}
1268 
1269 	init_data_structures_once();
1270 
1271 	/* Allocate a new lock class and add it to the hash. */
1272 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1273 					 lock_entry);
1274 	if (!class) {
1275 		if (!debug_locks_off_graph_unlock()) {
1276 			return NULL;
1277 		}
1278 
1279 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1280 		dump_stack();
1281 		return NULL;
1282 	}
1283 	nr_lock_classes++;
1284 	__set_bit(class - lock_classes, lock_classes_in_use);
1285 	debug_atomic_inc(nr_unused_locks);
1286 	class->key = key;
1287 	class->name = lock->name;
1288 	class->subclass = subclass;
1289 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1290 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1291 	class->name_version = count_matching_names(class);
1292 	class->wait_type_inner = lock->wait_type_inner;
1293 	class->wait_type_outer = lock->wait_type_outer;
1294 	class->lock_type = lock->lock_type;
1295 	/*
1296 	 * We use RCU's safe list-add method to make
1297 	 * parallel walking of the hash-list safe:
1298 	 */
1299 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1300 	/*
1301 	 * Remove the class from the free list and add it to the global list
1302 	 * of classes.
1303 	 */
1304 	list_move_tail(&class->lock_entry, &all_lock_classes);
1305 
1306 	if (verbose(class)) {
1307 		graph_unlock();
1308 
1309 		printk("\nnew class %px: %s", class->key, class->name);
1310 		if (class->name_version > 1)
1311 			printk(KERN_CONT "#%d", class->name_version);
1312 		printk(KERN_CONT "\n");
1313 		dump_stack();
1314 
1315 		if (!graph_lock()) {
1316 			return NULL;
1317 		}
1318 	}
1319 out_unlock_set:
1320 	graph_unlock();
1321 
1322 out_set_class_cache:
1323 	if (!subclass || force)
1324 		lock->class_cache[0] = class;
1325 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1326 		lock->class_cache[subclass] = class;
1327 
1328 	/*
1329 	 * Hash collision, did we smoke some? We found a class with a matching
1330 	 * hash but the subclass -- which is hashed in -- didn't match.
1331 	 */
1332 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1333 		return NULL;
1334 
1335 	return class;
1336 }
1337 
1338 #ifdef CONFIG_PROVE_LOCKING
1339 /*
1340  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1341  * with NULL on failure)
1342  */
1343 static struct lock_list *alloc_list_entry(void)
1344 {
1345 	int idx = find_first_zero_bit(list_entries_in_use,
1346 				      ARRAY_SIZE(list_entries));
1347 
1348 	if (idx >= ARRAY_SIZE(list_entries)) {
1349 		if (!debug_locks_off_graph_unlock())
1350 			return NULL;
1351 
1352 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1353 		dump_stack();
1354 		return NULL;
1355 	}
1356 	nr_list_entries++;
1357 	__set_bit(idx, list_entries_in_use);
1358 	return list_entries + idx;
1359 }
1360 
1361 /*
1362  * Add a new dependency to the head of the list:
1363  */
1364 static int add_lock_to_list(struct lock_class *this,
1365 			    struct lock_class *links_to, struct list_head *head,
1366 			    unsigned long ip, u16 distance, u8 dep,
1367 			    const struct lock_trace *trace)
1368 {
1369 	struct lock_list *entry;
1370 	/*
1371 	 * Lock not present yet - get a new dependency struct and
1372 	 * add it to the list:
1373 	 */
1374 	entry = alloc_list_entry();
1375 	if (!entry)
1376 		return 0;
1377 
1378 	entry->class = this;
1379 	entry->links_to = links_to;
1380 	entry->dep = dep;
1381 	entry->distance = distance;
1382 	entry->trace = trace;
1383 	/*
1384 	 * Both allocation and removal are done under the graph lock; but
1385 	 * iteration is under RCU-sched; see look_up_lock_class() and
1386 	 * lockdep_free_key_range().
1387 	 */
1388 	list_add_tail_rcu(&entry->entry, head);
1389 
1390 	return 1;
1391 }
1392 
1393 /*
1394  * For good efficiency of modular, we use power of 2
1395  */
1396 #define MAX_CIRCULAR_QUEUE_SIZE		4096UL
1397 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1398 
1399 /*
1400  * The circular_queue and helpers are used to implement graph
1401  * breadth-first search (BFS) algorithm, by which we can determine
1402  * whether there is a path from a lock to another. In deadlock checks,
1403  * a path from the next lock to be acquired to a previous held lock
1404  * indicates that adding the <prev> -> <next> lock dependency will
1405  * produce a circle in the graph. Breadth-first search instead of
1406  * depth-first search is used in order to find the shortest (circular)
1407  * path.
1408  */
1409 struct circular_queue {
1410 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1411 	unsigned int  front, rear;
1412 };
1413 
1414 static struct circular_queue lock_cq;
1415 
1416 unsigned int max_bfs_queue_depth;
1417 
1418 static unsigned int lockdep_dependency_gen_id;
1419 
1420 static inline void __cq_init(struct circular_queue *cq)
1421 {
1422 	cq->front = cq->rear = 0;
1423 	lockdep_dependency_gen_id++;
1424 }
1425 
1426 static inline int __cq_empty(struct circular_queue *cq)
1427 {
1428 	return (cq->front == cq->rear);
1429 }
1430 
1431 static inline int __cq_full(struct circular_queue *cq)
1432 {
1433 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1434 }
1435 
1436 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1437 {
1438 	if (__cq_full(cq))
1439 		return -1;
1440 
1441 	cq->element[cq->rear] = elem;
1442 	cq->rear = (cq->rear + 1) & CQ_MASK;
1443 	return 0;
1444 }
1445 
1446 /*
1447  * Dequeue an element from the circular_queue, return a lock_list if
1448  * the queue is not empty, or NULL if otherwise.
1449  */
1450 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1451 {
1452 	struct lock_list * lock;
1453 
1454 	if (__cq_empty(cq))
1455 		return NULL;
1456 
1457 	lock = cq->element[cq->front];
1458 	cq->front = (cq->front + 1) & CQ_MASK;
1459 
1460 	return lock;
1461 }
1462 
1463 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1464 {
1465 	return (cq->rear - cq->front) & CQ_MASK;
1466 }
1467 
1468 static inline void mark_lock_accessed(struct lock_list *lock)
1469 {
1470 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1471 }
1472 
1473 static inline void visit_lock_entry(struct lock_list *lock,
1474 				    struct lock_list *parent)
1475 {
1476 	lock->parent = parent;
1477 }
1478 
1479 static inline unsigned long lock_accessed(struct lock_list *lock)
1480 {
1481 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1482 }
1483 
1484 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1485 {
1486 	return child->parent;
1487 }
1488 
1489 static inline int get_lock_depth(struct lock_list *child)
1490 {
1491 	int depth = 0;
1492 	struct lock_list *parent;
1493 
1494 	while ((parent = get_lock_parent(child))) {
1495 		child = parent;
1496 		depth++;
1497 	}
1498 	return depth;
1499 }
1500 
1501 /*
1502  * Return the forward or backward dependency list.
1503  *
1504  * @lock:   the lock_list to get its class's dependency list
1505  * @offset: the offset to struct lock_class to determine whether it is
1506  *          locks_after or locks_before
1507  */
1508 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1509 {
1510 	void *lock_class = lock->class;
1511 
1512 	return lock_class + offset;
1513 }
1514 /*
1515  * Return values of a bfs search:
1516  *
1517  * BFS_E* indicates an error
1518  * BFS_R* indicates a result (match or not)
1519  *
1520  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1521  *
1522  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1523  *
1524  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1525  *             *@target_entry.
1526  *
1527  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1528  *               _unchanged_.
1529  */
1530 enum bfs_result {
1531 	BFS_EINVALIDNODE = -2,
1532 	BFS_EQUEUEFULL = -1,
1533 	BFS_RMATCH = 0,
1534 	BFS_RNOMATCH = 1,
1535 };
1536 
1537 /*
1538  * bfs_result < 0 means error
1539  */
1540 static inline bool bfs_error(enum bfs_result res)
1541 {
1542 	return res < 0;
1543 }
1544 
1545 /*
1546  * DEP_*_BIT in lock_list::dep
1547  *
1548  * For dependency @prev -> @next:
1549  *
1550  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1551  *       (->read == 2)
1552  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1553  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1554  *   EN: @prev is exclusive locker and @next is non-recursive locker
1555  *
1556  * Note that we define the value of DEP_*_BITs so that:
1557  *   bit0 is prev->read == 0
1558  *   bit1 is next->read != 2
1559  */
1560 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1561 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1562 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1563 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1564 
1565 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1566 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1567 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1568 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1569 
1570 static inline unsigned int
1571 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1572 {
1573 	return (prev->read == 0) + ((next->read != 2) << 1);
1574 }
1575 
1576 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1577 {
1578 	return 1U << __calc_dep_bit(prev, next);
1579 }
1580 
1581 /*
1582  * calculate the dep_bit for backwards edges. We care about whether @prev is
1583  * shared and whether @next is recursive.
1584  */
1585 static inline unsigned int
1586 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1587 {
1588 	return (next->read != 2) + ((prev->read == 0) << 1);
1589 }
1590 
1591 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1592 {
1593 	return 1U << __calc_dep_bitb(prev, next);
1594 }
1595 
1596 /*
1597  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1598  * search.
1599  */
1600 static inline void __bfs_init_root(struct lock_list *lock,
1601 				   struct lock_class *class)
1602 {
1603 	lock->class = class;
1604 	lock->parent = NULL;
1605 	lock->only_xr = 0;
1606 }
1607 
1608 /*
1609  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1610  * root for a BFS search.
1611  *
1612  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1613  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1614  * and -(S*)->.
1615  */
1616 static inline void bfs_init_root(struct lock_list *lock,
1617 				 struct held_lock *hlock)
1618 {
1619 	__bfs_init_root(lock, hlock_class(hlock));
1620 	lock->only_xr = (hlock->read == 2);
1621 }
1622 
1623 /*
1624  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1625  *
1626  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1627  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1628  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1629  */
1630 static inline void bfs_init_rootb(struct lock_list *lock,
1631 				  struct held_lock *hlock)
1632 {
1633 	__bfs_init_root(lock, hlock_class(hlock));
1634 	lock->only_xr = (hlock->read != 0);
1635 }
1636 
1637 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1638 {
1639 	if (!lock || !lock->parent)
1640 		return NULL;
1641 
1642 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1643 				     &lock->entry, struct lock_list, entry);
1644 }
1645 
1646 /*
1647  * Breadth-First Search to find a strong path in the dependency graph.
1648  *
1649  * @source_entry: the source of the path we are searching for.
1650  * @data: data used for the second parameter of @match function
1651  * @match: match function for the search
1652  * @target_entry: pointer to the target of a matched path
1653  * @offset: the offset to struct lock_class to determine whether it is
1654  *          locks_after or locks_before
1655  *
1656  * We may have multiple edges (considering different kinds of dependencies,
1657  * e.g. ER and SN) between two nodes in the dependency graph. But
1658  * only the strong dependency path in the graph is relevant to deadlocks. A
1659  * strong dependency path is a dependency path that doesn't have two adjacent
1660  * dependencies as -(*R)-> -(S*)->, please see:
1661  *
1662  *         Documentation/locking/lockdep-design.rst
1663  *
1664  * for more explanation of the definition of strong dependency paths
1665  *
1666  * In __bfs(), we only traverse in the strong dependency path:
1667  *
1668  *     In lock_list::only_xr, we record whether the previous dependency only
1669  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1670  *     filter out any -(S*)-> in the current dependency and after that, the
1671  *     ->only_xr is set according to whether we only have -(*R)-> left.
1672  */
1673 static enum bfs_result __bfs(struct lock_list *source_entry,
1674 			     void *data,
1675 			     bool (*match)(struct lock_list *entry, void *data),
1676 			     bool (*skip)(struct lock_list *entry, void *data),
1677 			     struct lock_list **target_entry,
1678 			     int offset)
1679 {
1680 	struct circular_queue *cq = &lock_cq;
1681 	struct lock_list *lock = NULL;
1682 	struct lock_list *entry;
1683 	struct list_head *head;
1684 	unsigned int cq_depth;
1685 	bool first;
1686 
1687 	lockdep_assert_locked();
1688 
1689 	__cq_init(cq);
1690 	__cq_enqueue(cq, source_entry);
1691 
1692 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1693 		if (!lock->class)
1694 			return BFS_EINVALIDNODE;
1695 
1696 		/*
1697 		 * Step 1: check whether we already finish on this one.
1698 		 *
1699 		 * If we have visited all the dependencies from this @lock to
1700 		 * others (iow, if we have visited all lock_list entries in
1701 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1702 		 * and visit all the dependencies in the list and mark this
1703 		 * list accessed.
1704 		 */
1705 		if (lock_accessed(lock))
1706 			continue;
1707 		else
1708 			mark_lock_accessed(lock);
1709 
1710 		/*
1711 		 * Step 2: check whether prev dependency and this form a strong
1712 		 *         dependency path.
1713 		 */
1714 		if (lock->parent) { /* Parent exists, check prev dependency */
1715 			u8 dep = lock->dep;
1716 			bool prev_only_xr = lock->parent->only_xr;
1717 
1718 			/*
1719 			 * Mask out all -(S*)-> if we only have *R in previous
1720 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1721 			 * dependency.
1722 			 */
1723 			if (prev_only_xr)
1724 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1725 
1726 			/* If nothing left, we skip */
1727 			if (!dep)
1728 				continue;
1729 
1730 			/* If there are only -(*R)-> left, set that for the next step */
1731 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1732 		}
1733 
1734 		/*
1735 		 * Step 3: we haven't visited this and there is a strong
1736 		 *         dependency path to this, so check with @match.
1737 		 *         If @skip is provide and returns true, we skip this
1738 		 *         lock (and any path this lock is in).
1739 		 */
1740 		if (skip && skip(lock, data))
1741 			continue;
1742 
1743 		if (match(lock, data)) {
1744 			*target_entry = lock;
1745 			return BFS_RMATCH;
1746 		}
1747 
1748 		/*
1749 		 * Step 4: if not match, expand the path by adding the
1750 		 *         forward or backwards dependencis in the search
1751 		 *
1752 		 */
1753 		first = true;
1754 		head = get_dep_list(lock, offset);
1755 		list_for_each_entry_rcu(entry, head, entry) {
1756 			visit_lock_entry(entry, lock);
1757 
1758 			/*
1759 			 * Note we only enqueue the first of the list into the
1760 			 * queue, because we can always find a sibling
1761 			 * dependency from one (see __bfs_next()), as a result
1762 			 * the space of queue is saved.
1763 			 */
1764 			if (!first)
1765 				continue;
1766 
1767 			first = false;
1768 
1769 			if (__cq_enqueue(cq, entry))
1770 				return BFS_EQUEUEFULL;
1771 
1772 			cq_depth = __cq_get_elem_count(cq);
1773 			if (max_bfs_queue_depth < cq_depth)
1774 				max_bfs_queue_depth = cq_depth;
1775 		}
1776 	}
1777 
1778 	return BFS_RNOMATCH;
1779 }
1780 
1781 static inline enum bfs_result
1782 __bfs_forwards(struct lock_list *src_entry,
1783 	       void *data,
1784 	       bool (*match)(struct lock_list *entry, void *data),
1785 	       bool (*skip)(struct lock_list *entry, void *data),
1786 	       struct lock_list **target_entry)
1787 {
1788 	return __bfs(src_entry, data, match, skip, target_entry,
1789 		     offsetof(struct lock_class, locks_after));
1790 
1791 }
1792 
1793 static inline enum bfs_result
1794 __bfs_backwards(struct lock_list *src_entry,
1795 		void *data,
1796 		bool (*match)(struct lock_list *entry, void *data),
1797 	       bool (*skip)(struct lock_list *entry, void *data),
1798 		struct lock_list **target_entry)
1799 {
1800 	return __bfs(src_entry, data, match, skip, target_entry,
1801 		     offsetof(struct lock_class, locks_before));
1802 
1803 }
1804 
1805 static void print_lock_trace(const struct lock_trace *trace,
1806 			     unsigned int spaces)
1807 {
1808 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1809 }
1810 
1811 /*
1812  * Print a dependency chain entry (this is only done when a deadlock
1813  * has been detected):
1814  */
1815 static noinline void
1816 print_circular_bug_entry(struct lock_list *target, int depth)
1817 {
1818 	if (debug_locks_silent)
1819 		return;
1820 	printk("\n-> #%u", depth);
1821 	print_lock_name(target->class);
1822 	printk(KERN_CONT ":\n");
1823 	print_lock_trace(target->trace, 6);
1824 }
1825 
1826 static void
1827 print_circular_lock_scenario(struct held_lock *src,
1828 			     struct held_lock *tgt,
1829 			     struct lock_list *prt)
1830 {
1831 	struct lock_class *source = hlock_class(src);
1832 	struct lock_class *target = hlock_class(tgt);
1833 	struct lock_class *parent = prt->class;
1834 
1835 	/*
1836 	 * A direct locking problem where unsafe_class lock is taken
1837 	 * directly by safe_class lock, then all we need to show
1838 	 * is the deadlock scenario, as it is obvious that the
1839 	 * unsafe lock is taken under the safe lock.
1840 	 *
1841 	 * But if there is a chain instead, where the safe lock takes
1842 	 * an intermediate lock (middle_class) where this lock is
1843 	 * not the same as the safe lock, then the lock chain is
1844 	 * used to describe the problem. Otherwise we would need
1845 	 * to show a different CPU case for each link in the chain
1846 	 * from the safe_class lock to the unsafe_class lock.
1847 	 */
1848 	if (parent != source) {
1849 		printk("Chain exists of:\n  ");
1850 		__print_lock_name(source);
1851 		printk(KERN_CONT " --> ");
1852 		__print_lock_name(parent);
1853 		printk(KERN_CONT " --> ");
1854 		__print_lock_name(target);
1855 		printk(KERN_CONT "\n\n");
1856 	}
1857 
1858 	printk(" Possible unsafe locking scenario:\n\n");
1859 	printk("       CPU0                    CPU1\n");
1860 	printk("       ----                    ----\n");
1861 	printk("  lock(");
1862 	__print_lock_name(target);
1863 	printk(KERN_CONT ");\n");
1864 	printk("                               lock(");
1865 	__print_lock_name(parent);
1866 	printk(KERN_CONT ");\n");
1867 	printk("                               lock(");
1868 	__print_lock_name(target);
1869 	printk(KERN_CONT ");\n");
1870 	printk("  lock(");
1871 	__print_lock_name(source);
1872 	printk(KERN_CONT ");\n");
1873 	printk("\n *** DEADLOCK ***\n\n");
1874 }
1875 
1876 /*
1877  * When a circular dependency is detected, print the
1878  * header first:
1879  */
1880 static noinline void
1881 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1882 			struct held_lock *check_src,
1883 			struct held_lock *check_tgt)
1884 {
1885 	struct task_struct *curr = current;
1886 
1887 	if (debug_locks_silent)
1888 		return;
1889 
1890 	pr_warn("\n");
1891 	pr_warn("======================================================\n");
1892 	pr_warn("WARNING: possible circular locking dependency detected\n");
1893 	print_kernel_ident();
1894 	pr_warn("------------------------------------------------------\n");
1895 	pr_warn("%s/%d is trying to acquire lock:\n",
1896 		curr->comm, task_pid_nr(curr));
1897 	print_lock(check_src);
1898 
1899 	pr_warn("\nbut task is already holding lock:\n");
1900 
1901 	print_lock(check_tgt);
1902 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1903 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1904 
1905 	print_circular_bug_entry(entry, depth);
1906 }
1907 
1908 /*
1909  * We are about to add A -> B into the dependency graph, and in __bfs() a
1910  * strong dependency path A -> .. -> B is found: hlock_class equals
1911  * entry->class.
1912  *
1913  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1914  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1915  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1916  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1917  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1918  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1919  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1920  *
1921  * We need to make sure both the start and the end of A -> .. -> B is not
1922  * weaker than A -> B. For the start part, please see the comment in
1923  * check_redundant(). For the end part, we need:
1924  *
1925  * Either
1926  *
1927  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1928  *
1929  * or
1930  *
1931  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1932  *
1933  */
1934 static inline bool hlock_equal(struct lock_list *entry, void *data)
1935 {
1936 	struct held_lock *hlock = (struct held_lock *)data;
1937 
1938 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1939 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1940 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1941 }
1942 
1943 /*
1944  * We are about to add B -> A into the dependency graph, and in __bfs() a
1945  * strong dependency path A -> .. -> B is found: hlock_class equals
1946  * entry->class.
1947  *
1948  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1949  * dependency cycle, that means:
1950  *
1951  * Either
1952  *
1953  *     a) B -> A is -(E*)->
1954  *
1955  * or
1956  *
1957  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1958  *
1959  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1960  */
1961 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1962 {
1963 	struct held_lock *hlock = (struct held_lock *)data;
1964 
1965 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1966 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1967 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1968 }
1969 
1970 static noinline void print_circular_bug(struct lock_list *this,
1971 				struct lock_list *target,
1972 				struct held_lock *check_src,
1973 				struct held_lock *check_tgt)
1974 {
1975 	struct task_struct *curr = current;
1976 	struct lock_list *parent;
1977 	struct lock_list *first_parent;
1978 	int depth;
1979 
1980 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1981 		return;
1982 
1983 	this->trace = save_trace();
1984 	if (!this->trace)
1985 		return;
1986 
1987 	depth = get_lock_depth(target);
1988 
1989 	print_circular_bug_header(target, depth, check_src, check_tgt);
1990 
1991 	parent = get_lock_parent(target);
1992 	first_parent = parent;
1993 
1994 	while (parent) {
1995 		print_circular_bug_entry(parent, --depth);
1996 		parent = get_lock_parent(parent);
1997 	}
1998 
1999 	printk("\nother info that might help us debug this:\n\n");
2000 	print_circular_lock_scenario(check_src, check_tgt,
2001 				     first_parent);
2002 
2003 	lockdep_print_held_locks(curr);
2004 
2005 	printk("\nstack backtrace:\n");
2006 	dump_stack();
2007 }
2008 
2009 static noinline void print_bfs_bug(int ret)
2010 {
2011 	if (!debug_locks_off_graph_unlock())
2012 		return;
2013 
2014 	/*
2015 	 * Breadth-first-search failed, graph got corrupted?
2016 	 */
2017 	WARN(1, "lockdep bfs error:%d\n", ret);
2018 }
2019 
2020 static bool noop_count(struct lock_list *entry, void *data)
2021 {
2022 	(*(unsigned long *)data)++;
2023 	return false;
2024 }
2025 
2026 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2027 {
2028 	unsigned long  count = 0;
2029 	struct lock_list *target_entry;
2030 
2031 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2032 
2033 	return count;
2034 }
2035 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2036 {
2037 	unsigned long ret, flags;
2038 	struct lock_list this;
2039 
2040 	__bfs_init_root(&this, class);
2041 
2042 	raw_local_irq_save(flags);
2043 	lockdep_lock();
2044 	ret = __lockdep_count_forward_deps(&this);
2045 	lockdep_unlock();
2046 	raw_local_irq_restore(flags);
2047 
2048 	return ret;
2049 }
2050 
2051 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2052 {
2053 	unsigned long  count = 0;
2054 	struct lock_list *target_entry;
2055 
2056 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2057 
2058 	return count;
2059 }
2060 
2061 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2062 {
2063 	unsigned long ret, flags;
2064 	struct lock_list this;
2065 
2066 	__bfs_init_root(&this, class);
2067 
2068 	raw_local_irq_save(flags);
2069 	lockdep_lock();
2070 	ret = __lockdep_count_backward_deps(&this);
2071 	lockdep_unlock();
2072 	raw_local_irq_restore(flags);
2073 
2074 	return ret;
2075 }
2076 
2077 /*
2078  * Check that the dependency graph starting at <src> can lead to
2079  * <target> or not.
2080  */
2081 static noinline enum bfs_result
2082 check_path(struct held_lock *target, struct lock_list *src_entry,
2083 	   bool (*match)(struct lock_list *entry, void *data),
2084 	   bool (*skip)(struct lock_list *entry, void *data),
2085 	   struct lock_list **target_entry)
2086 {
2087 	enum bfs_result ret;
2088 
2089 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2090 
2091 	if (unlikely(bfs_error(ret)))
2092 		print_bfs_bug(ret);
2093 
2094 	return ret;
2095 }
2096 
2097 /*
2098  * Prove that the dependency graph starting at <src> can not
2099  * lead to <target>. If it can, there is a circle when adding
2100  * <target> -> <src> dependency.
2101  *
2102  * Print an error and return BFS_RMATCH if it does.
2103  */
2104 static noinline enum bfs_result
2105 check_noncircular(struct held_lock *src, struct held_lock *target,
2106 		  struct lock_trace **const trace)
2107 {
2108 	enum bfs_result ret;
2109 	struct lock_list *target_entry;
2110 	struct lock_list src_entry;
2111 
2112 	bfs_init_root(&src_entry, src);
2113 
2114 	debug_atomic_inc(nr_cyclic_checks);
2115 
2116 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2117 
2118 	if (unlikely(ret == BFS_RMATCH)) {
2119 		if (!*trace) {
2120 			/*
2121 			 * If save_trace fails here, the printing might
2122 			 * trigger a WARN but because of the !nr_entries it
2123 			 * should not do bad things.
2124 			 */
2125 			*trace = save_trace();
2126 		}
2127 
2128 		print_circular_bug(&src_entry, target_entry, src, target);
2129 	}
2130 
2131 	return ret;
2132 }
2133 
2134 #ifdef CONFIG_TRACE_IRQFLAGS
2135 
2136 /*
2137  * Forwards and backwards subgraph searching, for the purposes of
2138  * proving that two subgraphs can be connected by a new dependency
2139  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2140  *
2141  * A irq safe->unsafe deadlock happens with the following conditions:
2142  *
2143  * 1) We have a strong dependency path A -> ... -> B
2144  *
2145  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2146  *    irq can create a new dependency B -> A (consider the case that a holder
2147  *    of B gets interrupted by an irq whose handler will try to acquire A).
2148  *
2149  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2150  *    strong circle:
2151  *
2152  *      For the usage bits of B:
2153  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2154  *           ENABLED_IRQ usage suffices.
2155  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2156  *           ENABLED_IRQ_*_READ usage suffices.
2157  *
2158  *      For the usage bits of A:
2159  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2160  *           USED_IN_IRQ usage suffices.
2161  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2162  *           USED_IN_IRQ_*_READ usage suffices.
2163  */
2164 
2165 /*
2166  * There is a strong dependency path in the dependency graph: A -> B, and now
2167  * we need to decide which usage bit of A should be accumulated to detect
2168  * safe->unsafe bugs.
2169  *
2170  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2171  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2172  *
2173  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2174  * path, any usage of A should be considered. Otherwise, we should only
2175  * consider _READ usage.
2176  */
2177 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2178 {
2179 	if (!entry->only_xr)
2180 		*(unsigned long *)mask |= entry->class->usage_mask;
2181 	else /* Mask out _READ usage bits */
2182 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2183 
2184 	return false;
2185 }
2186 
2187 /*
2188  * There is a strong dependency path in the dependency graph: A -> B, and now
2189  * we need to decide which usage bit of B conflicts with the usage bits of A,
2190  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2191  *
2192  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2193  * path, any usage of B should be considered. Otherwise, we should only
2194  * consider _READ usage.
2195  */
2196 static inline bool usage_match(struct lock_list *entry, void *mask)
2197 {
2198 	if (!entry->only_xr)
2199 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2200 	else /* Mask out _READ usage bits */
2201 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2202 }
2203 
2204 static inline bool usage_skip(struct lock_list *entry, void *mask)
2205 {
2206 	/*
2207 	 * Skip local_lock() for irq inversion detection.
2208 	 *
2209 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2210 	 * dependency.
2211 	 *
2212 	 * For RT, an irq inversion happens when we have lock A and B, and on
2213 	 * some CPU we can have:
2214 	 *
2215 	 *	lock(A);
2216 	 *	<interrupted>
2217 	 *	  lock(B);
2218 	 *
2219 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2220 	 *
2221 	 * Now we prove local_lock() cannot exist in that dependency. First we
2222 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2223 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2224 	 * wait context check will complain. And since B is not a sleep lock,
2225 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2226 	 * local_lock() is 3, which is greater than 2, therefore there is no
2227 	 * way the local_lock() exists in the dependency B -> ... -> A.
2228 	 *
2229 	 * As a result, we will skip local_lock(), when we search for irq
2230 	 * inversion bugs.
2231 	 */
2232 	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2233 		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2234 			return false;
2235 
2236 		return true;
2237 	}
2238 
2239 	return false;
2240 }
2241 
2242 /*
2243  * Find a node in the forwards-direction dependency sub-graph starting
2244  * at @root->class that matches @bit.
2245  *
2246  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2247  * into *@target_entry.
2248  */
2249 static enum bfs_result
2250 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2251 			struct lock_list **target_entry)
2252 {
2253 	enum bfs_result result;
2254 
2255 	debug_atomic_inc(nr_find_usage_forwards_checks);
2256 
2257 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2258 
2259 	return result;
2260 }
2261 
2262 /*
2263  * Find a node in the backwards-direction dependency sub-graph starting
2264  * at @root->class that matches @bit.
2265  */
2266 static enum bfs_result
2267 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2268 			struct lock_list **target_entry)
2269 {
2270 	enum bfs_result result;
2271 
2272 	debug_atomic_inc(nr_find_usage_backwards_checks);
2273 
2274 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2275 
2276 	return result;
2277 }
2278 
2279 static void print_lock_class_header(struct lock_class *class, int depth)
2280 {
2281 	int bit;
2282 
2283 	printk("%*s->", depth, "");
2284 	print_lock_name(class);
2285 #ifdef CONFIG_DEBUG_LOCKDEP
2286 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2287 #endif
2288 	printk(KERN_CONT " {\n");
2289 
2290 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2291 		if (class->usage_mask & (1 << bit)) {
2292 			int len = depth;
2293 
2294 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2295 			len += printk(KERN_CONT " at:\n");
2296 			print_lock_trace(class->usage_traces[bit], len);
2297 		}
2298 	}
2299 	printk("%*s }\n", depth, "");
2300 
2301 	printk("%*s ... key      at: [<%px>] %pS\n",
2302 		depth, "", class->key, class->key);
2303 }
2304 
2305 /*
2306  * printk the shortest lock dependencies from @start to @end in reverse order:
2307  */
2308 static void __used
2309 print_shortest_lock_dependencies(struct lock_list *leaf,
2310 				 struct lock_list *root)
2311 {
2312 	struct lock_list *entry = leaf;
2313 	int depth;
2314 
2315 	/*compute depth from generated tree by BFS*/
2316 	depth = get_lock_depth(leaf);
2317 
2318 	do {
2319 		print_lock_class_header(entry->class, depth);
2320 		printk("%*s ... acquired at:\n", depth, "");
2321 		print_lock_trace(entry->trace, 2);
2322 		printk("\n");
2323 
2324 		if (depth == 0 && (entry != root)) {
2325 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2326 			break;
2327 		}
2328 
2329 		entry = get_lock_parent(entry);
2330 		depth--;
2331 	} while (entry && (depth >= 0));
2332 }
2333 
2334 static void
2335 print_irq_lock_scenario(struct lock_list *safe_entry,
2336 			struct lock_list *unsafe_entry,
2337 			struct lock_class *prev_class,
2338 			struct lock_class *next_class)
2339 {
2340 	struct lock_class *safe_class = safe_entry->class;
2341 	struct lock_class *unsafe_class = unsafe_entry->class;
2342 	struct lock_class *middle_class = prev_class;
2343 
2344 	if (middle_class == safe_class)
2345 		middle_class = next_class;
2346 
2347 	/*
2348 	 * A direct locking problem where unsafe_class lock is taken
2349 	 * directly by safe_class lock, then all we need to show
2350 	 * is the deadlock scenario, as it is obvious that the
2351 	 * unsafe lock is taken under the safe lock.
2352 	 *
2353 	 * But if there is a chain instead, where the safe lock takes
2354 	 * an intermediate lock (middle_class) where this lock is
2355 	 * not the same as the safe lock, then the lock chain is
2356 	 * used to describe the problem. Otherwise we would need
2357 	 * to show a different CPU case for each link in the chain
2358 	 * from the safe_class lock to the unsafe_class lock.
2359 	 */
2360 	if (middle_class != unsafe_class) {
2361 		printk("Chain exists of:\n  ");
2362 		__print_lock_name(safe_class);
2363 		printk(KERN_CONT " --> ");
2364 		__print_lock_name(middle_class);
2365 		printk(KERN_CONT " --> ");
2366 		__print_lock_name(unsafe_class);
2367 		printk(KERN_CONT "\n\n");
2368 	}
2369 
2370 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2371 	printk("       CPU0                    CPU1\n");
2372 	printk("       ----                    ----\n");
2373 	printk("  lock(");
2374 	__print_lock_name(unsafe_class);
2375 	printk(KERN_CONT ");\n");
2376 	printk("                               local_irq_disable();\n");
2377 	printk("                               lock(");
2378 	__print_lock_name(safe_class);
2379 	printk(KERN_CONT ");\n");
2380 	printk("                               lock(");
2381 	__print_lock_name(middle_class);
2382 	printk(KERN_CONT ");\n");
2383 	printk("  <Interrupt>\n");
2384 	printk("    lock(");
2385 	__print_lock_name(safe_class);
2386 	printk(KERN_CONT ");\n");
2387 	printk("\n *** DEADLOCK ***\n\n");
2388 }
2389 
2390 static void
2391 print_bad_irq_dependency(struct task_struct *curr,
2392 			 struct lock_list *prev_root,
2393 			 struct lock_list *next_root,
2394 			 struct lock_list *backwards_entry,
2395 			 struct lock_list *forwards_entry,
2396 			 struct held_lock *prev,
2397 			 struct held_lock *next,
2398 			 enum lock_usage_bit bit1,
2399 			 enum lock_usage_bit bit2,
2400 			 const char *irqclass)
2401 {
2402 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2403 		return;
2404 
2405 	pr_warn("\n");
2406 	pr_warn("=====================================================\n");
2407 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2408 		irqclass, irqclass);
2409 	print_kernel_ident();
2410 	pr_warn("-----------------------------------------------------\n");
2411 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2412 		curr->comm, task_pid_nr(curr),
2413 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2414 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2415 		lockdep_hardirqs_enabled(),
2416 		curr->softirqs_enabled);
2417 	print_lock(next);
2418 
2419 	pr_warn("\nand this task is already holding:\n");
2420 	print_lock(prev);
2421 	pr_warn("which would create a new lock dependency:\n");
2422 	print_lock_name(hlock_class(prev));
2423 	pr_cont(" ->");
2424 	print_lock_name(hlock_class(next));
2425 	pr_cont("\n");
2426 
2427 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2428 		irqclass);
2429 	print_lock_name(backwards_entry->class);
2430 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2431 
2432 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2433 
2434 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2435 	print_lock_name(forwards_entry->class);
2436 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2437 	pr_warn("...");
2438 
2439 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2440 
2441 	pr_warn("\nother info that might help us debug this:\n\n");
2442 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2443 				hlock_class(prev), hlock_class(next));
2444 
2445 	lockdep_print_held_locks(curr);
2446 
2447 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2448 	prev_root->trace = save_trace();
2449 	if (!prev_root->trace)
2450 		return;
2451 	print_shortest_lock_dependencies(backwards_entry, prev_root);
2452 
2453 	pr_warn("\nthe dependencies between the lock to be acquired");
2454 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2455 	next_root->trace = save_trace();
2456 	if (!next_root->trace)
2457 		return;
2458 	print_shortest_lock_dependencies(forwards_entry, next_root);
2459 
2460 	pr_warn("\nstack backtrace:\n");
2461 	dump_stack();
2462 }
2463 
2464 static const char *state_names[] = {
2465 #define LOCKDEP_STATE(__STATE) \
2466 	__stringify(__STATE),
2467 #include "lockdep_states.h"
2468 #undef LOCKDEP_STATE
2469 };
2470 
2471 static const char *state_rnames[] = {
2472 #define LOCKDEP_STATE(__STATE) \
2473 	__stringify(__STATE)"-READ",
2474 #include "lockdep_states.h"
2475 #undef LOCKDEP_STATE
2476 };
2477 
2478 static inline const char *state_name(enum lock_usage_bit bit)
2479 {
2480 	if (bit & LOCK_USAGE_READ_MASK)
2481 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2482 	else
2483 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2484 }
2485 
2486 /*
2487  * The bit number is encoded like:
2488  *
2489  *  bit0: 0 exclusive, 1 read lock
2490  *  bit1: 0 used in irq, 1 irq enabled
2491  *  bit2-n: state
2492  */
2493 static int exclusive_bit(int new_bit)
2494 {
2495 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2496 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2497 
2498 	/*
2499 	 * keep state, bit flip the direction and strip read.
2500 	 */
2501 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2502 }
2503 
2504 /*
2505  * Observe that when given a bitmask where each bitnr is encoded as above, a
2506  * right shift of the mask transforms the individual bitnrs as -1 and
2507  * conversely, a left shift transforms into +1 for the individual bitnrs.
2508  *
2509  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2510  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2511  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2512  *
2513  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2514  *
2515  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2516  * all bits set) and recompose with bitnr1 flipped.
2517  */
2518 static unsigned long invert_dir_mask(unsigned long mask)
2519 {
2520 	unsigned long excl = 0;
2521 
2522 	/* Invert dir */
2523 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2524 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2525 
2526 	return excl;
2527 }
2528 
2529 /*
2530  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2531  * usage may cause deadlock too, for example:
2532  *
2533  * P1				P2
2534  * <irq disabled>
2535  * write_lock(l1);		<irq enabled>
2536  *				read_lock(l2);
2537  * write_lock(l2);
2538  * 				<in irq>
2539  * 				read_lock(l1);
2540  *
2541  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2542  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2543  * deadlock.
2544  *
2545  * In fact, all of the following cases may cause deadlocks:
2546  *
2547  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2548  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2549  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2550  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2551  *
2552  * As a result, to calculate the "exclusive mask", first we invert the
2553  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2554  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2555  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2556  */
2557 static unsigned long exclusive_mask(unsigned long mask)
2558 {
2559 	unsigned long excl = invert_dir_mask(mask);
2560 
2561 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2562 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2563 
2564 	return excl;
2565 }
2566 
2567 /*
2568  * Retrieve the _possible_ original mask to which @mask is
2569  * exclusive. Ie: this is the opposite of exclusive_mask().
2570  * Note that 2 possible original bits can match an exclusive
2571  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2572  * cleared. So both are returned for each exclusive bit.
2573  */
2574 static unsigned long original_mask(unsigned long mask)
2575 {
2576 	unsigned long excl = invert_dir_mask(mask);
2577 
2578 	/* Include read in existing usages */
2579 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2580 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2581 
2582 	return excl;
2583 }
2584 
2585 /*
2586  * Find the first pair of bit match between an original
2587  * usage mask and an exclusive usage mask.
2588  */
2589 static int find_exclusive_match(unsigned long mask,
2590 				unsigned long excl_mask,
2591 				enum lock_usage_bit *bitp,
2592 				enum lock_usage_bit *excl_bitp)
2593 {
2594 	int bit, excl, excl_read;
2595 
2596 	for_each_set_bit(bit, &mask, LOCK_USED) {
2597 		/*
2598 		 * exclusive_bit() strips the read bit, however,
2599 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2600 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2601 		 */
2602 		excl = exclusive_bit(bit);
2603 		excl_read = excl | LOCK_USAGE_READ_MASK;
2604 		if (excl_mask & lock_flag(excl)) {
2605 			*bitp = bit;
2606 			*excl_bitp = excl;
2607 			return 0;
2608 		} else if (excl_mask & lock_flag(excl_read)) {
2609 			*bitp = bit;
2610 			*excl_bitp = excl_read;
2611 			return 0;
2612 		}
2613 	}
2614 	return -1;
2615 }
2616 
2617 /*
2618  * Prove that the new dependency does not connect a hardirq-safe(-read)
2619  * lock with a hardirq-unsafe lock - to achieve this we search
2620  * the backwards-subgraph starting at <prev>, and the
2621  * forwards-subgraph starting at <next>:
2622  */
2623 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2624 			   struct held_lock *next)
2625 {
2626 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2627 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2628 	struct lock_list *target_entry1;
2629 	struct lock_list *target_entry;
2630 	struct lock_list this, that;
2631 	enum bfs_result ret;
2632 
2633 	/*
2634 	 * Step 1: gather all hard/soft IRQs usages backward in an
2635 	 * accumulated usage mask.
2636 	 */
2637 	bfs_init_rootb(&this, prev);
2638 
2639 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2640 	if (bfs_error(ret)) {
2641 		print_bfs_bug(ret);
2642 		return 0;
2643 	}
2644 
2645 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2646 	if (!usage_mask)
2647 		return 1;
2648 
2649 	/*
2650 	 * Step 2: find exclusive uses forward that match the previous
2651 	 * backward accumulated mask.
2652 	 */
2653 	forward_mask = exclusive_mask(usage_mask);
2654 
2655 	bfs_init_root(&that, next);
2656 
2657 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2658 	if (bfs_error(ret)) {
2659 		print_bfs_bug(ret);
2660 		return 0;
2661 	}
2662 	if (ret == BFS_RNOMATCH)
2663 		return 1;
2664 
2665 	/*
2666 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2667 	 * list whose usage mask matches the exclusive usage mask from the
2668 	 * lock found on the forward list.
2669 	 */
2670 	backward_mask = original_mask(target_entry1->class->usage_mask);
2671 
2672 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2673 	if (bfs_error(ret)) {
2674 		print_bfs_bug(ret);
2675 		return 0;
2676 	}
2677 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2678 		return 1;
2679 
2680 	/*
2681 	 * Step 4: narrow down to a pair of incompatible usage bits
2682 	 * and report it.
2683 	 */
2684 	ret = find_exclusive_match(target_entry->class->usage_mask,
2685 				   target_entry1->class->usage_mask,
2686 				   &backward_bit, &forward_bit);
2687 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2688 		return 1;
2689 
2690 	print_bad_irq_dependency(curr, &this, &that,
2691 				 target_entry, target_entry1,
2692 				 prev, next,
2693 				 backward_bit, forward_bit,
2694 				 state_name(backward_bit));
2695 
2696 	return 0;
2697 }
2698 
2699 #else
2700 
2701 static inline int check_irq_usage(struct task_struct *curr,
2702 				  struct held_lock *prev, struct held_lock *next)
2703 {
2704 	return 1;
2705 }
2706 
2707 static inline bool usage_skip(struct lock_list *entry, void *mask)
2708 {
2709 	return false;
2710 }
2711 
2712 #endif /* CONFIG_TRACE_IRQFLAGS */
2713 
2714 #ifdef CONFIG_LOCKDEP_SMALL
2715 /*
2716  * Check that the dependency graph starting at <src> can lead to
2717  * <target> or not. If it can, <src> -> <target> dependency is already
2718  * in the graph.
2719  *
2720  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2721  * any error appears in the bfs search.
2722  */
2723 static noinline enum bfs_result
2724 check_redundant(struct held_lock *src, struct held_lock *target)
2725 {
2726 	enum bfs_result ret;
2727 	struct lock_list *target_entry;
2728 	struct lock_list src_entry;
2729 
2730 	bfs_init_root(&src_entry, src);
2731 	/*
2732 	 * Special setup for check_redundant().
2733 	 *
2734 	 * To report redundant, we need to find a strong dependency path that
2735 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2736 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2737 	 * we achieve this by setting the initial node's ->only_xr to true in
2738 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2739 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2740 	 */
2741 	src_entry.only_xr = src->read == 0;
2742 
2743 	debug_atomic_inc(nr_redundant_checks);
2744 
2745 	/*
2746 	 * Note: we skip local_lock() for redundant check, because as the
2747 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2748 	 * the same.
2749 	 */
2750 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2751 
2752 	if (ret == BFS_RMATCH)
2753 		debug_atomic_inc(nr_redundant);
2754 
2755 	return ret;
2756 }
2757 
2758 #else
2759 
2760 static inline enum bfs_result
2761 check_redundant(struct held_lock *src, struct held_lock *target)
2762 {
2763 	return BFS_RNOMATCH;
2764 }
2765 
2766 #endif
2767 
2768 static void inc_chains(int irq_context)
2769 {
2770 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2771 		nr_hardirq_chains++;
2772 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2773 		nr_softirq_chains++;
2774 	else
2775 		nr_process_chains++;
2776 }
2777 
2778 static void dec_chains(int irq_context)
2779 {
2780 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2781 		nr_hardirq_chains--;
2782 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2783 		nr_softirq_chains--;
2784 	else
2785 		nr_process_chains--;
2786 }
2787 
2788 static void
2789 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2790 {
2791 	struct lock_class *next = hlock_class(nxt);
2792 	struct lock_class *prev = hlock_class(prv);
2793 
2794 	printk(" Possible unsafe locking scenario:\n\n");
2795 	printk("       CPU0\n");
2796 	printk("       ----\n");
2797 	printk("  lock(");
2798 	__print_lock_name(prev);
2799 	printk(KERN_CONT ");\n");
2800 	printk("  lock(");
2801 	__print_lock_name(next);
2802 	printk(KERN_CONT ");\n");
2803 	printk("\n *** DEADLOCK ***\n\n");
2804 	printk(" May be due to missing lock nesting notation\n\n");
2805 }
2806 
2807 static void
2808 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2809 		   struct held_lock *next)
2810 {
2811 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2812 		return;
2813 
2814 	pr_warn("\n");
2815 	pr_warn("============================================\n");
2816 	pr_warn("WARNING: possible recursive locking detected\n");
2817 	print_kernel_ident();
2818 	pr_warn("--------------------------------------------\n");
2819 	pr_warn("%s/%d is trying to acquire lock:\n",
2820 		curr->comm, task_pid_nr(curr));
2821 	print_lock(next);
2822 	pr_warn("\nbut task is already holding lock:\n");
2823 	print_lock(prev);
2824 
2825 	pr_warn("\nother info that might help us debug this:\n");
2826 	print_deadlock_scenario(next, prev);
2827 	lockdep_print_held_locks(curr);
2828 
2829 	pr_warn("\nstack backtrace:\n");
2830 	dump_stack();
2831 }
2832 
2833 /*
2834  * Check whether we are holding such a class already.
2835  *
2836  * (Note that this has to be done separately, because the graph cannot
2837  * detect such classes of deadlocks.)
2838  *
2839  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2840  * lock class is held but nest_lock is also held, i.e. we rely on the
2841  * nest_lock to avoid the deadlock.
2842  */
2843 static int
2844 check_deadlock(struct task_struct *curr, struct held_lock *next)
2845 {
2846 	struct held_lock *prev;
2847 	struct held_lock *nest = NULL;
2848 	int i;
2849 
2850 	for (i = 0; i < curr->lockdep_depth; i++) {
2851 		prev = curr->held_locks + i;
2852 
2853 		if (prev->instance == next->nest_lock)
2854 			nest = prev;
2855 
2856 		if (hlock_class(prev) != hlock_class(next))
2857 			continue;
2858 
2859 		/*
2860 		 * Allow read-after-read recursion of the same
2861 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2862 		 */
2863 		if ((next->read == 2) && prev->read)
2864 			continue;
2865 
2866 		/*
2867 		 * We're holding the nest_lock, which serializes this lock's
2868 		 * nesting behaviour.
2869 		 */
2870 		if (nest)
2871 			return 2;
2872 
2873 		print_deadlock_bug(curr, prev, next);
2874 		return 0;
2875 	}
2876 	return 1;
2877 }
2878 
2879 /*
2880  * There was a chain-cache miss, and we are about to add a new dependency
2881  * to a previous lock. We validate the following rules:
2882  *
2883  *  - would the adding of the <prev> -> <next> dependency create a
2884  *    circular dependency in the graph? [== circular deadlock]
2885  *
2886  *  - does the new prev->next dependency connect any hardirq-safe lock
2887  *    (in the full backwards-subgraph starting at <prev>) with any
2888  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2889  *    <next>)? [== illegal lock inversion with hardirq contexts]
2890  *
2891  *  - does the new prev->next dependency connect any softirq-safe lock
2892  *    (in the full backwards-subgraph starting at <prev>) with any
2893  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2894  *    <next>)? [== illegal lock inversion with softirq contexts]
2895  *
2896  * any of these scenarios could lead to a deadlock.
2897  *
2898  * Then if all the validations pass, we add the forwards and backwards
2899  * dependency.
2900  */
2901 static int
2902 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2903 	       struct held_lock *next, u16 distance,
2904 	       struct lock_trace **const trace)
2905 {
2906 	struct lock_list *entry;
2907 	enum bfs_result ret;
2908 
2909 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2910 		/*
2911 		 * The warning statements below may trigger a use-after-free
2912 		 * of the class name. It is better to trigger a use-after free
2913 		 * and to have the class name most of the time instead of not
2914 		 * having the class name available.
2915 		 */
2916 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2917 			  "Detected use-after-free of lock class %px/%s\n",
2918 			  hlock_class(prev),
2919 			  hlock_class(prev)->name);
2920 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2921 			  "Detected use-after-free of lock class %px/%s\n",
2922 			  hlock_class(next),
2923 			  hlock_class(next)->name);
2924 		return 2;
2925 	}
2926 
2927 	/*
2928 	 * Prove that the new <prev> -> <next> dependency would not
2929 	 * create a circular dependency in the graph. (We do this by
2930 	 * a breadth-first search into the graph starting at <next>,
2931 	 * and check whether we can reach <prev>.)
2932 	 *
2933 	 * The search is limited by the size of the circular queue (i.e.,
2934 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2935 	 * in the graph whose neighbours are to be checked.
2936 	 */
2937 	ret = check_noncircular(next, prev, trace);
2938 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2939 		return 0;
2940 
2941 	if (!check_irq_usage(curr, prev, next))
2942 		return 0;
2943 
2944 	/*
2945 	 * Is the <prev> -> <next> dependency already present?
2946 	 *
2947 	 * (this may occur even though this is a new chain: consider
2948 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2949 	 *  chains - the second one will be new, but L1 already has
2950 	 *  L2 added to its dependency list, due to the first chain.)
2951 	 */
2952 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2953 		if (entry->class == hlock_class(next)) {
2954 			if (distance == 1)
2955 				entry->distance = 1;
2956 			entry->dep |= calc_dep(prev, next);
2957 
2958 			/*
2959 			 * Also, update the reverse dependency in @next's
2960 			 * ->locks_before list.
2961 			 *
2962 			 *  Here we reuse @entry as the cursor, which is fine
2963 			 *  because we won't go to the next iteration of the
2964 			 *  outer loop:
2965 			 *
2966 			 *  For normal cases, we return in the inner loop.
2967 			 *
2968 			 *  If we fail to return, we have inconsistency, i.e.
2969 			 *  <prev>::locks_after contains <next> while
2970 			 *  <next>::locks_before doesn't contain <prev>. In
2971 			 *  that case, we return after the inner and indicate
2972 			 *  something is wrong.
2973 			 */
2974 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2975 				if (entry->class == hlock_class(prev)) {
2976 					if (distance == 1)
2977 						entry->distance = 1;
2978 					entry->dep |= calc_depb(prev, next);
2979 					return 1;
2980 				}
2981 			}
2982 
2983 			/* <prev> is not found in <next>::locks_before */
2984 			return 0;
2985 		}
2986 	}
2987 
2988 	/*
2989 	 * Is the <prev> -> <next> link redundant?
2990 	 */
2991 	ret = check_redundant(prev, next);
2992 	if (bfs_error(ret))
2993 		return 0;
2994 	else if (ret == BFS_RMATCH)
2995 		return 2;
2996 
2997 	if (!*trace) {
2998 		*trace = save_trace();
2999 		if (!*trace)
3000 			return 0;
3001 	}
3002 
3003 	/*
3004 	 * Ok, all validations passed, add the new lock
3005 	 * to the previous lock's dependency list:
3006 	 */
3007 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3008 			       &hlock_class(prev)->locks_after,
3009 			       next->acquire_ip, distance,
3010 			       calc_dep(prev, next),
3011 			       *trace);
3012 
3013 	if (!ret)
3014 		return 0;
3015 
3016 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3017 			       &hlock_class(next)->locks_before,
3018 			       next->acquire_ip, distance,
3019 			       calc_depb(prev, next),
3020 			       *trace);
3021 	if (!ret)
3022 		return 0;
3023 
3024 	return 2;
3025 }
3026 
3027 /*
3028  * Add the dependency to all directly-previous locks that are 'relevant'.
3029  * The ones that are relevant are (in increasing distance from curr):
3030  * all consecutive trylock entries and the final non-trylock entry - or
3031  * the end of this context's lock-chain - whichever comes first.
3032  */
3033 static int
3034 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3035 {
3036 	struct lock_trace *trace = NULL;
3037 	int depth = curr->lockdep_depth;
3038 	struct held_lock *hlock;
3039 
3040 	/*
3041 	 * Debugging checks.
3042 	 *
3043 	 * Depth must not be zero for a non-head lock:
3044 	 */
3045 	if (!depth)
3046 		goto out_bug;
3047 	/*
3048 	 * At least two relevant locks must exist for this
3049 	 * to be a head:
3050 	 */
3051 	if (curr->held_locks[depth].irq_context !=
3052 			curr->held_locks[depth-1].irq_context)
3053 		goto out_bug;
3054 
3055 	for (;;) {
3056 		u16 distance = curr->lockdep_depth - depth + 1;
3057 		hlock = curr->held_locks + depth - 1;
3058 
3059 		if (hlock->check) {
3060 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3061 			if (!ret)
3062 				return 0;
3063 
3064 			/*
3065 			 * Stop after the first non-trylock entry,
3066 			 * as non-trylock entries have added their
3067 			 * own direct dependencies already, so this
3068 			 * lock is connected to them indirectly:
3069 			 */
3070 			if (!hlock->trylock)
3071 				break;
3072 		}
3073 
3074 		depth--;
3075 		/*
3076 		 * End of lock-stack?
3077 		 */
3078 		if (!depth)
3079 			break;
3080 		/*
3081 		 * Stop the search if we cross into another context:
3082 		 */
3083 		if (curr->held_locks[depth].irq_context !=
3084 				curr->held_locks[depth-1].irq_context)
3085 			break;
3086 	}
3087 	return 1;
3088 out_bug:
3089 	if (!debug_locks_off_graph_unlock())
3090 		return 0;
3091 
3092 	/*
3093 	 * Clearly we all shouldn't be here, but since we made it we
3094 	 * can reliable say we messed up our state. See the above two
3095 	 * gotos for reasons why we could possibly end up here.
3096 	 */
3097 	WARN_ON(1);
3098 
3099 	return 0;
3100 }
3101 
3102 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3103 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3104 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3105 unsigned long nr_zapped_lock_chains;
3106 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3107 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3108 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3109 
3110 /*
3111  * The first 2 chain_hlocks entries in the chain block in the bucket
3112  * list contains the following meta data:
3113  *
3114  *   entry[0]:
3115  *     Bit    15 - always set to 1 (it is not a class index)
3116  *     Bits 0-14 - upper 15 bits of the next block index
3117  *   entry[1]    - lower 16 bits of next block index
3118  *
3119  * A next block index of all 1 bits means it is the end of the list.
3120  *
3121  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3122  * the chain block size:
3123  *
3124  *   entry[2] - upper 16 bits of the chain block size
3125  *   entry[3] - lower 16 bits of the chain block size
3126  */
3127 #define MAX_CHAIN_BUCKETS	16
3128 #define CHAIN_BLK_FLAG		(1U << 15)
3129 #define CHAIN_BLK_LIST_END	0xFFFFU
3130 
3131 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3132 
3133 static inline int size_to_bucket(int size)
3134 {
3135 	if (size > MAX_CHAIN_BUCKETS)
3136 		return 0;
3137 
3138 	return size - 1;
3139 }
3140 
3141 /*
3142  * Iterate all the chain blocks in a bucket.
3143  */
3144 #define for_each_chain_block(bucket, prev, curr)		\
3145 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3146 	     (curr) >= 0;					\
3147 	     (prev) = (curr), (curr) = chain_block_next(curr))
3148 
3149 /*
3150  * next block or -1
3151  */
3152 static inline int chain_block_next(int offset)
3153 {
3154 	int next = chain_hlocks[offset];
3155 
3156 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3157 
3158 	if (next == CHAIN_BLK_LIST_END)
3159 		return -1;
3160 
3161 	next &= ~CHAIN_BLK_FLAG;
3162 	next <<= 16;
3163 	next |= chain_hlocks[offset + 1];
3164 
3165 	return next;
3166 }
3167 
3168 /*
3169  * bucket-0 only
3170  */
3171 static inline int chain_block_size(int offset)
3172 {
3173 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3174 }
3175 
3176 static inline void init_chain_block(int offset, int next, int bucket, int size)
3177 {
3178 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3179 	chain_hlocks[offset + 1] = (u16)next;
3180 
3181 	if (size && !bucket) {
3182 		chain_hlocks[offset + 2] = size >> 16;
3183 		chain_hlocks[offset + 3] = (u16)size;
3184 	}
3185 }
3186 
3187 static inline void add_chain_block(int offset, int size)
3188 {
3189 	int bucket = size_to_bucket(size);
3190 	int next = chain_block_buckets[bucket];
3191 	int prev, curr;
3192 
3193 	if (unlikely(size < 2)) {
3194 		/*
3195 		 * We can't store single entries on the freelist. Leak them.
3196 		 *
3197 		 * One possible way out would be to uniquely mark them, other
3198 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3199 		 * the block before it is re-added.
3200 		 */
3201 		if (size)
3202 			nr_lost_chain_hlocks++;
3203 		return;
3204 	}
3205 
3206 	nr_free_chain_hlocks += size;
3207 	if (!bucket) {
3208 		nr_large_chain_blocks++;
3209 
3210 		/*
3211 		 * Variable sized, sort large to small.
3212 		 */
3213 		for_each_chain_block(0, prev, curr) {
3214 			if (size >= chain_block_size(curr))
3215 				break;
3216 		}
3217 		init_chain_block(offset, curr, 0, size);
3218 		if (prev < 0)
3219 			chain_block_buckets[0] = offset;
3220 		else
3221 			init_chain_block(prev, offset, 0, 0);
3222 		return;
3223 	}
3224 	/*
3225 	 * Fixed size, add to head.
3226 	 */
3227 	init_chain_block(offset, next, bucket, size);
3228 	chain_block_buckets[bucket] = offset;
3229 }
3230 
3231 /*
3232  * Only the first block in the list can be deleted.
3233  *
3234  * For the variable size bucket[0], the first block (the largest one) is
3235  * returned, broken up and put back into the pool. So if a chain block of
3236  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3237  * queued up after the primordial chain block and never be used until the
3238  * hlock entries in the primordial chain block is almost used up. That
3239  * causes fragmentation and reduce allocation efficiency. That can be
3240  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3241  */
3242 static inline void del_chain_block(int bucket, int size, int next)
3243 {
3244 	nr_free_chain_hlocks -= size;
3245 	chain_block_buckets[bucket] = next;
3246 
3247 	if (!bucket)
3248 		nr_large_chain_blocks--;
3249 }
3250 
3251 static void init_chain_block_buckets(void)
3252 {
3253 	int i;
3254 
3255 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3256 		chain_block_buckets[i] = -1;
3257 
3258 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3259 }
3260 
3261 /*
3262  * Return offset of a chain block of the right size or -1 if not found.
3263  *
3264  * Fairly simple worst-fit allocator with the addition of a number of size
3265  * specific free lists.
3266  */
3267 static int alloc_chain_hlocks(int req)
3268 {
3269 	int bucket, curr, size;
3270 
3271 	/*
3272 	 * We rely on the MSB to act as an escape bit to denote freelist
3273 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3274 	 */
3275 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3276 
3277 	init_data_structures_once();
3278 
3279 	if (nr_free_chain_hlocks < req)
3280 		return -1;
3281 
3282 	/*
3283 	 * We require a minimum of 2 (u16) entries to encode a freelist
3284 	 * 'pointer'.
3285 	 */
3286 	req = max(req, 2);
3287 	bucket = size_to_bucket(req);
3288 	curr = chain_block_buckets[bucket];
3289 
3290 	if (bucket) {
3291 		if (curr >= 0) {
3292 			del_chain_block(bucket, req, chain_block_next(curr));
3293 			return curr;
3294 		}
3295 		/* Try bucket 0 */
3296 		curr = chain_block_buckets[0];
3297 	}
3298 
3299 	/*
3300 	 * The variable sized freelist is sorted by size; the first entry is
3301 	 * the largest. Use it if it fits.
3302 	 */
3303 	if (curr >= 0) {
3304 		size = chain_block_size(curr);
3305 		if (likely(size >= req)) {
3306 			del_chain_block(0, size, chain_block_next(curr));
3307 			add_chain_block(curr + req, size - req);
3308 			return curr;
3309 		}
3310 	}
3311 
3312 	/*
3313 	 * Last resort, split a block in a larger sized bucket.
3314 	 */
3315 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3316 		bucket = size_to_bucket(size);
3317 		curr = chain_block_buckets[bucket];
3318 		if (curr < 0)
3319 			continue;
3320 
3321 		del_chain_block(bucket, size, chain_block_next(curr));
3322 		add_chain_block(curr + req, size - req);
3323 		return curr;
3324 	}
3325 
3326 	return -1;
3327 }
3328 
3329 static inline void free_chain_hlocks(int base, int size)
3330 {
3331 	add_chain_block(base, max(size, 2));
3332 }
3333 
3334 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3335 {
3336 	u16 chain_hlock = chain_hlocks[chain->base + i];
3337 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3338 
3339 	return lock_classes + class_idx - 1;
3340 }
3341 
3342 /*
3343  * Returns the index of the first held_lock of the current chain
3344  */
3345 static inline int get_first_held_lock(struct task_struct *curr,
3346 					struct held_lock *hlock)
3347 {
3348 	int i;
3349 	struct held_lock *hlock_curr;
3350 
3351 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3352 		hlock_curr = curr->held_locks + i;
3353 		if (hlock_curr->irq_context != hlock->irq_context)
3354 			break;
3355 
3356 	}
3357 
3358 	return ++i;
3359 }
3360 
3361 #ifdef CONFIG_DEBUG_LOCKDEP
3362 /*
3363  * Returns the next chain_key iteration
3364  */
3365 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3366 {
3367 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3368 
3369 	printk(" hlock_id:%d -> chain_key:%016Lx",
3370 		(unsigned int)hlock_id,
3371 		(unsigned long long)new_chain_key);
3372 	return new_chain_key;
3373 }
3374 
3375 static void
3376 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3377 {
3378 	struct held_lock *hlock;
3379 	u64 chain_key = INITIAL_CHAIN_KEY;
3380 	int depth = curr->lockdep_depth;
3381 	int i = get_first_held_lock(curr, hlock_next);
3382 
3383 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3384 		hlock_next->irq_context);
3385 	for (; i < depth; i++) {
3386 		hlock = curr->held_locks + i;
3387 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3388 
3389 		print_lock(hlock);
3390 	}
3391 
3392 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3393 	print_lock(hlock_next);
3394 }
3395 
3396 static void print_chain_keys_chain(struct lock_chain *chain)
3397 {
3398 	int i;
3399 	u64 chain_key = INITIAL_CHAIN_KEY;
3400 	u16 hlock_id;
3401 
3402 	printk("depth: %u\n", chain->depth);
3403 	for (i = 0; i < chain->depth; i++) {
3404 		hlock_id = chain_hlocks[chain->base + i];
3405 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3406 
3407 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3408 		printk("\n");
3409 	}
3410 }
3411 
3412 static void print_collision(struct task_struct *curr,
3413 			struct held_lock *hlock_next,
3414 			struct lock_chain *chain)
3415 {
3416 	pr_warn("\n");
3417 	pr_warn("============================\n");
3418 	pr_warn("WARNING: chain_key collision\n");
3419 	print_kernel_ident();
3420 	pr_warn("----------------------------\n");
3421 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3422 	pr_warn("Hash chain already cached but the contents don't match!\n");
3423 
3424 	pr_warn("Held locks:");
3425 	print_chain_keys_held_locks(curr, hlock_next);
3426 
3427 	pr_warn("Locks in cached chain:");
3428 	print_chain_keys_chain(chain);
3429 
3430 	pr_warn("\nstack backtrace:\n");
3431 	dump_stack();
3432 }
3433 #endif
3434 
3435 /*
3436  * Checks whether the chain and the current held locks are consistent
3437  * in depth and also in content. If they are not it most likely means
3438  * that there was a collision during the calculation of the chain_key.
3439  * Returns: 0 not passed, 1 passed
3440  */
3441 static int check_no_collision(struct task_struct *curr,
3442 			struct held_lock *hlock,
3443 			struct lock_chain *chain)
3444 {
3445 #ifdef CONFIG_DEBUG_LOCKDEP
3446 	int i, j, id;
3447 
3448 	i = get_first_held_lock(curr, hlock);
3449 
3450 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3451 		print_collision(curr, hlock, chain);
3452 		return 0;
3453 	}
3454 
3455 	for (j = 0; j < chain->depth - 1; j++, i++) {
3456 		id = hlock_id(&curr->held_locks[i]);
3457 
3458 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3459 			print_collision(curr, hlock, chain);
3460 			return 0;
3461 		}
3462 	}
3463 #endif
3464 	return 1;
3465 }
3466 
3467 /*
3468  * Given an index that is >= -1, return the index of the next lock chain.
3469  * Return -2 if there is no next lock chain.
3470  */
3471 long lockdep_next_lockchain(long i)
3472 {
3473 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3474 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3475 }
3476 
3477 unsigned long lock_chain_count(void)
3478 {
3479 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3480 }
3481 
3482 /* Must be called with the graph lock held. */
3483 static struct lock_chain *alloc_lock_chain(void)
3484 {
3485 	int idx = find_first_zero_bit(lock_chains_in_use,
3486 				      ARRAY_SIZE(lock_chains));
3487 
3488 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3489 		return NULL;
3490 	__set_bit(idx, lock_chains_in_use);
3491 	return lock_chains + idx;
3492 }
3493 
3494 /*
3495  * Adds a dependency chain into chain hashtable. And must be called with
3496  * graph_lock held.
3497  *
3498  * Return 0 if fail, and graph_lock is released.
3499  * Return 1 if succeed, with graph_lock held.
3500  */
3501 static inline int add_chain_cache(struct task_struct *curr,
3502 				  struct held_lock *hlock,
3503 				  u64 chain_key)
3504 {
3505 	struct hlist_head *hash_head = chainhashentry(chain_key);
3506 	struct lock_chain *chain;
3507 	int i, j;
3508 
3509 	/*
3510 	 * The caller must hold the graph lock, ensure we've got IRQs
3511 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3512 	 * lockdep won't complain about its own locking errors.
3513 	 */
3514 	if (lockdep_assert_locked())
3515 		return 0;
3516 
3517 	chain = alloc_lock_chain();
3518 	if (!chain) {
3519 		if (!debug_locks_off_graph_unlock())
3520 			return 0;
3521 
3522 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3523 		dump_stack();
3524 		return 0;
3525 	}
3526 	chain->chain_key = chain_key;
3527 	chain->irq_context = hlock->irq_context;
3528 	i = get_first_held_lock(curr, hlock);
3529 	chain->depth = curr->lockdep_depth + 1 - i;
3530 
3531 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3532 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3533 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3534 
3535 	j = alloc_chain_hlocks(chain->depth);
3536 	if (j < 0) {
3537 		if (!debug_locks_off_graph_unlock())
3538 			return 0;
3539 
3540 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3541 		dump_stack();
3542 		return 0;
3543 	}
3544 
3545 	chain->base = j;
3546 	for (j = 0; j < chain->depth - 1; j++, i++) {
3547 		int lock_id = hlock_id(curr->held_locks + i);
3548 
3549 		chain_hlocks[chain->base + j] = lock_id;
3550 	}
3551 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3552 	hlist_add_head_rcu(&chain->entry, hash_head);
3553 	debug_atomic_inc(chain_lookup_misses);
3554 	inc_chains(chain->irq_context);
3555 
3556 	return 1;
3557 }
3558 
3559 /*
3560  * Look up a dependency chain. Must be called with either the graph lock or
3561  * the RCU read lock held.
3562  */
3563 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3564 {
3565 	struct hlist_head *hash_head = chainhashentry(chain_key);
3566 	struct lock_chain *chain;
3567 
3568 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3569 		if (READ_ONCE(chain->chain_key) == chain_key) {
3570 			debug_atomic_inc(chain_lookup_hits);
3571 			return chain;
3572 		}
3573 	}
3574 	return NULL;
3575 }
3576 
3577 /*
3578  * If the key is not present yet in dependency chain cache then
3579  * add it and return 1 - in this case the new dependency chain is
3580  * validated. If the key is already hashed, return 0.
3581  * (On return with 1 graph_lock is held.)
3582  */
3583 static inline int lookup_chain_cache_add(struct task_struct *curr,
3584 					 struct held_lock *hlock,
3585 					 u64 chain_key)
3586 {
3587 	struct lock_class *class = hlock_class(hlock);
3588 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3589 
3590 	if (chain) {
3591 cache_hit:
3592 		if (!check_no_collision(curr, hlock, chain))
3593 			return 0;
3594 
3595 		if (very_verbose(class)) {
3596 			printk("\nhash chain already cached, key: "
3597 					"%016Lx tail class: [%px] %s\n",
3598 					(unsigned long long)chain_key,
3599 					class->key, class->name);
3600 		}
3601 
3602 		return 0;
3603 	}
3604 
3605 	if (very_verbose(class)) {
3606 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3607 			(unsigned long long)chain_key, class->key, class->name);
3608 	}
3609 
3610 	if (!graph_lock())
3611 		return 0;
3612 
3613 	/*
3614 	 * We have to walk the chain again locked - to avoid duplicates:
3615 	 */
3616 	chain = lookup_chain_cache(chain_key);
3617 	if (chain) {
3618 		graph_unlock();
3619 		goto cache_hit;
3620 	}
3621 
3622 	if (!add_chain_cache(curr, hlock, chain_key))
3623 		return 0;
3624 
3625 	return 1;
3626 }
3627 
3628 static int validate_chain(struct task_struct *curr,
3629 			  struct held_lock *hlock,
3630 			  int chain_head, u64 chain_key)
3631 {
3632 	/*
3633 	 * Trylock needs to maintain the stack of held locks, but it
3634 	 * does not add new dependencies, because trylock can be done
3635 	 * in any order.
3636 	 *
3637 	 * We look up the chain_key and do the O(N^2) check and update of
3638 	 * the dependencies only if this is a new dependency chain.
3639 	 * (If lookup_chain_cache_add() return with 1 it acquires
3640 	 * graph_lock for us)
3641 	 */
3642 	if (!hlock->trylock && hlock->check &&
3643 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3644 		/*
3645 		 * Check whether last held lock:
3646 		 *
3647 		 * - is irq-safe, if this lock is irq-unsafe
3648 		 * - is softirq-safe, if this lock is hardirq-unsafe
3649 		 *
3650 		 * And check whether the new lock's dependency graph
3651 		 * could lead back to the previous lock:
3652 		 *
3653 		 * - within the current held-lock stack
3654 		 * - across our accumulated lock dependency records
3655 		 *
3656 		 * any of these scenarios could lead to a deadlock.
3657 		 */
3658 		/*
3659 		 * The simple case: does the current hold the same lock
3660 		 * already?
3661 		 */
3662 		int ret = check_deadlock(curr, hlock);
3663 
3664 		if (!ret)
3665 			return 0;
3666 		/*
3667 		 * Add dependency only if this lock is not the head
3668 		 * of the chain, and if the new lock introduces no more
3669 		 * lock dependency (because we already hold a lock with the
3670 		 * same lock class) nor deadlock (because the nest_lock
3671 		 * serializes nesting locks), see the comments for
3672 		 * check_deadlock().
3673 		 */
3674 		if (!chain_head && ret != 2) {
3675 			if (!check_prevs_add(curr, hlock))
3676 				return 0;
3677 		}
3678 
3679 		graph_unlock();
3680 	} else {
3681 		/* after lookup_chain_cache_add(): */
3682 		if (unlikely(!debug_locks))
3683 			return 0;
3684 	}
3685 
3686 	return 1;
3687 }
3688 #else
3689 static inline int validate_chain(struct task_struct *curr,
3690 				 struct held_lock *hlock,
3691 				 int chain_head, u64 chain_key)
3692 {
3693 	return 1;
3694 }
3695 
3696 static void init_chain_block_buckets(void)	{ }
3697 #endif /* CONFIG_PROVE_LOCKING */
3698 
3699 /*
3700  * We are building curr_chain_key incrementally, so double-check
3701  * it from scratch, to make sure that it's done correctly:
3702  */
3703 static void check_chain_key(struct task_struct *curr)
3704 {
3705 #ifdef CONFIG_DEBUG_LOCKDEP
3706 	struct held_lock *hlock, *prev_hlock = NULL;
3707 	unsigned int i;
3708 	u64 chain_key = INITIAL_CHAIN_KEY;
3709 
3710 	for (i = 0; i < curr->lockdep_depth; i++) {
3711 		hlock = curr->held_locks + i;
3712 		if (chain_key != hlock->prev_chain_key) {
3713 			debug_locks_off();
3714 			/*
3715 			 * We got mighty confused, our chain keys don't match
3716 			 * with what we expect, someone trample on our task state?
3717 			 */
3718 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3719 				curr->lockdep_depth, i,
3720 				(unsigned long long)chain_key,
3721 				(unsigned long long)hlock->prev_chain_key);
3722 			return;
3723 		}
3724 
3725 		/*
3726 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3727 		 * it registered lock class index?
3728 		 */
3729 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3730 			return;
3731 
3732 		if (prev_hlock && (prev_hlock->irq_context !=
3733 							hlock->irq_context))
3734 			chain_key = INITIAL_CHAIN_KEY;
3735 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3736 		prev_hlock = hlock;
3737 	}
3738 	if (chain_key != curr->curr_chain_key) {
3739 		debug_locks_off();
3740 		/*
3741 		 * More smoking hash instead of calculating it, damn see these
3742 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3743 		 */
3744 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3745 			curr->lockdep_depth, i,
3746 			(unsigned long long)chain_key,
3747 			(unsigned long long)curr->curr_chain_key);
3748 	}
3749 #endif
3750 }
3751 
3752 #ifdef CONFIG_PROVE_LOCKING
3753 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3754 		     enum lock_usage_bit new_bit);
3755 
3756 static void print_usage_bug_scenario(struct held_lock *lock)
3757 {
3758 	struct lock_class *class = hlock_class(lock);
3759 
3760 	printk(" Possible unsafe locking scenario:\n\n");
3761 	printk("       CPU0\n");
3762 	printk("       ----\n");
3763 	printk("  lock(");
3764 	__print_lock_name(class);
3765 	printk(KERN_CONT ");\n");
3766 	printk("  <Interrupt>\n");
3767 	printk("    lock(");
3768 	__print_lock_name(class);
3769 	printk(KERN_CONT ");\n");
3770 	printk("\n *** DEADLOCK ***\n\n");
3771 }
3772 
3773 static void
3774 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3775 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3776 {
3777 	if (!debug_locks_off() || debug_locks_silent)
3778 		return;
3779 
3780 	pr_warn("\n");
3781 	pr_warn("================================\n");
3782 	pr_warn("WARNING: inconsistent lock state\n");
3783 	print_kernel_ident();
3784 	pr_warn("--------------------------------\n");
3785 
3786 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3787 		usage_str[prev_bit], usage_str[new_bit]);
3788 
3789 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3790 		curr->comm, task_pid_nr(curr),
3791 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3792 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3793 		lockdep_hardirqs_enabled(),
3794 		lockdep_softirqs_enabled(curr));
3795 	print_lock(this);
3796 
3797 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3798 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3799 
3800 	print_irqtrace_events(curr);
3801 	pr_warn("\nother info that might help us debug this:\n");
3802 	print_usage_bug_scenario(this);
3803 
3804 	lockdep_print_held_locks(curr);
3805 
3806 	pr_warn("\nstack backtrace:\n");
3807 	dump_stack();
3808 }
3809 
3810 /*
3811  * Print out an error if an invalid bit is set:
3812  */
3813 static inline int
3814 valid_state(struct task_struct *curr, struct held_lock *this,
3815 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3816 {
3817 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3818 		graph_unlock();
3819 		print_usage_bug(curr, this, bad_bit, new_bit);
3820 		return 0;
3821 	}
3822 	return 1;
3823 }
3824 
3825 
3826 /*
3827  * print irq inversion bug:
3828  */
3829 static void
3830 print_irq_inversion_bug(struct task_struct *curr,
3831 			struct lock_list *root, struct lock_list *other,
3832 			struct held_lock *this, int forwards,
3833 			const char *irqclass)
3834 {
3835 	struct lock_list *entry = other;
3836 	struct lock_list *middle = NULL;
3837 	int depth;
3838 
3839 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3840 		return;
3841 
3842 	pr_warn("\n");
3843 	pr_warn("========================================================\n");
3844 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3845 	print_kernel_ident();
3846 	pr_warn("--------------------------------------------------------\n");
3847 	pr_warn("%s/%d just changed the state of lock:\n",
3848 		curr->comm, task_pid_nr(curr));
3849 	print_lock(this);
3850 	if (forwards)
3851 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3852 	else
3853 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3854 	print_lock_name(other->class);
3855 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3856 
3857 	pr_warn("\nother info that might help us debug this:\n");
3858 
3859 	/* Find a middle lock (if one exists) */
3860 	depth = get_lock_depth(other);
3861 	do {
3862 		if (depth == 0 && (entry != root)) {
3863 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3864 			break;
3865 		}
3866 		middle = entry;
3867 		entry = get_lock_parent(entry);
3868 		depth--;
3869 	} while (entry && entry != root && (depth >= 0));
3870 	if (forwards)
3871 		print_irq_lock_scenario(root, other,
3872 			middle ? middle->class : root->class, other->class);
3873 	else
3874 		print_irq_lock_scenario(other, root,
3875 			middle ? middle->class : other->class, root->class);
3876 
3877 	lockdep_print_held_locks(curr);
3878 
3879 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3880 	root->trace = save_trace();
3881 	if (!root->trace)
3882 		return;
3883 	print_shortest_lock_dependencies(other, root);
3884 
3885 	pr_warn("\nstack backtrace:\n");
3886 	dump_stack();
3887 }
3888 
3889 /*
3890  * Prove that in the forwards-direction subgraph starting at <this>
3891  * there is no lock matching <mask>:
3892  */
3893 static int
3894 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3895 		     enum lock_usage_bit bit)
3896 {
3897 	enum bfs_result ret;
3898 	struct lock_list root;
3899 	struct lock_list *target_entry;
3900 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3901 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3902 
3903 	bfs_init_root(&root, this);
3904 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
3905 	if (bfs_error(ret)) {
3906 		print_bfs_bug(ret);
3907 		return 0;
3908 	}
3909 	if (ret == BFS_RNOMATCH)
3910 		return 1;
3911 
3912 	/* Check whether write or read usage is the match */
3913 	if (target_entry->class->usage_mask & lock_flag(bit)) {
3914 		print_irq_inversion_bug(curr, &root, target_entry,
3915 					this, 1, state_name(bit));
3916 	} else {
3917 		print_irq_inversion_bug(curr, &root, target_entry,
3918 					this, 1, state_name(read_bit));
3919 	}
3920 
3921 	return 0;
3922 }
3923 
3924 /*
3925  * Prove that in the backwards-direction subgraph starting at <this>
3926  * there is no lock matching <mask>:
3927  */
3928 static int
3929 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3930 		      enum lock_usage_bit bit)
3931 {
3932 	enum bfs_result ret;
3933 	struct lock_list root;
3934 	struct lock_list *target_entry;
3935 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3936 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3937 
3938 	bfs_init_rootb(&root, this);
3939 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
3940 	if (bfs_error(ret)) {
3941 		print_bfs_bug(ret);
3942 		return 0;
3943 	}
3944 	if (ret == BFS_RNOMATCH)
3945 		return 1;
3946 
3947 	/* Check whether write or read usage is the match */
3948 	if (target_entry->class->usage_mask & lock_flag(bit)) {
3949 		print_irq_inversion_bug(curr, &root, target_entry,
3950 					this, 0, state_name(bit));
3951 	} else {
3952 		print_irq_inversion_bug(curr, &root, target_entry,
3953 					this, 0, state_name(read_bit));
3954 	}
3955 
3956 	return 0;
3957 }
3958 
3959 void print_irqtrace_events(struct task_struct *curr)
3960 {
3961 	const struct irqtrace_events *trace = &curr->irqtrace;
3962 
3963 	printk("irq event stamp: %u\n", trace->irq_events);
3964 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3965 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3966 		(void *)trace->hardirq_enable_ip);
3967 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3968 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3969 		(void *)trace->hardirq_disable_ip);
3970 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3971 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3972 		(void *)trace->softirq_enable_ip);
3973 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3974 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3975 		(void *)trace->softirq_disable_ip);
3976 }
3977 
3978 static int HARDIRQ_verbose(struct lock_class *class)
3979 {
3980 #if HARDIRQ_VERBOSE
3981 	return class_filter(class);
3982 #endif
3983 	return 0;
3984 }
3985 
3986 static int SOFTIRQ_verbose(struct lock_class *class)
3987 {
3988 #if SOFTIRQ_VERBOSE
3989 	return class_filter(class);
3990 #endif
3991 	return 0;
3992 }
3993 
3994 static int (*state_verbose_f[])(struct lock_class *class) = {
3995 #define LOCKDEP_STATE(__STATE) \
3996 	__STATE##_verbose,
3997 #include "lockdep_states.h"
3998 #undef LOCKDEP_STATE
3999 };
4000 
4001 static inline int state_verbose(enum lock_usage_bit bit,
4002 				struct lock_class *class)
4003 {
4004 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4005 }
4006 
4007 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4008 			     enum lock_usage_bit bit, const char *name);
4009 
4010 static int
4011 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4012 		enum lock_usage_bit new_bit)
4013 {
4014 	int excl_bit = exclusive_bit(new_bit);
4015 	int read = new_bit & LOCK_USAGE_READ_MASK;
4016 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4017 
4018 	/*
4019 	 * Validate that this particular lock does not have conflicting
4020 	 * usage states.
4021 	 */
4022 	if (!valid_state(curr, this, new_bit, excl_bit))
4023 		return 0;
4024 
4025 	/*
4026 	 * Check for read in write conflicts
4027 	 */
4028 	if (!read && !valid_state(curr, this, new_bit,
4029 				  excl_bit + LOCK_USAGE_READ_MASK))
4030 		return 0;
4031 
4032 
4033 	/*
4034 	 * Validate that the lock dependencies don't have conflicting usage
4035 	 * states.
4036 	 */
4037 	if (dir) {
4038 		/*
4039 		 * mark ENABLED has to look backwards -- to ensure no dependee
4040 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4041 		 */
4042 		if (!check_usage_backwards(curr, this, excl_bit))
4043 			return 0;
4044 	} else {
4045 		/*
4046 		 * mark USED_IN has to look forwards -- to ensure no dependency
4047 		 * has ENABLED state, which would allow recursion deadlocks.
4048 		 */
4049 		if (!check_usage_forwards(curr, this, excl_bit))
4050 			return 0;
4051 	}
4052 
4053 	if (state_verbose(new_bit, hlock_class(this)))
4054 		return 2;
4055 
4056 	return 1;
4057 }
4058 
4059 /*
4060  * Mark all held locks with a usage bit:
4061  */
4062 static int
4063 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4064 {
4065 	struct held_lock *hlock;
4066 	int i;
4067 
4068 	for (i = 0; i < curr->lockdep_depth; i++) {
4069 		enum lock_usage_bit hlock_bit = base_bit;
4070 		hlock = curr->held_locks + i;
4071 
4072 		if (hlock->read)
4073 			hlock_bit += LOCK_USAGE_READ_MASK;
4074 
4075 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4076 
4077 		if (!hlock->check)
4078 			continue;
4079 
4080 		if (!mark_lock(curr, hlock, hlock_bit))
4081 			return 0;
4082 	}
4083 
4084 	return 1;
4085 }
4086 
4087 /*
4088  * Hardirqs will be enabled:
4089  */
4090 static void __trace_hardirqs_on_caller(void)
4091 {
4092 	struct task_struct *curr = current;
4093 
4094 	/*
4095 	 * We are going to turn hardirqs on, so set the
4096 	 * usage bit for all held locks:
4097 	 */
4098 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4099 		return;
4100 	/*
4101 	 * If we have softirqs enabled, then set the usage
4102 	 * bit for all held locks. (disabled hardirqs prevented
4103 	 * this bit from being set before)
4104 	 */
4105 	if (curr->softirqs_enabled)
4106 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4107 }
4108 
4109 /**
4110  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4111  * @ip:		Caller address
4112  *
4113  * Invoked before a possible transition to RCU idle from exit to user or
4114  * guest mode. This ensures that all RCU operations are done before RCU
4115  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4116  * invoked to set the final state.
4117  */
4118 void lockdep_hardirqs_on_prepare(unsigned long ip)
4119 {
4120 	if (unlikely(!debug_locks))
4121 		return;
4122 
4123 	/*
4124 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4125 	 */
4126 	if (unlikely(in_nmi()))
4127 		return;
4128 
4129 	if (unlikely(this_cpu_read(lockdep_recursion)))
4130 		return;
4131 
4132 	if (unlikely(lockdep_hardirqs_enabled())) {
4133 		/*
4134 		 * Neither irq nor preemption are disabled here
4135 		 * so this is racy by nature but losing one hit
4136 		 * in a stat is not a big deal.
4137 		 */
4138 		__debug_atomic_inc(redundant_hardirqs_on);
4139 		return;
4140 	}
4141 
4142 	/*
4143 	 * We're enabling irqs and according to our state above irqs weren't
4144 	 * already enabled, yet we find the hardware thinks they are in fact
4145 	 * enabled.. someone messed up their IRQ state tracing.
4146 	 */
4147 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4148 		return;
4149 
4150 	/*
4151 	 * See the fine text that goes along with this variable definition.
4152 	 */
4153 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4154 		return;
4155 
4156 	/*
4157 	 * Can't allow enabling interrupts while in an interrupt handler,
4158 	 * that's general bad form and such. Recursion, limited stack etc..
4159 	 */
4160 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4161 		return;
4162 
4163 	current->hardirq_chain_key = current->curr_chain_key;
4164 
4165 	lockdep_recursion_inc();
4166 	__trace_hardirqs_on_caller();
4167 	lockdep_recursion_finish();
4168 }
4169 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4170 
4171 void noinstr lockdep_hardirqs_on(unsigned long ip)
4172 {
4173 	struct irqtrace_events *trace = &current->irqtrace;
4174 
4175 	if (unlikely(!debug_locks))
4176 		return;
4177 
4178 	/*
4179 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4180 	 * tracking state and hardware state are out of sync.
4181 	 *
4182 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4183 	 * and not rely on hardware state like normal interrupts.
4184 	 */
4185 	if (unlikely(in_nmi())) {
4186 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4187 			return;
4188 
4189 		/*
4190 		 * Skip:
4191 		 *  - recursion check, because NMI can hit lockdep;
4192 		 *  - hardware state check, because above;
4193 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4194 		 */
4195 		goto skip_checks;
4196 	}
4197 
4198 	if (unlikely(this_cpu_read(lockdep_recursion)))
4199 		return;
4200 
4201 	if (lockdep_hardirqs_enabled()) {
4202 		/*
4203 		 * Neither irq nor preemption are disabled here
4204 		 * so this is racy by nature but losing one hit
4205 		 * in a stat is not a big deal.
4206 		 */
4207 		__debug_atomic_inc(redundant_hardirqs_on);
4208 		return;
4209 	}
4210 
4211 	/*
4212 	 * We're enabling irqs and according to our state above irqs weren't
4213 	 * already enabled, yet we find the hardware thinks they are in fact
4214 	 * enabled.. someone messed up their IRQ state tracing.
4215 	 */
4216 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4217 		return;
4218 
4219 	/*
4220 	 * Ensure the lock stack remained unchanged between
4221 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4222 	 */
4223 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4224 			    current->curr_chain_key);
4225 
4226 skip_checks:
4227 	/* we'll do an OFF -> ON transition: */
4228 	__this_cpu_write(hardirqs_enabled, 1);
4229 	trace->hardirq_enable_ip = ip;
4230 	trace->hardirq_enable_event = ++trace->irq_events;
4231 	debug_atomic_inc(hardirqs_on_events);
4232 }
4233 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4234 
4235 /*
4236  * Hardirqs were disabled:
4237  */
4238 void noinstr lockdep_hardirqs_off(unsigned long ip)
4239 {
4240 	if (unlikely(!debug_locks))
4241 		return;
4242 
4243 	/*
4244 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4245 	 * they will restore the software state. This ensures the software
4246 	 * state is consistent inside NMIs as well.
4247 	 */
4248 	if (in_nmi()) {
4249 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4250 			return;
4251 	} else if (__this_cpu_read(lockdep_recursion))
4252 		return;
4253 
4254 	/*
4255 	 * So we're supposed to get called after you mask local IRQs, but for
4256 	 * some reason the hardware doesn't quite think you did a proper job.
4257 	 */
4258 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4259 		return;
4260 
4261 	if (lockdep_hardirqs_enabled()) {
4262 		struct irqtrace_events *trace = &current->irqtrace;
4263 
4264 		/*
4265 		 * We have done an ON -> OFF transition:
4266 		 */
4267 		__this_cpu_write(hardirqs_enabled, 0);
4268 		trace->hardirq_disable_ip = ip;
4269 		trace->hardirq_disable_event = ++trace->irq_events;
4270 		debug_atomic_inc(hardirqs_off_events);
4271 	} else {
4272 		debug_atomic_inc(redundant_hardirqs_off);
4273 	}
4274 }
4275 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4276 
4277 /*
4278  * Softirqs will be enabled:
4279  */
4280 void lockdep_softirqs_on(unsigned long ip)
4281 {
4282 	struct irqtrace_events *trace = &current->irqtrace;
4283 
4284 	if (unlikely(!lockdep_enabled()))
4285 		return;
4286 
4287 	/*
4288 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4289 	 * funny state and nesting things.
4290 	 */
4291 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4292 		return;
4293 
4294 	if (current->softirqs_enabled) {
4295 		debug_atomic_inc(redundant_softirqs_on);
4296 		return;
4297 	}
4298 
4299 	lockdep_recursion_inc();
4300 	/*
4301 	 * We'll do an OFF -> ON transition:
4302 	 */
4303 	current->softirqs_enabled = 1;
4304 	trace->softirq_enable_ip = ip;
4305 	trace->softirq_enable_event = ++trace->irq_events;
4306 	debug_atomic_inc(softirqs_on_events);
4307 	/*
4308 	 * We are going to turn softirqs on, so set the
4309 	 * usage bit for all held locks, if hardirqs are
4310 	 * enabled too:
4311 	 */
4312 	if (lockdep_hardirqs_enabled())
4313 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4314 	lockdep_recursion_finish();
4315 }
4316 
4317 /*
4318  * Softirqs were disabled:
4319  */
4320 void lockdep_softirqs_off(unsigned long ip)
4321 {
4322 	if (unlikely(!lockdep_enabled()))
4323 		return;
4324 
4325 	/*
4326 	 * We fancy IRQs being disabled here, see softirq.c
4327 	 */
4328 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4329 		return;
4330 
4331 	if (current->softirqs_enabled) {
4332 		struct irqtrace_events *trace = &current->irqtrace;
4333 
4334 		/*
4335 		 * We have done an ON -> OFF transition:
4336 		 */
4337 		current->softirqs_enabled = 0;
4338 		trace->softirq_disable_ip = ip;
4339 		trace->softirq_disable_event = ++trace->irq_events;
4340 		debug_atomic_inc(softirqs_off_events);
4341 		/*
4342 		 * Whoops, we wanted softirqs off, so why aren't they?
4343 		 */
4344 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4345 	} else
4346 		debug_atomic_inc(redundant_softirqs_off);
4347 }
4348 
4349 static int
4350 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4351 {
4352 	if (!check)
4353 		goto lock_used;
4354 
4355 	/*
4356 	 * If non-trylock use in a hardirq or softirq context, then
4357 	 * mark the lock as used in these contexts:
4358 	 */
4359 	if (!hlock->trylock) {
4360 		if (hlock->read) {
4361 			if (lockdep_hardirq_context())
4362 				if (!mark_lock(curr, hlock,
4363 						LOCK_USED_IN_HARDIRQ_READ))
4364 					return 0;
4365 			if (curr->softirq_context)
4366 				if (!mark_lock(curr, hlock,
4367 						LOCK_USED_IN_SOFTIRQ_READ))
4368 					return 0;
4369 		} else {
4370 			if (lockdep_hardirq_context())
4371 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4372 					return 0;
4373 			if (curr->softirq_context)
4374 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4375 					return 0;
4376 		}
4377 	}
4378 	if (!hlock->hardirqs_off) {
4379 		if (hlock->read) {
4380 			if (!mark_lock(curr, hlock,
4381 					LOCK_ENABLED_HARDIRQ_READ))
4382 				return 0;
4383 			if (curr->softirqs_enabled)
4384 				if (!mark_lock(curr, hlock,
4385 						LOCK_ENABLED_SOFTIRQ_READ))
4386 					return 0;
4387 		} else {
4388 			if (!mark_lock(curr, hlock,
4389 					LOCK_ENABLED_HARDIRQ))
4390 				return 0;
4391 			if (curr->softirqs_enabled)
4392 				if (!mark_lock(curr, hlock,
4393 						LOCK_ENABLED_SOFTIRQ))
4394 					return 0;
4395 		}
4396 	}
4397 
4398 lock_used:
4399 	/* mark it as used: */
4400 	if (!mark_lock(curr, hlock, LOCK_USED))
4401 		return 0;
4402 
4403 	return 1;
4404 }
4405 
4406 static inline unsigned int task_irq_context(struct task_struct *task)
4407 {
4408 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4409 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4410 }
4411 
4412 static int separate_irq_context(struct task_struct *curr,
4413 		struct held_lock *hlock)
4414 {
4415 	unsigned int depth = curr->lockdep_depth;
4416 
4417 	/*
4418 	 * Keep track of points where we cross into an interrupt context:
4419 	 */
4420 	if (depth) {
4421 		struct held_lock *prev_hlock;
4422 
4423 		prev_hlock = curr->held_locks + depth-1;
4424 		/*
4425 		 * If we cross into another context, reset the
4426 		 * hash key (this also prevents the checking and the
4427 		 * adding of the dependency to 'prev'):
4428 		 */
4429 		if (prev_hlock->irq_context != hlock->irq_context)
4430 			return 1;
4431 	}
4432 	return 0;
4433 }
4434 
4435 /*
4436  * Mark a lock with a usage bit, and validate the state transition:
4437  */
4438 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4439 			     enum lock_usage_bit new_bit)
4440 {
4441 	unsigned int new_mask, ret = 1;
4442 
4443 	if (new_bit >= LOCK_USAGE_STATES) {
4444 		DEBUG_LOCKS_WARN_ON(1);
4445 		return 0;
4446 	}
4447 
4448 	if (new_bit == LOCK_USED && this->read)
4449 		new_bit = LOCK_USED_READ;
4450 
4451 	new_mask = 1 << new_bit;
4452 
4453 	/*
4454 	 * If already set then do not dirty the cacheline,
4455 	 * nor do any checks:
4456 	 */
4457 	if (likely(hlock_class(this)->usage_mask & new_mask))
4458 		return 1;
4459 
4460 	if (!graph_lock())
4461 		return 0;
4462 	/*
4463 	 * Make sure we didn't race:
4464 	 */
4465 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4466 		goto unlock;
4467 
4468 	if (!hlock_class(this)->usage_mask)
4469 		debug_atomic_dec(nr_unused_locks);
4470 
4471 	hlock_class(this)->usage_mask |= new_mask;
4472 
4473 	if (new_bit < LOCK_TRACE_STATES) {
4474 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4475 			return 0;
4476 	}
4477 
4478 	if (new_bit < LOCK_USED) {
4479 		ret = mark_lock_irq(curr, this, new_bit);
4480 		if (!ret)
4481 			return 0;
4482 	}
4483 
4484 unlock:
4485 	graph_unlock();
4486 
4487 	/*
4488 	 * We must printk outside of the graph_lock:
4489 	 */
4490 	if (ret == 2) {
4491 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4492 		print_lock(this);
4493 		print_irqtrace_events(curr);
4494 		dump_stack();
4495 	}
4496 
4497 	return ret;
4498 }
4499 
4500 static inline short task_wait_context(struct task_struct *curr)
4501 {
4502 	/*
4503 	 * Set appropriate wait type for the context; for IRQs we have to take
4504 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4505 	 */
4506 	if (lockdep_hardirq_context()) {
4507 		/*
4508 		 * Check if force_irqthreads will run us threaded.
4509 		 */
4510 		if (curr->hardirq_threaded || curr->irq_config)
4511 			return LD_WAIT_CONFIG;
4512 
4513 		return LD_WAIT_SPIN;
4514 	} else if (curr->softirq_context) {
4515 		/*
4516 		 * Softirqs are always threaded.
4517 		 */
4518 		return LD_WAIT_CONFIG;
4519 	}
4520 
4521 	return LD_WAIT_MAX;
4522 }
4523 
4524 static int
4525 print_lock_invalid_wait_context(struct task_struct *curr,
4526 				struct held_lock *hlock)
4527 {
4528 	short curr_inner;
4529 
4530 	if (!debug_locks_off())
4531 		return 0;
4532 	if (debug_locks_silent)
4533 		return 0;
4534 
4535 	pr_warn("\n");
4536 	pr_warn("=============================\n");
4537 	pr_warn("[ BUG: Invalid wait context ]\n");
4538 	print_kernel_ident();
4539 	pr_warn("-----------------------------\n");
4540 
4541 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4542 	print_lock(hlock);
4543 
4544 	pr_warn("other info that might help us debug this:\n");
4545 
4546 	curr_inner = task_wait_context(curr);
4547 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4548 
4549 	lockdep_print_held_locks(curr);
4550 
4551 	pr_warn("stack backtrace:\n");
4552 	dump_stack();
4553 
4554 	return 0;
4555 }
4556 
4557 /*
4558  * Verify the wait_type context.
4559  *
4560  * This check validates we takes locks in the right wait-type order; that is it
4561  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4562  * acquire spinlocks inside raw_spinlocks and the sort.
4563  *
4564  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4565  * can be taken from (pretty much) any context but also has constraints.
4566  * However when taken in a stricter environment the RCU lock does not loosen
4567  * the constraints.
4568  *
4569  * Therefore we must look for the strictest environment in the lock stack and
4570  * compare that to the lock we're trying to acquire.
4571  */
4572 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4573 {
4574 	u8 next_inner = hlock_class(next)->wait_type_inner;
4575 	u8 next_outer = hlock_class(next)->wait_type_outer;
4576 	u8 curr_inner;
4577 	int depth;
4578 
4579 	if (!curr->lockdep_depth || !next_inner || next->trylock)
4580 		return 0;
4581 
4582 	if (!next_outer)
4583 		next_outer = next_inner;
4584 
4585 	/*
4586 	 * Find start of current irq_context..
4587 	 */
4588 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4589 		struct held_lock *prev = curr->held_locks + depth;
4590 		if (prev->irq_context != next->irq_context)
4591 			break;
4592 	}
4593 	depth++;
4594 
4595 	curr_inner = task_wait_context(curr);
4596 
4597 	for (; depth < curr->lockdep_depth; depth++) {
4598 		struct held_lock *prev = curr->held_locks + depth;
4599 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4600 
4601 		if (prev_inner) {
4602 			/*
4603 			 * We can have a bigger inner than a previous one
4604 			 * when outer is smaller than inner, as with RCU.
4605 			 *
4606 			 * Also due to trylocks.
4607 			 */
4608 			curr_inner = min(curr_inner, prev_inner);
4609 		}
4610 	}
4611 
4612 	if (next_outer > curr_inner)
4613 		return print_lock_invalid_wait_context(curr, next);
4614 
4615 	return 0;
4616 }
4617 
4618 #else /* CONFIG_PROVE_LOCKING */
4619 
4620 static inline int
4621 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4622 {
4623 	return 1;
4624 }
4625 
4626 static inline unsigned int task_irq_context(struct task_struct *task)
4627 {
4628 	return 0;
4629 }
4630 
4631 static inline int separate_irq_context(struct task_struct *curr,
4632 		struct held_lock *hlock)
4633 {
4634 	return 0;
4635 }
4636 
4637 static inline int check_wait_context(struct task_struct *curr,
4638 				     struct held_lock *next)
4639 {
4640 	return 0;
4641 }
4642 
4643 #endif /* CONFIG_PROVE_LOCKING */
4644 
4645 /*
4646  * Initialize a lock instance's lock-class mapping info:
4647  */
4648 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4649 			    struct lock_class_key *key, int subclass,
4650 			    u8 inner, u8 outer, u8 lock_type)
4651 {
4652 	int i;
4653 
4654 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4655 		lock->class_cache[i] = NULL;
4656 
4657 #ifdef CONFIG_LOCK_STAT
4658 	lock->cpu = raw_smp_processor_id();
4659 #endif
4660 
4661 	/*
4662 	 * Can't be having no nameless bastards around this place!
4663 	 */
4664 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4665 		lock->name = "NULL";
4666 		return;
4667 	}
4668 
4669 	lock->name = name;
4670 
4671 	lock->wait_type_outer = outer;
4672 	lock->wait_type_inner = inner;
4673 	lock->lock_type = lock_type;
4674 
4675 	/*
4676 	 * No key, no joy, we need to hash something.
4677 	 */
4678 	if (DEBUG_LOCKS_WARN_ON(!key))
4679 		return;
4680 	/*
4681 	 * Sanity check, the lock-class key must either have been allocated
4682 	 * statically or must have been registered as a dynamic key.
4683 	 */
4684 	if (!static_obj(key) && !is_dynamic_key(key)) {
4685 		if (debug_locks)
4686 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4687 		DEBUG_LOCKS_WARN_ON(1);
4688 		return;
4689 	}
4690 	lock->key = key;
4691 
4692 	if (unlikely(!debug_locks))
4693 		return;
4694 
4695 	if (subclass) {
4696 		unsigned long flags;
4697 
4698 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4699 			return;
4700 
4701 		raw_local_irq_save(flags);
4702 		lockdep_recursion_inc();
4703 		register_lock_class(lock, subclass, 1);
4704 		lockdep_recursion_finish();
4705 		raw_local_irq_restore(flags);
4706 	}
4707 }
4708 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4709 
4710 struct lock_class_key __lockdep_no_validate__;
4711 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4712 
4713 static void
4714 print_lock_nested_lock_not_held(struct task_struct *curr,
4715 				struct held_lock *hlock,
4716 				unsigned long ip)
4717 {
4718 	if (!debug_locks_off())
4719 		return;
4720 	if (debug_locks_silent)
4721 		return;
4722 
4723 	pr_warn("\n");
4724 	pr_warn("==================================\n");
4725 	pr_warn("WARNING: Nested lock was not taken\n");
4726 	print_kernel_ident();
4727 	pr_warn("----------------------------------\n");
4728 
4729 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4730 	print_lock(hlock);
4731 
4732 	pr_warn("\nbut this task is not holding:\n");
4733 	pr_warn("%s\n", hlock->nest_lock->name);
4734 
4735 	pr_warn("\nstack backtrace:\n");
4736 	dump_stack();
4737 
4738 	pr_warn("\nother info that might help us debug this:\n");
4739 	lockdep_print_held_locks(curr);
4740 
4741 	pr_warn("\nstack backtrace:\n");
4742 	dump_stack();
4743 }
4744 
4745 static int __lock_is_held(const struct lockdep_map *lock, int read);
4746 
4747 /*
4748  * This gets called for every mutex_lock*()/spin_lock*() operation.
4749  * We maintain the dependency maps and validate the locking attempt:
4750  *
4751  * The callers must make sure that IRQs are disabled before calling it,
4752  * otherwise we could get an interrupt which would want to take locks,
4753  * which would end up in lockdep again.
4754  */
4755 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4756 			  int trylock, int read, int check, int hardirqs_off,
4757 			  struct lockdep_map *nest_lock, unsigned long ip,
4758 			  int references, int pin_count)
4759 {
4760 	struct task_struct *curr = current;
4761 	struct lock_class *class = NULL;
4762 	struct held_lock *hlock;
4763 	unsigned int depth;
4764 	int chain_head = 0;
4765 	int class_idx;
4766 	u64 chain_key;
4767 
4768 	if (unlikely(!debug_locks))
4769 		return 0;
4770 
4771 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4772 		check = 0;
4773 
4774 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4775 		class = lock->class_cache[subclass];
4776 	/*
4777 	 * Not cached?
4778 	 */
4779 	if (unlikely(!class)) {
4780 		class = register_lock_class(lock, subclass, 0);
4781 		if (!class)
4782 			return 0;
4783 	}
4784 
4785 	debug_class_ops_inc(class);
4786 
4787 	if (very_verbose(class)) {
4788 		printk("\nacquire class [%px] %s", class->key, class->name);
4789 		if (class->name_version > 1)
4790 			printk(KERN_CONT "#%d", class->name_version);
4791 		printk(KERN_CONT "\n");
4792 		dump_stack();
4793 	}
4794 
4795 	/*
4796 	 * Add the lock to the list of currently held locks.
4797 	 * (we dont increase the depth just yet, up until the
4798 	 * dependency checks are done)
4799 	 */
4800 	depth = curr->lockdep_depth;
4801 	/*
4802 	 * Ran out of static storage for our per-task lock stack again have we?
4803 	 */
4804 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4805 		return 0;
4806 
4807 	class_idx = class - lock_classes;
4808 
4809 	if (depth) { /* we're holding locks */
4810 		hlock = curr->held_locks + depth - 1;
4811 		if (hlock->class_idx == class_idx && nest_lock) {
4812 			if (!references)
4813 				references++;
4814 
4815 			if (!hlock->references)
4816 				hlock->references++;
4817 
4818 			hlock->references += references;
4819 
4820 			/* Overflow */
4821 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4822 				return 0;
4823 
4824 			return 2;
4825 		}
4826 	}
4827 
4828 	hlock = curr->held_locks + depth;
4829 	/*
4830 	 * Plain impossible, we just registered it and checked it weren't no
4831 	 * NULL like.. I bet this mushroom I ate was good!
4832 	 */
4833 	if (DEBUG_LOCKS_WARN_ON(!class))
4834 		return 0;
4835 	hlock->class_idx = class_idx;
4836 	hlock->acquire_ip = ip;
4837 	hlock->instance = lock;
4838 	hlock->nest_lock = nest_lock;
4839 	hlock->irq_context = task_irq_context(curr);
4840 	hlock->trylock = trylock;
4841 	hlock->read = read;
4842 	hlock->check = check;
4843 	hlock->hardirqs_off = !!hardirqs_off;
4844 	hlock->references = references;
4845 #ifdef CONFIG_LOCK_STAT
4846 	hlock->waittime_stamp = 0;
4847 	hlock->holdtime_stamp = lockstat_clock();
4848 #endif
4849 	hlock->pin_count = pin_count;
4850 
4851 	if (check_wait_context(curr, hlock))
4852 		return 0;
4853 
4854 	/* Initialize the lock usage bit */
4855 	if (!mark_usage(curr, hlock, check))
4856 		return 0;
4857 
4858 	/*
4859 	 * Calculate the chain hash: it's the combined hash of all the
4860 	 * lock keys along the dependency chain. We save the hash value
4861 	 * at every step so that we can get the current hash easily
4862 	 * after unlock. The chain hash is then used to cache dependency
4863 	 * results.
4864 	 *
4865 	 * The 'key ID' is what is the most compact key value to drive
4866 	 * the hash, not class->key.
4867 	 */
4868 	/*
4869 	 * Whoops, we did it again.. class_idx is invalid.
4870 	 */
4871 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4872 		return 0;
4873 
4874 	chain_key = curr->curr_chain_key;
4875 	if (!depth) {
4876 		/*
4877 		 * How can we have a chain hash when we ain't got no keys?!
4878 		 */
4879 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4880 			return 0;
4881 		chain_head = 1;
4882 	}
4883 
4884 	hlock->prev_chain_key = chain_key;
4885 	if (separate_irq_context(curr, hlock)) {
4886 		chain_key = INITIAL_CHAIN_KEY;
4887 		chain_head = 1;
4888 	}
4889 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4890 
4891 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4892 		print_lock_nested_lock_not_held(curr, hlock, ip);
4893 		return 0;
4894 	}
4895 
4896 	if (!debug_locks_silent) {
4897 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4898 		WARN_ON_ONCE(!hlock_class(hlock)->key);
4899 	}
4900 
4901 	if (!validate_chain(curr, hlock, chain_head, chain_key))
4902 		return 0;
4903 
4904 	curr->curr_chain_key = chain_key;
4905 	curr->lockdep_depth++;
4906 	check_chain_key(curr);
4907 #ifdef CONFIG_DEBUG_LOCKDEP
4908 	if (unlikely(!debug_locks))
4909 		return 0;
4910 #endif
4911 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4912 		debug_locks_off();
4913 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4914 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4915 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
4916 
4917 		lockdep_print_held_locks(current);
4918 		debug_show_all_locks();
4919 		dump_stack();
4920 
4921 		return 0;
4922 	}
4923 
4924 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4925 		max_lockdep_depth = curr->lockdep_depth;
4926 
4927 	return 1;
4928 }
4929 
4930 static void print_unlock_imbalance_bug(struct task_struct *curr,
4931 				       struct lockdep_map *lock,
4932 				       unsigned long ip)
4933 {
4934 	if (!debug_locks_off())
4935 		return;
4936 	if (debug_locks_silent)
4937 		return;
4938 
4939 	pr_warn("\n");
4940 	pr_warn("=====================================\n");
4941 	pr_warn("WARNING: bad unlock balance detected!\n");
4942 	print_kernel_ident();
4943 	pr_warn("-------------------------------------\n");
4944 	pr_warn("%s/%d is trying to release lock (",
4945 		curr->comm, task_pid_nr(curr));
4946 	print_lockdep_cache(lock);
4947 	pr_cont(") at:\n");
4948 	print_ip_sym(KERN_WARNING, ip);
4949 	pr_warn("but there are no more locks to release!\n");
4950 	pr_warn("\nother info that might help us debug this:\n");
4951 	lockdep_print_held_locks(curr);
4952 
4953 	pr_warn("\nstack backtrace:\n");
4954 	dump_stack();
4955 }
4956 
4957 static noinstr int match_held_lock(const struct held_lock *hlock,
4958 				   const struct lockdep_map *lock)
4959 {
4960 	if (hlock->instance == lock)
4961 		return 1;
4962 
4963 	if (hlock->references) {
4964 		const struct lock_class *class = lock->class_cache[0];
4965 
4966 		if (!class)
4967 			class = look_up_lock_class(lock, 0);
4968 
4969 		/*
4970 		 * If look_up_lock_class() failed to find a class, we're trying
4971 		 * to test if we hold a lock that has never yet been acquired.
4972 		 * Clearly if the lock hasn't been acquired _ever_, we're not
4973 		 * holding it either, so report failure.
4974 		 */
4975 		if (!class)
4976 			return 0;
4977 
4978 		/*
4979 		 * References, but not a lock we're actually ref-counting?
4980 		 * State got messed up, follow the sites that change ->references
4981 		 * and try to make sense of it.
4982 		 */
4983 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4984 			return 0;
4985 
4986 		if (hlock->class_idx == class - lock_classes)
4987 			return 1;
4988 	}
4989 
4990 	return 0;
4991 }
4992 
4993 /* @depth must not be zero */
4994 static struct held_lock *find_held_lock(struct task_struct *curr,
4995 					struct lockdep_map *lock,
4996 					unsigned int depth, int *idx)
4997 {
4998 	struct held_lock *ret, *hlock, *prev_hlock;
4999 	int i;
5000 
5001 	i = depth - 1;
5002 	hlock = curr->held_locks + i;
5003 	ret = hlock;
5004 	if (match_held_lock(hlock, lock))
5005 		goto out;
5006 
5007 	ret = NULL;
5008 	for (i--, prev_hlock = hlock--;
5009 	     i >= 0;
5010 	     i--, prev_hlock = hlock--) {
5011 		/*
5012 		 * We must not cross into another context:
5013 		 */
5014 		if (prev_hlock->irq_context != hlock->irq_context) {
5015 			ret = NULL;
5016 			break;
5017 		}
5018 		if (match_held_lock(hlock, lock)) {
5019 			ret = hlock;
5020 			break;
5021 		}
5022 	}
5023 
5024 out:
5025 	*idx = i;
5026 	return ret;
5027 }
5028 
5029 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5030 				int idx, unsigned int *merged)
5031 {
5032 	struct held_lock *hlock;
5033 	int first_idx = idx;
5034 
5035 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5036 		return 0;
5037 
5038 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5039 		switch (__lock_acquire(hlock->instance,
5040 				    hlock_class(hlock)->subclass,
5041 				    hlock->trylock,
5042 				    hlock->read, hlock->check,
5043 				    hlock->hardirqs_off,
5044 				    hlock->nest_lock, hlock->acquire_ip,
5045 				    hlock->references, hlock->pin_count)) {
5046 		case 0:
5047 			return 1;
5048 		case 1:
5049 			break;
5050 		case 2:
5051 			*merged += (idx == first_idx);
5052 			break;
5053 		default:
5054 			WARN_ON(1);
5055 			return 0;
5056 		}
5057 	}
5058 	return 0;
5059 }
5060 
5061 static int
5062 __lock_set_class(struct lockdep_map *lock, const char *name,
5063 		 struct lock_class_key *key, unsigned int subclass,
5064 		 unsigned long ip)
5065 {
5066 	struct task_struct *curr = current;
5067 	unsigned int depth, merged = 0;
5068 	struct held_lock *hlock;
5069 	struct lock_class *class;
5070 	int i;
5071 
5072 	if (unlikely(!debug_locks))
5073 		return 0;
5074 
5075 	depth = curr->lockdep_depth;
5076 	/*
5077 	 * This function is about (re)setting the class of a held lock,
5078 	 * yet we're not actually holding any locks. Naughty user!
5079 	 */
5080 	if (DEBUG_LOCKS_WARN_ON(!depth))
5081 		return 0;
5082 
5083 	hlock = find_held_lock(curr, lock, depth, &i);
5084 	if (!hlock) {
5085 		print_unlock_imbalance_bug(curr, lock, ip);
5086 		return 0;
5087 	}
5088 
5089 	lockdep_init_map_waits(lock, name, key, 0,
5090 			       lock->wait_type_inner,
5091 			       lock->wait_type_outer);
5092 	class = register_lock_class(lock, subclass, 0);
5093 	hlock->class_idx = class - lock_classes;
5094 
5095 	curr->lockdep_depth = i;
5096 	curr->curr_chain_key = hlock->prev_chain_key;
5097 
5098 	if (reacquire_held_locks(curr, depth, i, &merged))
5099 		return 0;
5100 
5101 	/*
5102 	 * I took it apart and put it back together again, except now I have
5103 	 * these 'spare' parts.. where shall I put them.
5104 	 */
5105 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5106 		return 0;
5107 	return 1;
5108 }
5109 
5110 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5111 {
5112 	struct task_struct *curr = current;
5113 	unsigned int depth, merged = 0;
5114 	struct held_lock *hlock;
5115 	int i;
5116 
5117 	if (unlikely(!debug_locks))
5118 		return 0;
5119 
5120 	depth = curr->lockdep_depth;
5121 	/*
5122 	 * This function is about (re)setting the class of a held lock,
5123 	 * yet we're not actually holding any locks. Naughty user!
5124 	 */
5125 	if (DEBUG_LOCKS_WARN_ON(!depth))
5126 		return 0;
5127 
5128 	hlock = find_held_lock(curr, lock, depth, &i);
5129 	if (!hlock) {
5130 		print_unlock_imbalance_bug(curr, lock, ip);
5131 		return 0;
5132 	}
5133 
5134 	curr->lockdep_depth = i;
5135 	curr->curr_chain_key = hlock->prev_chain_key;
5136 
5137 	WARN(hlock->read, "downgrading a read lock");
5138 	hlock->read = 1;
5139 	hlock->acquire_ip = ip;
5140 
5141 	if (reacquire_held_locks(curr, depth, i, &merged))
5142 		return 0;
5143 
5144 	/* Merging can't happen with unchanged classes.. */
5145 	if (DEBUG_LOCKS_WARN_ON(merged))
5146 		return 0;
5147 
5148 	/*
5149 	 * I took it apart and put it back together again, except now I have
5150 	 * these 'spare' parts.. where shall I put them.
5151 	 */
5152 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5153 		return 0;
5154 
5155 	return 1;
5156 }
5157 
5158 /*
5159  * Remove the lock from the list of currently held locks - this gets
5160  * called on mutex_unlock()/spin_unlock*() (or on a failed
5161  * mutex_lock_interruptible()).
5162  */
5163 static int
5164 __lock_release(struct lockdep_map *lock, unsigned long ip)
5165 {
5166 	struct task_struct *curr = current;
5167 	unsigned int depth, merged = 1;
5168 	struct held_lock *hlock;
5169 	int i;
5170 
5171 	if (unlikely(!debug_locks))
5172 		return 0;
5173 
5174 	depth = curr->lockdep_depth;
5175 	/*
5176 	 * So we're all set to release this lock.. wait what lock? We don't
5177 	 * own any locks, you've been drinking again?
5178 	 */
5179 	if (depth <= 0) {
5180 		print_unlock_imbalance_bug(curr, lock, ip);
5181 		return 0;
5182 	}
5183 
5184 	/*
5185 	 * Check whether the lock exists in the current stack
5186 	 * of held locks:
5187 	 */
5188 	hlock = find_held_lock(curr, lock, depth, &i);
5189 	if (!hlock) {
5190 		print_unlock_imbalance_bug(curr, lock, ip);
5191 		return 0;
5192 	}
5193 
5194 	if (hlock->instance == lock)
5195 		lock_release_holdtime(hlock);
5196 
5197 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5198 
5199 	if (hlock->references) {
5200 		hlock->references--;
5201 		if (hlock->references) {
5202 			/*
5203 			 * We had, and after removing one, still have
5204 			 * references, the current lock stack is still
5205 			 * valid. We're done!
5206 			 */
5207 			return 1;
5208 		}
5209 	}
5210 
5211 	/*
5212 	 * We have the right lock to unlock, 'hlock' points to it.
5213 	 * Now we remove it from the stack, and add back the other
5214 	 * entries (if any), recalculating the hash along the way:
5215 	 */
5216 
5217 	curr->lockdep_depth = i;
5218 	curr->curr_chain_key = hlock->prev_chain_key;
5219 
5220 	/*
5221 	 * The most likely case is when the unlock is on the innermost
5222 	 * lock. In this case, we are done!
5223 	 */
5224 	if (i == depth-1)
5225 		return 1;
5226 
5227 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5228 		return 0;
5229 
5230 	/*
5231 	 * We had N bottles of beer on the wall, we drank one, but now
5232 	 * there's not N-1 bottles of beer left on the wall...
5233 	 * Pouring two of the bottles together is acceptable.
5234 	 */
5235 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5236 
5237 	/*
5238 	 * Since reacquire_held_locks() would have called check_chain_key()
5239 	 * indirectly via __lock_acquire(), we don't need to do it again
5240 	 * on return.
5241 	 */
5242 	return 0;
5243 }
5244 
5245 static __always_inline
5246 int __lock_is_held(const struct lockdep_map *lock, int read)
5247 {
5248 	struct task_struct *curr = current;
5249 	int i;
5250 
5251 	for (i = 0; i < curr->lockdep_depth; i++) {
5252 		struct held_lock *hlock = curr->held_locks + i;
5253 
5254 		if (match_held_lock(hlock, lock)) {
5255 			if (read == -1 || hlock->read == read)
5256 				return 1;
5257 
5258 			return 0;
5259 		}
5260 	}
5261 
5262 	return 0;
5263 }
5264 
5265 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5266 {
5267 	struct pin_cookie cookie = NIL_COOKIE;
5268 	struct task_struct *curr = current;
5269 	int i;
5270 
5271 	if (unlikely(!debug_locks))
5272 		return cookie;
5273 
5274 	for (i = 0; i < curr->lockdep_depth; i++) {
5275 		struct held_lock *hlock = curr->held_locks + i;
5276 
5277 		if (match_held_lock(hlock, lock)) {
5278 			/*
5279 			 * Grab 16bits of randomness; this is sufficient to not
5280 			 * be guessable and still allows some pin nesting in
5281 			 * our u32 pin_count.
5282 			 */
5283 			cookie.val = 1 + (prandom_u32() >> 16);
5284 			hlock->pin_count += cookie.val;
5285 			return cookie;
5286 		}
5287 	}
5288 
5289 	WARN(1, "pinning an unheld lock\n");
5290 	return cookie;
5291 }
5292 
5293 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5294 {
5295 	struct task_struct *curr = current;
5296 	int i;
5297 
5298 	if (unlikely(!debug_locks))
5299 		return;
5300 
5301 	for (i = 0; i < curr->lockdep_depth; i++) {
5302 		struct held_lock *hlock = curr->held_locks + i;
5303 
5304 		if (match_held_lock(hlock, lock)) {
5305 			hlock->pin_count += cookie.val;
5306 			return;
5307 		}
5308 	}
5309 
5310 	WARN(1, "pinning an unheld lock\n");
5311 }
5312 
5313 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5314 {
5315 	struct task_struct *curr = current;
5316 	int i;
5317 
5318 	if (unlikely(!debug_locks))
5319 		return;
5320 
5321 	for (i = 0; i < curr->lockdep_depth; i++) {
5322 		struct held_lock *hlock = curr->held_locks + i;
5323 
5324 		if (match_held_lock(hlock, lock)) {
5325 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5326 				return;
5327 
5328 			hlock->pin_count -= cookie.val;
5329 
5330 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5331 				hlock->pin_count = 0;
5332 
5333 			return;
5334 		}
5335 	}
5336 
5337 	WARN(1, "unpinning an unheld lock\n");
5338 }
5339 
5340 /*
5341  * Check whether we follow the irq-flags state precisely:
5342  */
5343 static noinstr void check_flags(unsigned long flags)
5344 {
5345 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5346 	if (!debug_locks)
5347 		return;
5348 
5349 	/* Get the warning out..  */
5350 	instrumentation_begin();
5351 
5352 	if (irqs_disabled_flags(flags)) {
5353 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5354 			printk("possible reason: unannotated irqs-off.\n");
5355 		}
5356 	} else {
5357 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5358 			printk("possible reason: unannotated irqs-on.\n");
5359 		}
5360 	}
5361 
5362 	/*
5363 	 * We dont accurately track softirq state in e.g.
5364 	 * hardirq contexts (such as on 4KSTACKS), so only
5365 	 * check if not in hardirq contexts:
5366 	 */
5367 	if (!hardirq_count()) {
5368 		if (softirq_count()) {
5369 			/* like the above, but with softirqs */
5370 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5371 		} else {
5372 			/* lick the above, does it taste good? */
5373 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5374 		}
5375 	}
5376 
5377 	if (!debug_locks)
5378 		print_irqtrace_events(current);
5379 
5380 	instrumentation_end();
5381 #endif
5382 }
5383 
5384 void lock_set_class(struct lockdep_map *lock, const char *name,
5385 		    struct lock_class_key *key, unsigned int subclass,
5386 		    unsigned long ip)
5387 {
5388 	unsigned long flags;
5389 
5390 	if (unlikely(!lockdep_enabled()))
5391 		return;
5392 
5393 	raw_local_irq_save(flags);
5394 	lockdep_recursion_inc();
5395 	check_flags(flags);
5396 	if (__lock_set_class(lock, name, key, subclass, ip))
5397 		check_chain_key(current);
5398 	lockdep_recursion_finish();
5399 	raw_local_irq_restore(flags);
5400 }
5401 EXPORT_SYMBOL_GPL(lock_set_class);
5402 
5403 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5404 {
5405 	unsigned long flags;
5406 
5407 	if (unlikely(!lockdep_enabled()))
5408 		return;
5409 
5410 	raw_local_irq_save(flags);
5411 	lockdep_recursion_inc();
5412 	check_flags(flags);
5413 	if (__lock_downgrade(lock, ip))
5414 		check_chain_key(current);
5415 	lockdep_recursion_finish();
5416 	raw_local_irq_restore(flags);
5417 }
5418 EXPORT_SYMBOL_GPL(lock_downgrade);
5419 
5420 /* NMI context !!! */
5421 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5422 {
5423 #ifdef CONFIG_PROVE_LOCKING
5424 	struct lock_class *class = look_up_lock_class(lock, subclass);
5425 	unsigned long mask = LOCKF_USED;
5426 
5427 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5428 	if (!class)
5429 		return;
5430 
5431 	/*
5432 	 * READ locks only conflict with USED, such that if we only ever use
5433 	 * READ locks, there is no deadlock possible -- RCU.
5434 	 */
5435 	if (!hlock->read)
5436 		mask |= LOCKF_USED_READ;
5437 
5438 	if (!(class->usage_mask & mask))
5439 		return;
5440 
5441 	hlock->class_idx = class - lock_classes;
5442 
5443 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5444 #endif
5445 }
5446 
5447 static bool lockdep_nmi(void)
5448 {
5449 	if (raw_cpu_read(lockdep_recursion))
5450 		return false;
5451 
5452 	if (!in_nmi())
5453 		return false;
5454 
5455 	return true;
5456 }
5457 
5458 /*
5459  * read_lock() is recursive if:
5460  * 1. We force lockdep think this way in selftests or
5461  * 2. The implementation is not queued read/write lock or
5462  * 3. The locker is at an in_interrupt() context.
5463  */
5464 bool read_lock_is_recursive(void)
5465 {
5466 	return force_read_lock_recursive ||
5467 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5468 	       in_interrupt();
5469 }
5470 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5471 
5472 /*
5473  * We are not always called with irqs disabled - do that here,
5474  * and also avoid lockdep recursion:
5475  */
5476 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5477 			  int trylock, int read, int check,
5478 			  struct lockdep_map *nest_lock, unsigned long ip)
5479 {
5480 	unsigned long flags;
5481 
5482 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5483 
5484 	if (!debug_locks)
5485 		return;
5486 
5487 	if (unlikely(!lockdep_enabled())) {
5488 		/* XXX allow trylock from NMI ?!? */
5489 		if (lockdep_nmi() && !trylock) {
5490 			struct held_lock hlock;
5491 
5492 			hlock.acquire_ip = ip;
5493 			hlock.instance = lock;
5494 			hlock.nest_lock = nest_lock;
5495 			hlock.irq_context = 2; // XXX
5496 			hlock.trylock = trylock;
5497 			hlock.read = read;
5498 			hlock.check = check;
5499 			hlock.hardirqs_off = true;
5500 			hlock.references = 0;
5501 
5502 			verify_lock_unused(lock, &hlock, subclass);
5503 		}
5504 		return;
5505 	}
5506 
5507 	raw_local_irq_save(flags);
5508 	check_flags(flags);
5509 
5510 	lockdep_recursion_inc();
5511 	__lock_acquire(lock, subclass, trylock, read, check,
5512 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5513 	lockdep_recursion_finish();
5514 	raw_local_irq_restore(flags);
5515 }
5516 EXPORT_SYMBOL_GPL(lock_acquire);
5517 
5518 void lock_release(struct lockdep_map *lock, unsigned long ip)
5519 {
5520 	unsigned long flags;
5521 
5522 	trace_lock_release(lock, ip);
5523 
5524 	if (unlikely(!lockdep_enabled()))
5525 		return;
5526 
5527 	raw_local_irq_save(flags);
5528 	check_flags(flags);
5529 
5530 	lockdep_recursion_inc();
5531 	if (__lock_release(lock, ip))
5532 		check_chain_key(current);
5533 	lockdep_recursion_finish();
5534 	raw_local_irq_restore(flags);
5535 }
5536 EXPORT_SYMBOL_GPL(lock_release);
5537 
5538 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5539 {
5540 	unsigned long flags;
5541 	int ret = 0;
5542 
5543 	if (unlikely(!lockdep_enabled()))
5544 		return 1; /* avoid false negative lockdep_assert_held() */
5545 
5546 	raw_local_irq_save(flags);
5547 	check_flags(flags);
5548 
5549 	lockdep_recursion_inc();
5550 	ret = __lock_is_held(lock, read);
5551 	lockdep_recursion_finish();
5552 	raw_local_irq_restore(flags);
5553 
5554 	return ret;
5555 }
5556 EXPORT_SYMBOL_GPL(lock_is_held_type);
5557 NOKPROBE_SYMBOL(lock_is_held_type);
5558 
5559 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5560 {
5561 	struct pin_cookie cookie = NIL_COOKIE;
5562 	unsigned long flags;
5563 
5564 	if (unlikely(!lockdep_enabled()))
5565 		return cookie;
5566 
5567 	raw_local_irq_save(flags);
5568 	check_flags(flags);
5569 
5570 	lockdep_recursion_inc();
5571 	cookie = __lock_pin_lock(lock);
5572 	lockdep_recursion_finish();
5573 	raw_local_irq_restore(flags);
5574 
5575 	return cookie;
5576 }
5577 EXPORT_SYMBOL_GPL(lock_pin_lock);
5578 
5579 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5580 {
5581 	unsigned long flags;
5582 
5583 	if (unlikely(!lockdep_enabled()))
5584 		return;
5585 
5586 	raw_local_irq_save(flags);
5587 	check_flags(flags);
5588 
5589 	lockdep_recursion_inc();
5590 	__lock_repin_lock(lock, cookie);
5591 	lockdep_recursion_finish();
5592 	raw_local_irq_restore(flags);
5593 }
5594 EXPORT_SYMBOL_GPL(lock_repin_lock);
5595 
5596 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5597 {
5598 	unsigned long flags;
5599 
5600 	if (unlikely(!lockdep_enabled()))
5601 		return;
5602 
5603 	raw_local_irq_save(flags);
5604 	check_flags(flags);
5605 
5606 	lockdep_recursion_inc();
5607 	__lock_unpin_lock(lock, cookie);
5608 	lockdep_recursion_finish();
5609 	raw_local_irq_restore(flags);
5610 }
5611 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5612 
5613 #ifdef CONFIG_LOCK_STAT
5614 static void print_lock_contention_bug(struct task_struct *curr,
5615 				      struct lockdep_map *lock,
5616 				      unsigned long ip)
5617 {
5618 	if (!debug_locks_off())
5619 		return;
5620 	if (debug_locks_silent)
5621 		return;
5622 
5623 	pr_warn("\n");
5624 	pr_warn("=================================\n");
5625 	pr_warn("WARNING: bad contention detected!\n");
5626 	print_kernel_ident();
5627 	pr_warn("---------------------------------\n");
5628 	pr_warn("%s/%d is trying to contend lock (",
5629 		curr->comm, task_pid_nr(curr));
5630 	print_lockdep_cache(lock);
5631 	pr_cont(") at:\n");
5632 	print_ip_sym(KERN_WARNING, ip);
5633 	pr_warn("but there are no locks held!\n");
5634 	pr_warn("\nother info that might help us debug this:\n");
5635 	lockdep_print_held_locks(curr);
5636 
5637 	pr_warn("\nstack backtrace:\n");
5638 	dump_stack();
5639 }
5640 
5641 static void
5642 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5643 {
5644 	struct task_struct *curr = current;
5645 	struct held_lock *hlock;
5646 	struct lock_class_stats *stats;
5647 	unsigned int depth;
5648 	int i, contention_point, contending_point;
5649 
5650 	depth = curr->lockdep_depth;
5651 	/*
5652 	 * Whee, we contended on this lock, except it seems we're not
5653 	 * actually trying to acquire anything much at all..
5654 	 */
5655 	if (DEBUG_LOCKS_WARN_ON(!depth))
5656 		return;
5657 
5658 	hlock = find_held_lock(curr, lock, depth, &i);
5659 	if (!hlock) {
5660 		print_lock_contention_bug(curr, lock, ip);
5661 		return;
5662 	}
5663 
5664 	if (hlock->instance != lock)
5665 		return;
5666 
5667 	hlock->waittime_stamp = lockstat_clock();
5668 
5669 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5670 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5671 				      lock->ip);
5672 
5673 	stats = get_lock_stats(hlock_class(hlock));
5674 	if (contention_point < LOCKSTAT_POINTS)
5675 		stats->contention_point[contention_point]++;
5676 	if (contending_point < LOCKSTAT_POINTS)
5677 		stats->contending_point[contending_point]++;
5678 	if (lock->cpu != smp_processor_id())
5679 		stats->bounces[bounce_contended + !!hlock->read]++;
5680 }
5681 
5682 static void
5683 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5684 {
5685 	struct task_struct *curr = current;
5686 	struct held_lock *hlock;
5687 	struct lock_class_stats *stats;
5688 	unsigned int depth;
5689 	u64 now, waittime = 0;
5690 	int i, cpu;
5691 
5692 	depth = curr->lockdep_depth;
5693 	/*
5694 	 * Yay, we acquired ownership of this lock we didn't try to
5695 	 * acquire, how the heck did that happen?
5696 	 */
5697 	if (DEBUG_LOCKS_WARN_ON(!depth))
5698 		return;
5699 
5700 	hlock = find_held_lock(curr, lock, depth, &i);
5701 	if (!hlock) {
5702 		print_lock_contention_bug(curr, lock, _RET_IP_);
5703 		return;
5704 	}
5705 
5706 	if (hlock->instance != lock)
5707 		return;
5708 
5709 	cpu = smp_processor_id();
5710 	if (hlock->waittime_stamp) {
5711 		now = lockstat_clock();
5712 		waittime = now - hlock->waittime_stamp;
5713 		hlock->holdtime_stamp = now;
5714 	}
5715 
5716 	stats = get_lock_stats(hlock_class(hlock));
5717 	if (waittime) {
5718 		if (hlock->read)
5719 			lock_time_inc(&stats->read_waittime, waittime);
5720 		else
5721 			lock_time_inc(&stats->write_waittime, waittime);
5722 	}
5723 	if (lock->cpu != cpu)
5724 		stats->bounces[bounce_acquired + !!hlock->read]++;
5725 
5726 	lock->cpu = cpu;
5727 	lock->ip = ip;
5728 }
5729 
5730 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5731 {
5732 	unsigned long flags;
5733 
5734 	trace_lock_acquired(lock, ip);
5735 
5736 	if (unlikely(!lock_stat || !lockdep_enabled()))
5737 		return;
5738 
5739 	raw_local_irq_save(flags);
5740 	check_flags(flags);
5741 	lockdep_recursion_inc();
5742 	__lock_contended(lock, ip);
5743 	lockdep_recursion_finish();
5744 	raw_local_irq_restore(flags);
5745 }
5746 EXPORT_SYMBOL_GPL(lock_contended);
5747 
5748 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5749 {
5750 	unsigned long flags;
5751 
5752 	trace_lock_contended(lock, ip);
5753 
5754 	if (unlikely(!lock_stat || !lockdep_enabled()))
5755 		return;
5756 
5757 	raw_local_irq_save(flags);
5758 	check_flags(flags);
5759 	lockdep_recursion_inc();
5760 	__lock_acquired(lock, ip);
5761 	lockdep_recursion_finish();
5762 	raw_local_irq_restore(flags);
5763 }
5764 EXPORT_SYMBOL_GPL(lock_acquired);
5765 #endif
5766 
5767 /*
5768  * Used by the testsuite, sanitize the validator state
5769  * after a simulated failure:
5770  */
5771 
5772 void lockdep_reset(void)
5773 {
5774 	unsigned long flags;
5775 	int i;
5776 
5777 	raw_local_irq_save(flags);
5778 	lockdep_init_task(current);
5779 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5780 	nr_hardirq_chains = 0;
5781 	nr_softirq_chains = 0;
5782 	nr_process_chains = 0;
5783 	debug_locks = 1;
5784 	for (i = 0; i < CHAINHASH_SIZE; i++)
5785 		INIT_HLIST_HEAD(chainhash_table + i);
5786 	raw_local_irq_restore(flags);
5787 }
5788 
5789 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5790 static void remove_class_from_lock_chain(struct pending_free *pf,
5791 					 struct lock_chain *chain,
5792 					 struct lock_class *class)
5793 {
5794 #ifdef CONFIG_PROVE_LOCKING
5795 	int i;
5796 
5797 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5798 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5799 			continue;
5800 		/*
5801 		 * Each lock class occurs at most once in a lock chain so once
5802 		 * we found a match we can break out of this loop.
5803 		 */
5804 		goto free_lock_chain;
5805 	}
5806 	/* Since the chain has not been modified, return. */
5807 	return;
5808 
5809 free_lock_chain:
5810 	free_chain_hlocks(chain->base, chain->depth);
5811 	/* Overwrite the chain key for concurrent RCU readers. */
5812 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5813 	dec_chains(chain->irq_context);
5814 
5815 	/*
5816 	 * Note: calling hlist_del_rcu() from inside a
5817 	 * hlist_for_each_entry_rcu() loop is safe.
5818 	 */
5819 	hlist_del_rcu(&chain->entry);
5820 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5821 	nr_zapped_lock_chains++;
5822 #endif
5823 }
5824 
5825 /* Must be called with the graph lock held. */
5826 static void remove_class_from_lock_chains(struct pending_free *pf,
5827 					  struct lock_class *class)
5828 {
5829 	struct lock_chain *chain;
5830 	struct hlist_head *head;
5831 	int i;
5832 
5833 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5834 		head = chainhash_table + i;
5835 		hlist_for_each_entry_rcu(chain, head, entry) {
5836 			remove_class_from_lock_chain(pf, chain, class);
5837 		}
5838 	}
5839 }
5840 
5841 /*
5842  * Remove all references to a lock class. The caller must hold the graph lock.
5843  */
5844 static void zap_class(struct pending_free *pf, struct lock_class *class)
5845 {
5846 	struct lock_list *entry;
5847 	int i;
5848 
5849 	WARN_ON_ONCE(!class->key);
5850 
5851 	/*
5852 	 * Remove all dependencies this lock is
5853 	 * involved in:
5854 	 */
5855 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5856 		entry = list_entries + i;
5857 		if (entry->class != class && entry->links_to != class)
5858 			continue;
5859 		__clear_bit(i, list_entries_in_use);
5860 		nr_list_entries--;
5861 		list_del_rcu(&entry->entry);
5862 	}
5863 	if (list_empty(&class->locks_after) &&
5864 	    list_empty(&class->locks_before)) {
5865 		list_move_tail(&class->lock_entry, &pf->zapped);
5866 		hlist_del_rcu(&class->hash_entry);
5867 		WRITE_ONCE(class->key, NULL);
5868 		WRITE_ONCE(class->name, NULL);
5869 		nr_lock_classes--;
5870 		__clear_bit(class - lock_classes, lock_classes_in_use);
5871 	} else {
5872 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5873 			  class->name);
5874 	}
5875 
5876 	remove_class_from_lock_chains(pf, class);
5877 	nr_zapped_classes++;
5878 }
5879 
5880 static void reinit_class(struct lock_class *class)
5881 {
5882 	void *const p = class;
5883 	const unsigned int offset = offsetof(struct lock_class, key);
5884 
5885 	WARN_ON_ONCE(!class->lock_entry.next);
5886 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5887 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5888 	memset(p + offset, 0, sizeof(*class) - offset);
5889 	WARN_ON_ONCE(!class->lock_entry.next);
5890 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5891 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5892 }
5893 
5894 static inline int within(const void *addr, void *start, unsigned long size)
5895 {
5896 	return addr >= start && addr < start + size;
5897 }
5898 
5899 static bool inside_selftest(void)
5900 {
5901 	return current == lockdep_selftest_task_struct;
5902 }
5903 
5904 /* The caller must hold the graph lock. */
5905 static struct pending_free *get_pending_free(void)
5906 {
5907 	return delayed_free.pf + delayed_free.index;
5908 }
5909 
5910 static void free_zapped_rcu(struct rcu_head *cb);
5911 
5912 /*
5913  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5914  * the graph lock held.
5915  */
5916 static void call_rcu_zapped(struct pending_free *pf)
5917 {
5918 	WARN_ON_ONCE(inside_selftest());
5919 
5920 	if (list_empty(&pf->zapped))
5921 		return;
5922 
5923 	if (delayed_free.scheduled)
5924 		return;
5925 
5926 	delayed_free.scheduled = true;
5927 
5928 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5929 	delayed_free.index ^= 1;
5930 
5931 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5932 }
5933 
5934 /* The caller must hold the graph lock. May be called from RCU context. */
5935 static void __free_zapped_classes(struct pending_free *pf)
5936 {
5937 	struct lock_class *class;
5938 
5939 	check_data_structures();
5940 
5941 	list_for_each_entry(class, &pf->zapped, lock_entry)
5942 		reinit_class(class);
5943 
5944 	list_splice_init(&pf->zapped, &free_lock_classes);
5945 
5946 #ifdef CONFIG_PROVE_LOCKING
5947 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5948 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5949 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5950 #endif
5951 }
5952 
5953 static void free_zapped_rcu(struct rcu_head *ch)
5954 {
5955 	struct pending_free *pf;
5956 	unsigned long flags;
5957 
5958 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5959 		return;
5960 
5961 	raw_local_irq_save(flags);
5962 	lockdep_lock();
5963 
5964 	/* closed head */
5965 	pf = delayed_free.pf + (delayed_free.index ^ 1);
5966 	__free_zapped_classes(pf);
5967 	delayed_free.scheduled = false;
5968 
5969 	/*
5970 	 * If there's anything on the open list, close and start a new callback.
5971 	 */
5972 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
5973 
5974 	lockdep_unlock();
5975 	raw_local_irq_restore(flags);
5976 }
5977 
5978 /*
5979  * Remove all lock classes from the class hash table and from the
5980  * all_lock_classes list whose key or name is in the address range [start,
5981  * start + size). Move these lock classes to the zapped_classes list. Must
5982  * be called with the graph lock held.
5983  */
5984 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5985 				     unsigned long size)
5986 {
5987 	struct lock_class *class;
5988 	struct hlist_head *head;
5989 	int i;
5990 
5991 	/* Unhash all classes that were created by a module. */
5992 	for (i = 0; i < CLASSHASH_SIZE; i++) {
5993 		head = classhash_table + i;
5994 		hlist_for_each_entry_rcu(class, head, hash_entry) {
5995 			if (!within(class->key, start, size) &&
5996 			    !within(class->name, start, size))
5997 				continue;
5998 			zap_class(pf, class);
5999 		}
6000 	}
6001 }
6002 
6003 /*
6004  * Used in module.c to remove lock classes from memory that is going to be
6005  * freed; and possibly re-used by other modules.
6006  *
6007  * We will have had one synchronize_rcu() before getting here, so we're
6008  * guaranteed nobody will look up these exact classes -- they're properly dead
6009  * but still allocated.
6010  */
6011 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6012 {
6013 	struct pending_free *pf;
6014 	unsigned long flags;
6015 
6016 	init_data_structures_once();
6017 
6018 	raw_local_irq_save(flags);
6019 	lockdep_lock();
6020 	pf = get_pending_free();
6021 	__lockdep_free_key_range(pf, start, size);
6022 	call_rcu_zapped(pf);
6023 	lockdep_unlock();
6024 	raw_local_irq_restore(flags);
6025 
6026 	/*
6027 	 * Wait for any possible iterators from look_up_lock_class() to pass
6028 	 * before continuing to free the memory they refer to.
6029 	 */
6030 	synchronize_rcu();
6031 }
6032 
6033 /*
6034  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6035  * Ignores debug_locks. Must only be used by the lockdep selftests.
6036  */
6037 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6038 {
6039 	struct pending_free *pf = delayed_free.pf;
6040 	unsigned long flags;
6041 
6042 	init_data_structures_once();
6043 
6044 	raw_local_irq_save(flags);
6045 	lockdep_lock();
6046 	__lockdep_free_key_range(pf, start, size);
6047 	__free_zapped_classes(pf);
6048 	lockdep_unlock();
6049 	raw_local_irq_restore(flags);
6050 }
6051 
6052 void lockdep_free_key_range(void *start, unsigned long size)
6053 {
6054 	init_data_structures_once();
6055 
6056 	if (inside_selftest())
6057 		lockdep_free_key_range_imm(start, size);
6058 	else
6059 		lockdep_free_key_range_reg(start, size);
6060 }
6061 
6062 /*
6063  * Check whether any element of the @lock->class_cache[] array refers to a
6064  * registered lock class. The caller must hold either the graph lock or the
6065  * RCU read lock.
6066  */
6067 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6068 {
6069 	struct lock_class *class;
6070 	struct hlist_head *head;
6071 	int i, j;
6072 
6073 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6074 		head = classhash_table + i;
6075 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6076 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6077 				if (lock->class_cache[j] == class)
6078 					return true;
6079 		}
6080 	}
6081 	return false;
6082 }
6083 
6084 /* The caller must hold the graph lock. Does not sleep. */
6085 static void __lockdep_reset_lock(struct pending_free *pf,
6086 				 struct lockdep_map *lock)
6087 {
6088 	struct lock_class *class;
6089 	int j;
6090 
6091 	/*
6092 	 * Remove all classes this lock might have:
6093 	 */
6094 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6095 		/*
6096 		 * If the class exists we look it up and zap it:
6097 		 */
6098 		class = look_up_lock_class(lock, j);
6099 		if (class)
6100 			zap_class(pf, class);
6101 	}
6102 	/*
6103 	 * Debug check: in the end all mapped classes should
6104 	 * be gone.
6105 	 */
6106 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6107 		debug_locks_off();
6108 }
6109 
6110 /*
6111  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6112  * released data structures from RCU context.
6113  */
6114 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6115 {
6116 	struct pending_free *pf;
6117 	unsigned long flags;
6118 	int locked;
6119 
6120 	raw_local_irq_save(flags);
6121 	locked = graph_lock();
6122 	if (!locked)
6123 		goto out_irq;
6124 
6125 	pf = get_pending_free();
6126 	__lockdep_reset_lock(pf, lock);
6127 	call_rcu_zapped(pf);
6128 
6129 	graph_unlock();
6130 out_irq:
6131 	raw_local_irq_restore(flags);
6132 }
6133 
6134 /*
6135  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6136  * lockdep selftests.
6137  */
6138 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6139 {
6140 	struct pending_free *pf = delayed_free.pf;
6141 	unsigned long flags;
6142 
6143 	raw_local_irq_save(flags);
6144 	lockdep_lock();
6145 	__lockdep_reset_lock(pf, lock);
6146 	__free_zapped_classes(pf);
6147 	lockdep_unlock();
6148 	raw_local_irq_restore(flags);
6149 }
6150 
6151 void lockdep_reset_lock(struct lockdep_map *lock)
6152 {
6153 	init_data_structures_once();
6154 
6155 	if (inside_selftest())
6156 		lockdep_reset_lock_imm(lock);
6157 	else
6158 		lockdep_reset_lock_reg(lock);
6159 }
6160 
6161 /* Unregister a dynamically allocated key. */
6162 void lockdep_unregister_key(struct lock_class_key *key)
6163 {
6164 	struct hlist_head *hash_head = keyhashentry(key);
6165 	struct lock_class_key *k;
6166 	struct pending_free *pf;
6167 	unsigned long flags;
6168 	bool found = false;
6169 
6170 	might_sleep();
6171 
6172 	if (WARN_ON_ONCE(static_obj(key)))
6173 		return;
6174 
6175 	raw_local_irq_save(flags);
6176 	if (!graph_lock())
6177 		goto out_irq;
6178 
6179 	pf = get_pending_free();
6180 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6181 		if (k == key) {
6182 			hlist_del_rcu(&k->hash_entry);
6183 			found = true;
6184 			break;
6185 		}
6186 	}
6187 	WARN_ON_ONCE(!found);
6188 	__lockdep_free_key_range(pf, key, 1);
6189 	call_rcu_zapped(pf);
6190 	graph_unlock();
6191 out_irq:
6192 	raw_local_irq_restore(flags);
6193 
6194 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6195 	synchronize_rcu();
6196 }
6197 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6198 
6199 void __init lockdep_init(void)
6200 {
6201 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6202 
6203 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6204 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6205 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6206 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6207 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6208 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6209 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6210 
6211 	printk(" memory used by lock dependency info: %zu kB\n",
6212 	       (sizeof(lock_classes) +
6213 		sizeof(lock_classes_in_use) +
6214 		sizeof(classhash_table) +
6215 		sizeof(list_entries) +
6216 		sizeof(list_entries_in_use) +
6217 		sizeof(chainhash_table) +
6218 		sizeof(delayed_free)
6219 #ifdef CONFIG_PROVE_LOCKING
6220 		+ sizeof(lock_cq)
6221 		+ sizeof(lock_chains)
6222 		+ sizeof(lock_chains_in_use)
6223 		+ sizeof(chain_hlocks)
6224 #endif
6225 		) / 1024
6226 		);
6227 
6228 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6229 	printk(" memory used for stack traces: %zu kB\n",
6230 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6231 	       );
6232 #endif
6233 
6234 	printk(" per task-struct memory footprint: %zu bytes\n",
6235 	       sizeof(((struct task_struct *)NULL)->held_locks));
6236 }
6237 
6238 static void
6239 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6240 		     const void *mem_to, struct held_lock *hlock)
6241 {
6242 	if (!debug_locks_off())
6243 		return;
6244 	if (debug_locks_silent)
6245 		return;
6246 
6247 	pr_warn("\n");
6248 	pr_warn("=========================\n");
6249 	pr_warn("WARNING: held lock freed!\n");
6250 	print_kernel_ident();
6251 	pr_warn("-------------------------\n");
6252 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6253 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6254 	print_lock(hlock);
6255 	lockdep_print_held_locks(curr);
6256 
6257 	pr_warn("\nstack backtrace:\n");
6258 	dump_stack();
6259 }
6260 
6261 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6262 				const void* lock_from, unsigned long lock_len)
6263 {
6264 	return lock_from + lock_len <= mem_from ||
6265 		mem_from + mem_len <= lock_from;
6266 }
6267 
6268 /*
6269  * Called when kernel memory is freed (or unmapped), or if a lock
6270  * is destroyed or reinitialized - this code checks whether there is
6271  * any held lock in the memory range of <from> to <to>:
6272  */
6273 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6274 {
6275 	struct task_struct *curr = current;
6276 	struct held_lock *hlock;
6277 	unsigned long flags;
6278 	int i;
6279 
6280 	if (unlikely(!debug_locks))
6281 		return;
6282 
6283 	raw_local_irq_save(flags);
6284 	for (i = 0; i < curr->lockdep_depth; i++) {
6285 		hlock = curr->held_locks + i;
6286 
6287 		if (not_in_range(mem_from, mem_len, hlock->instance,
6288 					sizeof(*hlock->instance)))
6289 			continue;
6290 
6291 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6292 		break;
6293 	}
6294 	raw_local_irq_restore(flags);
6295 }
6296 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6297 
6298 static void print_held_locks_bug(void)
6299 {
6300 	if (!debug_locks_off())
6301 		return;
6302 	if (debug_locks_silent)
6303 		return;
6304 
6305 	pr_warn("\n");
6306 	pr_warn("====================================\n");
6307 	pr_warn("WARNING: %s/%d still has locks held!\n",
6308 	       current->comm, task_pid_nr(current));
6309 	print_kernel_ident();
6310 	pr_warn("------------------------------------\n");
6311 	lockdep_print_held_locks(current);
6312 	pr_warn("\nstack backtrace:\n");
6313 	dump_stack();
6314 }
6315 
6316 void debug_check_no_locks_held(void)
6317 {
6318 	if (unlikely(current->lockdep_depth > 0))
6319 		print_held_locks_bug();
6320 }
6321 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6322 
6323 #ifdef __KERNEL__
6324 void debug_show_all_locks(void)
6325 {
6326 	struct task_struct *g, *p;
6327 
6328 	if (unlikely(!debug_locks)) {
6329 		pr_warn("INFO: lockdep is turned off.\n");
6330 		return;
6331 	}
6332 	pr_warn("\nShowing all locks held in the system:\n");
6333 
6334 	rcu_read_lock();
6335 	for_each_process_thread(g, p) {
6336 		if (!p->lockdep_depth)
6337 			continue;
6338 		lockdep_print_held_locks(p);
6339 		touch_nmi_watchdog();
6340 		touch_all_softlockup_watchdogs();
6341 	}
6342 	rcu_read_unlock();
6343 
6344 	pr_warn("\n");
6345 	pr_warn("=============================================\n\n");
6346 }
6347 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6348 #endif
6349 
6350 /*
6351  * Careful: only use this function if you are sure that
6352  * the task cannot run in parallel!
6353  */
6354 void debug_show_held_locks(struct task_struct *task)
6355 {
6356 	if (unlikely(!debug_locks)) {
6357 		printk("INFO: lockdep is turned off.\n");
6358 		return;
6359 	}
6360 	lockdep_print_held_locks(task);
6361 }
6362 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6363 
6364 asmlinkage __visible void lockdep_sys_exit(void)
6365 {
6366 	struct task_struct *curr = current;
6367 
6368 	if (unlikely(curr->lockdep_depth)) {
6369 		if (!debug_locks_off())
6370 			return;
6371 		pr_warn("\n");
6372 		pr_warn("================================================\n");
6373 		pr_warn("WARNING: lock held when returning to user space!\n");
6374 		print_kernel_ident();
6375 		pr_warn("------------------------------------------------\n");
6376 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6377 				curr->comm, curr->pid);
6378 		lockdep_print_held_locks(curr);
6379 	}
6380 
6381 	/*
6382 	 * The lock history for each syscall should be independent. So wipe the
6383 	 * slate clean on return to userspace.
6384 	 */
6385 	lockdep_invariant_state(false);
6386 }
6387 
6388 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6389 {
6390 	struct task_struct *curr = current;
6391 
6392 	/* Note: the following can be executed concurrently, so be careful. */
6393 	pr_warn("\n");
6394 	pr_warn("=============================\n");
6395 	pr_warn("WARNING: suspicious RCU usage\n");
6396 	print_kernel_ident();
6397 	pr_warn("-----------------------------\n");
6398 	pr_warn("%s:%d %s!\n", file, line, s);
6399 	pr_warn("\nother info that might help us debug this:\n\n");
6400 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6401 	       !rcu_lockdep_current_cpu_online()
6402 			? "RCU used illegally from offline CPU!\n"
6403 			: "",
6404 	       rcu_scheduler_active, debug_locks);
6405 
6406 	/*
6407 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6408 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6409 	 * considers that CPU to be in an "extended quiescent state",
6410 	 * which means that RCU will be completely ignoring that CPU.
6411 	 * Therefore, rcu_read_lock() and friends have absolutely no
6412 	 * effect on a CPU running in that state. In other words, even if
6413 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6414 	 * delete data structures out from under it.  RCU really has no
6415 	 * choice here: we need to keep an RCU-free window in idle where
6416 	 * the CPU may possibly enter into low power mode. This way we can
6417 	 * notice an extended quiescent state to other CPUs that started a grace
6418 	 * period. Otherwise we would delay any grace period as long as we run
6419 	 * in the idle task.
6420 	 *
6421 	 * So complain bitterly if someone does call rcu_read_lock(),
6422 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6423 	 */
6424 	if (!rcu_is_watching())
6425 		pr_warn("RCU used illegally from extended quiescent state!\n");
6426 
6427 	lockdep_print_held_locks(curr);
6428 	pr_warn("\nstack backtrace:\n");
6429 	dump_stack();
6430 }
6431 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6432