xref: /openbmc/linux/kernel/locking/lockdep.c (revision 31e67366)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 
58 #include <asm/sections.h>
59 
60 #include "lockdep_internals.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
81 
82 static __always_inline bool lockdep_enabled(void)
83 {
84 	if (!debug_locks)
85 		return false;
86 
87 	if (this_cpu_read(lockdep_recursion))
88 		return false;
89 
90 	if (current->lockdep_recursion)
91 		return false;
92 
93 	return true;
94 }
95 
96 /*
97  * lockdep_lock: protects the lockdep graph, the hashes and the
98  *               class/list/hash allocators.
99  *
100  * This is one of the rare exceptions where it's justified
101  * to use a raw spinlock - we really dont want the spinlock
102  * code to recurse back into the lockdep code...
103  */
104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
105 static struct task_struct *__owner;
106 
107 static inline void lockdep_lock(void)
108 {
109 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
110 
111 	__this_cpu_inc(lockdep_recursion);
112 	arch_spin_lock(&__lock);
113 	__owner = current;
114 }
115 
116 static inline void lockdep_unlock(void)
117 {
118 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
119 
120 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
121 		return;
122 
123 	__owner = NULL;
124 	arch_spin_unlock(&__lock);
125 	__this_cpu_dec(lockdep_recursion);
126 }
127 
128 static inline bool lockdep_assert_locked(void)
129 {
130 	return DEBUG_LOCKS_WARN_ON(__owner != current);
131 }
132 
133 static struct task_struct *lockdep_selftest_task_struct;
134 
135 
136 static int graph_lock(void)
137 {
138 	lockdep_lock();
139 	/*
140 	 * Make sure that if another CPU detected a bug while
141 	 * walking the graph we dont change it (while the other
142 	 * CPU is busy printing out stuff with the graph lock
143 	 * dropped already)
144 	 */
145 	if (!debug_locks) {
146 		lockdep_unlock();
147 		return 0;
148 	}
149 	return 1;
150 }
151 
152 static inline void graph_unlock(void)
153 {
154 	lockdep_unlock();
155 }
156 
157 /*
158  * Turn lock debugging off and return with 0 if it was off already,
159  * and also release the graph lock:
160  */
161 static inline int debug_locks_off_graph_unlock(void)
162 {
163 	int ret = debug_locks_off();
164 
165 	lockdep_unlock();
166 
167 	return ret;
168 }
169 
170 unsigned long nr_list_entries;
171 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
172 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
173 
174 /*
175  * All data structures here are protected by the global debug_lock.
176  *
177  * nr_lock_classes is the number of elements of lock_classes[] that is
178  * in use.
179  */
180 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
181 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
182 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
183 unsigned long nr_lock_classes;
184 unsigned long nr_zapped_classes;
185 #ifndef CONFIG_DEBUG_LOCKDEP
186 static
187 #endif
188 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
189 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
190 
191 static inline struct lock_class *hlock_class(struct held_lock *hlock)
192 {
193 	unsigned int class_idx = hlock->class_idx;
194 
195 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
196 	barrier();
197 
198 	if (!test_bit(class_idx, lock_classes_in_use)) {
199 		/*
200 		 * Someone passed in garbage, we give up.
201 		 */
202 		DEBUG_LOCKS_WARN_ON(1);
203 		return NULL;
204 	}
205 
206 	/*
207 	 * At this point, if the passed hlock->class_idx is still garbage,
208 	 * we just have to live with it
209 	 */
210 	return lock_classes + class_idx;
211 }
212 
213 #ifdef CONFIG_LOCK_STAT
214 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
215 
216 static inline u64 lockstat_clock(void)
217 {
218 	return local_clock();
219 }
220 
221 static int lock_point(unsigned long points[], unsigned long ip)
222 {
223 	int i;
224 
225 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
226 		if (points[i] == 0) {
227 			points[i] = ip;
228 			break;
229 		}
230 		if (points[i] == ip)
231 			break;
232 	}
233 
234 	return i;
235 }
236 
237 static void lock_time_inc(struct lock_time *lt, u64 time)
238 {
239 	if (time > lt->max)
240 		lt->max = time;
241 
242 	if (time < lt->min || !lt->nr)
243 		lt->min = time;
244 
245 	lt->total += time;
246 	lt->nr++;
247 }
248 
249 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
250 {
251 	if (!src->nr)
252 		return;
253 
254 	if (src->max > dst->max)
255 		dst->max = src->max;
256 
257 	if (src->min < dst->min || !dst->nr)
258 		dst->min = src->min;
259 
260 	dst->total += src->total;
261 	dst->nr += src->nr;
262 }
263 
264 struct lock_class_stats lock_stats(struct lock_class *class)
265 {
266 	struct lock_class_stats stats;
267 	int cpu, i;
268 
269 	memset(&stats, 0, sizeof(struct lock_class_stats));
270 	for_each_possible_cpu(cpu) {
271 		struct lock_class_stats *pcs =
272 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
273 
274 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
275 			stats.contention_point[i] += pcs->contention_point[i];
276 
277 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
278 			stats.contending_point[i] += pcs->contending_point[i];
279 
280 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
281 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
282 
283 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
284 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
285 
286 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
287 			stats.bounces[i] += pcs->bounces[i];
288 	}
289 
290 	return stats;
291 }
292 
293 void clear_lock_stats(struct lock_class *class)
294 {
295 	int cpu;
296 
297 	for_each_possible_cpu(cpu) {
298 		struct lock_class_stats *cpu_stats =
299 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
300 
301 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
302 	}
303 	memset(class->contention_point, 0, sizeof(class->contention_point));
304 	memset(class->contending_point, 0, sizeof(class->contending_point));
305 }
306 
307 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
308 {
309 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
310 }
311 
312 static void lock_release_holdtime(struct held_lock *hlock)
313 {
314 	struct lock_class_stats *stats;
315 	u64 holdtime;
316 
317 	if (!lock_stat)
318 		return;
319 
320 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
321 
322 	stats = get_lock_stats(hlock_class(hlock));
323 	if (hlock->read)
324 		lock_time_inc(&stats->read_holdtime, holdtime);
325 	else
326 		lock_time_inc(&stats->write_holdtime, holdtime);
327 }
328 #else
329 static inline void lock_release_holdtime(struct held_lock *hlock)
330 {
331 }
332 #endif
333 
334 /*
335  * We keep a global list of all lock classes. The list is only accessed with
336  * the lockdep spinlock lock held. free_lock_classes is a list with free
337  * elements. These elements are linked together by the lock_entry member in
338  * struct lock_class.
339  */
340 LIST_HEAD(all_lock_classes);
341 static LIST_HEAD(free_lock_classes);
342 
343 /**
344  * struct pending_free - information about data structures about to be freed
345  * @zapped: Head of a list with struct lock_class elements.
346  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
347  *	are about to be freed.
348  */
349 struct pending_free {
350 	struct list_head zapped;
351 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
352 };
353 
354 /**
355  * struct delayed_free - data structures used for delayed freeing
356  *
357  * A data structure for delayed freeing of data structures that may be
358  * accessed by RCU readers at the time these were freed.
359  *
360  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
361  * @index:     Index of @pf to which freed data structures are added.
362  * @scheduled: Whether or not an RCU callback has been scheduled.
363  * @pf:        Array with information about data structures about to be freed.
364  */
365 static struct delayed_free {
366 	struct rcu_head		rcu_head;
367 	int			index;
368 	int			scheduled;
369 	struct pending_free	pf[2];
370 } delayed_free;
371 
372 /*
373  * The lockdep classes are in a hash-table as well, for fast lookup:
374  */
375 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
376 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
377 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
378 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
379 
380 static struct hlist_head classhash_table[CLASSHASH_SIZE];
381 
382 /*
383  * We put the lock dependency chains into a hash-table as well, to cache
384  * their existence:
385  */
386 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
387 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
388 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
389 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
390 
391 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
392 
393 /*
394  * the id of held_lock
395  */
396 static inline u16 hlock_id(struct held_lock *hlock)
397 {
398 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
399 
400 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
401 }
402 
403 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
404 {
405 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
406 }
407 
408 /*
409  * The hash key of the lock dependency chains is a hash itself too:
410  * it's a hash of all locks taken up to that lock, including that lock.
411  * It's a 64-bit hash, because it's important for the keys to be
412  * unique.
413  */
414 static inline u64 iterate_chain_key(u64 key, u32 idx)
415 {
416 	u32 k0 = key, k1 = key >> 32;
417 
418 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
419 
420 	return k0 | (u64)k1 << 32;
421 }
422 
423 void lockdep_init_task(struct task_struct *task)
424 {
425 	task->lockdep_depth = 0; /* no locks held yet */
426 	task->curr_chain_key = INITIAL_CHAIN_KEY;
427 	task->lockdep_recursion = 0;
428 }
429 
430 static __always_inline void lockdep_recursion_inc(void)
431 {
432 	__this_cpu_inc(lockdep_recursion);
433 }
434 
435 static __always_inline void lockdep_recursion_finish(void)
436 {
437 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
438 		__this_cpu_write(lockdep_recursion, 0);
439 }
440 
441 void lockdep_set_selftest_task(struct task_struct *task)
442 {
443 	lockdep_selftest_task_struct = task;
444 }
445 
446 /*
447  * Debugging switches:
448  */
449 
450 #define VERBOSE			0
451 #define VERY_VERBOSE		0
452 
453 #if VERBOSE
454 # define HARDIRQ_VERBOSE	1
455 # define SOFTIRQ_VERBOSE	1
456 #else
457 # define HARDIRQ_VERBOSE	0
458 # define SOFTIRQ_VERBOSE	0
459 #endif
460 
461 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
462 /*
463  * Quick filtering for interesting events:
464  */
465 static int class_filter(struct lock_class *class)
466 {
467 #if 0
468 	/* Example */
469 	if (class->name_version == 1 &&
470 			!strcmp(class->name, "lockname"))
471 		return 1;
472 	if (class->name_version == 1 &&
473 			!strcmp(class->name, "&struct->lockfield"))
474 		return 1;
475 #endif
476 	/* Filter everything else. 1 would be to allow everything else */
477 	return 0;
478 }
479 #endif
480 
481 static int verbose(struct lock_class *class)
482 {
483 #if VERBOSE
484 	return class_filter(class);
485 #endif
486 	return 0;
487 }
488 
489 static void print_lockdep_off(const char *bug_msg)
490 {
491 	printk(KERN_DEBUG "%s\n", bug_msg);
492 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
493 #ifdef CONFIG_LOCK_STAT
494 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
495 #endif
496 }
497 
498 unsigned long nr_stack_trace_entries;
499 
500 #ifdef CONFIG_PROVE_LOCKING
501 /**
502  * struct lock_trace - single stack backtrace
503  * @hash_entry:	Entry in a stack_trace_hash[] list.
504  * @hash:	jhash() of @entries.
505  * @nr_entries:	Number of entries in @entries.
506  * @entries:	Actual stack backtrace.
507  */
508 struct lock_trace {
509 	struct hlist_node	hash_entry;
510 	u32			hash;
511 	u32			nr_entries;
512 	unsigned long		entries[] __aligned(sizeof(unsigned long));
513 };
514 #define LOCK_TRACE_SIZE_IN_LONGS				\
515 	(sizeof(struct lock_trace) / sizeof(unsigned long))
516 /*
517  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
518  */
519 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
520 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
521 
522 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
523 {
524 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
525 		memcmp(t1->entries, t2->entries,
526 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
527 }
528 
529 static struct lock_trace *save_trace(void)
530 {
531 	struct lock_trace *trace, *t2;
532 	struct hlist_head *hash_head;
533 	u32 hash;
534 	int max_entries;
535 
536 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
537 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
538 
539 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
540 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
541 		LOCK_TRACE_SIZE_IN_LONGS;
542 
543 	if (max_entries <= 0) {
544 		if (!debug_locks_off_graph_unlock())
545 			return NULL;
546 
547 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
548 		dump_stack();
549 
550 		return NULL;
551 	}
552 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
553 
554 	hash = jhash(trace->entries, trace->nr_entries *
555 		     sizeof(trace->entries[0]), 0);
556 	trace->hash = hash;
557 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
558 	hlist_for_each_entry(t2, hash_head, hash_entry) {
559 		if (traces_identical(trace, t2))
560 			return t2;
561 	}
562 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
563 	hlist_add_head(&trace->hash_entry, hash_head);
564 
565 	return trace;
566 }
567 
568 /* Return the number of stack traces in the stack_trace[] array. */
569 u64 lockdep_stack_trace_count(void)
570 {
571 	struct lock_trace *trace;
572 	u64 c = 0;
573 	int i;
574 
575 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
576 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
577 			c++;
578 		}
579 	}
580 
581 	return c;
582 }
583 
584 /* Return the number of stack hash chains that have at least one stack trace. */
585 u64 lockdep_stack_hash_count(void)
586 {
587 	u64 c = 0;
588 	int i;
589 
590 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
591 		if (!hlist_empty(&stack_trace_hash[i]))
592 			c++;
593 
594 	return c;
595 }
596 #endif
597 
598 unsigned int nr_hardirq_chains;
599 unsigned int nr_softirq_chains;
600 unsigned int nr_process_chains;
601 unsigned int max_lockdep_depth;
602 
603 #ifdef CONFIG_DEBUG_LOCKDEP
604 /*
605  * Various lockdep statistics:
606  */
607 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
608 #endif
609 
610 #ifdef CONFIG_PROVE_LOCKING
611 /*
612  * Locking printouts:
613  */
614 
615 #define __USAGE(__STATE)						\
616 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
617 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
618 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
619 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
620 
621 static const char *usage_str[] =
622 {
623 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
624 #include "lockdep_states.h"
625 #undef LOCKDEP_STATE
626 	[LOCK_USED] = "INITIAL USE",
627 	[LOCK_USED_READ] = "INITIAL READ USE",
628 	/* abused as string storage for verify_lock_unused() */
629 	[LOCK_USAGE_STATES] = "IN-NMI",
630 };
631 #endif
632 
633 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
634 {
635 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
636 }
637 
638 static inline unsigned long lock_flag(enum lock_usage_bit bit)
639 {
640 	return 1UL << bit;
641 }
642 
643 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
644 {
645 	/*
646 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
647 	 * irq context), which is the safest usage category.
648 	 */
649 	char c = '.';
650 
651 	/*
652 	 * The order of the following usage checks matters, which will
653 	 * result in the outcome character as follows:
654 	 *
655 	 * - '+': irq is enabled and not in irq context
656 	 * - '-': in irq context and irq is disabled
657 	 * - '?': in irq context and irq is enabled
658 	 */
659 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
660 		c = '+';
661 		if (class->usage_mask & lock_flag(bit))
662 			c = '?';
663 	} else if (class->usage_mask & lock_flag(bit))
664 		c = '-';
665 
666 	return c;
667 }
668 
669 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
670 {
671 	int i = 0;
672 
673 #define LOCKDEP_STATE(__STATE) 						\
674 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
675 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
676 #include "lockdep_states.h"
677 #undef LOCKDEP_STATE
678 
679 	usage[i] = '\0';
680 }
681 
682 static void __print_lock_name(struct lock_class *class)
683 {
684 	char str[KSYM_NAME_LEN];
685 	const char *name;
686 
687 	name = class->name;
688 	if (!name) {
689 		name = __get_key_name(class->key, str);
690 		printk(KERN_CONT "%s", name);
691 	} else {
692 		printk(KERN_CONT "%s", name);
693 		if (class->name_version > 1)
694 			printk(KERN_CONT "#%d", class->name_version);
695 		if (class->subclass)
696 			printk(KERN_CONT "/%d", class->subclass);
697 	}
698 }
699 
700 static void print_lock_name(struct lock_class *class)
701 {
702 	char usage[LOCK_USAGE_CHARS];
703 
704 	get_usage_chars(class, usage);
705 
706 	printk(KERN_CONT " (");
707 	__print_lock_name(class);
708 	printk(KERN_CONT "){%s}-{%hd:%hd}", usage,
709 			class->wait_type_outer ?: class->wait_type_inner,
710 			class->wait_type_inner);
711 }
712 
713 static void print_lockdep_cache(struct lockdep_map *lock)
714 {
715 	const char *name;
716 	char str[KSYM_NAME_LEN];
717 
718 	name = lock->name;
719 	if (!name)
720 		name = __get_key_name(lock->key->subkeys, str);
721 
722 	printk(KERN_CONT "%s", name);
723 }
724 
725 static void print_lock(struct held_lock *hlock)
726 {
727 	/*
728 	 * We can be called locklessly through debug_show_all_locks() so be
729 	 * extra careful, the hlock might have been released and cleared.
730 	 *
731 	 * If this indeed happens, lets pretend it does not hurt to continue
732 	 * to print the lock unless the hlock class_idx does not point to a
733 	 * registered class. The rationale here is: since we don't attempt
734 	 * to distinguish whether we are in this situation, if it just
735 	 * happened we can't count on class_idx to tell either.
736 	 */
737 	struct lock_class *lock = hlock_class(hlock);
738 
739 	if (!lock) {
740 		printk(KERN_CONT "<RELEASED>\n");
741 		return;
742 	}
743 
744 	printk(KERN_CONT "%px", hlock->instance);
745 	print_lock_name(lock);
746 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
747 }
748 
749 static void lockdep_print_held_locks(struct task_struct *p)
750 {
751 	int i, depth = READ_ONCE(p->lockdep_depth);
752 
753 	if (!depth)
754 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
755 	else
756 		printk("%d lock%s held by %s/%d:\n", depth,
757 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
758 	/*
759 	 * It's not reliable to print a task's held locks if it's not sleeping
760 	 * and it's not the current task.
761 	 */
762 	if (p->state == TASK_RUNNING && p != current)
763 		return;
764 	for (i = 0; i < depth; i++) {
765 		printk(" #%d: ", i);
766 		print_lock(p->held_locks + i);
767 	}
768 }
769 
770 static void print_kernel_ident(void)
771 {
772 	printk("%s %.*s %s\n", init_utsname()->release,
773 		(int)strcspn(init_utsname()->version, " "),
774 		init_utsname()->version,
775 		print_tainted());
776 }
777 
778 static int very_verbose(struct lock_class *class)
779 {
780 #if VERY_VERBOSE
781 	return class_filter(class);
782 #endif
783 	return 0;
784 }
785 
786 /*
787  * Is this the address of a static object:
788  */
789 #ifdef __KERNEL__
790 static int static_obj(const void *obj)
791 {
792 	unsigned long start = (unsigned long) &_stext,
793 		      end   = (unsigned long) &_end,
794 		      addr  = (unsigned long) obj;
795 
796 	if (arch_is_kernel_initmem_freed(addr))
797 		return 0;
798 
799 	/*
800 	 * static variable?
801 	 */
802 	if ((addr >= start) && (addr < end))
803 		return 1;
804 
805 	if (arch_is_kernel_data(addr))
806 		return 1;
807 
808 	/*
809 	 * in-kernel percpu var?
810 	 */
811 	if (is_kernel_percpu_address(addr))
812 		return 1;
813 
814 	/*
815 	 * module static or percpu var?
816 	 */
817 	return is_module_address(addr) || is_module_percpu_address(addr);
818 }
819 #endif
820 
821 /*
822  * To make lock name printouts unique, we calculate a unique
823  * class->name_version generation counter. The caller must hold the graph
824  * lock.
825  */
826 static int count_matching_names(struct lock_class *new_class)
827 {
828 	struct lock_class *class;
829 	int count = 0;
830 
831 	if (!new_class->name)
832 		return 0;
833 
834 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
835 		if (new_class->key - new_class->subclass == class->key)
836 			return class->name_version;
837 		if (class->name && !strcmp(class->name, new_class->name))
838 			count = max(count, class->name_version);
839 	}
840 
841 	return count + 1;
842 }
843 
844 /* used from NMI context -- must be lockless */
845 static __always_inline struct lock_class *
846 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
847 {
848 	struct lockdep_subclass_key *key;
849 	struct hlist_head *hash_head;
850 	struct lock_class *class;
851 
852 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
853 		debug_locks_off();
854 		printk(KERN_ERR
855 			"BUG: looking up invalid subclass: %u\n", subclass);
856 		printk(KERN_ERR
857 			"turning off the locking correctness validator.\n");
858 		dump_stack();
859 		return NULL;
860 	}
861 
862 	/*
863 	 * If it is not initialised then it has never been locked,
864 	 * so it won't be present in the hash table.
865 	 */
866 	if (unlikely(!lock->key))
867 		return NULL;
868 
869 	/*
870 	 * NOTE: the class-key must be unique. For dynamic locks, a static
871 	 * lock_class_key variable is passed in through the mutex_init()
872 	 * (or spin_lock_init()) call - which acts as the key. For static
873 	 * locks we use the lock object itself as the key.
874 	 */
875 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
876 			sizeof(struct lockdep_map));
877 
878 	key = lock->key->subkeys + subclass;
879 
880 	hash_head = classhashentry(key);
881 
882 	/*
883 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
884 	 */
885 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
886 		return NULL;
887 
888 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
889 		if (class->key == key) {
890 			/*
891 			 * Huh! same key, different name? Did someone trample
892 			 * on some memory? We're most confused.
893 			 */
894 			WARN_ON_ONCE(class->name != lock->name &&
895 				     lock->key != &__lockdep_no_validate__);
896 			return class;
897 		}
898 	}
899 
900 	return NULL;
901 }
902 
903 /*
904  * Static locks do not have their class-keys yet - for them the key is
905  * the lock object itself. If the lock is in the per cpu area, the
906  * canonical address of the lock (per cpu offset removed) is used.
907  */
908 static bool assign_lock_key(struct lockdep_map *lock)
909 {
910 	unsigned long can_addr, addr = (unsigned long)lock;
911 
912 #ifdef __KERNEL__
913 	/*
914 	 * lockdep_free_key_range() assumes that struct lock_class_key
915 	 * objects do not overlap. Since we use the address of lock
916 	 * objects as class key for static objects, check whether the
917 	 * size of lock_class_key objects does not exceed the size of
918 	 * the smallest lock object.
919 	 */
920 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
921 #endif
922 
923 	if (__is_kernel_percpu_address(addr, &can_addr))
924 		lock->key = (void *)can_addr;
925 	else if (__is_module_percpu_address(addr, &can_addr))
926 		lock->key = (void *)can_addr;
927 	else if (static_obj(lock))
928 		lock->key = (void *)lock;
929 	else {
930 		/* Debug-check: all keys must be persistent! */
931 		debug_locks_off();
932 		pr_err("INFO: trying to register non-static key.\n");
933 		pr_err("the code is fine but needs lockdep annotation.\n");
934 		pr_err("turning off the locking correctness validator.\n");
935 		dump_stack();
936 		return false;
937 	}
938 
939 	return true;
940 }
941 
942 #ifdef CONFIG_DEBUG_LOCKDEP
943 
944 /* Check whether element @e occurs in list @h */
945 static bool in_list(struct list_head *e, struct list_head *h)
946 {
947 	struct list_head *f;
948 
949 	list_for_each(f, h) {
950 		if (e == f)
951 			return true;
952 	}
953 
954 	return false;
955 }
956 
957 /*
958  * Check whether entry @e occurs in any of the locks_after or locks_before
959  * lists.
960  */
961 static bool in_any_class_list(struct list_head *e)
962 {
963 	struct lock_class *class;
964 	int i;
965 
966 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
967 		class = &lock_classes[i];
968 		if (in_list(e, &class->locks_after) ||
969 		    in_list(e, &class->locks_before))
970 			return true;
971 	}
972 	return false;
973 }
974 
975 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
976 {
977 	struct lock_list *e;
978 
979 	list_for_each_entry(e, h, entry) {
980 		if (e->links_to != c) {
981 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
982 			       c->name ? : "(?)",
983 			       (unsigned long)(e - list_entries),
984 			       e->links_to && e->links_to->name ?
985 			       e->links_to->name : "(?)",
986 			       e->class && e->class->name ? e->class->name :
987 			       "(?)");
988 			return false;
989 		}
990 	}
991 	return true;
992 }
993 
994 #ifdef CONFIG_PROVE_LOCKING
995 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
996 #endif
997 
998 static bool check_lock_chain_key(struct lock_chain *chain)
999 {
1000 #ifdef CONFIG_PROVE_LOCKING
1001 	u64 chain_key = INITIAL_CHAIN_KEY;
1002 	int i;
1003 
1004 	for (i = chain->base; i < chain->base + chain->depth; i++)
1005 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1006 	/*
1007 	 * The 'unsigned long long' casts avoid that a compiler warning
1008 	 * is reported when building tools/lib/lockdep.
1009 	 */
1010 	if (chain->chain_key != chain_key) {
1011 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1012 		       (unsigned long long)(chain - lock_chains),
1013 		       (unsigned long long)chain->chain_key,
1014 		       (unsigned long long)chain_key);
1015 		return false;
1016 	}
1017 #endif
1018 	return true;
1019 }
1020 
1021 static bool in_any_zapped_class_list(struct lock_class *class)
1022 {
1023 	struct pending_free *pf;
1024 	int i;
1025 
1026 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1027 		if (in_list(&class->lock_entry, &pf->zapped))
1028 			return true;
1029 	}
1030 
1031 	return false;
1032 }
1033 
1034 static bool __check_data_structures(void)
1035 {
1036 	struct lock_class *class;
1037 	struct lock_chain *chain;
1038 	struct hlist_head *head;
1039 	struct lock_list *e;
1040 	int i;
1041 
1042 	/* Check whether all classes occur in a lock list. */
1043 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1044 		class = &lock_classes[i];
1045 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1046 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1047 		    !in_any_zapped_class_list(class)) {
1048 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1049 			       class, class->name ? : "(?)");
1050 			return false;
1051 		}
1052 	}
1053 
1054 	/* Check whether all classes have valid lock lists. */
1055 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1056 		class = &lock_classes[i];
1057 		if (!class_lock_list_valid(class, &class->locks_before))
1058 			return false;
1059 		if (!class_lock_list_valid(class, &class->locks_after))
1060 			return false;
1061 	}
1062 
1063 	/* Check the chain_key of all lock chains. */
1064 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1065 		head = chainhash_table + i;
1066 		hlist_for_each_entry_rcu(chain, head, entry) {
1067 			if (!check_lock_chain_key(chain))
1068 				return false;
1069 		}
1070 	}
1071 
1072 	/*
1073 	 * Check whether all list entries that are in use occur in a class
1074 	 * lock list.
1075 	 */
1076 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1077 		e = list_entries + i;
1078 		if (!in_any_class_list(&e->entry)) {
1079 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1080 			       (unsigned int)(e - list_entries),
1081 			       e->class->name ? : "(?)",
1082 			       e->links_to->name ? : "(?)");
1083 			return false;
1084 		}
1085 	}
1086 
1087 	/*
1088 	 * Check whether all list entries that are not in use do not occur in
1089 	 * a class lock list.
1090 	 */
1091 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1092 		e = list_entries + i;
1093 		if (in_any_class_list(&e->entry)) {
1094 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1095 			       (unsigned int)(e - list_entries),
1096 			       e->class && e->class->name ? e->class->name :
1097 			       "(?)",
1098 			       e->links_to && e->links_to->name ?
1099 			       e->links_to->name : "(?)");
1100 			return false;
1101 		}
1102 	}
1103 
1104 	return true;
1105 }
1106 
1107 int check_consistency = 0;
1108 module_param(check_consistency, int, 0644);
1109 
1110 static void check_data_structures(void)
1111 {
1112 	static bool once = false;
1113 
1114 	if (check_consistency && !once) {
1115 		if (!__check_data_structures()) {
1116 			once = true;
1117 			WARN_ON(once);
1118 		}
1119 	}
1120 }
1121 
1122 #else /* CONFIG_DEBUG_LOCKDEP */
1123 
1124 static inline void check_data_structures(void) { }
1125 
1126 #endif /* CONFIG_DEBUG_LOCKDEP */
1127 
1128 static void init_chain_block_buckets(void);
1129 
1130 /*
1131  * Initialize the lock_classes[] array elements, the free_lock_classes list
1132  * and also the delayed_free structure.
1133  */
1134 static void init_data_structures_once(void)
1135 {
1136 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1137 	int i;
1138 
1139 	if (likely(rcu_head_initialized))
1140 		return;
1141 
1142 	if (system_state >= SYSTEM_SCHEDULING) {
1143 		init_rcu_head(&delayed_free.rcu_head);
1144 		rcu_head_initialized = true;
1145 	}
1146 
1147 	if (ds_initialized)
1148 		return;
1149 
1150 	ds_initialized = true;
1151 
1152 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1153 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1154 
1155 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1156 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1157 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1158 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1159 	}
1160 	init_chain_block_buckets();
1161 }
1162 
1163 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1164 {
1165 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1166 
1167 	return lock_keys_hash + hash;
1168 }
1169 
1170 /* Register a dynamically allocated key. */
1171 void lockdep_register_key(struct lock_class_key *key)
1172 {
1173 	struct hlist_head *hash_head;
1174 	struct lock_class_key *k;
1175 	unsigned long flags;
1176 
1177 	if (WARN_ON_ONCE(static_obj(key)))
1178 		return;
1179 	hash_head = keyhashentry(key);
1180 
1181 	raw_local_irq_save(flags);
1182 	if (!graph_lock())
1183 		goto restore_irqs;
1184 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1185 		if (WARN_ON_ONCE(k == key))
1186 			goto out_unlock;
1187 	}
1188 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1189 out_unlock:
1190 	graph_unlock();
1191 restore_irqs:
1192 	raw_local_irq_restore(flags);
1193 }
1194 EXPORT_SYMBOL_GPL(lockdep_register_key);
1195 
1196 /* Check whether a key has been registered as a dynamic key. */
1197 static bool is_dynamic_key(const struct lock_class_key *key)
1198 {
1199 	struct hlist_head *hash_head;
1200 	struct lock_class_key *k;
1201 	bool found = false;
1202 
1203 	if (WARN_ON_ONCE(static_obj(key)))
1204 		return false;
1205 
1206 	/*
1207 	 * If lock debugging is disabled lock_keys_hash[] may contain
1208 	 * pointers to memory that has already been freed. Avoid triggering
1209 	 * a use-after-free in that case by returning early.
1210 	 */
1211 	if (!debug_locks)
1212 		return true;
1213 
1214 	hash_head = keyhashentry(key);
1215 
1216 	rcu_read_lock();
1217 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1218 		if (k == key) {
1219 			found = true;
1220 			break;
1221 		}
1222 	}
1223 	rcu_read_unlock();
1224 
1225 	return found;
1226 }
1227 
1228 /*
1229  * Register a lock's class in the hash-table, if the class is not present
1230  * yet. Otherwise we look it up. We cache the result in the lock object
1231  * itself, so actual lookup of the hash should be once per lock object.
1232  */
1233 static struct lock_class *
1234 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1235 {
1236 	struct lockdep_subclass_key *key;
1237 	struct hlist_head *hash_head;
1238 	struct lock_class *class;
1239 
1240 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1241 
1242 	class = look_up_lock_class(lock, subclass);
1243 	if (likely(class))
1244 		goto out_set_class_cache;
1245 
1246 	if (!lock->key) {
1247 		if (!assign_lock_key(lock))
1248 			return NULL;
1249 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1250 		return NULL;
1251 	}
1252 
1253 	key = lock->key->subkeys + subclass;
1254 	hash_head = classhashentry(key);
1255 
1256 	if (!graph_lock()) {
1257 		return NULL;
1258 	}
1259 	/*
1260 	 * We have to do the hash-walk again, to avoid races
1261 	 * with another CPU:
1262 	 */
1263 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1264 		if (class->key == key)
1265 			goto out_unlock_set;
1266 	}
1267 
1268 	init_data_structures_once();
1269 
1270 	/* Allocate a new lock class and add it to the hash. */
1271 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1272 					 lock_entry);
1273 	if (!class) {
1274 		if (!debug_locks_off_graph_unlock()) {
1275 			return NULL;
1276 		}
1277 
1278 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1279 		dump_stack();
1280 		return NULL;
1281 	}
1282 	nr_lock_classes++;
1283 	__set_bit(class - lock_classes, lock_classes_in_use);
1284 	debug_atomic_inc(nr_unused_locks);
1285 	class->key = key;
1286 	class->name = lock->name;
1287 	class->subclass = subclass;
1288 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1289 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1290 	class->name_version = count_matching_names(class);
1291 	class->wait_type_inner = lock->wait_type_inner;
1292 	class->wait_type_outer = lock->wait_type_outer;
1293 	class->lock_type = lock->lock_type;
1294 	/*
1295 	 * We use RCU's safe list-add method to make
1296 	 * parallel walking of the hash-list safe:
1297 	 */
1298 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1299 	/*
1300 	 * Remove the class from the free list and add it to the global list
1301 	 * of classes.
1302 	 */
1303 	list_move_tail(&class->lock_entry, &all_lock_classes);
1304 
1305 	if (verbose(class)) {
1306 		graph_unlock();
1307 
1308 		printk("\nnew class %px: %s", class->key, class->name);
1309 		if (class->name_version > 1)
1310 			printk(KERN_CONT "#%d", class->name_version);
1311 		printk(KERN_CONT "\n");
1312 		dump_stack();
1313 
1314 		if (!graph_lock()) {
1315 			return NULL;
1316 		}
1317 	}
1318 out_unlock_set:
1319 	graph_unlock();
1320 
1321 out_set_class_cache:
1322 	if (!subclass || force)
1323 		lock->class_cache[0] = class;
1324 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1325 		lock->class_cache[subclass] = class;
1326 
1327 	/*
1328 	 * Hash collision, did we smoke some? We found a class with a matching
1329 	 * hash but the subclass -- which is hashed in -- didn't match.
1330 	 */
1331 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1332 		return NULL;
1333 
1334 	return class;
1335 }
1336 
1337 #ifdef CONFIG_PROVE_LOCKING
1338 /*
1339  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1340  * with NULL on failure)
1341  */
1342 static struct lock_list *alloc_list_entry(void)
1343 {
1344 	int idx = find_first_zero_bit(list_entries_in_use,
1345 				      ARRAY_SIZE(list_entries));
1346 
1347 	if (idx >= ARRAY_SIZE(list_entries)) {
1348 		if (!debug_locks_off_graph_unlock())
1349 			return NULL;
1350 
1351 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1352 		dump_stack();
1353 		return NULL;
1354 	}
1355 	nr_list_entries++;
1356 	__set_bit(idx, list_entries_in_use);
1357 	return list_entries + idx;
1358 }
1359 
1360 /*
1361  * Add a new dependency to the head of the list:
1362  */
1363 static int add_lock_to_list(struct lock_class *this,
1364 			    struct lock_class *links_to, struct list_head *head,
1365 			    unsigned long ip, u16 distance, u8 dep,
1366 			    const struct lock_trace *trace)
1367 {
1368 	struct lock_list *entry;
1369 	/*
1370 	 * Lock not present yet - get a new dependency struct and
1371 	 * add it to the list:
1372 	 */
1373 	entry = alloc_list_entry();
1374 	if (!entry)
1375 		return 0;
1376 
1377 	entry->class = this;
1378 	entry->links_to = links_to;
1379 	entry->dep = dep;
1380 	entry->distance = distance;
1381 	entry->trace = trace;
1382 	/*
1383 	 * Both allocation and removal are done under the graph lock; but
1384 	 * iteration is under RCU-sched; see look_up_lock_class() and
1385 	 * lockdep_free_key_range().
1386 	 */
1387 	list_add_tail_rcu(&entry->entry, head);
1388 
1389 	return 1;
1390 }
1391 
1392 /*
1393  * For good efficiency of modular, we use power of 2
1394  */
1395 #define MAX_CIRCULAR_QUEUE_SIZE		4096UL
1396 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1397 
1398 /*
1399  * The circular_queue and helpers are used to implement graph
1400  * breadth-first search (BFS) algorithm, by which we can determine
1401  * whether there is a path from a lock to another. In deadlock checks,
1402  * a path from the next lock to be acquired to a previous held lock
1403  * indicates that adding the <prev> -> <next> lock dependency will
1404  * produce a circle in the graph. Breadth-first search instead of
1405  * depth-first search is used in order to find the shortest (circular)
1406  * path.
1407  */
1408 struct circular_queue {
1409 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1410 	unsigned int  front, rear;
1411 };
1412 
1413 static struct circular_queue lock_cq;
1414 
1415 unsigned int max_bfs_queue_depth;
1416 
1417 static unsigned int lockdep_dependency_gen_id;
1418 
1419 static inline void __cq_init(struct circular_queue *cq)
1420 {
1421 	cq->front = cq->rear = 0;
1422 	lockdep_dependency_gen_id++;
1423 }
1424 
1425 static inline int __cq_empty(struct circular_queue *cq)
1426 {
1427 	return (cq->front == cq->rear);
1428 }
1429 
1430 static inline int __cq_full(struct circular_queue *cq)
1431 {
1432 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1433 }
1434 
1435 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1436 {
1437 	if (__cq_full(cq))
1438 		return -1;
1439 
1440 	cq->element[cq->rear] = elem;
1441 	cq->rear = (cq->rear + 1) & CQ_MASK;
1442 	return 0;
1443 }
1444 
1445 /*
1446  * Dequeue an element from the circular_queue, return a lock_list if
1447  * the queue is not empty, or NULL if otherwise.
1448  */
1449 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1450 {
1451 	struct lock_list * lock;
1452 
1453 	if (__cq_empty(cq))
1454 		return NULL;
1455 
1456 	lock = cq->element[cq->front];
1457 	cq->front = (cq->front + 1) & CQ_MASK;
1458 
1459 	return lock;
1460 }
1461 
1462 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1463 {
1464 	return (cq->rear - cq->front) & CQ_MASK;
1465 }
1466 
1467 static inline void mark_lock_accessed(struct lock_list *lock)
1468 {
1469 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1470 }
1471 
1472 static inline void visit_lock_entry(struct lock_list *lock,
1473 				    struct lock_list *parent)
1474 {
1475 	lock->parent = parent;
1476 }
1477 
1478 static inline unsigned long lock_accessed(struct lock_list *lock)
1479 {
1480 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1481 }
1482 
1483 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1484 {
1485 	return child->parent;
1486 }
1487 
1488 static inline int get_lock_depth(struct lock_list *child)
1489 {
1490 	int depth = 0;
1491 	struct lock_list *parent;
1492 
1493 	while ((parent = get_lock_parent(child))) {
1494 		child = parent;
1495 		depth++;
1496 	}
1497 	return depth;
1498 }
1499 
1500 /*
1501  * Return the forward or backward dependency list.
1502  *
1503  * @lock:   the lock_list to get its class's dependency list
1504  * @offset: the offset to struct lock_class to determine whether it is
1505  *          locks_after or locks_before
1506  */
1507 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1508 {
1509 	void *lock_class = lock->class;
1510 
1511 	return lock_class + offset;
1512 }
1513 /*
1514  * Return values of a bfs search:
1515  *
1516  * BFS_E* indicates an error
1517  * BFS_R* indicates a result (match or not)
1518  *
1519  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1520  *
1521  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1522  *
1523  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1524  *             *@target_entry.
1525  *
1526  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1527  *               _unchanged_.
1528  */
1529 enum bfs_result {
1530 	BFS_EINVALIDNODE = -2,
1531 	BFS_EQUEUEFULL = -1,
1532 	BFS_RMATCH = 0,
1533 	BFS_RNOMATCH = 1,
1534 };
1535 
1536 /*
1537  * bfs_result < 0 means error
1538  */
1539 static inline bool bfs_error(enum bfs_result res)
1540 {
1541 	return res < 0;
1542 }
1543 
1544 /*
1545  * DEP_*_BIT in lock_list::dep
1546  *
1547  * For dependency @prev -> @next:
1548  *
1549  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1550  *       (->read == 2)
1551  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1552  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1553  *   EN: @prev is exclusive locker and @next is non-recursive locker
1554  *
1555  * Note that we define the value of DEP_*_BITs so that:
1556  *   bit0 is prev->read == 0
1557  *   bit1 is next->read != 2
1558  */
1559 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1560 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1561 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1562 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1563 
1564 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1565 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1566 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1567 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1568 
1569 static inline unsigned int
1570 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1571 {
1572 	return (prev->read == 0) + ((next->read != 2) << 1);
1573 }
1574 
1575 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1576 {
1577 	return 1U << __calc_dep_bit(prev, next);
1578 }
1579 
1580 /*
1581  * calculate the dep_bit for backwards edges. We care about whether @prev is
1582  * shared and whether @next is recursive.
1583  */
1584 static inline unsigned int
1585 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1586 {
1587 	return (next->read != 2) + ((prev->read == 0) << 1);
1588 }
1589 
1590 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1591 {
1592 	return 1U << __calc_dep_bitb(prev, next);
1593 }
1594 
1595 /*
1596  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1597  * search.
1598  */
1599 static inline void __bfs_init_root(struct lock_list *lock,
1600 				   struct lock_class *class)
1601 {
1602 	lock->class = class;
1603 	lock->parent = NULL;
1604 	lock->only_xr = 0;
1605 }
1606 
1607 /*
1608  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1609  * root for a BFS search.
1610  *
1611  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1612  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1613  * and -(S*)->.
1614  */
1615 static inline void bfs_init_root(struct lock_list *lock,
1616 				 struct held_lock *hlock)
1617 {
1618 	__bfs_init_root(lock, hlock_class(hlock));
1619 	lock->only_xr = (hlock->read == 2);
1620 }
1621 
1622 /*
1623  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1624  *
1625  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1626  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1627  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1628  */
1629 static inline void bfs_init_rootb(struct lock_list *lock,
1630 				  struct held_lock *hlock)
1631 {
1632 	__bfs_init_root(lock, hlock_class(hlock));
1633 	lock->only_xr = (hlock->read != 0);
1634 }
1635 
1636 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1637 {
1638 	if (!lock || !lock->parent)
1639 		return NULL;
1640 
1641 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1642 				     &lock->entry, struct lock_list, entry);
1643 }
1644 
1645 /*
1646  * Breadth-First Search to find a strong path in the dependency graph.
1647  *
1648  * @source_entry: the source of the path we are searching for.
1649  * @data: data used for the second parameter of @match function
1650  * @match: match function for the search
1651  * @target_entry: pointer to the target of a matched path
1652  * @offset: the offset to struct lock_class to determine whether it is
1653  *          locks_after or locks_before
1654  *
1655  * We may have multiple edges (considering different kinds of dependencies,
1656  * e.g. ER and SN) between two nodes in the dependency graph. But
1657  * only the strong dependency path in the graph is relevant to deadlocks. A
1658  * strong dependency path is a dependency path that doesn't have two adjacent
1659  * dependencies as -(*R)-> -(S*)->, please see:
1660  *
1661  *         Documentation/locking/lockdep-design.rst
1662  *
1663  * for more explanation of the definition of strong dependency paths
1664  *
1665  * In __bfs(), we only traverse in the strong dependency path:
1666  *
1667  *     In lock_list::only_xr, we record whether the previous dependency only
1668  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1669  *     filter out any -(S*)-> in the current dependency and after that, the
1670  *     ->only_xr is set according to whether we only have -(*R)-> left.
1671  */
1672 static enum bfs_result __bfs(struct lock_list *source_entry,
1673 			     void *data,
1674 			     bool (*match)(struct lock_list *entry, void *data),
1675 			     bool (*skip)(struct lock_list *entry, void *data),
1676 			     struct lock_list **target_entry,
1677 			     int offset)
1678 {
1679 	struct circular_queue *cq = &lock_cq;
1680 	struct lock_list *lock = NULL;
1681 	struct lock_list *entry;
1682 	struct list_head *head;
1683 	unsigned int cq_depth;
1684 	bool first;
1685 
1686 	lockdep_assert_locked();
1687 
1688 	__cq_init(cq);
1689 	__cq_enqueue(cq, source_entry);
1690 
1691 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1692 		if (!lock->class)
1693 			return BFS_EINVALIDNODE;
1694 
1695 		/*
1696 		 * Step 1: check whether we already finish on this one.
1697 		 *
1698 		 * If we have visited all the dependencies from this @lock to
1699 		 * others (iow, if we have visited all lock_list entries in
1700 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1701 		 * and visit all the dependencies in the list and mark this
1702 		 * list accessed.
1703 		 */
1704 		if (lock_accessed(lock))
1705 			continue;
1706 		else
1707 			mark_lock_accessed(lock);
1708 
1709 		/*
1710 		 * Step 2: check whether prev dependency and this form a strong
1711 		 *         dependency path.
1712 		 */
1713 		if (lock->parent) { /* Parent exists, check prev dependency */
1714 			u8 dep = lock->dep;
1715 			bool prev_only_xr = lock->parent->only_xr;
1716 
1717 			/*
1718 			 * Mask out all -(S*)-> if we only have *R in previous
1719 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1720 			 * dependency.
1721 			 */
1722 			if (prev_only_xr)
1723 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1724 
1725 			/* If nothing left, we skip */
1726 			if (!dep)
1727 				continue;
1728 
1729 			/* If there are only -(*R)-> left, set that for the next step */
1730 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1731 		}
1732 
1733 		/*
1734 		 * Step 3: we haven't visited this and there is a strong
1735 		 *         dependency path to this, so check with @match.
1736 		 *         If @skip is provide and returns true, we skip this
1737 		 *         lock (and any path this lock is in).
1738 		 */
1739 		if (skip && skip(lock, data))
1740 			continue;
1741 
1742 		if (match(lock, data)) {
1743 			*target_entry = lock;
1744 			return BFS_RMATCH;
1745 		}
1746 
1747 		/*
1748 		 * Step 4: if not match, expand the path by adding the
1749 		 *         forward or backwards dependencis in the search
1750 		 *
1751 		 */
1752 		first = true;
1753 		head = get_dep_list(lock, offset);
1754 		list_for_each_entry_rcu(entry, head, entry) {
1755 			visit_lock_entry(entry, lock);
1756 
1757 			/*
1758 			 * Note we only enqueue the first of the list into the
1759 			 * queue, because we can always find a sibling
1760 			 * dependency from one (see __bfs_next()), as a result
1761 			 * the space of queue is saved.
1762 			 */
1763 			if (!first)
1764 				continue;
1765 
1766 			first = false;
1767 
1768 			if (__cq_enqueue(cq, entry))
1769 				return BFS_EQUEUEFULL;
1770 
1771 			cq_depth = __cq_get_elem_count(cq);
1772 			if (max_bfs_queue_depth < cq_depth)
1773 				max_bfs_queue_depth = cq_depth;
1774 		}
1775 	}
1776 
1777 	return BFS_RNOMATCH;
1778 }
1779 
1780 static inline enum bfs_result
1781 __bfs_forwards(struct lock_list *src_entry,
1782 	       void *data,
1783 	       bool (*match)(struct lock_list *entry, void *data),
1784 	       bool (*skip)(struct lock_list *entry, void *data),
1785 	       struct lock_list **target_entry)
1786 {
1787 	return __bfs(src_entry, data, match, skip, target_entry,
1788 		     offsetof(struct lock_class, locks_after));
1789 
1790 }
1791 
1792 static inline enum bfs_result
1793 __bfs_backwards(struct lock_list *src_entry,
1794 		void *data,
1795 		bool (*match)(struct lock_list *entry, void *data),
1796 	       bool (*skip)(struct lock_list *entry, void *data),
1797 		struct lock_list **target_entry)
1798 {
1799 	return __bfs(src_entry, data, match, skip, target_entry,
1800 		     offsetof(struct lock_class, locks_before));
1801 
1802 }
1803 
1804 static void print_lock_trace(const struct lock_trace *trace,
1805 			     unsigned int spaces)
1806 {
1807 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1808 }
1809 
1810 /*
1811  * Print a dependency chain entry (this is only done when a deadlock
1812  * has been detected):
1813  */
1814 static noinline void
1815 print_circular_bug_entry(struct lock_list *target, int depth)
1816 {
1817 	if (debug_locks_silent)
1818 		return;
1819 	printk("\n-> #%u", depth);
1820 	print_lock_name(target->class);
1821 	printk(KERN_CONT ":\n");
1822 	print_lock_trace(target->trace, 6);
1823 }
1824 
1825 static void
1826 print_circular_lock_scenario(struct held_lock *src,
1827 			     struct held_lock *tgt,
1828 			     struct lock_list *prt)
1829 {
1830 	struct lock_class *source = hlock_class(src);
1831 	struct lock_class *target = hlock_class(tgt);
1832 	struct lock_class *parent = prt->class;
1833 
1834 	/*
1835 	 * A direct locking problem where unsafe_class lock is taken
1836 	 * directly by safe_class lock, then all we need to show
1837 	 * is the deadlock scenario, as it is obvious that the
1838 	 * unsafe lock is taken under the safe lock.
1839 	 *
1840 	 * But if there is a chain instead, where the safe lock takes
1841 	 * an intermediate lock (middle_class) where this lock is
1842 	 * not the same as the safe lock, then the lock chain is
1843 	 * used to describe the problem. Otherwise we would need
1844 	 * to show a different CPU case for each link in the chain
1845 	 * from the safe_class lock to the unsafe_class lock.
1846 	 */
1847 	if (parent != source) {
1848 		printk("Chain exists of:\n  ");
1849 		__print_lock_name(source);
1850 		printk(KERN_CONT " --> ");
1851 		__print_lock_name(parent);
1852 		printk(KERN_CONT " --> ");
1853 		__print_lock_name(target);
1854 		printk(KERN_CONT "\n\n");
1855 	}
1856 
1857 	printk(" Possible unsafe locking scenario:\n\n");
1858 	printk("       CPU0                    CPU1\n");
1859 	printk("       ----                    ----\n");
1860 	printk("  lock(");
1861 	__print_lock_name(target);
1862 	printk(KERN_CONT ");\n");
1863 	printk("                               lock(");
1864 	__print_lock_name(parent);
1865 	printk(KERN_CONT ");\n");
1866 	printk("                               lock(");
1867 	__print_lock_name(target);
1868 	printk(KERN_CONT ");\n");
1869 	printk("  lock(");
1870 	__print_lock_name(source);
1871 	printk(KERN_CONT ");\n");
1872 	printk("\n *** DEADLOCK ***\n\n");
1873 }
1874 
1875 /*
1876  * When a circular dependency is detected, print the
1877  * header first:
1878  */
1879 static noinline void
1880 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1881 			struct held_lock *check_src,
1882 			struct held_lock *check_tgt)
1883 {
1884 	struct task_struct *curr = current;
1885 
1886 	if (debug_locks_silent)
1887 		return;
1888 
1889 	pr_warn("\n");
1890 	pr_warn("======================================================\n");
1891 	pr_warn("WARNING: possible circular locking dependency detected\n");
1892 	print_kernel_ident();
1893 	pr_warn("------------------------------------------------------\n");
1894 	pr_warn("%s/%d is trying to acquire lock:\n",
1895 		curr->comm, task_pid_nr(curr));
1896 	print_lock(check_src);
1897 
1898 	pr_warn("\nbut task is already holding lock:\n");
1899 
1900 	print_lock(check_tgt);
1901 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1902 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1903 
1904 	print_circular_bug_entry(entry, depth);
1905 }
1906 
1907 /*
1908  * We are about to add A -> B into the dependency graph, and in __bfs() a
1909  * strong dependency path A -> .. -> B is found: hlock_class equals
1910  * entry->class.
1911  *
1912  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1913  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1914  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1915  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1916  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1917  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1918  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant.
1919  *
1920  * We need to make sure both the start and the end of A -> .. -> B is not
1921  * weaker than A -> B. For the start part, please see the comment in
1922  * check_redundant(). For the end part, we need:
1923  *
1924  * Either
1925  *
1926  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1927  *
1928  * or
1929  *
1930  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1931  *
1932  */
1933 static inline bool hlock_equal(struct lock_list *entry, void *data)
1934 {
1935 	struct held_lock *hlock = (struct held_lock *)data;
1936 
1937 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1938 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1939 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1940 }
1941 
1942 /*
1943  * We are about to add B -> A into the dependency graph, and in __bfs() a
1944  * strong dependency path A -> .. -> B is found: hlock_class equals
1945  * entry->class.
1946  *
1947  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1948  * dependency cycle, that means:
1949  *
1950  * Either
1951  *
1952  *     a) B -> A is -(E*)->
1953  *
1954  * or
1955  *
1956  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1957  *
1958  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1959  */
1960 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1961 {
1962 	struct held_lock *hlock = (struct held_lock *)data;
1963 
1964 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1965 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1966 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1967 }
1968 
1969 static noinline void print_circular_bug(struct lock_list *this,
1970 				struct lock_list *target,
1971 				struct held_lock *check_src,
1972 				struct held_lock *check_tgt)
1973 {
1974 	struct task_struct *curr = current;
1975 	struct lock_list *parent;
1976 	struct lock_list *first_parent;
1977 	int depth;
1978 
1979 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1980 		return;
1981 
1982 	this->trace = save_trace();
1983 	if (!this->trace)
1984 		return;
1985 
1986 	depth = get_lock_depth(target);
1987 
1988 	print_circular_bug_header(target, depth, check_src, check_tgt);
1989 
1990 	parent = get_lock_parent(target);
1991 	first_parent = parent;
1992 
1993 	while (parent) {
1994 		print_circular_bug_entry(parent, --depth);
1995 		parent = get_lock_parent(parent);
1996 	}
1997 
1998 	printk("\nother info that might help us debug this:\n\n");
1999 	print_circular_lock_scenario(check_src, check_tgt,
2000 				     first_parent);
2001 
2002 	lockdep_print_held_locks(curr);
2003 
2004 	printk("\nstack backtrace:\n");
2005 	dump_stack();
2006 }
2007 
2008 static noinline void print_bfs_bug(int ret)
2009 {
2010 	if (!debug_locks_off_graph_unlock())
2011 		return;
2012 
2013 	/*
2014 	 * Breadth-first-search failed, graph got corrupted?
2015 	 */
2016 	WARN(1, "lockdep bfs error:%d\n", ret);
2017 }
2018 
2019 static bool noop_count(struct lock_list *entry, void *data)
2020 {
2021 	(*(unsigned long *)data)++;
2022 	return false;
2023 }
2024 
2025 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2026 {
2027 	unsigned long  count = 0;
2028 	struct lock_list *target_entry;
2029 
2030 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2031 
2032 	return count;
2033 }
2034 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2035 {
2036 	unsigned long ret, flags;
2037 	struct lock_list this;
2038 
2039 	__bfs_init_root(&this, class);
2040 
2041 	raw_local_irq_save(flags);
2042 	lockdep_lock();
2043 	ret = __lockdep_count_forward_deps(&this);
2044 	lockdep_unlock();
2045 	raw_local_irq_restore(flags);
2046 
2047 	return ret;
2048 }
2049 
2050 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2051 {
2052 	unsigned long  count = 0;
2053 	struct lock_list *target_entry;
2054 
2055 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2056 
2057 	return count;
2058 }
2059 
2060 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2061 {
2062 	unsigned long ret, flags;
2063 	struct lock_list this;
2064 
2065 	__bfs_init_root(&this, class);
2066 
2067 	raw_local_irq_save(flags);
2068 	lockdep_lock();
2069 	ret = __lockdep_count_backward_deps(&this);
2070 	lockdep_unlock();
2071 	raw_local_irq_restore(flags);
2072 
2073 	return ret;
2074 }
2075 
2076 /*
2077  * Check that the dependency graph starting at <src> can lead to
2078  * <target> or not.
2079  */
2080 static noinline enum bfs_result
2081 check_path(struct held_lock *target, struct lock_list *src_entry,
2082 	   bool (*match)(struct lock_list *entry, void *data),
2083 	   bool (*skip)(struct lock_list *entry, void *data),
2084 	   struct lock_list **target_entry)
2085 {
2086 	enum bfs_result ret;
2087 
2088 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2089 
2090 	if (unlikely(bfs_error(ret)))
2091 		print_bfs_bug(ret);
2092 
2093 	return ret;
2094 }
2095 
2096 /*
2097  * Prove that the dependency graph starting at <src> can not
2098  * lead to <target>. If it can, there is a circle when adding
2099  * <target> -> <src> dependency.
2100  *
2101  * Print an error and return BFS_RMATCH if it does.
2102  */
2103 static noinline enum bfs_result
2104 check_noncircular(struct held_lock *src, struct held_lock *target,
2105 		  struct lock_trace **const trace)
2106 {
2107 	enum bfs_result ret;
2108 	struct lock_list *target_entry;
2109 	struct lock_list src_entry;
2110 
2111 	bfs_init_root(&src_entry, src);
2112 
2113 	debug_atomic_inc(nr_cyclic_checks);
2114 
2115 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2116 
2117 	if (unlikely(ret == BFS_RMATCH)) {
2118 		if (!*trace) {
2119 			/*
2120 			 * If save_trace fails here, the printing might
2121 			 * trigger a WARN but because of the !nr_entries it
2122 			 * should not do bad things.
2123 			 */
2124 			*trace = save_trace();
2125 		}
2126 
2127 		print_circular_bug(&src_entry, target_entry, src, target);
2128 	}
2129 
2130 	return ret;
2131 }
2132 
2133 #ifdef CONFIG_TRACE_IRQFLAGS
2134 
2135 /*
2136  * Forwards and backwards subgraph searching, for the purposes of
2137  * proving that two subgraphs can be connected by a new dependency
2138  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2139  *
2140  * A irq safe->unsafe deadlock happens with the following conditions:
2141  *
2142  * 1) We have a strong dependency path A -> ... -> B
2143  *
2144  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2145  *    irq can create a new dependency B -> A (consider the case that a holder
2146  *    of B gets interrupted by an irq whose handler will try to acquire A).
2147  *
2148  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2149  *    strong circle:
2150  *
2151  *      For the usage bits of B:
2152  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2153  *           ENABLED_IRQ usage suffices.
2154  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2155  *           ENABLED_IRQ_*_READ usage suffices.
2156  *
2157  *      For the usage bits of A:
2158  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2159  *           USED_IN_IRQ usage suffices.
2160  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2161  *           USED_IN_IRQ_*_READ usage suffices.
2162  */
2163 
2164 /*
2165  * There is a strong dependency path in the dependency graph: A -> B, and now
2166  * we need to decide which usage bit of A should be accumulated to detect
2167  * safe->unsafe bugs.
2168  *
2169  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2170  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2171  *
2172  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2173  * path, any usage of A should be considered. Otherwise, we should only
2174  * consider _READ usage.
2175  */
2176 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2177 {
2178 	if (!entry->only_xr)
2179 		*(unsigned long *)mask |= entry->class->usage_mask;
2180 	else /* Mask out _READ usage bits */
2181 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2182 
2183 	return false;
2184 }
2185 
2186 /*
2187  * There is a strong dependency path in the dependency graph: A -> B, and now
2188  * we need to decide which usage bit of B conflicts with the usage bits of A,
2189  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2190  *
2191  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2192  * path, any usage of B should be considered. Otherwise, we should only
2193  * consider _READ usage.
2194  */
2195 static inline bool usage_match(struct lock_list *entry, void *mask)
2196 {
2197 	if (!entry->only_xr)
2198 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2199 	else /* Mask out _READ usage bits */
2200 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2201 }
2202 
2203 static inline bool usage_skip(struct lock_list *entry, void *mask)
2204 {
2205 	/*
2206 	 * Skip local_lock() for irq inversion detection.
2207 	 *
2208 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2209 	 * dependency.
2210 	 *
2211 	 * For RT, an irq inversion happens when we have lock A and B, and on
2212 	 * some CPU we can have:
2213 	 *
2214 	 *	lock(A);
2215 	 *	<interrupted>
2216 	 *	  lock(B);
2217 	 *
2218 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2219 	 *
2220 	 * Now we prove local_lock() cannot exist in that dependency. First we
2221 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2222 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2223 	 * wait context check will complain. And since B is not a sleep lock,
2224 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2225 	 * local_lock() is 3, which is greater than 2, therefore there is no
2226 	 * way the local_lock() exists in the dependency B -> ... -> A.
2227 	 *
2228 	 * As a result, we will skip local_lock(), when we search for irq
2229 	 * inversion bugs.
2230 	 */
2231 	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2232 		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2233 			return false;
2234 
2235 		return true;
2236 	}
2237 
2238 	return false;
2239 }
2240 
2241 /*
2242  * Find a node in the forwards-direction dependency sub-graph starting
2243  * at @root->class that matches @bit.
2244  *
2245  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2246  * into *@target_entry.
2247  */
2248 static enum bfs_result
2249 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2250 			struct lock_list **target_entry)
2251 {
2252 	enum bfs_result result;
2253 
2254 	debug_atomic_inc(nr_find_usage_forwards_checks);
2255 
2256 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2257 
2258 	return result;
2259 }
2260 
2261 /*
2262  * Find a node in the backwards-direction dependency sub-graph starting
2263  * at @root->class that matches @bit.
2264  */
2265 static enum bfs_result
2266 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2267 			struct lock_list **target_entry)
2268 {
2269 	enum bfs_result result;
2270 
2271 	debug_atomic_inc(nr_find_usage_backwards_checks);
2272 
2273 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2274 
2275 	return result;
2276 }
2277 
2278 static void print_lock_class_header(struct lock_class *class, int depth)
2279 {
2280 	int bit;
2281 
2282 	printk("%*s->", depth, "");
2283 	print_lock_name(class);
2284 #ifdef CONFIG_DEBUG_LOCKDEP
2285 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2286 #endif
2287 	printk(KERN_CONT " {\n");
2288 
2289 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2290 		if (class->usage_mask & (1 << bit)) {
2291 			int len = depth;
2292 
2293 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2294 			len += printk(KERN_CONT " at:\n");
2295 			print_lock_trace(class->usage_traces[bit], len);
2296 		}
2297 	}
2298 	printk("%*s }\n", depth, "");
2299 
2300 	printk("%*s ... key      at: [<%px>] %pS\n",
2301 		depth, "", class->key, class->key);
2302 }
2303 
2304 /*
2305  * printk the shortest lock dependencies from @start to @end in reverse order:
2306  */
2307 static void __used
2308 print_shortest_lock_dependencies(struct lock_list *leaf,
2309 				 struct lock_list *root)
2310 {
2311 	struct lock_list *entry = leaf;
2312 	int depth;
2313 
2314 	/*compute depth from generated tree by BFS*/
2315 	depth = get_lock_depth(leaf);
2316 
2317 	do {
2318 		print_lock_class_header(entry->class, depth);
2319 		printk("%*s ... acquired at:\n", depth, "");
2320 		print_lock_trace(entry->trace, 2);
2321 		printk("\n");
2322 
2323 		if (depth == 0 && (entry != root)) {
2324 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2325 			break;
2326 		}
2327 
2328 		entry = get_lock_parent(entry);
2329 		depth--;
2330 	} while (entry && (depth >= 0));
2331 }
2332 
2333 static void
2334 print_irq_lock_scenario(struct lock_list *safe_entry,
2335 			struct lock_list *unsafe_entry,
2336 			struct lock_class *prev_class,
2337 			struct lock_class *next_class)
2338 {
2339 	struct lock_class *safe_class = safe_entry->class;
2340 	struct lock_class *unsafe_class = unsafe_entry->class;
2341 	struct lock_class *middle_class = prev_class;
2342 
2343 	if (middle_class == safe_class)
2344 		middle_class = next_class;
2345 
2346 	/*
2347 	 * A direct locking problem where unsafe_class lock is taken
2348 	 * directly by safe_class lock, then all we need to show
2349 	 * is the deadlock scenario, as it is obvious that the
2350 	 * unsafe lock is taken under the safe lock.
2351 	 *
2352 	 * But if there is a chain instead, where the safe lock takes
2353 	 * an intermediate lock (middle_class) where this lock is
2354 	 * not the same as the safe lock, then the lock chain is
2355 	 * used to describe the problem. Otherwise we would need
2356 	 * to show a different CPU case for each link in the chain
2357 	 * from the safe_class lock to the unsafe_class lock.
2358 	 */
2359 	if (middle_class != unsafe_class) {
2360 		printk("Chain exists of:\n  ");
2361 		__print_lock_name(safe_class);
2362 		printk(KERN_CONT " --> ");
2363 		__print_lock_name(middle_class);
2364 		printk(KERN_CONT " --> ");
2365 		__print_lock_name(unsafe_class);
2366 		printk(KERN_CONT "\n\n");
2367 	}
2368 
2369 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2370 	printk("       CPU0                    CPU1\n");
2371 	printk("       ----                    ----\n");
2372 	printk("  lock(");
2373 	__print_lock_name(unsafe_class);
2374 	printk(KERN_CONT ");\n");
2375 	printk("                               local_irq_disable();\n");
2376 	printk("                               lock(");
2377 	__print_lock_name(safe_class);
2378 	printk(KERN_CONT ");\n");
2379 	printk("                               lock(");
2380 	__print_lock_name(middle_class);
2381 	printk(KERN_CONT ");\n");
2382 	printk("  <Interrupt>\n");
2383 	printk("    lock(");
2384 	__print_lock_name(safe_class);
2385 	printk(KERN_CONT ");\n");
2386 	printk("\n *** DEADLOCK ***\n\n");
2387 }
2388 
2389 static void
2390 print_bad_irq_dependency(struct task_struct *curr,
2391 			 struct lock_list *prev_root,
2392 			 struct lock_list *next_root,
2393 			 struct lock_list *backwards_entry,
2394 			 struct lock_list *forwards_entry,
2395 			 struct held_lock *prev,
2396 			 struct held_lock *next,
2397 			 enum lock_usage_bit bit1,
2398 			 enum lock_usage_bit bit2,
2399 			 const char *irqclass)
2400 {
2401 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2402 		return;
2403 
2404 	pr_warn("\n");
2405 	pr_warn("=====================================================\n");
2406 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2407 		irqclass, irqclass);
2408 	print_kernel_ident();
2409 	pr_warn("-----------------------------------------------------\n");
2410 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2411 		curr->comm, task_pid_nr(curr),
2412 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2413 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2414 		lockdep_hardirqs_enabled(),
2415 		curr->softirqs_enabled);
2416 	print_lock(next);
2417 
2418 	pr_warn("\nand this task is already holding:\n");
2419 	print_lock(prev);
2420 	pr_warn("which would create a new lock dependency:\n");
2421 	print_lock_name(hlock_class(prev));
2422 	pr_cont(" ->");
2423 	print_lock_name(hlock_class(next));
2424 	pr_cont("\n");
2425 
2426 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2427 		irqclass);
2428 	print_lock_name(backwards_entry->class);
2429 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2430 
2431 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2432 
2433 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2434 	print_lock_name(forwards_entry->class);
2435 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2436 	pr_warn("...");
2437 
2438 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2439 
2440 	pr_warn("\nother info that might help us debug this:\n\n");
2441 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2442 				hlock_class(prev), hlock_class(next));
2443 
2444 	lockdep_print_held_locks(curr);
2445 
2446 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2447 	prev_root->trace = save_trace();
2448 	if (!prev_root->trace)
2449 		return;
2450 	print_shortest_lock_dependencies(backwards_entry, prev_root);
2451 
2452 	pr_warn("\nthe dependencies between the lock to be acquired");
2453 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2454 	next_root->trace = save_trace();
2455 	if (!next_root->trace)
2456 		return;
2457 	print_shortest_lock_dependencies(forwards_entry, next_root);
2458 
2459 	pr_warn("\nstack backtrace:\n");
2460 	dump_stack();
2461 }
2462 
2463 static const char *state_names[] = {
2464 #define LOCKDEP_STATE(__STATE) \
2465 	__stringify(__STATE),
2466 #include "lockdep_states.h"
2467 #undef LOCKDEP_STATE
2468 };
2469 
2470 static const char *state_rnames[] = {
2471 #define LOCKDEP_STATE(__STATE) \
2472 	__stringify(__STATE)"-READ",
2473 #include "lockdep_states.h"
2474 #undef LOCKDEP_STATE
2475 };
2476 
2477 static inline const char *state_name(enum lock_usage_bit bit)
2478 {
2479 	if (bit & LOCK_USAGE_READ_MASK)
2480 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2481 	else
2482 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2483 }
2484 
2485 /*
2486  * The bit number is encoded like:
2487  *
2488  *  bit0: 0 exclusive, 1 read lock
2489  *  bit1: 0 used in irq, 1 irq enabled
2490  *  bit2-n: state
2491  */
2492 static int exclusive_bit(int new_bit)
2493 {
2494 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2495 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2496 
2497 	/*
2498 	 * keep state, bit flip the direction and strip read.
2499 	 */
2500 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2501 }
2502 
2503 /*
2504  * Observe that when given a bitmask where each bitnr is encoded as above, a
2505  * right shift of the mask transforms the individual bitnrs as -1 and
2506  * conversely, a left shift transforms into +1 for the individual bitnrs.
2507  *
2508  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2509  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2510  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2511  *
2512  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2513  *
2514  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2515  * all bits set) and recompose with bitnr1 flipped.
2516  */
2517 static unsigned long invert_dir_mask(unsigned long mask)
2518 {
2519 	unsigned long excl = 0;
2520 
2521 	/* Invert dir */
2522 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2523 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2524 
2525 	return excl;
2526 }
2527 
2528 /*
2529  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2530  * usage may cause deadlock too, for example:
2531  *
2532  * P1				P2
2533  * <irq disabled>
2534  * write_lock(l1);		<irq enabled>
2535  *				read_lock(l2);
2536  * write_lock(l2);
2537  * 				<in irq>
2538  * 				read_lock(l1);
2539  *
2540  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2541  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2542  * deadlock.
2543  *
2544  * In fact, all of the following cases may cause deadlocks:
2545  *
2546  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2547  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2548  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2549  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2550  *
2551  * As a result, to calculate the "exclusive mask", first we invert the
2552  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2553  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2554  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2555  */
2556 static unsigned long exclusive_mask(unsigned long mask)
2557 {
2558 	unsigned long excl = invert_dir_mask(mask);
2559 
2560 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2561 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2562 
2563 	return excl;
2564 }
2565 
2566 /*
2567  * Retrieve the _possible_ original mask to which @mask is
2568  * exclusive. Ie: this is the opposite of exclusive_mask().
2569  * Note that 2 possible original bits can match an exclusive
2570  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2571  * cleared. So both are returned for each exclusive bit.
2572  */
2573 static unsigned long original_mask(unsigned long mask)
2574 {
2575 	unsigned long excl = invert_dir_mask(mask);
2576 
2577 	/* Include read in existing usages */
2578 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2579 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2580 
2581 	return excl;
2582 }
2583 
2584 /*
2585  * Find the first pair of bit match between an original
2586  * usage mask and an exclusive usage mask.
2587  */
2588 static int find_exclusive_match(unsigned long mask,
2589 				unsigned long excl_mask,
2590 				enum lock_usage_bit *bitp,
2591 				enum lock_usage_bit *excl_bitp)
2592 {
2593 	int bit, excl, excl_read;
2594 
2595 	for_each_set_bit(bit, &mask, LOCK_USED) {
2596 		/*
2597 		 * exclusive_bit() strips the read bit, however,
2598 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2599 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2600 		 */
2601 		excl = exclusive_bit(bit);
2602 		excl_read = excl | LOCK_USAGE_READ_MASK;
2603 		if (excl_mask & lock_flag(excl)) {
2604 			*bitp = bit;
2605 			*excl_bitp = excl;
2606 			return 0;
2607 		} else if (excl_mask & lock_flag(excl_read)) {
2608 			*bitp = bit;
2609 			*excl_bitp = excl_read;
2610 			return 0;
2611 		}
2612 	}
2613 	return -1;
2614 }
2615 
2616 /*
2617  * Prove that the new dependency does not connect a hardirq-safe(-read)
2618  * lock with a hardirq-unsafe lock - to achieve this we search
2619  * the backwards-subgraph starting at <prev>, and the
2620  * forwards-subgraph starting at <next>:
2621  */
2622 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2623 			   struct held_lock *next)
2624 {
2625 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2626 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2627 	struct lock_list *target_entry1;
2628 	struct lock_list *target_entry;
2629 	struct lock_list this, that;
2630 	enum bfs_result ret;
2631 
2632 	/*
2633 	 * Step 1: gather all hard/soft IRQs usages backward in an
2634 	 * accumulated usage mask.
2635 	 */
2636 	bfs_init_rootb(&this, prev);
2637 
2638 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2639 	if (bfs_error(ret)) {
2640 		print_bfs_bug(ret);
2641 		return 0;
2642 	}
2643 
2644 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2645 	if (!usage_mask)
2646 		return 1;
2647 
2648 	/*
2649 	 * Step 2: find exclusive uses forward that match the previous
2650 	 * backward accumulated mask.
2651 	 */
2652 	forward_mask = exclusive_mask(usage_mask);
2653 
2654 	bfs_init_root(&that, next);
2655 
2656 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2657 	if (bfs_error(ret)) {
2658 		print_bfs_bug(ret);
2659 		return 0;
2660 	}
2661 	if (ret == BFS_RNOMATCH)
2662 		return 1;
2663 
2664 	/*
2665 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2666 	 * list whose usage mask matches the exclusive usage mask from the
2667 	 * lock found on the forward list.
2668 	 */
2669 	backward_mask = original_mask(target_entry1->class->usage_mask);
2670 
2671 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2672 	if (bfs_error(ret)) {
2673 		print_bfs_bug(ret);
2674 		return 0;
2675 	}
2676 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2677 		return 1;
2678 
2679 	/*
2680 	 * Step 4: narrow down to a pair of incompatible usage bits
2681 	 * and report it.
2682 	 */
2683 	ret = find_exclusive_match(target_entry->class->usage_mask,
2684 				   target_entry1->class->usage_mask,
2685 				   &backward_bit, &forward_bit);
2686 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2687 		return 1;
2688 
2689 	print_bad_irq_dependency(curr, &this, &that,
2690 				 target_entry, target_entry1,
2691 				 prev, next,
2692 				 backward_bit, forward_bit,
2693 				 state_name(backward_bit));
2694 
2695 	return 0;
2696 }
2697 
2698 #else
2699 
2700 static inline int check_irq_usage(struct task_struct *curr,
2701 				  struct held_lock *prev, struct held_lock *next)
2702 {
2703 	return 1;
2704 }
2705 
2706 static inline bool usage_skip(struct lock_list *entry, void *mask)
2707 {
2708 	return false;
2709 }
2710 
2711 #endif /* CONFIG_TRACE_IRQFLAGS */
2712 
2713 #ifdef CONFIG_LOCKDEP_SMALL
2714 /*
2715  * Check that the dependency graph starting at <src> can lead to
2716  * <target> or not. If it can, <src> -> <target> dependency is already
2717  * in the graph.
2718  *
2719  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2720  * any error appears in the bfs search.
2721  */
2722 static noinline enum bfs_result
2723 check_redundant(struct held_lock *src, struct held_lock *target)
2724 {
2725 	enum bfs_result ret;
2726 	struct lock_list *target_entry;
2727 	struct lock_list src_entry;
2728 
2729 	bfs_init_root(&src_entry, src);
2730 	/*
2731 	 * Special setup for check_redundant().
2732 	 *
2733 	 * To report redundant, we need to find a strong dependency path that
2734 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2735 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2736 	 * we achieve this by setting the initial node's ->only_xr to true in
2737 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2738 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2739 	 */
2740 	src_entry.only_xr = src->read == 0;
2741 
2742 	debug_atomic_inc(nr_redundant_checks);
2743 
2744 	/*
2745 	 * Note: we skip local_lock() for redundant check, because as the
2746 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2747 	 * the same.
2748 	 */
2749 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2750 
2751 	if (ret == BFS_RMATCH)
2752 		debug_atomic_inc(nr_redundant);
2753 
2754 	return ret;
2755 }
2756 
2757 #else
2758 
2759 static inline enum bfs_result
2760 check_redundant(struct held_lock *src, struct held_lock *target)
2761 {
2762 	return BFS_RNOMATCH;
2763 }
2764 
2765 #endif
2766 
2767 static void inc_chains(int irq_context)
2768 {
2769 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2770 		nr_hardirq_chains++;
2771 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2772 		nr_softirq_chains++;
2773 	else
2774 		nr_process_chains++;
2775 }
2776 
2777 static void dec_chains(int irq_context)
2778 {
2779 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2780 		nr_hardirq_chains--;
2781 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2782 		nr_softirq_chains--;
2783 	else
2784 		nr_process_chains--;
2785 }
2786 
2787 static void
2788 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2789 {
2790 	struct lock_class *next = hlock_class(nxt);
2791 	struct lock_class *prev = hlock_class(prv);
2792 
2793 	printk(" Possible unsafe locking scenario:\n\n");
2794 	printk("       CPU0\n");
2795 	printk("       ----\n");
2796 	printk("  lock(");
2797 	__print_lock_name(prev);
2798 	printk(KERN_CONT ");\n");
2799 	printk("  lock(");
2800 	__print_lock_name(next);
2801 	printk(KERN_CONT ");\n");
2802 	printk("\n *** DEADLOCK ***\n\n");
2803 	printk(" May be due to missing lock nesting notation\n\n");
2804 }
2805 
2806 static void
2807 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2808 		   struct held_lock *next)
2809 {
2810 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2811 		return;
2812 
2813 	pr_warn("\n");
2814 	pr_warn("============================================\n");
2815 	pr_warn("WARNING: possible recursive locking detected\n");
2816 	print_kernel_ident();
2817 	pr_warn("--------------------------------------------\n");
2818 	pr_warn("%s/%d is trying to acquire lock:\n",
2819 		curr->comm, task_pid_nr(curr));
2820 	print_lock(next);
2821 	pr_warn("\nbut task is already holding lock:\n");
2822 	print_lock(prev);
2823 
2824 	pr_warn("\nother info that might help us debug this:\n");
2825 	print_deadlock_scenario(next, prev);
2826 	lockdep_print_held_locks(curr);
2827 
2828 	pr_warn("\nstack backtrace:\n");
2829 	dump_stack();
2830 }
2831 
2832 /*
2833  * Check whether we are holding such a class already.
2834  *
2835  * (Note that this has to be done separately, because the graph cannot
2836  * detect such classes of deadlocks.)
2837  *
2838  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2839  * lock class is held but nest_lock is also held, i.e. we rely on the
2840  * nest_lock to avoid the deadlock.
2841  */
2842 static int
2843 check_deadlock(struct task_struct *curr, struct held_lock *next)
2844 {
2845 	struct held_lock *prev;
2846 	struct held_lock *nest = NULL;
2847 	int i;
2848 
2849 	for (i = 0; i < curr->lockdep_depth; i++) {
2850 		prev = curr->held_locks + i;
2851 
2852 		if (prev->instance == next->nest_lock)
2853 			nest = prev;
2854 
2855 		if (hlock_class(prev) != hlock_class(next))
2856 			continue;
2857 
2858 		/*
2859 		 * Allow read-after-read recursion of the same
2860 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2861 		 */
2862 		if ((next->read == 2) && prev->read)
2863 			continue;
2864 
2865 		/*
2866 		 * We're holding the nest_lock, which serializes this lock's
2867 		 * nesting behaviour.
2868 		 */
2869 		if (nest)
2870 			return 2;
2871 
2872 		print_deadlock_bug(curr, prev, next);
2873 		return 0;
2874 	}
2875 	return 1;
2876 }
2877 
2878 /*
2879  * There was a chain-cache miss, and we are about to add a new dependency
2880  * to a previous lock. We validate the following rules:
2881  *
2882  *  - would the adding of the <prev> -> <next> dependency create a
2883  *    circular dependency in the graph? [== circular deadlock]
2884  *
2885  *  - does the new prev->next dependency connect any hardirq-safe lock
2886  *    (in the full backwards-subgraph starting at <prev>) with any
2887  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2888  *    <next>)? [== illegal lock inversion with hardirq contexts]
2889  *
2890  *  - does the new prev->next dependency connect any softirq-safe lock
2891  *    (in the full backwards-subgraph starting at <prev>) with any
2892  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2893  *    <next>)? [== illegal lock inversion with softirq contexts]
2894  *
2895  * any of these scenarios could lead to a deadlock.
2896  *
2897  * Then if all the validations pass, we add the forwards and backwards
2898  * dependency.
2899  */
2900 static int
2901 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2902 	       struct held_lock *next, u16 distance,
2903 	       struct lock_trace **const trace)
2904 {
2905 	struct lock_list *entry;
2906 	enum bfs_result ret;
2907 
2908 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2909 		/*
2910 		 * The warning statements below may trigger a use-after-free
2911 		 * of the class name. It is better to trigger a use-after free
2912 		 * and to have the class name most of the time instead of not
2913 		 * having the class name available.
2914 		 */
2915 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2916 			  "Detected use-after-free of lock class %px/%s\n",
2917 			  hlock_class(prev),
2918 			  hlock_class(prev)->name);
2919 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2920 			  "Detected use-after-free of lock class %px/%s\n",
2921 			  hlock_class(next),
2922 			  hlock_class(next)->name);
2923 		return 2;
2924 	}
2925 
2926 	/*
2927 	 * Prove that the new <prev> -> <next> dependency would not
2928 	 * create a circular dependency in the graph. (We do this by
2929 	 * a breadth-first search into the graph starting at <next>,
2930 	 * and check whether we can reach <prev>.)
2931 	 *
2932 	 * The search is limited by the size of the circular queue (i.e.,
2933 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2934 	 * in the graph whose neighbours are to be checked.
2935 	 */
2936 	ret = check_noncircular(next, prev, trace);
2937 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2938 		return 0;
2939 
2940 	if (!check_irq_usage(curr, prev, next))
2941 		return 0;
2942 
2943 	/*
2944 	 * Is the <prev> -> <next> dependency already present?
2945 	 *
2946 	 * (this may occur even though this is a new chain: consider
2947 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2948 	 *  chains - the second one will be new, but L1 already has
2949 	 *  L2 added to its dependency list, due to the first chain.)
2950 	 */
2951 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2952 		if (entry->class == hlock_class(next)) {
2953 			if (distance == 1)
2954 				entry->distance = 1;
2955 			entry->dep |= calc_dep(prev, next);
2956 
2957 			/*
2958 			 * Also, update the reverse dependency in @next's
2959 			 * ->locks_before list.
2960 			 *
2961 			 *  Here we reuse @entry as the cursor, which is fine
2962 			 *  because we won't go to the next iteration of the
2963 			 *  outer loop:
2964 			 *
2965 			 *  For normal cases, we return in the inner loop.
2966 			 *
2967 			 *  If we fail to return, we have inconsistency, i.e.
2968 			 *  <prev>::locks_after contains <next> while
2969 			 *  <next>::locks_before doesn't contain <prev>. In
2970 			 *  that case, we return after the inner and indicate
2971 			 *  something is wrong.
2972 			 */
2973 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2974 				if (entry->class == hlock_class(prev)) {
2975 					if (distance == 1)
2976 						entry->distance = 1;
2977 					entry->dep |= calc_depb(prev, next);
2978 					return 1;
2979 				}
2980 			}
2981 
2982 			/* <prev> is not found in <next>::locks_before */
2983 			return 0;
2984 		}
2985 	}
2986 
2987 	/*
2988 	 * Is the <prev> -> <next> link redundant?
2989 	 */
2990 	ret = check_redundant(prev, next);
2991 	if (bfs_error(ret))
2992 		return 0;
2993 	else if (ret == BFS_RMATCH)
2994 		return 2;
2995 
2996 	if (!*trace) {
2997 		*trace = save_trace();
2998 		if (!*trace)
2999 			return 0;
3000 	}
3001 
3002 	/*
3003 	 * Ok, all validations passed, add the new lock
3004 	 * to the previous lock's dependency list:
3005 	 */
3006 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3007 			       &hlock_class(prev)->locks_after,
3008 			       next->acquire_ip, distance,
3009 			       calc_dep(prev, next),
3010 			       *trace);
3011 
3012 	if (!ret)
3013 		return 0;
3014 
3015 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3016 			       &hlock_class(next)->locks_before,
3017 			       next->acquire_ip, distance,
3018 			       calc_depb(prev, next),
3019 			       *trace);
3020 	if (!ret)
3021 		return 0;
3022 
3023 	return 2;
3024 }
3025 
3026 /*
3027  * Add the dependency to all directly-previous locks that are 'relevant'.
3028  * The ones that are relevant are (in increasing distance from curr):
3029  * all consecutive trylock entries and the final non-trylock entry - or
3030  * the end of this context's lock-chain - whichever comes first.
3031  */
3032 static int
3033 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3034 {
3035 	struct lock_trace *trace = NULL;
3036 	int depth = curr->lockdep_depth;
3037 	struct held_lock *hlock;
3038 
3039 	/*
3040 	 * Debugging checks.
3041 	 *
3042 	 * Depth must not be zero for a non-head lock:
3043 	 */
3044 	if (!depth)
3045 		goto out_bug;
3046 	/*
3047 	 * At least two relevant locks must exist for this
3048 	 * to be a head:
3049 	 */
3050 	if (curr->held_locks[depth].irq_context !=
3051 			curr->held_locks[depth-1].irq_context)
3052 		goto out_bug;
3053 
3054 	for (;;) {
3055 		u16 distance = curr->lockdep_depth - depth + 1;
3056 		hlock = curr->held_locks + depth - 1;
3057 
3058 		if (hlock->check) {
3059 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3060 			if (!ret)
3061 				return 0;
3062 
3063 			/*
3064 			 * Stop after the first non-trylock entry,
3065 			 * as non-trylock entries have added their
3066 			 * own direct dependencies already, so this
3067 			 * lock is connected to them indirectly:
3068 			 */
3069 			if (!hlock->trylock)
3070 				break;
3071 		}
3072 
3073 		depth--;
3074 		/*
3075 		 * End of lock-stack?
3076 		 */
3077 		if (!depth)
3078 			break;
3079 		/*
3080 		 * Stop the search if we cross into another context:
3081 		 */
3082 		if (curr->held_locks[depth].irq_context !=
3083 				curr->held_locks[depth-1].irq_context)
3084 			break;
3085 	}
3086 	return 1;
3087 out_bug:
3088 	if (!debug_locks_off_graph_unlock())
3089 		return 0;
3090 
3091 	/*
3092 	 * Clearly we all shouldn't be here, but since we made it we
3093 	 * can reliable say we messed up our state. See the above two
3094 	 * gotos for reasons why we could possibly end up here.
3095 	 */
3096 	WARN_ON(1);
3097 
3098 	return 0;
3099 }
3100 
3101 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3102 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3103 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3104 unsigned long nr_zapped_lock_chains;
3105 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3106 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3107 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3108 
3109 /*
3110  * The first 2 chain_hlocks entries in the chain block in the bucket
3111  * list contains the following meta data:
3112  *
3113  *   entry[0]:
3114  *     Bit    15 - always set to 1 (it is not a class index)
3115  *     Bits 0-14 - upper 15 bits of the next block index
3116  *   entry[1]    - lower 16 bits of next block index
3117  *
3118  * A next block index of all 1 bits means it is the end of the list.
3119  *
3120  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3121  * the chain block size:
3122  *
3123  *   entry[2] - upper 16 bits of the chain block size
3124  *   entry[3] - lower 16 bits of the chain block size
3125  */
3126 #define MAX_CHAIN_BUCKETS	16
3127 #define CHAIN_BLK_FLAG		(1U << 15)
3128 #define CHAIN_BLK_LIST_END	0xFFFFU
3129 
3130 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3131 
3132 static inline int size_to_bucket(int size)
3133 {
3134 	if (size > MAX_CHAIN_BUCKETS)
3135 		return 0;
3136 
3137 	return size - 1;
3138 }
3139 
3140 /*
3141  * Iterate all the chain blocks in a bucket.
3142  */
3143 #define for_each_chain_block(bucket, prev, curr)		\
3144 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3145 	     (curr) >= 0;					\
3146 	     (prev) = (curr), (curr) = chain_block_next(curr))
3147 
3148 /*
3149  * next block or -1
3150  */
3151 static inline int chain_block_next(int offset)
3152 {
3153 	int next = chain_hlocks[offset];
3154 
3155 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3156 
3157 	if (next == CHAIN_BLK_LIST_END)
3158 		return -1;
3159 
3160 	next &= ~CHAIN_BLK_FLAG;
3161 	next <<= 16;
3162 	next |= chain_hlocks[offset + 1];
3163 
3164 	return next;
3165 }
3166 
3167 /*
3168  * bucket-0 only
3169  */
3170 static inline int chain_block_size(int offset)
3171 {
3172 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3173 }
3174 
3175 static inline void init_chain_block(int offset, int next, int bucket, int size)
3176 {
3177 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3178 	chain_hlocks[offset + 1] = (u16)next;
3179 
3180 	if (size && !bucket) {
3181 		chain_hlocks[offset + 2] = size >> 16;
3182 		chain_hlocks[offset + 3] = (u16)size;
3183 	}
3184 }
3185 
3186 static inline void add_chain_block(int offset, int size)
3187 {
3188 	int bucket = size_to_bucket(size);
3189 	int next = chain_block_buckets[bucket];
3190 	int prev, curr;
3191 
3192 	if (unlikely(size < 2)) {
3193 		/*
3194 		 * We can't store single entries on the freelist. Leak them.
3195 		 *
3196 		 * One possible way out would be to uniquely mark them, other
3197 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3198 		 * the block before it is re-added.
3199 		 */
3200 		if (size)
3201 			nr_lost_chain_hlocks++;
3202 		return;
3203 	}
3204 
3205 	nr_free_chain_hlocks += size;
3206 	if (!bucket) {
3207 		nr_large_chain_blocks++;
3208 
3209 		/*
3210 		 * Variable sized, sort large to small.
3211 		 */
3212 		for_each_chain_block(0, prev, curr) {
3213 			if (size >= chain_block_size(curr))
3214 				break;
3215 		}
3216 		init_chain_block(offset, curr, 0, size);
3217 		if (prev < 0)
3218 			chain_block_buckets[0] = offset;
3219 		else
3220 			init_chain_block(prev, offset, 0, 0);
3221 		return;
3222 	}
3223 	/*
3224 	 * Fixed size, add to head.
3225 	 */
3226 	init_chain_block(offset, next, bucket, size);
3227 	chain_block_buckets[bucket] = offset;
3228 }
3229 
3230 /*
3231  * Only the first block in the list can be deleted.
3232  *
3233  * For the variable size bucket[0], the first block (the largest one) is
3234  * returned, broken up and put back into the pool. So if a chain block of
3235  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3236  * queued up after the primordial chain block and never be used until the
3237  * hlock entries in the primordial chain block is almost used up. That
3238  * causes fragmentation and reduce allocation efficiency. That can be
3239  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3240  */
3241 static inline void del_chain_block(int bucket, int size, int next)
3242 {
3243 	nr_free_chain_hlocks -= size;
3244 	chain_block_buckets[bucket] = next;
3245 
3246 	if (!bucket)
3247 		nr_large_chain_blocks--;
3248 }
3249 
3250 static void init_chain_block_buckets(void)
3251 {
3252 	int i;
3253 
3254 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3255 		chain_block_buckets[i] = -1;
3256 
3257 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3258 }
3259 
3260 /*
3261  * Return offset of a chain block of the right size or -1 if not found.
3262  *
3263  * Fairly simple worst-fit allocator with the addition of a number of size
3264  * specific free lists.
3265  */
3266 static int alloc_chain_hlocks(int req)
3267 {
3268 	int bucket, curr, size;
3269 
3270 	/*
3271 	 * We rely on the MSB to act as an escape bit to denote freelist
3272 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3273 	 */
3274 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3275 
3276 	init_data_structures_once();
3277 
3278 	if (nr_free_chain_hlocks < req)
3279 		return -1;
3280 
3281 	/*
3282 	 * We require a minimum of 2 (u16) entries to encode a freelist
3283 	 * 'pointer'.
3284 	 */
3285 	req = max(req, 2);
3286 	bucket = size_to_bucket(req);
3287 	curr = chain_block_buckets[bucket];
3288 
3289 	if (bucket) {
3290 		if (curr >= 0) {
3291 			del_chain_block(bucket, req, chain_block_next(curr));
3292 			return curr;
3293 		}
3294 		/* Try bucket 0 */
3295 		curr = chain_block_buckets[0];
3296 	}
3297 
3298 	/*
3299 	 * The variable sized freelist is sorted by size; the first entry is
3300 	 * the largest. Use it if it fits.
3301 	 */
3302 	if (curr >= 0) {
3303 		size = chain_block_size(curr);
3304 		if (likely(size >= req)) {
3305 			del_chain_block(0, size, chain_block_next(curr));
3306 			add_chain_block(curr + req, size - req);
3307 			return curr;
3308 		}
3309 	}
3310 
3311 	/*
3312 	 * Last resort, split a block in a larger sized bucket.
3313 	 */
3314 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3315 		bucket = size_to_bucket(size);
3316 		curr = chain_block_buckets[bucket];
3317 		if (curr < 0)
3318 			continue;
3319 
3320 		del_chain_block(bucket, size, chain_block_next(curr));
3321 		add_chain_block(curr + req, size - req);
3322 		return curr;
3323 	}
3324 
3325 	return -1;
3326 }
3327 
3328 static inline void free_chain_hlocks(int base, int size)
3329 {
3330 	add_chain_block(base, max(size, 2));
3331 }
3332 
3333 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3334 {
3335 	u16 chain_hlock = chain_hlocks[chain->base + i];
3336 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3337 
3338 	return lock_classes + class_idx - 1;
3339 }
3340 
3341 /*
3342  * Returns the index of the first held_lock of the current chain
3343  */
3344 static inline int get_first_held_lock(struct task_struct *curr,
3345 					struct held_lock *hlock)
3346 {
3347 	int i;
3348 	struct held_lock *hlock_curr;
3349 
3350 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3351 		hlock_curr = curr->held_locks + i;
3352 		if (hlock_curr->irq_context != hlock->irq_context)
3353 			break;
3354 
3355 	}
3356 
3357 	return ++i;
3358 }
3359 
3360 #ifdef CONFIG_DEBUG_LOCKDEP
3361 /*
3362  * Returns the next chain_key iteration
3363  */
3364 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3365 {
3366 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3367 
3368 	printk(" hlock_id:%d -> chain_key:%016Lx",
3369 		(unsigned int)hlock_id,
3370 		(unsigned long long)new_chain_key);
3371 	return new_chain_key;
3372 }
3373 
3374 static void
3375 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3376 {
3377 	struct held_lock *hlock;
3378 	u64 chain_key = INITIAL_CHAIN_KEY;
3379 	int depth = curr->lockdep_depth;
3380 	int i = get_first_held_lock(curr, hlock_next);
3381 
3382 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3383 		hlock_next->irq_context);
3384 	for (; i < depth; i++) {
3385 		hlock = curr->held_locks + i;
3386 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3387 
3388 		print_lock(hlock);
3389 	}
3390 
3391 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3392 	print_lock(hlock_next);
3393 }
3394 
3395 static void print_chain_keys_chain(struct lock_chain *chain)
3396 {
3397 	int i;
3398 	u64 chain_key = INITIAL_CHAIN_KEY;
3399 	u16 hlock_id;
3400 
3401 	printk("depth: %u\n", chain->depth);
3402 	for (i = 0; i < chain->depth; i++) {
3403 		hlock_id = chain_hlocks[chain->base + i];
3404 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3405 
3406 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3407 		printk("\n");
3408 	}
3409 }
3410 
3411 static void print_collision(struct task_struct *curr,
3412 			struct held_lock *hlock_next,
3413 			struct lock_chain *chain)
3414 {
3415 	pr_warn("\n");
3416 	pr_warn("============================\n");
3417 	pr_warn("WARNING: chain_key collision\n");
3418 	print_kernel_ident();
3419 	pr_warn("----------------------------\n");
3420 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3421 	pr_warn("Hash chain already cached but the contents don't match!\n");
3422 
3423 	pr_warn("Held locks:");
3424 	print_chain_keys_held_locks(curr, hlock_next);
3425 
3426 	pr_warn("Locks in cached chain:");
3427 	print_chain_keys_chain(chain);
3428 
3429 	pr_warn("\nstack backtrace:\n");
3430 	dump_stack();
3431 }
3432 #endif
3433 
3434 /*
3435  * Checks whether the chain and the current held locks are consistent
3436  * in depth and also in content. If they are not it most likely means
3437  * that there was a collision during the calculation of the chain_key.
3438  * Returns: 0 not passed, 1 passed
3439  */
3440 static int check_no_collision(struct task_struct *curr,
3441 			struct held_lock *hlock,
3442 			struct lock_chain *chain)
3443 {
3444 #ifdef CONFIG_DEBUG_LOCKDEP
3445 	int i, j, id;
3446 
3447 	i = get_first_held_lock(curr, hlock);
3448 
3449 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3450 		print_collision(curr, hlock, chain);
3451 		return 0;
3452 	}
3453 
3454 	for (j = 0; j < chain->depth - 1; j++, i++) {
3455 		id = hlock_id(&curr->held_locks[i]);
3456 
3457 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3458 			print_collision(curr, hlock, chain);
3459 			return 0;
3460 		}
3461 	}
3462 #endif
3463 	return 1;
3464 }
3465 
3466 /*
3467  * Given an index that is >= -1, return the index of the next lock chain.
3468  * Return -2 if there is no next lock chain.
3469  */
3470 long lockdep_next_lockchain(long i)
3471 {
3472 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3473 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3474 }
3475 
3476 unsigned long lock_chain_count(void)
3477 {
3478 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3479 }
3480 
3481 /* Must be called with the graph lock held. */
3482 static struct lock_chain *alloc_lock_chain(void)
3483 {
3484 	int idx = find_first_zero_bit(lock_chains_in_use,
3485 				      ARRAY_SIZE(lock_chains));
3486 
3487 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3488 		return NULL;
3489 	__set_bit(idx, lock_chains_in_use);
3490 	return lock_chains + idx;
3491 }
3492 
3493 /*
3494  * Adds a dependency chain into chain hashtable. And must be called with
3495  * graph_lock held.
3496  *
3497  * Return 0 if fail, and graph_lock is released.
3498  * Return 1 if succeed, with graph_lock held.
3499  */
3500 static inline int add_chain_cache(struct task_struct *curr,
3501 				  struct held_lock *hlock,
3502 				  u64 chain_key)
3503 {
3504 	struct hlist_head *hash_head = chainhashentry(chain_key);
3505 	struct lock_chain *chain;
3506 	int i, j;
3507 
3508 	/*
3509 	 * The caller must hold the graph lock, ensure we've got IRQs
3510 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3511 	 * lockdep won't complain about its own locking errors.
3512 	 */
3513 	if (lockdep_assert_locked())
3514 		return 0;
3515 
3516 	chain = alloc_lock_chain();
3517 	if (!chain) {
3518 		if (!debug_locks_off_graph_unlock())
3519 			return 0;
3520 
3521 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3522 		dump_stack();
3523 		return 0;
3524 	}
3525 	chain->chain_key = chain_key;
3526 	chain->irq_context = hlock->irq_context;
3527 	i = get_first_held_lock(curr, hlock);
3528 	chain->depth = curr->lockdep_depth + 1 - i;
3529 
3530 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3531 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3532 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3533 
3534 	j = alloc_chain_hlocks(chain->depth);
3535 	if (j < 0) {
3536 		if (!debug_locks_off_graph_unlock())
3537 			return 0;
3538 
3539 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3540 		dump_stack();
3541 		return 0;
3542 	}
3543 
3544 	chain->base = j;
3545 	for (j = 0; j < chain->depth - 1; j++, i++) {
3546 		int lock_id = hlock_id(curr->held_locks + i);
3547 
3548 		chain_hlocks[chain->base + j] = lock_id;
3549 	}
3550 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3551 	hlist_add_head_rcu(&chain->entry, hash_head);
3552 	debug_atomic_inc(chain_lookup_misses);
3553 	inc_chains(chain->irq_context);
3554 
3555 	return 1;
3556 }
3557 
3558 /*
3559  * Look up a dependency chain. Must be called with either the graph lock or
3560  * the RCU read lock held.
3561  */
3562 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3563 {
3564 	struct hlist_head *hash_head = chainhashentry(chain_key);
3565 	struct lock_chain *chain;
3566 
3567 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3568 		if (READ_ONCE(chain->chain_key) == chain_key) {
3569 			debug_atomic_inc(chain_lookup_hits);
3570 			return chain;
3571 		}
3572 	}
3573 	return NULL;
3574 }
3575 
3576 /*
3577  * If the key is not present yet in dependency chain cache then
3578  * add it and return 1 - in this case the new dependency chain is
3579  * validated. If the key is already hashed, return 0.
3580  * (On return with 1 graph_lock is held.)
3581  */
3582 static inline int lookup_chain_cache_add(struct task_struct *curr,
3583 					 struct held_lock *hlock,
3584 					 u64 chain_key)
3585 {
3586 	struct lock_class *class = hlock_class(hlock);
3587 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3588 
3589 	if (chain) {
3590 cache_hit:
3591 		if (!check_no_collision(curr, hlock, chain))
3592 			return 0;
3593 
3594 		if (very_verbose(class)) {
3595 			printk("\nhash chain already cached, key: "
3596 					"%016Lx tail class: [%px] %s\n",
3597 					(unsigned long long)chain_key,
3598 					class->key, class->name);
3599 		}
3600 
3601 		return 0;
3602 	}
3603 
3604 	if (very_verbose(class)) {
3605 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3606 			(unsigned long long)chain_key, class->key, class->name);
3607 	}
3608 
3609 	if (!graph_lock())
3610 		return 0;
3611 
3612 	/*
3613 	 * We have to walk the chain again locked - to avoid duplicates:
3614 	 */
3615 	chain = lookup_chain_cache(chain_key);
3616 	if (chain) {
3617 		graph_unlock();
3618 		goto cache_hit;
3619 	}
3620 
3621 	if (!add_chain_cache(curr, hlock, chain_key))
3622 		return 0;
3623 
3624 	return 1;
3625 }
3626 
3627 static int validate_chain(struct task_struct *curr,
3628 			  struct held_lock *hlock,
3629 			  int chain_head, u64 chain_key)
3630 {
3631 	/*
3632 	 * Trylock needs to maintain the stack of held locks, but it
3633 	 * does not add new dependencies, because trylock can be done
3634 	 * in any order.
3635 	 *
3636 	 * We look up the chain_key and do the O(N^2) check and update of
3637 	 * the dependencies only if this is a new dependency chain.
3638 	 * (If lookup_chain_cache_add() return with 1 it acquires
3639 	 * graph_lock for us)
3640 	 */
3641 	if (!hlock->trylock && hlock->check &&
3642 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3643 		/*
3644 		 * Check whether last held lock:
3645 		 *
3646 		 * - is irq-safe, if this lock is irq-unsafe
3647 		 * - is softirq-safe, if this lock is hardirq-unsafe
3648 		 *
3649 		 * And check whether the new lock's dependency graph
3650 		 * could lead back to the previous lock:
3651 		 *
3652 		 * - within the current held-lock stack
3653 		 * - across our accumulated lock dependency records
3654 		 *
3655 		 * any of these scenarios could lead to a deadlock.
3656 		 */
3657 		/*
3658 		 * The simple case: does the current hold the same lock
3659 		 * already?
3660 		 */
3661 		int ret = check_deadlock(curr, hlock);
3662 
3663 		if (!ret)
3664 			return 0;
3665 		/*
3666 		 * Add dependency only if this lock is not the head
3667 		 * of the chain, and if the new lock introduces no more
3668 		 * lock dependency (because we already hold a lock with the
3669 		 * same lock class) nor deadlock (because the nest_lock
3670 		 * serializes nesting locks), see the comments for
3671 		 * check_deadlock().
3672 		 */
3673 		if (!chain_head && ret != 2) {
3674 			if (!check_prevs_add(curr, hlock))
3675 				return 0;
3676 		}
3677 
3678 		graph_unlock();
3679 	} else {
3680 		/* after lookup_chain_cache_add(): */
3681 		if (unlikely(!debug_locks))
3682 			return 0;
3683 	}
3684 
3685 	return 1;
3686 }
3687 #else
3688 static inline int validate_chain(struct task_struct *curr,
3689 				 struct held_lock *hlock,
3690 				 int chain_head, u64 chain_key)
3691 {
3692 	return 1;
3693 }
3694 
3695 static void init_chain_block_buckets(void)	{ }
3696 #endif /* CONFIG_PROVE_LOCKING */
3697 
3698 /*
3699  * We are building curr_chain_key incrementally, so double-check
3700  * it from scratch, to make sure that it's done correctly:
3701  */
3702 static void check_chain_key(struct task_struct *curr)
3703 {
3704 #ifdef CONFIG_DEBUG_LOCKDEP
3705 	struct held_lock *hlock, *prev_hlock = NULL;
3706 	unsigned int i;
3707 	u64 chain_key = INITIAL_CHAIN_KEY;
3708 
3709 	for (i = 0; i < curr->lockdep_depth; i++) {
3710 		hlock = curr->held_locks + i;
3711 		if (chain_key != hlock->prev_chain_key) {
3712 			debug_locks_off();
3713 			/*
3714 			 * We got mighty confused, our chain keys don't match
3715 			 * with what we expect, someone trample on our task state?
3716 			 */
3717 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3718 				curr->lockdep_depth, i,
3719 				(unsigned long long)chain_key,
3720 				(unsigned long long)hlock->prev_chain_key);
3721 			return;
3722 		}
3723 
3724 		/*
3725 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3726 		 * it registered lock class index?
3727 		 */
3728 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3729 			return;
3730 
3731 		if (prev_hlock && (prev_hlock->irq_context !=
3732 							hlock->irq_context))
3733 			chain_key = INITIAL_CHAIN_KEY;
3734 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3735 		prev_hlock = hlock;
3736 	}
3737 	if (chain_key != curr->curr_chain_key) {
3738 		debug_locks_off();
3739 		/*
3740 		 * More smoking hash instead of calculating it, damn see these
3741 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3742 		 */
3743 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3744 			curr->lockdep_depth, i,
3745 			(unsigned long long)chain_key,
3746 			(unsigned long long)curr->curr_chain_key);
3747 	}
3748 #endif
3749 }
3750 
3751 #ifdef CONFIG_PROVE_LOCKING
3752 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3753 		     enum lock_usage_bit new_bit);
3754 
3755 static void print_usage_bug_scenario(struct held_lock *lock)
3756 {
3757 	struct lock_class *class = hlock_class(lock);
3758 
3759 	printk(" Possible unsafe locking scenario:\n\n");
3760 	printk("       CPU0\n");
3761 	printk("       ----\n");
3762 	printk("  lock(");
3763 	__print_lock_name(class);
3764 	printk(KERN_CONT ");\n");
3765 	printk("  <Interrupt>\n");
3766 	printk("    lock(");
3767 	__print_lock_name(class);
3768 	printk(KERN_CONT ");\n");
3769 	printk("\n *** DEADLOCK ***\n\n");
3770 }
3771 
3772 static void
3773 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3774 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3775 {
3776 	if (!debug_locks_off() || debug_locks_silent)
3777 		return;
3778 
3779 	pr_warn("\n");
3780 	pr_warn("================================\n");
3781 	pr_warn("WARNING: inconsistent lock state\n");
3782 	print_kernel_ident();
3783 	pr_warn("--------------------------------\n");
3784 
3785 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3786 		usage_str[prev_bit], usage_str[new_bit]);
3787 
3788 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3789 		curr->comm, task_pid_nr(curr),
3790 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3791 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3792 		lockdep_hardirqs_enabled(),
3793 		lockdep_softirqs_enabled(curr));
3794 	print_lock(this);
3795 
3796 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3797 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3798 
3799 	print_irqtrace_events(curr);
3800 	pr_warn("\nother info that might help us debug this:\n");
3801 	print_usage_bug_scenario(this);
3802 
3803 	lockdep_print_held_locks(curr);
3804 
3805 	pr_warn("\nstack backtrace:\n");
3806 	dump_stack();
3807 }
3808 
3809 /*
3810  * Print out an error if an invalid bit is set:
3811  */
3812 static inline int
3813 valid_state(struct task_struct *curr, struct held_lock *this,
3814 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3815 {
3816 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3817 		graph_unlock();
3818 		print_usage_bug(curr, this, bad_bit, new_bit);
3819 		return 0;
3820 	}
3821 	return 1;
3822 }
3823 
3824 
3825 /*
3826  * print irq inversion bug:
3827  */
3828 static void
3829 print_irq_inversion_bug(struct task_struct *curr,
3830 			struct lock_list *root, struct lock_list *other,
3831 			struct held_lock *this, int forwards,
3832 			const char *irqclass)
3833 {
3834 	struct lock_list *entry = other;
3835 	struct lock_list *middle = NULL;
3836 	int depth;
3837 
3838 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3839 		return;
3840 
3841 	pr_warn("\n");
3842 	pr_warn("========================================================\n");
3843 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3844 	print_kernel_ident();
3845 	pr_warn("--------------------------------------------------------\n");
3846 	pr_warn("%s/%d just changed the state of lock:\n",
3847 		curr->comm, task_pid_nr(curr));
3848 	print_lock(this);
3849 	if (forwards)
3850 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3851 	else
3852 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3853 	print_lock_name(other->class);
3854 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3855 
3856 	pr_warn("\nother info that might help us debug this:\n");
3857 
3858 	/* Find a middle lock (if one exists) */
3859 	depth = get_lock_depth(other);
3860 	do {
3861 		if (depth == 0 && (entry != root)) {
3862 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3863 			break;
3864 		}
3865 		middle = entry;
3866 		entry = get_lock_parent(entry);
3867 		depth--;
3868 	} while (entry && entry != root && (depth >= 0));
3869 	if (forwards)
3870 		print_irq_lock_scenario(root, other,
3871 			middle ? middle->class : root->class, other->class);
3872 	else
3873 		print_irq_lock_scenario(other, root,
3874 			middle ? middle->class : other->class, root->class);
3875 
3876 	lockdep_print_held_locks(curr);
3877 
3878 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3879 	root->trace = save_trace();
3880 	if (!root->trace)
3881 		return;
3882 	print_shortest_lock_dependencies(other, root);
3883 
3884 	pr_warn("\nstack backtrace:\n");
3885 	dump_stack();
3886 }
3887 
3888 /*
3889  * Prove that in the forwards-direction subgraph starting at <this>
3890  * there is no lock matching <mask>:
3891  */
3892 static int
3893 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3894 		     enum lock_usage_bit bit)
3895 {
3896 	enum bfs_result ret;
3897 	struct lock_list root;
3898 	struct lock_list *target_entry;
3899 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3900 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3901 
3902 	bfs_init_root(&root, this);
3903 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
3904 	if (bfs_error(ret)) {
3905 		print_bfs_bug(ret);
3906 		return 0;
3907 	}
3908 	if (ret == BFS_RNOMATCH)
3909 		return 1;
3910 
3911 	/* Check whether write or read usage is the match */
3912 	if (target_entry->class->usage_mask & lock_flag(bit)) {
3913 		print_irq_inversion_bug(curr, &root, target_entry,
3914 					this, 1, state_name(bit));
3915 	} else {
3916 		print_irq_inversion_bug(curr, &root, target_entry,
3917 					this, 1, state_name(read_bit));
3918 	}
3919 
3920 	return 0;
3921 }
3922 
3923 /*
3924  * Prove that in the backwards-direction subgraph starting at <this>
3925  * there is no lock matching <mask>:
3926  */
3927 static int
3928 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3929 		      enum lock_usage_bit bit)
3930 {
3931 	enum bfs_result ret;
3932 	struct lock_list root;
3933 	struct lock_list *target_entry;
3934 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3935 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3936 
3937 	bfs_init_rootb(&root, this);
3938 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
3939 	if (bfs_error(ret)) {
3940 		print_bfs_bug(ret);
3941 		return 0;
3942 	}
3943 	if (ret == BFS_RNOMATCH)
3944 		return 1;
3945 
3946 	/* Check whether write or read usage is the match */
3947 	if (target_entry->class->usage_mask & lock_flag(bit)) {
3948 		print_irq_inversion_bug(curr, &root, target_entry,
3949 					this, 0, state_name(bit));
3950 	} else {
3951 		print_irq_inversion_bug(curr, &root, target_entry,
3952 					this, 0, state_name(read_bit));
3953 	}
3954 
3955 	return 0;
3956 }
3957 
3958 void print_irqtrace_events(struct task_struct *curr)
3959 {
3960 	const struct irqtrace_events *trace = &curr->irqtrace;
3961 
3962 	printk("irq event stamp: %u\n", trace->irq_events);
3963 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3964 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3965 		(void *)trace->hardirq_enable_ip);
3966 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3967 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3968 		(void *)trace->hardirq_disable_ip);
3969 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3970 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3971 		(void *)trace->softirq_enable_ip);
3972 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3973 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3974 		(void *)trace->softirq_disable_ip);
3975 }
3976 
3977 static int HARDIRQ_verbose(struct lock_class *class)
3978 {
3979 #if HARDIRQ_VERBOSE
3980 	return class_filter(class);
3981 #endif
3982 	return 0;
3983 }
3984 
3985 static int SOFTIRQ_verbose(struct lock_class *class)
3986 {
3987 #if SOFTIRQ_VERBOSE
3988 	return class_filter(class);
3989 #endif
3990 	return 0;
3991 }
3992 
3993 static int (*state_verbose_f[])(struct lock_class *class) = {
3994 #define LOCKDEP_STATE(__STATE) \
3995 	__STATE##_verbose,
3996 #include "lockdep_states.h"
3997 #undef LOCKDEP_STATE
3998 };
3999 
4000 static inline int state_verbose(enum lock_usage_bit bit,
4001 				struct lock_class *class)
4002 {
4003 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4004 }
4005 
4006 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4007 			     enum lock_usage_bit bit, const char *name);
4008 
4009 static int
4010 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4011 		enum lock_usage_bit new_bit)
4012 {
4013 	int excl_bit = exclusive_bit(new_bit);
4014 	int read = new_bit & LOCK_USAGE_READ_MASK;
4015 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4016 
4017 	/*
4018 	 * Validate that this particular lock does not have conflicting
4019 	 * usage states.
4020 	 */
4021 	if (!valid_state(curr, this, new_bit, excl_bit))
4022 		return 0;
4023 
4024 	/*
4025 	 * Check for read in write conflicts
4026 	 */
4027 	if (!read && !valid_state(curr, this, new_bit,
4028 				  excl_bit + LOCK_USAGE_READ_MASK))
4029 		return 0;
4030 
4031 
4032 	/*
4033 	 * Validate that the lock dependencies don't have conflicting usage
4034 	 * states.
4035 	 */
4036 	if (dir) {
4037 		/*
4038 		 * mark ENABLED has to look backwards -- to ensure no dependee
4039 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4040 		 */
4041 		if (!check_usage_backwards(curr, this, excl_bit))
4042 			return 0;
4043 	} else {
4044 		/*
4045 		 * mark USED_IN has to look forwards -- to ensure no dependency
4046 		 * has ENABLED state, which would allow recursion deadlocks.
4047 		 */
4048 		if (!check_usage_forwards(curr, this, excl_bit))
4049 			return 0;
4050 	}
4051 
4052 	if (state_verbose(new_bit, hlock_class(this)))
4053 		return 2;
4054 
4055 	return 1;
4056 }
4057 
4058 /*
4059  * Mark all held locks with a usage bit:
4060  */
4061 static int
4062 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4063 {
4064 	struct held_lock *hlock;
4065 	int i;
4066 
4067 	for (i = 0; i < curr->lockdep_depth; i++) {
4068 		enum lock_usage_bit hlock_bit = base_bit;
4069 		hlock = curr->held_locks + i;
4070 
4071 		if (hlock->read)
4072 			hlock_bit += LOCK_USAGE_READ_MASK;
4073 
4074 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4075 
4076 		if (!hlock->check)
4077 			continue;
4078 
4079 		if (!mark_lock(curr, hlock, hlock_bit))
4080 			return 0;
4081 	}
4082 
4083 	return 1;
4084 }
4085 
4086 /*
4087  * Hardirqs will be enabled:
4088  */
4089 static void __trace_hardirqs_on_caller(void)
4090 {
4091 	struct task_struct *curr = current;
4092 
4093 	/*
4094 	 * We are going to turn hardirqs on, so set the
4095 	 * usage bit for all held locks:
4096 	 */
4097 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4098 		return;
4099 	/*
4100 	 * If we have softirqs enabled, then set the usage
4101 	 * bit for all held locks. (disabled hardirqs prevented
4102 	 * this bit from being set before)
4103 	 */
4104 	if (curr->softirqs_enabled)
4105 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4106 }
4107 
4108 /**
4109  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4110  * @ip:		Caller address
4111  *
4112  * Invoked before a possible transition to RCU idle from exit to user or
4113  * guest mode. This ensures that all RCU operations are done before RCU
4114  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4115  * invoked to set the final state.
4116  */
4117 void lockdep_hardirqs_on_prepare(unsigned long ip)
4118 {
4119 	if (unlikely(!debug_locks))
4120 		return;
4121 
4122 	/*
4123 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4124 	 */
4125 	if (unlikely(in_nmi()))
4126 		return;
4127 
4128 	if (unlikely(this_cpu_read(lockdep_recursion)))
4129 		return;
4130 
4131 	if (unlikely(lockdep_hardirqs_enabled())) {
4132 		/*
4133 		 * Neither irq nor preemption are disabled here
4134 		 * so this is racy by nature but losing one hit
4135 		 * in a stat is not a big deal.
4136 		 */
4137 		__debug_atomic_inc(redundant_hardirqs_on);
4138 		return;
4139 	}
4140 
4141 	/*
4142 	 * We're enabling irqs and according to our state above irqs weren't
4143 	 * already enabled, yet we find the hardware thinks they are in fact
4144 	 * enabled.. someone messed up their IRQ state tracing.
4145 	 */
4146 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4147 		return;
4148 
4149 	/*
4150 	 * See the fine text that goes along with this variable definition.
4151 	 */
4152 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4153 		return;
4154 
4155 	/*
4156 	 * Can't allow enabling interrupts while in an interrupt handler,
4157 	 * that's general bad form and such. Recursion, limited stack etc..
4158 	 */
4159 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4160 		return;
4161 
4162 	current->hardirq_chain_key = current->curr_chain_key;
4163 
4164 	lockdep_recursion_inc();
4165 	__trace_hardirqs_on_caller();
4166 	lockdep_recursion_finish();
4167 }
4168 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4169 
4170 void noinstr lockdep_hardirqs_on(unsigned long ip)
4171 {
4172 	struct irqtrace_events *trace = &current->irqtrace;
4173 
4174 	if (unlikely(!debug_locks))
4175 		return;
4176 
4177 	/*
4178 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4179 	 * tracking state and hardware state are out of sync.
4180 	 *
4181 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4182 	 * and not rely on hardware state like normal interrupts.
4183 	 */
4184 	if (unlikely(in_nmi())) {
4185 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4186 			return;
4187 
4188 		/*
4189 		 * Skip:
4190 		 *  - recursion check, because NMI can hit lockdep;
4191 		 *  - hardware state check, because above;
4192 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4193 		 */
4194 		goto skip_checks;
4195 	}
4196 
4197 	if (unlikely(this_cpu_read(lockdep_recursion)))
4198 		return;
4199 
4200 	if (lockdep_hardirqs_enabled()) {
4201 		/*
4202 		 * Neither irq nor preemption are disabled here
4203 		 * so this is racy by nature but losing one hit
4204 		 * in a stat is not a big deal.
4205 		 */
4206 		__debug_atomic_inc(redundant_hardirqs_on);
4207 		return;
4208 	}
4209 
4210 	/*
4211 	 * We're enabling irqs and according to our state above irqs weren't
4212 	 * already enabled, yet we find the hardware thinks they are in fact
4213 	 * enabled.. someone messed up their IRQ state tracing.
4214 	 */
4215 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4216 		return;
4217 
4218 	/*
4219 	 * Ensure the lock stack remained unchanged between
4220 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4221 	 */
4222 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4223 			    current->curr_chain_key);
4224 
4225 skip_checks:
4226 	/* we'll do an OFF -> ON transition: */
4227 	__this_cpu_write(hardirqs_enabled, 1);
4228 	trace->hardirq_enable_ip = ip;
4229 	trace->hardirq_enable_event = ++trace->irq_events;
4230 	debug_atomic_inc(hardirqs_on_events);
4231 }
4232 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4233 
4234 /*
4235  * Hardirqs were disabled:
4236  */
4237 void noinstr lockdep_hardirqs_off(unsigned long ip)
4238 {
4239 	if (unlikely(!debug_locks))
4240 		return;
4241 
4242 	/*
4243 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4244 	 * they will restore the software state. This ensures the software
4245 	 * state is consistent inside NMIs as well.
4246 	 */
4247 	if (in_nmi()) {
4248 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4249 			return;
4250 	} else if (__this_cpu_read(lockdep_recursion))
4251 		return;
4252 
4253 	/*
4254 	 * So we're supposed to get called after you mask local IRQs, but for
4255 	 * some reason the hardware doesn't quite think you did a proper job.
4256 	 */
4257 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4258 		return;
4259 
4260 	if (lockdep_hardirqs_enabled()) {
4261 		struct irqtrace_events *trace = &current->irqtrace;
4262 
4263 		/*
4264 		 * We have done an ON -> OFF transition:
4265 		 */
4266 		__this_cpu_write(hardirqs_enabled, 0);
4267 		trace->hardirq_disable_ip = ip;
4268 		trace->hardirq_disable_event = ++trace->irq_events;
4269 		debug_atomic_inc(hardirqs_off_events);
4270 	} else {
4271 		debug_atomic_inc(redundant_hardirqs_off);
4272 	}
4273 }
4274 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4275 
4276 /*
4277  * Softirqs will be enabled:
4278  */
4279 void lockdep_softirqs_on(unsigned long ip)
4280 {
4281 	struct irqtrace_events *trace = &current->irqtrace;
4282 
4283 	if (unlikely(!lockdep_enabled()))
4284 		return;
4285 
4286 	/*
4287 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4288 	 * funny state and nesting things.
4289 	 */
4290 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4291 		return;
4292 
4293 	if (current->softirqs_enabled) {
4294 		debug_atomic_inc(redundant_softirqs_on);
4295 		return;
4296 	}
4297 
4298 	lockdep_recursion_inc();
4299 	/*
4300 	 * We'll do an OFF -> ON transition:
4301 	 */
4302 	current->softirqs_enabled = 1;
4303 	trace->softirq_enable_ip = ip;
4304 	trace->softirq_enable_event = ++trace->irq_events;
4305 	debug_atomic_inc(softirqs_on_events);
4306 	/*
4307 	 * We are going to turn softirqs on, so set the
4308 	 * usage bit for all held locks, if hardirqs are
4309 	 * enabled too:
4310 	 */
4311 	if (lockdep_hardirqs_enabled())
4312 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4313 	lockdep_recursion_finish();
4314 }
4315 
4316 /*
4317  * Softirqs were disabled:
4318  */
4319 void lockdep_softirqs_off(unsigned long ip)
4320 {
4321 	if (unlikely(!lockdep_enabled()))
4322 		return;
4323 
4324 	/*
4325 	 * We fancy IRQs being disabled here, see softirq.c
4326 	 */
4327 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4328 		return;
4329 
4330 	if (current->softirqs_enabled) {
4331 		struct irqtrace_events *trace = &current->irqtrace;
4332 
4333 		/*
4334 		 * We have done an ON -> OFF transition:
4335 		 */
4336 		current->softirqs_enabled = 0;
4337 		trace->softirq_disable_ip = ip;
4338 		trace->softirq_disable_event = ++trace->irq_events;
4339 		debug_atomic_inc(softirqs_off_events);
4340 		/*
4341 		 * Whoops, we wanted softirqs off, so why aren't they?
4342 		 */
4343 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4344 	} else
4345 		debug_atomic_inc(redundant_softirqs_off);
4346 }
4347 
4348 static int
4349 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4350 {
4351 	if (!check)
4352 		goto lock_used;
4353 
4354 	/*
4355 	 * If non-trylock use in a hardirq or softirq context, then
4356 	 * mark the lock as used in these contexts:
4357 	 */
4358 	if (!hlock->trylock) {
4359 		if (hlock->read) {
4360 			if (lockdep_hardirq_context())
4361 				if (!mark_lock(curr, hlock,
4362 						LOCK_USED_IN_HARDIRQ_READ))
4363 					return 0;
4364 			if (curr->softirq_context)
4365 				if (!mark_lock(curr, hlock,
4366 						LOCK_USED_IN_SOFTIRQ_READ))
4367 					return 0;
4368 		} else {
4369 			if (lockdep_hardirq_context())
4370 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4371 					return 0;
4372 			if (curr->softirq_context)
4373 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4374 					return 0;
4375 		}
4376 	}
4377 	if (!hlock->hardirqs_off) {
4378 		if (hlock->read) {
4379 			if (!mark_lock(curr, hlock,
4380 					LOCK_ENABLED_HARDIRQ_READ))
4381 				return 0;
4382 			if (curr->softirqs_enabled)
4383 				if (!mark_lock(curr, hlock,
4384 						LOCK_ENABLED_SOFTIRQ_READ))
4385 					return 0;
4386 		} else {
4387 			if (!mark_lock(curr, hlock,
4388 					LOCK_ENABLED_HARDIRQ))
4389 				return 0;
4390 			if (curr->softirqs_enabled)
4391 				if (!mark_lock(curr, hlock,
4392 						LOCK_ENABLED_SOFTIRQ))
4393 					return 0;
4394 		}
4395 	}
4396 
4397 lock_used:
4398 	/* mark it as used: */
4399 	if (!mark_lock(curr, hlock, LOCK_USED))
4400 		return 0;
4401 
4402 	return 1;
4403 }
4404 
4405 static inline unsigned int task_irq_context(struct task_struct *task)
4406 {
4407 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4408 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4409 }
4410 
4411 static int separate_irq_context(struct task_struct *curr,
4412 		struct held_lock *hlock)
4413 {
4414 	unsigned int depth = curr->lockdep_depth;
4415 
4416 	/*
4417 	 * Keep track of points where we cross into an interrupt context:
4418 	 */
4419 	if (depth) {
4420 		struct held_lock *prev_hlock;
4421 
4422 		prev_hlock = curr->held_locks + depth-1;
4423 		/*
4424 		 * If we cross into another context, reset the
4425 		 * hash key (this also prevents the checking and the
4426 		 * adding of the dependency to 'prev'):
4427 		 */
4428 		if (prev_hlock->irq_context != hlock->irq_context)
4429 			return 1;
4430 	}
4431 	return 0;
4432 }
4433 
4434 /*
4435  * Mark a lock with a usage bit, and validate the state transition:
4436  */
4437 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4438 			     enum lock_usage_bit new_bit)
4439 {
4440 	unsigned int new_mask, ret = 1;
4441 
4442 	if (new_bit >= LOCK_USAGE_STATES) {
4443 		DEBUG_LOCKS_WARN_ON(1);
4444 		return 0;
4445 	}
4446 
4447 	if (new_bit == LOCK_USED && this->read)
4448 		new_bit = LOCK_USED_READ;
4449 
4450 	new_mask = 1 << new_bit;
4451 
4452 	/*
4453 	 * If already set then do not dirty the cacheline,
4454 	 * nor do any checks:
4455 	 */
4456 	if (likely(hlock_class(this)->usage_mask & new_mask))
4457 		return 1;
4458 
4459 	if (!graph_lock())
4460 		return 0;
4461 	/*
4462 	 * Make sure we didn't race:
4463 	 */
4464 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4465 		goto unlock;
4466 
4467 	if (!hlock_class(this)->usage_mask)
4468 		debug_atomic_dec(nr_unused_locks);
4469 
4470 	hlock_class(this)->usage_mask |= new_mask;
4471 
4472 	if (new_bit < LOCK_TRACE_STATES) {
4473 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4474 			return 0;
4475 	}
4476 
4477 	if (new_bit < LOCK_USED) {
4478 		ret = mark_lock_irq(curr, this, new_bit);
4479 		if (!ret)
4480 			return 0;
4481 	}
4482 
4483 unlock:
4484 	graph_unlock();
4485 
4486 	/*
4487 	 * We must printk outside of the graph_lock:
4488 	 */
4489 	if (ret == 2) {
4490 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4491 		print_lock(this);
4492 		print_irqtrace_events(curr);
4493 		dump_stack();
4494 	}
4495 
4496 	return ret;
4497 }
4498 
4499 static inline short task_wait_context(struct task_struct *curr)
4500 {
4501 	/*
4502 	 * Set appropriate wait type for the context; for IRQs we have to take
4503 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4504 	 */
4505 	if (lockdep_hardirq_context()) {
4506 		/*
4507 		 * Check if force_irqthreads will run us threaded.
4508 		 */
4509 		if (curr->hardirq_threaded || curr->irq_config)
4510 			return LD_WAIT_CONFIG;
4511 
4512 		return LD_WAIT_SPIN;
4513 	} else if (curr->softirq_context) {
4514 		/*
4515 		 * Softirqs are always threaded.
4516 		 */
4517 		return LD_WAIT_CONFIG;
4518 	}
4519 
4520 	return LD_WAIT_MAX;
4521 }
4522 
4523 static int
4524 print_lock_invalid_wait_context(struct task_struct *curr,
4525 				struct held_lock *hlock)
4526 {
4527 	short curr_inner;
4528 
4529 	if (!debug_locks_off())
4530 		return 0;
4531 	if (debug_locks_silent)
4532 		return 0;
4533 
4534 	pr_warn("\n");
4535 	pr_warn("=============================\n");
4536 	pr_warn("[ BUG: Invalid wait context ]\n");
4537 	print_kernel_ident();
4538 	pr_warn("-----------------------------\n");
4539 
4540 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4541 	print_lock(hlock);
4542 
4543 	pr_warn("other info that might help us debug this:\n");
4544 
4545 	curr_inner = task_wait_context(curr);
4546 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4547 
4548 	lockdep_print_held_locks(curr);
4549 
4550 	pr_warn("stack backtrace:\n");
4551 	dump_stack();
4552 
4553 	return 0;
4554 }
4555 
4556 /*
4557  * Verify the wait_type context.
4558  *
4559  * This check validates we takes locks in the right wait-type order; that is it
4560  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4561  * acquire spinlocks inside raw_spinlocks and the sort.
4562  *
4563  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4564  * can be taken from (pretty much) any context but also has constraints.
4565  * However when taken in a stricter environment the RCU lock does not loosen
4566  * the constraints.
4567  *
4568  * Therefore we must look for the strictest environment in the lock stack and
4569  * compare that to the lock we're trying to acquire.
4570  */
4571 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4572 {
4573 	u8 next_inner = hlock_class(next)->wait_type_inner;
4574 	u8 next_outer = hlock_class(next)->wait_type_outer;
4575 	u8 curr_inner;
4576 	int depth;
4577 
4578 	if (!curr->lockdep_depth || !next_inner || next->trylock)
4579 		return 0;
4580 
4581 	if (!next_outer)
4582 		next_outer = next_inner;
4583 
4584 	/*
4585 	 * Find start of current irq_context..
4586 	 */
4587 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4588 		struct held_lock *prev = curr->held_locks + depth;
4589 		if (prev->irq_context != next->irq_context)
4590 			break;
4591 	}
4592 	depth++;
4593 
4594 	curr_inner = task_wait_context(curr);
4595 
4596 	for (; depth < curr->lockdep_depth; depth++) {
4597 		struct held_lock *prev = curr->held_locks + depth;
4598 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4599 
4600 		if (prev_inner) {
4601 			/*
4602 			 * We can have a bigger inner than a previous one
4603 			 * when outer is smaller than inner, as with RCU.
4604 			 *
4605 			 * Also due to trylocks.
4606 			 */
4607 			curr_inner = min(curr_inner, prev_inner);
4608 		}
4609 	}
4610 
4611 	if (next_outer > curr_inner)
4612 		return print_lock_invalid_wait_context(curr, next);
4613 
4614 	return 0;
4615 }
4616 
4617 #else /* CONFIG_PROVE_LOCKING */
4618 
4619 static inline int
4620 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4621 {
4622 	return 1;
4623 }
4624 
4625 static inline unsigned int task_irq_context(struct task_struct *task)
4626 {
4627 	return 0;
4628 }
4629 
4630 static inline int separate_irq_context(struct task_struct *curr,
4631 		struct held_lock *hlock)
4632 {
4633 	return 0;
4634 }
4635 
4636 static inline int check_wait_context(struct task_struct *curr,
4637 				     struct held_lock *next)
4638 {
4639 	return 0;
4640 }
4641 
4642 #endif /* CONFIG_PROVE_LOCKING */
4643 
4644 /*
4645  * Initialize a lock instance's lock-class mapping info:
4646  */
4647 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4648 			    struct lock_class_key *key, int subclass,
4649 			    u8 inner, u8 outer, u8 lock_type)
4650 {
4651 	int i;
4652 
4653 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4654 		lock->class_cache[i] = NULL;
4655 
4656 #ifdef CONFIG_LOCK_STAT
4657 	lock->cpu = raw_smp_processor_id();
4658 #endif
4659 
4660 	/*
4661 	 * Can't be having no nameless bastards around this place!
4662 	 */
4663 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4664 		lock->name = "NULL";
4665 		return;
4666 	}
4667 
4668 	lock->name = name;
4669 
4670 	lock->wait_type_outer = outer;
4671 	lock->wait_type_inner = inner;
4672 	lock->lock_type = lock_type;
4673 
4674 	/*
4675 	 * No key, no joy, we need to hash something.
4676 	 */
4677 	if (DEBUG_LOCKS_WARN_ON(!key))
4678 		return;
4679 	/*
4680 	 * Sanity check, the lock-class key must either have been allocated
4681 	 * statically or must have been registered as a dynamic key.
4682 	 */
4683 	if (!static_obj(key) && !is_dynamic_key(key)) {
4684 		if (debug_locks)
4685 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4686 		DEBUG_LOCKS_WARN_ON(1);
4687 		return;
4688 	}
4689 	lock->key = key;
4690 
4691 	if (unlikely(!debug_locks))
4692 		return;
4693 
4694 	if (subclass) {
4695 		unsigned long flags;
4696 
4697 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4698 			return;
4699 
4700 		raw_local_irq_save(flags);
4701 		lockdep_recursion_inc();
4702 		register_lock_class(lock, subclass, 1);
4703 		lockdep_recursion_finish();
4704 		raw_local_irq_restore(flags);
4705 	}
4706 }
4707 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4708 
4709 struct lock_class_key __lockdep_no_validate__;
4710 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4711 
4712 static void
4713 print_lock_nested_lock_not_held(struct task_struct *curr,
4714 				struct held_lock *hlock,
4715 				unsigned long ip)
4716 {
4717 	if (!debug_locks_off())
4718 		return;
4719 	if (debug_locks_silent)
4720 		return;
4721 
4722 	pr_warn("\n");
4723 	pr_warn("==================================\n");
4724 	pr_warn("WARNING: Nested lock was not taken\n");
4725 	print_kernel_ident();
4726 	pr_warn("----------------------------------\n");
4727 
4728 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4729 	print_lock(hlock);
4730 
4731 	pr_warn("\nbut this task is not holding:\n");
4732 	pr_warn("%s\n", hlock->nest_lock->name);
4733 
4734 	pr_warn("\nstack backtrace:\n");
4735 	dump_stack();
4736 
4737 	pr_warn("\nother info that might help us debug this:\n");
4738 	lockdep_print_held_locks(curr);
4739 
4740 	pr_warn("\nstack backtrace:\n");
4741 	dump_stack();
4742 }
4743 
4744 static int __lock_is_held(const struct lockdep_map *lock, int read);
4745 
4746 /*
4747  * This gets called for every mutex_lock*()/spin_lock*() operation.
4748  * We maintain the dependency maps and validate the locking attempt:
4749  *
4750  * The callers must make sure that IRQs are disabled before calling it,
4751  * otherwise we could get an interrupt which would want to take locks,
4752  * which would end up in lockdep again.
4753  */
4754 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4755 			  int trylock, int read, int check, int hardirqs_off,
4756 			  struct lockdep_map *nest_lock, unsigned long ip,
4757 			  int references, int pin_count)
4758 {
4759 	struct task_struct *curr = current;
4760 	struct lock_class *class = NULL;
4761 	struct held_lock *hlock;
4762 	unsigned int depth;
4763 	int chain_head = 0;
4764 	int class_idx;
4765 	u64 chain_key;
4766 
4767 	if (unlikely(!debug_locks))
4768 		return 0;
4769 
4770 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4771 		check = 0;
4772 
4773 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4774 		class = lock->class_cache[subclass];
4775 	/*
4776 	 * Not cached?
4777 	 */
4778 	if (unlikely(!class)) {
4779 		class = register_lock_class(lock, subclass, 0);
4780 		if (!class)
4781 			return 0;
4782 	}
4783 
4784 	debug_class_ops_inc(class);
4785 
4786 	if (very_verbose(class)) {
4787 		printk("\nacquire class [%px] %s", class->key, class->name);
4788 		if (class->name_version > 1)
4789 			printk(KERN_CONT "#%d", class->name_version);
4790 		printk(KERN_CONT "\n");
4791 		dump_stack();
4792 	}
4793 
4794 	/*
4795 	 * Add the lock to the list of currently held locks.
4796 	 * (we dont increase the depth just yet, up until the
4797 	 * dependency checks are done)
4798 	 */
4799 	depth = curr->lockdep_depth;
4800 	/*
4801 	 * Ran out of static storage for our per-task lock stack again have we?
4802 	 */
4803 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4804 		return 0;
4805 
4806 	class_idx = class - lock_classes;
4807 
4808 	if (depth) { /* we're holding locks */
4809 		hlock = curr->held_locks + depth - 1;
4810 		if (hlock->class_idx == class_idx && nest_lock) {
4811 			if (!references)
4812 				references++;
4813 
4814 			if (!hlock->references)
4815 				hlock->references++;
4816 
4817 			hlock->references += references;
4818 
4819 			/* Overflow */
4820 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4821 				return 0;
4822 
4823 			return 2;
4824 		}
4825 	}
4826 
4827 	hlock = curr->held_locks + depth;
4828 	/*
4829 	 * Plain impossible, we just registered it and checked it weren't no
4830 	 * NULL like.. I bet this mushroom I ate was good!
4831 	 */
4832 	if (DEBUG_LOCKS_WARN_ON(!class))
4833 		return 0;
4834 	hlock->class_idx = class_idx;
4835 	hlock->acquire_ip = ip;
4836 	hlock->instance = lock;
4837 	hlock->nest_lock = nest_lock;
4838 	hlock->irq_context = task_irq_context(curr);
4839 	hlock->trylock = trylock;
4840 	hlock->read = read;
4841 	hlock->check = check;
4842 	hlock->hardirqs_off = !!hardirqs_off;
4843 	hlock->references = references;
4844 #ifdef CONFIG_LOCK_STAT
4845 	hlock->waittime_stamp = 0;
4846 	hlock->holdtime_stamp = lockstat_clock();
4847 #endif
4848 	hlock->pin_count = pin_count;
4849 
4850 	if (check_wait_context(curr, hlock))
4851 		return 0;
4852 
4853 	/* Initialize the lock usage bit */
4854 	if (!mark_usage(curr, hlock, check))
4855 		return 0;
4856 
4857 	/*
4858 	 * Calculate the chain hash: it's the combined hash of all the
4859 	 * lock keys along the dependency chain. We save the hash value
4860 	 * at every step so that we can get the current hash easily
4861 	 * after unlock. The chain hash is then used to cache dependency
4862 	 * results.
4863 	 *
4864 	 * The 'key ID' is what is the most compact key value to drive
4865 	 * the hash, not class->key.
4866 	 */
4867 	/*
4868 	 * Whoops, we did it again.. class_idx is invalid.
4869 	 */
4870 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4871 		return 0;
4872 
4873 	chain_key = curr->curr_chain_key;
4874 	if (!depth) {
4875 		/*
4876 		 * How can we have a chain hash when we ain't got no keys?!
4877 		 */
4878 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4879 			return 0;
4880 		chain_head = 1;
4881 	}
4882 
4883 	hlock->prev_chain_key = chain_key;
4884 	if (separate_irq_context(curr, hlock)) {
4885 		chain_key = INITIAL_CHAIN_KEY;
4886 		chain_head = 1;
4887 	}
4888 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4889 
4890 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4891 		print_lock_nested_lock_not_held(curr, hlock, ip);
4892 		return 0;
4893 	}
4894 
4895 	if (!debug_locks_silent) {
4896 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4897 		WARN_ON_ONCE(!hlock_class(hlock)->key);
4898 	}
4899 
4900 	if (!validate_chain(curr, hlock, chain_head, chain_key))
4901 		return 0;
4902 
4903 	curr->curr_chain_key = chain_key;
4904 	curr->lockdep_depth++;
4905 	check_chain_key(curr);
4906 #ifdef CONFIG_DEBUG_LOCKDEP
4907 	if (unlikely(!debug_locks))
4908 		return 0;
4909 #endif
4910 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4911 		debug_locks_off();
4912 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4913 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4914 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
4915 
4916 		lockdep_print_held_locks(current);
4917 		debug_show_all_locks();
4918 		dump_stack();
4919 
4920 		return 0;
4921 	}
4922 
4923 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4924 		max_lockdep_depth = curr->lockdep_depth;
4925 
4926 	return 1;
4927 }
4928 
4929 static void print_unlock_imbalance_bug(struct task_struct *curr,
4930 				       struct lockdep_map *lock,
4931 				       unsigned long ip)
4932 {
4933 	if (!debug_locks_off())
4934 		return;
4935 	if (debug_locks_silent)
4936 		return;
4937 
4938 	pr_warn("\n");
4939 	pr_warn("=====================================\n");
4940 	pr_warn("WARNING: bad unlock balance detected!\n");
4941 	print_kernel_ident();
4942 	pr_warn("-------------------------------------\n");
4943 	pr_warn("%s/%d is trying to release lock (",
4944 		curr->comm, task_pid_nr(curr));
4945 	print_lockdep_cache(lock);
4946 	pr_cont(") at:\n");
4947 	print_ip_sym(KERN_WARNING, ip);
4948 	pr_warn("but there are no more locks to release!\n");
4949 	pr_warn("\nother info that might help us debug this:\n");
4950 	lockdep_print_held_locks(curr);
4951 
4952 	pr_warn("\nstack backtrace:\n");
4953 	dump_stack();
4954 }
4955 
4956 static noinstr int match_held_lock(const struct held_lock *hlock,
4957 				   const struct lockdep_map *lock)
4958 {
4959 	if (hlock->instance == lock)
4960 		return 1;
4961 
4962 	if (hlock->references) {
4963 		const struct lock_class *class = lock->class_cache[0];
4964 
4965 		if (!class)
4966 			class = look_up_lock_class(lock, 0);
4967 
4968 		/*
4969 		 * If look_up_lock_class() failed to find a class, we're trying
4970 		 * to test if we hold a lock that has never yet been acquired.
4971 		 * Clearly if the lock hasn't been acquired _ever_, we're not
4972 		 * holding it either, so report failure.
4973 		 */
4974 		if (!class)
4975 			return 0;
4976 
4977 		/*
4978 		 * References, but not a lock we're actually ref-counting?
4979 		 * State got messed up, follow the sites that change ->references
4980 		 * and try to make sense of it.
4981 		 */
4982 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4983 			return 0;
4984 
4985 		if (hlock->class_idx == class - lock_classes)
4986 			return 1;
4987 	}
4988 
4989 	return 0;
4990 }
4991 
4992 /* @depth must not be zero */
4993 static struct held_lock *find_held_lock(struct task_struct *curr,
4994 					struct lockdep_map *lock,
4995 					unsigned int depth, int *idx)
4996 {
4997 	struct held_lock *ret, *hlock, *prev_hlock;
4998 	int i;
4999 
5000 	i = depth - 1;
5001 	hlock = curr->held_locks + i;
5002 	ret = hlock;
5003 	if (match_held_lock(hlock, lock))
5004 		goto out;
5005 
5006 	ret = NULL;
5007 	for (i--, prev_hlock = hlock--;
5008 	     i >= 0;
5009 	     i--, prev_hlock = hlock--) {
5010 		/*
5011 		 * We must not cross into another context:
5012 		 */
5013 		if (prev_hlock->irq_context != hlock->irq_context) {
5014 			ret = NULL;
5015 			break;
5016 		}
5017 		if (match_held_lock(hlock, lock)) {
5018 			ret = hlock;
5019 			break;
5020 		}
5021 	}
5022 
5023 out:
5024 	*idx = i;
5025 	return ret;
5026 }
5027 
5028 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5029 				int idx, unsigned int *merged)
5030 {
5031 	struct held_lock *hlock;
5032 	int first_idx = idx;
5033 
5034 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5035 		return 0;
5036 
5037 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5038 		switch (__lock_acquire(hlock->instance,
5039 				    hlock_class(hlock)->subclass,
5040 				    hlock->trylock,
5041 				    hlock->read, hlock->check,
5042 				    hlock->hardirqs_off,
5043 				    hlock->nest_lock, hlock->acquire_ip,
5044 				    hlock->references, hlock->pin_count)) {
5045 		case 0:
5046 			return 1;
5047 		case 1:
5048 			break;
5049 		case 2:
5050 			*merged += (idx == first_idx);
5051 			break;
5052 		default:
5053 			WARN_ON(1);
5054 			return 0;
5055 		}
5056 	}
5057 	return 0;
5058 }
5059 
5060 static int
5061 __lock_set_class(struct lockdep_map *lock, const char *name,
5062 		 struct lock_class_key *key, unsigned int subclass,
5063 		 unsigned long ip)
5064 {
5065 	struct task_struct *curr = current;
5066 	unsigned int depth, merged = 0;
5067 	struct held_lock *hlock;
5068 	struct lock_class *class;
5069 	int i;
5070 
5071 	if (unlikely(!debug_locks))
5072 		return 0;
5073 
5074 	depth = curr->lockdep_depth;
5075 	/*
5076 	 * This function is about (re)setting the class of a held lock,
5077 	 * yet we're not actually holding any locks. Naughty user!
5078 	 */
5079 	if (DEBUG_LOCKS_WARN_ON(!depth))
5080 		return 0;
5081 
5082 	hlock = find_held_lock(curr, lock, depth, &i);
5083 	if (!hlock) {
5084 		print_unlock_imbalance_bug(curr, lock, ip);
5085 		return 0;
5086 	}
5087 
5088 	lockdep_init_map_waits(lock, name, key, 0,
5089 			       lock->wait_type_inner,
5090 			       lock->wait_type_outer);
5091 	class = register_lock_class(lock, subclass, 0);
5092 	hlock->class_idx = class - lock_classes;
5093 
5094 	curr->lockdep_depth = i;
5095 	curr->curr_chain_key = hlock->prev_chain_key;
5096 
5097 	if (reacquire_held_locks(curr, depth, i, &merged))
5098 		return 0;
5099 
5100 	/*
5101 	 * I took it apart and put it back together again, except now I have
5102 	 * these 'spare' parts.. where shall I put them.
5103 	 */
5104 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5105 		return 0;
5106 	return 1;
5107 }
5108 
5109 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5110 {
5111 	struct task_struct *curr = current;
5112 	unsigned int depth, merged = 0;
5113 	struct held_lock *hlock;
5114 	int i;
5115 
5116 	if (unlikely(!debug_locks))
5117 		return 0;
5118 
5119 	depth = curr->lockdep_depth;
5120 	/*
5121 	 * This function is about (re)setting the class of a held lock,
5122 	 * yet we're not actually holding any locks. Naughty user!
5123 	 */
5124 	if (DEBUG_LOCKS_WARN_ON(!depth))
5125 		return 0;
5126 
5127 	hlock = find_held_lock(curr, lock, depth, &i);
5128 	if (!hlock) {
5129 		print_unlock_imbalance_bug(curr, lock, ip);
5130 		return 0;
5131 	}
5132 
5133 	curr->lockdep_depth = i;
5134 	curr->curr_chain_key = hlock->prev_chain_key;
5135 
5136 	WARN(hlock->read, "downgrading a read lock");
5137 	hlock->read = 1;
5138 	hlock->acquire_ip = ip;
5139 
5140 	if (reacquire_held_locks(curr, depth, i, &merged))
5141 		return 0;
5142 
5143 	/* Merging can't happen with unchanged classes.. */
5144 	if (DEBUG_LOCKS_WARN_ON(merged))
5145 		return 0;
5146 
5147 	/*
5148 	 * I took it apart and put it back together again, except now I have
5149 	 * these 'spare' parts.. where shall I put them.
5150 	 */
5151 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5152 		return 0;
5153 
5154 	return 1;
5155 }
5156 
5157 /*
5158  * Remove the lock from the list of currently held locks - this gets
5159  * called on mutex_unlock()/spin_unlock*() (or on a failed
5160  * mutex_lock_interruptible()).
5161  */
5162 static int
5163 __lock_release(struct lockdep_map *lock, unsigned long ip)
5164 {
5165 	struct task_struct *curr = current;
5166 	unsigned int depth, merged = 1;
5167 	struct held_lock *hlock;
5168 	int i;
5169 
5170 	if (unlikely(!debug_locks))
5171 		return 0;
5172 
5173 	depth = curr->lockdep_depth;
5174 	/*
5175 	 * So we're all set to release this lock.. wait what lock? We don't
5176 	 * own any locks, you've been drinking again?
5177 	 */
5178 	if (depth <= 0) {
5179 		print_unlock_imbalance_bug(curr, lock, ip);
5180 		return 0;
5181 	}
5182 
5183 	/*
5184 	 * Check whether the lock exists in the current stack
5185 	 * of held locks:
5186 	 */
5187 	hlock = find_held_lock(curr, lock, depth, &i);
5188 	if (!hlock) {
5189 		print_unlock_imbalance_bug(curr, lock, ip);
5190 		return 0;
5191 	}
5192 
5193 	if (hlock->instance == lock)
5194 		lock_release_holdtime(hlock);
5195 
5196 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5197 
5198 	if (hlock->references) {
5199 		hlock->references--;
5200 		if (hlock->references) {
5201 			/*
5202 			 * We had, and after removing one, still have
5203 			 * references, the current lock stack is still
5204 			 * valid. We're done!
5205 			 */
5206 			return 1;
5207 		}
5208 	}
5209 
5210 	/*
5211 	 * We have the right lock to unlock, 'hlock' points to it.
5212 	 * Now we remove it from the stack, and add back the other
5213 	 * entries (if any), recalculating the hash along the way:
5214 	 */
5215 
5216 	curr->lockdep_depth = i;
5217 	curr->curr_chain_key = hlock->prev_chain_key;
5218 
5219 	/*
5220 	 * The most likely case is when the unlock is on the innermost
5221 	 * lock. In this case, we are done!
5222 	 */
5223 	if (i == depth-1)
5224 		return 1;
5225 
5226 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5227 		return 0;
5228 
5229 	/*
5230 	 * We had N bottles of beer on the wall, we drank one, but now
5231 	 * there's not N-1 bottles of beer left on the wall...
5232 	 * Pouring two of the bottles together is acceptable.
5233 	 */
5234 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5235 
5236 	/*
5237 	 * Since reacquire_held_locks() would have called check_chain_key()
5238 	 * indirectly via __lock_acquire(), we don't need to do it again
5239 	 * on return.
5240 	 */
5241 	return 0;
5242 }
5243 
5244 static __always_inline
5245 int __lock_is_held(const struct lockdep_map *lock, int read)
5246 {
5247 	struct task_struct *curr = current;
5248 	int i;
5249 
5250 	for (i = 0; i < curr->lockdep_depth; i++) {
5251 		struct held_lock *hlock = curr->held_locks + i;
5252 
5253 		if (match_held_lock(hlock, lock)) {
5254 			if (read == -1 || hlock->read == read)
5255 				return 1;
5256 
5257 			return 0;
5258 		}
5259 	}
5260 
5261 	return 0;
5262 }
5263 
5264 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5265 {
5266 	struct pin_cookie cookie = NIL_COOKIE;
5267 	struct task_struct *curr = current;
5268 	int i;
5269 
5270 	if (unlikely(!debug_locks))
5271 		return cookie;
5272 
5273 	for (i = 0; i < curr->lockdep_depth; i++) {
5274 		struct held_lock *hlock = curr->held_locks + i;
5275 
5276 		if (match_held_lock(hlock, lock)) {
5277 			/*
5278 			 * Grab 16bits of randomness; this is sufficient to not
5279 			 * be guessable and still allows some pin nesting in
5280 			 * our u32 pin_count.
5281 			 */
5282 			cookie.val = 1 + (prandom_u32() >> 16);
5283 			hlock->pin_count += cookie.val;
5284 			return cookie;
5285 		}
5286 	}
5287 
5288 	WARN(1, "pinning an unheld lock\n");
5289 	return cookie;
5290 }
5291 
5292 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5293 {
5294 	struct task_struct *curr = current;
5295 	int i;
5296 
5297 	if (unlikely(!debug_locks))
5298 		return;
5299 
5300 	for (i = 0; i < curr->lockdep_depth; i++) {
5301 		struct held_lock *hlock = curr->held_locks + i;
5302 
5303 		if (match_held_lock(hlock, lock)) {
5304 			hlock->pin_count += cookie.val;
5305 			return;
5306 		}
5307 	}
5308 
5309 	WARN(1, "pinning an unheld lock\n");
5310 }
5311 
5312 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5313 {
5314 	struct task_struct *curr = current;
5315 	int i;
5316 
5317 	if (unlikely(!debug_locks))
5318 		return;
5319 
5320 	for (i = 0; i < curr->lockdep_depth; i++) {
5321 		struct held_lock *hlock = curr->held_locks + i;
5322 
5323 		if (match_held_lock(hlock, lock)) {
5324 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5325 				return;
5326 
5327 			hlock->pin_count -= cookie.val;
5328 
5329 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5330 				hlock->pin_count = 0;
5331 
5332 			return;
5333 		}
5334 	}
5335 
5336 	WARN(1, "unpinning an unheld lock\n");
5337 }
5338 
5339 /*
5340  * Check whether we follow the irq-flags state precisely:
5341  */
5342 static noinstr void check_flags(unsigned long flags)
5343 {
5344 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5345 	if (!debug_locks)
5346 		return;
5347 
5348 	/* Get the warning out..  */
5349 	instrumentation_begin();
5350 
5351 	if (irqs_disabled_flags(flags)) {
5352 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5353 			printk("possible reason: unannotated irqs-off.\n");
5354 		}
5355 	} else {
5356 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5357 			printk("possible reason: unannotated irqs-on.\n");
5358 		}
5359 	}
5360 
5361 	/*
5362 	 * We dont accurately track softirq state in e.g.
5363 	 * hardirq contexts (such as on 4KSTACKS), so only
5364 	 * check if not in hardirq contexts:
5365 	 */
5366 	if (!hardirq_count()) {
5367 		if (softirq_count()) {
5368 			/* like the above, but with softirqs */
5369 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5370 		} else {
5371 			/* lick the above, does it taste good? */
5372 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5373 		}
5374 	}
5375 
5376 	if (!debug_locks)
5377 		print_irqtrace_events(current);
5378 
5379 	instrumentation_end();
5380 #endif
5381 }
5382 
5383 void lock_set_class(struct lockdep_map *lock, const char *name,
5384 		    struct lock_class_key *key, unsigned int subclass,
5385 		    unsigned long ip)
5386 {
5387 	unsigned long flags;
5388 
5389 	if (unlikely(!lockdep_enabled()))
5390 		return;
5391 
5392 	raw_local_irq_save(flags);
5393 	lockdep_recursion_inc();
5394 	check_flags(flags);
5395 	if (__lock_set_class(lock, name, key, subclass, ip))
5396 		check_chain_key(current);
5397 	lockdep_recursion_finish();
5398 	raw_local_irq_restore(flags);
5399 }
5400 EXPORT_SYMBOL_GPL(lock_set_class);
5401 
5402 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5403 {
5404 	unsigned long flags;
5405 
5406 	if (unlikely(!lockdep_enabled()))
5407 		return;
5408 
5409 	raw_local_irq_save(flags);
5410 	lockdep_recursion_inc();
5411 	check_flags(flags);
5412 	if (__lock_downgrade(lock, ip))
5413 		check_chain_key(current);
5414 	lockdep_recursion_finish();
5415 	raw_local_irq_restore(flags);
5416 }
5417 EXPORT_SYMBOL_GPL(lock_downgrade);
5418 
5419 /* NMI context !!! */
5420 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5421 {
5422 #ifdef CONFIG_PROVE_LOCKING
5423 	struct lock_class *class = look_up_lock_class(lock, subclass);
5424 	unsigned long mask = LOCKF_USED;
5425 
5426 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5427 	if (!class)
5428 		return;
5429 
5430 	/*
5431 	 * READ locks only conflict with USED, such that if we only ever use
5432 	 * READ locks, there is no deadlock possible -- RCU.
5433 	 */
5434 	if (!hlock->read)
5435 		mask |= LOCKF_USED_READ;
5436 
5437 	if (!(class->usage_mask & mask))
5438 		return;
5439 
5440 	hlock->class_idx = class - lock_classes;
5441 
5442 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5443 #endif
5444 }
5445 
5446 static bool lockdep_nmi(void)
5447 {
5448 	if (raw_cpu_read(lockdep_recursion))
5449 		return false;
5450 
5451 	if (!in_nmi())
5452 		return false;
5453 
5454 	return true;
5455 }
5456 
5457 /*
5458  * read_lock() is recursive if:
5459  * 1. We force lockdep think this way in selftests or
5460  * 2. The implementation is not queued read/write lock or
5461  * 3. The locker is at an in_interrupt() context.
5462  */
5463 bool read_lock_is_recursive(void)
5464 {
5465 	return force_read_lock_recursive ||
5466 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5467 	       in_interrupt();
5468 }
5469 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5470 
5471 /*
5472  * We are not always called with irqs disabled - do that here,
5473  * and also avoid lockdep recursion:
5474  */
5475 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5476 			  int trylock, int read, int check,
5477 			  struct lockdep_map *nest_lock, unsigned long ip)
5478 {
5479 	unsigned long flags;
5480 
5481 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5482 
5483 	if (!debug_locks)
5484 		return;
5485 
5486 	if (unlikely(!lockdep_enabled())) {
5487 		/* XXX allow trylock from NMI ?!? */
5488 		if (lockdep_nmi() && !trylock) {
5489 			struct held_lock hlock;
5490 
5491 			hlock.acquire_ip = ip;
5492 			hlock.instance = lock;
5493 			hlock.nest_lock = nest_lock;
5494 			hlock.irq_context = 2; // XXX
5495 			hlock.trylock = trylock;
5496 			hlock.read = read;
5497 			hlock.check = check;
5498 			hlock.hardirqs_off = true;
5499 			hlock.references = 0;
5500 
5501 			verify_lock_unused(lock, &hlock, subclass);
5502 		}
5503 		return;
5504 	}
5505 
5506 	raw_local_irq_save(flags);
5507 	check_flags(flags);
5508 
5509 	lockdep_recursion_inc();
5510 	__lock_acquire(lock, subclass, trylock, read, check,
5511 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5512 	lockdep_recursion_finish();
5513 	raw_local_irq_restore(flags);
5514 }
5515 EXPORT_SYMBOL_GPL(lock_acquire);
5516 
5517 void lock_release(struct lockdep_map *lock, unsigned long ip)
5518 {
5519 	unsigned long flags;
5520 
5521 	trace_lock_release(lock, ip);
5522 
5523 	if (unlikely(!lockdep_enabled()))
5524 		return;
5525 
5526 	raw_local_irq_save(flags);
5527 	check_flags(flags);
5528 
5529 	lockdep_recursion_inc();
5530 	if (__lock_release(lock, ip))
5531 		check_chain_key(current);
5532 	lockdep_recursion_finish();
5533 	raw_local_irq_restore(flags);
5534 }
5535 EXPORT_SYMBOL_GPL(lock_release);
5536 
5537 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5538 {
5539 	unsigned long flags;
5540 	int ret = 0;
5541 
5542 	if (unlikely(!lockdep_enabled()))
5543 		return 1; /* avoid false negative lockdep_assert_held() */
5544 
5545 	raw_local_irq_save(flags);
5546 	check_flags(flags);
5547 
5548 	lockdep_recursion_inc();
5549 	ret = __lock_is_held(lock, read);
5550 	lockdep_recursion_finish();
5551 	raw_local_irq_restore(flags);
5552 
5553 	return ret;
5554 }
5555 EXPORT_SYMBOL_GPL(lock_is_held_type);
5556 NOKPROBE_SYMBOL(lock_is_held_type);
5557 
5558 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5559 {
5560 	struct pin_cookie cookie = NIL_COOKIE;
5561 	unsigned long flags;
5562 
5563 	if (unlikely(!lockdep_enabled()))
5564 		return cookie;
5565 
5566 	raw_local_irq_save(flags);
5567 	check_flags(flags);
5568 
5569 	lockdep_recursion_inc();
5570 	cookie = __lock_pin_lock(lock);
5571 	lockdep_recursion_finish();
5572 	raw_local_irq_restore(flags);
5573 
5574 	return cookie;
5575 }
5576 EXPORT_SYMBOL_GPL(lock_pin_lock);
5577 
5578 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5579 {
5580 	unsigned long flags;
5581 
5582 	if (unlikely(!lockdep_enabled()))
5583 		return;
5584 
5585 	raw_local_irq_save(flags);
5586 	check_flags(flags);
5587 
5588 	lockdep_recursion_inc();
5589 	__lock_repin_lock(lock, cookie);
5590 	lockdep_recursion_finish();
5591 	raw_local_irq_restore(flags);
5592 }
5593 EXPORT_SYMBOL_GPL(lock_repin_lock);
5594 
5595 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5596 {
5597 	unsigned long flags;
5598 
5599 	if (unlikely(!lockdep_enabled()))
5600 		return;
5601 
5602 	raw_local_irq_save(flags);
5603 	check_flags(flags);
5604 
5605 	lockdep_recursion_inc();
5606 	__lock_unpin_lock(lock, cookie);
5607 	lockdep_recursion_finish();
5608 	raw_local_irq_restore(flags);
5609 }
5610 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5611 
5612 #ifdef CONFIG_LOCK_STAT
5613 static void print_lock_contention_bug(struct task_struct *curr,
5614 				      struct lockdep_map *lock,
5615 				      unsigned long ip)
5616 {
5617 	if (!debug_locks_off())
5618 		return;
5619 	if (debug_locks_silent)
5620 		return;
5621 
5622 	pr_warn("\n");
5623 	pr_warn("=================================\n");
5624 	pr_warn("WARNING: bad contention detected!\n");
5625 	print_kernel_ident();
5626 	pr_warn("---------------------------------\n");
5627 	pr_warn("%s/%d is trying to contend lock (",
5628 		curr->comm, task_pid_nr(curr));
5629 	print_lockdep_cache(lock);
5630 	pr_cont(") at:\n");
5631 	print_ip_sym(KERN_WARNING, ip);
5632 	pr_warn("but there are no locks held!\n");
5633 	pr_warn("\nother info that might help us debug this:\n");
5634 	lockdep_print_held_locks(curr);
5635 
5636 	pr_warn("\nstack backtrace:\n");
5637 	dump_stack();
5638 }
5639 
5640 static void
5641 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5642 {
5643 	struct task_struct *curr = current;
5644 	struct held_lock *hlock;
5645 	struct lock_class_stats *stats;
5646 	unsigned int depth;
5647 	int i, contention_point, contending_point;
5648 
5649 	depth = curr->lockdep_depth;
5650 	/*
5651 	 * Whee, we contended on this lock, except it seems we're not
5652 	 * actually trying to acquire anything much at all..
5653 	 */
5654 	if (DEBUG_LOCKS_WARN_ON(!depth))
5655 		return;
5656 
5657 	hlock = find_held_lock(curr, lock, depth, &i);
5658 	if (!hlock) {
5659 		print_lock_contention_bug(curr, lock, ip);
5660 		return;
5661 	}
5662 
5663 	if (hlock->instance != lock)
5664 		return;
5665 
5666 	hlock->waittime_stamp = lockstat_clock();
5667 
5668 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5669 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5670 				      lock->ip);
5671 
5672 	stats = get_lock_stats(hlock_class(hlock));
5673 	if (contention_point < LOCKSTAT_POINTS)
5674 		stats->contention_point[contention_point]++;
5675 	if (contending_point < LOCKSTAT_POINTS)
5676 		stats->contending_point[contending_point]++;
5677 	if (lock->cpu != smp_processor_id())
5678 		stats->bounces[bounce_contended + !!hlock->read]++;
5679 }
5680 
5681 static void
5682 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5683 {
5684 	struct task_struct *curr = current;
5685 	struct held_lock *hlock;
5686 	struct lock_class_stats *stats;
5687 	unsigned int depth;
5688 	u64 now, waittime = 0;
5689 	int i, cpu;
5690 
5691 	depth = curr->lockdep_depth;
5692 	/*
5693 	 * Yay, we acquired ownership of this lock we didn't try to
5694 	 * acquire, how the heck did that happen?
5695 	 */
5696 	if (DEBUG_LOCKS_WARN_ON(!depth))
5697 		return;
5698 
5699 	hlock = find_held_lock(curr, lock, depth, &i);
5700 	if (!hlock) {
5701 		print_lock_contention_bug(curr, lock, _RET_IP_);
5702 		return;
5703 	}
5704 
5705 	if (hlock->instance != lock)
5706 		return;
5707 
5708 	cpu = smp_processor_id();
5709 	if (hlock->waittime_stamp) {
5710 		now = lockstat_clock();
5711 		waittime = now - hlock->waittime_stamp;
5712 		hlock->holdtime_stamp = now;
5713 	}
5714 
5715 	stats = get_lock_stats(hlock_class(hlock));
5716 	if (waittime) {
5717 		if (hlock->read)
5718 			lock_time_inc(&stats->read_waittime, waittime);
5719 		else
5720 			lock_time_inc(&stats->write_waittime, waittime);
5721 	}
5722 	if (lock->cpu != cpu)
5723 		stats->bounces[bounce_acquired + !!hlock->read]++;
5724 
5725 	lock->cpu = cpu;
5726 	lock->ip = ip;
5727 }
5728 
5729 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5730 {
5731 	unsigned long flags;
5732 
5733 	trace_lock_acquired(lock, ip);
5734 
5735 	if (unlikely(!lock_stat || !lockdep_enabled()))
5736 		return;
5737 
5738 	raw_local_irq_save(flags);
5739 	check_flags(flags);
5740 	lockdep_recursion_inc();
5741 	__lock_contended(lock, ip);
5742 	lockdep_recursion_finish();
5743 	raw_local_irq_restore(flags);
5744 }
5745 EXPORT_SYMBOL_GPL(lock_contended);
5746 
5747 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5748 {
5749 	unsigned long flags;
5750 
5751 	trace_lock_contended(lock, ip);
5752 
5753 	if (unlikely(!lock_stat || !lockdep_enabled()))
5754 		return;
5755 
5756 	raw_local_irq_save(flags);
5757 	check_flags(flags);
5758 	lockdep_recursion_inc();
5759 	__lock_acquired(lock, ip);
5760 	lockdep_recursion_finish();
5761 	raw_local_irq_restore(flags);
5762 }
5763 EXPORT_SYMBOL_GPL(lock_acquired);
5764 #endif
5765 
5766 /*
5767  * Used by the testsuite, sanitize the validator state
5768  * after a simulated failure:
5769  */
5770 
5771 void lockdep_reset(void)
5772 {
5773 	unsigned long flags;
5774 	int i;
5775 
5776 	raw_local_irq_save(flags);
5777 	lockdep_init_task(current);
5778 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5779 	nr_hardirq_chains = 0;
5780 	nr_softirq_chains = 0;
5781 	nr_process_chains = 0;
5782 	debug_locks = 1;
5783 	for (i = 0; i < CHAINHASH_SIZE; i++)
5784 		INIT_HLIST_HEAD(chainhash_table + i);
5785 	raw_local_irq_restore(flags);
5786 }
5787 
5788 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5789 static void remove_class_from_lock_chain(struct pending_free *pf,
5790 					 struct lock_chain *chain,
5791 					 struct lock_class *class)
5792 {
5793 #ifdef CONFIG_PROVE_LOCKING
5794 	int i;
5795 
5796 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5797 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5798 			continue;
5799 		/*
5800 		 * Each lock class occurs at most once in a lock chain so once
5801 		 * we found a match we can break out of this loop.
5802 		 */
5803 		goto free_lock_chain;
5804 	}
5805 	/* Since the chain has not been modified, return. */
5806 	return;
5807 
5808 free_lock_chain:
5809 	free_chain_hlocks(chain->base, chain->depth);
5810 	/* Overwrite the chain key for concurrent RCU readers. */
5811 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5812 	dec_chains(chain->irq_context);
5813 
5814 	/*
5815 	 * Note: calling hlist_del_rcu() from inside a
5816 	 * hlist_for_each_entry_rcu() loop is safe.
5817 	 */
5818 	hlist_del_rcu(&chain->entry);
5819 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5820 	nr_zapped_lock_chains++;
5821 #endif
5822 }
5823 
5824 /* Must be called with the graph lock held. */
5825 static void remove_class_from_lock_chains(struct pending_free *pf,
5826 					  struct lock_class *class)
5827 {
5828 	struct lock_chain *chain;
5829 	struct hlist_head *head;
5830 	int i;
5831 
5832 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5833 		head = chainhash_table + i;
5834 		hlist_for_each_entry_rcu(chain, head, entry) {
5835 			remove_class_from_lock_chain(pf, chain, class);
5836 		}
5837 	}
5838 }
5839 
5840 /*
5841  * Remove all references to a lock class. The caller must hold the graph lock.
5842  */
5843 static void zap_class(struct pending_free *pf, struct lock_class *class)
5844 {
5845 	struct lock_list *entry;
5846 	int i;
5847 
5848 	WARN_ON_ONCE(!class->key);
5849 
5850 	/*
5851 	 * Remove all dependencies this lock is
5852 	 * involved in:
5853 	 */
5854 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5855 		entry = list_entries + i;
5856 		if (entry->class != class && entry->links_to != class)
5857 			continue;
5858 		__clear_bit(i, list_entries_in_use);
5859 		nr_list_entries--;
5860 		list_del_rcu(&entry->entry);
5861 	}
5862 	if (list_empty(&class->locks_after) &&
5863 	    list_empty(&class->locks_before)) {
5864 		list_move_tail(&class->lock_entry, &pf->zapped);
5865 		hlist_del_rcu(&class->hash_entry);
5866 		WRITE_ONCE(class->key, NULL);
5867 		WRITE_ONCE(class->name, NULL);
5868 		nr_lock_classes--;
5869 		__clear_bit(class - lock_classes, lock_classes_in_use);
5870 	} else {
5871 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5872 			  class->name);
5873 	}
5874 
5875 	remove_class_from_lock_chains(pf, class);
5876 	nr_zapped_classes++;
5877 }
5878 
5879 static void reinit_class(struct lock_class *class)
5880 {
5881 	void *const p = class;
5882 	const unsigned int offset = offsetof(struct lock_class, key);
5883 
5884 	WARN_ON_ONCE(!class->lock_entry.next);
5885 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5886 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5887 	memset(p + offset, 0, sizeof(*class) - offset);
5888 	WARN_ON_ONCE(!class->lock_entry.next);
5889 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5890 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5891 }
5892 
5893 static inline int within(const void *addr, void *start, unsigned long size)
5894 {
5895 	return addr >= start && addr < start + size;
5896 }
5897 
5898 static bool inside_selftest(void)
5899 {
5900 	return current == lockdep_selftest_task_struct;
5901 }
5902 
5903 /* The caller must hold the graph lock. */
5904 static struct pending_free *get_pending_free(void)
5905 {
5906 	return delayed_free.pf + delayed_free.index;
5907 }
5908 
5909 static void free_zapped_rcu(struct rcu_head *cb);
5910 
5911 /*
5912  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5913  * the graph lock held.
5914  */
5915 static void call_rcu_zapped(struct pending_free *pf)
5916 {
5917 	WARN_ON_ONCE(inside_selftest());
5918 
5919 	if (list_empty(&pf->zapped))
5920 		return;
5921 
5922 	if (delayed_free.scheduled)
5923 		return;
5924 
5925 	delayed_free.scheduled = true;
5926 
5927 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5928 	delayed_free.index ^= 1;
5929 
5930 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5931 }
5932 
5933 /* The caller must hold the graph lock. May be called from RCU context. */
5934 static void __free_zapped_classes(struct pending_free *pf)
5935 {
5936 	struct lock_class *class;
5937 
5938 	check_data_structures();
5939 
5940 	list_for_each_entry(class, &pf->zapped, lock_entry)
5941 		reinit_class(class);
5942 
5943 	list_splice_init(&pf->zapped, &free_lock_classes);
5944 
5945 #ifdef CONFIG_PROVE_LOCKING
5946 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5947 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5948 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5949 #endif
5950 }
5951 
5952 static void free_zapped_rcu(struct rcu_head *ch)
5953 {
5954 	struct pending_free *pf;
5955 	unsigned long flags;
5956 
5957 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5958 		return;
5959 
5960 	raw_local_irq_save(flags);
5961 	lockdep_lock();
5962 
5963 	/* closed head */
5964 	pf = delayed_free.pf + (delayed_free.index ^ 1);
5965 	__free_zapped_classes(pf);
5966 	delayed_free.scheduled = false;
5967 
5968 	/*
5969 	 * If there's anything on the open list, close and start a new callback.
5970 	 */
5971 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
5972 
5973 	lockdep_unlock();
5974 	raw_local_irq_restore(flags);
5975 }
5976 
5977 /*
5978  * Remove all lock classes from the class hash table and from the
5979  * all_lock_classes list whose key or name is in the address range [start,
5980  * start + size). Move these lock classes to the zapped_classes list. Must
5981  * be called with the graph lock held.
5982  */
5983 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5984 				     unsigned long size)
5985 {
5986 	struct lock_class *class;
5987 	struct hlist_head *head;
5988 	int i;
5989 
5990 	/* Unhash all classes that were created by a module. */
5991 	for (i = 0; i < CLASSHASH_SIZE; i++) {
5992 		head = classhash_table + i;
5993 		hlist_for_each_entry_rcu(class, head, hash_entry) {
5994 			if (!within(class->key, start, size) &&
5995 			    !within(class->name, start, size))
5996 				continue;
5997 			zap_class(pf, class);
5998 		}
5999 	}
6000 }
6001 
6002 /*
6003  * Used in module.c to remove lock classes from memory that is going to be
6004  * freed; and possibly re-used by other modules.
6005  *
6006  * We will have had one synchronize_rcu() before getting here, so we're
6007  * guaranteed nobody will look up these exact classes -- they're properly dead
6008  * but still allocated.
6009  */
6010 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6011 {
6012 	struct pending_free *pf;
6013 	unsigned long flags;
6014 
6015 	init_data_structures_once();
6016 
6017 	raw_local_irq_save(flags);
6018 	lockdep_lock();
6019 	pf = get_pending_free();
6020 	__lockdep_free_key_range(pf, start, size);
6021 	call_rcu_zapped(pf);
6022 	lockdep_unlock();
6023 	raw_local_irq_restore(flags);
6024 
6025 	/*
6026 	 * Wait for any possible iterators from look_up_lock_class() to pass
6027 	 * before continuing to free the memory they refer to.
6028 	 */
6029 	synchronize_rcu();
6030 }
6031 
6032 /*
6033  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6034  * Ignores debug_locks. Must only be used by the lockdep selftests.
6035  */
6036 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6037 {
6038 	struct pending_free *pf = delayed_free.pf;
6039 	unsigned long flags;
6040 
6041 	init_data_structures_once();
6042 
6043 	raw_local_irq_save(flags);
6044 	lockdep_lock();
6045 	__lockdep_free_key_range(pf, start, size);
6046 	__free_zapped_classes(pf);
6047 	lockdep_unlock();
6048 	raw_local_irq_restore(flags);
6049 }
6050 
6051 void lockdep_free_key_range(void *start, unsigned long size)
6052 {
6053 	init_data_structures_once();
6054 
6055 	if (inside_selftest())
6056 		lockdep_free_key_range_imm(start, size);
6057 	else
6058 		lockdep_free_key_range_reg(start, size);
6059 }
6060 
6061 /*
6062  * Check whether any element of the @lock->class_cache[] array refers to a
6063  * registered lock class. The caller must hold either the graph lock or the
6064  * RCU read lock.
6065  */
6066 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6067 {
6068 	struct lock_class *class;
6069 	struct hlist_head *head;
6070 	int i, j;
6071 
6072 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6073 		head = classhash_table + i;
6074 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6075 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6076 				if (lock->class_cache[j] == class)
6077 					return true;
6078 		}
6079 	}
6080 	return false;
6081 }
6082 
6083 /* The caller must hold the graph lock. Does not sleep. */
6084 static void __lockdep_reset_lock(struct pending_free *pf,
6085 				 struct lockdep_map *lock)
6086 {
6087 	struct lock_class *class;
6088 	int j;
6089 
6090 	/*
6091 	 * Remove all classes this lock might have:
6092 	 */
6093 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6094 		/*
6095 		 * If the class exists we look it up and zap it:
6096 		 */
6097 		class = look_up_lock_class(lock, j);
6098 		if (class)
6099 			zap_class(pf, class);
6100 	}
6101 	/*
6102 	 * Debug check: in the end all mapped classes should
6103 	 * be gone.
6104 	 */
6105 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6106 		debug_locks_off();
6107 }
6108 
6109 /*
6110  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6111  * released data structures from RCU context.
6112  */
6113 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6114 {
6115 	struct pending_free *pf;
6116 	unsigned long flags;
6117 	int locked;
6118 
6119 	raw_local_irq_save(flags);
6120 	locked = graph_lock();
6121 	if (!locked)
6122 		goto out_irq;
6123 
6124 	pf = get_pending_free();
6125 	__lockdep_reset_lock(pf, lock);
6126 	call_rcu_zapped(pf);
6127 
6128 	graph_unlock();
6129 out_irq:
6130 	raw_local_irq_restore(flags);
6131 }
6132 
6133 /*
6134  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6135  * lockdep selftests.
6136  */
6137 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6138 {
6139 	struct pending_free *pf = delayed_free.pf;
6140 	unsigned long flags;
6141 
6142 	raw_local_irq_save(flags);
6143 	lockdep_lock();
6144 	__lockdep_reset_lock(pf, lock);
6145 	__free_zapped_classes(pf);
6146 	lockdep_unlock();
6147 	raw_local_irq_restore(flags);
6148 }
6149 
6150 void lockdep_reset_lock(struct lockdep_map *lock)
6151 {
6152 	init_data_structures_once();
6153 
6154 	if (inside_selftest())
6155 		lockdep_reset_lock_imm(lock);
6156 	else
6157 		lockdep_reset_lock_reg(lock);
6158 }
6159 
6160 /* Unregister a dynamically allocated key. */
6161 void lockdep_unregister_key(struct lock_class_key *key)
6162 {
6163 	struct hlist_head *hash_head = keyhashentry(key);
6164 	struct lock_class_key *k;
6165 	struct pending_free *pf;
6166 	unsigned long flags;
6167 	bool found = false;
6168 
6169 	might_sleep();
6170 
6171 	if (WARN_ON_ONCE(static_obj(key)))
6172 		return;
6173 
6174 	raw_local_irq_save(flags);
6175 	if (!graph_lock())
6176 		goto out_irq;
6177 
6178 	pf = get_pending_free();
6179 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6180 		if (k == key) {
6181 			hlist_del_rcu(&k->hash_entry);
6182 			found = true;
6183 			break;
6184 		}
6185 	}
6186 	WARN_ON_ONCE(!found);
6187 	__lockdep_free_key_range(pf, key, 1);
6188 	call_rcu_zapped(pf);
6189 	graph_unlock();
6190 out_irq:
6191 	raw_local_irq_restore(flags);
6192 
6193 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6194 	synchronize_rcu();
6195 }
6196 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6197 
6198 void __init lockdep_init(void)
6199 {
6200 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6201 
6202 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6203 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6204 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6205 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6206 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6207 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6208 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6209 
6210 	printk(" memory used by lock dependency info: %zu kB\n",
6211 	       (sizeof(lock_classes) +
6212 		sizeof(lock_classes_in_use) +
6213 		sizeof(classhash_table) +
6214 		sizeof(list_entries) +
6215 		sizeof(list_entries_in_use) +
6216 		sizeof(chainhash_table) +
6217 		sizeof(delayed_free)
6218 #ifdef CONFIG_PROVE_LOCKING
6219 		+ sizeof(lock_cq)
6220 		+ sizeof(lock_chains)
6221 		+ sizeof(lock_chains_in_use)
6222 		+ sizeof(chain_hlocks)
6223 #endif
6224 		) / 1024
6225 		);
6226 
6227 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6228 	printk(" memory used for stack traces: %zu kB\n",
6229 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6230 	       );
6231 #endif
6232 
6233 	printk(" per task-struct memory footprint: %zu bytes\n",
6234 	       sizeof(((struct task_struct *)NULL)->held_locks));
6235 }
6236 
6237 static void
6238 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6239 		     const void *mem_to, struct held_lock *hlock)
6240 {
6241 	if (!debug_locks_off())
6242 		return;
6243 	if (debug_locks_silent)
6244 		return;
6245 
6246 	pr_warn("\n");
6247 	pr_warn("=========================\n");
6248 	pr_warn("WARNING: held lock freed!\n");
6249 	print_kernel_ident();
6250 	pr_warn("-------------------------\n");
6251 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6252 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6253 	print_lock(hlock);
6254 	lockdep_print_held_locks(curr);
6255 
6256 	pr_warn("\nstack backtrace:\n");
6257 	dump_stack();
6258 }
6259 
6260 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6261 				const void* lock_from, unsigned long lock_len)
6262 {
6263 	return lock_from + lock_len <= mem_from ||
6264 		mem_from + mem_len <= lock_from;
6265 }
6266 
6267 /*
6268  * Called when kernel memory is freed (or unmapped), or if a lock
6269  * is destroyed or reinitialized - this code checks whether there is
6270  * any held lock in the memory range of <from> to <to>:
6271  */
6272 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6273 {
6274 	struct task_struct *curr = current;
6275 	struct held_lock *hlock;
6276 	unsigned long flags;
6277 	int i;
6278 
6279 	if (unlikely(!debug_locks))
6280 		return;
6281 
6282 	raw_local_irq_save(flags);
6283 	for (i = 0; i < curr->lockdep_depth; i++) {
6284 		hlock = curr->held_locks + i;
6285 
6286 		if (not_in_range(mem_from, mem_len, hlock->instance,
6287 					sizeof(*hlock->instance)))
6288 			continue;
6289 
6290 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6291 		break;
6292 	}
6293 	raw_local_irq_restore(flags);
6294 }
6295 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6296 
6297 static void print_held_locks_bug(void)
6298 {
6299 	if (!debug_locks_off())
6300 		return;
6301 	if (debug_locks_silent)
6302 		return;
6303 
6304 	pr_warn("\n");
6305 	pr_warn("====================================\n");
6306 	pr_warn("WARNING: %s/%d still has locks held!\n",
6307 	       current->comm, task_pid_nr(current));
6308 	print_kernel_ident();
6309 	pr_warn("------------------------------------\n");
6310 	lockdep_print_held_locks(current);
6311 	pr_warn("\nstack backtrace:\n");
6312 	dump_stack();
6313 }
6314 
6315 void debug_check_no_locks_held(void)
6316 {
6317 	if (unlikely(current->lockdep_depth > 0))
6318 		print_held_locks_bug();
6319 }
6320 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6321 
6322 #ifdef __KERNEL__
6323 void debug_show_all_locks(void)
6324 {
6325 	struct task_struct *g, *p;
6326 
6327 	if (unlikely(!debug_locks)) {
6328 		pr_warn("INFO: lockdep is turned off.\n");
6329 		return;
6330 	}
6331 	pr_warn("\nShowing all locks held in the system:\n");
6332 
6333 	rcu_read_lock();
6334 	for_each_process_thread(g, p) {
6335 		if (!p->lockdep_depth)
6336 			continue;
6337 		lockdep_print_held_locks(p);
6338 		touch_nmi_watchdog();
6339 		touch_all_softlockup_watchdogs();
6340 	}
6341 	rcu_read_unlock();
6342 
6343 	pr_warn("\n");
6344 	pr_warn("=============================================\n\n");
6345 }
6346 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6347 #endif
6348 
6349 /*
6350  * Careful: only use this function if you are sure that
6351  * the task cannot run in parallel!
6352  */
6353 void debug_show_held_locks(struct task_struct *task)
6354 {
6355 	if (unlikely(!debug_locks)) {
6356 		printk("INFO: lockdep is turned off.\n");
6357 		return;
6358 	}
6359 	lockdep_print_held_locks(task);
6360 }
6361 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6362 
6363 asmlinkage __visible void lockdep_sys_exit(void)
6364 {
6365 	struct task_struct *curr = current;
6366 
6367 	if (unlikely(curr->lockdep_depth)) {
6368 		if (!debug_locks_off())
6369 			return;
6370 		pr_warn("\n");
6371 		pr_warn("================================================\n");
6372 		pr_warn("WARNING: lock held when returning to user space!\n");
6373 		print_kernel_ident();
6374 		pr_warn("------------------------------------------------\n");
6375 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6376 				curr->comm, curr->pid);
6377 		lockdep_print_held_locks(curr);
6378 	}
6379 
6380 	/*
6381 	 * The lock history for each syscall should be independent. So wipe the
6382 	 * slate clean on return to userspace.
6383 	 */
6384 	lockdep_invariant_state(false);
6385 }
6386 
6387 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6388 {
6389 	struct task_struct *curr = current;
6390 
6391 	/* Note: the following can be executed concurrently, so be careful. */
6392 	pr_warn("\n");
6393 	pr_warn("=============================\n");
6394 	pr_warn("WARNING: suspicious RCU usage\n");
6395 	print_kernel_ident();
6396 	pr_warn("-----------------------------\n");
6397 	pr_warn("%s:%d %s!\n", file, line, s);
6398 	pr_warn("\nother info that might help us debug this:\n\n");
6399 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6400 	       !rcu_lockdep_current_cpu_online()
6401 			? "RCU used illegally from offline CPU!\n"
6402 			: "",
6403 	       rcu_scheduler_active, debug_locks);
6404 
6405 	/*
6406 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6407 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6408 	 * considers that CPU to be in an "extended quiescent state",
6409 	 * which means that RCU will be completely ignoring that CPU.
6410 	 * Therefore, rcu_read_lock() and friends have absolutely no
6411 	 * effect on a CPU running in that state. In other words, even if
6412 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6413 	 * delete data structures out from under it.  RCU really has no
6414 	 * choice here: we need to keep an RCU-free window in idle where
6415 	 * the CPU may possibly enter into low power mode. This way we can
6416 	 * notice an extended quiescent state to other CPUs that started a grace
6417 	 * period. Otherwise we would delay any grace period as long as we run
6418 	 * in the idle task.
6419 	 *
6420 	 * So complain bitterly if someone does call rcu_read_lock(),
6421 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6422 	 */
6423 	if (!rcu_is_watching())
6424 		pr_warn("RCU used illegally from extended quiescent state!\n");
6425 
6426 	lockdep_print_held_locks(curr);
6427 	pr_warn("\nstack backtrace:\n");
6428 	dump_stack();
6429 }
6430 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6431