xref: /openbmc/linux/kernel/locking/lockdep.c (revision 2fa5ebe3bc4e31e07a99196455498472417842f2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 #include <linux/context_tracking.h>
59 
60 #include <asm/sections.h>
61 
62 #include "lockdep_internals.h"
63 
64 #include <trace/events/lock.h>
65 
66 #ifdef CONFIG_PROVE_LOCKING
67 static int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72 
73 #ifdef CONFIG_LOCK_STAT
74 static int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79 
80 #ifdef CONFIG_SYSCTL
81 static struct ctl_table kern_lockdep_table[] = {
82 #ifdef CONFIG_PROVE_LOCKING
83 	{
84 		.procname       = "prove_locking",
85 		.data           = &prove_locking,
86 		.maxlen         = sizeof(int),
87 		.mode           = 0644,
88 		.proc_handler   = proc_dointvec,
89 	},
90 #endif /* CONFIG_PROVE_LOCKING */
91 #ifdef CONFIG_LOCK_STAT
92 	{
93 		.procname       = "lock_stat",
94 		.data           = &lock_stat,
95 		.maxlen         = sizeof(int),
96 		.mode           = 0644,
97 		.proc_handler   = proc_dointvec,
98 	},
99 #endif /* CONFIG_LOCK_STAT */
100 	{ }
101 };
102 
103 static __init int kernel_lockdep_sysctls_init(void)
104 {
105 	register_sysctl_init("kernel", kern_lockdep_table);
106 	return 0;
107 }
108 late_initcall(kernel_lockdep_sysctls_init);
109 #endif /* CONFIG_SYSCTL */
110 
111 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
112 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
113 
114 static __always_inline bool lockdep_enabled(void)
115 {
116 	if (!debug_locks)
117 		return false;
118 
119 	if (this_cpu_read(lockdep_recursion))
120 		return false;
121 
122 	if (current->lockdep_recursion)
123 		return false;
124 
125 	return true;
126 }
127 
128 /*
129  * lockdep_lock: protects the lockdep graph, the hashes and the
130  *               class/list/hash allocators.
131  *
132  * This is one of the rare exceptions where it's justified
133  * to use a raw spinlock - we really dont want the spinlock
134  * code to recurse back into the lockdep code...
135  */
136 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
137 static struct task_struct *__owner;
138 
139 static inline void lockdep_lock(void)
140 {
141 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
142 
143 	__this_cpu_inc(lockdep_recursion);
144 	arch_spin_lock(&__lock);
145 	__owner = current;
146 }
147 
148 static inline void lockdep_unlock(void)
149 {
150 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
151 
152 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
153 		return;
154 
155 	__owner = NULL;
156 	arch_spin_unlock(&__lock);
157 	__this_cpu_dec(lockdep_recursion);
158 }
159 
160 static inline bool lockdep_assert_locked(void)
161 {
162 	return DEBUG_LOCKS_WARN_ON(__owner != current);
163 }
164 
165 static struct task_struct *lockdep_selftest_task_struct;
166 
167 
168 static int graph_lock(void)
169 {
170 	lockdep_lock();
171 	/*
172 	 * Make sure that if another CPU detected a bug while
173 	 * walking the graph we dont change it (while the other
174 	 * CPU is busy printing out stuff with the graph lock
175 	 * dropped already)
176 	 */
177 	if (!debug_locks) {
178 		lockdep_unlock();
179 		return 0;
180 	}
181 	return 1;
182 }
183 
184 static inline void graph_unlock(void)
185 {
186 	lockdep_unlock();
187 }
188 
189 /*
190  * Turn lock debugging off and return with 0 if it was off already,
191  * and also release the graph lock:
192  */
193 static inline int debug_locks_off_graph_unlock(void)
194 {
195 	int ret = debug_locks_off();
196 
197 	lockdep_unlock();
198 
199 	return ret;
200 }
201 
202 unsigned long nr_list_entries;
203 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
204 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
205 
206 /*
207  * All data structures here are protected by the global debug_lock.
208  *
209  * nr_lock_classes is the number of elements of lock_classes[] that is
210  * in use.
211  */
212 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
213 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
214 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
215 unsigned long nr_lock_classes;
216 unsigned long nr_zapped_classes;
217 unsigned long max_lock_class_idx;
218 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
219 DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
220 
221 static inline struct lock_class *hlock_class(struct held_lock *hlock)
222 {
223 	unsigned int class_idx = hlock->class_idx;
224 
225 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
226 	barrier();
227 
228 	if (!test_bit(class_idx, lock_classes_in_use)) {
229 		/*
230 		 * Someone passed in garbage, we give up.
231 		 */
232 		DEBUG_LOCKS_WARN_ON(1);
233 		return NULL;
234 	}
235 
236 	/*
237 	 * At this point, if the passed hlock->class_idx is still garbage,
238 	 * we just have to live with it
239 	 */
240 	return lock_classes + class_idx;
241 }
242 
243 #ifdef CONFIG_LOCK_STAT
244 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
245 
246 static inline u64 lockstat_clock(void)
247 {
248 	return local_clock();
249 }
250 
251 static int lock_point(unsigned long points[], unsigned long ip)
252 {
253 	int i;
254 
255 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
256 		if (points[i] == 0) {
257 			points[i] = ip;
258 			break;
259 		}
260 		if (points[i] == ip)
261 			break;
262 	}
263 
264 	return i;
265 }
266 
267 static void lock_time_inc(struct lock_time *lt, u64 time)
268 {
269 	if (time > lt->max)
270 		lt->max = time;
271 
272 	if (time < lt->min || !lt->nr)
273 		lt->min = time;
274 
275 	lt->total += time;
276 	lt->nr++;
277 }
278 
279 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
280 {
281 	if (!src->nr)
282 		return;
283 
284 	if (src->max > dst->max)
285 		dst->max = src->max;
286 
287 	if (src->min < dst->min || !dst->nr)
288 		dst->min = src->min;
289 
290 	dst->total += src->total;
291 	dst->nr += src->nr;
292 }
293 
294 struct lock_class_stats lock_stats(struct lock_class *class)
295 {
296 	struct lock_class_stats stats;
297 	int cpu, i;
298 
299 	memset(&stats, 0, sizeof(struct lock_class_stats));
300 	for_each_possible_cpu(cpu) {
301 		struct lock_class_stats *pcs =
302 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
303 
304 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
305 			stats.contention_point[i] += pcs->contention_point[i];
306 
307 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
308 			stats.contending_point[i] += pcs->contending_point[i];
309 
310 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
311 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
312 
313 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
314 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
315 
316 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
317 			stats.bounces[i] += pcs->bounces[i];
318 	}
319 
320 	return stats;
321 }
322 
323 void clear_lock_stats(struct lock_class *class)
324 {
325 	int cpu;
326 
327 	for_each_possible_cpu(cpu) {
328 		struct lock_class_stats *cpu_stats =
329 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
330 
331 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
332 	}
333 	memset(class->contention_point, 0, sizeof(class->contention_point));
334 	memset(class->contending_point, 0, sizeof(class->contending_point));
335 }
336 
337 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
338 {
339 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
340 }
341 
342 static void lock_release_holdtime(struct held_lock *hlock)
343 {
344 	struct lock_class_stats *stats;
345 	u64 holdtime;
346 
347 	if (!lock_stat)
348 		return;
349 
350 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
351 
352 	stats = get_lock_stats(hlock_class(hlock));
353 	if (hlock->read)
354 		lock_time_inc(&stats->read_holdtime, holdtime);
355 	else
356 		lock_time_inc(&stats->write_holdtime, holdtime);
357 }
358 #else
359 static inline void lock_release_holdtime(struct held_lock *hlock)
360 {
361 }
362 #endif
363 
364 /*
365  * We keep a global list of all lock classes. The list is only accessed with
366  * the lockdep spinlock lock held. free_lock_classes is a list with free
367  * elements. These elements are linked together by the lock_entry member in
368  * struct lock_class.
369  */
370 static LIST_HEAD(all_lock_classes);
371 static LIST_HEAD(free_lock_classes);
372 
373 /**
374  * struct pending_free - information about data structures about to be freed
375  * @zapped: Head of a list with struct lock_class elements.
376  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
377  *	are about to be freed.
378  */
379 struct pending_free {
380 	struct list_head zapped;
381 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
382 };
383 
384 /**
385  * struct delayed_free - data structures used for delayed freeing
386  *
387  * A data structure for delayed freeing of data structures that may be
388  * accessed by RCU readers at the time these were freed.
389  *
390  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
391  * @index:     Index of @pf to which freed data structures are added.
392  * @scheduled: Whether or not an RCU callback has been scheduled.
393  * @pf:        Array with information about data structures about to be freed.
394  */
395 static struct delayed_free {
396 	struct rcu_head		rcu_head;
397 	int			index;
398 	int			scheduled;
399 	struct pending_free	pf[2];
400 } delayed_free;
401 
402 /*
403  * The lockdep classes are in a hash-table as well, for fast lookup:
404  */
405 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
406 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
407 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
408 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
409 
410 static struct hlist_head classhash_table[CLASSHASH_SIZE];
411 
412 /*
413  * We put the lock dependency chains into a hash-table as well, to cache
414  * their existence:
415  */
416 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
417 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
418 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
419 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
420 
421 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
422 
423 /*
424  * the id of held_lock
425  */
426 static inline u16 hlock_id(struct held_lock *hlock)
427 {
428 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
429 
430 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
431 }
432 
433 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
434 {
435 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
436 }
437 
438 /*
439  * The hash key of the lock dependency chains is a hash itself too:
440  * it's a hash of all locks taken up to that lock, including that lock.
441  * It's a 64-bit hash, because it's important for the keys to be
442  * unique.
443  */
444 static inline u64 iterate_chain_key(u64 key, u32 idx)
445 {
446 	u32 k0 = key, k1 = key >> 32;
447 
448 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
449 
450 	return k0 | (u64)k1 << 32;
451 }
452 
453 void lockdep_init_task(struct task_struct *task)
454 {
455 	task->lockdep_depth = 0; /* no locks held yet */
456 	task->curr_chain_key = INITIAL_CHAIN_KEY;
457 	task->lockdep_recursion = 0;
458 }
459 
460 static __always_inline void lockdep_recursion_inc(void)
461 {
462 	__this_cpu_inc(lockdep_recursion);
463 }
464 
465 static __always_inline void lockdep_recursion_finish(void)
466 {
467 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
468 		__this_cpu_write(lockdep_recursion, 0);
469 }
470 
471 void lockdep_set_selftest_task(struct task_struct *task)
472 {
473 	lockdep_selftest_task_struct = task;
474 }
475 
476 /*
477  * Debugging switches:
478  */
479 
480 #define VERBOSE			0
481 #define VERY_VERBOSE		0
482 
483 #if VERBOSE
484 # define HARDIRQ_VERBOSE	1
485 # define SOFTIRQ_VERBOSE	1
486 #else
487 # define HARDIRQ_VERBOSE	0
488 # define SOFTIRQ_VERBOSE	0
489 #endif
490 
491 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
492 /*
493  * Quick filtering for interesting events:
494  */
495 static int class_filter(struct lock_class *class)
496 {
497 #if 0
498 	/* Example */
499 	if (class->name_version == 1 &&
500 			!strcmp(class->name, "lockname"))
501 		return 1;
502 	if (class->name_version == 1 &&
503 			!strcmp(class->name, "&struct->lockfield"))
504 		return 1;
505 #endif
506 	/* Filter everything else. 1 would be to allow everything else */
507 	return 0;
508 }
509 #endif
510 
511 static int verbose(struct lock_class *class)
512 {
513 #if VERBOSE
514 	return class_filter(class);
515 #endif
516 	return 0;
517 }
518 
519 static void print_lockdep_off(const char *bug_msg)
520 {
521 	printk(KERN_DEBUG "%s\n", bug_msg);
522 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
523 #ifdef CONFIG_LOCK_STAT
524 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
525 #endif
526 }
527 
528 unsigned long nr_stack_trace_entries;
529 
530 #ifdef CONFIG_PROVE_LOCKING
531 /**
532  * struct lock_trace - single stack backtrace
533  * @hash_entry:	Entry in a stack_trace_hash[] list.
534  * @hash:	jhash() of @entries.
535  * @nr_entries:	Number of entries in @entries.
536  * @entries:	Actual stack backtrace.
537  */
538 struct lock_trace {
539 	struct hlist_node	hash_entry;
540 	u32			hash;
541 	u32			nr_entries;
542 	unsigned long		entries[] __aligned(sizeof(unsigned long));
543 };
544 #define LOCK_TRACE_SIZE_IN_LONGS				\
545 	(sizeof(struct lock_trace) / sizeof(unsigned long))
546 /*
547  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
548  */
549 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
550 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
551 
552 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
553 {
554 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
555 		memcmp(t1->entries, t2->entries,
556 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
557 }
558 
559 static struct lock_trace *save_trace(void)
560 {
561 	struct lock_trace *trace, *t2;
562 	struct hlist_head *hash_head;
563 	u32 hash;
564 	int max_entries;
565 
566 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
567 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
568 
569 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
570 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
571 		LOCK_TRACE_SIZE_IN_LONGS;
572 
573 	if (max_entries <= 0) {
574 		if (!debug_locks_off_graph_unlock())
575 			return NULL;
576 
577 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
578 		dump_stack();
579 
580 		return NULL;
581 	}
582 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
583 
584 	hash = jhash(trace->entries, trace->nr_entries *
585 		     sizeof(trace->entries[0]), 0);
586 	trace->hash = hash;
587 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
588 	hlist_for_each_entry(t2, hash_head, hash_entry) {
589 		if (traces_identical(trace, t2))
590 			return t2;
591 	}
592 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
593 	hlist_add_head(&trace->hash_entry, hash_head);
594 
595 	return trace;
596 }
597 
598 /* Return the number of stack traces in the stack_trace[] array. */
599 u64 lockdep_stack_trace_count(void)
600 {
601 	struct lock_trace *trace;
602 	u64 c = 0;
603 	int i;
604 
605 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
606 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
607 			c++;
608 		}
609 	}
610 
611 	return c;
612 }
613 
614 /* Return the number of stack hash chains that have at least one stack trace. */
615 u64 lockdep_stack_hash_count(void)
616 {
617 	u64 c = 0;
618 	int i;
619 
620 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
621 		if (!hlist_empty(&stack_trace_hash[i]))
622 			c++;
623 
624 	return c;
625 }
626 #endif
627 
628 unsigned int nr_hardirq_chains;
629 unsigned int nr_softirq_chains;
630 unsigned int nr_process_chains;
631 unsigned int max_lockdep_depth;
632 
633 #ifdef CONFIG_DEBUG_LOCKDEP
634 /*
635  * Various lockdep statistics:
636  */
637 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
638 #endif
639 
640 #ifdef CONFIG_PROVE_LOCKING
641 /*
642  * Locking printouts:
643  */
644 
645 #define __USAGE(__STATE)						\
646 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
647 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
648 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
649 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
650 
651 static const char *usage_str[] =
652 {
653 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656 	[LOCK_USED] = "INITIAL USE",
657 	[LOCK_USED_READ] = "INITIAL READ USE",
658 	/* abused as string storage for verify_lock_unused() */
659 	[LOCK_USAGE_STATES] = "IN-NMI",
660 };
661 #endif
662 
663 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
664 {
665 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
666 }
667 
668 static inline unsigned long lock_flag(enum lock_usage_bit bit)
669 {
670 	return 1UL << bit;
671 }
672 
673 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
674 {
675 	/*
676 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
677 	 * irq context), which is the safest usage category.
678 	 */
679 	char c = '.';
680 
681 	/*
682 	 * The order of the following usage checks matters, which will
683 	 * result in the outcome character as follows:
684 	 *
685 	 * - '+': irq is enabled and not in irq context
686 	 * - '-': in irq context and irq is disabled
687 	 * - '?': in irq context and irq is enabled
688 	 */
689 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
690 		c = '+';
691 		if (class->usage_mask & lock_flag(bit))
692 			c = '?';
693 	} else if (class->usage_mask & lock_flag(bit))
694 		c = '-';
695 
696 	return c;
697 }
698 
699 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
700 {
701 	int i = 0;
702 
703 #define LOCKDEP_STATE(__STATE) 						\
704 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
705 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
706 #include "lockdep_states.h"
707 #undef LOCKDEP_STATE
708 
709 	usage[i] = '\0';
710 }
711 
712 static void __print_lock_name(struct lock_class *class)
713 {
714 	char str[KSYM_NAME_LEN];
715 	const char *name;
716 
717 	name = class->name;
718 	if (!name) {
719 		name = __get_key_name(class->key, str);
720 		printk(KERN_CONT "%s", name);
721 	} else {
722 		printk(KERN_CONT "%s", name);
723 		if (class->name_version > 1)
724 			printk(KERN_CONT "#%d", class->name_version);
725 		if (class->subclass)
726 			printk(KERN_CONT "/%d", class->subclass);
727 	}
728 }
729 
730 static void print_lock_name(struct lock_class *class)
731 {
732 	char usage[LOCK_USAGE_CHARS];
733 
734 	get_usage_chars(class, usage);
735 
736 	printk(KERN_CONT " (");
737 	__print_lock_name(class);
738 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
739 			class->wait_type_outer ?: class->wait_type_inner,
740 			class->wait_type_inner);
741 }
742 
743 static void print_lockdep_cache(struct lockdep_map *lock)
744 {
745 	const char *name;
746 	char str[KSYM_NAME_LEN];
747 
748 	name = lock->name;
749 	if (!name)
750 		name = __get_key_name(lock->key->subkeys, str);
751 
752 	printk(KERN_CONT "%s", name);
753 }
754 
755 static void print_lock(struct held_lock *hlock)
756 {
757 	/*
758 	 * We can be called locklessly through debug_show_all_locks() so be
759 	 * extra careful, the hlock might have been released and cleared.
760 	 *
761 	 * If this indeed happens, lets pretend it does not hurt to continue
762 	 * to print the lock unless the hlock class_idx does not point to a
763 	 * registered class. The rationale here is: since we don't attempt
764 	 * to distinguish whether we are in this situation, if it just
765 	 * happened we can't count on class_idx to tell either.
766 	 */
767 	struct lock_class *lock = hlock_class(hlock);
768 
769 	if (!lock) {
770 		printk(KERN_CONT "<RELEASED>\n");
771 		return;
772 	}
773 
774 	printk(KERN_CONT "%px", hlock->instance);
775 	print_lock_name(lock);
776 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
777 }
778 
779 static void lockdep_print_held_locks(struct task_struct *p)
780 {
781 	int i, depth = READ_ONCE(p->lockdep_depth);
782 
783 	if (!depth)
784 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
785 	else
786 		printk("%d lock%s held by %s/%d:\n", depth,
787 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
788 	/*
789 	 * It's not reliable to print a task's held locks if it's not sleeping
790 	 * and it's not the current task.
791 	 */
792 	if (p != current && task_is_running(p))
793 		return;
794 	for (i = 0; i < depth; i++) {
795 		printk(" #%d: ", i);
796 		print_lock(p->held_locks + i);
797 	}
798 }
799 
800 static void print_kernel_ident(void)
801 {
802 	printk("%s %.*s %s\n", init_utsname()->release,
803 		(int)strcspn(init_utsname()->version, " "),
804 		init_utsname()->version,
805 		print_tainted());
806 }
807 
808 static int very_verbose(struct lock_class *class)
809 {
810 #if VERY_VERBOSE
811 	return class_filter(class);
812 #endif
813 	return 0;
814 }
815 
816 /*
817  * Is this the address of a static object:
818  */
819 #ifdef __KERNEL__
820 /*
821  * Check if an address is part of freed initmem. After initmem is freed,
822  * memory can be allocated from it, and such allocations would then have
823  * addresses within the range [_stext, _end].
824  */
825 #ifndef arch_is_kernel_initmem_freed
826 static int arch_is_kernel_initmem_freed(unsigned long addr)
827 {
828 	if (system_state < SYSTEM_FREEING_INITMEM)
829 		return 0;
830 
831 	return init_section_contains((void *)addr, 1);
832 }
833 #endif
834 
835 static int static_obj(const void *obj)
836 {
837 	unsigned long start = (unsigned long) &_stext,
838 		      end   = (unsigned long) &_end,
839 		      addr  = (unsigned long) obj;
840 
841 	if (arch_is_kernel_initmem_freed(addr))
842 		return 0;
843 
844 	/*
845 	 * static variable?
846 	 */
847 	if ((addr >= start) && (addr < end))
848 		return 1;
849 
850 	/*
851 	 * in-kernel percpu var?
852 	 */
853 	if (is_kernel_percpu_address(addr))
854 		return 1;
855 
856 	/*
857 	 * module static or percpu var?
858 	 */
859 	return is_module_address(addr) || is_module_percpu_address(addr);
860 }
861 #endif
862 
863 /*
864  * To make lock name printouts unique, we calculate a unique
865  * class->name_version generation counter. The caller must hold the graph
866  * lock.
867  */
868 static int count_matching_names(struct lock_class *new_class)
869 {
870 	struct lock_class *class;
871 	int count = 0;
872 
873 	if (!new_class->name)
874 		return 0;
875 
876 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
877 		if (new_class->key - new_class->subclass == class->key)
878 			return class->name_version;
879 		if (class->name && !strcmp(class->name, new_class->name))
880 			count = max(count, class->name_version);
881 	}
882 
883 	return count + 1;
884 }
885 
886 /* used from NMI context -- must be lockless */
887 static noinstr struct lock_class *
888 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
889 {
890 	struct lockdep_subclass_key *key;
891 	struct hlist_head *hash_head;
892 	struct lock_class *class;
893 
894 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
895 		instrumentation_begin();
896 		debug_locks_off();
897 		printk(KERN_ERR
898 			"BUG: looking up invalid subclass: %u\n", subclass);
899 		printk(KERN_ERR
900 			"turning off the locking correctness validator.\n");
901 		dump_stack();
902 		instrumentation_end();
903 		return NULL;
904 	}
905 
906 	/*
907 	 * If it is not initialised then it has never been locked,
908 	 * so it won't be present in the hash table.
909 	 */
910 	if (unlikely(!lock->key))
911 		return NULL;
912 
913 	/*
914 	 * NOTE: the class-key must be unique. For dynamic locks, a static
915 	 * lock_class_key variable is passed in through the mutex_init()
916 	 * (or spin_lock_init()) call - which acts as the key. For static
917 	 * locks we use the lock object itself as the key.
918 	 */
919 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
920 			sizeof(struct lockdep_map));
921 
922 	key = lock->key->subkeys + subclass;
923 
924 	hash_head = classhashentry(key);
925 
926 	/*
927 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
928 	 */
929 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
930 		return NULL;
931 
932 	hlist_for_each_entry_rcu_notrace(class, hash_head, hash_entry) {
933 		if (class->key == key) {
934 			/*
935 			 * Huh! same key, different name? Did someone trample
936 			 * on some memory? We're most confused.
937 			 */
938 			WARN_ONCE(class->name != lock->name &&
939 				  lock->key != &__lockdep_no_validate__,
940 				  "Looking for class \"%s\" with key %ps, but found a different class \"%s\" with the same key\n",
941 				  lock->name, lock->key, class->name);
942 			return class;
943 		}
944 	}
945 
946 	return NULL;
947 }
948 
949 /*
950  * Static locks do not have their class-keys yet - for them the key is
951  * the lock object itself. If the lock is in the per cpu area, the
952  * canonical address of the lock (per cpu offset removed) is used.
953  */
954 static bool assign_lock_key(struct lockdep_map *lock)
955 {
956 	unsigned long can_addr, addr = (unsigned long)lock;
957 
958 #ifdef __KERNEL__
959 	/*
960 	 * lockdep_free_key_range() assumes that struct lock_class_key
961 	 * objects do not overlap. Since we use the address of lock
962 	 * objects as class key for static objects, check whether the
963 	 * size of lock_class_key objects does not exceed the size of
964 	 * the smallest lock object.
965 	 */
966 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
967 #endif
968 
969 	if (__is_kernel_percpu_address(addr, &can_addr))
970 		lock->key = (void *)can_addr;
971 	else if (__is_module_percpu_address(addr, &can_addr))
972 		lock->key = (void *)can_addr;
973 	else if (static_obj(lock))
974 		lock->key = (void *)lock;
975 	else {
976 		/* Debug-check: all keys must be persistent! */
977 		debug_locks_off();
978 		pr_err("INFO: trying to register non-static key.\n");
979 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
980 		pr_err("you didn't initialize this object before use?\n");
981 		pr_err("turning off the locking correctness validator.\n");
982 		dump_stack();
983 		return false;
984 	}
985 
986 	return true;
987 }
988 
989 #ifdef CONFIG_DEBUG_LOCKDEP
990 
991 /* Check whether element @e occurs in list @h */
992 static bool in_list(struct list_head *e, struct list_head *h)
993 {
994 	struct list_head *f;
995 
996 	list_for_each(f, h) {
997 		if (e == f)
998 			return true;
999 	}
1000 
1001 	return false;
1002 }
1003 
1004 /*
1005  * Check whether entry @e occurs in any of the locks_after or locks_before
1006  * lists.
1007  */
1008 static bool in_any_class_list(struct list_head *e)
1009 {
1010 	struct lock_class *class;
1011 	int i;
1012 
1013 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1014 		class = &lock_classes[i];
1015 		if (in_list(e, &class->locks_after) ||
1016 		    in_list(e, &class->locks_before))
1017 			return true;
1018 	}
1019 	return false;
1020 }
1021 
1022 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
1023 {
1024 	struct lock_list *e;
1025 
1026 	list_for_each_entry(e, h, entry) {
1027 		if (e->links_to != c) {
1028 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
1029 			       c->name ? : "(?)",
1030 			       (unsigned long)(e - list_entries),
1031 			       e->links_to && e->links_to->name ?
1032 			       e->links_to->name : "(?)",
1033 			       e->class && e->class->name ? e->class->name :
1034 			       "(?)");
1035 			return false;
1036 		}
1037 	}
1038 	return true;
1039 }
1040 
1041 #ifdef CONFIG_PROVE_LOCKING
1042 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1043 #endif
1044 
1045 static bool check_lock_chain_key(struct lock_chain *chain)
1046 {
1047 #ifdef CONFIG_PROVE_LOCKING
1048 	u64 chain_key = INITIAL_CHAIN_KEY;
1049 	int i;
1050 
1051 	for (i = chain->base; i < chain->base + chain->depth; i++)
1052 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1053 	/*
1054 	 * The 'unsigned long long' casts avoid that a compiler warning
1055 	 * is reported when building tools/lib/lockdep.
1056 	 */
1057 	if (chain->chain_key != chain_key) {
1058 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1059 		       (unsigned long long)(chain - lock_chains),
1060 		       (unsigned long long)chain->chain_key,
1061 		       (unsigned long long)chain_key);
1062 		return false;
1063 	}
1064 #endif
1065 	return true;
1066 }
1067 
1068 static bool in_any_zapped_class_list(struct lock_class *class)
1069 {
1070 	struct pending_free *pf;
1071 	int i;
1072 
1073 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1074 		if (in_list(&class->lock_entry, &pf->zapped))
1075 			return true;
1076 	}
1077 
1078 	return false;
1079 }
1080 
1081 static bool __check_data_structures(void)
1082 {
1083 	struct lock_class *class;
1084 	struct lock_chain *chain;
1085 	struct hlist_head *head;
1086 	struct lock_list *e;
1087 	int i;
1088 
1089 	/* Check whether all classes occur in a lock list. */
1090 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1091 		class = &lock_classes[i];
1092 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1093 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1094 		    !in_any_zapped_class_list(class)) {
1095 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1096 			       class, class->name ? : "(?)");
1097 			return false;
1098 		}
1099 	}
1100 
1101 	/* Check whether all classes have valid lock lists. */
1102 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1103 		class = &lock_classes[i];
1104 		if (!class_lock_list_valid(class, &class->locks_before))
1105 			return false;
1106 		if (!class_lock_list_valid(class, &class->locks_after))
1107 			return false;
1108 	}
1109 
1110 	/* Check the chain_key of all lock chains. */
1111 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1112 		head = chainhash_table + i;
1113 		hlist_for_each_entry_rcu(chain, head, entry) {
1114 			if (!check_lock_chain_key(chain))
1115 				return false;
1116 		}
1117 	}
1118 
1119 	/*
1120 	 * Check whether all list entries that are in use occur in a class
1121 	 * lock list.
1122 	 */
1123 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1124 		e = list_entries + i;
1125 		if (!in_any_class_list(&e->entry)) {
1126 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1127 			       (unsigned int)(e - list_entries),
1128 			       e->class->name ? : "(?)",
1129 			       e->links_to->name ? : "(?)");
1130 			return false;
1131 		}
1132 	}
1133 
1134 	/*
1135 	 * Check whether all list entries that are not in use do not occur in
1136 	 * a class lock list.
1137 	 */
1138 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1139 		e = list_entries + i;
1140 		if (in_any_class_list(&e->entry)) {
1141 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1142 			       (unsigned int)(e - list_entries),
1143 			       e->class && e->class->name ? e->class->name :
1144 			       "(?)",
1145 			       e->links_to && e->links_to->name ?
1146 			       e->links_to->name : "(?)");
1147 			return false;
1148 		}
1149 	}
1150 
1151 	return true;
1152 }
1153 
1154 int check_consistency = 0;
1155 module_param(check_consistency, int, 0644);
1156 
1157 static void check_data_structures(void)
1158 {
1159 	static bool once = false;
1160 
1161 	if (check_consistency && !once) {
1162 		if (!__check_data_structures()) {
1163 			once = true;
1164 			WARN_ON(once);
1165 		}
1166 	}
1167 }
1168 
1169 #else /* CONFIG_DEBUG_LOCKDEP */
1170 
1171 static inline void check_data_structures(void) { }
1172 
1173 #endif /* CONFIG_DEBUG_LOCKDEP */
1174 
1175 static void init_chain_block_buckets(void);
1176 
1177 /*
1178  * Initialize the lock_classes[] array elements, the free_lock_classes list
1179  * and also the delayed_free structure.
1180  */
1181 static void init_data_structures_once(void)
1182 {
1183 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1184 	int i;
1185 
1186 	if (likely(rcu_head_initialized))
1187 		return;
1188 
1189 	if (system_state >= SYSTEM_SCHEDULING) {
1190 		init_rcu_head(&delayed_free.rcu_head);
1191 		rcu_head_initialized = true;
1192 	}
1193 
1194 	if (ds_initialized)
1195 		return;
1196 
1197 	ds_initialized = true;
1198 
1199 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1200 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1201 
1202 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1203 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1204 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1205 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1206 	}
1207 	init_chain_block_buckets();
1208 }
1209 
1210 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1211 {
1212 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1213 
1214 	return lock_keys_hash + hash;
1215 }
1216 
1217 /* Register a dynamically allocated key. */
1218 void lockdep_register_key(struct lock_class_key *key)
1219 {
1220 	struct hlist_head *hash_head;
1221 	struct lock_class_key *k;
1222 	unsigned long flags;
1223 
1224 	if (WARN_ON_ONCE(static_obj(key)))
1225 		return;
1226 	hash_head = keyhashentry(key);
1227 
1228 	raw_local_irq_save(flags);
1229 	if (!graph_lock())
1230 		goto restore_irqs;
1231 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1232 		if (WARN_ON_ONCE(k == key))
1233 			goto out_unlock;
1234 	}
1235 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1236 out_unlock:
1237 	graph_unlock();
1238 restore_irqs:
1239 	raw_local_irq_restore(flags);
1240 }
1241 EXPORT_SYMBOL_GPL(lockdep_register_key);
1242 
1243 /* Check whether a key has been registered as a dynamic key. */
1244 static bool is_dynamic_key(const struct lock_class_key *key)
1245 {
1246 	struct hlist_head *hash_head;
1247 	struct lock_class_key *k;
1248 	bool found = false;
1249 
1250 	if (WARN_ON_ONCE(static_obj(key)))
1251 		return false;
1252 
1253 	/*
1254 	 * If lock debugging is disabled lock_keys_hash[] may contain
1255 	 * pointers to memory that has already been freed. Avoid triggering
1256 	 * a use-after-free in that case by returning early.
1257 	 */
1258 	if (!debug_locks)
1259 		return true;
1260 
1261 	hash_head = keyhashentry(key);
1262 
1263 	rcu_read_lock();
1264 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1265 		if (k == key) {
1266 			found = true;
1267 			break;
1268 		}
1269 	}
1270 	rcu_read_unlock();
1271 
1272 	return found;
1273 }
1274 
1275 /*
1276  * Register a lock's class in the hash-table, if the class is not present
1277  * yet. Otherwise we look it up. We cache the result in the lock object
1278  * itself, so actual lookup of the hash should be once per lock object.
1279  */
1280 static struct lock_class *
1281 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1282 {
1283 	struct lockdep_subclass_key *key;
1284 	struct hlist_head *hash_head;
1285 	struct lock_class *class;
1286 	int idx;
1287 
1288 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1289 
1290 	class = look_up_lock_class(lock, subclass);
1291 	if (likely(class))
1292 		goto out_set_class_cache;
1293 
1294 	if (!lock->key) {
1295 		if (!assign_lock_key(lock))
1296 			return NULL;
1297 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1298 		return NULL;
1299 	}
1300 
1301 	key = lock->key->subkeys + subclass;
1302 	hash_head = classhashentry(key);
1303 
1304 	if (!graph_lock()) {
1305 		return NULL;
1306 	}
1307 	/*
1308 	 * We have to do the hash-walk again, to avoid races
1309 	 * with another CPU:
1310 	 */
1311 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1312 		if (class->key == key)
1313 			goto out_unlock_set;
1314 	}
1315 
1316 	init_data_structures_once();
1317 
1318 	/* Allocate a new lock class and add it to the hash. */
1319 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1320 					 lock_entry);
1321 	if (!class) {
1322 		if (!debug_locks_off_graph_unlock()) {
1323 			return NULL;
1324 		}
1325 
1326 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1327 		dump_stack();
1328 		return NULL;
1329 	}
1330 	nr_lock_classes++;
1331 	__set_bit(class - lock_classes, lock_classes_in_use);
1332 	debug_atomic_inc(nr_unused_locks);
1333 	class->key = key;
1334 	class->name = lock->name;
1335 	class->subclass = subclass;
1336 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1337 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1338 	class->name_version = count_matching_names(class);
1339 	class->wait_type_inner = lock->wait_type_inner;
1340 	class->wait_type_outer = lock->wait_type_outer;
1341 	class->lock_type = lock->lock_type;
1342 	/*
1343 	 * We use RCU's safe list-add method to make
1344 	 * parallel walking of the hash-list safe:
1345 	 */
1346 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1347 	/*
1348 	 * Remove the class from the free list and add it to the global list
1349 	 * of classes.
1350 	 */
1351 	list_move_tail(&class->lock_entry, &all_lock_classes);
1352 	idx = class - lock_classes;
1353 	if (idx > max_lock_class_idx)
1354 		max_lock_class_idx = idx;
1355 
1356 	if (verbose(class)) {
1357 		graph_unlock();
1358 
1359 		printk("\nnew class %px: %s", class->key, class->name);
1360 		if (class->name_version > 1)
1361 			printk(KERN_CONT "#%d", class->name_version);
1362 		printk(KERN_CONT "\n");
1363 		dump_stack();
1364 
1365 		if (!graph_lock()) {
1366 			return NULL;
1367 		}
1368 	}
1369 out_unlock_set:
1370 	graph_unlock();
1371 
1372 out_set_class_cache:
1373 	if (!subclass || force)
1374 		lock->class_cache[0] = class;
1375 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1376 		lock->class_cache[subclass] = class;
1377 
1378 	/*
1379 	 * Hash collision, did we smoke some? We found a class with a matching
1380 	 * hash but the subclass -- which is hashed in -- didn't match.
1381 	 */
1382 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1383 		return NULL;
1384 
1385 	return class;
1386 }
1387 
1388 #ifdef CONFIG_PROVE_LOCKING
1389 /*
1390  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1391  * with NULL on failure)
1392  */
1393 static struct lock_list *alloc_list_entry(void)
1394 {
1395 	int idx = find_first_zero_bit(list_entries_in_use,
1396 				      ARRAY_SIZE(list_entries));
1397 
1398 	if (idx >= ARRAY_SIZE(list_entries)) {
1399 		if (!debug_locks_off_graph_unlock())
1400 			return NULL;
1401 
1402 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1403 		dump_stack();
1404 		return NULL;
1405 	}
1406 	nr_list_entries++;
1407 	__set_bit(idx, list_entries_in_use);
1408 	return list_entries + idx;
1409 }
1410 
1411 /*
1412  * Add a new dependency to the head of the list:
1413  */
1414 static int add_lock_to_list(struct lock_class *this,
1415 			    struct lock_class *links_to, struct list_head *head,
1416 			    u16 distance, u8 dep,
1417 			    const struct lock_trace *trace)
1418 {
1419 	struct lock_list *entry;
1420 	/*
1421 	 * Lock not present yet - get a new dependency struct and
1422 	 * add it to the list:
1423 	 */
1424 	entry = alloc_list_entry();
1425 	if (!entry)
1426 		return 0;
1427 
1428 	entry->class = this;
1429 	entry->links_to = links_to;
1430 	entry->dep = dep;
1431 	entry->distance = distance;
1432 	entry->trace = trace;
1433 	/*
1434 	 * Both allocation and removal are done under the graph lock; but
1435 	 * iteration is under RCU-sched; see look_up_lock_class() and
1436 	 * lockdep_free_key_range().
1437 	 */
1438 	list_add_tail_rcu(&entry->entry, head);
1439 
1440 	return 1;
1441 }
1442 
1443 /*
1444  * For good efficiency of modular, we use power of 2
1445  */
1446 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1447 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1448 
1449 /*
1450  * The circular_queue and helpers are used to implement graph
1451  * breadth-first search (BFS) algorithm, by which we can determine
1452  * whether there is a path from a lock to another. In deadlock checks,
1453  * a path from the next lock to be acquired to a previous held lock
1454  * indicates that adding the <prev> -> <next> lock dependency will
1455  * produce a circle in the graph. Breadth-first search instead of
1456  * depth-first search is used in order to find the shortest (circular)
1457  * path.
1458  */
1459 struct circular_queue {
1460 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1461 	unsigned int  front, rear;
1462 };
1463 
1464 static struct circular_queue lock_cq;
1465 
1466 unsigned int max_bfs_queue_depth;
1467 
1468 static unsigned int lockdep_dependency_gen_id;
1469 
1470 static inline void __cq_init(struct circular_queue *cq)
1471 {
1472 	cq->front = cq->rear = 0;
1473 	lockdep_dependency_gen_id++;
1474 }
1475 
1476 static inline int __cq_empty(struct circular_queue *cq)
1477 {
1478 	return (cq->front == cq->rear);
1479 }
1480 
1481 static inline int __cq_full(struct circular_queue *cq)
1482 {
1483 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1484 }
1485 
1486 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1487 {
1488 	if (__cq_full(cq))
1489 		return -1;
1490 
1491 	cq->element[cq->rear] = elem;
1492 	cq->rear = (cq->rear + 1) & CQ_MASK;
1493 	return 0;
1494 }
1495 
1496 /*
1497  * Dequeue an element from the circular_queue, return a lock_list if
1498  * the queue is not empty, or NULL if otherwise.
1499  */
1500 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1501 {
1502 	struct lock_list * lock;
1503 
1504 	if (__cq_empty(cq))
1505 		return NULL;
1506 
1507 	lock = cq->element[cq->front];
1508 	cq->front = (cq->front + 1) & CQ_MASK;
1509 
1510 	return lock;
1511 }
1512 
1513 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1514 {
1515 	return (cq->rear - cq->front) & CQ_MASK;
1516 }
1517 
1518 static inline void mark_lock_accessed(struct lock_list *lock)
1519 {
1520 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1521 }
1522 
1523 static inline void visit_lock_entry(struct lock_list *lock,
1524 				    struct lock_list *parent)
1525 {
1526 	lock->parent = parent;
1527 }
1528 
1529 static inline unsigned long lock_accessed(struct lock_list *lock)
1530 {
1531 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1532 }
1533 
1534 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1535 {
1536 	return child->parent;
1537 }
1538 
1539 static inline int get_lock_depth(struct lock_list *child)
1540 {
1541 	int depth = 0;
1542 	struct lock_list *parent;
1543 
1544 	while ((parent = get_lock_parent(child))) {
1545 		child = parent;
1546 		depth++;
1547 	}
1548 	return depth;
1549 }
1550 
1551 /*
1552  * Return the forward or backward dependency list.
1553  *
1554  * @lock:   the lock_list to get its class's dependency list
1555  * @offset: the offset to struct lock_class to determine whether it is
1556  *          locks_after or locks_before
1557  */
1558 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1559 {
1560 	void *lock_class = lock->class;
1561 
1562 	return lock_class + offset;
1563 }
1564 /*
1565  * Return values of a bfs search:
1566  *
1567  * BFS_E* indicates an error
1568  * BFS_R* indicates a result (match or not)
1569  *
1570  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1571  *
1572  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1573  *
1574  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1575  *             *@target_entry.
1576  *
1577  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1578  *               _unchanged_.
1579  */
1580 enum bfs_result {
1581 	BFS_EINVALIDNODE = -2,
1582 	BFS_EQUEUEFULL = -1,
1583 	BFS_RMATCH = 0,
1584 	BFS_RNOMATCH = 1,
1585 };
1586 
1587 /*
1588  * bfs_result < 0 means error
1589  */
1590 static inline bool bfs_error(enum bfs_result res)
1591 {
1592 	return res < 0;
1593 }
1594 
1595 /*
1596  * DEP_*_BIT in lock_list::dep
1597  *
1598  * For dependency @prev -> @next:
1599  *
1600  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1601  *       (->read == 2)
1602  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1603  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1604  *   EN: @prev is exclusive locker and @next is non-recursive locker
1605  *
1606  * Note that we define the value of DEP_*_BITs so that:
1607  *   bit0 is prev->read == 0
1608  *   bit1 is next->read != 2
1609  */
1610 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1611 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1612 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1613 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1614 
1615 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1616 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1617 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1618 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1619 
1620 static inline unsigned int
1621 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1622 {
1623 	return (prev->read == 0) + ((next->read != 2) << 1);
1624 }
1625 
1626 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1627 {
1628 	return 1U << __calc_dep_bit(prev, next);
1629 }
1630 
1631 /*
1632  * calculate the dep_bit for backwards edges. We care about whether @prev is
1633  * shared and whether @next is recursive.
1634  */
1635 static inline unsigned int
1636 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1637 {
1638 	return (next->read != 2) + ((prev->read == 0) << 1);
1639 }
1640 
1641 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1642 {
1643 	return 1U << __calc_dep_bitb(prev, next);
1644 }
1645 
1646 /*
1647  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1648  * search.
1649  */
1650 static inline void __bfs_init_root(struct lock_list *lock,
1651 				   struct lock_class *class)
1652 {
1653 	lock->class = class;
1654 	lock->parent = NULL;
1655 	lock->only_xr = 0;
1656 }
1657 
1658 /*
1659  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1660  * root for a BFS search.
1661  *
1662  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1663  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1664  * and -(S*)->.
1665  */
1666 static inline void bfs_init_root(struct lock_list *lock,
1667 				 struct held_lock *hlock)
1668 {
1669 	__bfs_init_root(lock, hlock_class(hlock));
1670 	lock->only_xr = (hlock->read == 2);
1671 }
1672 
1673 /*
1674  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1675  *
1676  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1677  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1678  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1679  */
1680 static inline void bfs_init_rootb(struct lock_list *lock,
1681 				  struct held_lock *hlock)
1682 {
1683 	__bfs_init_root(lock, hlock_class(hlock));
1684 	lock->only_xr = (hlock->read != 0);
1685 }
1686 
1687 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1688 {
1689 	if (!lock || !lock->parent)
1690 		return NULL;
1691 
1692 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1693 				     &lock->entry, struct lock_list, entry);
1694 }
1695 
1696 /*
1697  * Breadth-First Search to find a strong path in the dependency graph.
1698  *
1699  * @source_entry: the source of the path we are searching for.
1700  * @data: data used for the second parameter of @match function
1701  * @match: match function for the search
1702  * @target_entry: pointer to the target of a matched path
1703  * @offset: the offset to struct lock_class to determine whether it is
1704  *          locks_after or locks_before
1705  *
1706  * We may have multiple edges (considering different kinds of dependencies,
1707  * e.g. ER and SN) between two nodes in the dependency graph. But
1708  * only the strong dependency path in the graph is relevant to deadlocks. A
1709  * strong dependency path is a dependency path that doesn't have two adjacent
1710  * dependencies as -(*R)-> -(S*)->, please see:
1711  *
1712  *         Documentation/locking/lockdep-design.rst
1713  *
1714  * for more explanation of the definition of strong dependency paths
1715  *
1716  * In __bfs(), we only traverse in the strong dependency path:
1717  *
1718  *     In lock_list::only_xr, we record whether the previous dependency only
1719  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1720  *     filter out any -(S*)-> in the current dependency and after that, the
1721  *     ->only_xr is set according to whether we only have -(*R)-> left.
1722  */
1723 static enum bfs_result __bfs(struct lock_list *source_entry,
1724 			     void *data,
1725 			     bool (*match)(struct lock_list *entry, void *data),
1726 			     bool (*skip)(struct lock_list *entry, void *data),
1727 			     struct lock_list **target_entry,
1728 			     int offset)
1729 {
1730 	struct circular_queue *cq = &lock_cq;
1731 	struct lock_list *lock = NULL;
1732 	struct lock_list *entry;
1733 	struct list_head *head;
1734 	unsigned int cq_depth;
1735 	bool first;
1736 
1737 	lockdep_assert_locked();
1738 
1739 	__cq_init(cq);
1740 	__cq_enqueue(cq, source_entry);
1741 
1742 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1743 		if (!lock->class)
1744 			return BFS_EINVALIDNODE;
1745 
1746 		/*
1747 		 * Step 1: check whether we already finish on this one.
1748 		 *
1749 		 * If we have visited all the dependencies from this @lock to
1750 		 * others (iow, if we have visited all lock_list entries in
1751 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1752 		 * and visit all the dependencies in the list and mark this
1753 		 * list accessed.
1754 		 */
1755 		if (lock_accessed(lock))
1756 			continue;
1757 		else
1758 			mark_lock_accessed(lock);
1759 
1760 		/*
1761 		 * Step 2: check whether prev dependency and this form a strong
1762 		 *         dependency path.
1763 		 */
1764 		if (lock->parent) { /* Parent exists, check prev dependency */
1765 			u8 dep = lock->dep;
1766 			bool prev_only_xr = lock->parent->only_xr;
1767 
1768 			/*
1769 			 * Mask out all -(S*)-> if we only have *R in previous
1770 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1771 			 * dependency.
1772 			 */
1773 			if (prev_only_xr)
1774 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1775 
1776 			/* If nothing left, we skip */
1777 			if (!dep)
1778 				continue;
1779 
1780 			/* If there are only -(*R)-> left, set that for the next step */
1781 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1782 		}
1783 
1784 		/*
1785 		 * Step 3: we haven't visited this and there is a strong
1786 		 *         dependency path to this, so check with @match.
1787 		 *         If @skip is provide and returns true, we skip this
1788 		 *         lock (and any path this lock is in).
1789 		 */
1790 		if (skip && skip(lock, data))
1791 			continue;
1792 
1793 		if (match(lock, data)) {
1794 			*target_entry = lock;
1795 			return BFS_RMATCH;
1796 		}
1797 
1798 		/*
1799 		 * Step 4: if not match, expand the path by adding the
1800 		 *         forward or backwards dependencies in the search
1801 		 *
1802 		 */
1803 		first = true;
1804 		head = get_dep_list(lock, offset);
1805 		list_for_each_entry_rcu(entry, head, entry) {
1806 			visit_lock_entry(entry, lock);
1807 
1808 			/*
1809 			 * Note we only enqueue the first of the list into the
1810 			 * queue, because we can always find a sibling
1811 			 * dependency from one (see __bfs_next()), as a result
1812 			 * the space of queue is saved.
1813 			 */
1814 			if (!first)
1815 				continue;
1816 
1817 			first = false;
1818 
1819 			if (__cq_enqueue(cq, entry))
1820 				return BFS_EQUEUEFULL;
1821 
1822 			cq_depth = __cq_get_elem_count(cq);
1823 			if (max_bfs_queue_depth < cq_depth)
1824 				max_bfs_queue_depth = cq_depth;
1825 		}
1826 	}
1827 
1828 	return BFS_RNOMATCH;
1829 }
1830 
1831 static inline enum bfs_result
1832 __bfs_forwards(struct lock_list *src_entry,
1833 	       void *data,
1834 	       bool (*match)(struct lock_list *entry, void *data),
1835 	       bool (*skip)(struct lock_list *entry, void *data),
1836 	       struct lock_list **target_entry)
1837 {
1838 	return __bfs(src_entry, data, match, skip, target_entry,
1839 		     offsetof(struct lock_class, locks_after));
1840 
1841 }
1842 
1843 static inline enum bfs_result
1844 __bfs_backwards(struct lock_list *src_entry,
1845 		void *data,
1846 		bool (*match)(struct lock_list *entry, void *data),
1847 	       bool (*skip)(struct lock_list *entry, void *data),
1848 		struct lock_list **target_entry)
1849 {
1850 	return __bfs(src_entry, data, match, skip, target_entry,
1851 		     offsetof(struct lock_class, locks_before));
1852 
1853 }
1854 
1855 static void print_lock_trace(const struct lock_trace *trace,
1856 			     unsigned int spaces)
1857 {
1858 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1859 }
1860 
1861 /*
1862  * Print a dependency chain entry (this is only done when a deadlock
1863  * has been detected):
1864  */
1865 static noinline void
1866 print_circular_bug_entry(struct lock_list *target, int depth)
1867 {
1868 	if (debug_locks_silent)
1869 		return;
1870 	printk("\n-> #%u", depth);
1871 	print_lock_name(target->class);
1872 	printk(KERN_CONT ":\n");
1873 	print_lock_trace(target->trace, 6);
1874 }
1875 
1876 static void
1877 print_circular_lock_scenario(struct held_lock *src,
1878 			     struct held_lock *tgt,
1879 			     struct lock_list *prt)
1880 {
1881 	struct lock_class *source = hlock_class(src);
1882 	struct lock_class *target = hlock_class(tgt);
1883 	struct lock_class *parent = prt->class;
1884 
1885 	/*
1886 	 * A direct locking problem where unsafe_class lock is taken
1887 	 * directly by safe_class lock, then all we need to show
1888 	 * is the deadlock scenario, as it is obvious that the
1889 	 * unsafe lock is taken under the safe lock.
1890 	 *
1891 	 * But if there is a chain instead, where the safe lock takes
1892 	 * an intermediate lock (middle_class) where this lock is
1893 	 * not the same as the safe lock, then the lock chain is
1894 	 * used to describe the problem. Otherwise we would need
1895 	 * to show a different CPU case for each link in the chain
1896 	 * from the safe_class lock to the unsafe_class lock.
1897 	 */
1898 	if (parent != source) {
1899 		printk("Chain exists of:\n  ");
1900 		__print_lock_name(source);
1901 		printk(KERN_CONT " --> ");
1902 		__print_lock_name(parent);
1903 		printk(KERN_CONT " --> ");
1904 		__print_lock_name(target);
1905 		printk(KERN_CONT "\n\n");
1906 	}
1907 
1908 	printk(" Possible unsafe locking scenario:\n\n");
1909 	printk("       CPU0                    CPU1\n");
1910 	printk("       ----                    ----\n");
1911 	printk("  lock(");
1912 	__print_lock_name(target);
1913 	printk(KERN_CONT ");\n");
1914 	printk("                               lock(");
1915 	__print_lock_name(parent);
1916 	printk(KERN_CONT ");\n");
1917 	printk("                               lock(");
1918 	__print_lock_name(target);
1919 	printk(KERN_CONT ");\n");
1920 	printk("  lock(");
1921 	__print_lock_name(source);
1922 	printk(KERN_CONT ");\n");
1923 	printk("\n *** DEADLOCK ***\n\n");
1924 }
1925 
1926 /*
1927  * When a circular dependency is detected, print the
1928  * header first:
1929  */
1930 static noinline void
1931 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1932 			struct held_lock *check_src,
1933 			struct held_lock *check_tgt)
1934 {
1935 	struct task_struct *curr = current;
1936 
1937 	if (debug_locks_silent)
1938 		return;
1939 
1940 	pr_warn("\n");
1941 	pr_warn("======================================================\n");
1942 	pr_warn("WARNING: possible circular locking dependency detected\n");
1943 	print_kernel_ident();
1944 	pr_warn("------------------------------------------------------\n");
1945 	pr_warn("%s/%d is trying to acquire lock:\n",
1946 		curr->comm, task_pid_nr(curr));
1947 	print_lock(check_src);
1948 
1949 	pr_warn("\nbut task is already holding lock:\n");
1950 
1951 	print_lock(check_tgt);
1952 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1953 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1954 
1955 	print_circular_bug_entry(entry, depth);
1956 }
1957 
1958 /*
1959  * We are about to add A -> B into the dependency graph, and in __bfs() a
1960  * strong dependency path A -> .. -> B is found: hlock_class equals
1961  * entry->class.
1962  *
1963  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1964  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1965  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1966  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1967  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1968  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1969  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1970  *
1971  * We need to make sure both the start and the end of A -> .. -> B is not
1972  * weaker than A -> B. For the start part, please see the comment in
1973  * check_redundant(). For the end part, we need:
1974  *
1975  * Either
1976  *
1977  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1978  *
1979  * or
1980  *
1981  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1982  *
1983  */
1984 static inline bool hlock_equal(struct lock_list *entry, void *data)
1985 {
1986 	struct held_lock *hlock = (struct held_lock *)data;
1987 
1988 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1989 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1990 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1991 }
1992 
1993 /*
1994  * We are about to add B -> A into the dependency graph, and in __bfs() a
1995  * strong dependency path A -> .. -> B is found: hlock_class equals
1996  * entry->class.
1997  *
1998  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1999  * dependency cycle, that means:
2000  *
2001  * Either
2002  *
2003  *     a) B -> A is -(E*)->
2004  *
2005  * or
2006  *
2007  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
2008  *
2009  * as then we don't have -(*R)-> -(S*)-> in the cycle.
2010  */
2011 static inline bool hlock_conflict(struct lock_list *entry, void *data)
2012 {
2013 	struct held_lock *hlock = (struct held_lock *)data;
2014 
2015 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
2016 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
2017 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
2018 }
2019 
2020 static noinline void print_circular_bug(struct lock_list *this,
2021 				struct lock_list *target,
2022 				struct held_lock *check_src,
2023 				struct held_lock *check_tgt)
2024 {
2025 	struct task_struct *curr = current;
2026 	struct lock_list *parent;
2027 	struct lock_list *first_parent;
2028 	int depth;
2029 
2030 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2031 		return;
2032 
2033 	this->trace = save_trace();
2034 	if (!this->trace)
2035 		return;
2036 
2037 	depth = get_lock_depth(target);
2038 
2039 	print_circular_bug_header(target, depth, check_src, check_tgt);
2040 
2041 	parent = get_lock_parent(target);
2042 	first_parent = parent;
2043 
2044 	while (parent) {
2045 		print_circular_bug_entry(parent, --depth);
2046 		parent = get_lock_parent(parent);
2047 	}
2048 
2049 	printk("\nother info that might help us debug this:\n\n");
2050 	print_circular_lock_scenario(check_src, check_tgt,
2051 				     first_parent);
2052 
2053 	lockdep_print_held_locks(curr);
2054 
2055 	printk("\nstack backtrace:\n");
2056 	dump_stack();
2057 }
2058 
2059 static noinline void print_bfs_bug(int ret)
2060 {
2061 	if (!debug_locks_off_graph_unlock())
2062 		return;
2063 
2064 	/*
2065 	 * Breadth-first-search failed, graph got corrupted?
2066 	 */
2067 	WARN(1, "lockdep bfs error:%d\n", ret);
2068 }
2069 
2070 static bool noop_count(struct lock_list *entry, void *data)
2071 {
2072 	(*(unsigned long *)data)++;
2073 	return false;
2074 }
2075 
2076 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2077 {
2078 	unsigned long  count = 0;
2079 	struct lock_list *target_entry;
2080 
2081 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2082 
2083 	return count;
2084 }
2085 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2086 {
2087 	unsigned long ret, flags;
2088 	struct lock_list this;
2089 
2090 	__bfs_init_root(&this, class);
2091 
2092 	raw_local_irq_save(flags);
2093 	lockdep_lock();
2094 	ret = __lockdep_count_forward_deps(&this);
2095 	lockdep_unlock();
2096 	raw_local_irq_restore(flags);
2097 
2098 	return ret;
2099 }
2100 
2101 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2102 {
2103 	unsigned long  count = 0;
2104 	struct lock_list *target_entry;
2105 
2106 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2107 
2108 	return count;
2109 }
2110 
2111 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2112 {
2113 	unsigned long ret, flags;
2114 	struct lock_list this;
2115 
2116 	__bfs_init_root(&this, class);
2117 
2118 	raw_local_irq_save(flags);
2119 	lockdep_lock();
2120 	ret = __lockdep_count_backward_deps(&this);
2121 	lockdep_unlock();
2122 	raw_local_irq_restore(flags);
2123 
2124 	return ret;
2125 }
2126 
2127 /*
2128  * Check that the dependency graph starting at <src> can lead to
2129  * <target> or not.
2130  */
2131 static noinline enum bfs_result
2132 check_path(struct held_lock *target, struct lock_list *src_entry,
2133 	   bool (*match)(struct lock_list *entry, void *data),
2134 	   bool (*skip)(struct lock_list *entry, void *data),
2135 	   struct lock_list **target_entry)
2136 {
2137 	enum bfs_result ret;
2138 
2139 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2140 
2141 	if (unlikely(bfs_error(ret)))
2142 		print_bfs_bug(ret);
2143 
2144 	return ret;
2145 }
2146 
2147 /*
2148  * Prove that the dependency graph starting at <src> can not
2149  * lead to <target>. If it can, there is a circle when adding
2150  * <target> -> <src> dependency.
2151  *
2152  * Print an error and return BFS_RMATCH if it does.
2153  */
2154 static noinline enum bfs_result
2155 check_noncircular(struct held_lock *src, struct held_lock *target,
2156 		  struct lock_trace **const trace)
2157 {
2158 	enum bfs_result ret;
2159 	struct lock_list *target_entry;
2160 	struct lock_list src_entry;
2161 
2162 	bfs_init_root(&src_entry, src);
2163 
2164 	debug_atomic_inc(nr_cyclic_checks);
2165 
2166 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2167 
2168 	if (unlikely(ret == BFS_RMATCH)) {
2169 		if (!*trace) {
2170 			/*
2171 			 * If save_trace fails here, the printing might
2172 			 * trigger a WARN but because of the !nr_entries it
2173 			 * should not do bad things.
2174 			 */
2175 			*trace = save_trace();
2176 		}
2177 
2178 		print_circular_bug(&src_entry, target_entry, src, target);
2179 	}
2180 
2181 	return ret;
2182 }
2183 
2184 #ifdef CONFIG_TRACE_IRQFLAGS
2185 
2186 /*
2187  * Forwards and backwards subgraph searching, for the purposes of
2188  * proving that two subgraphs can be connected by a new dependency
2189  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2190  *
2191  * A irq safe->unsafe deadlock happens with the following conditions:
2192  *
2193  * 1) We have a strong dependency path A -> ... -> B
2194  *
2195  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2196  *    irq can create a new dependency B -> A (consider the case that a holder
2197  *    of B gets interrupted by an irq whose handler will try to acquire A).
2198  *
2199  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2200  *    strong circle:
2201  *
2202  *      For the usage bits of B:
2203  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2204  *           ENABLED_IRQ usage suffices.
2205  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2206  *           ENABLED_IRQ_*_READ usage suffices.
2207  *
2208  *      For the usage bits of A:
2209  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2210  *           USED_IN_IRQ usage suffices.
2211  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2212  *           USED_IN_IRQ_*_READ usage suffices.
2213  */
2214 
2215 /*
2216  * There is a strong dependency path in the dependency graph: A -> B, and now
2217  * we need to decide which usage bit of A should be accumulated to detect
2218  * safe->unsafe bugs.
2219  *
2220  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2221  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2222  *
2223  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2224  * path, any usage of A should be considered. Otherwise, we should only
2225  * consider _READ usage.
2226  */
2227 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2228 {
2229 	if (!entry->only_xr)
2230 		*(unsigned long *)mask |= entry->class->usage_mask;
2231 	else /* Mask out _READ usage bits */
2232 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2233 
2234 	return false;
2235 }
2236 
2237 /*
2238  * There is a strong dependency path in the dependency graph: A -> B, and now
2239  * we need to decide which usage bit of B conflicts with the usage bits of A,
2240  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2241  *
2242  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2243  * path, any usage of B should be considered. Otherwise, we should only
2244  * consider _READ usage.
2245  */
2246 static inline bool usage_match(struct lock_list *entry, void *mask)
2247 {
2248 	if (!entry->only_xr)
2249 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2250 	else /* Mask out _READ usage bits */
2251 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2252 }
2253 
2254 static inline bool usage_skip(struct lock_list *entry, void *mask)
2255 {
2256 	/*
2257 	 * Skip local_lock() for irq inversion detection.
2258 	 *
2259 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2260 	 * dependency.
2261 	 *
2262 	 * For RT, an irq inversion happens when we have lock A and B, and on
2263 	 * some CPU we can have:
2264 	 *
2265 	 *	lock(A);
2266 	 *	<interrupted>
2267 	 *	  lock(B);
2268 	 *
2269 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2270 	 *
2271 	 * Now we prove local_lock() cannot exist in that dependency. First we
2272 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2273 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2274 	 * wait context check will complain. And since B is not a sleep lock,
2275 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2276 	 * local_lock() is 3, which is greater than 2, therefore there is no
2277 	 * way the local_lock() exists in the dependency B -> ... -> A.
2278 	 *
2279 	 * As a result, we will skip local_lock(), when we search for irq
2280 	 * inversion bugs.
2281 	 */
2282 	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2283 		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2284 			return false;
2285 
2286 		return true;
2287 	}
2288 
2289 	return false;
2290 }
2291 
2292 /*
2293  * Find a node in the forwards-direction dependency sub-graph starting
2294  * at @root->class that matches @bit.
2295  *
2296  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2297  * into *@target_entry.
2298  */
2299 static enum bfs_result
2300 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2301 			struct lock_list **target_entry)
2302 {
2303 	enum bfs_result result;
2304 
2305 	debug_atomic_inc(nr_find_usage_forwards_checks);
2306 
2307 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2308 
2309 	return result;
2310 }
2311 
2312 /*
2313  * Find a node in the backwards-direction dependency sub-graph starting
2314  * at @root->class that matches @bit.
2315  */
2316 static enum bfs_result
2317 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2318 			struct lock_list **target_entry)
2319 {
2320 	enum bfs_result result;
2321 
2322 	debug_atomic_inc(nr_find_usage_backwards_checks);
2323 
2324 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2325 
2326 	return result;
2327 }
2328 
2329 static void print_lock_class_header(struct lock_class *class, int depth)
2330 {
2331 	int bit;
2332 
2333 	printk("%*s->", depth, "");
2334 	print_lock_name(class);
2335 #ifdef CONFIG_DEBUG_LOCKDEP
2336 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2337 #endif
2338 	printk(KERN_CONT " {\n");
2339 
2340 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2341 		if (class->usage_mask & (1 << bit)) {
2342 			int len = depth;
2343 
2344 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2345 			len += printk(KERN_CONT " at:\n");
2346 			print_lock_trace(class->usage_traces[bit], len);
2347 		}
2348 	}
2349 	printk("%*s }\n", depth, "");
2350 
2351 	printk("%*s ... key      at: [<%px>] %pS\n",
2352 		depth, "", class->key, class->key);
2353 }
2354 
2355 /*
2356  * Dependency path printing:
2357  *
2358  * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2359  * printing out each lock in the dependency path will help on understanding how
2360  * the deadlock could happen. Here are some details about dependency path
2361  * printing:
2362  *
2363  * 1)	A lock_list can be either forwards or backwards for a lock dependency,
2364  * 	for a lock dependency A -> B, there are two lock_lists:
2365  *
2366  * 	a)	lock_list in the ->locks_after list of A, whose ->class is B and
2367  * 		->links_to is A. In this case, we can say the lock_list is
2368  * 		"A -> B" (forwards case).
2369  *
2370  * 	b)	lock_list in the ->locks_before list of B, whose ->class is A
2371  * 		and ->links_to is B. In this case, we can say the lock_list is
2372  * 		"B <- A" (bacwards case).
2373  *
2374  * 	The ->trace of both a) and b) point to the call trace where B was
2375  * 	acquired with A held.
2376  *
2377  * 2)	A "helper" lock_list is introduced during BFS, this lock_list doesn't
2378  * 	represent a certain lock dependency, it only provides an initial entry
2379  * 	for BFS. For example, BFS may introduce a "helper" lock_list whose
2380  * 	->class is A, as a result BFS will search all dependencies starting with
2381  * 	A, e.g. A -> B or A -> C.
2382  *
2383  * 	The notation of a forwards helper lock_list is like "-> A", which means
2384  * 	we should search the forwards dependencies starting with "A", e.g A -> B
2385  * 	or A -> C.
2386  *
2387  * 	The notation of a bacwards helper lock_list is like "<- B", which means
2388  * 	we should search the backwards dependencies ending with "B", e.g.
2389  * 	B <- A or B <- C.
2390  */
2391 
2392 /*
2393  * printk the shortest lock dependencies from @root to @leaf in reverse order.
2394  *
2395  * We have a lock dependency path as follow:
2396  *
2397  *    @root                                                                 @leaf
2398  *      |                                                                     |
2399  *      V                                                                     V
2400  *	          ->parent                                   ->parent
2401  * | lock_list | <--------- | lock_list | ... | lock_list  | <--------- | lock_list |
2402  * |    -> L1  |            | L1 -> L2  | ... |Ln-2 -> Ln-1|            | Ln-1 -> Ln|
2403  *
2404  * , so it's natural that we start from @leaf and print every ->class and
2405  * ->trace until we reach the @root.
2406  */
2407 static void __used
2408 print_shortest_lock_dependencies(struct lock_list *leaf,
2409 				 struct lock_list *root)
2410 {
2411 	struct lock_list *entry = leaf;
2412 	int depth;
2413 
2414 	/*compute depth from generated tree by BFS*/
2415 	depth = get_lock_depth(leaf);
2416 
2417 	do {
2418 		print_lock_class_header(entry->class, depth);
2419 		printk("%*s ... acquired at:\n", depth, "");
2420 		print_lock_trace(entry->trace, 2);
2421 		printk("\n");
2422 
2423 		if (depth == 0 && (entry != root)) {
2424 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2425 			break;
2426 		}
2427 
2428 		entry = get_lock_parent(entry);
2429 		depth--;
2430 	} while (entry && (depth >= 0));
2431 }
2432 
2433 /*
2434  * printk the shortest lock dependencies from @leaf to @root.
2435  *
2436  * We have a lock dependency path (from a backwards search) as follow:
2437  *
2438  *    @leaf                                                                 @root
2439  *      |                                                                     |
2440  *      V                                                                     V
2441  *	          ->parent                                   ->parent
2442  * | lock_list | ---------> | lock_list | ... | lock_list  | ---------> | lock_list |
2443  * | L2 <- L1  |            | L3 <- L2  | ... | Ln <- Ln-1 |            |    <- Ln  |
2444  *
2445  * , so when we iterate from @leaf to @root, we actually print the lock
2446  * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2447  *
2448  * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2449  * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2450  * trace of L1 in the dependency path, which is alright, because most of the
2451  * time we can figure out where L1 is held from the call trace of L2.
2452  */
2453 static void __used
2454 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2455 					   struct lock_list *root)
2456 {
2457 	struct lock_list *entry = leaf;
2458 	const struct lock_trace *trace = NULL;
2459 	int depth;
2460 
2461 	/*compute depth from generated tree by BFS*/
2462 	depth = get_lock_depth(leaf);
2463 
2464 	do {
2465 		print_lock_class_header(entry->class, depth);
2466 		if (trace) {
2467 			printk("%*s ... acquired at:\n", depth, "");
2468 			print_lock_trace(trace, 2);
2469 			printk("\n");
2470 		}
2471 
2472 		/*
2473 		 * Record the pointer to the trace for the next lock_list
2474 		 * entry, see the comments for the function.
2475 		 */
2476 		trace = entry->trace;
2477 
2478 		if (depth == 0 && (entry != root)) {
2479 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2480 			break;
2481 		}
2482 
2483 		entry = get_lock_parent(entry);
2484 		depth--;
2485 	} while (entry && (depth >= 0));
2486 }
2487 
2488 static void
2489 print_irq_lock_scenario(struct lock_list *safe_entry,
2490 			struct lock_list *unsafe_entry,
2491 			struct lock_class *prev_class,
2492 			struct lock_class *next_class)
2493 {
2494 	struct lock_class *safe_class = safe_entry->class;
2495 	struct lock_class *unsafe_class = unsafe_entry->class;
2496 	struct lock_class *middle_class = prev_class;
2497 
2498 	if (middle_class == safe_class)
2499 		middle_class = next_class;
2500 
2501 	/*
2502 	 * A direct locking problem where unsafe_class lock is taken
2503 	 * directly by safe_class lock, then all we need to show
2504 	 * is the deadlock scenario, as it is obvious that the
2505 	 * unsafe lock is taken under the safe lock.
2506 	 *
2507 	 * But if there is a chain instead, where the safe lock takes
2508 	 * an intermediate lock (middle_class) where this lock is
2509 	 * not the same as the safe lock, then the lock chain is
2510 	 * used to describe the problem. Otherwise we would need
2511 	 * to show a different CPU case for each link in the chain
2512 	 * from the safe_class lock to the unsafe_class lock.
2513 	 */
2514 	if (middle_class != unsafe_class) {
2515 		printk("Chain exists of:\n  ");
2516 		__print_lock_name(safe_class);
2517 		printk(KERN_CONT " --> ");
2518 		__print_lock_name(middle_class);
2519 		printk(KERN_CONT " --> ");
2520 		__print_lock_name(unsafe_class);
2521 		printk(KERN_CONT "\n\n");
2522 	}
2523 
2524 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2525 	printk("       CPU0                    CPU1\n");
2526 	printk("       ----                    ----\n");
2527 	printk("  lock(");
2528 	__print_lock_name(unsafe_class);
2529 	printk(KERN_CONT ");\n");
2530 	printk("                               local_irq_disable();\n");
2531 	printk("                               lock(");
2532 	__print_lock_name(safe_class);
2533 	printk(KERN_CONT ");\n");
2534 	printk("                               lock(");
2535 	__print_lock_name(middle_class);
2536 	printk(KERN_CONT ");\n");
2537 	printk("  <Interrupt>\n");
2538 	printk("    lock(");
2539 	__print_lock_name(safe_class);
2540 	printk(KERN_CONT ");\n");
2541 	printk("\n *** DEADLOCK ***\n\n");
2542 }
2543 
2544 static void
2545 print_bad_irq_dependency(struct task_struct *curr,
2546 			 struct lock_list *prev_root,
2547 			 struct lock_list *next_root,
2548 			 struct lock_list *backwards_entry,
2549 			 struct lock_list *forwards_entry,
2550 			 struct held_lock *prev,
2551 			 struct held_lock *next,
2552 			 enum lock_usage_bit bit1,
2553 			 enum lock_usage_bit bit2,
2554 			 const char *irqclass)
2555 {
2556 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2557 		return;
2558 
2559 	pr_warn("\n");
2560 	pr_warn("=====================================================\n");
2561 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2562 		irqclass, irqclass);
2563 	print_kernel_ident();
2564 	pr_warn("-----------------------------------------------------\n");
2565 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2566 		curr->comm, task_pid_nr(curr),
2567 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2568 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2569 		lockdep_hardirqs_enabled(),
2570 		curr->softirqs_enabled);
2571 	print_lock(next);
2572 
2573 	pr_warn("\nand this task is already holding:\n");
2574 	print_lock(prev);
2575 	pr_warn("which would create a new lock dependency:\n");
2576 	print_lock_name(hlock_class(prev));
2577 	pr_cont(" ->");
2578 	print_lock_name(hlock_class(next));
2579 	pr_cont("\n");
2580 
2581 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2582 		irqclass);
2583 	print_lock_name(backwards_entry->class);
2584 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2585 
2586 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2587 
2588 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2589 	print_lock_name(forwards_entry->class);
2590 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2591 	pr_warn("...");
2592 
2593 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2594 
2595 	pr_warn("\nother info that might help us debug this:\n\n");
2596 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2597 				hlock_class(prev), hlock_class(next));
2598 
2599 	lockdep_print_held_locks(curr);
2600 
2601 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2602 	print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2603 
2604 	pr_warn("\nthe dependencies between the lock to be acquired");
2605 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2606 	next_root->trace = save_trace();
2607 	if (!next_root->trace)
2608 		return;
2609 	print_shortest_lock_dependencies(forwards_entry, next_root);
2610 
2611 	pr_warn("\nstack backtrace:\n");
2612 	dump_stack();
2613 }
2614 
2615 static const char *state_names[] = {
2616 #define LOCKDEP_STATE(__STATE) \
2617 	__stringify(__STATE),
2618 #include "lockdep_states.h"
2619 #undef LOCKDEP_STATE
2620 };
2621 
2622 static const char *state_rnames[] = {
2623 #define LOCKDEP_STATE(__STATE) \
2624 	__stringify(__STATE)"-READ",
2625 #include "lockdep_states.h"
2626 #undef LOCKDEP_STATE
2627 };
2628 
2629 static inline const char *state_name(enum lock_usage_bit bit)
2630 {
2631 	if (bit & LOCK_USAGE_READ_MASK)
2632 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2633 	else
2634 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2635 }
2636 
2637 /*
2638  * The bit number is encoded like:
2639  *
2640  *  bit0: 0 exclusive, 1 read lock
2641  *  bit1: 0 used in irq, 1 irq enabled
2642  *  bit2-n: state
2643  */
2644 static int exclusive_bit(int new_bit)
2645 {
2646 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2647 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2648 
2649 	/*
2650 	 * keep state, bit flip the direction and strip read.
2651 	 */
2652 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2653 }
2654 
2655 /*
2656  * Observe that when given a bitmask where each bitnr is encoded as above, a
2657  * right shift of the mask transforms the individual bitnrs as -1 and
2658  * conversely, a left shift transforms into +1 for the individual bitnrs.
2659  *
2660  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2661  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2662  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2663  *
2664  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2665  *
2666  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2667  * all bits set) and recompose with bitnr1 flipped.
2668  */
2669 static unsigned long invert_dir_mask(unsigned long mask)
2670 {
2671 	unsigned long excl = 0;
2672 
2673 	/* Invert dir */
2674 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2675 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2676 
2677 	return excl;
2678 }
2679 
2680 /*
2681  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2682  * usage may cause deadlock too, for example:
2683  *
2684  * P1				P2
2685  * <irq disabled>
2686  * write_lock(l1);		<irq enabled>
2687  *				read_lock(l2);
2688  * write_lock(l2);
2689  * 				<in irq>
2690  * 				read_lock(l1);
2691  *
2692  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2693  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2694  * deadlock.
2695  *
2696  * In fact, all of the following cases may cause deadlocks:
2697  *
2698  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2699  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2700  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2701  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2702  *
2703  * As a result, to calculate the "exclusive mask", first we invert the
2704  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2705  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2706  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2707  */
2708 static unsigned long exclusive_mask(unsigned long mask)
2709 {
2710 	unsigned long excl = invert_dir_mask(mask);
2711 
2712 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2713 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2714 
2715 	return excl;
2716 }
2717 
2718 /*
2719  * Retrieve the _possible_ original mask to which @mask is
2720  * exclusive. Ie: this is the opposite of exclusive_mask().
2721  * Note that 2 possible original bits can match an exclusive
2722  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2723  * cleared. So both are returned for each exclusive bit.
2724  */
2725 static unsigned long original_mask(unsigned long mask)
2726 {
2727 	unsigned long excl = invert_dir_mask(mask);
2728 
2729 	/* Include read in existing usages */
2730 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2731 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2732 
2733 	return excl;
2734 }
2735 
2736 /*
2737  * Find the first pair of bit match between an original
2738  * usage mask and an exclusive usage mask.
2739  */
2740 static int find_exclusive_match(unsigned long mask,
2741 				unsigned long excl_mask,
2742 				enum lock_usage_bit *bitp,
2743 				enum lock_usage_bit *excl_bitp)
2744 {
2745 	int bit, excl, excl_read;
2746 
2747 	for_each_set_bit(bit, &mask, LOCK_USED) {
2748 		/*
2749 		 * exclusive_bit() strips the read bit, however,
2750 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2751 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2752 		 */
2753 		excl = exclusive_bit(bit);
2754 		excl_read = excl | LOCK_USAGE_READ_MASK;
2755 		if (excl_mask & lock_flag(excl)) {
2756 			*bitp = bit;
2757 			*excl_bitp = excl;
2758 			return 0;
2759 		} else if (excl_mask & lock_flag(excl_read)) {
2760 			*bitp = bit;
2761 			*excl_bitp = excl_read;
2762 			return 0;
2763 		}
2764 	}
2765 	return -1;
2766 }
2767 
2768 /*
2769  * Prove that the new dependency does not connect a hardirq-safe(-read)
2770  * lock with a hardirq-unsafe lock - to achieve this we search
2771  * the backwards-subgraph starting at <prev>, and the
2772  * forwards-subgraph starting at <next>:
2773  */
2774 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2775 			   struct held_lock *next)
2776 {
2777 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2778 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2779 	struct lock_list *target_entry1;
2780 	struct lock_list *target_entry;
2781 	struct lock_list this, that;
2782 	enum bfs_result ret;
2783 
2784 	/*
2785 	 * Step 1: gather all hard/soft IRQs usages backward in an
2786 	 * accumulated usage mask.
2787 	 */
2788 	bfs_init_rootb(&this, prev);
2789 
2790 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2791 	if (bfs_error(ret)) {
2792 		print_bfs_bug(ret);
2793 		return 0;
2794 	}
2795 
2796 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2797 	if (!usage_mask)
2798 		return 1;
2799 
2800 	/*
2801 	 * Step 2: find exclusive uses forward that match the previous
2802 	 * backward accumulated mask.
2803 	 */
2804 	forward_mask = exclusive_mask(usage_mask);
2805 
2806 	bfs_init_root(&that, next);
2807 
2808 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2809 	if (bfs_error(ret)) {
2810 		print_bfs_bug(ret);
2811 		return 0;
2812 	}
2813 	if (ret == BFS_RNOMATCH)
2814 		return 1;
2815 
2816 	/*
2817 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2818 	 * list whose usage mask matches the exclusive usage mask from the
2819 	 * lock found on the forward list.
2820 	 *
2821 	 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2822 	 * the follow case:
2823 	 *
2824 	 * When trying to add A -> B to the graph, we find that there is a
2825 	 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2826 	 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2827 	 * invert bits of M's usage_mask, we will find another lock N that is
2828 	 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2829 	 * cause a inversion deadlock.
2830 	 */
2831 	backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2832 
2833 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2834 	if (bfs_error(ret)) {
2835 		print_bfs_bug(ret);
2836 		return 0;
2837 	}
2838 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2839 		return 1;
2840 
2841 	/*
2842 	 * Step 4: narrow down to a pair of incompatible usage bits
2843 	 * and report it.
2844 	 */
2845 	ret = find_exclusive_match(target_entry->class->usage_mask,
2846 				   target_entry1->class->usage_mask,
2847 				   &backward_bit, &forward_bit);
2848 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2849 		return 1;
2850 
2851 	print_bad_irq_dependency(curr, &this, &that,
2852 				 target_entry, target_entry1,
2853 				 prev, next,
2854 				 backward_bit, forward_bit,
2855 				 state_name(backward_bit));
2856 
2857 	return 0;
2858 }
2859 
2860 #else
2861 
2862 static inline int check_irq_usage(struct task_struct *curr,
2863 				  struct held_lock *prev, struct held_lock *next)
2864 {
2865 	return 1;
2866 }
2867 
2868 static inline bool usage_skip(struct lock_list *entry, void *mask)
2869 {
2870 	return false;
2871 }
2872 
2873 #endif /* CONFIG_TRACE_IRQFLAGS */
2874 
2875 #ifdef CONFIG_LOCKDEP_SMALL
2876 /*
2877  * Check that the dependency graph starting at <src> can lead to
2878  * <target> or not. If it can, <src> -> <target> dependency is already
2879  * in the graph.
2880  *
2881  * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2882  * any error appears in the bfs search.
2883  */
2884 static noinline enum bfs_result
2885 check_redundant(struct held_lock *src, struct held_lock *target)
2886 {
2887 	enum bfs_result ret;
2888 	struct lock_list *target_entry;
2889 	struct lock_list src_entry;
2890 
2891 	bfs_init_root(&src_entry, src);
2892 	/*
2893 	 * Special setup for check_redundant().
2894 	 *
2895 	 * To report redundant, we need to find a strong dependency path that
2896 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2897 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2898 	 * we achieve this by setting the initial node's ->only_xr to true in
2899 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2900 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2901 	 */
2902 	src_entry.only_xr = src->read == 0;
2903 
2904 	debug_atomic_inc(nr_redundant_checks);
2905 
2906 	/*
2907 	 * Note: we skip local_lock() for redundant check, because as the
2908 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2909 	 * the same.
2910 	 */
2911 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2912 
2913 	if (ret == BFS_RMATCH)
2914 		debug_atomic_inc(nr_redundant);
2915 
2916 	return ret;
2917 }
2918 
2919 #else
2920 
2921 static inline enum bfs_result
2922 check_redundant(struct held_lock *src, struct held_lock *target)
2923 {
2924 	return BFS_RNOMATCH;
2925 }
2926 
2927 #endif
2928 
2929 static void inc_chains(int irq_context)
2930 {
2931 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2932 		nr_hardirq_chains++;
2933 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2934 		nr_softirq_chains++;
2935 	else
2936 		nr_process_chains++;
2937 }
2938 
2939 static void dec_chains(int irq_context)
2940 {
2941 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2942 		nr_hardirq_chains--;
2943 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2944 		nr_softirq_chains--;
2945 	else
2946 		nr_process_chains--;
2947 }
2948 
2949 static void
2950 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2951 {
2952 	struct lock_class *next = hlock_class(nxt);
2953 	struct lock_class *prev = hlock_class(prv);
2954 
2955 	printk(" Possible unsafe locking scenario:\n\n");
2956 	printk("       CPU0\n");
2957 	printk("       ----\n");
2958 	printk("  lock(");
2959 	__print_lock_name(prev);
2960 	printk(KERN_CONT ");\n");
2961 	printk("  lock(");
2962 	__print_lock_name(next);
2963 	printk(KERN_CONT ");\n");
2964 	printk("\n *** DEADLOCK ***\n\n");
2965 	printk(" May be due to missing lock nesting notation\n\n");
2966 }
2967 
2968 static void
2969 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2970 		   struct held_lock *next)
2971 {
2972 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2973 		return;
2974 
2975 	pr_warn("\n");
2976 	pr_warn("============================================\n");
2977 	pr_warn("WARNING: possible recursive locking detected\n");
2978 	print_kernel_ident();
2979 	pr_warn("--------------------------------------------\n");
2980 	pr_warn("%s/%d is trying to acquire lock:\n",
2981 		curr->comm, task_pid_nr(curr));
2982 	print_lock(next);
2983 	pr_warn("\nbut task is already holding lock:\n");
2984 	print_lock(prev);
2985 
2986 	pr_warn("\nother info that might help us debug this:\n");
2987 	print_deadlock_scenario(next, prev);
2988 	lockdep_print_held_locks(curr);
2989 
2990 	pr_warn("\nstack backtrace:\n");
2991 	dump_stack();
2992 }
2993 
2994 /*
2995  * Check whether we are holding such a class already.
2996  *
2997  * (Note that this has to be done separately, because the graph cannot
2998  * detect such classes of deadlocks.)
2999  *
3000  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
3001  * lock class is held but nest_lock is also held, i.e. we rely on the
3002  * nest_lock to avoid the deadlock.
3003  */
3004 static int
3005 check_deadlock(struct task_struct *curr, struct held_lock *next)
3006 {
3007 	struct held_lock *prev;
3008 	struct held_lock *nest = NULL;
3009 	int i;
3010 
3011 	for (i = 0; i < curr->lockdep_depth; i++) {
3012 		prev = curr->held_locks + i;
3013 
3014 		if (prev->instance == next->nest_lock)
3015 			nest = prev;
3016 
3017 		if (hlock_class(prev) != hlock_class(next))
3018 			continue;
3019 
3020 		/*
3021 		 * Allow read-after-read recursion of the same
3022 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
3023 		 */
3024 		if ((next->read == 2) && prev->read)
3025 			continue;
3026 
3027 		/*
3028 		 * We're holding the nest_lock, which serializes this lock's
3029 		 * nesting behaviour.
3030 		 */
3031 		if (nest)
3032 			return 2;
3033 
3034 		print_deadlock_bug(curr, prev, next);
3035 		return 0;
3036 	}
3037 	return 1;
3038 }
3039 
3040 /*
3041  * There was a chain-cache miss, and we are about to add a new dependency
3042  * to a previous lock. We validate the following rules:
3043  *
3044  *  - would the adding of the <prev> -> <next> dependency create a
3045  *    circular dependency in the graph? [== circular deadlock]
3046  *
3047  *  - does the new prev->next dependency connect any hardirq-safe lock
3048  *    (in the full backwards-subgraph starting at <prev>) with any
3049  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
3050  *    <next>)? [== illegal lock inversion with hardirq contexts]
3051  *
3052  *  - does the new prev->next dependency connect any softirq-safe lock
3053  *    (in the full backwards-subgraph starting at <prev>) with any
3054  *    softirq-unsafe lock (in the full forwards-subgraph starting at
3055  *    <next>)? [== illegal lock inversion with softirq contexts]
3056  *
3057  * any of these scenarios could lead to a deadlock.
3058  *
3059  * Then if all the validations pass, we add the forwards and backwards
3060  * dependency.
3061  */
3062 static int
3063 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3064 	       struct held_lock *next, u16 distance,
3065 	       struct lock_trace **const trace)
3066 {
3067 	struct lock_list *entry;
3068 	enum bfs_result ret;
3069 
3070 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3071 		/*
3072 		 * The warning statements below may trigger a use-after-free
3073 		 * of the class name. It is better to trigger a use-after free
3074 		 * and to have the class name most of the time instead of not
3075 		 * having the class name available.
3076 		 */
3077 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3078 			  "Detected use-after-free of lock class %px/%s\n",
3079 			  hlock_class(prev),
3080 			  hlock_class(prev)->name);
3081 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3082 			  "Detected use-after-free of lock class %px/%s\n",
3083 			  hlock_class(next),
3084 			  hlock_class(next)->name);
3085 		return 2;
3086 	}
3087 
3088 	/*
3089 	 * Prove that the new <prev> -> <next> dependency would not
3090 	 * create a circular dependency in the graph. (We do this by
3091 	 * a breadth-first search into the graph starting at <next>,
3092 	 * and check whether we can reach <prev>.)
3093 	 *
3094 	 * The search is limited by the size of the circular queue (i.e.,
3095 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3096 	 * in the graph whose neighbours are to be checked.
3097 	 */
3098 	ret = check_noncircular(next, prev, trace);
3099 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3100 		return 0;
3101 
3102 	if (!check_irq_usage(curr, prev, next))
3103 		return 0;
3104 
3105 	/*
3106 	 * Is the <prev> -> <next> dependency already present?
3107 	 *
3108 	 * (this may occur even though this is a new chain: consider
3109 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3110 	 *  chains - the second one will be new, but L1 already has
3111 	 *  L2 added to its dependency list, due to the first chain.)
3112 	 */
3113 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3114 		if (entry->class == hlock_class(next)) {
3115 			if (distance == 1)
3116 				entry->distance = 1;
3117 			entry->dep |= calc_dep(prev, next);
3118 
3119 			/*
3120 			 * Also, update the reverse dependency in @next's
3121 			 * ->locks_before list.
3122 			 *
3123 			 *  Here we reuse @entry as the cursor, which is fine
3124 			 *  because we won't go to the next iteration of the
3125 			 *  outer loop:
3126 			 *
3127 			 *  For normal cases, we return in the inner loop.
3128 			 *
3129 			 *  If we fail to return, we have inconsistency, i.e.
3130 			 *  <prev>::locks_after contains <next> while
3131 			 *  <next>::locks_before doesn't contain <prev>. In
3132 			 *  that case, we return after the inner and indicate
3133 			 *  something is wrong.
3134 			 */
3135 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3136 				if (entry->class == hlock_class(prev)) {
3137 					if (distance == 1)
3138 						entry->distance = 1;
3139 					entry->dep |= calc_depb(prev, next);
3140 					return 1;
3141 				}
3142 			}
3143 
3144 			/* <prev> is not found in <next>::locks_before */
3145 			return 0;
3146 		}
3147 	}
3148 
3149 	/*
3150 	 * Is the <prev> -> <next> link redundant?
3151 	 */
3152 	ret = check_redundant(prev, next);
3153 	if (bfs_error(ret))
3154 		return 0;
3155 	else if (ret == BFS_RMATCH)
3156 		return 2;
3157 
3158 	if (!*trace) {
3159 		*trace = save_trace();
3160 		if (!*trace)
3161 			return 0;
3162 	}
3163 
3164 	/*
3165 	 * Ok, all validations passed, add the new lock
3166 	 * to the previous lock's dependency list:
3167 	 */
3168 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3169 			       &hlock_class(prev)->locks_after, distance,
3170 			       calc_dep(prev, next), *trace);
3171 
3172 	if (!ret)
3173 		return 0;
3174 
3175 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3176 			       &hlock_class(next)->locks_before, distance,
3177 			       calc_depb(prev, next), *trace);
3178 	if (!ret)
3179 		return 0;
3180 
3181 	return 2;
3182 }
3183 
3184 /*
3185  * Add the dependency to all directly-previous locks that are 'relevant'.
3186  * The ones that are relevant are (in increasing distance from curr):
3187  * all consecutive trylock entries and the final non-trylock entry - or
3188  * the end of this context's lock-chain - whichever comes first.
3189  */
3190 static int
3191 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3192 {
3193 	struct lock_trace *trace = NULL;
3194 	int depth = curr->lockdep_depth;
3195 	struct held_lock *hlock;
3196 
3197 	/*
3198 	 * Debugging checks.
3199 	 *
3200 	 * Depth must not be zero for a non-head lock:
3201 	 */
3202 	if (!depth)
3203 		goto out_bug;
3204 	/*
3205 	 * At least two relevant locks must exist for this
3206 	 * to be a head:
3207 	 */
3208 	if (curr->held_locks[depth].irq_context !=
3209 			curr->held_locks[depth-1].irq_context)
3210 		goto out_bug;
3211 
3212 	for (;;) {
3213 		u16 distance = curr->lockdep_depth - depth + 1;
3214 		hlock = curr->held_locks + depth - 1;
3215 
3216 		if (hlock->check) {
3217 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3218 			if (!ret)
3219 				return 0;
3220 
3221 			/*
3222 			 * Stop after the first non-trylock entry,
3223 			 * as non-trylock entries have added their
3224 			 * own direct dependencies already, so this
3225 			 * lock is connected to them indirectly:
3226 			 */
3227 			if (!hlock->trylock)
3228 				break;
3229 		}
3230 
3231 		depth--;
3232 		/*
3233 		 * End of lock-stack?
3234 		 */
3235 		if (!depth)
3236 			break;
3237 		/*
3238 		 * Stop the search if we cross into another context:
3239 		 */
3240 		if (curr->held_locks[depth].irq_context !=
3241 				curr->held_locks[depth-1].irq_context)
3242 			break;
3243 	}
3244 	return 1;
3245 out_bug:
3246 	if (!debug_locks_off_graph_unlock())
3247 		return 0;
3248 
3249 	/*
3250 	 * Clearly we all shouldn't be here, but since we made it we
3251 	 * can reliable say we messed up our state. See the above two
3252 	 * gotos for reasons why we could possibly end up here.
3253 	 */
3254 	WARN_ON(1);
3255 
3256 	return 0;
3257 }
3258 
3259 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3260 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3261 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3262 unsigned long nr_zapped_lock_chains;
3263 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3264 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3265 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3266 
3267 /*
3268  * The first 2 chain_hlocks entries in the chain block in the bucket
3269  * list contains the following meta data:
3270  *
3271  *   entry[0]:
3272  *     Bit    15 - always set to 1 (it is not a class index)
3273  *     Bits 0-14 - upper 15 bits of the next block index
3274  *   entry[1]    - lower 16 bits of next block index
3275  *
3276  * A next block index of all 1 bits means it is the end of the list.
3277  *
3278  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3279  * the chain block size:
3280  *
3281  *   entry[2] - upper 16 bits of the chain block size
3282  *   entry[3] - lower 16 bits of the chain block size
3283  */
3284 #define MAX_CHAIN_BUCKETS	16
3285 #define CHAIN_BLK_FLAG		(1U << 15)
3286 #define CHAIN_BLK_LIST_END	0xFFFFU
3287 
3288 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3289 
3290 static inline int size_to_bucket(int size)
3291 {
3292 	if (size > MAX_CHAIN_BUCKETS)
3293 		return 0;
3294 
3295 	return size - 1;
3296 }
3297 
3298 /*
3299  * Iterate all the chain blocks in a bucket.
3300  */
3301 #define for_each_chain_block(bucket, prev, curr)		\
3302 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3303 	     (curr) >= 0;					\
3304 	     (prev) = (curr), (curr) = chain_block_next(curr))
3305 
3306 /*
3307  * next block or -1
3308  */
3309 static inline int chain_block_next(int offset)
3310 {
3311 	int next = chain_hlocks[offset];
3312 
3313 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3314 
3315 	if (next == CHAIN_BLK_LIST_END)
3316 		return -1;
3317 
3318 	next &= ~CHAIN_BLK_FLAG;
3319 	next <<= 16;
3320 	next |= chain_hlocks[offset + 1];
3321 
3322 	return next;
3323 }
3324 
3325 /*
3326  * bucket-0 only
3327  */
3328 static inline int chain_block_size(int offset)
3329 {
3330 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3331 }
3332 
3333 static inline void init_chain_block(int offset, int next, int bucket, int size)
3334 {
3335 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3336 	chain_hlocks[offset + 1] = (u16)next;
3337 
3338 	if (size && !bucket) {
3339 		chain_hlocks[offset + 2] = size >> 16;
3340 		chain_hlocks[offset + 3] = (u16)size;
3341 	}
3342 }
3343 
3344 static inline void add_chain_block(int offset, int size)
3345 {
3346 	int bucket = size_to_bucket(size);
3347 	int next = chain_block_buckets[bucket];
3348 	int prev, curr;
3349 
3350 	if (unlikely(size < 2)) {
3351 		/*
3352 		 * We can't store single entries on the freelist. Leak them.
3353 		 *
3354 		 * One possible way out would be to uniquely mark them, other
3355 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3356 		 * the block before it is re-added.
3357 		 */
3358 		if (size)
3359 			nr_lost_chain_hlocks++;
3360 		return;
3361 	}
3362 
3363 	nr_free_chain_hlocks += size;
3364 	if (!bucket) {
3365 		nr_large_chain_blocks++;
3366 
3367 		/*
3368 		 * Variable sized, sort large to small.
3369 		 */
3370 		for_each_chain_block(0, prev, curr) {
3371 			if (size >= chain_block_size(curr))
3372 				break;
3373 		}
3374 		init_chain_block(offset, curr, 0, size);
3375 		if (prev < 0)
3376 			chain_block_buckets[0] = offset;
3377 		else
3378 			init_chain_block(prev, offset, 0, 0);
3379 		return;
3380 	}
3381 	/*
3382 	 * Fixed size, add to head.
3383 	 */
3384 	init_chain_block(offset, next, bucket, size);
3385 	chain_block_buckets[bucket] = offset;
3386 }
3387 
3388 /*
3389  * Only the first block in the list can be deleted.
3390  *
3391  * For the variable size bucket[0], the first block (the largest one) is
3392  * returned, broken up and put back into the pool. So if a chain block of
3393  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3394  * queued up after the primordial chain block and never be used until the
3395  * hlock entries in the primordial chain block is almost used up. That
3396  * causes fragmentation and reduce allocation efficiency. That can be
3397  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3398  */
3399 static inline void del_chain_block(int bucket, int size, int next)
3400 {
3401 	nr_free_chain_hlocks -= size;
3402 	chain_block_buckets[bucket] = next;
3403 
3404 	if (!bucket)
3405 		nr_large_chain_blocks--;
3406 }
3407 
3408 static void init_chain_block_buckets(void)
3409 {
3410 	int i;
3411 
3412 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3413 		chain_block_buckets[i] = -1;
3414 
3415 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3416 }
3417 
3418 /*
3419  * Return offset of a chain block of the right size or -1 if not found.
3420  *
3421  * Fairly simple worst-fit allocator with the addition of a number of size
3422  * specific free lists.
3423  */
3424 static int alloc_chain_hlocks(int req)
3425 {
3426 	int bucket, curr, size;
3427 
3428 	/*
3429 	 * We rely on the MSB to act as an escape bit to denote freelist
3430 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3431 	 */
3432 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3433 
3434 	init_data_structures_once();
3435 
3436 	if (nr_free_chain_hlocks < req)
3437 		return -1;
3438 
3439 	/*
3440 	 * We require a minimum of 2 (u16) entries to encode a freelist
3441 	 * 'pointer'.
3442 	 */
3443 	req = max(req, 2);
3444 	bucket = size_to_bucket(req);
3445 	curr = chain_block_buckets[bucket];
3446 
3447 	if (bucket) {
3448 		if (curr >= 0) {
3449 			del_chain_block(bucket, req, chain_block_next(curr));
3450 			return curr;
3451 		}
3452 		/* Try bucket 0 */
3453 		curr = chain_block_buckets[0];
3454 	}
3455 
3456 	/*
3457 	 * The variable sized freelist is sorted by size; the first entry is
3458 	 * the largest. Use it if it fits.
3459 	 */
3460 	if (curr >= 0) {
3461 		size = chain_block_size(curr);
3462 		if (likely(size >= req)) {
3463 			del_chain_block(0, size, chain_block_next(curr));
3464 			add_chain_block(curr + req, size - req);
3465 			return curr;
3466 		}
3467 	}
3468 
3469 	/*
3470 	 * Last resort, split a block in a larger sized bucket.
3471 	 */
3472 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3473 		bucket = size_to_bucket(size);
3474 		curr = chain_block_buckets[bucket];
3475 		if (curr < 0)
3476 			continue;
3477 
3478 		del_chain_block(bucket, size, chain_block_next(curr));
3479 		add_chain_block(curr + req, size - req);
3480 		return curr;
3481 	}
3482 
3483 	return -1;
3484 }
3485 
3486 static inline void free_chain_hlocks(int base, int size)
3487 {
3488 	add_chain_block(base, max(size, 2));
3489 }
3490 
3491 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3492 {
3493 	u16 chain_hlock = chain_hlocks[chain->base + i];
3494 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3495 
3496 	return lock_classes + class_idx;
3497 }
3498 
3499 /*
3500  * Returns the index of the first held_lock of the current chain
3501  */
3502 static inline int get_first_held_lock(struct task_struct *curr,
3503 					struct held_lock *hlock)
3504 {
3505 	int i;
3506 	struct held_lock *hlock_curr;
3507 
3508 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3509 		hlock_curr = curr->held_locks + i;
3510 		if (hlock_curr->irq_context != hlock->irq_context)
3511 			break;
3512 
3513 	}
3514 
3515 	return ++i;
3516 }
3517 
3518 #ifdef CONFIG_DEBUG_LOCKDEP
3519 /*
3520  * Returns the next chain_key iteration
3521  */
3522 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3523 {
3524 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3525 
3526 	printk(" hlock_id:%d -> chain_key:%016Lx",
3527 		(unsigned int)hlock_id,
3528 		(unsigned long long)new_chain_key);
3529 	return new_chain_key;
3530 }
3531 
3532 static void
3533 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3534 {
3535 	struct held_lock *hlock;
3536 	u64 chain_key = INITIAL_CHAIN_KEY;
3537 	int depth = curr->lockdep_depth;
3538 	int i = get_first_held_lock(curr, hlock_next);
3539 
3540 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3541 		hlock_next->irq_context);
3542 	for (; i < depth; i++) {
3543 		hlock = curr->held_locks + i;
3544 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3545 
3546 		print_lock(hlock);
3547 	}
3548 
3549 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3550 	print_lock(hlock_next);
3551 }
3552 
3553 static void print_chain_keys_chain(struct lock_chain *chain)
3554 {
3555 	int i;
3556 	u64 chain_key = INITIAL_CHAIN_KEY;
3557 	u16 hlock_id;
3558 
3559 	printk("depth: %u\n", chain->depth);
3560 	for (i = 0; i < chain->depth; i++) {
3561 		hlock_id = chain_hlocks[chain->base + i];
3562 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3563 
3564 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id));
3565 		printk("\n");
3566 	}
3567 }
3568 
3569 static void print_collision(struct task_struct *curr,
3570 			struct held_lock *hlock_next,
3571 			struct lock_chain *chain)
3572 {
3573 	pr_warn("\n");
3574 	pr_warn("============================\n");
3575 	pr_warn("WARNING: chain_key collision\n");
3576 	print_kernel_ident();
3577 	pr_warn("----------------------------\n");
3578 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3579 	pr_warn("Hash chain already cached but the contents don't match!\n");
3580 
3581 	pr_warn("Held locks:");
3582 	print_chain_keys_held_locks(curr, hlock_next);
3583 
3584 	pr_warn("Locks in cached chain:");
3585 	print_chain_keys_chain(chain);
3586 
3587 	pr_warn("\nstack backtrace:\n");
3588 	dump_stack();
3589 }
3590 #endif
3591 
3592 /*
3593  * Checks whether the chain and the current held locks are consistent
3594  * in depth and also in content. If they are not it most likely means
3595  * that there was a collision during the calculation of the chain_key.
3596  * Returns: 0 not passed, 1 passed
3597  */
3598 static int check_no_collision(struct task_struct *curr,
3599 			struct held_lock *hlock,
3600 			struct lock_chain *chain)
3601 {
3602 #ifdef CONFIG_DEBUG_LOCKDEP
3603 	int i, j, id;
3604 
3605 	i = get_first_held_lock(curr, hlock);
3606 
3607 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3608 		print_collision(curr, hlock, chain);
3609 		return 0;
3610 	}
3611 
3612 	for (j = 0; j < chain->depth - 1; j++, i++) {
3613 		id = hlock_id(&curr->held_locks[i]);
3614 
3615 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3616 			print_collision(curr, hlock, chain);
3617 			return 0;
3618 		}
3619 	}
3620 #endif
3621 	return 1;
3622 }
3623 
3624 /*
3625  * Given an index that is >= -1, return the index of the next lock chain.
3626  * Return -2 if there is no next lock chain.
3627  */
3628 long lockdep_next_lockchain(long i)
3629 {
3630 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3631 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3632 }
3633 
3634 unsigned long lock_chain_count(void)
3635 {
3636 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3637 }
3638 
3639 /* Must be called with the graph lock held. */
3640 static struct lock_chain *alloc_lock_chain(void)
3641 {
3642 	int idx = find_first_zero_bit(lock_chains_in_use,
3643 				      ARRAY_SIZE(lock_chains));
3644 
3645 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3646 		return NULL;
3647 	__set_bit(idx, lock_chains_in_use);
3648 	return lock_chains + idx;
3649 }
3650 
3651 /*
3652  * Adds a dependency chain into chain hashtable. And must be called with
3653  * graph_lock held.
3654  *
3655  * Return 0 if fail, and graph_lock is released.
3656  * Return 1 if succeed, with graph_lock held.
3657  */
3658 static inline int add_chain_cache(struct task_struct *curr,
3659 				  struct held_lock *hlock,
3660 				  u64 chain_key)
3661 {
3662 	struct hlist_head *hash_head = chainhashentry(chain_key);
3663 	struct lock_chain *chain;
3664 	int i, j;
3665 
3666 	/*
3667 	 * The caller must hold the graph lock, ensure we've got IRQs
3668 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3669 	 * lockdep won't complain about its own locking errors.
3670 	 */
3671 	if (lockdep_assert_locked())
3672 		return 0;
3673 
3674 	chain = alloc_lock_chain();
3675 	if (!chain) {
3676 		if (!debug_locks_off_graph_unlock())
3677 			return 0;
3678 
3679 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3680 		dump_stack();
3681 		return 0;
3682 	}
3683 	chain->chain_key = chain_key;
3684 	chain->irq_context = hlock->irq_context;
3685 	i = get_first_held_lock(curr, hlock);
3686 	chain->depth = curr->lockdep_depth + 1 - i;
3687 
3688 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3689 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3690 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3691 
3692 	j = alloc_chain_hlocks(chain->depth);
3693 	if (j < 0) {
3694 		if (!debug_locks_off_graph_unlock())
3695 			return 0;
3696 
3697 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3698 		dump_stack();
3699 		return 0;
3700 	}
3701 
3702 	chain->base = j;
3703 	for (j = 0; j < chain->depth - 1; j++, i++) {
3704 		int lock_id = hlock_id(curr->held_locks + i);
3705 
3706 		chain_hlocks[chain->base + j] = lock_id;
3707 	}
3708 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3709 	hlist_add_head_rcu(&chain->entry, hash_head);
3710 	debug_atomic_inc(chain_lookup_misses);
3711 	inc_chains(chain->irq_context);
3712 
3713 	return 1;
3714 }
3715 
3716 /*
3717  * Look up a dependency chain. Must be called with either the graph lock or
3718  * the RCU read lock held.
3719  */
3720 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3721 {
3722 	struct hlist_head *hash_head = chainhashentry(chain_key);
3723 	struct lock_chain *chain;
3724 
3725 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3726 		if (READ_ONCE(chain->chain_key) == chain_key) {
3727 			debug_atomic_inc(chain_lookup_hits);
3728 			return chain;
3729 		}
3730 	}
3731 	return NULL;
3732 }
3733 
3734 /*
3735  * If the key is not present yet in dependency chain cache then
3736  * add it and return 1 - in this case the new dependency chain is
3737  * validated. If the key is already hashed, return 0.
3738  * (On return with 1 graph_lock is held.)
3739  */
3740 static inline int lookup_chain_cache_add(struct task_struct *curr,
3741 					 struct held_lock *hlock,
3742 					 u64 chain_key)
3743 {
3744 	struct lock_class *class = hlock_class(hlock);
3745 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3746 
3747 	if (chain) {
3748 cache_hit:
3749 		if (!check_no_collision(curr, hlock, chain))
3750 			return 0;
3751 
3752 		if (very_verbose(class)) {
3753 			printk("\nhash chain already cached, key: "
3754 					"%016Lx tail class: [%px] %s\n",
3755 					(unsigned long long)chain_key,
3756 					class->key, class->name);
3757 		}
3758 
3759 		return 0;
3760 	}
3761 
3762 	if (very_verbose(class)) {
3763 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3764 			(unsigned long long)chain_key, class->key, class->name);
3765 	}
3766 
3767 	if (!graph_lock())
3768 		return 0;
3769 
3770 	/*
3771 	 * We have to walk the chain again locked - to avoid duplicates:
3772 	 */
3773 	chain = lookup_chain_cache(chain_key);
3774 	if (chain) {
3775 		graph_unlock();
3776 		goto cache_hit;
3777 	}
3778 
3779 	if (!add_chain_cache(curr, hlock, chain_key))
3780 		return 0;
3781 
3782 	return 1;
3783 }
3784 
3785 static int validate_chain(struct task_struct *curr,
3786 			  struct held_lock *hlock,
3787 			  int chain_head, u64 chain_key)
3788 {
3789 	/*
3790 	 * Trylock needs to maintain the stack of held locks, but it
3791 	 * does not add new dependencies, because trylock can be done
3792 	 * in any order.
3793 	 *
3794 	 * We look up the chain_key and do the O(N^2) check and update of
3795 	 * the dependencies only if this is a new dependency chain.
3796 	 * (If lookup_chain_cache_add() return with 1 it acquires
3797 	 * graph_lock for us)
3798 	 */
3799 	if (!hlock->trylock && hlock->check &&
3800 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3801 		/*
3802 		 * Check whether last held lock:
3803 		 *
3804 		 * - is irq-safe, if this lock is irq-unsafe
3805 		 * - is softirq-safe, if this lock is hardirq-unsafe
3806 		 *
3807 		 * And check whether the new lock's dependency graph
3808 		 * could lead back to the previous lock:
3809 		 *
3810 		 * - within the current held-lock stack
3811 		 * - across our accumulated lock dependency records
3812 		 *
3813 		 * any of these scenarios could lead to a deadlock.
3814 		 */
3815 		/*
3816 		 * The simple case: does the current hold the same lock
3817 		 * already?
3818 		 */
3819 		int ret = check_deadlock(curr, hlock);
3820 
3821 		if (!ret)
3822 			return 0;
3823 		/*
3824 		 * Add dependency only if this lock is not the head
3825 		 * of the chain, and if the new lock introduces no more
3826 		 * lock dependency (because we already hold a lock with the
3827 		 * same lock class) nor deadlock (because the nest_lock
3828 		 * serializes nesting locks), see the comments for
3829 		 * check_deadlock().
3830 		 */
3831 		if (!chain_head && ret != 2) {
3832 			if (!check_prevs_add(curr, hlock))
3833 				return 0;
3834 		}
3835 
3836 		graph_unlock();
3837 	} else {
3838 		/* after lookup_chain_cache_add(): */
3839 		if (unlikely(!debug_locks))
3840 			return 0;
3841 	}
3842 
3843 	return 1;
3844 }
3845 #else
3846 static inline int validate_chain(struct task_struct *curr,
3847 				 struct held_lock *hlock,
3848 				 int chain_head, u64 chain_key)
3849 {
3850 	return 1;
3851 }
3852 
3853 static void init_chain_block_buckets(void)	{ }
3854 #endif /* CONFIG_PROVE_LOCKING */
3855 
3856 /*
3857  * We are building curr_chain_key incrementally, so double-check
3858  * it from scratch, to make sure that it's done correctly:
3859  */
3860 static void check_chain_key(struct task_struct *curr)
3861 {
3862 #ifdef CONFIG_DEBUG_LOCKDEP
3863 	struct held_lock *hlock, *prev_hlock = NULL;
3864 	unsigned int i;
3865 	u64 chain_key = INITIAL_CHAIN_KEY;
3866 
3867 	for (i = 0; i < curr->lockdep_depth; i++) {
3868 		hlock = curr->held_locks + i;
3869 		if (chain_key != hlock->prev_chain_key) {
3870 			debug_locks_off();
3871 			/*
3872 			 * We got mighty confused, our chain keys don't match
3873 			 * with what we expect, someone trample on our task state?
3874 			 */
3875 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3876 				curr->lockdep_depth, i,
3877 				(unsigned long long)chain_key,
3878 				(unsigned long long)hlock->prev_chain_key);
3879 			return;
3880 		}
3881 
3882 		/*
3883 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3884 		 * it registered lock class index?
3885 		 */
3886 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3887 			return;
3888 
3889 		if (prev_hlock && (prev_hlock->irq_context !=
3890 							hlock->irq_context))
3891 			chain_key = INITIAL_CHAIN_KEY;
3892 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3893 		prev_hlock = hlock;
3894 	}
3895 	if (chain_key != curr->curr_chain_key) {
3896 		debug_locks_off();
3897 		/*
3898 		 * More smoking hash instead of calculating it, damn see these
3899 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3900 		 */
3901 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3902 			curr->lockdep_depth, i,
3903 			(unsigned long long)chain_key,
3904 			(unsigned long long)curr->curr_chain_key);
3905 	}
3906 #endif
3907 }
3908 
3909 #ifdef CONFIG_PROVE_LOCKING
3910 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3911 		     enum lock_usage_bit new_bit);
3912 
3913 static void print_usage_bug_scenario(struct held_lock *lock)
3914 {
3915 	struct lock_class *class = hlock_class(lock);
3916 
3917 	printk(" Possible unsafe locking scenario:\n\n");
3918 	printk("       CPU0\n");
3919 	printk("       ----\n");
3920 	printk("  lock(");
3921 	__print_lock_name(class);
3922 	printk(KERN_CONT ");\n");
3923 	printk("  <Interrupt>\n");
3924 	printk("    lock(");
3925 	__print_lock_name(class);
3926 	printk(KERN_CONT ");\n");
3927 	printk("\n *** DEADLOCK ***\n\n");
3928 }
3929 
3930 static void
3931 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3932 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3933 {
3934 	if (!debug_locks_off() || debug_locks_silent)
3935 		return;
3936 
3937 	pr_warn("\n");
3938 	pr_warn("================================\n");
3939 	pr_warn("WARNING: inconsistent lock state\n");
3940 	print_kernel_ident();
3941 	pr_warn("--------------------------------\n");
3942 
3943 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3944 		usage_str[prev_bit], usage_str[new_bit]);
3945 
3946 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3947 		curr->comm, task_pid_nr(curr),
3948 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3949 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3950 		lockdep_hardirqs_enabled(),
3951 		lockdep_softirqs_enabled(curr));
3952 	print_lock(this);
3953 
3954 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3955 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3956 
3957 	print_irqtrace_events(curr);
3958 	pr_warn("\nother info that might help us debug this:\n");
3959 	print_usage_bug_scenario(this);
3960 
3961 	lockdep_print_held_locks(curr);
3962 
3963 	pr_warn("\nstack backtrace:\n");
3964 	dump_stack();
3965 }
3966 
3967 /*
3968  * Print out an error if an invalid bit is set:
3969  */
3970 static inline int
3971 valid_state(struct task_struct *curr, struct held_lock *this,
3972 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3973 {
3974 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3975 		graph_unlock();
3976 		print_usage_bug(curr, this, bad_bit, new_bit);
3977 		return 0;
3978 	}
3979 	return 1;
3980 }
3981 
3982 
3983 /*
3984  * print irq inversion bug:
3985  */
3986 static void
3987 print_irq_inversion_bug(struct task_struct *curr,
3988 			struct lock_list *root, struct lock_list *other,
3989 			struct held_lock *this, int forwards,
3990 			const char *irqclass)
3991 {
3992 	struct lock_list *entry = other;
3993 	struct lock_list *middle = NULL;
3994 	int depth;
3995 
3996 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3997 		return;
3998 
3999 	pr_warn("\n");
4000 	pr_warn("========================================================\n");
4001 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
4002 	print_kernel_ident();
4003 	pr_warn("--------------------------------------------------------\n");
4004 	pr_warn("%s/%d just changed the state of lock:\n",
4005 		curr->comm, task_pid_nr(curr));
4006 	print_lock(this);
4007 	if (forwards)
4008 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
4009 	else
4010 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
4011 	print_lock_name(other->class);
4012 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
4013 
4014 	pr_warn("\nother info that might help us debug this:\n");
4015 
4016 	/* Find a middle lock (if one exists) */
4017 	depth = get_lock_depth(other);
4018 	do {
4019 		if (depth == 0 && (entry != root)) {
4020 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
4021 			break;
4022 		}
4023 		middle = entry;
4024 		entry = get_lock_parent(entry);
4025 		depth--;
4026 	} while (entry && entry != root && (depth >= 0));
4027 	if (forwards)
4028 		print_irq_lock_scenario(root, other,
4029 			middle ? middle->class : root->class, other->class);
4030 	else
4031 		print_irq_lock_scenario(other, root,
4032 			middle ? middle->class : other->class, root->class);
4033 
4034 	lockdep_print_held_locks(curr);
4035 
4036 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
4037 	root->trace = save_trace();
4038 	if (!root->trace)
4039 		return;
4040 	print_shortest_lock_dependencies(other, root);
4041 
4042 	pr_warn("\nstack backtrace:\n");
4043 	dump_stack();
4044 }
4045 
4046 /*
4047  * Prove that in the forwards-direction subgraph starting at <this>
4048  * there is no lock matching <mask>:
4049  */
4050 static int
4051 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4052 		     enum lock_usage_bit bit)
4053 {
4054 	enum bfs_result ret;
4055 	struct lock_list root;
4056 	struct lock_list *target_entry;
4057 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4058 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4059 
4060 	bfs_init_root(&root, this);
4061 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
4062 	if (bfs_error(ret)) {
4063 		print_bfs_bug(ret);
4064 		return 0;
4065 	}
4066 	if (ret == BFS_RNOMATCH)
4067 		return 1;
4068 
4069 	/* Check whether write or read usage is the match */
4070 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4071 		print_irq_inversion_bug(curr, &root, target_entry,
4072 					this, 1, state_name(bit));
4073 	} else {
4074 		print_irq_inversion_bug(curr, &root, target_entry,
4075 					this, 1, state_name(read_bit));
4076 	}
4077 
4078 	return 0;
4079 }
4080 
4081 /*
4082  * Prove that in the backwards-direction subgraph starting at <this>
4083  * there is no lock matching <mask>:
4084  */
4085 static int
4086 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4087 		      enum lock_usage_bit bit)
4088 {
4089 	enum bfs_result ret;
4090 	struct lock_list root;
4091 	struct lock_list *target_entry;
4092 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4093 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4094 
4095 	bfs_init_rootb(&root, this);
4096 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
4097 	if (bfs_error(ret)) {
4098 		print_bfs_bug(ret);
4099 		return 0;
4100 	}
4101 	if (ret == BFS_RNOMATCH)
4102 		return 1;
4103 
4104 	/* Check whether write or read usage is the match */
4105 	if (target_entry->class->usage_mask & lock_flag(bit)) {
4106 		print_irq_inversion_bug(curr, &root, target_entry,
4107 					this, 0, state_name(bit));
4108 	} else {
4109 		print_irq_inversion_bug(curr, &root, target_entry,
4110 					this, 0, state_name(read_bit));
4111 	}
4112 
4113 	return 0;
4114 }
4115 
4116 void print_irqtrace_events(struct task_struct *curr)
4117 {
4118 	const struct irqtrace_events *trace = &curr->irqtrace;
4119 
4120 	printk("irq event stamp: %u\n", trace->irq_events);
4121 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
4122 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4123 		(void *)trace->hardirq_enable_ip);
4124 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4125 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4126 		(void *)trace->hardirq_disable_ip);
4127 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
4128 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4129 		(void *)trace->softirq_enable_ip);
4130 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4131 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4132 		(void *)trace->softirq_disable_ip);
4133 }
4134 
4135 static int HARDIRQ_verbose(struct lock_class *class)
4136 {
4137 #if HARDIRQ_VERBOSE
4138 	return class_filter(class);
4139 #endif
4140 	return 0;
4141 }
4142 
4143 static int SOFTIRQ_verbose(struct lock_class *class)
4144 {
4145 #if SOFTIRQ_VERBOSE
4146 	return class_filter(class);
4147 #endif
4148 	return 0;
4149 }
4150 
4151 static int (*state_verbose_f[])(struct lock_class *class) = {
4152 #define LOCKDEP_STATE(__STATE) \
4153 	__STATE##_verbose,
4154 #include "lockdep_states.h"
4155 #undef LOCKDEP_STATE
4156 };
4157 
4158 static inline int state_verbose(enum lock_usage_bit bit,
4159 				struct lock_class *class)
4160 {
4161 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4162 }
4163 
4164 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4165 			     enum lock_usage_bit bit, const char *name);
4166 
4167 static int
4168 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4169 		enum lock_usage_bit new_bit)
4170 {
4171 	int excl_bit = exclusive_bit(new_bit);
4172 	int read = new_bit & LOCK_USAGE_READ_MASK;
4173 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4174 
4175 	/*
4176 	 * Validate that this particular lock does not have conflicting
4177 	 * usage states.
4178 	 */
4179 	if (!valid_state(curr, this, new_bit, excl_bit))
4180 		return 0;
4181 
4182 	/*
4183 	 * Check for read in write conflicts
4184 	 */
4185 	if (!read && !valid_state(curr, this, new_bit,
4186 				  excl_bit + LOCK_USAGE_READ_MASK))
4187 		return 0;
4188 
4189 
4190 	/*
4191 	 * Validate that the lock dependencies don't have conflicting usage
4192 	 * states.
4193 	 */
4194 	if (dir) {
4195 		/*
4196 		 * mark ENABLED has to look backwards -- to ensure no dependee
4197 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4198 		 */
4199 		if (!check_usage_backwards(curr, this, excl_bit))
4200 			return 0;
4201 	} else {
4202 		/*
4203 		 * mark USED_IN has to look forwards -- to ensure no dependency
4204 		 * has ENABLED state, which would allow recursion deadlocks.
4205 		 */
4206 		if (!check_usage_forwards(curr, this, excl_bit))
4207 			return 0;
4208 	}
4209 
4210 	if (state_verbose(new_bit, hlock_class(this)))
4211 		return 2;
4212 
4213 	return 1;
4214 }
4215 
4216 /*
4217  * Mark all held locks with a usage bit:
4218  */
4219 static int
4220 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4221 {
4222 	struct held_lock *hlock;
4223 	int i;
4224 
4225 	for (i = 0; i < curr->lockdep_depth; i++) {
4226 		enum lock_usage_bit hlock_bit = base_bit;
4227 		hlock = curr->held_locks + i;
4228 
4229 		if (hlock->read)
4230 			hlock_bit += LOCK_USAGE_READ_MASK;
4231 
4232 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4233 
4234 		if (!hlock->check)
4235 			continue;
4236 
4237 		if (!mark_lock(curr, hlock, hlock_bit))
4238 			return 0;
4239 	}
4240 
4241 	return 1;
4242 }
4243 
4244 /*
4245  * Hardirqs will be enabled:
4246  */
4247 static void __trace_hardirqs_on_caller(void)
4248 {
4249 	struct task_struct *curr = current;
4250 
4251 	/*
4252 	 * We are going to turn hardirqs on, so set the
4253 	 * usage bit for all held locks:
4254 	 */
4255 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4256 		return;
4257 	/*
4258 	 * If we have softirqs enabled, then set the usage
4259 	 * bit for all held locks. (disabled hardirqs prevented
4260 	 * this bit from being set before)
4261 	 */
4262 	if (curr->softirqs_enabled)
4263 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4264 }
4265 
4266 /**
4267  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4268  *
4269  * Invoked before a possible transition to RCU idle from exit to user or
4270  * guest mode. This ensures that all RCU operations are done before RCU
4271  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4272  * invoked to set the final state.
4273  */
4274 void lockdep_hardirqs_on_prepare(void)
4275 {
4276 	if (unlikely(!debug_locks))
4277 		return;
4278 
4279 	/*
4280 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4281 	 */
4282 	if (unlikely(in_nmi()))
4283 		return;
4284 
4285 	if (unlikely(this_cpu_read(lockdep_recursion)))
4286 		return;
4287 
4288 	if (unlikely(lockdep_hardirqs_enabled())) {
4289 		/*
4290 		 * Neither irq nor preemption are disabled here
4291 		 * so this is racy by nature but losing one hit
4292 		 * in a stat is not a big deal.
4293 		 */
4294 		__debug_atomic_inc(redundant_hardirqs_on);
4295 		return;
4296 	}
4297 
4298 	/*
4299 	 * We're enabling irqs and according to our state above irqs weren't
4300 	 * already enabled, yet we find the hardware thinks they are in fact
4301 	 * enabled.. someone messed up their IRQ state tracing.
4302 	 */
4303 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4304 		return;
4305 
4306 	/*
4307 	 * See the fine text that goes along with this variable definition.
4308 	 */
4309 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4310 		return;
4311 
4312 	/*
4313 	 * Can't allow enabling interrupts while in an interrupt handler,
4314 	 * that's general bad form and such. Recursion, limited stack etc..
4315 	 */
4316 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4317 		return;
4318 
4319 	current->hardirq_chain_key = current->curr_chain_key;
4320 
4321 	lockdep_recursion_inc();
4322 	__trace_hardirqs_on_caller();
4323 	lockdep_recursion_finish();
4324 }
4325 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4326 
4327 void noinstr lockdep_hardirqs_on(unsigned long ip)
4328 {
4329 	struct irqtrace_events *trace = &current->irqtrace;
4330 
4331 	if (unlikely(!debug_locks))
4332 		return;
4333 
4334 	/*
4335 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4336 	 * tracking state and hardware state are out of sync.
4337 	 *
4338 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4339 	 * and not rely on hardware state like normal interrupts.
4340 	 */
4341 	if (unlikely(in_nmi())) {
4342 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4343 			return;
4344 
4345 		/*
4346 		 * Skip:
4347 		 *  - recursion check, because NMI can hit lockdep;
4348 		 *  - hardware state check, because above;
4349 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4350 		 */
4351 		goto skip_checks;
4352 	}
4353 
4354 	if (unlikely(this_cpu_read(lockdep_recursion)))
4355 		return;
4356 
4357 	if (lockdep_hardirqs_enabled()) {
4358 		/*
4359 		 * Neither irq nor preemption are disabled here
4360 		 * so this is racy by nature but losing one hit
4361 		 * in a stat is not a big deal.
4362 		 */
4363 		__debug_atomic_inc(redundant_hardirqs_on);
4364 		return;
4365 	}
4366 
4367 	/*
4368 	 * We're enabling irqs and according to our state above irqs weren't
4369 	 * already enabled, yet we find the hardware thinks they are in fact
4370 	 * enabled.. someone messed up their IRQ state tracing.
4371 	 */
4372 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4373 		return;
4374 
4375 	/*
4376 	 * Ensure the lock stack remained unchanged between
4377 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4378 	 */
4379 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4380 			    current->curr_chain_key);
4381 
4382 skip_checks:
4383 	/* we'll do an OFF -> ON transition: */
4384 	__this_cpu_write(hardirqs_enabled, 1);
4385 	trace->hardirq_enable_ip = ip;
4386 	trace->hardirq_enable_event = ++trace->irq_events;
4387 	debug_atomic_inc(hardirqs_on_events);
4388 }
4389 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4390 
4391 /*
4392  * Hardirqs were disabled:
4393  */
4394 void noinstr lockdep_hardirqs_off(unsigned long ip)
4395 {
4396 	if (unlikely(!debug_locks))
4397 		return;
4398 
4399 	/*
4400 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4401 	 * they will restore the software state. This ensures the software
4402 	 * state is consistent inside NMIs as well.
4403 	 */
4404 	if (in_nmi()) {
4405 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4406 			return;
4407 	} else if (__this_cpu_read(lockdep_recursion))
4408 		return;
4409 
4410 	/*
4411 	 * So we're supposed to get called after you mask local IRQs, but for
4412 	 * some reason the hardware doesn't quite think you did a proper job.
4413 	 */
4414 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4415 		return;
4416 
4417 	if (lockdep_hardirqs_enabled()) {
4418 		struct irqtrace_events *trace = &current->irqtrace;
4419 
4420 		/*
4421 		 * We have done an ON -> OFF transition:
4422 		 */
4423 		__this_cpu_write(hardirqs_enabled, 0);
4424 		trace->hardirq_disable_ip = ip;
4425 		trace->hardirq_disable_event = ++trace->irq_events;
4426 		debug_atomic_inc(hardirqs_off_events);
4427 	} else {
4428 		debug_atomic_inc(redundant_hardirqs_off);
4429 	}
4430 }
4431 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4432 
4433 /*
4434  * Softirqs will be enabled:
4435  */
4436 void lockdep_softirqs_on(unsigned long ip)
4437 {
4438 	struct irqtrace_events *trace = &current->irqtrace;
4439 
4440 	if (unlikely(!lockdep_enabled()))
4441 		return;
4442 
4443 	/*
4444 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4445 	 * funny state and nesting things.
4446 	 */
4447 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4448 		return;
4449 
4450 	if (current->softirqs_enabled) {
4451 		debug_atomic_inc(redundant_softirqs_on);
4452 		return;
4453 	}
4454 
4455 	lockdep_recursion_inc();
4456 	/*
4457 	 * We'll do an OFF -> ON transition:
4458 	 */
4459 	current->softirqs_enabled = 1;
4460 	trace->softirq_enable_ip = ip;
4461 	trace->softirq_enable_event = ++trace->irq_events;
4462 	debug_atomic_inc(softirqs_on_events);
4463 	/*
4464 	 * We are going to turn softirqs on, so set the
4465 	 * usage bit for all held locks, if hardirqs are
4466 	 * enabled too:
4467 	 */
4468 	if (lockdep_hardirqs_enabled())
4469 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4470 	lockdep_recursion_finish();
4471 }
4472 
4473 /*
4474  * Softirqs were disabled:
4475  */
4476 void lockdep_softirqs_off(unsigned long ip)
4477 {
4478 	if (unlikely(!lockdep_enabled()))
4479 		return;
4480 
4481 	/*
4482 	 * We fancy IRQs being disabled here, see softirq.c
4483 	 */
4484 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4485 		return;
4486 
4487 	if (current->softirqs_enabled) {
4488 		struct irqtrace_events *trace = &current->irqtrace;
4489 
4490 		/*
4491 		 * We have done an ON -> OFF transition:
4492 		 */
4493 		current->softirqs_enabled = 0;
4494 		trace->softirq_disable_ip = ip;
4495 		trace->softirq_disable_event = ++trace->irq_events;
4496 		debug_atomic_inc(softirqs_off_events);
4497 		/*
4498 		 * Whoops, we wanted softirqs off, so why aren't they?
4499 		 */
4500 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4501 	} else
4502 		debug_atomic_inc(redundant_softirqs_off);
4503 }
4504 
4505 static int
4506 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4507 {
4508 	if (!check)
4509 		goto lock_used;
4510 
4511 	/*
4512 	 * If non-trylock use in a hardirq or softirq context, then
4513 	 * mark the lock as used in these contexts:
4514 	 */
4515 	if (!hlock->trylock) {
4516 		if (hlock->read) {
4517 			if (lockdep_hardirq_context())
4518 				if (!mark_lock(curr, hlock,
4519 						LOCK_USED_IN_HARDIRQ_READ))
4520 					return 0;
4521 			if (curr->softirq_context)
4522 				if (!mark_lock(curr, hlock,
4523 						LOCK_USED_IN_SOFTIRQ_READ))
4524 					return 0;
4525 		} else {
4526 			if (lockdep_hardirq_context())
4527 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4528 					return 0;
4529 			if (curr->softirq_context)
4530 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4531 					return 0;
4532 		}
4533 	}
4534 	if (!hlock->hardirqs_off) {
4535 		if (hlock->read) {
4536 			if (!mark_lock(curr, hlock,
4537 					LOCK_ENABLED_HARDIRQ_READ))
4538 				return 0;
4539 			if (curr->softirqs_enabled)
4540 				if (!mark_lock(curr, hlock,
4541 						LOCK_ENABLED_SOFTIRQ_READ))
4542 					return 0;
4543 		} else {
4544 			if (!mark_lock(curr, hlock,
4545 					LOCK_ENABLED_HARDIRQ))
4546 				return 0;
4547 			if (curr->softirqs_enabled)
4548 				if (!mark_lock(curr, hlock,
4549 						LOCK_ENABLED_SOFTIRQ))
4550 					return 0;
4551 		}
4552 	}
4553 
4554 lock_used:
4555 	/* mark it as used: */
4556 	if (!mark_lock(curr, hlock, LOCK_USED))
4557 		return 0;
4558 
4559 	return 1;
4560 }
4561 
4562 static inline unsigned int task_irq_context(struct task_struct *task)
4563 {
4564 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4565 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4566 }
4567 
4568 static int separate_irq_context(struct task_struct *curr,
4569 		struct held_lock *hlock)
4570 {
4571 	unsigned int depth = curr->lockdep_depth;
4572 
4573 	/*
4574 	 * Keep track of points where we cross into an interrupt context:
4575 	 */
4576 	if (depth) {
4577 		struct held_lock *prev_hlock;
4578 
4579 		prev_hlock = curr->held_locks + depth-1;
4580 		/*
4581 		 * If we cross into another context, reset the
4582 		 * hash key (this also prevents the checking and the
4583 		 * adding of the dependency to 'prev'):
4584 		 */
4585 		if (prev_hlock->irq_context != hlock->irq_context)
4586 			return 1;
4587 	}
4588 	return 0;
4589 }
4590 
4591 /*
4592  * Mark a lock with a usage bit, and validate the state transition:
4593  */
4594 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4595 			     enum lock_usage_bit new_bit)
4596 {
4597 	unsigned int new_mask, ret = 1;
4598 
4599 	if (new_bit >= LOCK_USAGE_STATES) {
4600 		DEBUG_LOCKS_WARN_ON(1);
4601 		return 0;
4602 	}
4603 
4604 	if (new_bit == LOCK_USED && this->read)
4605 		new_bit = LOCK_USED_READ;
4606 
4607 	new_mask = 1 << new_bit;
4608 
4609 	/*
4610 	 * If already set then do not dirty the cacheline,
4611 	 * nor do any checks:
4612 	 */
4613 	if (likely(hlock_class(this)->usage_mask & new_mask))
4614 		return 1;
4615 
4616 	if (!graph_lock())
4617 		return 0;
4618 	/*
4619 	 * Make sure we didn't race:
4620 	 */
4621 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4622 		goto unlock;
4623 
4624 	if (!hlock_class(this)->usage_mask)
4625 		debug_atomic_dec(nr_unused_locks);
4626 
4627 	hlock_class(this)->usage_mask |= new_mask;
4628 
4629 	if (new_bit < LOCK_TRACE_STATES) {
4630 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4631 			return 0;
4632 	}
4633 
4634 	if (new_bit < LOCK_USED) {
4635 		ret = mark_lock_irq(curr, this, new_bit);
4636 		if (!ret)
4637 			return 0;
4638 	}
4639 
4640 unlock:
4641 	graph_unlock();
4642 
4643 	/*
4644 	 * We must printk outside of the graph_lock:
4645 	 */
4646 	if (ret == 2) {
4647 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4648 		print_lock(this);
4649 		print_irqtrace_events(curr);
4650 		dump_stack();
4651 	}
4652 
4653 	return ret;
4654 }
4655 
4656 static inline short task_wait_context(struct task_struct *curr)
4657 {
4658 	/*
4659 	 * Set appropriate wait type for the context; for IRQs we have to take
4660 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4661 	 */
4662 	if (lockdep_hardirq_context()) {
4663 		/*
4664 		 * Check if force_irqthreads will run us threaded.
4665 		 */
4666 		if (curr->hardirq_threaded || curr->irq_config)
4667 			return LD_WAIT_CONFIG;
4668 
4669 		return LD_WAIT_SPIN;
4670 	} else if (curr->softirq_context) {
4671 		/*
4672 		 * Softirqs are always threaded.
4673 		 */
4674 		return LD_WAIT_CONFIG;
4675 	}
4676 
4677 	return LD_WAIT_MAX;
4678 }
4679 
4680 static int
4681 print_lock_invalid_wait_context(struct task_struct *curr,
4682 				struct held_lock *hlock)
4683 {
4684 	short curr_inner;
4685 
4686 	if (!debug_locks_off())
4687 		return 0;
4688 	if (debug_locks_silent)
4689 		return 0;
4690 
4691 	pr_warn("\n");
4692 	pr_warn("=============================\n");
4693 	pr_warn("[ BUG: Invalid wait context ]\n");
4694 	print_kernel_ident();
4695 	pr_warn("-----------------------------\n");
4696 
4697 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4698 	print_lock(hlock);
4699 
4700 	pr_warn("other info that might help us debug this:\n");
4701 
4702 	curr_inner = task_wait_context(curr);
4703 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4704 
4705 	lockdep_print_held_locks(curr);
4706 
4707 	pr_warn("stack backtrace:\n");
4708 	dump_stack();
4709 
4710 	return 0;
4711 }
4712 
4713 /*
4714  * Verify the wait_type context.
4715  *
4716  * This check validates we take locks in the right wait-type order; that is it
4717  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4718  * acquire spinlocks inside raw_spinlocks and the sort.
4719  *
4720  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4721  * can be taken from (pretty much) any context but also has constraints.
4722  * However when taken in a stricter environment the RCU lock does not loosen
4723  * the constraints.
4724  *
4725  * Therefore we must look for the strictest environment in the lock stack and
4726  * compare that to the lock we're trying to acquire.
4727  */
4728 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4729 {
4730 	u8 next_inner = hlock_class(next)->wait_type_inner;
4731 	u8 next_outer = hlock_class(next)->wait_type_outer;
4732 	u8 curr_inner;
4733 	int depth;
4734 
4735 	if (!next_inner || next->trylock)
4736 		return 0;
4737 
4738 	if (!next_outer)
4739 		next_outer = next_inner;
4740 
4741 	/*
4742 	 * Find start of current irq_context..
4743 	 */
4744 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4745 		struct held_lock *prev = curr->held_locks + depth;
4746 		if (prev->irq_context != next->irq_context)
4747 			break;
4748 	}
4749 	depth++;
4750 
4751 	curr_inner = task_wait_context(curr);
4752 
4753 	for (; depth < curr->lockdep_depth; depth++) {
4754 		struct held_lock *prev = curr->held_locks + depth;
4755 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4756 
4757 		if (prev_inner) {
4758 			/*
4759 			 * We can have a bigger inner than a previous one
4760 			 * when outer is smaller than inner, as with RCU.
4761 			 *
4762 			 * Also due to trylocks.
4763 			 */
4764 			curr_inner = min(curr_inner, prev_inner);
4765 		}
4766 	}
4767 
4768 	if (next_outer > curr_inner)
4769 		return print_lock_invalid_wait_context(curr, next);
4770 
4771 	return 0;
4772 }
4773 
4774 #else /* CONFIG_PROVE_LOCKING */
4775 
4776 static inline int
4777 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4778 {
4779 	return 1;
4780 }
4781 
4782 static inline unsigned int task_irq_context(struct task_struct *task)
4783 {
4784 	return 0;
4785 }
4786 
4787 static inline int separate_irq_context(struct task_struct *curr,
4788 		struct held_lock *hlock)
4789 {
4790 	return 0;
4791 }
4792 
4793 static inline int check_wait_context(struct task_struct *curr,
4794 				     struct held_lock *next)
4795 {
4796 	return 0;
4797 }
4798 
4799 #endif /* CONFIG_PROVE_LOCKING */
4800 
4801 /*
4802  * Initialize a lock instance's lock-class mapping info:
4803  */
4804 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4805 			    struct lock_class_key *key, int subclass,
4806 			    u8 inner, u8 outer, u8 lock_type)
4807 {
4808 	int i;
4809 
4810 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4811 		lock->class_cache[i] = NULL;
4812 
4813 #ifdef CONFIG_LOCK_STAT
4814 	lock->cpu = raw_smp_processor_id();
4815 #endif
4816 
4817 	/*
4818 	 * Can't be having no nameless bastards around this place!
4819 	 */
4820 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4821 		lock->name = "NULL";
4822 		return;
4823 	}
4824 
4825 	lock->name = name;
4826 
4827 	lock->wait_type_outer = outer;
4828 	lock->wait_type_inner = inner;
4829 	lock->lock_type = lock_type;
4830 
4831 	/*
4832 	 * No key, no joy, we need to hash something.
4833 	 */
4834 	if (DEBUG_LOCKS_WARN_ON(!key))
4835 		return;
4836 	/*
4837 	 * Sanity check, the lock-class key must either have been allocated
4838 	 * statically or must have been registered as a dynamic key.
4839 	 */
4840 	if (!static_obj(key) && !is_dynamic_key(key)) {
4841 		if (debug_locks)
4842 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4843 		DEBUG_LOCKS_WARN_ON(1);
4844 		return;
4845 	}
4846 	lock->key = key;
4847 
4848 	if (unlikely(!debug_locks))
4849 		return;
4850 
4851 	if (subclass) {
4852 		unsigned long flags;
4853 
4854 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4855 			return;
4856 
4857 		raw_local_irq_save(flags);
4858 		lockdep_recursion_inc();
4859 		register_lock_class(lock, subclass, 1);
4860 		lockdep_recursion_finish();
4861 		raw_local_irq_restore(flags);
4862 	}
4863 }
4864 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4865 
4866 struct lock_class_key __lockdep_no_validate__;
4867 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4868 
4869 static void
4870 print_lock_nested_lock_not_held(struct task_struct *curr,
4871 				struct held_lock *hlock)
4872 {
4873 	if (!debug_locks_off())
4874 		return;
4875 	if (debug_locks_silent)
4876 		return;
4877 
4878 	pr_warn("\n");
4879 	pr_warn("==================================\n");
4880 	pr_warn("WARNING: Nested lock was not taken\n");
4881 	print_kernel_ident();
4882 	pr_warn("----------------------------------\n");
4883 
4884 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4885 	print_lock(hlock);
4886 
4887 	pr_warn("\nbut this task is not holding:\n");
4888 	pr_warn("%s\n", hlock->nest_lock->name);
4889 
4890 	pr_warn("\nstack backtrace:\n");
4891 	dump_stack();
4892 
4893 	pr_warn("\nother info that might help us debug this:\n");
4894 	lockdep_print_held_locks(curr);
4895 
4896 	pr_warn("\nstack backtrace:\n");
4897 	dump_stack();
4898 }
4899 
4900 static int __lock_is_held(const struct lockdep_map *lock, int read);
4901 
4902 /*
4903  * This gets called for every mutex_lock*()/spin_lock*() operation.
4904  * We maintain the dependency maps and validate the locking attempt:
4905  *
4906  * The callers must make sure that IRQs are disabled before calling it,
4907  * otherwise we could get an interrupt which would want to take locks,
4908  * which would end up in lockdep again.
4909  */
4910 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4911 			  int trylock, int read, int check, int hardirqs_off,
4912 			  struct lockdep_map *nest_lock, unsigned long ip,
4913 			  int references, int pin_count)
4914 {
4915 	struct task_struct *curr = current;
4916 	struct lock_class *class = NULL;
4917 	struct held_lock *hlock;
4918 	unsigned int depth;
4919 	int chain_head = 0;
4920 	int class_idx;
4921 	u64 chain_key;
4922 
4923 	if (unlikely(!debug_locks))
4924 		return 0;
4925 
4926 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4927 		check = 0;
4928 
4929 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4930 		class = lock->class_cache[subclass];
4931 	/*
4932 	 * Not cached?
4933 	 */
4934 	if (unlikely(!class)) {
4935 		class = register_lock_class(lock, subclass, 0);
4936 		if (!class)
4937 			return 0;
4938 	}
4939 
4940 	debug_class_ops_inc(class);
4941 
4942 	if (very_verbose(class)) {
4943 		printk("\nacquire class [%px] %s", class->key, class->name);
4944 		if (class->name_version > 1)
4945 			printk(KERN_CONT "#%d", class->name_version);
4946 		printk(KERN_CONT "\n");
4947 		dump_stack();
4948 	}
4949 
4950 	/*
4951 	 * Add the lock to the list of currently held locks.
4952 	 * (we dont increase the depth just yet, up until the
4953 	 * dependency checks are done)
4954 	 */
4955 	depth = curr->lockdep_depth;
4956 	/*
4957 	 * Ran out of static storage for our per-task lock stack again have we?
4958 	 */
4959 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4960 		return 0;
4961 
4962 	class_idx = class - lock_classes;
4963 
4964 	if (depth) { /* we're holding locks */
4965 		hlock = curr->held_locks + depth - 1;
4966 		if (hlock->class_idx == class_idx && nest_lock) {
4967 			if (!references)
4968 				references++;
4969 
4970 			if (!hlock->references)
4971 				hlock->references++;
4972 
4973 			hlock->references += references;
4974 
4975 			/* Overflow */
4976 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4977 				return 0;
4978 
4979 			return 2;
4980 		}
4981 	}
4982 
4983 	hlock = curr->held_locks + depth;
4984 	/*
4985 	 * Plain impossible, we just registered it and checked it weren't no
4986 	 * NULL like.. I bet this mushroom I ate was good!
4987 	 */
4988 	if (DEBUG_LOCKS_WARN_ON(!class))
4989 		return 0;
4990 	hlock->class_idx = class_idx;
4991 	hlock->acquire_ip = ip;
4992 	hlock->instance = lock;
4993 	hlock->nest_lock = nest_lock;
4994 	hlock->irq_context = task_irq_context(curr);
4995 	hlock->trylock = trylock;
4996 	hlock->read = read;
4997 	hlock->check = check;
4998 	hlock->hardirqs_off = !!hardirqs_off;
4999 	hlock->references = references;
5000 #ifdef CONFIG_LOCK_STAT
5001 	hlock->waittime_stamp = 0;
5002 	hlock->holdtime_stamp = lockstat_clock();
5003 #endif
5004 	hlock->pin_count = pin_count;
5005 
5006 	if (check_wait_context(curr, hlock))
5007 		return 0;
5008 
5009 	/* Initialize the lock usage bit */
5010 	if (!mark_usage(curr, hlock, check))
5011 		return 0;
5012 
5013 	/*
5014 	 * Calculate the chain hash: it's the combined hash of all the
5015 	 * lock keys along the dependency chain. We save the hash value
5016 	 * at every step so that we can get the current hash easily
5017 	 * after unlock. The chain hash is then used to cache dependency
5018 	 * results.
5019 	 *
5020 	 * The 'key ID' is what is the most compact key value to drive
5021 	 * the hash, not class->key.
5022 	 */
5023 	/*
5024 	 * Whoops, we did it again.. class_idx is invalid.
5025 	 */
5026 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
5027 		return 0;
5028 
5029 	chain_key = curr->curr_chain_key;
5030 	if (!depth) {
5031 		/*
5032 		 * How can we have a chain hash when we ain't got no keys?!
5033 		 */
5034 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
5035 			return 0;
5036 		chain_head = 1;
5037 	}
5038 
5039 	hlock->prev_chain_key = chain_key;
5040 	if (separate_irq_context(curr, hlock)) {
5041 		chain_key = INITIAL_CHAIN_KEY;
5042 		chain_head = 1;
5043 	}
5044 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5045 
5046 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5047 		print_lock_nested_lock_not_held(curr, hlock);
5048 		return 0;
5049 	}
5050 
5051 	if (!debug_locks_silent) {
5052 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5053 		WARN_ON_ONCE(!hlock_class(hlock)->key);
5054 	}
5055 
5056 	if (!validate_chain(curr, hlock, chain_head, chain_key))
5057 		return 0;
5058 
5059 	curr->curr_chain_key = chain_key;
5060 	curr->lockdep_depth++;
5061 	check_chain_key(curr);
5062 #ifdef CONFIG_DEBUG_LOCKDEP
5063 	if (unlikely(!debug_locks))
5064 		return 0;
5065 #endif
5066 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5067 		debug_locks_off();
5068 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5069 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
5070 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
5071 
5072 		lockdep_print_held_locks(current);
5073 		debug_show_all_locks();
5074 		dump_stack();
5075 
5076 		return 0;
5077 	}
5078 
5079 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5080 		max_lockdep_depth = curr->lockdep_depth;
5081 
5082 	return 1;
5083 }
5084 
5085 static void print_unlock_imbalance_bug(struct task_struct *curr,
5086 				       struct lockdep_map *lock,
5087 				       unsigned long ip)
5088 {
5089 	if (!debug_locks_off())
5090 		return;
5091 	if (debug_locks_silent)
5092 		return;
5093 
5094 	pr_warn("\n");
5095 	pr_warn("=====================================\n");
5096 	pr_warn("WARNING: bad unlock balance detected!\n");
5097 	print_kernel_ident();
5098 	pr_warn("-------------------------------------\n");
5099 	pr_warn("%s/%d is trying to release lock (",
5100 		curr->comm, task_pid_nr(curr));
5101 	print_lockdep_cache(lock);
5102 	pr_cont(") at:\n");
5103 	print_ip_sym(KERN_WARNING, ip);
5104 	pr_warn("but there are no more locks to release!\n");
5105 	pr_warn("\nother info that might help us debug this:\n");
5106 	lockdep_print_held_locks(curr);
5107 
5108 	pr_warn("\nstack backtrace:\n");
5109 	dump_stack();
5110 }
5111 
5112 static noinstr int match_held_lock(const struct held_lock *hlock,
5113 				   const struct lockdep_map *lock)
5114 {
5115 	if (hlock->instance == lock)
5116 		return 1;
5117 
5118 	if (hlock->references) {
5119 		const struct lock_class *class = lock->class_cache[0];
5120 
5121 		if (!class)
5122 			class = look_up_lock_class(lock, 0);
5123 
5124 		/*
5125 		 * If look_up_lock_class() failed to find a class, we're trying
5126 		 * to test if we hold a lock that has never yet been acquired.
5127 		 * Clearly if the lock hasn't been acquired _ever_, we're not
5128 		 * holding it either, so report failure.
5129 		 */
5130 		if (!class)
5131 			return 0;
5132 
5133 		/*
5134 		 * References, but not a lock we're actually ref-counting?
5135 		 * State got messed up, follow the sites that change ->references
5136 		 * and try to make sense of it.
5137 		 */
5138 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5139 			return 0;
5140 
5141 		if (hlock->class_idx == class - lock_classes)
5142 			return 1;
5143 	}
5144 
5145 	return 0;
5146 }
5147 
5148 /* @depth must not be zero */
5149 static struct held_lock *find_held_lock(struct task_struct *curr,
5150 					struct lockdep_map *lock,
5151 					unsigned int depth, int *idx)
5152 {
5153 	struct held_lock *ret, *hlock, *prev_hlock;
5154 	int i;
5155 
5156 	i = depth - 1;
5157 	hlock = curr->held_locks + i;
5158 	ret = hlock;
5159 	if (match_held_lock(hlock, lock))
5160 		goto out;
5161 
5162 	ret = NULL;
5163 	for (i--, prev_hlock = hlock--;
5164 	     i >= 0;
5165 	     i--, prev_hlock = hlock--) {
5166 		/*
5167 		 * We must not cross into another context:
5168 		 */
5169 		if (prev_hlock->irq_context != hlock->irq_context) {
5170 			ret = NULL;
5171 			break;
5172 		}
5173 		if (match_held_lock(hlock, lock)) {
5174 			ret = hlock;
5175 			break;
5176 		}
5177 	}
5178 
5179 out:
5180 	*idx = i;
5181 	return ret;
5182 }
5183 
5184 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5185 				int idx, unsigned int *merged)
5186 {
5187 	struct held_lock *hlock;
5188 	int first_idx = idx;
5189 
5190 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5191 		return 0;
5192 
5193 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5194 		switch (__lock_acquire(hlock->instance,
5195 				    hlock_class(hlock)->subclass,
5196 				    hlock->trylock,
5197 				    hlock->read, hlock->check,
5198 				    hlock->hardirqs_off,
5199 				    hlock->nest_lock, hlock->acquire_ip,
5200 				    hlock->references, hlock->pin_count)) {
5201 		case 0:
5202 			return 1;
5203 		case 1:
5204 			break;
5205 		case 2:
5206 			*merged += (idx == first_idx);
5207 			break;
5208 		default:
5209 			WARN_ON(1);
5210 			return 0;
5211 		}
5212 	}
5213 	return 0;
5214 }
5215 
5216 static int
5217 __lock_set_class(struct lockdep_map *lock, const char *name,
5218 		 struct lock_class_key *key, unsigned int subclass,
5219 		 unsigned long ip)
5220 {
5221 	struct task_struct *curr = current;
5222 	unsigned int depth, merged = 0;
5223 	struct held_lock *hlock;
5224 	struct lock_class *class;
5225 	int i;
5226 
5227 	if (unlikely(!debug_locks))
5228 		return 0;
5229 
5230 	depth = curr->lockdep_depth;
5231 	/*
5232 	 * This function is about (re)setting the class of a held lock,
5233 	 * yet we're not actually holding any locks. Naughty user!
5234 	 */
5235 	if (DEBUG_LOCKS_WARN_ON(!depth))
5236 		return 0;
5237 
5238 	hlock = find_held_lock(curr, lock, depth, &i);
5239 	if (!hlock) {
5240 		print_unlock_imbalance_bug(curr, lock, ip);
5241 		return 0;
5242 	}
5243 
5244 	lockdep_init_map_type(lock, name, key, 0,
5245 			      lock->wait_type_inner,
5246 			      lock->wait_type_outer,
5247 			      lock->lock_type);
5248 	class = register_lock_class(lock, subclass, 0);
5249 	hlock->class_idx = class - lock_classes;
5250 
5251 	curr->lockdep_depth = i;
5252 	curr->curr_chain_key = hlock->prev_chain_key;
5253 
5254 	if (reacquire_held_locks(curr, depth, i, &merged))
5255 		return 0;
5256 
5257 	/*
5258 	 * I took it apart and put it back together again, except now I have
5259 	 * these 'spare' parts.. where shall I put them.
5260 	 */
5261 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5262 		return 0;
5263 	return 1;
5264 }
5265 
5266 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5267 {
5268 	struct task_struct *curr = current;
5269 	unsigned int depth, merged = 0;
5270 	struct held_lock *hlock;
5271 	int i;
5272 
5273 	if (unlikely(!debug_locks))
5274 		return 0;
5275 
5276 	depth = curr->lockdep_depth;
5277 	/*
5278 	 * This function is about (re)setting the class of a held lock,
5279 	 * yet we're not actually holding any locks. Naughty user!
5280 	 */
5281 	if (DEBUG_LOCKS_WARN_ON(!depth))
5282 		return 0;
5283 
5284 	hlock = find_held_lock(curr, lock, depth, &i);
5285 	if (!hlock) {
5286 		print_unlock_imbalance_bug(curr, lock, ip);
5287 		return 0;
5288 	}
5289 
5290 	curr->lockdep_depth = i;
5291 	curr->curr_chain_key = hlock->prev_chain_key;
5292 
5293 	WARN(hlock->read, "downgrading a read lock");
5294 	hlock->read = 1;
5295 	hlock->acquire_ip = ip;
5296 
5297 	if (reacquire_held_locks(curr, depth, i, &merged))
5298 		return 0;
5299 
5300 	/* Merging can't happen with unchanged classes.. */
5301 	if (DEBUG_LOCKS_WARN_ON(merged))
5302 		return 0;
5303 
5304 	/*
5305 	 * I took it apart and put it back together again, except now I have
5306 	 * these 'spare' parts.. where shall I put them.
5307 	 */
5308 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5309 		return 0;
5310 
5311 	return 1;
5312 }
5313 
5314 /*
5315  * Remove the lock from the list of currently held locks - this gets
5316  * called on mutex_unlock()/spin_unlock*() (or on a failed
5317  * mutex_lock_interruptible()).
5318  */
5319 static int
5320 __lock_release(struct lockdep_map *lock, unsigned long ip)
5321 {
5322 	struct task_struct *curr = current;
5323 	unsigned int depth, merged = 1;
5324 	struct held_lock *hlock;
5325 	int i;
5326 
5327 	if (unlikely(!debug_locks))
5328 		return 0;
5329 
5330 	depth = curr->lockdep_depth;
5331 	/*
5332 	 * So we're all set to release this lock.. wait what lock? We don't
5333 	 * own any locks, you've been drinking again?
5334 	 */
5335 	if (depth <= 0) {
5336 		print_unlock_imbalance_bug(curr, lock, ip);
5337 		return 0;
5338 	}
5339 
5340 	/*
5341 	 * Check whether the lock exists in the current stack
5342 	 * of held locks:
5343 	 */
5344 	hlock = find_held_lock(curr, lock, depth, &i);
5345 	if (!hlock) {
5346 		print_unlock_imbalance_bug(curr, lock, ip);
5347 		return 0;
5348 	}
5349 
5350 	if (hlock->instance == lock)
5351 		lock_release_holdtime(hlock);
5352 
5353 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5354 
5355 	if (hlock->references) {
5356 		hlock->references--;
5357 		if (hlock->references) {
5358 			/*
5359 			 * We had, and after removing one, still have
5360 			 * references, the current lock stack is still
5361 			 * valid. We're done!
5362 			 */
5363 			return 1;
5364 		}
5365 	}
5366 
5367 	/*
5368 	 * We have the right lock to unlock, 'hlock' points to it.
5369 	 * Now we remove it from the stack, and add back the other
5370 	 * entries (if any), recalculating the hash along the way:
5371 	 */
5372 
5373 	curr->lockdep_depth = i;
5374 	curr->curr_chain_key = hlock->prev_chain_key;
5375 
5376 	/*
5377 	 * The most likely case is when the unlock is on the innermost
5378 	 * lock. In this case, we are done!
5379 	 */
5380 	if (i == depth-1)
5381 		return 1;
5382 
5383 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5384 		return 0;
5385 
5386 	/*
5387 	 * We had N bottles of beer on the wall, we drank one, but now
5388 	 * there's not N-1 bottles of beer left on the wall...
5389 	 * Pouring two of the bottles together is acceptable.
5390 	 */
5391 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5392 
5393 	/*
5394 	 * Since reacquire_held_locks() would have called check_chain_key()
5395 	 * indirectly via __lock_acquire(), we don't need to do it again
5396 	 * on return.
5397 	 */
5398 	return 0;
5399 }
5400 
5401 static __always_inline
5402 int __lock_is_held(const struct lockdep_map *lock, int read)
5403 {
5404 	struct task_struct *curr = current;
5405 	int i;
5406 
5407 	for (i = 0; i < curr->lockdep_depth; i++) {
5408 		struct held_lock *hlock = curr->held_locks + i;
5409 
5410 		if (match_held_lock(hlock, lock)) {
5411 			if (read == -1 || !!hlock->read == read)
5412 				return LOCK_STATE_HELD;
5413 
5414 			return LOCK_STATE_NOT_HELD;
5415 		}
5416 	}
5417 
5418 	return LOCK_STATE_NOT_HELD;
5419 }
5420 
5421 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5422 {
5423 	struct pin_cookie cookie = NIL_COOKIE;
5424 	struct task_struct *curr = current;
5425 	int i;
5426 
5427 	if (unlikely(!debug_locks))
5428 		return cookie;
5429 
5430 	for (i = 0; i < curr->lockdep_depth; i++) {
5431 		struct held_lock *hlock = curr->held_locks + i;
5432 
5433 		if (match_held_lock(hlock, lock)) {
5434 			/*
5435 			 * Grab 16bits of randomness; this is sufficient to not
5436 			 * be guessable and still allows some pin nesting in
5437 			 * our u32 pin_count.
5438 			 */
5439 			cookie.val = 1 + (sched_clock() & 0xffff);
5440 			hlock->pin_count += cookie.val;
5441 			return cookie;
5442 		}
5443 	}
5444 
5445 	WARN(1, "pinning an unheld lock\n");
5446 	return cookie;
5447 }
5448 
5449 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5450 {
5451 	struct task_struct *curr = current;
5452 	int i;
5453 
5454 	if (unlikely(!debug_locks))
5455 		return;
5456 
5457 	for (i = 0; i < curr->lockdep_depth; i++) {
5458 		struct held_lock *hlock = curr->held_locks + i;
5459 
5460 		if (match_held_lock(hlock, lock)) {
5461 			hlock->pin_count += cookie.val;
5462 			return;
5463 		}
5464 	}
5465 
5466 	WARN(1, "pinning an unheld lock\n");
5467 }
5468 
5469 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5470 {
5471 	struct task_struct *curr = current;
5472 	int i;
5473 
5474 	if (unlikely(!debug_locks))
5475 		return;
5476 
5477 	for (i = 0; i < curr->lockdep_depth; i++) {
5478 		struct held_lock *hlock = curr->held_locks + i;
5479 
5480 		if (match_held_lock(hlock, lock)) {
5481 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5482 				return;
5483 
5484 			hlock->pin_count -= cookie.val;
5485 
5486 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5487 				hlock->pin_count = 0;
5488 
5489 			return;
5490 		}
5491 	}
5492 
5493 	WARN(1, "unpinning an unheld lock\n");
5494 }
5495 
5496 /*
5497  * Check whether we follow the irq-flags state precisely:
5498  */
5499 static noinstr void check_flags(unsigned long flags)
5500 {
5501 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5502 	if (!debug_locks)
5503 		return;
5504 
5505 	/* Get the warning out..  */
5506 	instrumentation_begin();
5507 
5508 	if (irqs_disabled_flags(flags)) {
5509 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5510 			printk("possible reason: unannotated irqs-off.\n");
5511 		}
5512 	} else {
5513 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5514 			printk("possible reason: unannotated irqs-on.\n");
5515 		}
5516 	}
5517 
5518 #ifndef CONFIG_PREEMPT_RT
5519 	/*
5520 	 * We dont accurately track softirq state in e.g.
5521 	 * hardirq contexts (such as on 4KSTACKS), so only
5522 	 * check if not in hardirq contexts:
5523 	 */
5524 	if (!hardirq_count()) {
5525 		if (softirq_count()) {
5526 			/* like the above, but with softirqs */
5527 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5528 		} else {
5529 			/* lick the above, does it taste good? */
5530 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5531 		}
5532 	}
5533 #endif
5534 
5535 	if (!debug_locks)
5536 		print_irqtrace_events(current);
5537 
5538 	instrumentation_end();
5539 #endif
5540 }
5541 
5542 void lock_set_class(struct lockdep_map *lock, const char *name,
5543 		    struct lock_class_key *key, unsigned int subclass,
5544 		    unsigned long ip)
5545 {
5546 	unsigned long flags;
5547 
5548 	if (unlikely(!lockdep_enabled()))
5549 		return;
5550 
5551 	raw_local_irq_save(flags);
5552 	lockdep_recursion_inc();
5553 	check_flags(flags);
5554 	if (__lock_set_class(lock, name, key, subclass, ip))
5555 		check_chain_key(current);
5556 	lockdep_recursion_finish();
5557 	raw_local_irq_restore(flags);
5558 }
5559 EXPORT_SYMBOL_GPL(lock_set_class);
5560 
5561 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5562 {
5563 	unsigned long flags;
5564 
5565 	if (unlikely(!lockdep_enabled()))
5566 		return;
5567 
5568 	raw_local_irq_save(flags);
5569 	lockdep_recursion_inc();
5570 	check_flags(flags);
5571 	if (__lock_downgrade(lock, ip))
5572 		check_chain_key(current);
5573 	lockdep_recursion_finish();
5574 	raw_local_irq_restore(flags);
5575 }
5576 EXPORT_SYMBOL_GPL(lock_downgrade);
5577 
5578 /* NMI context !!! */
5579 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5580 {
5581 #ifdef CONFIG_PROVE_LOCKING
5582 	struct lock_class *class = look_up_lock_class(lock, subclass);
5583 	unsigned long mask = LOCKF_USED;
5584 
5585 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5586 	if (!class)
5587 		return;
5588 
5589 	/*
5590 	 * READ locks only conflict with USED, such that if we only ever use
5591 	 * READ locks, there is no deadlock possible -- RCU.
5592 	 */
5593 	if (!hlock->read)
5594 		mask |= LOCKF_USED_READ;
5595 
5596 	if (!(class->usage_mask & mask))
5597 		return;
5598 
5599 	hlock->class_idx = class - lock_classes;
5600 
5601 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5602 #endif
5603 }
5604 
5605 static bool lockdep_nmi(void)
5606 {
5607 	if (raw_cpu_read(lockdep_recursion))
5608 		return false;
5609 
5610 	if (!in_nmi())
5611 		return false;
5612 
5613 	return true;
5614 }
5615 
5616 /*
5617  * read_lock() is recursive if:
5618  * 1. We force lockdep think this way in selftests or
5619  * 2. The implementation is not queued read/write lock or
5620  * 3. The locker is at an in_interrupt() context.
5621  */
5622 bool read_lock_is_recursive(void)
5623 {
5624 	return force_read_lock_recursive ||
5625 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5626 	       in_interrupt();
5627 }
5628 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5629 
5630 /*
5631  * We are not always called with irqs disabled - do that here,
5632  * and also avoid lockdep recursion:
5633  */
5634 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5635 			  int trylock, int read, int check,
5636 			  struct lockdep_map *nest_lock, unsigned long ip)
5637 {
5638 	unsigned long flags;
5639 
5640 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5641 
5642 	if (!debug_locks)
5643 		return;
5644 
5645 	if (unlikely(!lockdep_enabled())) {
5646 		/* XXX allow trylock from NMI ?!? */
5647 		if (lockdep_nmi() && !trylock) {
5648 			struct held_lock hlock;
5649 
5650 			hlock.acquire_ip = ip;
5651 			hlock.instance = lock;
5652 			hlock.nest_lock = nest_lock;
5653 			hlock.irq_context = 2; // XXX
5654 			hlock.trylock = trylock;
5655 			hlock.read = read;
5656 			hlock.check = check;
5657 			hlock.hardirqs_off = true;
5658 			hlock.references = 0;
5659 
5660 			verify_lock_unused(lock, &hlock, subclass);
5661 		}
5662 		return;
5663 	}
5664 
5665 	raw_local_irq_save(flags);
5666 	check_flags(flags);
5667 
5668 	lockdep_recursion_inc();
5669 	__lock_acquire(lock, subclass, trylock, read, check,
5670 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5671 	lockdep_recursion_finish();
5672 	raw_local_irq_restore(flags);
5673 }
5674 EXPORT_SYMBOL_GPL(lock_acquire);
5675 
5676 void lock_release(struct lockdep_map *lock, unsigned long ip)
5677 {
5678 	unsigned long flags;
5679 
5680 	trace_lock_release(lock, ip);
5681 
5682 	if (unlikely(!lockdep_enabled()))
5683 		return;
5684 
5685 	raw_local_irq_save(flags);
5686 	check_flags(flags);
5687 
5688 	lockdep_recursion_inc();
5689 	if (__lock_release(lock, ip))
5690 		check_chain_key(current);
5691 	lockdep_recursion_finish();
5692 	raw_local_irq_restore(flags);
5693 }
5694 EXPORT_SYMBOL_GPL(lock_release);
5695 
5696 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5697 {
5698 	unsigned long flags;
5699 	int ret = LOCK_STATE_NOT_HELD;
5700 
5701 	/*
5702 	 * Avoid false negative lockdep_assert_held() and
5703 	 * lockdep_assert_not_held().
5704 	 */
5705 	if (unlikely(!lockdep_enabled()))
5706 		return LOCK_STATE_UNKNOWN;
5707 
5708 	raw_local_irq_save(flags);
5709 	check_flags(flags);
5710 
5711 	lockdep_recursion_inc();
5712 	ret = __lock_is_held(lock, read);
5713 	lockdep_recursion_finish();
5714 	raw_local_irq_restore(flags);
5715 
5716 	return ret;
5717 }
5718 EXPORT_SYMBOL_GPL(lock_is_held_type);
5719 NOKPROBE_SYMBOL(lock_is_held_type);
5720 
5721 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5722 {
5723 	struct pin_cookie cookie = NIL_COOKIE;
5724 	unsigned long flags;
5725 
5726 	if (unlikely(!lockdep_enabled()))
5727 		return cookie;
5728 
5729 	raw_local_irq_save(flags);
5730 	check_flags(flags);
5731 
5732 	lockdep_recursion_inc();
5733 	cookie = __lock_pin_lock(lock);
5734 	lockdep_recursion_finish();
5735 	raw_local_irq_restore(flags);
5736 
5737 	return cookie;
5738 }
5739 EXPORT_SYMBOL_GPL(lock_pin_lock);
5740 
5741 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5742 {
5743 	unsigned long flags;
5744 
5745 	if (unlikely(!lockdep_enabled()))
5746 		return;
5747 
5748 	raw_local_irq_save(flags);
5749 	check_flags(flags);
5750 
5751 	lockdep_recursion_inc();
5752 	__lock_repin_lock(lock, cookie);
5753 	lockdep_recursion_finish();
5754 	raw_local_irq_restore(flags);
5755 }
5756 EXPORT_SYMBOL_GPL(lock_repin_lock);
5757 
5758 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5759 {
5760 	unsigned long flags;
5761 
5762 	if (unlikely(!lockdep_enabled()))
5763 		return;
5764 
5765 	raw_local_irq_save(flags);
5766 	check_flags(flags);
5767 
5768 	lockdep_recursion_inc();
5769 	__lock_unpin_lock(lock, cookie);
5770 	lockdep_recursion_finish();
5771 	raw_local_irq_restore(flags);
5772 }
5773 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5774 
5775 #ifdef CONFIG_LOCK_STAT
5776 static void print_lock_contention_bug(struct task_struct *curr,
5777 				      struct lockdep_map *lock,
5778 				      unsigned long ip)
5779 {
5780 	if (!debug_locks_off())
5781 		return;
5782 	if (debug_locks_silent)
5783 		return;
5784 
5785 	pr_warn("\n");
5786 	pr_warn("=================================\n");
5787 	pr_warn("WARNING: bad contention detected!\n");
5788 	print_kernel_ident();
5789 	pr_warn("---------------------------------\n");
5790 	pr_warn("%s/%d is trying to contend lock (",
5791 		curr->comm, task_pid_nr(curr));
5792 	print_lockdep_cache(lock);
5793 	pr_cont(") at:\n");
5794 	print_ip_sym(KERN_WARNING, ip);
5795 	pr_warn("but there are no locks held!\n");
5796 	pr_warn("\nother info that might help us debug this:\n");
5797 	lockdep_print_held_locks(curr);
5798 
5799 	pr_warn("\nstack backtrace:\n");
5800 	dump_stack();
5801 }
5802 
5803 static void
5804 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5805 {
5806 	struct task_struct *curr = current;
5807 	struct held_lock *hlock;
5808 	struct lock_class_stats *stats;
5809 	unsigned int depth;
5810 	int i, contention_point, contending_point;
5811 
5812 	depth = curr->lockdep_depth;
5813 	/*
5814 	 * Whee, we contended on this lock, except it seems we're not
5815 	 * actually trying to acquire anything much at all..
5816 	 */
5817 	if (DEBUG_LOCKS_WARN_ON(!depth))
5818 		return;
5819 
5820 	hlock = find_held_lock(curr, lock, depth, &i);
5821 	if (!hlock) {
5822 		print_lock_contention_bug(curr, lock, ip);
5823 		return;
5824 	}
5825 
5826 	if (hlock->instance != lock)
5827 		return;
5828 
5829 	hlock->waittime_stamp = lockstat_clock();
5830 
5831 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5832 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5833 				      lock->ip);
5834 
5835 	stats = get_lock_stats(hlock_class(hlock));
5836 	if (contention_point < LOCKSTAT_POINTS)
5837 		stats->contention_point[contention_point]++;
5838 	if (contending_point < LOCKSTAT_POINTS)
5839 		stats->contending_point[contending_point]++;
5840 	if (lock->cpu != smp_processor_id())
5841 		stats->bounces[bounce_contended + !!hlock->read]++;
5842 }
5843 
5844 static void
5845 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5846 {
5847 	struct task_struct *curr = current;
5848 	struct held_lock *hlock;
5849 	struct lock_class_stats *stats;
5850 	unsigned int depth;
5851 	u64 now, waittime = 0;
5852 	int i, cpu;
5853 
5854 	depth = curr->lockdep_depth;
5855 	/*
5856 	 * Yay, we acquired ownership of this lock we didn't try to
5857 	 * acquire, how the heck did that happen?
5858 	 */
5859 	if (DEBUG_LOCKS_WARN_ON(!depth))
5860 		return;
5861 
5862 	hlock = find_held_lock(curr, lock, depth, &i);
5863 	if (!hlock) {
5864 		print_lock_contention_bug(curr, lock, _RET_IP_);
5865 		return;
5866 	}
5867 
5868 	if (hlock->instance != lock)
5869 		return;
5870 
5871 	cpu = smp_processor_id();
5872 	if (hlock->waittime_stamp) {
5873 		now = lockstat_clock();
5874 		waittime = now - hlock->waittime_stamp;
5875 		hlock->holdtime_stamp = now;
5876 	}
5877 
5878 	stats = get_lock_stats(hlock_class(hlock));
5879 	if (waittime) {
5880 		if (hlock->read)
5881 			lock_time_inc(&stats->read_waittime, waittime);
5882 		else
5883 			lock_time_inc(&stats->write_waittime, waittime);
5884 	}
5885 	if (lock->cpu != cpu)
5886 		stats->bounces[bounce_acquired + !!hlock->read]++;
5887 
5888 	lock->cpu = cpu;
5889 	lock->ip = ip;
5890 }
5891 
5892 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5893 {
5894 	unsigned long flags;
5895 
5896 	trace_lock_contended(lock, ip);
5897 
5898 	if (unlikely(!lock_stat || !lockdep_enabled()))
5899 		return;
5900 
5901 	raw_local_irq_save(flags);
5902 	check_flags(flags);
5903 	lockdep_recursion_inc();
5904 	__lock_contended(lock, ip);
5905 	lockdep_recursion_finish();
5906 	raw_local_irq_restore(flags);
5907 }
5908 EXPORT_SYMBOL_GPL(lock_contended);
5909 
5910 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5911 {
5912 	unsigned long flags;
5913 
5914 	trace_lock_acquired(lock, ip);
5915 
5916 	if (unlikely(!lock_stat || !lockdep_enabled()))
5917 		return;
5918 
5919 	raw_local_irq_save(flags);
5920 	check_flags(flags);
5921 	lockdep_recursion_inc();
5922 	__lock_acquired(lock, ip);
5923 	lockdep_recursion_finish();
5924 	raw_local_irq_restore(flags);
5925 }
5926 EXPORT_SYMBOL_GPL(lock_acquired);
5927 #endif
5928 
5929 /*
5930  * Used by the testsuite, sanitize the validator state
5931  * after a simulated failure:
5932  */
5933 
5934 void lockdep_reset(void)
5935 {
5936 	unsigned long flags;
5937 	int i;
5938 
5939 	raw_local_irq_save(flags);
5940 	lockdep_init_task(current);
5941 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5942 	nr_hardirq_chains = 0;
5943 	nr_softirq_chains = 0;
5944 	nr_process_chains = 0;
5945 	debug_locks = 1;
5946 	for (i = 0; i < CHAINHASH_SIZE; i++)
5947 		INIT_HLIST_HEAD(chainhash_table + i);
5948 	raw_local_irq_restore(flags);
5949 }
5950 
5951 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5952 static void remove_class_from_lock_chain(struct pending_free *pf,
5953 					 struct lock_chain *chain,
5954 					 struct lock_class *class)
5955 {
5956 #ifdef CONFIG_PROVE_LOCKING
5957 	int i;
5958 
5959 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5960 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5961 			continue;
5962 		/*
5963 		 * Each lock class occurs at most once in a lock chain so once
5964 		 * we found a match we can break out of this loop.
5965 		 */
5966 		goto free_lock_chain;
5967 	}
5968 	/* Since the chain has not been modified, return. */
5969 	return;
5970 
5971 free_lock_chain:
5972 	free_chain_hlocks(chain->base, chain->depth);
5973 	/* Overwrite the chain key for concurrent RCU readers. */
5974 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5975 	dec_chains(chain->irq_context);
5976 
5977 	/*
5978 	 * Note: calling hlist_del_rcu() from inside a
5979 	 * hlist_for_each_entry_rcu() loop is safe.
5980 	 */
5981 	hlist_del_rcu(&chain->entry);
5982 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5983 	nr_zapped_lock_chains++;
5984 #endif
5985 }
5986 
5987 /* Must be called with the graph lock held. */
5988 static void remove_class_from_lock_chains(struct pending_free *pf,
5989 					  struct lock_class *class)
5990 {
5991 	struct lock_chain *chain;
5992 	struct hlist_head *head;
5993 	int i;
5994 
5995 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5996 		head = chainhash_table + i;
5997 		hlist_for_each_entry_rcu(chain, head, entry) {
5998 			remove_class_from_lock_chain(pf, chain, class);
5999 		}
6000 	}
6001 }
6002 
6003 /*
6004  * Remove all references to a lock class. The caller must hold the graph lock.
6005  */
6006 static void zap_class(struct pending_free *pf, struct lock_class *class)
6007 {
6008 	struct lock_list *entry;
6009 	int i;
6010 
6011 	WARN_ON_ONCE(!class->key);
6012 
6013 	/*
6014 	 * Remove all dependencies this lock is
6015 	 * involved in:
6016 	 */
6017 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
6018 		entry = list_entries + i;
6019 		if (entry->class != class && entry->links_to != class)
6020 			continue;
6021 		__clear_bit(i, list_entries_in_use);
6022 		nr_list_entries--;
6023 		list_del_rcu(&entry->entry);
6024 	}
6025 	if (list_empty(&class->locks_after) &&
6026 	    list_empty(&class->locks_before)) {
6027 		list_move_tail(&class->lock_entry, &pf->zapped);
6028 		hlist_del_rcu(&class->hash_entry);
6029 		WRITE_ONCE(class->key, NULL);
6030 		WRITE_ONCE(class->name, NULL);
6031 		nr_lock_classes--;
6032 		__clear_bit(class - lock_classes, lock_classes_in_use);
6033 		if (class - lock_classes == max_lock_class_idx)
6034 			max_lock_class_idx--;
6035 	} else {
6036 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
6037 			  class->name);
6038 	}
6039 
6040 	remove_class_from_lock_chains(pf, class);
6041 	nr_zapped_classes++;
6042 }
6043 
6044 static void reinit_class(struct lock_class *class)
6045 {
6046 	WARN_ON_ONCE(!class->lock_entry.next);
6047 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6048 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6049 	memset_startat(class, 0, key);
6050 	WARN_ON_ONCE(!class->lock_entry.next);
6051 	WARN_ON_ONCE(!list_empty(&class->locks_after));
6052 	WARN_ON_ONCE(!list_empty(&class->locks_before));
6053 }
6054 
6055 static inline int within(const void *addr, void *start, unsigned long size)
6056 {
6057 	return addr >= start && addr < start + size;
6058 }
6059 
6060 static bool inside_selftest(void)
6061 {
6062 	return current == lockdep_selftest_task_struct;
6063 }
6064 
6065 /* The caller must hold the graph lock. */
6066 static struct pending_free *get_pending_free(void)
6067 {
6068 	return delayed_free.pf + delayed_free.index;
6069 }
6070 
6071 static void free_zapped_rcu(struct rcu_head *cb);
6072 
6073 /*
6074  * Schedule an RCU callback if no RCU callback is pending. Must be called with
6075  * the graph lock held.
6076  */
6077 static void call_rcu_zapped(struct pending_free *pf)
6078 {
6079 	WARN_ON_ONCE(inside_selftest());
6080 
6081 	if (list_empty(&pf->zapped))
6082 		return;
6083 
6084 	if (delayed_free.scheduled)
6085 		return;
6086 
6087 	delayed_free.scheduled = true;
6088 
6089 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6090 	delayed_free.index ^= 1;
6091 
6092 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6093 }
6094 
6095 /* The caller must hold the graph lock. May be called from RCU context. */
6096 static void __free_zapped_classes(struct pending_free *pf)
6097 {
6098 	struct lock_class *class;
6099 
6100 	check_data_structures();
6101 
6102 	list_for_each_entry(class, &pf->zapped, lock_entry)
6103 		reinit_class(class);
6104 
6105 	list_splice_init(&pf->zapped, &free_lock_classes);
6106 
6107 #ifdef CONFIG_PROVE_LOCKING
6108 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6109 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6110 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6111 #endif
6112 }
6113 
6114 static void free_zapped_rcu(struct rcu_head *ch)
6115 {
6116 	struct pending_free *pf;
6117 	unsigned long flags;
6118 
6119 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6120 		return;
6121 
6122 	raw_local_irq_save(flags);
6123 	lockdep_lock();
6124 
6125 	/* closed head */
6126 	pf = delayed_free.pf + (delayed_free.index ^ 1);
6127 	__free_zapped_classes(pf);
6128 	delayed_free.scheduled = false;
6129 
6130 	/*
6131 	 * If there's anything on the open list, close and start a new callback.
6132 	 */
6133 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
6134 
6135 	lockdep_unlock();
6136 	raw_local_irq_restore(flags);
6137 }
6138 
6139 /*
6140  * Remove all lock classes from the class hash table and from the
6141  * all_lock_classes list whose key or name is in the address range [start,
6142  * start + size). Move these lock classes to the zapped_classes list. Must
6143  * be called with the graph lock held.
6144  */
6145 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6146 				     unsigned long size)
6147 {
6148 	struct lock_class *class;
6149 	struct hlist_head *head;
6150 	int i;
6151 
6152 	/* Unhash all classes that were created by a module. */
6153 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6154 		head = classhash_table + i;
6155 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6156 			if (!within(class->key, start, size) &&
6157 			    !within(class->name, start, size))
6158 				continue;
6159 			zap_class(pf, class);
6160 		}
6161 	}
6162 }
6163 
6164 /*
6165  * Used in module.c to remove lock classes from memory that is going to be
6166  * freed; and possibly re-used by other modules.
6167  *
6168  * We will have had one synchronize_rcu() before getting here, so we're
6169  * guaranteed nobody will look up these exact classes -- they're properly dead
6170  * but still allocated.
6171  */
6172 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6173 {
6174 	struct pending_free *pf;
6175 	unsigned long flags;
6176 
6177 	init_data_structures_once();
6178 
6179 	raw_local_irq_save(flags);
6180 	lockdep_lock();
6181 	pf = get_pending_free();
6182 	__lockdep_free_key_range(pf, start, size);
6183 	call_rcu_zapped(pf);
6184 	lockdep_unlock();
6185 	raw_local_irq_restore(flags);
6186 
6187 	/*
6188 	 * Wait for any possible iterators from look_up_lock_class() to pass
6189 	 * before continuing to free the memory they refer to.
6190 	 */
6191 	synchronize_rcu();
6192 }
6193 
6194 /*
6195  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6196  * Ignores debug_locks. Must only be used by the lockdep selftests.
6197  */
6198 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6199 {
6200 	struct pending_free *pf = delayed_free.pf;
6201 	unsigned long flags;
6202 
6203 	init_data_structures_once();
6204 
6205 	raw_local_irq_save(flags);
6206 	lockdep_lock();
6207 	__lockdep_free_key_range(pf, start, size);
6208 	__free_zapped_classes(pf);
6209 	lockdep_unlock();
6210 	raw_local_irq_restore(flags);
6211 }
6212 
6213 void lockdep_free_key_range(void *start, unsigned long size)
6214 {
6215 	init_data_structures_once();
6216 
6217 	if (inside_selftest())
6218 		lockdep_free_key_range_imm(start, size);
6219 	else
6220 		lockdep_free_key_range_reg(start, size);
6221 }
6222 
6223 /*
6224  * Check whether any element of the @lock->class_cache[] array refers to a
6225  * registered lock class. The caller must hold either the graph lock or the
6226  * RCU read lock.
6227  */
6228 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6229 {
6230 	struct lock_class *class;
6231 	struct hlist_head *head;
6232 	int i, j;
6233 
6234 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6235 		head = classhash_table + i;
6236 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6237 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6238 				if (lock->class_cache[j] == class)
6239 					return true;
6240 		}
6241 	}
6242 	return false;
6243 }
6244 
6245 /* The caller must hold the graph lock. Does not sleep. */
6246 static void __lockdep_reset_lock(struct pending_free *pf,
6247 				 struct lockdep_map *lock)
6248 {
6249 	struct lock_class *class;
6250 	int j;
6251 
6252 	/*
6253 	 * Remove all classes this lock might have:
6254 	 */
6255 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6256 		/*
6257 		 * If the class exists we look it up and zap it:
6258 		 */
6259 		class = look_up_lock_class(lock, j);
6260 		if (class)
6261 			zap_class(pf, class);
6262 	}
6263 	/*
6264 	 * Debug check: in the end all mapped classes should
6265 	 * be gone.
6266 	 */
6267 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6268 		debug_locks_off();
6269 }
6270 
6271 /*
6272  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6273  * released data structures from RCU context.
6274  */
6275 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6276 {
6277 	struct pending_free *pf;
6278 	unsigned long flags;
6279 	int locked;
6280 
6281 	raw_local_irq_save(flags);
6282 	locked = graph_lock();
6283 	if (!locked)
6284 		goto out_irq;
6285 
6286 	pf = get_pending_free();
6287 	__lockdep_reset_lock(pf, lock);
6288 	call_rcu_zapped(pf);
6289 
6290 	graph_unlock();
6291 out_irq:
6292 	raw_local_irq_restore(flags);
6293 }
6294 
6295 /*
6296  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6297  * lockdep selftests.
6298  */
6299 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6300 {
6301 	struct pending_free *pf = delayed_free.pf;
6302 	unsigned long flags;
6303 
6304 	raw_local_irq_save(flags);
6305 	lockdep_lock();
6306 	__lockdep_reset_lock(pf, lock);
6307 	__free_zapped_classes(pf);
6308 	lockdep_unlock();
6309 	raw_local_irq_restore(flags);
6310 }
6311 
6312 void lockdep_reset_lock(struct lockdep_map *lock)
6313 {
6314 	init_data_structures_once();
6315 
6316 	if (inside_selftest())
6317 		lockdep_reset_lock_imm(lock);
6318 	else
6319 		lockdep_reset_lock_reg(lock);
6320 }
6321 
6322 /*
6323  * Unregister a dynamically allocated key.
6324  *
6325  * Unlike lockdep_register_key(), a search is always done to find a matching
6326  * key irrespective of debug_locks to avoid potential invalid access to freed
6327  * memory in lock_class entry.
6328  */
6329 void lockdep_unregister_key(struct lock_class_key *key)
6330 {
6331 	struct hlist_head *hash_head = keyhashentry(key);
6332 	struct lock_class_key *k;
6333 	struct pending_free *pf;
6334 	unsigned long flags;
6335 	bool found = false;
6336 
6337 	might_sleep();
6338 
6339 	if (WARN_ON_ONCE(static_obj(key)))
6340 		return;
6341 
6342 	raw_local_irq_save(flags);
6343 	lockdep_lock();
6344 
6345 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6346 		if (k == key) {
6347 			hlist_del_rcu(&k->hash_entry);
6348 			found = true;
6349 			break;
6350 		}
6351 	}
6352 	WARN_ON_ONCE(!found && debug_locks);
6353 	if (found) {
6354 		pf = get_pending_free();
6355 		__lockdep_free_key_range(pf, key, 1);
6356 		call_rcu_zapped(pf);
6357 	}
6358 	lockdep_unlock();
6359 	raw_local_irq_restore(flags);
6360 
6361 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6362 	synchronize_rcu();
6363 }
6364 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6365 
6366 void __init lockdep_init(void)
6367 {
6368 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6369 
6370 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6371 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6372 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6373 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6374 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6375 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6376 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6377 
6378 	printk(" memory used by lock dependency info: %zu kB\n",
6379 	       (sizeof(lock_classes) +
6380 		sizeof(lock_classes_in_use) +
6381 		sizeof(classhash_table) +
6382 		sizeof(list_entries) +
6383 		sizeof(list_entries_in_use) +
6384 		sizeof(chainhash_table) +
6385 		sizeof(delayed_free)
6386 #ifdef CONFIG_PROVE_LOCKING
6387 		+ sizeof(lock_cq)
6388 		+ sizeof(lock_chains)
6389 		+ sizeof(lock_chains_in_use)
6390 		+ sizeof(chain_hlocks)
6391 #endif
6392 		) / 1024
6393 		);
6394 
6395 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6396 	printk(" memory used for stack traces: %zu kB\n",
6397 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6398 	       );
6399 #endif
6400 
6401 	printk(" per task-struct memory footprint: %zu bytes\n",
6402 	       sizeof(((struct task_struct *)NULL)->held_locks));
6403 }
6404 
6405 static void
6406 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6407 		     const void *mem_to, struct held_lock *hlock)
6408 {
6409 	if (!debug_locks_off())
6410 		return;
6411 	if (debug_locks_silent)
6412 		return;
6413 
6414 	pr_warn("\n");
6415 	pr_warn("=========================\n");
6416 	pr_warn("WARNING: held lock freed!\n");
6417 	print_kernel_ident();
6418 	pr_warn("-------------------------\n");
6419 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6420 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6421 	print_lock(hlock);
6422 	lockdep_print_held_locks(curr);
6423 
6424 	pr_warn("\nstack backtrace:\n");
6425 	dump_stack();
6426 }
6427 
6428 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6429 				const void* lock_from, unsigned long lock_len)
6430 {
6431 	return lock_from + lock_len <= mem_from ||
6432 		mem_from + mem_len <= lock_from;
6433 }
6434 
6435 /*
6436  * Called when kernel memory is freed (or unmapped), or if a lock
6437  * is destroyed or reinitialized - this code checks whether there is
6438  * any held lock in the memory range of <from> to <to>:
6439  */
6440 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6441 {
6442 	struct task_struct *curr = current;
6443 	struct held_lock *hlock;
6444 	unsigned long flags;
6445 	int i;
6446 
6447 	if (unlikely(!debug_locks))
6448 		return;
6449 
6450 	raw_local_irq_save(flags);
6451 	for (i = 0; i < curr->lockdep_depth; i++) {
6452 		hlock = curr->held_locks + i;
6453 
6454 		if (not_in_range(mem_from, mem_len, hlock->instance,
6455 					sizeof(*hlock->instance)))
6456 			continue;
6457 
6458 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6459 		break;
6460 	}
6461 	raw_local_irq_restore(flags);
6462 }
6463 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6464 
6465 static void print_held_locks_bug(void)
6466 {
6467 	if (!debug_locks_off())
6468 		return;
6469 	if (debug_locks_silent)
6470 		return;
6471 
6472 	pr_warn("\n");
6473 	pr_warn("====================================\n");
6474 	pr_warn("WARNING: %s/%d still has locks held!\n",
6475 	       current->comm, task_pid_nr(current));
6476 	print_kernel_ident();
6477 	pr_warn("------------------------------------\n");
6478 	lockdep_print_held_locks(current);
6479 	pr_warn("\nstack backtrace:\n");
6480 	dump_stack();
6481 }
6482 
6483 void debug_check_no_locks_held(void)
6484 {
6485 	if (unlikely(current->lockdep_depth > 0))
6486 		print_held_locks_bug();
6487 }
6488 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6489 
6490 #ifdef __KERNEL__
6491 void debug_show_all_locks(void)
6492 {
6493 	struct task_struct *g, *p;
6494 
6495 	if (unlikely(!debug_locks)) {
6496 		pr_warn("INFO: lockdep is turned off.\n");
6497 		return;
6498 	}
6499 	pr_warn("\nShowing all locks held in the system:\n");
6500 
6501 	rcu_read_lock();
6502 	for_each_process_thread(g, p) {
6503 		if (!p->lockdep_depth)
6504 			continue;
6505 		lockdep_print_held_locks(p);
6506 		touch_nmi_watchdog();
6507 		touch_all_softlockup_watchdogs();
6508 	}
6509 	rcu_read_unlock();
6510 
6511 	pr_warn("\n");
6512 	pr_warn("=============================================\n\n");
6513 }
6514 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6515 #endif
6516 
6517 /*
6518  * Careful: only use this function if you are sure that
6519  * the task cannot run in parallel!
6520  */
6521 void debug_show_held_locks(struct task_struct *task)
6522 {
6523 	if (unlikely(!debug_locks)) {
6524 		printk("INFO: lockdep is turned off.\n");
6525 		return;
6526 	}
6527 	lockdep_print_held_locks(task);
6528 }
6529 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6530 
6531 asmlinkage __visible void lockdep_sys_exit(void)
6532 {
6533 	struct task_struct *curr = current;
6534 
6535 	if (unlikely(curr->lockdep_depth)) {
6536 		if (!debug_locks_off())
6537 			return;
6538 		pr_warn("\n");
6539 		pr_warn("================================================\n");
6540 		pr_warn("WARNING: lock held when returning to user space!\n");
6541 		print_kernel_ident();
6542 		pr_warn("------------------------------------------------\n");
6543 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6544 				curr->comm, curr->pid);
6545 		lockdep_print_held_locks(curr);
6546 	}
6547 
6548 	/*
6549 	 * The lock history for each syscall should be independent. So wipe the
6550 	 * slate clean on return to userspace.
6551 	 */
6552 	lockdep_invariant_state(false);
6553 }
6554 
6555 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6556 {
6557 	struct task_struct *curr = current;
6558 	int dl = READ_ONCE(debug_locks);
6559 	bool rcu = warn_rcu_enter();
6560 
6561 	/* Note: the following can be executed concurrently, so be careful. */
6562 	pr_warn("\n");
6563 	pr_warn("=============================\n");
6564 	pr_warn("WARNING: suspicious RCU usage\n");
6565 	print_kernel_ident();
6566 	pr_warn("-----------------------------\n");
6567 	pr_warn("%s:%d %s!\n", file, line, s);
6568 	pr_warn("\nother info that might help us debug this:\n\n");
6569 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6570 	       !rcu_lockdep_current_cpu_online()
6571 			? "RCU used illegally from offline CPU!\n"
6572 			: "",
6573 	       rcu_scheduler_active, dl,
6574 	       dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6575 
6576 	/*
6577 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6578 	 * between ct_idle_enter() and ct_idle_exit(), then RCU
6579 	 * considers that CPU to be in an "extended quiescent state",
6580 	 * which means that RCU will be completely ignoring that CPU.
6581 	 * Therefore, rcu_read_lock() and friends have absolutely no
6582 	 * effect on a CPU running in that state. In other words, even if
6583 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6584 	 * delete data structures out from under it.  RCU really has no
6585 	 * choice here: we need to keep an RCU-free window in idle where
6586 	 * the CPU may possibly enter into low power mode. This way we can
6587 	 * notice an extended quiescent state to other CPUs that started a grace
6588 	 * period. Otherwise we would delay any grace period as long as we run
6589 	 * in the idle task.
6590 	 *
6591 	 * So complain bitterly if someone does call rcu_read_lock(),
6592 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6593 	 */
6594 	if (!rcu_is_watching())
6595 		pr_warn("RCU used illegally from extended quiescent state!\n");
6596 
6597 	lockdep_print_held_locks(curr);
6598 	pr_warn("\nstack backtrace:\n");
6599 	dump_stack();
6600 	warn_rcu_exit(rcu);
6601 }
6602 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6603