1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 59 #include <asm/sections.h> 60 61 #include "lockdep_internals.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 82 83 static __always_inline bool lockdep_enabled(void) 84 { 85 if (!debug_locks) 86 return false; 87 88 if (this_cpu_read(lockdep_recursion)) 89 return false; 90 91 if (current->lockdep_recursion) 92 return false; 93 94 return true; 95 } 96 97 /* 98 * lockdep_lock: protects the lockdep graph, the hashes and the 99 * class/list/hash allocators. 100 * 101 * This is one of the rare exceptions where it's justified 102 * to use a raw spinlock - we really dont want the spinlock 103 * code to recurse back into the lockdep code... 104 */ 105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 106 static struct task_struct *__owner; 107 108 static inline void lockdep_lock(void) 109 { 110 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 111 112 __this_cpu_inc(lockdep_recursion); 113 arch_spin_lock(&__lock); 114 __owner = current; 115 } 116 117 static inline void lockdep_unlock(void) 118 { 119 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 120 121 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 122 return; 123 124 __owner = NULL; 125 arch_spin_unlock(&__lock); 126 __this_cpu_dec(lockdep_recursion); 127 } 128 129 static inline bool lockdep_assert_locked(void) 130 { 131 return DEBUG_LOCKS_WARN_ON(__owner != current); 132 } 133 134 static struct task_struct *lockdep_selftest_task_struct; 135 136 137 static int graph_lock(void) 138 { 139 lockdep_lock(); 140 /* 141 * Make sure that if another CPU detected a bug while 142 * walking the graph we dont change it (while the other 143 * CPU is busy printing out stuff with the graph lock 144 * dropped already) 145 */ 146 if (!debug_locks) { 147 lockdep_unlock(); 148 return 0; 149 } 150 return 1; 151 } 152 153 static inline void graph_unlock(void) 154 { 155 lockdep_unlock(); 156 } 157 158 /* 159 * Turn lock debugging off and return with 0 if it was off already, 160 * and also release the graph lock: 161 */ 162 static inline int debug_locks_off_graph_unlock(void) 163 { 164 int ret = debug_locks_off(); 165 166 lockdep_unlock(); 167 168 return ret; 169 } 170 171 unsigned long nr_list_entries; 172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 174 175 /* 176 * All data structures here are protected by the global debug_lock. 177 * 178 * nr_lock_classes is the number of elements of lock_classes[] that is 179 * in use. 180 */ 181 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 182 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 184 unsigned long nr_lock_classes; 185 unsigned long nr_zapped_classes; 186 #ifndef CONFIG_DEBUG_LOCKDEP 187 static 188 #endif 189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 191 192 static inline struct lock_class *hlock_class(struct held_lock *hlock) 193 { 194 unsigned int class_idx = hlock->class_idx; 195 196 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 197 barrier(); 198 199 if (!test_bit(class_idx, lock_classes_in_use)) { 200 /* 201 * Someone passed in garbage, we give up. 202 */ 203 DEBUG_LOCKS_WARN_ON(1); 204 return NULL; 205 } 206 207 /* 208 * At this point, if the passed hlock->class_idx is still garbage, 209 * we just have to live with it 210 */ 211 return lock_classes + class_idx; 212 } 213 214 #ifdef CONFIG_LOCK_STAT 215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 216 217 static inline u64 lockstat_clock(void) 218 { 219 return local_clock(); 220 } 221 222 static int lock_point(unsigned long points[], unsigned long ip) 223 { 224 int i; 225 226 for (i = 0; i < LOCKSTAT_POINTS; i++) { 227 if (points[i] == 0) { 228 points[i] = ip; 229 break; 230 } 231 if (points[i] == ip) 232 break; 233 } 234 235 return i; 236 } 237 238 static void lock_time_inc(struct lock_time *lt, u64 time) 239 { 240 if (time > lt->max) 241 lt->max = time; 242 243 if (time < lt->min || !lt->nr) 244 lt->min = time; 245 246 lt->total += time; 247 lt->nr++; 248 } 249 250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 251 { 252 if (!src->nr) 253 return; 254 255 if (src->max > dst->max) 256 dst->max = src->max; 257 258 if (src->min < dst->min || !dst->nr) 259 dst->min = src->min; 260 261 dst->total += src->total; 262 dst->nr += src->nr; 263 } 264 265 struct lock_class_stats lock_stats(struct lock_class *class) 266 { 267 struct lock_class_stats stats; 268 int cpu, i; 269 270 memset(&stats, 0, sizeof(struct lock_class_stats)); 271 for_each_possible_cpu(cpu) { 272 struct lock_class_stats *pcs = 273 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 274 275 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 276 stats.contention_point[i] += pcs->contention_point[i]; 277 278 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 279 stats.contending_point[i] += pcs->contending_point[i]; 280 281 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 282 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 283 284 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 285 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 286 287 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 288 stats.bounces[i] += pcs->bounces[i]; 289 } 290 291 return stats; 292 } 293 294 void clear_lock_stats(struct lock_class *class) 295 { 296 int cpu; 297 298 for_each_possible_cpu(cpu) { 299 struct lock_class_stats *cpu_stats = 300 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 301 302 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 303 } 304 memset(class->contention_point, 0, sizeof(class->contention_point)); 305 memset(class->contending_point, 0, sizeof(class->contending_point)); 306 } 307 308 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 309 { 310 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 311 } 312 313 static void lock_release_holdtime(struct held_lock *hlock) 314 { 315 struct lock_class_stats *stats; 316 u64 holdtime; 317 318 if (!lock_stat) 319 return; 320 321 holdtime = lockstat_clock() - hlock->holdtime_stamp; 322 323 stats = get_lock_stats(hlock_class(hlock)); 324 if (hlock->read) 325 lock_time_inc(&stats->read_holdtime, holdtime); 326 else 327 lock_time_inc(&stats->write_holdtime, holdtime); 328 } 329 #else 330 static inline void lock_release_holdtime(struct held_lock *hlock) 331 { 332 } 333 #endif 334 335 /* 336 * We keep a global list of all lock classes. The list is only accessed with 337 * the lockdep spinlock lock held. free_lock_classes is a list with free 338 * elements. These elements are linked together by the lock_entry member in 339 * struct lock_class. 340 */ 341 LIST_HEAD(all_lock_classes); 342 static LIST_HEAD(free_lock_classes); 343 344 /** 345 * struct pending_free - information about data structures about to be freed 346 * @zapped: Head of a list with struct lock_class elements. 347 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 348 * are about to be freed. 349 */ 350 struct pending_free { 351 struct list_head zapped; 352 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 353 }; 354 355 /** 356 * struct delayed_free - data structures used for delayed freeing 357 * 358 * A data structure for delayed freeing of data structures that may be 359 * accessed by RCU readers at the time these were freed. 360 * 361 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 362 * @index: Index of @pf to which freed data structures are added. 363 * @scheduled: Whether or not an RCU callback has been scheduled. 364 * @pf: Array with information about data structures about to be freed. 365 */ 366 static struct delayed_free { 367 struct rcu_head rcu_head; 368 int index; 369 int scheduled; 370 struct pending_free pf[2]; 371 } delayed_free; 372 373 /* 374 * The lockdep classes are in a hash-table as well, for fast lookup: 375 */ 376 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 377 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 378 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 379 #define classhashentry(key) (classhash_table + __classhashfn((key))) 380 381 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 382 383 /* 384 * We put the lock dependency chains into a hash-table as well, to cache 385 * their existence: 386 */ 387 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 388 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 389 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 390 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 391 392 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 393 394 /* 395 * the id of held_lock 396 */ 397 static inline u16 hlock_id(struct held_lock *hlock) 398 { 399 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 400 401 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 402 } 403 404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 405 { 406 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 407 } 408 409 /* 410 * The hash key of the lock dependency chains is a hash itself too: 411 * it's a hash of all locks taken up to that lock, including that lock. 412 * It's a 64-bit hash, because it's important for the keys to be 413 * unique. 414 */ 415 static inline u64 iterate_chain_key(u64 key, u32 idx) 416 { 417 u32 k0 = key, k1 = key >> 32; 418 419 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 420 421 return k0 | (u64)k1 << 32; 422 } 423 424 void lockdep_init_task(struct task_struct *task) 425 { 426 task->lockdep_depth = 0; /* no locks held yet */ 427 task->curr_chain_key = INITIAL_CHAIN_KEY; 428 task->lockdep_recursion = 0; 429 } 430 431 static __always_inline void lockdep_recursion_inc(void) 432 { 433 __this_cpu_inc(lockdep_recursion); 434 } 435 436 static __always_inline void lockdep_recursion_finish(void) 437 { 438 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 439 __this_cpu_write(lockdep_recursion, 0); 440 } 441 442 void lockdep_set_selftest_task(struct task_struct *task) 443 { 444 lockdep_selftest_task_struct = task; 445 } 446 447 /* 448 * Debugging switches: 449 */ 450 451 #define VERBOSE 0 452 #define VERY_VERBOSE 0 453 454 #if VERBOSE 455 # define HARDIRQ_VERBOSE 1 456 # define SOFTIRQ_VERBOSE 1 457 #else 458 # define HARDIRQ_VERBOSE 0 459 # define SOFTIRQ_VERBOSE 0 460 #endif 461 462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 463 /* 464 * Quick filtering for interesting events: 465 */ 466 static int class_filter(struct lock_class *class) 467 { 468 #if 0 469 /* Example */ 470 if (class->name_version == 1 && 471 !strcmp(class->name, "lockname")) 472 return 1; 473 if (class->name_version == 1 && 474 !strcmp(class->name, "&struct->lockfield")) 475 return 1; 476 #endif 477 /* Filter everything else. 1 would be to allow everything else */ 478 return 0; 479 } 480 #endif 481 482 static int verbose(struct lock_class *class) 483 { 484 #if VERBOSE 485 return class_filter(class); 486 #endif 487 return 0; 488 } 489 490 static void print_lockdep_off(const char *bug_msg) 491 { 492 printk(KERN_DEBUG "%s\n", bug_msg); 493 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 494 #ifdef CONFIG_LOCK_STAT 495 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 496 #endif 497 } 498 499 unsigned long nr_stack_trace_entries; 500 501 #ifdef CONFIG_PROVE_LOCKING 502 /** 503 * struct lock_trace - single stack backtrace 504 * @hash_entry: Entry in a stack_trace_hash[] list. 505 * @hash: jhash() of @entries. 506 * @nr_entries: Number of entries in @entries. 507 * @entries: Actual stack backtrace. 508 */ 509 struct lock_trace { 510 struct hlist_node hash_entry; 511 u32 hash; 512 u32 nr_entries; 513 unsigned long entries[] __aligned(sizeof(unsigned long)); 514 }; 515 #define LOCK_TRACE_SIZE_IN_LONGS \ 516 (sizeof(struct lock_trace) / sizeof(unsigned long)) 517 /* 518 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 519 */ 520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 522 523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 524 { 525 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 526 memcmp(t1->entries, t2->entries, 527 t1->nr_entries * sizeof(t1->entries[0])) == 0; 528 } 529 530 static struct lock_trace *save_trace(void) 531 { 532 struct lock_trace *trace, *t2; 533 struct hlist_head *hash_head; 534 u32 hash; 535 int max_entries; 536 537 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 538 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 539 540 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 541 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 542 LOCK_TRACE_SIZE_IN_LONGS; 543 544 if (max_entries <= 0) { 545 if (!debug_locks_off_graph_unlock()) 546 return NULL; 547 548 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 549 dump_stack(); 550 551 return NULL; 552 } 553 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 554 555 hash = jhash(trace->entries, trace->nr_entries * 556 sizeof(trace->entries[0]), 0); 557 trace->hash = hash; 558 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 559 hlist_for_each_entry(t2, hash_head, hash_entry) { 560 if (traces_identical(trace, t2)) 561 return t2; 562 } 563 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 564 hlist_add_head(&trace->hash_entry, hash_head); 565 566 return trace; 567 } 568 569 /* Return the number of stack traces in the stack_trace[] array. */ 570 u64 lockdep_stack_trace_count(void) 571 { 572 struct lock_trace *trace; 573 u64 c = 0; 574 int i; 575 576 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 577 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 578 c++; 579 } 580 } 581 582 return c; 583 } 584 585 /* Return the number of stack hash chains that have at least one stack trace. */ 586 u64 lockdep_stack_hash_count(void) 587 { 588 u64 c = 0; 589 int i; 590 591 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 592 if (!hlist_empty(&stack_trace_hash[i])) 593 c++; 594 595 return c; 596 } 597 #endif 598 599 unsigned int nr_hardirq_chains; 600 unsigned int nr_softirq_chains; 601 unsigned int nr_process_chains; 602 unsigned int max_lockdep_depth; 603 604 #ifdef CONFIG_DEBUG_LOCKDEP 605 /* 606 * Various lockdep statistics: 607 */ 608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 609 #endif 610 611 #ifdef CONFIG_PROVE_LOCKING 612 /* 613 * Locking printouts: 614 */ 615 616 #define __USAGE(__STATE) \ 617 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 618 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 619 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 620 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 621 622 static const char *usage_str[] = 623 { 624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 625 #include "lockdep_states.h" 626 #undef LOCKDEP_STATE 627 [LOCK_USED] = "INITIAL USE", 628 [LOCK_USED_READ] = "INITIAL READ USE", 629 /* abused as string storage for verify_lock_unused() */ 630 [LOCK_USAGE_STATES] = "IN-NMI", 631 }; 632 #endif 633 634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 635 { 636 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 637 } 638 639 static inline unsigned long lock_flag(enum lock_usage_bit bit) 640 { 641 return 1UL << bit; 642 } 643 644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 645 { 646 /* 647 * The usage character defaults to '.' (i.e., irqs disabled and not in 648 * irq context), which is the safest usage category. 649 */ 650 char c = '.'; 651 652 /* 653 * The order of the following usage checks matters, which will 654 * result in the outcome character as follows: 655 * 656 * - '+': irq is enabled and not in irq context 657 * - '-': in irq context and irq is disabled 658 * - '?': in irq context and irq is enabled 659 */ 660 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 661 c = '+'; 662 if (class->usage_mask & lock_flag(bit)) 663 c = '?'; 664 } else if (class->usage_mask & lock_flag(bit)) 665 c = '-'; 666 667 return c; 668 } 669 670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 671 { 672 int i = 0; 673 674 #define LOCKDEP_STATE(__STATE) \ 675 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 676 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 677 #include "lockdep_states.h" 678 #undef LOCKDEP_STATE 679 680 usage[i] = '\0'; 681 } 682 683 static void __print_lock_name(struct lock_class *class) 684 { 685 char str[KSYM_NAME_LEN]; 686 const char *name; 687 688 name = class->name; 689 if (!name) { 690 name = __get_key_name(class->key, str); 691 printk(KERN_CONT "%s", name); 692 } else { 693 printk(KERN_CONT "%s", name); 694 if (class->name_version > 1) 695 printk(KERN_CONT "#%d", class->name_version); 696 if (class->subclass) 697 printk(KERN_CONT "/%d", class->subclass); 698 } 699 } 700 701 static void print_lock_name(struct lock_class *class) 702 { 703 char usage[LOCK_USAGE_CHARS]; 704 705 get_usage_chars(class, usage); 706 707 printk(KERN_CONT " ("); 708 __print_lock_name(class); 709 printk(KERN_CONT "){%s}-{%d:%d}", usage, 710 class->wait_type_outer ?: class->wait_type_inner, 711 class->wait_type_inner); 712 } 713 714 static void print_lockdep_cache(struct lockdep_map *lock) 715 { 716 const char *name; 717 char str[KSYM_NAME_LEN]; 718 719 name = lock->name; 720 if (!name) 721 name = __get_key_name(lock->key->subkeys, str); 722 723 printk(KERN_CONT "%s", name); 724 } 725 726 static void print_lock(struct held_lock *hlock) 727 { 728 /* 729 * We can be called locklessly through debug_show_all_locks() so be 730 * extra careful, the hlock might have been released and cleared. 731 * 732 * If this indeed happens, lets pretend it does not hurt to continue 733 * to print the lock unless the hlock class_idx does not point to a 734 * registered class. The rationale here is: since we don't attempt 735 * to distinguish whether we are in this situation, if it just 736 * happened we can't count on class_idx to tell either. 737 */ 738 struct lock_class *lock = hlock_class(hlock); 739 740 if (!lock) { 741 printk(KERN_CONT "<RELEASED>\n"); 742 return; 743 } 744 745 printk(KERN_CONT "%px", hlock->instance); 746 print_lock_name(lock); 747 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 748 } 749 750 static void lockdep_print_held_locks(struct task_struct *p) 751 { 752 int i, depth = READ_ONCE(p->lockdep_depth); 753 754 if (!depth) 755 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 756 else 757 printk("%d lock%s held by %s/%d:\n", depth, 758 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 759 /* 760 * It's not reliable to print a task's held locks if it's not sleeping 761 * and it's not the current task. 762 */ 763 if (p->state == TASK_RUNNING && p != current) 764 return; 765 for (i = 0; i < depth; i++) { 766 printk(" #%d: ", i); 767 print_lock(p->held_locks + i); 768 } 769 } 770 771 static void print_kernel_ident(void) 772 { 773 printk("%s %.*s %s\n", init_utsname()->release, 774 (int)strcspn(init_utsname()->version, " "), 775 init_utsname()->version, 776 print_tainted()); 777 } 778 779 static int very_verbose(struct lock_class *class) 780 { 781 #if VERY_VERBOSE 782 return class_filter(class); 783 #endif 784 return 0; 785 } 786 787 /* 788 * Is this the address of a static object: 789 */ 790 #ifdef __KERNEL__ 791 static int static_obj(const void *obj) 792 { 793 unsigned long start = (unsigned long) &_stext, 794 end = (unsigned long) &_end, 795 addr = (unsigned long) obj; 796 797 if (arch_is_kernel_initmem_freed(addr)) 798 return 0; 799 800 /* 801 * static variable? 802 */ 803 if ((addr >= start) && (addr < end)) 804 return 1; 805 806 if (arch_is_kernel_data(addr)) 807 return 1; 808 809 /* 810 * in-kernel percpu var? 811 */ 812 if (is_kernel_percpu_address(addr)) 813 return 1; 814 815 /* 816 * module static or percpu var? 817 */ 818 return is_module_address(addr) || is_module_percpu_address(addr); 819 } 820 #endif 821 822 /* 823 * To make lock name printouts unique, we calculate a unique 824 * class->name_version generation counter. The caller must hold the graph 825 * lock. 826 */ 827 static int count_matching_names(struct lock_class *new_class) 828 { 829 struct lock_class *class; 830 int count = 0; 831 832 if (!new_class->name) 833 return 0; 834 835 list_for_each_entry(class, &all_lock_classes, lock_entry) { 836 if (new_class->key - new_class->subclass == class->key) 837 return class->name_version; 838 if (class->name && !strcmp(class->name, new_class->name)) 839 count = max(count, class->name_version); 840 } 841 842 return count + 1; 843 } 844 845 /* used from NMI context -- must be lockless */ 846 static __always_inline struct lock_class * 847 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 848 { 849 struct lockdep_subclass_key *key; 850 struct hlist_head *hash_head; 851 struct lock_class *class; 852 853 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 854 debug_locks_off(); 855 printk(KERN_ERR 856 "BUG: looking up invalid subclass: %u\n", subclass); 857 printk(KERN_ERR 858 "turning off the locking correctness validator.\n"); 859 dump_stack(); 860 return NULL; 861 } 862 863 /* 864 * If it is not initialised then it has never been locked, 865 * so it won't be present in the hash table. 866 */ 867 if (unlikely(!lock->key)) 868 return NULL; 869 870 /* 871 * NOTE: the class-key must be unique. For dynamic locks, a static 872 * lock_class_key variable is passed in through the mutex_init() 873 * (or spin_lock_init()) call - which acts as the key. For static 874 * locks we use the lock object itself as the key. 875 */ 876 BUILD_BUG_ON(sizeof(struct lock_class_key) > 877 sizeof(struct lockdep_map)); 878 879 key = lock->key->subkeys + subclass; 880 881 hash_head = classhashentry(key); 882 883 /* 884 * We do an RCU walk of the hash, see lockdep_free_key_range(). 885 */ 886 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 887 return NULL; 888 889 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 890 if (class->key == key) { 891 /* 892 * Huh! same key, different name? Did someone trample 893 * on some memory? We're most confused. 894 */ 895 WARN_ON_ONCE(class->name != lock->name && 896 lock->key != &__lockdep_no_validate__); 897 return class; 898 } 899 } 900 901 return NULL; 902 } 903 904 /* 905 * Static locks do not have their class-keys yet - for them the key is 906 * the lock object itself. If the lock is in the per cpu area, the 907 * canonical address of the lock (per cpu offset removed) is used. 908 */ 909 static bool assign_lock_key(struct lockdep_map *lock) 910 { 911 unsigned long can_addr, addr = (unsigned long)lock; 912 913 #ifdef __KERNEL__ 914 /* 915 * lockdep_free_key_range() assumes that struct lock_class_key 916 * objects do not overlap. Since we use the address of lock 917 * objects as class key for static objects, check whether the 918 * size of lock_class_key objects does not exceed the size of 919 * the smallest lock object. 920 */ 921 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 922 #endif 923 924 if (__is_kernel_percpu_address(addr, &can_addr)) 925 lock->key = (void *)can_addr; 926 else if (__is_module_percpu_address(addr, &can_addr)) 927 lock->key = (void *)can_addr; 928 else if (static_obj(lock)) 929 lock->key = (void *)lock; 930 else { 931 /* Debug-check: all keys must be persistent! */ 932 debug_locks_off(); 933 pr_err("INFO: trying to register non-static key.\n"); 934 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 935 pr_err("you didn't initialize this object before use?\n"); 936 pr_err("turning off the locking correctness validator.\n"); 937 dump_stack(); 938 return false; 939 } 940 941 return true; 942 } 943 944 #ifdef CONFIG_DEBUG_LOCKDEP 945 946 /* Check whether element @e occurs in list @h */ 947 static bool in_list(struct list_head *e, struct list_head *h) 948 { 949 struct list_head *f; 950 951 list_for_each(f, h) { 952 if (e == f) 953 return true; 954 } 955 956 return false; 957 } 958 959 /* 960 * Check whether entry @e occurs in any of the locks_after or locks_before 961 * lists. 962 */ 963 static bool in_any_class_list(struct list_head *e) 964 { 965 struct lock_class *class; 966 int i; 967 968 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 969 class = &lock_classes[i]; 970 if (in_list(e, &class->locks_after) || 971 in_list(e, &class->locks_before)) 972 return true; 973 } 974 return false; 975 } 976 977 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 978 { 979 struct lock_list *e; 980 981 list_for_each_entry(e, h, entry) { 982 if (e->links_to != c) { 983 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 984 c->name ? : "(?)", 985 (unsigned long)(e - list_entries), 986 e->links_to && e->links_to->name ? 987 e->links_to->name : "(?)", 988 e->class && e->class->name ? e->class->name : 989 "(?)"); 990 return false; 991 } 992 } 993 return true; 994 } 995 996 #ifdef CONFIG_PROVE_LOCKING 997 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 998 #endif 999 1000 static bool check_lock_chain_key(struct lock_chain *chain) 1001 { 1002 #ifdef CONFIG_PROVE_LOCKING 1003 u64 chain_key = INITIAL_CHAIN_KEY; 1004 int i; 1005 1006 for (i = chain->base; i < chain->base + chain->depth; i++) 1007 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1008 /* 1009 * The 'unsigned long long' casts avoid that a compiler warning 1010 * is reported when building tools/lib/lockdep. 1011 */ 1012 if (chain->chain_key != chain_key) { 1013 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1014 (unsigned long long)(chain - lock_chains), 1015 (unsigned long long)chain->chain_key, 1016 (unsigned long long)chain_key); 1017 return false; 1018 } 1019 #endif 1020 return true; 1021 } 1022 1023 static bool in_any_zapped_class_list(struct lock_class *class) 1024 { 1025 struct pending_free *pf; 1026 int i; 1027 1028 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1029 if (in_list(&class->lock_entry, &pf->zapped)) 1030 return true; 1031 } 1032 1033 return false; 1034 } 1035 1036 static bool __check_data_structures(void) 1037 { 1038 struct lock_class *class; 1039 struct lock_chain *chain; 1040 struct hlist_head *head; 1041 struct lock_list *e; 1042 int i; 1043 1044 /* Check whether all classes occur in a lock list. */ 1045 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1046 class = &lock_classes[i]; 1047 if (!in_list(&class->lock_entry, &all_lock_classes) && 1048 !in_list(&class->lock_entry, &free_lock_classes) && 1049 !in_any_zapped_class_list(class)) { 1050 printk(KERN_INFO "class %px/%s is not in any class list\n", 1051 class, class->name ? : "(?)"); 1052 return false; 1053 } 1054 } 1055 1056 /* Check whether all classes have valid lock lists. */ 1057 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1058 class = &lock_classes[i]; 1059 if (!class_lock_list_valid(class, &class->locks_before)) 1060 return false; 1061 if (!class_lock_list_valid(class, &class->locks_after)) 1062 return false; 1063 } 1064 1065 /* Check the chain_key of all lock chains. */ 1066 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1067 head = chainhash_table + i; 1068 hlist_for_each_entry_rcu(chain, head, entry) { 1069 if (!check_lock_chain_key(chain)) 1070 return false; 1071 } 1072 } 1073 1074 /* 1075 * Check whether all list entries that are in use occur in a class 1076 * lock list. 1077 */ 1078 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1079 e = list_entries + i; 1080 if (!in_any_class_list(&e->entry)) { 1081 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1082 (unsigned int)(e - list_entries), 1083 e->class->name ? : "(?)", 1084 e->links_to->name ? : "(?)"); 1085 return false; 1086 } 1087 } 1088 1089 /* 1090 * Check whether all list entries that are not in use do not occur in 1091 * a class lock list. 1092 */ 1093 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1094 e = list_entries + i; 1095 if (in_any_class_list(&e->entry)) { 1096 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1097 (unsigned int)(e - list_entries), 1098 e->class && e->class->name ? e->class->name : 1099 "(?)", 1100 e->links_to && e->links_to->name ? 1101 e->links_to->name : "(?)"); 1102 return false; 1103 } 1104 } 1105 1106 return true; 1107 } 1108 1109 int check_consistency = 0; 1110 module_param(check_consistency, int, 0644); 1111 1112 static void check_data_structures(void) 1113 { 1114 static bool once = false; 1115 1116 if (check_consistency && !once) { 1117 if (!__check_data_structures()) { 1118 once = true; 1119 WARN_ON(once); 1120 } 1121 } 1122 } 1123 1124 #else /* CONFIG_DEBUG_LOCKDEP */ 1125 1126 static inline void check_data_structures(void) { } 1127 1128 #endif /* CONFIG_DEBUG_LOCKDEP */ 1129 1130 static void init_chain_block_buckets(void); 1131 1132 /* 1133 * Initialize the lock_classes[] array elements, the free_lock_classes list 1134 * and also the delayed_free structure. 1135 */ 1136 static void init_data_structures_once(void) 1137 { 1138 static bool __read_mostly ds_initialized, rcu_head_initialized; 1139 int i; 1140 1141 if (likely(rcu_head_initialized)) 1142 return; 1143 1144 if (system_state >= SYSTEM_SCHEDULING) { 1145 init_rcu_head(&delayed_free.rcu_head); 1146 rcu_head_initialized = true; 1147 } 1148 1149 if (ds_initialized) 1150 return; 1151 1152 ds_initialized = true; 1153 1154 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1155 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1156 1157 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1158 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1159 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1160 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1161 } 1162 init_chain_block_buckets(); 1163 } 1164 1165 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1166 { 1167 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1168 1169 return lock_keys_hash + hash; 1170 } 1171 1172 /* Register a dynamically allocated key. */ 1173 void lockdep_register_key(struct lock_class_key *key) 1174 { 1175 struct hlist_head *hash_head; 1176 struct lock_class_key *k; 1177 unsigned long flags; 1178 1179 if (WARN_ON_ONCE(static_obj(key))) 1180 return; 1181 hash_head = keyhashentry(key); 1182 1183 raw_local_irq_save(flags); 1184 if (!graph_lock()) 1185 goto restore_irqs; 1186 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1187 if (WARN_ON_ONCE(k == key)) 1188 goto out_unlock; 1189 } 1190 hlist_add_head_rcu(&key->hash_entry, hash_head); 1191 out_unlock: 1192 graph_unlock(); 1193 restore_irqs: 1194 raw_local_irq_restore(flags); 1195 } 1196 EXPORT_SYMBOL_GPL(lockdep_register_key); 1197 1198 /* Check whether a key has been registered as a dynamic key. */ 1199 static bool is_dynamic_key(const struct lock_class_key *key) 1200 { 1201 struct hlist_head *hash_head; 1202 struct lock_class_key *k; 1203 bool found = false; 1204 1205 if (WARN_ON_ONCE(static_obj(key))) 1206 return false; 1207 1208 /* 1209 * If lock debugging is disabled lock_keys_hash[] may contain 1210 * pointers to memory that has already been freed. Avoid triggering 1211 * a use-after-free in that case by returning early. 1212 */ 1213 if (!debug_locks) 1214 return true; 1215 1216 hash_head = keyhashentry(key); 1217 1218 rcu_read_lock(); 1219 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1220 if (k == key) { 1221 found = true; 1222 break; 1223 } 1224 } 1225 rcu_read_unlock(); 1226 1227 return found; 1228 } 1229 1230 /* 1231 * Register a lock's class in the hash-table, if the class is not present 1232 * yet. Otherwise we look it up. We cache the result in the lock object 1233 * itself, so actual lookup of the hash should be once per lock object. 1234 */ 1235 static struct lock_class * 1236 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1237 { 1238 struct lockdep_subclass_key *key; 1239 struct hlist_head *hash_head; 1240 struct lock_class *class; 1241 1242 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1243 1244 class = look_up_lock_class(lock, subclass); 1245 if (likely(class)) 1246 goto out_set_class_cache; 1247 1248 if (!lock->key) { 1249 if (!assign_lock_key(lock)) 1250 return NULL; 1251 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1252 return NULL; 1253 } 1254 1255 key = lock->key->subkeys + subclass; 1256 hash_head = classhashentry(key); 1257 1258 if (!graph_lock()) { 1259 return NULL; 1260 } 1261 /* 1262 * We have to do the hash-walk again, to avoid races 1263 * with another CPU: 1264 */ 1265 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1266 if (class->key == key) 1267 goto out_unlock_set; 1268 } 1269 1270 init_data_structures_once(); 1271 1272 /* Allocate a new lock class and add it to the hash. */ 1273 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1274 lock_entry); 1275 if (!class) { 1276 if (!debug_locks_off_graph_unlock()) { 1277 return NULL; 1278 } 1279 1280 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1281 dump_stack(); 1282 return NULL; 1283 } 1284 nr_lock_classes++; 1285 __set_bit(class - lock_classes, lock_classes_in_use); 1286 debug_atomic_inc(nr_unused_locks); 1287 class->key = key; 1288 class->name = lock->name; 1289 class->subclass = subclass; 1290 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1291 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1292 class->name_version = count_matching_names(class); 1293 class->wait_type_inner = lock->wait_type_inner; 1294 class->wait_type_outer = lock->wait_type_outer; 1295 class->lock_type = lock->lock_type; 1296 /* 1297 * We use RCU's safe list-add method to make 1298 * parallel walking of the hash-list safe: 1299 */ 1300 hlist_add_head_rcu(&class->hash_entry, hash_head); 1301 /* 1302 * Remove the class from the free list and add it to the global list 1303 * of classes. 1304 */ 1305 list_move_tail(&class->lock_entry, &all_lock_classes); 1306 1307 if (verbose(class)) { 1308 graph_unlock(); 1309 1310 printk("\nnew class %px: %s", class->key, class->name); 1311 if (class->name_version > 1) 1312 printk(KERN_CONT "#%d", class->name_version); 1313 printk(KERN_CONT "\n"); 1314 dump_stack(); 1315 1316 if (!graph_lock()) { 1317 return NULL; 1318 } 1319 } 1320 out_unlock_set: 1321 graph_unlock(); 1322 1323 out_set_class_cache: 1324 if (!subclass || force) 1325 lock->class_cache[0] = class; 1326 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1327 lock->class_cache[subclass] = class; 1328 1329 /* 1330 * Hash collision, did we smoke some? We found a class with a matching 1331 * hash but the subclass -- which is hashed in -- didn't match. 1332 */ 1333 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1334 return NULL; 1335 1336 return class; 1337 } 1338 1339 #ifdef CONFIG_PROVE_LOCKING 1340 /* 1341 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1342 * with NULL on failure) 1343 */ 1344 static struct lock_list *alloc_list_entry(void) 1345 { 1346 int idx = find_first_zero_bit(list_entries_in_use, 1347 ARRAY_SIZE(list_entries)); 1348 1349 if (idx >= ARRAY_SIZE(list_entries)) { 1350 if (!debug_locks_off_graph_unlock()) 1351 return NULL; 1352 1353 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1354 dump_stack(); 1355 return NULL; 1356 } 1357 nr_list_entries++; 1358 __set_bit(idx, list_entries_in_use); 1359 return list_entries + idx; 1360 } 1361 1362 /* 1363 * Add a new dependency to the head of the list: 1364 */ 1365 static int add_lock_to_list(struct lock_class *this, 1366 struct lock_class *links_to, struct list_head *head, 1367 unsigned long ip, u16 distance, u8 dep, 1368 const struct lock_trace *trace) 1369 { 1370 struct lock_list *entry; 1371 /* 1372 * Lock not present yet - get a new dependency struct and 1373 * add it to the list: 1374 */ 1375 entry = alloc_list_entry(); 1376 if (!entry) 1377 return 0; 1378 1379 entry->class = this; 1380 entry->links_to = links_to; 1381 entry->dep = dep; 1382 entry->distance = distance; 1383 entry->trace = trace; 1384 /* 1385 * Both allocation and removal are done under the graph lock; but 1386 * iteration is under RCU-sched; see look_up_lock_class() and 1387 * lockdep_free_key_range(). 1388 */ 1389 list_add_tail_rcu(&entry->entry, head); 1390 1391 return 1; 1392 } 1393 1394 /* 1395 * For good efficiency of modular, we use power of 2 1396 */ 1397 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1398 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1399 1400 /* 1401 * The circular_queue and helpers are used to implement graph 1402 * breadth-first search (BFS) algorithm, by which we can determine 1403 * whether there is a path from a lock to another. In deadlock checks, 1404 * a path from the next lock to be acquired to a previous held lock 1405 * indicates that adding the <prev> -> <next> lock dependency will 1406 * produce a circle in the graph. Breadth-first search instead of 1407 * depth-first search is used in order to find the shortest (circular) 1408 * path. 1409 */ 1410 struct circular_queue { 1411 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1412 unsigned int front, rear; 1413 }; 1414 1415 static struct circular_queue lock_cq; 1416 1417 unsigned int max_bfs_queue_depth; 1418 1419 static unsigned int lockdep_dependency_gen_id; 1420 1421 static inline void __cq_init(struct circular_queue *cq) 1422 { 1423 cq->front = cq->rear = 0; 1424 lockdep_dependency_gen_id++; 1425 } 1426 1427 static inline int __cq_empty(struct circular_queue *cq) 1428 { 1429 return (cq->front == cq->rear); 1430 } 1431 1432 static inline int __cq_full(struct circular_queue *cq) 1433 { 1434 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1435 } 1436 1437 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1438 { 1439 if (__cq_full(cq)) 1440 return -1; 1441 1442 cq->element[cq->rear] = elem; 1443 cq->rear = (cq->rear + 1) & CQ_MASK; 1444 return 0; 1445 } 1446 1447 /* 1448 * Dequeue an element from the circular_queue, return a lock_list if 1449 * the queue is not empty, or NULL if otherwise. 1450 */ 1451 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1452 { 1453 struct lock_list * lock; 1454 1455 if (__cq_empty(cq)) 1456 return NULL; 1457 1458 lock = cq->element[cq->front]; 1459 cq->front = (cq->front + 1) & CQ_MASK; 1460 1461 return lock; 1462 } 1463 1464 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1465 { 1466 return (cq->rear - cq->front) & CQ_MASK; 1467 } 1468 1469 static inline void mark_lock_accessed(struct lock_list *lock) 1470 { 1471 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1472 } 1473 1474 static inline void visit_lock_entry(struct lock_list *lock, 1475 struct lock_list *parent) 1476 { 1477 lock->parent = parent; 1478 } 1479 1480 static inline unsigned long lock_accessed(struct lock_list *lock) 1481 { 1482 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1483 } 1484 1485 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1486 { 1487 return child->parent; 1488 } 1489 1490 static inline int get_lock_depth(struct lock_list *child) 1491 { 1492 int depth = 0; 1493 struct lock_list *parent; 1494 1495 while ((parent = get_lock_parent(child))) { 1496 child = parent; 1497 depth++; 1498 } 1499 return depth; 1500 } 1501 1502 /* 1503 * Return the forward or backward dependency list. 1504 * 1505 * @lock: the lock_list to get its class's dependency list 1506 * @offset: the offset to struct lock_class to determine whether it is 1507 * locks_after or locks_before 1508 */ 1509 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1510 { 1511 void *lock_class = lock->class; 1512 1513 return lock_class + offset; 1514 } 1515 /* 1516 * Return values of a bfs search: 1517 * 1518 * BFS_E* indicates an error 1519 * BFS_R* indicates a result (match or not) 1520 * 1521 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1522 * 1523 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1524 * 1525 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1526 * *@target_entry. 1527 * 1528 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1529 * _unchanged_. 1530 */ 1531 enum bfs_result { 1532 BFS_EINVALIDNODE = -2, 1533 BFS_EQUEUEFULL = -1, 1534 BFS_RMATCH = 0, 1535 BFS_RNOMATCH = 1, 1536 }; 1537 1538 /* 1539 * bfs_result < 0 means error 1540 */ 1541 static inline bool bfs_error(enum bfs_result res) 1542 { 1543 return res < 0; 1544 } 1545 1546 /* 1547 * DEP_*_BIT in lock_list::dep 1548 * 1549 * For dependency @prev -> @next: 1550 * 1551 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1552 * (->read == 2) 1553 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1554 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1555 * EN: @prev is exclusive locker and @next is non-recursive locker 1556 * 1557 * Note that we define the value of DEP_*_BITs so that: 1558 * bit0 is prev->read == 0 1559 * bit1 is next->read != 2 1560 */ 1561 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1562 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1563 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1564 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1565 1566 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1567 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1568 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1569 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1570 1571 static inline unsigned int 1572 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1573 { 1574 return (prev->read == 0) + ((next->read != 2) << 1); 1575 } 1576 1577 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1578 { 1579 return 1U << __calc_dep_bit(prev, next); 1580 } 1581 1582 /* 1583 * calculate the dep_bit for backwards edges. We care about whether @prev is 1584 * shared and whether @next is recursive. 1585 */ 1586 static inline unsigned int 1587 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1588 { 1589 return (next->read != 2) + ((prev->read == 0) << 1); 1590 } 1591 1592 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1593 { 1594 return 1U << __calc_dep_bitb(prev, next); 1595 } 1596 1597 /* 1598 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1599 * search. 1600 */ 1601 static inline void __bfs_init_root(struct lock_list *lock, 1602 struct lock_class *class) 1603 { 1604 lock->class = class; 1605 lock->parent = NULL; 1606 lock->only_xr = 0; 1607 } 1608 1609 /* 1610 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1611 * root for a BFS search. 1612 * 1613 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1614 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1615 * and -(S*)->. 1616 */ 1617 static inline void bfs_init_root(struct lock_list *lock, 1618 struct held_lock *hlock) 1619 { 1620 __bfs_init_root(lock, hlock_class(hlock)); 1621 lock->only_xr = (hlock->read == 2); 1622 } 1623 1624 /* 1625 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1626 * 1627 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1628 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1629 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1630 */ 1631 static inline void bfs_init_rootb(struct lock_list *lock, 1632 struct held_lock *hlock) 1633 { 1634 __bfs_init_root(lock, hlock_class(hlock)); 1635 lock->only_xr = (hlock->read != 0); 1636 } 1637 1638 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1639 { 1640 if (!lock || !lock->parent) 1641 return NULL; 1642 1643 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1644 &lock->entry, struct lock_list, entry); 1645 } 1646 1647 /* 1648 * Breadth-First Search to find a strong path in the dependency graph. 1649 * 1650 * @source_entry: the source of the path we are searching for. 1651 * @data: data used for the second parameter of @match function 1652 * @match: match function for the search 1653 * @target_entry: pointer to the target of a matched path 1654 * @offset: the offset to struct lock_class to determine whether it is 1655 * locks_after or locks_before 1656 * 1657 * We may have multiple edges (considering different kinds of dependencies, 1658 * e.g. ER and SN) between two nodes in the dependency graph. But 1659 * only the strong dependency path in the graph is relevant to deadlocks. A 1660 * strong dependency path is a dependency path that doesn't have two adjacent 1661 * dependencies as -(*R)-> -(S*)->, please see: 1662 * 1663 * Documentation/locking/lockdep-design.rst 1664 * 1665 * for more explanation of the definition of strong dependency paths 1666 * 1667 * In __bfs(), we only traverse in the strong dependency path: 1668 * 1669 * In lock_list::only_xr, we record whether the previous dependency only 1670 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1671 * filter out any -(S*)-> in the current dependency and after that, the 1672 * ->only_xr is set according to whether we only have -(*R)-> left. 1673 */ 1674 static enum bfs_result __bfs(struct lock_list *source_entry, 1675 void *data, 1676 bool (*match)(struct lock_list *entry, void *data), 1677 bool (*skip)(struct lock_list *entry, void *data), 1678 struct lock_list **target_entry, 1679 int offset) 1680 { 1681 struct circular_queue *cq = &lock_cq; 1682 struct lock_list *lock = NULL; 1683 struct lock_list *entry; 1684 struct list_head *head; 1685 unsigned int cq_depth; 1686 bool first; 1687 1688 lockdep_assert_locked(); 1689 1690 __cq_init(cq); 1691 __cq_enqueue(cq, source_entry); 1692 1693 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1694 if (!lock->class) 1695 return BFS_EINVALIDNODE; 1696 1697 /* 1698 * Step 1: check whether we already finish on this one. 1699 * 1700 * If we have visited all the dependencies from this @lock to 1701 * others (iow, if we have visited all lock_list entries in 1702 * @lock->class->locks_{after,before}) we skip, otherwise go 1703 * and visit all the dependencies in the list and mark this 1704 * list accessed. 1705 */ 1706 if (lock_accessed(lock)) 1707 continue; 1708 else 1709 mark_lock_accessed(lock); 1710 1711 /* 1712 * Step 2: check whether prev dependency and this form a strong 1713 * dependency path. 1714 */ 1715 if (lock->parent) { /* Parent exists, check prev dependency */ 1716 u8 dep = lock->dep; 1717 bool prev_only_xr = lock->parent->only_xr; 1718 1719 /* 1720 * Mask out all -(S*)-> if we only have *R in previous 1721 * step, because -(*R)-> -(S*)-> don't make up a strong 1722 * dependency. 1723 */ 1724 if (prev_only_xr) 1725 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1726 1727 /* If nothing left, we skip */ 1728 if (!dep) 1729 continue; 1730 1731 /* If there are only -(*R)-> left, set that for the next step */ 1732 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1733 } 1734 1735 /* 1736 * Step 3: we haven't visited this and there is a strong 1737 * dependency path to this, so check with @match. 1738 * If @skip is provide and returns true, we skip this 1739 * lock (and any path this lock is in). 1740 */ 1741 if (skip && skip(lock, data)) 1742 continue; 1743 1744 if (match(lock, data)) { 1745 *target_entry = lock; 1746 return BFS_RMATCH; 1747 } 1748 1749 /* 1750 * Step 4: if not match, expand the path by adding the 1751 * forward or backwards dependencies in the search 1752 * 1753 */ 1754 first = true; 1755 head = get_dep_list(lock, offset); 1756 list_for_each_entry_rcu(entry, head, entry) { 1757 visit_lock_entry(entry, lock); 1758 1759 /* 1760 * Note we only enqueue the first of the list into the 1761 * queue, because we can always find a sibling 1762 * dependency from one (see __bfs_next()), as a result 1763 * the space of queue is saved. 1764 */ 1765 if (!first) 1766 continue; 1767 1768 first = false; 1769 1770 if (__cq_enqueue(cq, entry)) 1771 return BFS_EQUEUEFULL; 1772 1773 cq_depth = __cq_get_elem_count(cq); 1774 if (max_bfs_queue_depth < cq_depth) 1775 max_bfs_queue_depth = cq_depth; 1776 } 1777 } 1778 1779 return BFS_RNOMATCH; 1780 } 1781 1782 static inline enum bfs_result 1783 __bfs_forwards(struct lock_list *src_entry, 1784 void *data, 1785 bool (*match)(struct lock_list *entry, void *data), 1786 bool (*skip)(struct lock_list *entry, void *data), 1787 struct lock_list **target_entry) 1788 { 1789 return __bfs(src_entry, data, match, skip, target_entry, 1790 offsetof(struct lock_class, locks_after)); 1791 1792 } 1793 1794 static inline enum bfs_result 1795 __bfs_backwards(struct lock_list *src_entry, 1796 void *data, 1797 bool (*match)(struct lock_list *entry, void *data), 1798 bool (*skip)(struct lock_list *entry, void *data), 1799 struct lock_list **target_entry) 1800 { 1801 return __bfs(src_entry, data, match, skip, target_entry, 1802 offsetof(struct lock_class, locks_before)); 1803 1804 } 1805 1806 static void print_lock_trace(const struct lock_trace *trace, 1807 unsigned int spaces) 1808 { 1809 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1810 } 1811 1812 /* 1813 * Print a dependency chain entry (this is only done when a deadlock 1814 * has been detected): 1815 */ 1816 static noinline void 1817 print_circular_bug_entry(struct lock_list *target, int depth) 1818 { 1819 if (debug_locks_silent) 1820 return; 1821 printk("\n-> #%u", depth); 1822 print_lock_name(target->class); 1823 printk(KERN_CONT ":\n"); 1824 print_lock_trace(target->trace, 6); 1825 } 1826 1827 static void 1828 print_circular_lock_scenario(struct held_lock *src, 1829 struct held_lock *tgt, 1830 struct lock_list *prt) 1831 { 1832 struct lock_class *source = hlock_class(src); 1833 struct lock_class *target = hlock_class(tgt); 1834 struct lock_class *parent = prt->class; 1835 1836 /* 1837 * A direct locking problem where unsafe_class lock is taken 1838 * directly by safe_class lock, then all we need to show 1839 * is the deadlock scenario, as it is obvious that the 1840 * unsafe lock is taken under the safe lock. 1841 * 1842 * But if there is a chain instead, where the safe lock takes 1843 * an intermediate lock (middle_class) where this lock is 1844 * not the same as the safe lock, then the lock chain is 1845 * used to describe the problem. Otherwise we would need 1846 * to show a different CPU case for each link in the chain 1847 * from the safe_class lock to the unsafe_class lock. 1848 */ 1849 if (parent != source) { 1850 printk("Chain exists of:\n "); 1851 __print_lock_name(source); 1852 printk(KERN_CONT " --> "); 1853 __print_lock_name(parent); 1854 printk(KERN_CONT " --> "); 1855 __print_lock_name(target); 1856 printk(KERN_CONT "\n\n"); 1857 } 1858 1859 printk(" Possible unsafe locking scenario:\n\n"); 1860 printk(" CPU0 CPU1\n"); 1861 printk(" ---- ----\n"); 1862 printk(" lock("); 1863 __print_lock_name(target); 1864 printk(KERN_CONT ");\n"); 1865 printk(" lock("); 1866 __print_lock_name(parent); 1867 printk(KERN_CONT ");\n"); 1868 printk(" lock("); 1869 __print_lock_name(target); 1870 printk(KERN_CONT ");\n"); 1871 printk(" lock("); 1872 __print_lock_name(source); 1873 printk(KERN_CONT ");\n"); 1874 printk("\n *** DEADLOCK ***\n\n"); 1875 } 1876 1877 /* 1878 * When a circular dependency is detected, print the 1879 * header first: 1880 */ 1881 static noinline void 1882 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1883 struct held_lock *check_src, 1884 struct held_lock *check_tgt) 1885 { 1886 struct task_struct *curr = current; 1887 1888 if (debug_locks_silent) 1889 return; 1890 1891 pr_warn("\n"); 1892 pr_warn("======================================================\n"); 1893 pr_warn("WARNING: possible circular locking dependency detected\n"); 1894 print_kernel_ident(); 1895 pr_warn("------------------------------------------------------\n"); 1896 pr_warn("%s/%d is trying to acquire lock:\n", 1897 curr->comm, task_pid_nr(curr)); 1898 print_lock(check_src); 1899 1900 pr_warn("\nbut task is already holding lock:\n"); 1901 1902 print_lock(check_tgt); 1903 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1904 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1905 1906 print_circular_bug_entry(entry, depth); 1907 } 1908 1909 /* 1910 * We are about to add A -> B into the dependency graph, and in __bfs() a 1911 * strong dependency path A -> .. -> B is found: hlock_class equals 1912 * entry->class. 1913 * 1914 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1915 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1916 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1917 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1918 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1919 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1920 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1921 * 1922 * We need to make sure both the start and the end of A -> .. -> B is not 1923 * weaker than A -> B. For the start part, please see the comment in 1924 * check_redundant(). For the end part, we need: 1925 * 1926 * Either 1927 * 1928 * a) A -> B is -(*R)-> (everything is not weaker than that) 1929 * 1930 * or 1931 * 1932 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1933 * 1934 */ 1935 static inline bool hlock_equal(struct lock_list *entry, void *data) 1936 { 1937 struct held_lock *hlock = (struct held_lock *)data; 1938 1939 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1940 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1941 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1942 } 1943 1944 /* 1945 * We are about to add B -> A into the dependency graph, and in __bfs() a 1946 * strong dependency path A -> .. -> B is found: hlock_class equals 1947 * entry->class. 1948 * 1949 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1950 * dependency cycle, that means: 1951 * 1952 * Either 1953 * 1954 * a) B -> A is -(E*)-> 1955 * 1956 * or 1957 * 1958 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 1959 * 1960 * as then we don't have -(*R)-> -(S*)-> in the cycle. 1961 */ 1962 static inline bool hlock_conflict(struct lock_list *entry, void *data) 1963 { 1964 struct held_lock *hlock = (struct held_lock *)data; 1965 1966 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1967 (hlock->read == 0 || /* B -> A is -(E*)-> */ 1968 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1969 } 1970 1971 static noinline void print_circular_bug(struct lock_list *this, 1972 struct lock_list *target, 1973 struct held_lock *check_src, 1974 struct held_lock *check_tgt) 1975 { 1976 struct task_struct *curr = current; 1977 struct lock_list *parent; 1978 struct lock_list *first_parent; 1979 int depth; 1980 1981 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1982 return; 1983 1984 this->trace = save_trace(); 1985 if (!this->trace) 1986 return; 1987 1988 depth = get_lock_depth(target); 1989 1990 print_circular_bug_header(target, depth, check_src, check_tgt); 1991 1992 parent = get_lock_parent(target); 1993 first_parent = parent; 1994 1995 while (parent) { 1996 print_circular_bug_entry(parent, --depth); 1997 parent = get_lock_parent(parent); 1998 } 1999 2000 printk("\nother info that might help us debug this:\n\n"); 2001 print_circular_lock_scenario(check_src, check_tgt, 2002 first_parent); 2003 2004 lockdep_print_held_locks(curr); 2005 2006 printk("\nstack backtrace:\n"); 2007 dump_stack(); 2008 } 2009 2010 static noinline void print_bfs_bug(int ret) 2011 { 2012 if (!debug_locks_off_graph_unlock()) 2013 return; 2014 2015 /* 2016 * Breadth-first-search failed, graph got corrupted? 2017 */ 2018 WARN(1, "lockdep bfs error:%d\n", ret); 2019 } 2020 2021 static bool noop_count(struct lock_list *entry, void *data) 2022 { 2023 (*(unsigned long *)data)++; 2024 return false; 2025 } 2026 2027 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2028 { 2029 unsigned long count = 0; 2030 struct lock_list *target_entry; 2031 2032 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2033 2034 return count; 2035 } 2036 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2037 { 2038 unsigned long ret, flags; 2039 struct lock_list this; 2040 2041 __bfs_init_root(&this, class); 2042 2043 raw_local_irq_save(flags); 2044 lockdep_lock(); 2045 ret = __lockdep_count_forward_deps(&this); 2046 lockdep_unlock(); 2047 raw_local_irq_restore(flags); 2048 2049 return ret; 2050 } 2051 2052 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2053 { 2054 unsigned long count = 0; 2055 struct lock_list *target_entry; 2056 2057 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2058 2059 return count; 2060 } 2061 2062 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2063 { 2064 unsigned long ret, flags; 2065 struct lock_list this; 2066 2067 __bfs_init_root(&this, class); 2068 2069 raw_local_irq_save(flags); 2070 lockdep_lock(); 2071 ret = __lockdep_count_backward_deps(&this); 2072 lockdep_unlock(); 2073 raw_local_irq_restore(flags); 2074 2075 return ret; 2076 } 2077 2078 /* 2079 * Check that the dependency graph starting at <src> can lead to 2080 * <target> or not. 2081 */ 2082 static noinline enum bfs_result 2083 check_path(struct held_lock *target, struct lock_list *src_entry, 2084 bool (*match)(struct lock_list *entry, void *data), 2085 bool (*skip)(struct lock_list *entry, void *data), 2086 struct lock_list **target_entry) 2087 { 2088 enum bfs_result ret; 2089 2090 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2091 2092 if (unlikely(bfs_error(ret))) 2093 print_bfs_bug(ret); 2094 2095 return ret; 2096 } 2097 2098 /* 2099 * Prove that the dependency graph starting at <src> can not 2100 * lead to <target>. If it can, there is a circle when adding 2101 * <target> -> <src> dependency. 2102 * 2103 * Print an error and return BFS_RMATCH if it does. 2104 */ 2105 static noinline enum bfs_result 2106 check_noncircular(struct held_lock *src, struct held_lock *target, 2107 struct lock_trace **const trace) 2108 { 2109 enum bfs_result ret; 2110 struct lock_list *target_entry; 2111 struct lock_list src_entry; 2112 2113 bfs_init_root(&src_entry, src); 2114 2115 debug_atomic_inc(nr_cyclic_checks); 2116 2117 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2118 2119 if (unlikely(ret == BFS_RMATCH)) { 2120 if (!*trace) { 2121 /* 2122 * If save_trace fails here, the printing might 2123 * trigger a WARN but because of the !nr_entries it 2124 * should not do bad things. 2125 */ 2126 *trace = save_trace(); 2127 } 2128 2129 print_circular_bug(&src_entry, target_entry, src, target); 2130 } 2131 2132 return ret; 2133 } 2134 2135 #ifdef CONFIG_TRACE_IRQFLAGS 2136 2137 /* 2138 * Forwards and backwards subgraph searching, for the purposes of 2139 * proving that two subgraphs can be connected by a new dependency 2140 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2141 * 2142 * A irq safe->unsafe deadlock happens with the following conditions: 2143 * 2144 * 1) We have a strong dependency path A -> ... -> B 2145 * 2146 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2147 * irq can create a new dependency B -> A (consider the case that a holder 2148 * of B gets interrupted by an irq whose handler will try to acquire A). 2149 * 2150 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2151 * strong circle: 2152 * 2153 * For the usage bits of B: 2154 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2155 * ENABLED_IRQ usage suffices. 2156 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2157 * ENABLED_IRQ_*_READ usage suffices. 2158 * 2159 * For the usage bits of A: 2160 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2161 * USED_IN_IRQ usage suffices. 2162 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2163 * USED_IN_IRQ_*_READ usage suffices. 2164 */ 2165 2166 /* 2167 * There is a strong dependency path in the dependency graph: A -> B, and now 2168 * we need to decide which usage bit of A should be accumulated to detect 2169 * safe->unsafe bugs. 2170 * 2171 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2172 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2173 * 2174 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2175 * path, any usage of A should be considered. Otherwise, we should only 2176 * consider _READ usage. 2177 */ 2178 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2179 { 2180 if (!entry->only_xr) 2181 *(unsigned long *)mask |= entry->class->usage_mask; 2182 else /* Mask out _READ usage bits */ 2183 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2184 2185 return false; 2186 } 2187 2188 /* 2189 * There is a strong dependency path in the dependency graph: A -> B, and now 2190 * we need to decide which usage bit of B conflicts with the usage bits of A, 2191 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2192 * 2193 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2194 * path, any usage of B should be considered. Otherwise, we should only 2195 * consider _READ usage. 2196 */ 2197 static inline bool usage_match(struct lock_list *entry, void *mask) 2198 { 2199 if (!entry->only_xr) 2200 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2201 else /* Mask out _READ usage bits */ 2202 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2203 } 2204 2205 static inline bool usage_skip(struct lock_list *entry, void *mask) 2206 { 2207 /* 2208 * Skip local_lock() for irq inversion detection. 2209 * 2210 * For !RT, local_lock() is not a real lock, so it won't carry any 2211 * dependency. 2212 * 2213 * For RT, an irq inversion happens when we have lock A and B, and on 2214 * some CPU we can have: 2215 * 2216 * lock(A); 2217 * <interrupted> 2218 * lock(B); 2219 * 2220 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2221 * 2222 * Now we prove local_lock() cannot exist in that dependency. First we 2223 * have the observation for any lock chain L1 -> ... -> Ln, for any 2224 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2225 * wait context check will complain. And since B is not a sleep lock, 2226 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2227 * local_lock() is 3, which is greater than 2, therefore there is no 2228 * way the local_lock() exists in the dependency B -> ... -> A. 2229 * 2230 * As a result, we will skip local_lock(), when we search for irq 2231 * inversion bugs. 2232 */ 2233 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2234 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2235 return false; 2236 2237 return true; 2238 } 2239 2240 return false; 2241 } 2242 2243 /* 2244 * Find a node in the forwards-direction dependency sub-graph starting 2245 * at @root->class that matches @bit. 2246 * 2247 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2248 * into *@target_entry. 2249 */ 2250 static enum bfs_result 2251 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2252 struct lock_list **target_entry) 2253 { 2254 enum bfs_result result; 2255 2256 debug_atomic_inc(nr_find_usage_forwards_checks); 2257 2258 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2259 2260 return result; 2261 } 2262 2263 /* 2264 * Find a node in the backwards-direction dependency sub-graph starting 2265 * at @root->class that matches @bit. 2266 */ 2267 static enum bfs_result 2268 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2269 struct lock_list **target_entry) 2270 { 2271 enum bfs_result result; 2272 2273 debug_atomic_inc(nr_find_usage_backwards_checks); 2274 2275 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2276 2277 return result; 2278 } 2279 2280 static void print_lock_class_header(struct lock_class *class, int depth) 2281 { 2282 int bit; 2283 2284 printk("%*s->", depth, ""); 2285 print_lock_name(class); 2286 #ifdef CONFIG_DEBUG_LOCKDEP 2287 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2288 #endif 2289 printk(KERN_CONT " {\n"); 2290 2291 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2292 if (class->usage_mask & (1 << bit)) { 2293 int len = depth; 2294 2295 len += printk("%*s %s", depth, "", usage_str[bit]); 2296 len += printk(KERN_CONT " at:\n"); 2297 print_lock_trace(class->usage_traces[bit], len); 2298 } 2299 } 2300 printk("%*s }\n", depth, ""); 2301 2302 printk("%*s ... key at: [<%px>] %pS\n", 2303 depth, "", class->key, class->key); 2304 } 2305 2306 /* 2307 * printk the shortest lock dependencies from @start to @end in reverse order: 2308 */ 2309 static void __used 2310 print_shortest_lock_dependencies(struct lock_list *leaf, 2311 struct lock_list *root) 2312 { 2313 struct lock_list *entry = leaf; 2314 int depth; 2315 2316 /*compute depth from generated tree by BFS*/ 2317 depth = get_lock_depth(leaf); 2318 2319 do { 2320 print_lock_class_header(entry->class, depth); 2321 printk("%*s ... acquired at:\n", depth, ""); 2322 print_lock_trace(entry->trace, 2); 2323 printk("\n"); 2324 2325 if (depth == 0 && (entry != root)) { 2326 printk("lockdep:%s bad path found in chain graph\n", __func__); 2327 break; 2328 } 2329 2330 entry = get_lock_parent(entry); 2331 depth--; 2332 } while (entry && (depth >= 0)); 2333 } 2334 2335 static void 2336 print_irq_lock_scenario(struct lock_list *safe_entry, 2337 struct lock_list *unsafe_entry, 2338 struct lock_class *prev_class, 2339 struct lock_class *next_class) 2340 { 2341 struct lock_class *safe_class = safe_entry->class; 2342 struct lock_class *unsafe_class = unsafe_entry->class; 2343 struct lock_class *middle_class = prev_class; 2344 2345 if (middle_class == safe_class) 2346 middle_class = next_class; 2347 2348 /* 2349 * A direct locking problem where unsafe_class lock is taken 2350 * directly by safe_class lock, then all we need to show 2351 * is the deadlock scenario, as it is obvious that the 2352 * unsafe lock is taken under the safe lock. 2353 * 2354 * But if there is a chain instead, where the safe lock takes 2355 * an intermediate lock (middle_class) where this lock is 2356 * not the same as the safe lock, then the lock chain is 2357 * used to describe the problem. Otherwise we would need 2358 * to show a different CPU case for each link in the chain 2359 * from the safe_class lock to the unsafe_class lock. 2360 */ 2361 if (middle_class != unsafe_class) { 2362 printk("Chain exists of:\n "); 2363 __print_lock_name(safe_class); 2364 printk(KERN_CONT " --> "); 2365 __print_lock_name(middle_class); 2366 printk(KERN_CONT " --> "); 2367 __print_lock_name(unsafe_class); 2368 printk(KERN_CONT "\n\n"); 2369 } 2370 2371 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2372 printk(" CPU0 CPU1\n"); 2373 printk(" ---- ----\n"); 2374 printk(" lock("); 2375 __print_lock_name(unsafe_class); 2376 printk(KERN_CONT ");\n"); 2377 printk(" local_irq_disable();\n"); 2378 printk(" lock("); 2379 __print_lock_name(safe_class); 2380 printk(KERN_CONT ");\n"); 2381 printk(" lock("); 2382 __print_lock_name(middle_class); 2383 printk(KERN_CONT ");\n"); 2384 printk(" <Interrupt>\n"); 2385 printk(" lock("); 2386 __print_lock_name(safe_class); 2387 printk(KERN_CONT ");\n"); 2388 printk("\n *** DEADLOCK ***\n\n"); 2389 } 2390 2391 static void 2392 print_bad_irq_dependency(struct task_struct *curr, 2393 struct lock_list *prev_root, 2394 struct lock_list *next_root, 2395 struct lock_list *backwards_entry, 2396 struct lock_list *forwards_entry, 2397 struct held_lock *prev, 2398 struct held_lock *next, 2399 enum lock_usage_bit bit1, 2400 enum lock_usage_bit bit2, 2401 const char *irqclass) 2402 { 2403 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2404 return; 2405 2406 pr_warn("\n"); 2407 pr_warn("=====================================================\n"); 2408 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2409 irqclass, irqclass); 2410 print_kernel_ident(); 2411 pr_warn("-----------------------------------------------------\n"); 2412 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2413 curr->comm, task_pid_nr(curr), 2414 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2415 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2416 lockdep_hardirqs_enabled(), 2417 curr->softirqs_enabled); 2418 print_lock(next); 2419 2420 pr_warn("\nand this task is already holding:\n"); 2421 print_lock(prev); 2422 pr_warn("which would create a new lock dependency:\n"); 2423 print_lock_name(hlock_class(prev)); 2424 pr_cont(" ->"); 2425 print_lock_name(hlock_class(next)); 2426 pr_cont("\n"); 2427 2428 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2429 irqclass); 2430 print_lock_name(backwards_entry->class); 2431 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2432 2433 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2434 2435 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2436 print_lock_name(forwards_entry->class); 2437 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2438 pr_warn("..."); 2439 2440 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2441 2442 pr_warn("\nother info that might help us debug this:\n\n"); 2443 print_irq_lock_scenario(backwards_entry, forwards_entry, 2444 hlock_class(prev), hlock_class(next)); 2445 2446 lockdep_print_held_locks(curr); 2447 2448 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2449 prev_root->trace = save_trace(); 2450 if (!prev_root->trace) 2451 return; 2452 print_shortest_lock_dependencies(backwards_entry, prev_root); 2453 2454 pr_warn("\nthe dependencies between the lock to be acquired"); 2455 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2456 next_root->trace = save_trace(); 2457 if (!next_root->trace) 2458 return; 2459 print_shortest_lock_dependencies(forwards_entry, next_root); 2460 2461 pr_warn("\nstack backtrace:\n"); 2462 dump_stack(); 2463 } 2464 2465 static const char *state_names[] = { 2466 #define LOCKDEP_STATE(__STATE) \ 2467 __stringify(__STATE), 2468 #include "lockdep_states.h" 2469 #undef LOCKDEP_STATE 2470 }; 2471 2472 static const char *state_rnames[] = { 2473 #define LOCKDEP_STATE(__STATE) \ 2474 __stringify(__STATE)"-READ", 2475 #include "lockdep_states.h" 2476 #undef LOCKDEP_STATE 2477 }; 2478 2479 static inline const char *state_name(enum lock_usage_bit bit) 2480 { 2481 if (bit & LOCK_USAGE_READ_MASK) 2482 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2483 else 2484 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2485 } 2486 2487 /* 2488 * The bit number is encoded like: 2489 * 2490 * bit0: 0 exclusive, 1 read lock 2491 * bit1: 0 used in irq, 1 irq enabled 2492 * bit2-n: state 2493 */ 2494 static int exclusive_bit(int new_bit) 2495 { 2496 int state = new_bit & LOCK_USAGE_STATE_MASK; 2497 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2498 2499 /* 2500 * keep state, bit flip the direction and strip read. 2501 */ 2502 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2503 } 2504 2505 /* 2506 * Observe that when given a bitmask where each bitnr is encoded as above, a 2507 * right shift of the mask transforms the individual bitnrs as -1 and 2508 * conversely, a left shift transforms into +1 for the individual bitnrs. 2509 * 2510 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2511 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2512 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2513 * 2514 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2515 * 2516 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2517 * all bits set) and recompose with bitnr1 flipped. 2518 */ 2519 static unsigned long invert_dir_mask(unsigned long mask) 2520 { 2521 unsigned long excl = 0; 2522 2523 /* Invert dir */ 2524 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2525 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2526 2527 return excl; 2528 } 2529 2530 /* 2531 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2532 * usage may cause deadlock too, for example: 2533 * 2534 * P1 P2 2535 * <irq disabled> 2536 * write_lock(l1); <irq enabled> 2537 * read_lock(l2); 2538 * write_lock(l2); 2539 * <in irq> 2540 * read_lock(l1); 2541 * 2542 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2543 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2544 * deadlock. 2545 * 2546 * In fact, all of the following cases may cause deadlocks: 2547 * 2548 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2549 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2550 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2551 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2552 * 2553 * As a result, to calculate the "exclusive mask", first we invert the 2554 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2555 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2556 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2557 */ 2558 static unsigned long exclusive_mask(unsigned long mask) 2559 { 2560 unsigned long excl = invert_dir_mask(mask); 2561 2562 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2563 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2564 2565 return excl; 2566 } 2567 2568 /* 2569 * Retrieve the _possible_ original mask to which @mask is 2570 * exclusive. Ie: this is the opposite of exclusive_mask(). 2571 * Note that 2 possible original bits can match an exclusive 2572 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2573 * cleared. So both are returned for each exclusive bit. 2574 */ 2575 static unsigned long original_mask(unsigned long mask) 2576 { 2577 unsigned long excl = invert_dir_mask(mask); 2578 2579 /* Include read in existing usages */ 2580 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2581 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2582 2583 return excl; 2584 } 2585 2586 /* 2587 * Find the first pair of bit match between an original 2588 * usage mask and an exclusive usage mask. 2589 */ 2590 static int find_exclusive_match(unsigned long mask, 2591 unsigned long excl_mask, 2592 enum lock_usage_bit *bitp, 2593 enum lock_usage_bit *excl_bitp) 2594 { 2595 int bit, excl, excl_read; 2596 2597 for_each_set_bit(bit, &mask, LOCK_USED) { 2598 /* 2599 * exclusive_bit() strips the read bit, however, 2600 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2601 * to search excl | LOCK_USAGE_READ_MASK as well. 2602 */ 2603 excl = exclusive_bit(bit); 2604 excl_read = excl | LOCK_USAGE_READ_MASK; 2605 if (excl_mask & lock_flag(excl)) { 2606 *bitp = bit; 2607 *excl_bitp = excl; 2608 return 0; 2609 } else if (excl_mask & lock_flag(excl_read)) { 2610 *bitp = bit; 2611 *excl_bitp = excl_read; 2612 return 0; 2613 } 2614 } 2615 return -1; 2616 } 2617 2618 /* 2619 * Prove that the new dependency does not connect a hardirq-safe(-read) 2620 * lock with a hardirq-unsafe lock - to achieve this we search 2621 * the backwards-subgraph starting at <prev>, and the 2622 * forwards-subgraph starting at <next>: 2623 */ 2624 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2625 struct held_lock *next) 2626 { 2627 unsigned long usage_mask = 0, forward_mask, backward_mask; 2628 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2629 struct lock_list *target_entry1; 2630 struct lock_list *target_entry; 2631 struct lock_list this, that; 2632 enum bfs_result ret; 2633 2634 /* 2635 * Step 1: gather all hard/soft IRQs usages backward in an 2636 * accumulated usage mask. 2637 */ 2638 bfs_init_rootb(&this, prev); 2639 2640 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2641 if (bfs_error(ret)) { 2642 print_bfs_bug(ret); 2643 return 0; 2644 } 2645 2646 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2647 if (!usage_mask) 2648 return 1; 2649 2650 /* 2651 * Step 2: find exclusive uses forward that match the previous 2652 * backward accumulated mask. 2653 */ 2654 forward_mask = exclusive_mask(usage_mask); 2655 2656 bfs_init_root(&that, next); 2657 2658 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2659 if (bfs_error(ret)) { 2660 print_bfs_bug(ret); 2661 return 0; 2662 } 2663 if (ret == BFS_RNOMATCH) 2664 return 1; 2665 2666 /* 2667 * Step 3: we found a bad match! Now retrieve a lock from the backward 2668 * list whose usage mask matches the exclusive usage mask from the 2669 * lock found on the forward list. 2670 */ 2671 backward_mask = original_mask(target_entry1->class->usage_mask); 2672 2673 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2674 if (bfs_error(ret)) { 2675 print_bfs_bug(ret); 2676 return 0; 2677 } 2678 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2679 return 1; 2680 2681 /* 2682 * Step 4: narrow down to a pair of incompatible usage bits 2683 * and report it. 2684 */ 2685 ret = find_exclusive_match(target_entry->class->usage_mask, 2686 target_entry1->class->usage_mask, 2687 &backward_bit, &forward_bit); 2688 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2689 return 1; 2690 2691 print_bad_irq_dependency(curr, &this, &that, 2692 target_entry, target_entry1, 2693 prev, next, 2694 backward_bit, forward_bit, 2695 state_name(backward_bit)); 2696 2697 return 0; 2698 } 2699 2700 #else 2701 2702 static inline int check_irq_usage(struct task_struct *curr, 2703 struct held_lock *prev, struct held_lock *next) 2704 { 2705 return 1; 2706 } 2707 2708 static inline bool usage_skip(struct lock_list *entry, void *mask) 2709 { 2710 return false; 2711 } 2712 2713 #endif /* CONFIG_TRACE_IRQFLAGS */ 2714 2715 #ifdef CONFIG_LOCKDEP_SMALL 2716 /* 2717 * Check that the dependency graph starting at <src> can lead to 2718 * <target> or not. If it can, <src> -> <target> dependency is already 2719 * in the graph. 2720 * 2721 * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if 2722 * any error appears in the bfs search. 2723 */ 2724 static noinline enum bfs_result 2725 check_redundant(struct held_lock *src, struct held_lock *target) 2726 { 2727 enum bfs_result ret; 2728 struct lock_list *target_entry; 2729 struct lock_list src_entry; 2730 2731 bfs_init_root(&src_entry, src); 2732 /* 2733 * Special setup for check_redundant(). 2734 * 2735 * To report redundant, we need to find a strong dependency path that 2736 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2737 * we need to let __bfs() only search for a path starting at a -(E*)->, 2738 * we achieve this by setting the initial node's ->only_xr to true in 2739 * that case. And if <prev> is S, we set initial ->only_xr to false 2740 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2741 */ 2742 src_entry.only_xr = src->read == 0; 2743 2744 debug_atomic_inc(nr_redundant_checks); 2745 2746 /* 2747 * Note: we skip local_lock() for redundant check, because as the 2748 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2749 * the same. 2750 */ 2751 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2752 2753 if (ret == BFS_RMATCH) 2754 debug_atomic_inc(nr_redundant); 2755 2756 return ret; 2757 } 2758 2759 #else 2760 2761 static inline enum bfs_result 2762 check_redundant(struct held_lock *src, struct held_lock *target) 2763 { 2764 return BFS_RNOMATCH; 2765 } 2766 2767 #endif 2768 2769 static void inc_chains(int irq_context) 2770 { 2771 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2772 nr_hardirq_chains++; 2773 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2774 nr_softirq_chains++; 2775 else 2776 nr_process_chains++; 2777 } 2778 2779 static void dec_chains(int irq_context) 2780 { 2781 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2782 nr_hardirq_chains--; 2783 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2784 nr_softirq_chains--; 2785 else 2786 nr_process_chains--; 2787 } 2788 2789 static void 2790 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2791 { 2792 struct lock_class *next = hlock_class(nxt); 2793 struct lock_class *prev = hlock_class(prv); 2794 2795 printk(" Possible unsafe locking scenario:\n\n"); 2796 printk(" CPU0\n"); 2797 printk(" ----\n"); 2798 printk(" lock("); 2799 __print_lock_name(prev); 2800 printk(KERN_CONT ");\n"); 2801 printk(" lock("); 2802 __print_lock_name(next); 2803 printk(KERN_CONT ");\n"); 2804 printk("\n *** DEADLOCK ***\n\n"); 2805 printk(" May be due to missing lock nesting notation\n\n"); 2806 } 2807 2808 static void 2809 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2810 struct held_lock *next) 2811 { 2812 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2813 return; 2814 2815 pr_warn("\n"); 2816 pr_warn("============================================\n"); 2817 pr_warn("WARNING: possible recursive locking detected\n"); 2818 print_kernel_ident(); 2819 pr_warn("--------------------------------------------\n"); 2820 pr_warn("%s/%d is trying to acquire lock:\n", 2821 curr->comm, task_pid_nr(curr)); 2822 print_lock(next); 2823 pr_warn("\nbut task is already holding lock:\n"); 2824 print_lock(prev); 2825 2826 pr_warn("\nother info that might help us debug this:\n"); 2827 print_deadlock_scenario(next, prev); 2828 lockdep_print_held_locks(curr); 2829 2830 pr_warn("\nstack backtrace:\n"); 2831 dump_stack(); 2832 } 2833 2834 /* 2835 * Check whether we are holding such a class already. 2836 * 2837 * (Note that this has to be done separately, because the graph cannot 2838 * detect such classes of deadlocks.) 2839 * 2840 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 2841 * lock class is held but nest_lock is also held, i.e. we rely on the 2842 * nest_lock to avoid the deadlock. 2843 */ 2844 static int 2845 check_deadlock(struct task_struct *curr, struct held_lock *next) 2846 { 2847 struct held_lock *prev; 2848 struct held_lock *nest = NULL; 2849 int i; 2850 2851 for (i = 0; i < curr->lockdep_depth; i++) { 2852 prev = curr->held_locks + i; 2853 2854 if (prev->instance == next->nest_lock) 2855 nest = prev; 2856 2857 if (hlock_class(prev) != hlock_class(next)) 2858 continue; 2859 2860 /* 2861 * Allow read-after-read recursion of the same 2862 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2863 */ 2864 if ((next->read == 2) && prev->read) 2865 continue; 2866 2867 /* 2868 * We're holding the nest_lock, which serializes this lock's 2869 * nesting behaviour. 2870 */ 2871 if (nest) 2872 return 2; 2873 2874 print_deadlock_bug(curr, prev, next); 2875 return 0; 2876 } 2877 return 1; 2878 } 2879 2880 /* 2881 * There was a chain-cache miss, and we are about to add a new dependency 2882 * to a previous lock. We validate the following rules: 2883 * 2884 * - would the adding of the <prev> -> <next> dependency create a 2885 * circular dependency in the graph? [== circular deadlock] 2886 * 2887 * - does the new prev->next dependency connect any hardirq-safe lock 2888 * (in the full backwards-subgraph starting at <prev>) with any 2889 * hardirq-unsafe lock (in the full forwards-subgraph starting at 2890 * <next>)? [== illegal lock inversion with hardirq contexts] 2891 * 2892 * - does the new prev->next dependency connect any softirq-safe lock 2893 * (in the full backwards-subgraph starting at <prev>) with any 2894 * softirq-unsafe lock (in the full forwards-subgraph starting at 2895 * <next>)? [== illegal lock inversion with softirq contexts] 2896 * 2897 * any of these scenarios could lead to a deadlock. 2898 * 2899 * Then if all the validations pass, we add the forwards and backwards 2900 * dependency. 2901 */ 2902 static int 2903 check_prev_add(struct task_struct *curr, struct held_lock *prev, 2904 struct held_lock *next, u16 distance, 2905 struct lock_trace **const trace) 2906 { 2907 struct lock_list *entry; 2908 enum bfs_result ret; 2909 2910 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 2911 /* 2912 * The warning statements below may trigger a use-after-free 2913 * of the class name. It is better to trigger a use-after free 2914 * and to have the class name most of the time instead of not 2915 * having the class name available. 2916 */ 2917 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 2918 "Detected use-after-free of lock class %px/%s\n", 2919 hlock_class(prev), 2920 hlock_class(prev)->name); 2921 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 2922 "Detected use-after-free of lock class %px/%s\n", 2923 hlock_class(next), 2924 hlock_class(next)->name); 2925 return 2; 2926 } 2927 2928 /* 2929 * Prove that the new <prev> -> <next> dependency would not 2930 * create a circular dependency in the graph. (We do this by 2931 * a breadth-first search into the graph starting at <next>, 2932 * and check whether we can reach <prev>.) 2933 * 2934 * The search is limited by the size of the circular queue (i.e., 2935 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 2936 * in the graph whose neighbours are to be checked. 2937 */ 2938 ret = check_noncircular(next, prev, trace); 2939 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 2940 return 0; 2941 2942 if (!check_irq_usage(curr, prev, next)) 2943 return 0; 2944 2945 /* 2946 * Is the <prev> -> <next> dependency already present? 2947 * 2948 * (this may occur even though this is a new chain: consider 2949 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 2950 * chains - the second one will be new, but L1 already has 2951 * L2 added to its dependency list, due to the first chain.) 2952 */ 2953 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 2954 if (entry->class == hlock_class(next)) { 2955 if (distance == 1) 2956 entry->distance = 1; 2957 entry->dep |= calc_dep(prev, next); 2958 2959 /* 2960 * Also, update the reverse dependency in @next's 2961 * ->locks_before list. 2962 * 2963 * Here we reuse @entry as the cursor, which is fine 2964 * because we won't go to the next iteration of the 2965 * outer loop: 2966 * 2967 * For normal cases, we return in the inner loop. 2968 * 2969 * If we fail to return, we have inconsistency, i.e. 2970 * <prev>::locks_after contains <next> while 2971 * <next>::locks_before doesn't contain <prev>. In 2972 * that case, we return after the inner and indicate 2973 * something is wrong. 2974 */ 2975 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 2976 if (entry->class == hlock_class(prev)) { 2977 if (distance == 1) 2978 entry->distance = 1; 2979 entry->dep |= calc_depb(prev, next); 2980 return 1; 2981 } 2982 } 2983 2984 /* <prev> is not found in <next>::locks_before */ 2985 return 0; 2986 } 2987 } 2988 2989 /* 2990 * Is the <prev> -> <next> link redundant? 2991 */ 2992 ret = check_redundant(prev, next); 2993 if (bfs_error(ret)) 2994 return 0; 2995 else if (ret == BFS_RMATCH) 2996 return 2; 2997 2998 if (!*trace) { 2999 *trace = save_trace(); 3000 if (!*trace) 3001 return 0; 3002 } 3003 3004 /* 3005 * Ok, all validations passed, add the new lock 3006 * to the previous lock's dependency list: 3007 */ 3008 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3009 &hlock_class(prev)->locks_after, 3010 next->acquire_ip, distance, 3011 calc_dep(prev, next), 3012 *trace); 3013 3014 if (!ret) 3015 return 0; 3016 3017 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3018 &hlock_class(next)->locks_before, 3019 next->acquire_ip, distance, 3020 calc_depb(prev, next), 3021 *trace); 3022 if (!ret) 3023 return 0; 3024 3025 return 2; 3026 } 3027 3028 /* 3029 * Add the dependency to all directly-previous locks that are 'relevant'. 3030 * The ones that are relevant are (in increasing distance from curr): 3031 * all consecutive trylock entries and the final non-trylock entry - or 3032 * the end of this context's lock-chain - whichever comes first. 3033 */ 3034 static int 3035 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3036 { 3037 struct lock_trace *trace = NULL; 3038 int depth = curr->lockdep_depth; 3039 struct held_lock *hlock; 3040 3041 /* 3042 * Debugging checks. 3043 * 3044 * Depth must not be zero for a non-head lock: 3045 */ 3046 if (!depth) 3047 goto out_bug; 3048 /* 3049 * At least two relevant locks must exist for this 3050 * to be a head: 3051 */ 3052 if (curr->held_locks[depth].irq_context != 3053 curr->held_locks[depth-1].irq_context) 3054 goto out_bug; 3055 3056 for (;;) { 3057 u16 distance = curr->lockdep_depth - depth + 1; 3058 hlock = curr->held_locks + depth - 1; 3059 3060 if (hlock->check) { 3061 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3062 if (!ret) 3063 return 0; 3064 3065 /* 3066 * Stop after the first non-trylock entry, 3067 * as non-trylock entries have added their 3068 * own direct dependencies already, so this 3069 * lock is connected to them indirectly: 3070 */ 3071 if (!hlock->trylock) 3072 break; 3073 } 3074 3075 depth--; 3076 /* 3077 * End of lock-stack? 3078 */ 3079 if (!depth) 3080 break; 3081 /* 3082 * Stop the search if we cross into another context: 3083 */ 3084 if (curr->held_locks[depth].irq_context != 3085 curr->held_locks[depth-1].irq_context) 3086 break; 3087 } 3088 return 1; 3089 out_bug: 3090 if (!debug_locks_off_graph_unlock()) 3091 return 0; 3092 3093 /* 3094 * Clearly we all shouldn't be here, but since we made it we 3095 * can reliable say we messed up our state. See the above two 3096 * gotos for reasons why we could possibly end up here. 3097 */ 3098 WARN_ON(1); 3099 3100 return 0; 3101 } 3102 3103 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3104 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3105 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3106 unsigned long nr_zapped_lock_chains; 3107 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3108 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3109 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3110 3111 /* 3112 * The first 2 chain_hlocks entries in the chain block in the bucket 3113 * list contains the following meta data: 3114 * 3115 * entry[0]: 3116 * Bit 15 - always set to 1 (it is not a class index) 3117 * Bits 0-14 - upper 15 bits of the next block index 3118 * entry[1] - lower 16 bits of next block index 3119 * 3120 * A next block index of all 1 bits means it is the end of the list. 3121 * 3122 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3123 * the chain block size: 3124 * 3125 * entry[2] - upper 16 bits of the chain block size 3126 * entry[3] - lower 16 bits of the chain block size 3127 */ 3128 #define MAX_CHAIN_BUCKETS 16 3129 #define CHAIN_BLK_FLAG (1U << 15) 3130 #define CHAIN_BLK_LIST_END 0xFFFFU 3131 3132 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3133 3134 static inline int size_to_bucket(int size) 3135 { 3136 if (size > MAX_CHAIN_BUCKETS) 3137 return 0; 3138 3139 return size - 1; 3140 } 3141 3142 /* 3143 * Iterate all the chain blocks in a bucket. 3144 */ 3145 #define for_each_chain_block(bucket, prev, curr) \ 3146 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3147 (curr) >= 0; \ 3148 (prev) = (curr), (curr) = chain_block_next(curr)) 3149 3150 /* 3151 * next block or -1 3152 */ 3153 static inline int chain_block_next(int offset) 3154 { 3155 int next = chain_hlocks[offset]; 3156 3157 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3158 3159 if (next == CHAIN_BLK_LIST_END) 3160 return -1; 3161 3162 next &= ~CHAIN_BLK_FLAG; 3163 next <<= 16; 3164 next |= chain_hlocks[offset + 1]; 3165 3166 return next; 3167 } 3168 3169 /* 3170 * bucket-0 only 3171 */ 3172 static inline int chain_block_size(int offset) 3173 { 3174 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3175 } 3176 3177 static inline void init_chain_block(int offset, int next, int bucket, int size) 3178 { 3179 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3180 chain_hlocks[offset + 1] = (u16)next; 3181 3182 if (size && !bucket) { 3183 chain_hlocks[offset + 2] = size >> 16; 3184 chain_hlocks[offset + 3] = (u16)size; 3185 } 3186 } 3187 3188 static inline void add_chain_block(int offset, int size) 3189 { 3190 int bucket = size_to_bucket(size); 3191 int next = chain_block_buckets[bucket]; 3192 int prev, curr; 3193 3194 if (unlikely(size < 2)) { 3195 /* 3196 * We can't store single entries on the freelist. Leak them. 3197 * 3198 * One possible way out would be to uniquely mark them, other 3199 * than with CHAIN_BLK_FLAG, such that we can recover them when 3200 * the block before it is re-added. 3201 */ 3202 if (size) 3203 nr_lost_chain_hlocks++; 3204 return; 3205 } 3206 3207 nr_free_chain_hlocks += size; 3208 if (!bucket) { 3209 nr_large_chain_blocks++; 3210 3211 /* 3212 * Variable sized, sort large to small. 3213 */ 3214 for_each_chain_block(0, prev, curr) { 3215 if (size >= chain_block_size(curr)) 3216 break; 3217 } 3218 init_chain_block(offset, curr, 0, size); 3219 if (prev < 0) 3220 chain_block_buckets[0] = offset; 3221 else 3222 init_chain_block(prev, offset, 0, 0); 3223 return; 3224 } 3225 /* 3226 * Fixed size, add to head. 3227 */ 3228 init_chain_block(offset, next, bucket, size); 3229 chain_block_buckets[bucket] = offset; 3230 } 3231 3232 /* 3233 * Only the first block in the list can be deleted. 3234 * 3235 * For the variable size bucket[0], the first block (the largest one) is 3236 * returned, broken up and put back into the pool. So if a chain block of 3237 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3238 * queued up after the primordial chain block and never be used until the 3239 * hlock entries in the primordial chain block is almost used up. That 3240 * causes fragmentation and reduce allocation efficiency. That can be 3241 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3242 */ 3243 static inline void del_chain_block(int bucket, int size, int next) 3244 { 3245 nr_free_chain_hlocks -= size; 3246 chain_block_buckets[bucket] = next; 3247 3248 if (!bucket) 3249 nr_large_chain_blocks--; 3250 } 3251 3252 static void init_chain_block_buckets(void) 3253 { 3254 int i; 3255 3256 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3257 chain_block_buckets[i] = -1; 3258 3259 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3260 } 3261 3262 /* 3263 * Return offset of a chain block of the right size or -1 if not found. 3264 * 3265 * Fairly simple worst-fit allocator with the addition of a number of size 3266 * specific free lists. 3267 */ 3268 static int alloc_chain_hlocks(int req) 3269 { 3270 int bucket, curr, size; 3271 3272 /* 3273 * We rely on the MSB to act as an escape bit to denote freelist 3274 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3275 */ 3276 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3277 3278 init_data_structures_once(); 3279 3280 if (nr_free_chain_hlocks < req) 3281 return -1; 3282 3283 /* 3284 * We require a minimum of 2 (u16) entries to encode a freelist 3285 * 'pointer'. 3286 */ 3287 req = max(req, 2); 3288 bucket = size_to_bucket(req); 3289 curr = chain_block_buckets[bucket]; 3290 3291 if (bucket) { 3292 if (curr >= 0) { 3293 del_chain_block(bucket, req, chain_block_next(curr)); 3294 return curr; 3295 } 3296 /* Try bucket 0 */ 3297 curr = chain_block_buckets[0]; 3298 } 3299 3300 /* 3301 * The variable sized freelist is sorted by size; the first entry is 3302 * the largest. Use it if it fits. 3303 */ 3304 if (curr >= 0) { 3305 size = chain_block_size(curr); 3306 if (likely(size >= req)) { 3307 del_chain_block(0, size, chain_block_next(curr)); 3308 add_chain_block(curr + req, size - req); 3309 return curr; 3310 } 3311 } 3312 3313 /* 3314 * Last resort, split a block in a larger sized bucket. 3315 */ 3316 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3317 bucket = size_to_bucket(size); 3318 curr = chain_block_buckets[bucket]; 3319 if (curr < 0) 3320 continue; 3321 3322 del_chain_block(bucket, size, chain_block_next(curr)); 3323 add_chain_block(curr + req, size - req); 3324 return curr; 3325 } 3326 3327 return -1; 3328 } 3329 3330 static inline void free_chain_hlocks(int base, int size) 3331 { 3332 add_chain_block(base, max(size, 2)); 3333 } 3334 3335 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3336 { 3337 u16 chain_hlock = chain_hlocks[chain->base + i]; 3338 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3339 3340 return lock_classes + class_idx - 1; 3341 } 3342 3343 /* 3344 * Returns the index of the first held_lock of the current chain 3345 */ 3346 static inline int get_first_held_lock(struct task_struct *curr, 3347 struct held_lock *hlock) 3348 { 3349 int i; 3350 struct held_lock *hlock_curr; 3351 3352 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3353 hlock_curr = curr->held_locks + i; 3354 if (hlock_curr->irq_context != hlock->irq_context) 3355 break; 3356 3357 } 3358 3359 return ++i; 3360 } 3361 3362 #ifdef CONFIG_DEBUG_LOCKDEP 3363 /* 3364 * Returns the next chain_key iteration 3365 */ 3366 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3367 { 3368 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3369 3370 printk(" hlock_id:%d -> chain_key:%016Lx", 3371 (unsigned int)hlock_id, 3372 (unsigned long long)new_chain_key); 3373 return new_chain_key; 3374 } 3375 3376 static void 3377 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3378 { 3379 struct held_lock *hlock; 3380 u64 chain_key = INITIAL_CHAIN_KEY; 3381 int depth = curr->lockdep_depth; 3382 int i = get_first_held_lock(curr, hlock_next); 3383 3384 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3385 hlock_next->irq_context); 3386 for (; i < depth; i++) { 3387 hlock = curr->held_locks + i; 3388 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3389 3390 print_lock(hlock); 3391 } 3392 3393 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3394 print_lock(hlock_next); 3395 } 3396 3397 static void print_chain_keys_chain(struct lock_chain *chain) 3398 { 3399 int i; 3400 u64 chain_key = INITIAL_CHAIN_KEY; 3401 u16 hlock_id; 3402 3403 printk("depth: %u\n", chain->depth); 3404 for (i = 0; i < chain->depth; i++) { 3405 hlock_id = chain_hlocks[chain->base + i]; 3406 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3407 3408 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1); 3409 printk("\n"); 3410 } 3411 } 3412 3413 static void print_collision(struct task_struct *curr, 3414 struct held_lock *hlock_next, 3415 struct lock_chain *chain) 3416 { 3417 pr_warn("\n"); 3418 pr_warn("============================\n"); 3419 pr_warn("WARNING: chain_key collision\n"); 3420 print_kernel_ident(); 3421 pr_warn("----------------------------\n"); 3422 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3423 pr_warn("Hash chain already cached but the contents don't match!\n"); 3424 3425 pr_warn("Held locks:"); 3426 print_chain_keys_held_locks(curr, hlock_next); 3427 3428 pr_warn("Locks in cached chain:"); 3429 print_chain_keys_chain(chain); 3430 3431 pr_warn("\nstack backtrace:\n"); 3432 dump_stack(); 3433 } 3434 #endif 3435 3436 /* 3437 * Checks whether the chain and the current held locks are consistent 3438 * in depth and also in content. If they are not it most likely means 3439 * that there was a collision during the calculation of the chain_key. 3440 * Returns: 0 not passed, 1 passed 3441 */ 3442 static int check_no_collision(struct task_struct *curr, 3443 struct held_lock *hlock, 3444 struct lock_chain *chain) 3445 { 3446 #ifdef CONFIG_DEBUG_LOCKDEP 3447 int i, j, id; 3448 3449 i = get_first_held_lock(curr, hlock); 3450 3451 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3452 print_collision(curr, hlock, chain); 3453 return 0; 3454 } 3455 3456 for (j = 0; j < chain->depth - 1; j++, i++) { 3457 id = hlock_id(&curr->held_locks[i]); 3458 3459 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3460 print_collision(curr, hlock, chain); 3461 return 0; 3462 } 3463 } 3464 #endif 3465 return 1; 3466 } 3467 3468 /* 3469 * Given an index that is >= -1, return the index of the next lock chain. 3470 * Return -2 if there is no next lock chain. 3471 */ 3472 long lockdep_next_lockchain(long i) 3473 { 3474 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3475 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3476 } 3477 3478 unsigned long lock_chain_count(void) 3479 { 3480 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3481 } 3482 3483 /* Must be called with the graph lock held. */ 3484 static struct lock_chain *alloc_lock_chain(void) 3485 { 3486 int idx = find_first_zero_bit(lock_chains_in_use, 3487 ARRAY_SIZE(lock_chains)); 3488 3489 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3490 return NULL; 3491 __set_bit(idx, lock_chains_in_use); 3492 return lock_chains + idx; 3493 } 3494 3495 /* 3496 * Adds a dependency chain into chain hashtable. And must be called with 3497 * graph_lock held. 3498 * 3499 * Return 0 if fail, and graph_lock is released. 3500 * Return 1 if succeed, with graph_lock held. 3501 */ 3502 static inline int add_chain_cache(struct task_struct *curr, 3503 struct held_lock *hlock, 3504 u64 chain_key) 3505 { 3506 struct hlist_head *hash_head = chainhashentry(chain_key); 3507 struct lock_chain *chain; 3508 int i, j; 3509 3510 /* 3511 * The caller must hold the graph lock, ensure we've got IRQs 3512 * disabled to make this an IRQ-safe lock.. for recursion reasons 3513 * lockdep won't complain about its own locking errors. 3514 */ 3515 if (lockdep_assert_locked()) 3516 return 0; 3517 3518 chain = alloc_lock_chain(); 3519 if (!chain) { 3520 if (!debug_locks_off_graph_unlock()) 3521 return 0; 3522 3523 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3524 dump_stack(); 3525 return 0; 3526 } 3527 chain->chain_key = chain_key; 3528 chain->irq_context = hlock->irq_context; 3529 i = get_first_held_lock(curr, hlock); 3530 chain->depth = curr->lockdep_depth + 1 - i; 3531 3532 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3533 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3534 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3535 3536 j = alloc_chain_hlocks(chain->depth); 3537 if (j < 0) { 3538 if (!debug_locks_off_graph_unlock()) 3539 return 0; 3540 3541 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3542 dump_stack(); 3543 return 0; 3544 } 3545 3546 chain->base = j; 3547 for (j = 0; j < chain->depth - 1; j++, i++) { 3548 int lock_id = hlock_id(curr->held_locks + i); 3549 3550 chain_hlocks[chain->base + j] = lock_id; 3551 } 3552 chain_hlocks[chain->base + j] = hlock_id(hlock); 3553 hlist_add_head_rcu(&chain->entry, hash_head); 3554 debug_atomic_inc(chain_lookup_misses); 3555 inc_chains(chain->irq_context); 3556 3557 return 1; 3558 } 3559 3560 /* 3561 * Look up a dependency chain. Must be called with either the graph lock or 3562 * the RCU read lock held. 3563 */ 3564 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3565 { 3566 struct hlist_head *hash_head = chainhashentry(chain_key); 3567 struct lock_chain *chain; 3568 3569 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3570 if (READ_ONCE(chain->chain_key) == chain_key) { 3571 debug_atomic_inc(chain_lookup_hits); 3572 return chain; 3573 } 3574 } 3575 return NULL; 3576 } 3577 3578 /* 3579 * If the key is not present yet in dependency chain cache then 3580 * add it and return 1 - in this case the new dependency chain is 3581 * validated. If the key is already hashed, return 0. 3582 * (On return with 1 graph_lock is held.) 3583 */ 3584 static inline int lookup_chain_cache_add(struct task_struct *curr, 3585 struct held_lock *hlock, 3586 u64 chain_key) 3587 { 3588 struct lock_class *class = hlock_class(hlock); 3589 struct lock_chain *chain = lookup_chain_cache(chain_key); 3590 3591 if (chain) { 3592 cache_hit: 3593 if (!check_no_collision(curr, hlock, chain)) 3594 return 0; 3595 3596 if (very_verbose(class)) { 3597 printk("\nhash chain already cached, key: " 3598 "%016Lx tail class: [%px] %s\n", 3599 (unsigned long long)chain_key, 3600 class->key, class->name); 3601 } 3602 3603 return 0; 3604 } 3605 3606 if (very_verbose(class)) { 3607 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3608 (unsigned long long)chain_key, class->key, class->name); 3609 } 3610 3611 if (!graph_lock()) 3612 return 0; 3613 3614 /* 3615 * We have to walk the chain again locked - to avoid duplicates: 3616 */ 3617 chain = lookup_chain_cache(chain_key); 3618 if (chain) { 3619 graph_unlock(); 3620 goto cache_hit; 3621 } 3622 3623 if (!add_chain_cache(curr, hlock, chain_key)) 3624 return 0; 3625 3626 return 1; 3627 } 3628 3629 static int validate_chain(struct task_struct *curr, 3630 struct held_lock *hlock, 3631 int chain_head, u64 chain_key) 3632 { 3633 /* 3634 * Trylock needs to maintain the stack of held locks, but it 3635 * does not add new dependencies, because trylock can be done 3636 * in any order. 3637 * 3638 * We look up the chain_key and do the O(N^2) check and update of 3639 * the dependencies only if this is a new dependency chain. 3640 * (If lookup_chain_cache_add() return with 1 it acquires 3641 * graph_lock for us) 3642 */ 3643 if (!hlock->trylock && hlock->check && 3644 lookup_chain_cache_add(curr, hlock, chain_key)) { 3645 /* 3646 * Check whether last held lock: 3647 * 3648 * - is irq-safe, if this lock is irq-unsafe 3649 * - is softirq-safe, if this lock is hardirq-unsafe 3650 * 3651 * And check whether the new lock's dependency graph 3652 * could lead back to the previous lock: 3653 * 3654 * - within the current held-lock stack 3655 * - across our accumulated lock dependency records 3656 * 3657 * any of these scenarios could lead to a deadlock. 3658 */ 3659 /* 3660 * The simple case: does the current hold the same lock 3661 * already? 3662 */ 3663 int ret = check_deadlock(curr, hlock); 3664 3665 if (!ret) 3666 return 0; 3667 /* 3668 * Add dependency only if this lock is not the head 3669 * of the chain, and if the new lock introduces no more 3670 * lock dependency (because we already hold a lock with the 3671 * same lock class) nor deadlock (because the nest_lock 3672 * serializes nesting locks), see the comments for 3673 * check_deadlock(). 3674 */ 3675 if (!chain_head && ret != 2) { 3676 if (!check_prevs_add(curr, hlock)) 3677 return 0; 3678 } 3679 3680 graph_unlock(); 3681 } else { 3682 /* after lookup_chain_cache_add(): */ 3683 if (unlikely(!debug_locks)) 3684 return 0; 3685 } 3686 3687 return 1; 3688 } 3689 #else 3690 static inline int validate_chain(struct task_struct *curr, 3691 struct held_lock *hlock, 3692 int chain_head, u64 chain_key) 3693 { 3694 return 1; 3695 } 3696 3697 static void init_chain_block_buckets(void) { } 3698 #endif /* CONFIG_PROVE_LOCKING */ 3699 3700 /* 3701 * We are building curr_chain_key incrementally, so double-check 3702 * it from scratch, to make sure that it's done correctly: 3703 */ 3704 static void check_chain_key(struct task_struct *curr) 3705 { 3706 #ifdef CONFIG_DEBUG_LOCKDEP 3707 struct held_lock *hlock, *prev_hlock = NULL; 3708 unsigned int i; 3709 u64 chain_key = INITIAL_CHAIN_KEY; 3710 3711 for (i = 0; i < curr->lockdep_depth; i++) { 3712 hlock = curr->held_locks + i; 3713 if (chain_key != hlock->prev_chain_key) { 3714 debug_locks_off(); 3715 /* 3716 * We got mighty confused, our chain keys don't match 3717 * with what we expect, someone trample on our task state? 3718 */ 3719 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3720 curr->lockdep_depth, i, 3721 (unsigned long long)chain_key, 3722 (unsigned long long)hlock->prev_chain_key); 3723 return; 3724 } 3725 3726 /* 3727 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3728 * it registered lock class index? 3729 */ 3730 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3731 return; 3732 3733 if (prev_hlock && (prev_hlock->irq_context != 3734 hlock->irq_context)) 3735 chain_key = INITIAL_CHAIN_KEY; 3736 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3737 prev_hlock = hlock; 3738 } 3739 if (chain_key != curr->curr_chain_key) { 3740 debug_locks_off(); 3741 /* 3742 * More smoking hash instead of calculating it, damn see these 3743 * numbers float.. I bet that a pink elephant stepped on my memory. 3744 */ 3745 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3746 curr->lockdep_depth, i, 3747 (unsigned long long)chain_key, 3748 (unsigned long long)curr->curr_chain_key); 3749 } 3750 #endif 3751 } 3752 3753 #ifdef CONFIG_PROVE_LOCKING 3754 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3755 enum lock_usage_bit new_bit); 3756 3757 static void print_usage_bug_scenario(struct held_lock *lock) 3758 { 3759 struct lock_class *class = hlock_class(lock); 3760 3761 printk(" Possible unsafe locking scenario:\n\n"); 3762 printk(" CPU0\n"); 3763 printk(" ----\n"); 3764 printk(" lock("); 3765 __print_lock_name(class); 3766 printk(KERN_CONT ");\n"); 3767 printk(" <Interrupt>\n"); 3768 printk(" lock("); 3769 __print_lock_name(class); 3770 printk(KERN_CONT ");\n"); 3771 printk("\n *** DEADLOCK ***\n\n"); 3772 } 3773 3774 static void 3775 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3776 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3777 { 3778 if (!debug_locks_off() || debug_locks_silent) 3779 return; 3780 3781 pr_warn("\n"); 3782 pr_warn("================================\n"); 3783 pr_warn("WARNING: inconsistent lock state\n"); 3784 print_kernel_ident(); 3785 pr_warn("--------------------------------\n"); 3786 3787 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3788 usage_str[prev_bit], usage_str[new_bit]); 3789 3790 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3791 curr->comm, task_pid_nr(curr), 3792 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3793 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3794 lockdep_hardirqs_enabled(), 3795 lockdep_softirqs_enabled(curr)); 3796 print_lock(this); 3797 3798 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3799 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3800 3801 print_irqtrace_events(curr); 3802 pr_warn("\nother info that might help us debug this:\n"); 3803 print_usage_bug_scenario(this); 3804 3805 lockdep_print_held_locks(curr); 3806 3807 pr_warn("\nstack backtrace:\n"); 3808 dump_stack(); 3809 } 3810 3811 /* 3812 * Print out an error if an invalid bit is set: 3813 */ 3814 static inline int 3815 valid_state(struct task_struct *curr, struct held_lock *this, 3816 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3817 { 3818 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3819 graph_unlock(); 3820 print_usage_bug(curr, this, bad_bit, new_bit); 3821 return 0; 3822 } 3823 return 1; 3824 } 3825 3826 3827 /* 3828 * print irq inversion bug: 3829 */ 3830 static void 3831 print_irq_inversion_bug(struct task_struct *curr, 3832 struct lock_list *root, struct lock_list *other, 3833 struct held_lock *this, int forwards, 3834 const char *irqclass) 3835 { 3836 struct lock_list *entry = other; 3837 struct lock_list *middle = NULL; 3838 int depth; 3839 3840 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3841 return; 3842 3843 pr_warn("\n"); 3844 pr_warn("========================================================\n"); 3845 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3846 print_kernel_ident(); 3847 pr_warn("--------------------------------------------------------\n"); 3848 pr_warn("%s/%d just changed the state of lock:\n", 3849 curr->comm, task_pid_nr(curr)); 3850 print_lock(this); 3851 if (forwards) 3852 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3853 else 3854 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3855 print_lock_name(other->class); 3856 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3857 3858 pr_warn("\nother info that might help us debug this:\n"); 3859 3860 /* Find a middle lock (if one exists) */ 3861 depth = get_lock_depth(other); 3862 do { 3863 if (depth == 0 && (entry != root)) { 3864 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3865 break; 3866 } 3867 middle = entry; 3868 entry = get_lock_parent(entry); 3869 depth--; 3870 } while (entry && entry != root && (depth >= 0)); 3871 if (forwards) 3872 print_irq_lock_scenario(root, other, 3873 middle ? middle->class : root->class, other->class); 3874 else 3875 print_irq_lock_scenario(other, root, 3876 middle ? middle->class : other->class, root->class); 3877 3878 lockdep_print_held_locks(curr); 3879 3880 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 3881 root->trace = save_trace(); 3882 if (!root->trace) 3883 return; 3884 print_shortest_lock_dependencies(other, root); 3885 3886 pr_warn("\nstack backtrace:\n"); 3887 dump_stack(); 3888 } 3889 3890 /* 3891 * Prove that in the forwards-direction subgraph starting at <this> 3892 * there is no lock matching <mask>: 3893 */ 3894 static int 3895 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 3896 enum lock_usage_bit bit) 3897 { 3898 enum bfs_result ret; 3899 struct lock_list root; 3900 struct lock_list *target_entry; 3901 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 3902 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 3903 3904 bfs_init_root(&root, this); 3905 ret = find_usage_forwards(&root, usage_mask, &target_entry); 3906 if (bfs_error(ret)) { 3907 print_bfs_bug(ret); 3908 return 0; 3909 } 3910 if (ret == BFS_RNOMATCH) 3911 return 1; 3912 3913 /* Check whether write or read usage is the match */ 3914 if (target_entry->class->usage_mask & lock_flag(bit)) { 3915 print_irq_inversion_bug(curr, &root, target_entry, 3916 this, 1, state_name(bit)); 3917 } else { 3918 print_irq_inversion_bug(curr, &root, target_entry, 3919 this, 1, state_name(read_bit)); 3920 } 3921 3922 return 0; 3923 } 3924 3925 /* 3926 * Prove that in the backwards-direction subgraph starting at <this> 3927 * there is no lock matching <mask>: 3928 */ 3929 static int 3930 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 3931 enum lock_usage_bit bit) 3932 { 3933 enum bfs_result ret; 3934 struct lock_list root; 3935 struct lock_list *target_entry; 3936 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 3937 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 3938 3939 bfs_init_rootb(&root, this); 3940 ret = find_usage_backwards(&root, usage_mask, &target_entry); 3941 if (bfs_error(ret)) { 3942 print_bfs_bug(ret); 3943 return 0; 3944 } 3945 if (ret == BFS_RNOMATCH) 3946 return 1; 3947 3948 /* Check whether write or read usage is the match */ 3949 if (target_entry->class->usage_mask & lock_flag(bit)) { 3950 print_irq_inversion_bug(curr, &root, target_entry, 3951 this, 0, state_name(bit)); 3952 } else { 3953 print_irq_inversion_bug(curr, &root, target_entry, 3954 this, 0, state_name(read_bit)); 3955 } 3956 3957 return 0; 3958 } 3959 3960 void print_irqtrace_events(struct task_struct *curr) 3961 { 3962 const struct irqtrace_events *trace = &curr->irqtrace; 3963 3964 printk("irq event stamp: %u\n", trace->irq_events); 3965 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 3966 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 3967 (void *)trace->hardirq_enable_ip); 3968 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 3969 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 3970 (void *)trace->hardirq_disable_ip); 3971 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 3972 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 3973 (void *)trace->softirq_enable_ip); 3974 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 3975 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 3976 (void *)trace->softirq_disable_ip); 3977 } 3978 3979 static int HARDIRQ_verbose(struct lock_class *class) 3980 { 3981 #if HARDIRQ_VERBOSE 3982 return class_filter(class); 3983 #endif 3984 return 0; 3985 } 3986 3987 static int SOFTIRQ_verbose(struct lock_class *class) 3988 { 3989 #if SOFTIRQ_VERBOSE 3990 return class_filter(class); 3991 #endif 3992 return 0; 3993 } 3994 3995 static int (*state_verbose_f[])(struct lock_class *class) = { 3996 #define LOCKDEP_STATE(__STATE) \ 3997 __STATE##_verbose, 3998 #include "lockdep_states.h" 3999 #undef LOCKDEP_STATE 4000 }; 4001 4002 static inline int state_verbose(enum lock_usage_bit bit, 4003 struct lock_class *class) 4004 { 4005 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4006 } 4007 4008 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4009 enum lock_usage_bit bit, const char *name); 4010 4011 static int 4012 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4013 enum lock_usage_bit new_bit) 4014 { 4015 int excl_bit = exclusive_bit(new_bit); 4016 int read = new_bit & LOCK_USAGE_READ_MASK; 4017 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4018 4019 /* 4020 * Validate that this particular lock does not have conflicting 4021 * usage states. 4022 */ 4023 if (!valid_state(curr, this, new_bit, excl_bit)) 4024 return 0; 4025 4026 /* 4027 * Check for read in write conflicts 4028 */ 4029 if (!read && !valid_state(curr, this, new_bit, 4030 excl_bit + LOCK_USAGE_READ_MASK)) 4031 return 0; 4032 4033 4034 /* 4035 * Validate that the lock dependencies don't have conflicting usage 4036 * states. 4037 */ 4038 if (dir) { 4039 /* 4040 * mark ENABLED has to look backwards -- to ensure no dependee 4041 * has USED_IN state, which, again, would allow recursion deadlocks. 4042 */ 4043 if (!check_usage_backwards(curr, this, excl_bit)) 4044 return 0; 4045 } else { 4046 /* 4047 * mark USED_IN has to look forwards -- to ensure no dependency 4048 * has ENABLED state, which would allow recursion deadlocks. 4049 */ 4050 if (!check_usage_forwards(curr, this, excl_bit)) 4051 return 0; 4052 } 4053 4054 if (state_verbose(new_bit, hlock_class(this))) 4055 return 2; 4056 4057 return 1; 4058 } 4059 4060 /* 4061 * Mark all held locks with a usage bit: 4062 */ 4063 static int 4064 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4065 { 4066 struct held_lock *hlock; 4067 int i; 4068 4069 for (i = 0; i < curr->lockdep_depth; i++) { 4070 enum lock_usage_bit hlock_bit = base_bit; 4071 hlock = curr->held_locks + i; 4072 4073 if (hlock->read) 4074 hlock_bit += LOCK_USAGE_READ_MASK; 4075 4076 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4077 4078 if (!hlock->check) 4079 continue; 4080 4081 if (!mark_lock(curr, hlock, hlock_bit)) 4082 return 0; 4083 } 4084 4085 return 1; 4086 } 4087 4088 /* 4089 * Hardirqs will be enabled: 4090 */ 4091 static void __trace_hardirqs_on_caller(void) 4092 { 4093 struct task_struct *curr = current; 4094 4095 /* 4096 * We are going to turn hardirqs on, so set the 4097 * usage bit for all held locks: 4098 */ 4099 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4100 return; 4101 /* 4102 * If we have softirqs enabled, then set the usage 4103 * bit for all held locks. (disabled hardirqs prevented 4104 * this bit from being set before) 4105 */ 4106 if (curr->softirqs_enabled) 4107 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4108 } 4109 4110 /** 4111 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4112 * @ip: Caller address 4113 * 4114 * Invoked before a possible transition to RCU idle from exit to user or 4115 * guest mode. This ensures that all RCU operations are done before RCU 4116 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4117 * invoked to set the final state. 4118 */ 4119 void lockdep_hardirqs_on_prepare(unsigned long ip) 4120 { 4121 if (unlikely(!debug_locks)) 4122 return; 4123 4124 /* 4125 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4126 */ 4127 if (unlikely(in_nmi())) 4128 return; 4129 4130 if (unlikely(this_cpu_read(lockdep_recursion))) 4131 return; 4132 4133 if (unlikely(lockdep_hardirqs_enabled())) { 4134 /* 4135 * Neither irq nor preemption are disabled here 4136 * so this is racy by nature but losing one hit 4137 * in a stat is not a big deal. 4138 */ 4139 __debug_atomic_inc(redundant_hardirqs_on); 4140 return; 4141 } 4142 4143 /* 4144 * We're enabling irqs and according to our state above irqs weren't 4145 * already enabled, yet we find the hardware thinks they are in fact 4146 * enabled.. someone messed up their IRQ state tracing. 4147 */ 4148 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4149 return; 4150 4151 /* 4152 * See the fine text that goes along with this variable definition. 4153 */ 4154 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4155 return; 4156 4157 /* 4158 * Can't allow enabling interrupts while in an interrupt handler, 4159 * that's general bad form and such. Recursion, limited stack etc.. 4160 */ 4161 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4162 return; 4163 4164 current->hardirq_chain_key = current->curr_chain_key; 4165 4166 lockdep_recursion_inc(); 4167 __trace_hardirqs_on_caller(); 4168 lockdep_recursion_finish(); 4169 } 4170 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4171 4172 void noinstr lockdep_hardirqs_on(unsigned long ip) 4173 { 4174 struct irqtrace_events *trace = ¤t->irqtrace; 4175 4176 if (unlikely(!debug_locks)) 4177 return; 4178 4179 /* 4180 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4181 * tracking state and hardware state are out of sync. 4182 * 4183 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4184 * and not rely on hardware state like normal interrupts. 4185 */ 4186 if (unlikely(in_nmi())) { 4187 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4188 return; 4189 4190 /* 4191 * Skip: 4192 * - recursion check, because NMI can hit lockdep; 4193 * - hardware state check, because above; 4194 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4195 */ 4196 goto skip_checks; 4197 } 4198 4199 if (unlikely(this_cpu_read(lockdep_recursion))) 4200 return; 4201 4202 if (lockdep_hardirqs_enabled()) { 4203 /* 4204 * Neither irq nor preemption are disabled here 4205 * so this is racy by nature but losing one hit 4206 * in a stat is not a big deal. 4207 */ 4208 __debug_atomic_inc(redundant_hardirqs_on); 4209 return; 4210 } 4211 4212 /* 4213 * We're enabling irqs and according to our state above irqs weren't 4214 * already enabled, yet we find the hardware thinks they are in fact 4215 * enabled.. someone messed up their IRQ state tracing. 4216 */ 4217 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4218 return; 4219 4220 /* 4221 * Ensure the lock stack remained unchanged between 4222 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4223 */ 4224 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4225 current->curr_chain_key); 4226 4227 skip_checks: 4228 /* we'll do an OFF -> ON transition: */ 4229 __this_cpu_write(hardirqs_enabled, 1); 4230 trace->hardirq_enable_ip = ip; 4231 trace->hardirq_enable_event = ++trace->irq_events; 4232 debug_atomic_inc(hardirqs_on_events); 4233 } 4234 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4235 4236 /* 4237 * Hardirqs were disabled: 4238 */ 4239 void noinstr lockdep_hardirqs_off(unsigned long ip) 4240 { 4241 if (unlikely(!debug_locks)) 4242 return; 4243 4244 /* 4245 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4246 * they will restore the software state. This ensures the software 4247 * state is consistent inside NMIs as well. 4248 */ 4249 if (in_nmi()) { 4250 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4251 return; 4252 } else if (__this_cpu_read(lockdep_recursion)) 4253 return; 4254 4255 /* 4256 * So we're supposed to get called after you mask local IRQs, but for 4257 * some reason the hardware doesn't quite think you did a proper job. 4258 */ 4259 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4260 return; 4261 4262 if (lockdep_hardirqs_enabled()) { 4263 struct irqtrace_events *trace = ¤t->irqtrace; 4264 4265 /* 4266 * We have done an ON -> OFF transition: 4267 */ 4268 __this_cpu_write(hardirqs_enabled, 0); 4269 trace->hardirq_disable_ip = ip; 4270 trace->hardirq_disable_event = ++trace->irq_events; 4271 debug_atomic_inc(hardirqs_off_events); 4272 } else { 4273 debug_atomic_inc(redundant_hardirqs_off); 4274 } 4275 } 4276 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4277 4278 /* 4279 * Softirqs will be enabled: 4280 */ 4281 void lockdep_softirqs_on(unsigned long ip) 4282 { 4283 struct irqtrace_events *trace = ¤t->irqtrace; 4284 4285 if (unlikely(!lockdep_enabled())) 4286 return; 4287 4288 /* 4289 * We fancy IRQs being disabled here, see softirq.c, avoids 4290 * funny state and nesting things. 4291 */ 4292 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4293 return; 4294 4295 if (current->softirqs_enabled) { 4296 debug_atomic_inc(redundant_softirqs_on); 4297 return; 4298 } 4299 4300 lockdep_recursion_inc(); 4301 /* 4302 * We'll do an OFF -> ON transition: 4303 */ 4304 current->softirqs_enabled = 1; 4305 trace->softirq_enable_ip = ip; 4306 trace->softirq_enable_event = ++trace->irq_events; 4307 debug_atomic_inc(softirqs_on_events); 4308 /* 4309 * We are going to turn softirqs on, so set the 4310 * usage bit for all held locks, if hardirqs are 4311 * enabled too: 4312 */ 4313 if (lockdep_hardirqs_enabled()) 4314 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4315 lockdep_recursion_finish(); 4316 } 4317 4318 /* 4319 * Softirqs were disabled: 4320 */ 4321 void lockdep_softirqs_off(unsigned long ip) 4322 { 4323 if (unlikely(!lockdep_enabled())) 4324 return; 4325 4326 /* 4327 * We fancy IRQs being disabled here, see softirq.c 4328 */ 4329 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4330 return; 4331 4332 if (current->softirqs_enabled) { 4333 struct irqtrace_events *trace = ¤t->irqtrace; 4334 4335 /* 4336 * We have done an ON -> OFF transition: 4337 */ 4338 current->softirqs_enabled = 0; 4339 trace->softirq_disable_ip = ip; 4340 trace->softirq_disable_event = ++trace->irq_events; 4341 debug_atomic_inc(softirqs_off_events); 4342 /* 4343 * Whoops, we wanted softirqs off, so why aren't they? 4344 */ 4345 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4346 } else 4347 debug_atomic_inc(redundant_softirqs_off); 4348 } 4349 4350 static int 4351 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4352 { 4353 if (!check) 4354 goto lock_used; 4355 4356 /* 4357 * If non-trylock use in a hardirq or softirq context, then 4358 * mark the lock as used in these contexts: 4359 */ 4360 if (!hlock->trylock) { 4361 if (hlock->read) { 4362 if (lockdep_hardirq_context()) 4363 if (!mark_lock(curr, hlock, 4364 LOCK_USED_IN_HARDIRQ_READ)) 4365 return 0; 4366 if (curr->softirq_context) 4367 if (!mark_lock(curr, hlock, 4368 LOCK_USED_IN_SOFTIRQ_READ)) 4369 return 0; 4370 } else { 4371 if (lockdep_hardirq_context()) 4372 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4373 return 0; 4374 if (curr->softirq_context) 4375 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4376 return 0; 4377 } 4378 } 4379 if (!hlock->hardirqs_off) { 4380 if (hlock->read) { 4381 if (!mark_lock(curr, hlock, 4382 LOCK_ENABLED_HARDIRQ_READ)) 4383 return 0; 4384 if (curr->softirqs_enabled) 4385 if (!mark_lock(curr, hlock, 4386 LOCK_ENABLED_SOFTIRQ_READ)) 4387 return 0; 4388 } else { 4389 if (!mark_lock(curr, hlock, 4390 LOCK_ENABLED_HARDIRQ)) 4391 return 0; 4392 if (curr->softirqs_enabled) 4393 if (!mark_lock(curr, hlock, 4394 LOCK_ENABLED_SOFTIRQ)) 4395 return 0; 4396 } 4397 } 4398 4399 lock_used: 4400 /* mark it as used: */ 4401 if (!mark_lock(curr, hlock, LOCK_USED)) 4402 return 0; 4403 4404 return 1; 4405 } 4406 4407 static inline unsigned int task_irq_context(struct task_struct *task) 4408 { 4409 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4410 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4411 } 4412 4413 static int separate_irq_context(struct task_struct *curr, 4414 struct held_lock *hlock) 4415 { 4416 unsigned int depth = curr->lockdep_depth; 4417 4418 /* 4419 * Keep track of points where we cross into an interrupt context: 4420 */ 4421 if (depth) { 4422 struct held_lock *prev_hlock; 4423 4424 prev_hlock = curr->held_locks + depth-1; 4425 /* 4426 * If we cross into another context, reset the 4427 * hash key (this also prevents the checking and the 4428 * adding of the dependency to 'prev'): 4429 */ 4430 if (prev_hlock->irq_context != hlock->irq_context) 4431 return 1; 4432 } 4433 return 0; 4434 } 4435 4436 /* 4437 * Mark a lock with a usage bit, and validate the state transition: 4438 */ 4439 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4440 enum lock_usage_bit new_bit) 4441 { 4442 unsigned int new_mask, ret = 1; 4443 4444 if (new_bit >= LOCK_USAGE_STATES) { 4445 DEBUG_LOCKS_WARN_ON(1); 4446 return 0; 4447 } 4448 4449 if (new_bit == LOCK_USED && this->read) 4450 new_bit = LOCK_USED_READ; 4451 4452 new_mask = 1 << new_bit; 4453 4454 /* 4455 * If already set then do not dirty the cacheline, 4456 * nor do any checks: 4457 */ 4458 if (likely(hlock_class(this)->usage_mask & new_mask)) 4459 return 1; 4460 4461 if (!graph_lock()) 4462 return 0; 4463 /* 4464 * Make sure we didn't race: 4465 */ 4466 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4467 goto unlock; 4468 4469 if (!hlock_class(this)->usage_mask) 4470 debug_atomic_dec(nr_unused_locks); 4471 4472 hlock_class(this)->usage_mask |= new_mask; 4473 4474 if (new_bit < LOCK_TRACE_STATES) { 4475 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4476 return 0; 4477 } 4478 4479 if (new_bit < LOCK_USED) { 4480 ret = mark_lock_irq(curr, this, new_bit); 4481 if (!ret) 4482 return 0; 4483 } 4484 4485 unlock: 4486 graph_unlock(); 4487 4488 /* 4489 * We must printk outside of the graph_lock: 4490 */ 4491 if (ret == 2) { 4492 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4493 print_lock(this); 4494 print_irqtrace_events(curr); 4495 dump_stack(); 4496 } 4497 4498 return ret; 4499 } 4500 4501 static inline short task_wait_context(struct task_struct *curr) 4502 { 4503 /* 4504 * Set appropriate wait type for the context; for IRQs we have to take 4505 * into account force_irqthread as that is implied by PREEMPT_RT. 4506 */ 4507 if (lockdep_hardirq_context()) { 4508 /* 4509 * Check if force_irqthreads will run us threaded. 4510 */ 4511 if (curr->hardirq_threaded || curr->irq_config) 4512 return LD_WAIT_CONFIG; 4513 4514 return LD_WAIT_SPIN; 4515 } else if (curr->softirq_context) { 4516 /* 4517 * Softirqs are always threaded. 4518 */ 4519 return LD_WAIT_CONFIG; 4520 } 4521 4522 return LD_WAIT_MAX; 4523 } 4524 4525 static int 4526 print_lock_invalid_wait_context(struct task_struct *curr, 4527 struct held_lock *hlock) 4528 { 4529 short curr_inner; 4530 4531 if (!debug_locks_off()) 4532 return 0; 4533 if (debug_locks_silent) 4534 return 0; 4535 4536 pr_warn("\n"); 4537 pr_warn("=============================\n"); 4538 pr_warn("[ BUG: Invalid wait context ]\n"); 4539 print_kernel_ident(); 4540 pr_warn("-----------------------------\n"); 4541 4542 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4543 print_lock(hlock); 4544 4545 pr_warn("other info that might help us debug this:\n"); 4546 4547 curr_inner = task_wait_context(curr); 4548 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4549 4550 lockdep_print_held_locks(curr); 4551 4552 pr_warn("stack backtrace:\n"); 4553 dump_stack(); 4554 4555 return 0; 4556 } 4557 4558 /* 4559 * Verify the wait_type context. 4560 * 4561 * This check validates we takes locks in the right wait-type order; that is it 4562 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4563 * acquire spinlocks inside raw_spinlocks and the sort. 4564 * 4565 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4566 * can be taken from (pretty much) any context but also has constraints. 4567 * However when taken in a stricter environment the RCU lock does not loosen 4568 * the constraints. 4569 * 4570 * Therefore we must look for the strictest environment in the lock stack and 4571 * compare that to the lock we're trying to acquire. 4572 */ 4573 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4574 { 4575 u8 next_inner = hlock_class(next)->wait_type_inner; 4576 u8 next_outer = hlock_class(next)->wait_type_outer; 4577 u8 curr_inner; 4578 int depth; 4579 4580 if (!curr->lockdep_depth || !next_inner || next->trylock) 4581 return 0; 4582 4583 if (!next_outer) 4584 next_outer = next_inner; 4585 4586 /* 4587 * Find start of current irq_context.. 4588 */ 4589 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4590 struct held_lock *prev = curr->held_locks + depth; 4591 if (prev->irq_context != next->irq_context) 4592 break; 4593 } 4594 depth++; 4595 4596 curr_inner = task_wait_context(curr); 4597 4598 for (; depth < curr->lockdep_depth; depth++) { 4599 struct held_lock *prev = curr->held_locks + depth; 4600 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4601 4602 if (prev_inner) { 4603 /* 4604 * We can have a bigger inner than a previous one 4605 * when outer is smaller than inner, as with RCU. 4606 * 4607 * Also due to trylocks. 4608 */ 4609 curr_inner = min(curr_inner, prev_inner); 4610 } 4611 } 4612 4613 if (next_outer > curr_inner) 4614 return print_lock_invalid_wait_context(curr, next); 4615 4616 return 0; 4617 } 4618 4619 #else /* CONFIG_PROVE_LOCKING */ 4620 4621 static inline int 4622 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4623 { 4624 return 1; 4625 } 4626 4627 static inline unsigned int task_irq_context(struct task_struct *task) 4628 { 4629 return 0; 4630 } 4631 4632 static inline int separate_irq_context(struct task_struct *curr, 4633 struct held_lock *hlock) 4634 { 4635 return 0; 4636 } 4637 4638 static inline int check_wait_context(struct task_struct *curr, 4639 struct held_lock *next) 4640 { 4641 return 0; 4642 } 4643 4644 #endif /* CONFIG_PROVE_LOCKING */ 4645 4646 /* 4647 * Initialize a lock instance's lock-class mapping info: 4648 */ 4649 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4650 struct lock_class_key *key, int subclass, 4651 u8 inner, u8 outer, u8 lock_type) 4652 { 4653 int i; 4654 4655 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4656 lock->class_cache[i] = NULL; 4657 4658 #ifdef CONFIG_LOCK_STAT 4659 lock->cpu = raw_smp_processor_id(); 4660 #endif 4661 4662 /* 4663 * Can't be having no nameless bastards around this place! 4664 */ 4665 if (DEBUG_LOCKS_WARN_ON(!name)) { 4666 lock->name = "NULL"; 4667 return; 4668 } 4669 4670 lock->name = name; 4671 4672 lock->wait_type_outer = outer; 4673 lock->wait_type_inner = inner; 4674 lock->lock_type = lock_type; 4675 4676 /* 4677 * No key, no joy, we need to hash something. 4678 */ 4679 if (DEBUG_LOCKS_WARN_ON(!key)) 4680 return; 4681 /* 4682 * Sanity check, the lock-class key must either have been allocated 4683 * statically or must have been registered as a dynamic key. 4684 */ 4685 if (!static_obj(key) && !is_dynamic_key(key)) { 4686 if (debug_locks) 4687 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4688 DEBUG_LOCKS_WARN_ON(1); 4689 return; 4690 } 4691 lock->key = key; 4692 4693 if (unlikely(!debug_locks)) 4694 return; 4695 4696 if (subclass) { 4697 unsigned long flags; 4698 4699 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4700 return; 4701 4702 raw_local_irq_save(flags); 4703 lockdep_recursion_inc(); 4704 register_lock_class(lock, subclass, 1); 4705 lockdep_recursion_finish(); 4706 raw_local_irq_restore(flags); 4707 } 4708 } 4709 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4710 4711 struct lock_class_key __lockdep_no_validate__; 4712 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4713 4714 static void 4715 print_lock_nested_lock_not_held(struct task_struct *curr, 4716 struct held_lock *hlock, 4717 unsigned long ip) 4718 { 4719 if (!debug_locks_off()) 4720 return; 4721 if (debug_locks_silent) 4722 return; 4723 4724 pr_warn("\n"); 4725 pr_warn("==================================\n"); 4726 pr_warn("WARNING: Nested lock was not taken\n"); 4727 print_kernel_ident(); 4728 pr_warn("----------------------------------\n"); 4729 4730 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4731 print_lock(hlock); 4732 4733 pr_warn("\nbut this task is not holding:\n"); 4734 pr_warn("%s\n", hlock->nest_lock->name); 4735 4736 pr_warn("\nstack backtrace:\n"); 4737 dump_stack(); 4738 4739 pr_warn("\nother info that might help us debug this:\n"); 4740 lockdep_print_held_locks(curr); 4741 4742 pr_warn("\nstack backtrace:\n"); 4743 dump_stack(); 4744 } 4745 4746 static int __lock_is_held(const struct lockdep_map *lock, int read); 4747 4748 /* 4749 * This gets called for every mutex_lock*()/spin_lock*() operation. 4750 * We maintain the dependency maps and validate the locking attempt: 4751 * 4752 * The callers must make sure that IRQs are disabled before calling it, 4753 * otherwise we could get an interrupt which would want to take locks, 4754 * which would end up in lockdep again. 4755 */ 4756 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4757 int trylock, int read, int check, int hardirqs_off, 4758 struct lockdep_map *nest_lock, unsigned long ip, 4759 int references, int pin_count) 4760 { 4761 struct task_struct *curr = current; 4762 struct lock_class *class = NULL; 4763 struct held_lock *hlock; 4764 unsigned int depth; 4765 int chain_head = 0; 4766 int class_idx; 4767 u64 chain_key; 4768 4769 if (unlikely(!debug_locks)) 4770 return 0; 4771 4772 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4773 check = 0; 4774 4775 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4776 class = lock->class_cache[subclass]; 4777 /* 4778 * Not cached? 4779 */ 4780 if (unlikely(!class)) { 4781 class = register_lock_class(lock, subclass, 0); 4782 if (!class) 4783 return 0; 4784 } 4785 4786 debug_class_ops_inc(class); 4787 4788 if (very_verbose(class)) { 4789 printk("\nacquire class [%px] %s", class->key, class->name); 4790 if (class->name_version > 1) 4791 printk(KERN_CONT "#%d", class->name_version); 4792 printk(KERN_CONT "\n"); 4793 dump_stack(); 4794 } 4795 4796 /* 4797 * Add the lock to the list of currently held locks. 4798 * (we dont increase the depth just yet, up until the 4799 * dependency checks are done) 4800 */ 4801 depth = curr->lockdep_depth; 4802 /* 4803 * Ran out of static storage for our per-task lock stack again have we? 4804 */ 4805 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4806 return 0; 4807 4808 class_idx = class - lock_classes; 4809 4810 if (depth) { /* we're holding locks */ 4811 hlock = curr->held_locks + depth - 1; 4812 if (hlock->class_idx == class_idx && nest_lock) { 4813 if (!references) 4814 references++; 4815 4816 if (!hlock->references) 4817 hlock->references++; 4818 4819 hlock->references += references; 4820 4821 /* Overflow */ 4822 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4823 return 0; 4824 4825 return 2; 4826 } 4827 } 4828 4829 hlock = curr->held_locks + depth; 4830 /* 4831 * Plain impossible, we just registered it and checked it weren't no 4832 * NULL like.. I bet this mushroom I ate was good! 4833 */ 4834 if (DEBUG_LOCKS_WARN_ON(!class)) 4835 return 0; 4836 hlock->class_idx = class_idx; 4837 hlock->acquire_ip = ip; 4838 hlock->instance = lock; 4839 hlock->nest_lock = nest_lock; 4840 hlock->irq_context = task_irq_context(curr); 4841 hlock->trylock = trylock; 4842 hlock->read = read; 4843 hlock->check = check; 4844 hlock->hardirqs_off = !!hardirqs_off; 4845 hlock->references = references; 4846 #ifdef CONFIG_LOCK_STAT 4847 hlock->waittime_stamp = 0; 4848 hlock->holdtime_stamp = lockstat_clock(); 4849 #endif 4850 hlock->pin_count = pin_count; 4851 4852 if (check_wait_context(curr, hlock)) 4853 return 0; 4854 4855 /* Initialize the lock usage bit */ 4856 if (!mark_usage(curr, hlock, check)) 4857 return 0; 4858 4859 /* 4860 * Calculate the chain hash: it's the combined hash of all the 4861 * lock keys along the dependency chain. We save the hash value 4862 * at every step so that we can get the current hash easily 4863 * after unlock. The chain hash is then used to cache dependency 4864 * results. 4865 * 4866 * The 'key ID' is what is the most compact key value to drive 4867 * the hash, not class->key. 4868 */ 4869 /* 4870 * Whoops, we did it again.. class_idx is invalid. 4871 */ 4872 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 4873 return 0; 4874 4875 chain_key = curr->curr_chain_key; 4876 if (!depth) { 4877 /* 4878 * How can we have a chain hash when we ain't got no keys?! 4879 */ 4880 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 4881 return 0; 4882 chain_head = 1; 4883 } 4884 4885 hlock->prev_chain_key = chain_key; 4886 if (separate_irq_context(curr, hlock)) { 4887 chain_key = INITIAL_CHAIN_KEY; 4888 chain_head = 1; 4889 } 4890 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 4891 4892 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 4893 print_lock_nested_lock_not_held(curr, hlock, ip); 4894 return 0; 4895 } 4896 4897 if (!debug_locks_silent) { 4898 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 4899 WARN_ON_ONCE(!hlock_class(hlock)->key); 4900 } 4901 4902 if (!validate_chain(curr, hlock, chain_head, chain_key)) 4903 return 0; 4904 4905 curr->curr_chain_key = chain_key; 4906 curr->lockdep_depth++; 4907 check_chain_key(curr); 4908 #ifdef CONFIG_DEBUG_LOCKDEP 4909 if (unlikely(!debug_locks)) 4910 return 0; 4911 #endif 4912 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 4913 debug_locks_off(); 4914 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 4915 printk(KERN_DEBUG "depth: %i max: %lu!\n", 4916 curr->lockdep_depth, MAX_LOCK_DEPTH); 4917 4918 lockdep_print_held_locks(current); 4919 debug_show_all_locks(); 4920 dump_stack(); 4921 4922 return 0; 4923 } 4924 4925 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 4926 max_lockdep_depth = curr->lockdep_depth; 4927 4928 return 1; 4929 } 4930 4931 static void print_unlock_imbalance_bug(struct task_struct *curr, 4932 struct lockdep_map *lock, 4933 unsigned long ip) 4934 { 4935 if (!debug_locks_off()) 4936 return; 4937 if (debug_locks_silent) 4938 return; 4939 4940 pr_warn("\n"); 4941 pr_warn("=====================================\n"); 4942 pr_warn("WARNING: bad unlock balance detected!\n"); 4943 print_kernel_ident(); 4944 pr_warn("-------------------------------------\n"); 4945 pr_warn("%s/%d is trying to release lock (", 4946 curr->comm, task_pid_nr(curr)); 4947 print_lockdep_cache(lock); 4948 pr_cont(") at:\n"); 4949 print_ip_sym(KERN_WARNING, ip); 4950 pr_warn("but there are no more locks to release!\n"); 4951 pr_warn("\nother info that might help us debug this:\n"); 4952 lockdep_print_held_locks(curr); 4953 4954 pr_warn("\nstack backtrace:\n"); 4955 dump_stack(); 4956 } 4957 4958 static noinstr int match_held_lock(const struct held_lock *hlock, 4959 const struct lockdep_map *lock) 4960 { 4961 if (hlock->instance == lock) 4962 return 1; 4963 4964 if (hlock->references) { 4965 const struct lock_class *class = lock->class_cache[0]; 4966 4967 if (!class) 4968 class = look_up_lock_class(lock, 0); 4969 4970 /* 4971 * If look_up_lock_class() failed to find a class, we're trying 4972 * to test if we hold a lock that has never yet been acquired. 4973 * Clearly if the lock hasn't been acquired _ever_, we're not 4974 * holding it either, so report failure. 4975 */ 4976 if (!class) 4977 return 0; 4978 4979 /* 4980 * References, but not a lock we're actually ref-counting? 4981 * State got messed up, follow the sites that change ->references 4982 * and try to make sense of it. 4983 */ 4984 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 4985 return 0; 4986 4987 if (hlock->class_idx == class - lock_classes) 4988 return 1; 4989 } 4990 4991 return 0; 4992 } 4993 4994 /* @depth must not be zero */ 4995 static struct held_lock *find_held_lock(struct task_struct *curr, 4996 struct lockdep_map *lock, 4997 unsigned int depth, int *idx) 4998 { 4999 struct held_lock *ret, *hlock, *prev_hlock; 5000 int i; 5001 5002 i = depth - 1; 5003 hlock = curr->held_locks + i; 5004 ret = hlock; 5005 if (match_held_lock(hlock, lock)) 5006 goto out; 5007 5008 ret = NULL; 5009 for (i--, prev_hlock = hlock--; 5010 i >= 0; 5011 i--, prev_hlock = hlock--) { 5012 /* 5013 * We must not cross into another context: 5014 */ 5015 if (prev_hlock->irq_context != hlock->irq_context) { 5016 ret = NULL; 5017 break; 5018 } 5019 if (match_held_lock(hlock, lock)) { 5020 ret = hlock; 5021 break; 5022 } 5023 } 5024 5025 out: 5026 *idx = i; 5027 return ret; 5028 } 5029 5030 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5031 int idx, unsigned int *merged) 5032 { 5033 struct held_lock *hlock; 5034 int first_idx = idx; 5035 5036 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5037 return 0; 5038 5039 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5040 switch (__lock_acquire(hlock->instance, 5041 hlock_class(hlock)->subclass, 5042 hlock->trylock, 5043 hlock->read, hlock->check, 5044 hlock->hardirqs_off, 5045 hlock->nest_lock, hlock->acquire_ip, 5046 hlock->references, hlock->pin_count)) { 5047 case 0: 5048 return 1; 5049 case 1: 5050 break; 5051 case 2: 5052 *merged += (idx == first_idx); 5053 break; 5054 default: 5055 WARN_ON(1); 5056 return 0; 5057 } 5058 } 5059 return 0; 5060 } 5061 5062 static int 5063 __lock_set_class(struct lockdep_map *lock, const char *name, 5064 struct lock_class_key *key, unsigned int subclass, 5065 unsigned long ip) 5066 { 5067 struct task_struct *curr = current; 5068 unsigned int depth, merged = 0; 5069 struct held_lock *hlock; 5070 struct lock_class *class; 5071 int i; 5072 5073 if (unlikely(!debug_locks)) 5074 return 0; 5075 5076 depth = curr->lockdep_depth; 5077 /* 5078 * This function is about (re)setting the class of a held lock, 5079 * yet we're not actually holding any locks. Naughty user! 5080 */ 5081 if (DEBUG_LOCKS_WARN_ON(!depth)) 5082 return 0; 5083 5084 hlock = find_held_lock(curr, lock, depth, &i); 5085 if (!hlock) { 5086 print_unlock_imbalance_bug(curr, lock, ip); 5087 return 0; 5088 } 5089 5090 lockdep_init_map_waits(lock, name, key, 0, 5091 lock->wait_type_inner, 5092 lock->wait_type_outer); 5093 class = register_lock_class(lock, subclass, 0); 5094 hlock->class_idx = class - lock_classes; 5095 5096 curr->lockdep_depth = i; 5097 curr->curr_chain_key = hlock->prev_chain_key; 5098 5099 if (reacquire_held_locks(curr, depth, i, &merged)) 5100 return 0; 5101 5102 /* 5103 * I took it apart and put it back together again, except now I have 5104 * these 'spare' parts.. where shall I put them. 5105 */ 5106 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5107 return 0; 5108 return 1; 5109 } 5110 5111 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5112 { 5113 struct task_struct *curr = current; 5114 unsigned int depth, merged = 0; 5115 struct held_lock *hlock; 5116 int i; 5117 5118 if (unlikely(!debug_locks)) 5119 return 0; 5120 5121 depth = curr->lockdep_depth; 5122 /* 5123 * This function is about (re)setting the class of a held lock, 5124 * yet we're not actually holding any locks. Naughty user! 5125 */ 5126 if (DEBUG_LOCKS_WARN_ON(!depth)) 5127 return 0; 5128 5129 hlock = find_held_lock(curr, lock, depth, &i); 5130 if (!hlock) { 5131 print_unlock_imbalance_bug(curr, lock, ip); 5132 return 0; 5133 } 5134 5135 curr->lockdep_depth = i; 5136 curr->curr_chain_key = hlock->prev_chain_key; 5137 5138 WARN(hlock->read, "downgrading a read lock"); 5139 hlock->read = 1; 5140 hlock->acquire_ip = ip; 5141 5142 if (reacquire_held_locks(curr, depth, i, &merged)) 5143 return 0; 5144 5145 /* Merging can't happen with unchanged classes.. */ 5146 if (DEBUG_LOCKS_WARN_ON(merged)) 5147 return 0; 5148 5149 /* 5150 * I took it apart and put it back together again, except now I have 5151 * these 'spare' parts.. where shall I put them. 5152 */ 5153 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5154 return 0; 5155 5156 return 1; 5157 } 5158 5159 /* 5160 * Remove the lock from the list of currently held locks - this gets 5161 * called on mutex_unlock()/spin_unlock*() (or on a failed 5162 * mutex_lock_interruptible()). 5163 */ 5164 static int 5165 __lock_release(struct lockdep_map *lock, unsigned long ip) 5166 { 5167 struct task_struct *curr = current; 5168 unsigned int depth, merged = 1; 5169 struct held_lock *hlock; 5170 int i; 5171 5172 if (unlikely(!debug_locks)) 5173 return 0; 5174 5175 depth = curr->lockdep_depth; 5176 /* 5177 * So we're all set to release this lock.. wait what lock? We don't 5178 * own any locks, you've been drinking again? 5179 */ 5180 if (depth <= 0) { 5181 print_unlock_imbalance_bug(curr, lock, ip); 5182 return 0; 5183 } 5184 5185 /* 5186 * Check whether the lock exists in the current stack 5187 * of held locks: 5188 */ 5189 hlock = find_held_lock(curr, lock, depth, &i); 5190 if (!hlock) { 5191 print_unlock_imbalance_bug(curr, lock, ip); 5192 return 0; 5193 } 5194 5195 if (hlock->instance == lock) 5196 lock_release_holdtime(hlock); 5197 5198 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5199 5200 if (hlock->references) { 5201 hlock->references--; 5202 if (hlock->references) { 5203 /* 5204 * We had, and after removing one, still have 5205 * references, the current lock stack is still 5206 * valid. We're done! 5207 */ 5208 return 1; 5209 } 5210 } 5211 5212 /* 5213 * We have the right lock to unlock, 'hlock' points to it. 5214 * Now we remove it from the stack, and add back the other 5215 * entries (if any), recalculating the hash along the way: 5216 */ 5217 5218 curr->lockdep_depth = i; 5219 curr->curr_chain_key = hlock->prev_chain_key; 5220 5221 /* 5222 * The most likely case is when the unlock is on the innermost 5223 * lock. In this case, we are done! 5224 */ 5225 if (i == depth-1) 5226 return 1; 5227 5228 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5229 return 0; 5230 5231 /* 5232 * We had N bottles of beer on the wall, we drank one, but now 5233 * there's not N-1 bottles of beer left on the wall... 5234 * Pouring two of the bottles together is acceptable. 5235 */ 5236 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5237 5238 /* 5239 * Since reacquire_held_locks() would have called check_chain_key() 5240 * indirectly via __lock_acquire(), we don't need to do it again 5241 * on return. 5242 */ 5243 return 0; 5244 } 5245 5246 static __always_inline 5247 int __lock_is_held(const struct lockdep_map *lock, int read) 5248 { 5249 struct task_struct *curr = current; 5250 int i; 5251 5252 for (i = 0; i < curr->lockdep_depth; i++) { 5253 struct held_lock *hlock = curr->held_locks + i; 5254 5255 if (match_held_lock(hlock, lock)) { 5256 if (read == -1 || hlock->read == read) 5257 return LOCK_STATE_HELD; 5258 5259 return LOCK_STATE_NOT_HELD; 5260 } 5261 } 5262 5263 return LOCK_STATE_NOT_HELD; 5264 } 5265 5266 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5267 { 5268 struct pin_cookie cookie = NIL_COOKIE; 5269 struct task_struct *curr = current; 5270 int i; 5271 5272 if (unlikely(!debug_locks)) 5273 return cookie; 5274 5275 for (i = 0; i < curr->lockdep_depth; i++) { 5276 struct held_lock *hlock = curr->held_locks + i; 5277 5278 if (match_held_lock(hlock, lock)) { 5279 /* 5280 * Grab 16bits of randomness; this is sufficient to not 5281 * be guessable and still allows some pin nesting in 5282 * our u32 pin_count. 5283 */ 5284 cookie.val = 1 + (prandom_u32() >> 16); 5285 hlock->pin_count += cookie.val; 5286 return cookie; 5287 } 5288 } 5289 5290 WARN(1, "pinning an unheld lock\n"); 5291 return cookie; 5292 } 5293 5294 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5295 { 5296 struct task_struct *curr = current; 5297 int i; 5298 5299 if (unlikely(!debug_locks)) 5300 return; 5301 5302 for (i = 0; i < curr->lockdep_depth; i++) { 5303 struct held_lock *hlock = curr->held_locks + i; 5304 5305 if (match_held_lock(hlock, lock)) { 5306 hlock->pin_count += cookie.val; 5307 return; 5308 } 5309 } 5310 5311 WARN(1, "pinning an unheld lock\n"); 5312 } 5313 5314 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5315 { 5316 struct task_struct *curr = current; 5317 int i; 5318 5319 if (unlikely(!debug_locks)) 5320 return; 5321 5322 for (i = 0; i < curr->lockdep_depth; i++) { 5323 struct held_lock *hlock = curr->held_locks + i; 5324 5325 if (match_held_lock(hlock, lock)) { 5326 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5327 return; 5328 5329 hlock->pin_count -= cookie.val; 5330 5331 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5332 hlock->pin_count = 0; 5333 5334 return; 5335 } 5336 } 5337 5338 WARN(1, "unpinning an unheld lock\n"); 5339 } 5340 5341 /* 5342 * Check whether we follow the irq-flags state precisely: 5343 */ 5344 static noinstr void check_flags(unsigned long flags) 5345 { 5346 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5347 if (!debug_locks) 5348 return; 5349 5350 /* Get the warning out.. */ 5351 instrumentation_begin(); 5352 5353 if (irqs_disabled_flags(flags)) { 5354 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5355 printk("possible reason: unannotated irqs-off.\n"); 5356 } 5357 } else { 5358 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5359 printk("possible reason: unannotated irqs-on.\n"); 5360 } 5361 } 5362 5363 /* 5364 * We dont accurately track softirq state in e.g. 5365 * hardirq contexts (such as on 4KSTACKS), so only 5366 * check if not in hardirq contexts: 5367 */ 5368 if (!hardirq_count()) { 5369 if (softirq_count()) { 5370 /* like the above, but with softirqs */ 5371 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5372 } else { 5373 /* lick the above, does it taste good? */ 5374 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5375 } 5376 } 5377 5378 if (!debug_locks) 5379 print_irqtrace_events(current); 5380 5381 instrumentation_end(); 5382 #endif 5383 } 5384 5385 void lock_set_class(struct lockdep_map *lock, const char *name, 5386 struct lock_class_key *key, unsigned int subclass, 5387 unsigned long ip) 5388 { 5389 unsigned long flags; 5390 5391 if (unlikely(!lockdep_enabled())) 5392 return; 5393 5394 raw_local_irq_save(flags); 5395 lockdep_recursion_inc(); 5396 check_flags(flags); 5397 if (__lock_set_class(lock, name, key, subclass, ip)) 5398 check_chain_key(current); 5399 lockdep_recursion_finish(); 5400 raw_local_irq_restore(flags); 5401 } 5402 EXPORT_SYMBOL_GPL(lock_set_class); 5403 5404 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5405 { 5406 unsigned long flags; 5407 5408 if (unlikely(!lockdep_enabled())) 5409 return; 5410 5411 raw_local_irq_save(flags); 5412 lockdep_recursion_inc(); 5413 check_flags(flags); 5414 if (__lock_downgrade(lock, ip)) 5415 check_chain_key(current); 5416 lockdep_recursion_finish(); 5417 raw_local_irq_restore(flags); 5418 } 5419 EXPORT_SYMBOL_GPL(lock_downgrade); 5420 5421 /* NMI context !!! */ 5422 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5423 { 5424 #ifdef CONFIG_PROVE_LOCKING 5425 struct lock_class *class = look_up_lock_class(lock, subclass); 5426 unsigned long mask = LOCKF_USED; 5427 5428 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5429 if (!class) 5430 return; 5431 5432 /* 5433 * READ locks only conflict with USED, such that if we only ever use 5434 * READ locks, there is no deadlock possible -- RCU. 5435 */ 5436 if (!hlock->read) 5437 mask |= LOCKF_USED_READ; 5438 5439 if (!(class->usage_mask & mask)) 5440 return; 5441 5442 hlock->class_idx = class - lock_classes; 5443 5444 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5445 #endif 5446 } 5447 5448 static bool lockdep_nmi(void) 5449 { 5450 if (raw_cpu_read(lockdep_recursion)) 5451 return false; 5452 5453 if (!in_nmi()) 5454 return false; 5455 5456 return true; 5457 } 5458 5459 /* 5460 * read_lock() is recursive if: 5461 * 1. We force lockdep think this way in selftests or 5462 * 2. The implementation is not queued read/write lock or 5463 * 3. The locker is at an in_interrupt() context. 5464 */ 5465 bool read_lock_is_recursive(void) 5466 { 5467 return force_read_lock_recursive || 5468 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5469 in_interrupt(); 5470 } 5471 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5472 5473 /* 5474 * We are not always called with irqs disabled - do that here, 5475 * and also avoid lockdep recursion: 5476 */ 5477 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5478 int trylock, int read, int check, 5479 struct lockdep_map *nest_lock, unsigned long ip) 5480 { 5481 unsigned long flags; 5482 5483 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5484 5485 if (!debug_locks) 5486 return; 5487 5488 if (unlikely(!lockdep_enabled())) { 5489 /* XXX allow trylock from NMI ?!? */ 5490 if (lockdep_nmi() && !trylock) { 5491 struct held_lock hlock; 5492 5493 hlock.acquire_ip = ip; 5494 hlock.instance = lock; 5495 hlock.nest_lock = nest_lock; 5496 hlock.irq_context = 2; // XXX 5497 hlock.trylock = trylock; 5498 hlock.read = read; 5499 hlock.check = check; 5500 hlock.hardirqs_off = true; 5501 hlock.references = 0; 5502 5503 verify_lock_unused(lock, &hlock, subclass); 5504 } 5505 return; 5506 } 5507 5508 raw_local_irq_save(flags); 5509 check_flags(flags); 5510 5511 lockdep_recursion_inc(); 5512 __lock_acquire(lock, subclass, trylock, read, check, 5513 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5514 lockdep_recursion_finish(); 5515 raw_local_irq_restore(flags); 5516 } 5517 EXPORT_SYMBOL_GPL(lock_acquire); 5518 5519 void lock_release(struct lockdep_map *lock, unsigned long ip) 5520 { 5521 unsigned long flags; 5522 5523 trace_lock_release(lock, ip); 5524 5525 if (unlikely(!lockdep_enabled())) 5526 return; 5527 5528 raw_local_irq_save(flags); 5529 check_flags(flags); 5530 5531 lockdep_recursion_inc(); 5532 if (__lock_release(lock, ip)) 5533 check_chain_key(current); 5534 lockdep_recursion_finish(); 5535 raw_local_irq_restore(flags); 5536 } 5537 EXPORT_SYMBOL_GPL(lock_release); 5538 5539 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5540 { 5541 unsigned long flags; 5542 int ret = LOCK_STATE_NOT_HELD; 5543 5544 /* 5545 * Avoid false negative lockdep_assert_held() and 5546 * lockdep_assert_not_held(). 5547 */ 5548 if (unlikely(!lockdep_enabled())) 5549 return LOCK_STATE_UNKNOWN; 5550 5551 raw_local_irq_save(flags); 5552 check_flags(flags); 5553 5554 lockdep_recursion_inc(); 5555 ret = __lock_is_held(lock, read); 5556 lockdep_recursion_finish(); 5557 raw_local_irq_restore(flags); 5558 5559 return ret; 5560 } 5561 EXPORT_SYMBOL_GPL(lock_is_held_type); 5562 NOKPROBE_SYMBOL(lock_is_held_type); 5563 5564 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5565 { 5566 struct pin_cookie cookie = NIL_COOKIE; 5567 unsigned long flags; 5568 5569 if (unlikely(!lockdep_enabled())) 5570 return cookie; 5571 5572 raw_local_irq_save(flags); 5573 check_flags(flags); 5574 5575 lockdep_recursion_inc(); 5576 cookie = __lock_pin_lock(lock); 5577 lockdep_recursion_finish(); 5578 raw_local_irq_restore(flags); 5579 5580 return cookie; 5581 } 5582 EXPORT_SYMBOL_GPL(lock_pin_lock); 5583 5584 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5585 { 5586 unsigned long flags; 5587 5588 if (unlikely(!lockdep_enabled())) 5589 return; 5590 5591 raw_local_irq_save(flags); 5592 check_flags(flags); 5593 5594 lockdep_recursion_inc(); 5595 __lock_repin_lock(lock, cookie); 5596 lockdep_recursion_finish(); 5597 raw_local_irq_restore(flags); 5598 } 5599 EXPORT_SYMBOL_GPL(lock_repin_lock); 5600 5601 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5602 { 5603 unsigned long flags; 5604 5605 if (unlikely(!lockdep_enabled())) 5606 return; 5607 5608 raw_local_irq_save(flags); 5609 check_flags(flags); 5610 5611 lockdep_recursion_inc(); 5612 __lock_unpin_lock(lock, cookie); 5613 lockdep_recursion_finish(); 5614 raw_local_irq_restore(flags); 5615 } 5616 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5617 5618 #ifdef CONFIG_LOCK_STAT 5619 static void print_lock_contention_bug(struct task_struct *curr, 5620 struct lockdep_map *lock, 5621 unsigned long ip) 5622 { 5623 if (!debug_locks_off()) 5624 return; 5625 if (debug_locks_silent) 5626 return; 5627 5628 pr_warn("\n"); 5629 pr_warn("=================================\n"); 5630 pr_warn("WARNING: bad contention detected!\n"); 5631 print_kernel_ident(); 5632 pr_warn("---------------------------------\n"); 5633 pr_warn("%s/%d is trying to contend lock (", 5634 curr->comm, task_pid_nr(curr)); 5635 print_lockdep_cache(lock); 5636 pr_cont(") at:\n"); 5637 print_ip_sym(KERN_WARNING, ip); 5638 pr_warn("but there are no locks held!\n"); 5639 pr_warn("\nother info that might help us debug this:\n"); 5640 lockdep_print_held_locks(curr); 5641 5642 pr_warn("\nstack backtrace:\n"); 5643 dump_stack(); 5644 } 5645 5646 static void 5647 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5648 { 5649 struct task_struct *curr = current; 5650 struct held_lock *hlock; 5651 struct lock_class_stats *stats; 5652 unsigned int depth; 5653 int i, contention_point, contending_point; 5654 5655 depth = curr->lockdep_depth; 5656 /* 5657 * Whee, we contended on this lock, except it seems we're not 5658 * actually trying to acquire anything much at all.. 5659 */ 5660 if (DEBUG_LOCKS_WARN_ON(!depth)) 5661 return; 5662 5663 hlock = find_held_lock(curr, lock, depth, &i); 5664 if (!hlock) { 5665 print_lock_contention_bug(curr, lock, ip); 5666 return; 5667 } 5668 5669 if (hlock->instance != lock) 5670 return; 5671 5672 hlock->waittime_stamp = lockstat_clock(); 5673 5674 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5675 contending_point = lock_point(hlock_class(hlock)->contending_point, 5676 lock->ip); 5677 5678 stats = get_lock_stats(hlock_class(hlock)); 5679 if (contention_point < LOCKSTAT_POINTS) 5680 stats->contention_point[contention_point]++; 5681 if (contending_point < LOCKSTAT_POINTS) 5682 stats->contending_point[contending_point]++; 5683 if (lock->cpu != smp_processor_id()) 5684 stats->bounces[bounce_contended + !!hlock->read]++; 5685 } 5686 5687 static void 5688 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5689 { 5690 struct task_struct *curr = current; 5691 struct held_lock *hlock; 5692 struct lock_class_stats *stats; 5693 unsigned int depth; 5694 u64 now, waittime = 0; 5695 int i, cpu; 5696 5697 depth = curr->lockdep_depth; 5698 /* 5699 * Yay, we acquired ownership of this lock we didn't try to 5700 * acquire, how the heck did that happen? 5701 */ 5702 if (DEBUG_LOCKS_WARN_ON(!depth)) 5703 return; 5704 5705 hlock = find_held_lock(curr, lock, depth, &i); 5706 if (!hlock) { 5707 print_lock_contention_bug(curr, lock, _RET_IP_); 5708 return; 5709 } 5710 5711 if (hlock->instance != lock) 5712 return; 5713 5714 cpu = smp_processor_id(); 5715 if (hlock->waittime_stamp) { 5716 now = lockstat_clock(); 5717 waittime = now - hlock->waittime_stamp; 5718 hlock->holdtime_stamp = now; 5719 } 5720 5721 stats = get_lock_stats(hlock_class(hlock)); 5722 if (waittime) { 5723 if (hlock->read) 5724 lock_time_inc(&stats->read_waittime, waittime); 5725 else 5726 lock_time_inc(&stats->write_waittime, waittime); 5727 } 5728 if (lock->cpu != cpu) 5729 stats->bounces[bounce_acquired + !!hlock->read]++; 5730 5731 lock->cpu = cpu; 5732 lock->ip = ip; 5733 } 5734 5735 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5736 { 5737 unsigned long flags; 5738 5739 trace_lock_acquired(lock, ip); 5740 5741 if (unlikely(!lock_stat || !lockdep_enabled())) 5742 return; 5743 5744 raw_local_irq_save(flags); 5745 check_flags(flags); 5746 lockdep_recursion_inc(); 5747 __lock_contended(lock, ip); 5748 lockdep_recursion_finish(); 5749 raw_local_irq_restore(flags); 5750 } 5751 EXPORT_SYMBOL_GPL(lock_contended); 5752 5753 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5754 { 5755 unsigned long flags; 5756 5757 trace_lock_contended(lock, ip); 5758 5759 if (unlikely(!lock_stat || !lockdep_enabled())) 5760 return; 5761 5762 raw_local_irq_save(flags); 5763 check_flags(flags); 5764 lockdep_recursion_inc(); 5765 __lock_acquired(lock, ip); 5766 lockdep_recursion_finish(); 5767 raw_local_irq_restore(flags); 5768 } 5769 EXPORT_SYMBOL_GPL(lock_acquired); 5770 #endif 5771 5772 /* 5773 * Used by the testsuite, sanitize the validator state 5774 * after a simulated failure: 5775 */ 5776 5777 void lockdep_reset(void) 5778 { 5779 unsigned long flags; 5780 int i; 5781 5782 raw_local_irq_save(flags); 5783 lockdep_init_task(current); 5784 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5785 nr_hardirq_chains = 0; 5786 nr_softirq_chains = 0; 5787 nr_process_chains = 0; 5788 debug_locks = 1; 5789 for (i = 0; i < CHAINHASH_SIZE; i++) 5790 INIT_HLIST_HEAD(chainhash_table + i); 5791 raw_local_irq_restore(flags); 5792 } 5793 5794 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5795 static void remove_class_from_lock_chain(struct pending_free *pf, 5796 struct lock_chain *chain, 5797 struct lock_class *class) 5798 { 5799 #ifdef CONFIG_PROVE_LOCKING 5800 int i; 5801 5802 for (i = chain->base; i < chain->base + chain->depth; i++) { 5803 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5804 continue; 5805 /* 5806 * Each lock class occurs at most once in a lock chain so once 5807 * we found a match we can break out of this loop. 5808 */ 5809 goto free_lock_chain; 5810 } 5811 /* Since the chain has not been modified, return. */ 5812 return; 5813 5814 free_lock_chain: 5815 free_chain_hlocks(chain->base, chain->depth); 5816 /* Overwrite the chain key for concurrent RCU readers. */ 5817 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5818 dec_chains(chain->irq_context); 5819 5820 /* 5821 * Note: calling hlist_del_rcu() from inside a 5822 * hlist_for_each_entry_rcu() loop is safe. 5823 */ 5824 hlist_del_rcu(&chain->entry); 5825 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5826 nr_zapped_lock_chains++; 5827 #endif 5828 } 5829 5830 /* Must be called with the graph lock held. */ 5831 static void remove_class_from_lock_chains(struct pending_free *pf, 5832 struct lock_class *class) 5833 { 5834 struct lock_chain *chain; 5835 struct hlist_head *head; 5836 int i; 5837 5838 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5839 head = chainhash_table + i; 5840 hlist_for_each_entry_rcu(chain, head, entry) { 5841 remove_class_from_lock_chain(pf, chain, class); 5842 } 5843 } 5844 } 5845 5846 /* 5847 * Remove all references to a lock class. The caller must hold the graph lock. 5848 */ 5849 static void zap_class(struct pending_free *pf, struct lock_class *class) 5850 { 5851 struct lock_list *entry; 5852 int i; 5853 5854 WARN_ON_ONCE(!class->key); 5855 5856 /* 5857 * Remove all dependencies this lock is 5858 * involved in: 5859 */ 5860 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5861 entry = list_entries + i; 5862 if (entry->class != class && entry->links_to != class) 5863 continue; 5864 __clear_bit(i, list_entries_in_use); 5865 nr_list_entries--; 5866 list_del_rcu(&entry->entry); 5867 } 5868 if (list_empty(&class->locks_after) && 5869 list_empty(&class->locks_before)) { 5870 list_move_tail(&class->lock_entry, &pf->zapped); 5871 hlist_del_rcu(&class->hash_entry); 5872 WRITE_ONCE(class->key, NULL); 5873 WRITE_ONCE(class->name, NULL); 5874 nr_lock_classes--; 5875 __clear_bit(class - lock_classes, lock_classes_in_use); 5876 } else { 5877 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 5878 class->name); 5879 } 5880 5881 remove_class_from_lock_chains(pf, class); 5882 nr_zapped_classes++; 5883 } 5884 5885 static void reinit_class(struct lock_class *class) 5886 { 5887 void *const p = class; 5888 const unsigned int offset = offsetof(struct lock_class, key); 5889 5890 WARN_ON_ONCE(!class->lock_entry.next); 5891 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5892 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5893 memset(p + offset, 0, sizeof(*class) - offset); 5894 WARN_ON_ONCE(!class->lock_entry.next); 5895 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5896 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5897 } 5898 5899 static inline int within(const void *addr, void *start, unsigned long size) 5900 { 5901 return addr >= start && addr < start + size; 5902 } 5903 5904 static bool inside_selftest(void) 5905 { 5906 return current == lockdep_selftest_task_struct; 5907 } 5908 5909 /* The caller must hold the graph lock. */ 5910 static struct pending_free *get_pending_free(void) 5911 { 5912 return delayed_free.pf + delayed_free.index; 5913 } 5914 5915 static void free_zapped_rcu(struct rcu_head *cb); 5916 5917 /* 5918 * Schedule an RCU callback if no RCU callback is pending. Must be called with 5919 * the graph lock held. 5920 */ 5921 static void call_rcu_zapped(struct pending_free *pf) 5922 { 5923 WARN_ON_ONCE(inside_selftest()); 5924 5925 if (list_empty(&pf->zapped)) 5926 return; 5927 5928 if (delayed_free.scheduled) 5929 return; 5930 5931 delayed_free.scheduled = true; 5932 5933 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 5934 delayed_free.index ^= 1; 5935 5936 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 5937 } 5938 5939 /* The caller must hold the graph lock. May be called from RCU context. */ 5940 static void __free_zapped_classes(struct pending_free *pf) 5941 { 5942 struct lock_class *class; 5943 5944 check_data_structures(); 5945 5946 list_for_each_entry(class, &pf->zapped, lock_entry) 5947 reinit_class(class); 5948 5949 list_splice_init(&pf->zapped, &free_lock_classes); 5950 5951 #ifdef CONFIG_PROVE_LOCKING 5952 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 5953 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 5954 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 5955 #endif 5956 } 5957 5958 static void free_zapped_rcu(struct rcu_head *ch) 5959 { 5960 struct pending_free *pf; 5961 unsigned long flags; 5962 5963 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 5964 return; 5965 5966 raw_local_irq_save(flags); 5967 lockdep_lock(); 5968 5969 /* closed head */ 5970 pf = delayed_free.pf + (delayed_free.index ^ 1); 5971 __free_zapped_classes(pf); 5972 delayed_free.scheduled = false; 5973 5974 /* 5975 * If there's anything on the open list, close and start a new callback. 5976 */ 5977 call_rcu_zapped(delayed_free.pf + delayed_free.index); 5978 5979 lockdep_unlock(); 5980 raw_local_irq_restore(flags); 5981 } 5982 5983 /* 5984 * Remove all lock classes from the class hash table and from the 5985 * all_lock_classes list whose key or name is in the address range [start, 5986 * start + size). Move these lock classes to the zapped_classes list. Must 5987 * be called with the graph lock held. 5988 */ 5989 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 5990 unsigned long size) 5991 { 5992 struct lock_class *class; 5993 struct hlist_head *head; 5994 int i; 5995 5996 /* Unhash all classes that were created by a module. */ 5997 for (i = 0; i < CLASSHASH_SIZE; i++) { 5998 head = classhash_table + i; 5999 hlist_for_each_entry_rcu(class, head, hash_entry) { 6000 if (!within(class->key, start, size) && 6001 !within(class->name, start, size)) 6002 continue; 6003 zap_class(pf, class); 6004 } 6005 } 6006 } 6007 6008 /* 6009 * Used in module.c to remove lock classes from memory that is going to be 6010 * freed; and possibly re-used by other modules. 6011 * 6012 * We will have had one synchronize_rcu() before getting here, so we're 6013 * guaranteed nobody will look up these exact classes -- they're properly dead 6014 * but still allocated. 6015 */ 6016 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6017 { 6018 struct pending_free *pf; 6019 unsigned long flags; 6020 6021 init_data_structures_once(); 6022 6023 raw_local_irq_save(flags); 6024 lockdep_lock(); 6025 pf = get_pending_free(); 6026 __lockdep_free_key_range(pf, start, size); 6027 call_rcu_zapped(pf); 6028 lockdep_unlock(); 6029 raw_local_irq_restore(flags); 6030 6031 /* 6032 * Wait for any possible iterators from look_up_lock_class() to pass 6033 * before continuing to free the memory they refer to. 6034 */ 6035 synchronize_rcu(); 6036 } 6037 6038 /* 6039 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6040 * Ignores debug_locks. Must only be used by the lockdep selftests. 6041 */ 6042 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6043 { 6044 struct pending_free *pf = delayed_free.pf; 6045 unsigned long flags; 6046 6047 init_data_structures_once(); 6048 6049 raw_local_irq_save(flags); 6050 lockdep_lock(); 6051 __lockdep_free_key_range(pf, start, size); 6052 __free_zapped_classes(pf); 6053 lockdep_unlock(); 6054 raw_local_irq_restore(flags); 6055 } 6056 6057 void lockdep_free_key_range(void *start, unsigned long size) 6058 { 6059 init_data_structures_once(); 6060 6061 if (inside_selftest()) 6062 lockdep_free_key_range_imm(start, size); 6063 else 6064 lockdep_free_key_range_reg(start, size); 6065 } 6066 6067 /* 6068 * Check whether any element of the @lock->class_cache[] array refers to a 6069 * registered lock class. The caller must hold either the graph lock or the 6070 * RCU read lock. 6071 */ 6072 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6073 { 6074 struct lock_class *class; 6075 struct hlist_head *head; 6076 int i, j; 6077 6078 for (i = 0; i < CLASSHASH_SIZE; i++) { 6079 head = classhash_table + i; 6080 hlist_for_each_entry_rcu(class, head, hash_entry) { 6081 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6082 if (lock->class_cache[j] == class) 6083 return true; 6084 } 6085 } 6086 return false; 6087 } 6088 6089 /* The caller must hold the graph lock. Does not sleep. */ 6090 static void __lockdep_reset_lock(struct pending_free *pf, 6091 struct lockdep_map *lock) 6092 { 6093 struct lock_class *class; 6094 int j; 6095 6096 /* 6097 * Remove all classes this lock might have: 6098 */ 6099 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6100 /* 6101 * If the class exists we look it up and zap it: 6102 */ 6103 class = look_up_lock_class(lock, j); 6104 if (class) 6105 zap_class(pf, class); 6106 } 6107 /* 6108 * Debug check: in the end all mapped classes should 6109 * be gone. 6110 */ 6111 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6112 debug_locks_off(); 6113 } 6114 6115 /* 6116 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6117 * released data structures from RCU context. 6118 */ 6119 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6120 { 6121 struct pending_free *pf; 6122 unsigned long flags; 6123 int locked; 6124 6125 raw_local_irq_save(flags); 6126 locked = graph_lock(); 6127 if (!locked) 6128 goto out_irq; 6129 6130 pf = get_pending_free(); 6131 __lockdep_reset_lock(pf, lock); 6132 call_rcu_zapped(pf); 6133 6134 graph_unlock(); 6135 out_irq: 6136 raw_local_irq_restore(flags); 6137 } 6138 6139 /* 6140 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6141 * lockdep selftests. 6142 */ 6143 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6144 { 6145 struct pending_free *pf = delayed_free.pf; 6146 unsigned long flags; 6147 6148 raw_local_irq_save(flags); 6149 lockdep_lock(); 6150 __lockdep_reset_lock(pf, lock); 6151 __free_zapped_classes(pf); 6152 lockdep_unlock(); 6153 raw_local_irq_restore(flags); 6154 } 6155 6156 void lockdep_reset_lock(struct lockdep_map *lock) 6157 { 6158 init_data_structures_once(); 6159 6160 if (inside_selftest()) 6161 lockdep_reset_lock_imm(lock); 6162 else 6163 lockdep_reset_lock_reg(lock); 6164 } 6165 6166 /* Unregister a dynamically allocated key. */ 6167 void lockdep_unregister_key(struct lock_class_key *key) 6168 { 6169 struct hlist_head *hash_head = keyhashentry(key); 6170 struct lock_class_key *k; 6171 struct pending_free *pf; 6172 unsigned long flags; 6173 bool found = false; 6174 6175 might_sleep(); 6176 6177 if (WARN_ON_ONCE(static_obj(key))) 6178 return; 6179 6180 raw_local_irq_save(flags); 6181 if (!graph_lock()) 6182 goto out_irq; 6183 6184 pf = get_pending_free(); 6185 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6186 if (k == key) { 6187 hlist_del_rcu(&k->hash_entry); 6188 found = true; 6189 break; 6190 } 6191 } 6192 WARN_ON_ONCE(!found); 6193 __lockdep_free_key_range(pf, key, 1); 6194 call_rcu_zapped(pf); 6195 graph_unlock(); 6196 out_irq: 6197 raw_local_irq_restore(flags); 6198 6199 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6200 synchronize_rcu(); 6201 } 6202 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6203 6204 void __init lockdep_init(void) 6205 { 6206 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6207 6208 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6209 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6210 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6211 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6212 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6213 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6214 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6215 6216 printk(" memory used by lock dependency info: %zu kB\n", 6217 (sizeof(lock_classes) + 6218 sizeof(lock_classes_in_use) + 6219 sizeof(classhash_table) + 6220 sizeof(list_entries) + 6221 sizeof(list_entries_in_use) + 6222 sizeof(chainhash_table) + 6223 sizeof(delayed_free) 6224 #ifdef CONFIG_PROVE_LOCKING 6225 + sizeof(lock_cq) 6226 + sizeof(lock_chains) 6227 + sizeof(lock_chains_in_use) 6228 + sizeof(chain_hlocks) 6229 #endif 6230 ) / 1024 6231 ); 6232 6233 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6234 printk(" memory used for stack traces: %zu kB\n", 6235 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6236 ); 6237 #endif 6238 6239 printk(" per task-struct memory footprint: %zu bytes\n", 6240 sizeof(((struct task_struct *)NULL)->held_locks)); 6241 } 6242 6243 static void 6244 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6245 const void *mem_to, struct held_lock *hlock) 6246 { 6247 if (!debug_locks_off()) 6248 return; 6249 if (debug_locks_silent) 6250 return; 6251 6252 pr_warn("\n"); 6253 pr_warn("=========================\n"); 6254 pr_warn("WARNING: held lock freed!\n"); 6255 print_kernel_ident(); 6256 pr_warn("-------------------------\n"); 6257 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6258 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6259 print_lock(hlock); 6260 lockdep_print_held_locks(curr); 6261 6262 pr_warn("\nstack backtrace:\n"); 6263 dump_stack(); 6264 } 6265 6266 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6267 const void* lock_from, unsigned long lock_len) 6268 { 6269 return lock_from + lock_len <= mem_from || 6270 mem_from + mem_len <= lock_from; 6271 } 6272 6273 /* 6274 * Called when kernel memory is freed (or unmapped), or if a lock 6275 * is destroyed or reinitialized - this code checks whether there is 6276 * any held lock in the memory range of <from> to <to>: 6277 */ 6278 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6279 { 6280 struct task_struct *curr = current; 6281 struct held_lock *hlock; 6282 unsigned long flags; 6283 int i; 6284 6285 if (unlikely(!debug_locks)) 6286 return; 6287 6288 raw_local_irq_save(flags); 6289 for (i = 0; i < curr->lockdep_depth; i++) { 6290 hlock = curr->held_locks + i; 6291 6292 if (not_in_range(mem_from, mem_len, hlock->instance, 6293 sizeof(*hlock->instance))) 6294 continue; 6295 6296 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6297 break; 6298 } 6299 raw_local_irq_restore(flags); 6300 } 6301 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6302 6303 static void print_held_locks_bug(void) 6304 { 6305 if (!debug_locks_off()) 6306 return; 6307 if (debug_locks_silent) 6308 return; 6309 6310 pr_warn("\n"); 6311 pr_warn("====================================\n"); 6312 pr_warn("WARNING: %s/%d still has locks held!\n", 6313 current->comm, task_pid_nr(current)); 6314 print_kernel_ident(); 6315 pr_warn("------------------------------------\n"); 6316 lockdep_print_held_locks(current); 6317 pr_warn("\nstack backtrace:\n"); 6318 dump_stack(); 6319 } 6320 6321 void debug_check_no_locks_held(void) 6322 { 6323 if (unlikely(current->lockdep_depth > 0)) 6324 print_held_locks_bug(); 6325 } 6326 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6327 6328 #ifdef __KERNEL__ 6329 void debug_show_all_locks(void) 6330 { 6331 struct task_struct *g, *p; 6332 6333 if (unlikely(!debug_locks)) { 6334 pr_warn("INFO: lockdep is turned off.\n"); 6335 return; 6336 } 6337 pr_warn("\nShowing all locks held in the system:\n"); 6338 6339 rcu_read_lock(); 6340 for_each_process_thread(g, p) { 6341 if (!p->lockdep_depth) 6342 continue; 6343 lockdep_print_held_locks(p); 6344 touch_nmi_watchdog(); 6345 touch_all_softlockup_watchdogs(); 6346 } 6347 rcu_read_unlock(); 6348 6349 pr_warn("\n"); 6350 pr_warn("=============================================\n\n"); 6351 } 6352 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6353 #endif 6354 6355 /* 6356 * Careful: only use this function if you are sure that 6357 * the task cannot run in parallel! 6358 */ 6359 void debug_show_held_locks(struct task_struct *task) 6360 { 6361 if (unlikely(!debug_locks)) { 6362 printk("INFO: lockdep is turned off.\n"); 6363 return; 6364 } 6365 lockdep_print_held_locks(task); 6366 } 6367 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6368 6369 asmlinkage __visible void lockdep_sys_exit(void) 6370 { 6371 struct task_struct *curr = current; 6372 6373 if (unlikely(curr->lockdep_depth)) { 6374 if (!debug_locks_off()) 6375 return; 6376 pr_warn("\n"); 6377 pr_warn("================================================\n"); 6378 pr_warn("WARNING: lock held when returning to user space!\n"); 6379 print_kernel_ident(); 6380 pr_warn("------------------------------------------------\n"); 6381 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6382 curr->comm, curr->pid); 6383 lockdep_print_held_locks(curr); 6384 } 6385 6386 /* 6387 * The lock history for each syscall should be independent. So wipe the 6388 * slate clean on return to userspace. 6389 */ 6390 lockdep_invariant_state(false); 6391 } 6392 6393 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6394 { 6395 struct task_struct *curr = current; 6396 6397 /* Note: the following can be executed concurrently, so be careful. */ 6398 pr_warn("\n"); 6399 pr_warn("=============================\n"); 6400 pr_warn("WARNING: suspicious RCU usage\n"); 6401 print_kernel_ident(); 6402 pr_warn("-----------------------------\n"); 6403 pr_warn("%s:%d %s!\n", file, line, s); 6404 pr_warn("\nother info that might help us debug this:\n\n"); 6405 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 6406 !rcu_lockdep_current_cpu_online() 6407 ? "RCU used illegally from offline CPU!\n" 6408 : "", 6409 rcu_scheduler_active, debug_locks); 6410 6411 /* 6412 * If a CPU is in the RCU-free window in idle (ie: in the section 6413 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 6414 * considers that CPU to be in an "extended quiescent state", 6415 * which means that RCU will be completely ignoring that CPU. 6416 * Therefore, rcu_read_lock() and friends have absolutely no 6417 * effect on a CPU running in that state. In other words, even if 6418 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6419 * delete data structures out from under it. RCU really has no 6420 * choice here: we need to keep an RCU-free window in idle where 6421 * the CPU may possibly enter into low power mode. This way we can 6422 * notice an extended quiescent state to other CPUs that started a grace 6423 * period. Otherwise we would delay any grace period as long as we run 6424 * in the idle task. 6425 * 6426 * So complain bitterly if someone does call rcu_read_lock(), 6427 * rcu_read_lock_bh() and so on from extended quiescent states. 6428 */ 6429 if (!rcu_is_watching()) 6430 pr_warn("RCU used illegally from extended quiescent state!\n"); 6431 6432 lockdep_print_held_locks(curr); 6433 pr_warn("\nstack backtrace:\n"); 6434 dump_stack(); 6435 } 6436 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6437