1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 58 #include <asm/sections.h> 59 60 #include "lockdep_internals.h" 61 62 #define CREATE_TRACE_POINTS 63 #include <trace/events/lock.h> 64 65 #ifdef CONFIG_PROVE_LOCKING 66 int prove_locking = 1; 67 module_param(prove_locking, int, 0644); 68 #else 69 #define prove_locking 0 70 #endif 71 72 #ifdef CONFIG_LOCK_STAT 73 int lock_stat = 1; 74 module_param(lock_stat, int, 0644); 75 #else 76 #define lock_stat 0 77 #endif 78 79 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 80 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 81 82 static inline bool lockdep_enabled(void) 83 { 84 if (!debug_locks) 85 return false; 86 87 if (this_cpu_read(lockdep_recursion)) 88 return false; 89 90 if (current->lockdep_recursion) 91 return false; 92 93 return true; 94 } 95 96 /* 97 * lockdep_lock: protects the lockdep graph, the hashes and the 98 * class/list/hash allocators. 99 * 100 * This is one of the rare exceptions where it's justified 101 * to use a raw spinlock - we really dont want the spinlock 102 * code to recurse back into the lockdep code... 103 */ 104 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 105 static struct task_struct *__owner; 106 107 static inline void lockdep_lock(void) 108 { 109 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 110 111 arch_spin_lock(&__lock); 112 __owner = current; 113 __this_cpu_inc(lockdep_recursion); 114 } 115 116 static inline void lockdep_unlock(void) 117 { 118 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 119 return; 120 121 __this_cpu_dec(lockdep_recursion); 122 __owner = NULL; 123 arch_spin_unlock(&__lock); 124 } 125 126 static inline bool lockdep_assert_locked(void) 127 { 128 return DEBUG_LOCKS_WARN_ON(__owner != current); 129 } 130 131 static struct task_struct *lockdep_selftest_task_struct; 132 133 134 static int graph_lock(void) 135 { 136 lockdep_lock(); 137 /* 138 * Make sure that if another CPU detected a bug while 139 * walking the graph we dont change it (while the other 140 * CPU is busy printing out stuff with the graph lock 141 * dropped already) 142 */ 143 if (!debug_locks) { 144 lockdep_unlock(); 145 return 0; 146 } 147 return 1; 148 } 149 150 static inline void graph_unlock(void) 151 { 152 lockdep_unlock(); 153 } 154 155 /* 156 * Turn lock debugging off and return with 0 if it was off already, 157 * and also release the graph lock: 158 */ 159 static inline int debug_locks_off_graph_unlock(void) 160 { 161 int ret = debug_locks_off(); 162 163 lockdep_unlock(); 164 165 return ret; 166 } 167 168 unsigned long nr_list_entries; 169 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 170 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 171 172 /* 173 * All data structures here are protected by the global debug_lock. 174 * 175 * nr_lock_classes is the number of elements of lock_classes[] that is 176 * in use. 177 */ 178 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 179 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 180 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 181 unsigned long nr_lock_classes; 182 unsigned long nr_zapped_classes; 183 #ifndef CONFIG_DEBUG_LOCKDEP 184 static 185 #endif 186 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 187 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 188 189 static inline struct lock_class *hlock_class(struct held_lock *hlock) 190 { 191 unsigned int class_idx = hlock->class_idx; 192 193 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 194 barrier(); 195 196 if (!test_bit(class_idx, lock_classes_in_use)) { 197 /* 198 * Someone passed in garbage, we give up. 199 */ 200 DEBUG_LOCKS_WARN_ON(1); 201 return NULL; 202 } 203 204 /* 205 * At this point, if the passed hlock->class_idx is still garbage, 206 * we just have to live with it 207 */ 208 return lock_classes + class_idx; 209 } 210 211 #ifdef CONFIG_LOCK_STAT 212 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 213 214 static inline u64 lockstat_clock(void) 215 { 216 return local_clock(); 217 } 218 219 static int lock_point(unsigned long points[], unsigned long ip) 220 { 221 int i; 222 223 for (i = 0; i < LOCKSTAT_POINTS; i++) { 224 if (points[i] == 0) { 225 points[i] = ip; 226 break; 227 } 228 if (points[i] == ip) 229 break; 230 } 231 232 return i; 233 } 234 235 static void lock_time_inc(struct lock_time *lt, u64 time) 236 { 237 if (time > lt->max) 238 lt->max = time; 239 240 if (time < lt->min || !lt->nr) 241 lt->min = time; 242 243 lt->total += time; 244 lt->nr++; 245 } 246 247 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 248 { 249 if (!src->nr) 250 return; 251 252 if (src->max > dst->max) 253 dst->max = src->max; 254 255 if (src->min < dst->min || !dst->nr) 256 dst->min = src->min; 257 258 dst->total += src->total; 259 dst->nr += src->nr; 260 } 261 262 struct lock_class_stats lock_stats(struct lock_class *class) 263 { 264 struct lock_class_stats stats; 265 int cpu, i; 266 267 memset(&stats, 0, sizeof(struct lock_class_stats)); 268 for_each_possible_cpu(cpu) { 269 struct lock_class_stats *pcs = 270 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 271 272 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 273 stats.contention_point[i] += pcs->contention_point[i]; 274 275 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 276 stats.contending_point[i] += pcs->contending_point[i]; 277 278 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 279 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 280 281 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 282 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 283 284 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 285 stats.bounces[i] += pcs->bounces[i]; 286 } 287 288 return stats; 289 } 290 291 void clear_lock_stats(struct lock_class *class) 292 { 293 int cpu; 294 295 for_each_possible_cpu(cpu) { 296 struct lock_class_stats *cpu_stats = 297 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 298 299 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 300 } 301 memset(class->contention_point, 0, sizeof(class->contention_point)); 302 memset(class->contending_point, 0, sizeof(class->contending_point)); 303 } 304 305 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 306 { 307 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 308 } 309 310 static void lock_release_holdtime(struct held_lock *hlock) 311 { 312 struct lock_class_stats *stats; 313 u64 holdtime; 314 315 if (!lock_stat) 316 return; 317 318 holdtime = lockstat_clock() - hlock->holdtime_stamp; 319 320 stats = get_lock_stats(hlock_class(hlock)); 321 if (hlock->read) 322 lock_time_inc(&stats->read_holdtime, holdtime); 323 else 324 lock_time_inc(&stats->write_holdtime, holdtime); 325 } 326 #else 327 static inline void lock_release_holdtime(struct held_lock *hlock) 328 { 329 } 330 #endif 331 332 /* 333 * We keep a global list of all lock classes. The list is only accessed with 334 * the lockdep spinlock lock held. free_lock_classes is a list with free 335 * elements. These elements are linked together by the lock_entry member in 336 * struct lock_class. 337 */ 338 LIST_HEAD(all_lock_classes); 339 static LIST_HEAD(free_lock_classes); 340 341 /** 342 * struct pending_free - information about data structures about to be freed 343 * @zapped: Head of a list with struct lock_class elements. 344 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 345 * are about to be freed. 346 */ 347 struct pending_free { 348 struct list_head zapped; 349 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 350 }; 351 352 /** 353 * struct delayed_free - data structures used for delayed freeing 354 * 355 * A data structure for delayed freeing of data structures that may be 356 * accessed by RCU readers at the time these were freed. 357 * 358 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 359 * @index: Index of @pf to which freed data structures are added. 360 * @scheduled: Whether or not an RCU callback has been scheduled. 361 * @pf: Array with information about data structures about to be freed. 362 */ 363 static struct delayed_free { 364 struct rcu_head rcu_head; 365 int index; 366 int scheduled; 367 struct pending_free pf[2]; 368 } delayed_free; 369 370 /* 371 * The lockdep classes are in a hash-table as well, for fast lookup: 372 */ 373 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 374 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 375 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 376 #define classhashentry(key) (classhash_table + __classhashfn((key))) 377 378 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 379 380 /* 381 * We put the lock dependency chains into a hash-table as well, to cache 382 * their existence: 383 */ 384 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 385 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 386 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 387 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 388 389 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 390 391 /* 392 * the id of held_lock 393 */ 394 static inline u16 hlock_id(struct held_lock *hlock) 395 { 396 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 397 398 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 399 } 400 401 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 402 { 403 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 404 } 405 406 /* 407 * The hash key of the lock dependency chains is a hash itself too: 408 * it's a hash of all locks taken up to that lock, including that lock. 409 * It's a 64-bit hash, because it's important for the keys to be 410 * unique. 411 */ 412 static inline u64 iterate_chain_key(u64 key, u32 idx) 413 { 414 u32 k0 = key, k1 = key >> 32; 415 416 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 417 418 return k0 | (u64)k1 << 32; 419 } 420 421 void lockdep_init_task(struct task_struct *task) 422 { 423 task->lockdep_depth = 0; /* no locks held yet */ 424 task->curr_chain_key = INITIAL_CHAIN_KEY; 425 task->lockdep_recursion = 0; 426 } 427 428 static __always_inline void lockdep_recursion_inc(void) 429 { 430 __this_cpu_inc(lockdep_recursion); 431 } 432 433 static __always_inline void lockdep_recursion_finish(void) 434 { 435 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 436 __this_cpu_write(lockdep_recursion, 0); 437 } 438 439 void lockdep_set_selftest_task(struct task_struct *task) 440 { 441 lockdep_selftest_task_struct = task; 442 } 443 444 /* 445 * Debugging switches: 446 */ 447 448 #define VERBOSE 0 449 #define VERY_VERBOSE 0 450 451 #if VERBOSE 452 # define HARDIRQ_VERBOSE 1 453 # define SOFTIRQ_VERBOSE 1 454 #else 455 # define HARDIRQ_VERBOSE 0 456 # define SOFTIRQ_VERBOSE 0 457 #endif 458 459 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 460 /* 461 * Quick filtering for interesting events: 462 */ 463 static int class_filter(struct lock_class *class) 464 { 465 #if 0 466 /* Example */ 467 if (class->name_version == 1 && 468 !strcmp(class->name, "lockname")) 469 return 1; 470 if (class->name_version == 1 && 471 !strcmp(class->name, "&struct->lockfield")) 472 return 1; 473 #endif 474 /* Filter everything else. 1 would be to allow everything else */ 475 return 0; 476 } 477 #endif 478 479 static int verbose(struct lock_class *class) 480 { 481 #if VERBOSE 482 return class_filter(class); 483 #endif 484 return 0; 485 } 486 487 static void print_lockdep_off(const char *bug_msg) 488 { 489 printk(KERN_DEBUG "%s\n", bug_msg); 490 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 491 #ifdef CONFIG_LOCK_STAT 492 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 493 #endif 494 } 495 496 unsigned long nr_stack_trace_entries; 497 498 #ifdef CONFIG_PROVE_LOCKING 499 /** 500 * struct lock_trace - single stack backtrace 501 * @hash_entry: Entry in a stack_trace_hash[] list. 502 * @hash: jhash() of @entries. 503 * @nr_entries: Number of entries in @entries. 504 * @entries: Actual stack backtrace. 505 */ 506 struct lock_trace { 507 struct hlist_node hash_entry; 508 u32 hash; 509 u32 nr_entries; 510 unsigned long entries[] __aligned(sizeof(unsigned long)); 511 }; 512 #define LOCK_TRACE_SIZE_IN_LONGS \ 513 (sizeof(struct lock_trace) / sizeof(unsigned long)) 514 /* 515 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 516 */ 517 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 518 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 519 520 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 521 { 522 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 523 memcmp(t1->entries, t2->entries, 524 t1->nr_entries * sizeof(t1->entries[0])) == 0; 525 } 526 527 static struct lock_trace *save_trace(void) 528 { 529 struct lock_trace *trace, *t2; 530 struct hlist_head *hash_head; 531 u32 hash; 532 int max_entries; 533 534 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 535 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 536 537 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 538 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 539 LOCK_TRACE_SIZE_IN_LONGS; 540 541 if (max_entries <= 0) { 542 if (!debug_locks_off_graph_unlock()) 543 return NULL; 544 545 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 546 dump_stack(); 547 548 return NULL; 549 } 550 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 551 552 hash = jhash(trace->entries, trace->nr_entries * 553 sizeof(trace->entries[0]), 0); 554 trace->hash = hash; 555 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 556 hlist_for_each_entry(t2, hash_head, hash_entry) { 557 if (traces_identical(trace, t2)) 558 return t2; 559 } 560 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 561 hlist_add_head(&trace->hash_entry, hash_head); 562 563 return trace; 564 } 565 566 /* Return the number of stack traces in the stack_trace[] array. */ 567 u64 lockdep_stack_trace_count(void) 568 { 569 struct lock_trace *trace; 570 u64 c = 0; 571 int i; 572 573 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 574 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 575 c++; 576 } 577 } 578 579 return c; 580 } 581 582 /* Return the number of stack hash chains that have at least one stack trace. */ 583 u64 lockdep_stack_hash_count(void) 584 { 585 u64 c = 0; 586 int i; 587 588 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 589 if (!hlist_empty(&stack_trace_hash[i])) 590 c++; 591 592 return c; 593 } 594 #endif 595 596 unsigned int nr_hardirq_chains; 597 unsigned int nr_softirq_chains; 598 unsigned int nr_process_chains; 599 unsigned int max_lockdep_depth; 600 601 #ifdef CONFIG_DEBUG_LOCKDEP 602 /* 603 * Various lockdep statistics: 604 */ 605 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 606 #endif 607 608 #ifdef CONFIG_PROVE_LOCKING 609 /* 610 * Locking printouts: 611 */ 612 613 #define __USAGE(__STATE) \ 614 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 615 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 616 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 617 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 618 619 static const char *usage_str[] = 620 { 621 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 622 #include "lockdep_states.h" 623 #undef LOCKDEP_STATE 624 [LOCK_USED] = "INITIAL USE", 625 [LOCK_USED_READ] = "INITIAL READ USE", 626 /* abused as string storage for verify_lock_unused() */ 627 [LOCK_USAGE_STATES] = "IN-NMI", 628 }; 629 #endif 630 631 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 632 { 633 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 634 } 635 636 static inline unsigned long lock_flag(enum lock_usage_bit bit) 637 { 638 return 1UL << bit; 639 } 640 641 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 642 { 643 /* 644 * The usage character defaults to '.' (i.e., irqs disabled and not in 645 * irq context), which is the safest usage category. 646 */ 647 char c = '.'; 648 649 /* 650 * The order of the following usage checks matters, which will 651 * result in the outcome character as follows: 652 * 653 * - '+': irq is enabled and not in irq context 654 * - '-': in irq context and irq is disabled 655 * - '?': in irq context and irq is enabled 656 */ 657 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 658 c = '+'; 659 if (class->usage_mask & lock_flag(bit)) 660 c = '?'; 661 } else if (class->usage_mask & lock_flag(bit)) 662 c = '-'; 663 664 return c; 665 } 666 667 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 668 { 669 int i = 0; 670 671 #define LOCKDEP_STATE(__STATE) \ 672 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 673 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 674 #include "lockdep_states.h" 675 #undef LOCKDEP_STATE 676 677 usage[i] = '\0'; 678 } 679 680 static void __print_lock_name(struct lock_class *class) 681 { 682 char str[KSYM_NAME_LEN]; 683 const char *name; 684 685 name = class->name; 686 if (!name) { 687 name = __get_key_name(class->key, str); 688 printk(KERN_CONT "%s", name); 689 } else { 690 printk(KERN_CONT "%s", name); 691 if (class->name_version > 1) 692 printk(KERN_CONT "#%d", class->name_version); 693 if (class->subclass) 694 printk(KERN_CONT "/%d", class->subclass); 695 } 696 } 697 698 static void print_lock_name(struct lock_class *class) 699 { 700 char usage[LOCK_USAGE_CHARS]; 701 702 get_usage_chars(class, usage); 703 704 printk(KERN_CONT " ("); 705 __print_lock_name(class); 706 printk(KERN_CONT "){%s}-{%hd:%hd}", usage, 707 class->wait_type_outer ?: class->wait_type_inner, 708 class->wait_type_inner); 709 } 710 711 static void print_lockdep_cache(struct lockdep_map *lock) 712 { 713 const char *name; 714 char str[KSYM_NAME_LEN]; 715 716 name = lock->name; 717 if (!name) 718 name = __get_key_name(lock->key->subkeys, str); 719 720 printk(KERN_CONT "%s", name); 721 } 722 723 static void print_lock(struct held_lock *hlock) 724 { 725 /* 726 * We can be called locklessly through debug_show_all_locks() so be 727 * extra careful, the hlock might have been released and cleared. 728 * 729 * If this indeed happens, lets pretend it does not hurt to continue 730 * to print the lock unless the hlock class_idx does not point to a 731 * registered class. The rationale here is: since we don't attempt 732 * to distinguish whether we are in this situation, if it just 733 * happened we can't count on class_idx to tell either. 734 */ 735 struct lock_class *lock = hlock_class(hlock); 736 737 if (!lock) { 738 printk(KERN_CONT "<RELEASED>\n"); 739 return; 740 } 741 742 printk(KERN_CONT "%px", hlock->instance); 743 print_lock_name(lock); 744 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 745 } 746 747 static void lockdep_print_held_locks(struct task_struct *p) 748 { 749 int i, depth = READ_ONCE(p->lockdep_depth); 750 751 if (!depth) 752 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 753 else 754 printk("%d lock%s held by %s/%d:\n", depth, 755 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 756 /* 757 * It's not reliable to print a task's held locks if it's not sleeping 758 * and it's not the current task. 759 */ 760 if (p->state == TASK_RUNNING && p != current) 761 return; 762 for (i = 0; i < depth; i++) { 763 printk(" #%d: ", i); 764 print_lock(p->held_locks + i); 765 } 766 } 767 768 static void print_kernel_ident(void) 769 { 770 printk("%s %.*s %s\n", init_utsname()->release, 771 (int)strcspn(init_utsname()->version, " "), 772 init_utsname()->version, 773 print_tainted()); 774 } 775 776 static int very_verbose(struct lock_class *class) 777 { 778 #if VERY_VERBOSE 779 return class_filter(class); 780 #endif 781 return 0; 782 } 783 784 /* 785 * Is this the address of a static object: 786 */ 787 #ifdef __KERNEL__ 788 static int static_obj(const void *obj) 789 { 790 unsigned long start = (unsigned long) &_stext, 791 end = (unsigned long) &_end, 792 addr = (unsigned long) obj; 793 794 if (arch_is_kernel_initmem_freed(addr)) 795 return 0; 796 797 /* 798 * static variable? 799 */ 800 if ((addr >= start) && (addr < end)) 801 return 1; 802 803 if (arch_is_kernel_data(addr)) 804 return 1; 805 806 /* 807 * in-kernel percpu var? 808 */ 809 if (is_kernel_percpu_address(addr)) 810 return 1; 811 812 /* 813 * module static or percpu var? 814 */ 815 return is_module_address(addr) || is_module_percpu_address(addr); 816 } 817 #endif 818 819 /* 820 * To make lock name printouts unique, we calculate a unique 821 * class->name_version generation counter. The caller must hold the graph 822 * lock. 823 */ 824 static int count_matching_names(struct lock_class *new_class) 825 { 826 struct lock_class *class; 827 int count = 0; 828 829 if (!new_class->name) 830 return 0; 831 832 list_for_each_entry(class, &all_lock_classes, lock_entry) { 833 if (new_class->key - new_class->subclass == class->key) 834 return class->name_version; 835 if (class->name && !strcmp(class->name, new_class->name)) 836 count = max(count, class->name_version); 837 } 838 839 return count + 1; 840 } 841 842 /* used from NMI context -- must be lockless */ 843 static __always_inline struct lock_class * 844 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 845 { 846 struct lockdep_subclass_key *key; 847 struct hlist_head *hash_head; 848 struct lock_class *class; 849 850 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 851 debug_locks_off(); 852 printk(KERN_ERR 853 "BUG: looking up invalid subclass: %u\n", subclass); 854 printk(KERN_ERR 855 "turning off the locking correctness validator.\n"); 856 dump_stack(); 857 return NULL; 858 } 859 860 /* 861 * If it is not initialised then it has never been locked, 862 * so it won't be present in the hash table. 863 */ 864 if (unlikely(!lock->key)) 865 return NULL; 866 867 /* 868 * NOTE: the class-key must be unique. For dynamic locks, a static 869 * lock_class_key variable is passed in through the mutex_init() 870 * (or spin_lock_init()) call - which acts as the key. For static 871 * locks we use the lock object itself as the key. 872 */ 873 BUILD_BUG_ON(sizeof(struct lock_class_key) > 874 sizeof(struct lockdep_map)); 875 876 key = lock->key->subkeys + subclass; 877 878 hash_head = classhashentry(key); 879 880 /* 881 * We do an RCU walk of the hash, see lockdep_free_key_range(). 882 */ 883 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 884 return NULL; 885 886 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 887 if (class->key == key) { 888 /* 889 * Huh! same key, different name? Did someone trample 890 * on some memory? We're most confused. 891 */ 892 WARN_ON_ONCE(class->name != lock->name && 893 lock->key != &__lockdep_no_validate__); 894 return class; 895 } 896 } 897 898 return NULL; 899 } 900 901 /* 902 * Static locks do not have their class-keys yet - for them the key is 903 * the lock object itself. If the lock is in the per cpu area, the 904 * canonical address of the lock (per cpu offset removed) is used. 905 */ 906 static bool assign_lock_key(struct lockdep_map *lock) 907 { 908 unsigned long can_addr, addr = (unsigned long)lock; 909 910 #ifdef __KERNEL__ 911 /* 912 * lockdep_free_key_range() assumes that struct lock_class_key 913 * objects do not overlap. Since we use the address of lock 914 * objects as class key for static objects, check whether the 915 * size of lock_class_key objects does not exceed the size of 916 * the smallest lock object. 917 */ 918 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 919 #endif 920 921 if (__is_kernel_percpu_address(addr, &can_addr)) 922 lock->key = (void *)can_addr; 923 else if (__is_module_percpu_address(addr, &can_addr)) 924 lock->key = (void *)can_addr; 925 else if (static_obj(lock)) 926 lock->key = (void *)lock; 927 else { 928 /* Debug-check: all keys must be persistent! */ 929 debug_locks_off(); 930 pr_err("INFO: trying to register non-static key.\n"); 931 pr_err("the code is fine but needs lockdep annotation.\n"); 932 pr_err("turning off the locking correctness validator.\n"); 933 dump_stack(); 934 return false; 935 } 936 937 return true; 938 } 939 940 #ifdef CONFIG_DEBUG_LOCKDEP 941 942 /* Check whether element @e occurs in list @h */ 943 static bool in_list(struct list_head *e, struct list_head *h) 944 { 945 struct list_head *f; 946 947 list_for_each(f, h) { 948 if (e == f) 949 return true; 950 } 951 952 return false; 953 } 954 955 /* 956 * Check whether entry @e occurs in any of the locks_after or locks_before 957 * lists. 958 */ 959 static bool in_any_class_list(struct list_head *e) 960 { 961 struct lock_class *class; 962 int i; 963 964 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 965 class = &lock_classes[i]; 966 if (in_list(e, &class->locks_after) || 967 in_list(e, &class->locks_before)) 968 return true; 969 } 970 return false; 971 } 972 973 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 974 { 975 struct lock_list *e; 976 977 list_for_each_entry(e, h, entry) { 978 if (e->links_to != c) { 979 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 980 c->name ? : "(?)", 981 (unsigned long)(e - list_entries), 982 e->links_to && e->links_to->name ? 983 e->links_to->name : "(?)", 984 e->class && e->class->name ? e->class->name : 985 "(?)"); 986 return false; 987 } 988 } 989 return true; 990 } 991 992 #ifdef CONFIG_PROVE_LOCKING 993 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 994 #endif 995 996 static bool check_lock_chain_key(struct lock_chain *chain) 997 { 998 #ifdef CONFIG_PROVE_LOCKING 999 u64 chain_key = INITIAL_CHAIN_KEY; 1000 int i; 1001 1002 for (i = chain->base; i < chain->base + chain->depth; i++) 1003 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1004 /* 1005 * The 'unsigned long long' casts avoid that a compiler warning 1006 * is reported when building tools/lib/lockdep. 1007 */ 1008 if (chain->chain_key != chain_key) { 1009 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1010 (unsigned long long)(chain - lock_chains), 1011 (unsigned long long)chain->chain_key, 1012 (unsigned long long)chain_key); 1013 return false; 1014 } 1015 #endif 1016 return true; 1017 } 1018 1019 static bool in_any_zapped_class_list(struct lock_class *class) 1020 { 1021 struct pending_free *pf; 1022 int i; 1023 1024 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1025 if (in_list(&class->lock_entry, &pf->zapped)) 1026 return true; 1027 } 1028 1029 return false; 1030 } 1031 1032 static bool __check_data_structures(void) 1033 { 1034 struct lock_class *class; 1035 struct lock_chain *chain; 1036 struct hlist_head *head; 1037 struct lock_list *e; 1038 int i; 1039 1040 /* Check whether all classes occur in a lock list. */ 1041 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1042 class = &lock_classes[i]; 1043 if (!in_list(&class->lock_entry, &all_lock_classes) && 1044 !in_list(&class->lock_entry, &free_lock_classes) && 1045 !in_any_zapped_class_list(class)) { 1046 printk(KERN_INFO "class %px/%s is not in any class list\n", 1047 class, class->name ? : "(?)"); 1048 return false; 1049 } 1050 } 1051 1052 /* Check whether all classes have valid lock lists. */ 1053 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1054 class = &lock_classes[i]; 1055 if (!class_lock_list_valid(class, &class->locks_before)) 1056 return false; 1057 if (!class_lock_list_valid(class, &class->locks_after)) 1058 return false; 1059 } 1060 1061 /* Check the chain_key of all lock chains. */ 1062 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1063 head = chainhash_table + i; 1064 hlist_for_each_entry_rcu(chain, head, entry) { 1065 if (!check_lock_chain_key(chain)) 1066 return false; 1067 } 1068 } 1069 1070 /* 1071 * Check whether all list entries that are in use occur in a class 1072 * lock list. 1073 */ 1074 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1075 e = list_entries + i; 1076 if (!in_any_class_list(&e->entry)) { 1077 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1078 (unsigned int)(e - list_entries), 1079 e->class->name ? : "(?)", 1080 e->links_to->name ? : "(?)"); 1081 return false; 1082 } 1083 } 1084 1085 /* 1086 * Check whether all list entries that are not in use do not occur in 1087 * a class lock list. 1088 */ 1089 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1090 e = list_entries + i; 1091 if (in_any_class_list(&e->entry)) { 1092 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1093 (unsigned int)(e - list_entries), 1094 e->class && e->class->name ? e->class->name : 1095 "(?)", 1096 e->links_to && e->links_to->name ? 1097 e->links_to->name : "(?)"); 1098 return false; 1099 } 1100 } 1101 1102 return true; 1103 } 1104 1105 int check_consistency = 0; 1106 module_param(check_consistency, int, 0644); 1107 1108 static void check_data_structures(void) 1109 { 1110 static bool once = false; 1111 1112 if (check_consistency && !once) { 1113 if (!__check_data_structures()) { 1114 once = true; 1115 WARN_ON(once); 1116 } 1117 } 1118 } 1119 1120 #else /* CONFIG_DEBUG_LOCKDEP */ 1121 1122 static inline void check_data_structures(void) { } 1123 1124 #endif /* CONFIG_DEBUG_LOCKDEP */ 1125 1126 static void init_chain_block_buckets(void); 1127 1128 /* 1129 * Initialize the lock_classes[] array elements, the free_lock_classes list 1130 * and also the delayed_free structure. 1131 */ 1132 static void init_data_structures_once(void) 1133 { 1134 static bool __read_mostly ds_initialized, rcu_head_initialized; 1135 int i; 1136 1137 if (likely(rcu_head_initialized)) 1138 return; 1139 1140 if (system_state >= SYSTEM_SCHEDULING) { 1141 init_rcu_head(&delayed_free.rcu_head); 1142 rcu_head_initialized = true; 1143 } 1144 1145 if (ds_initialized) 1146 return; 1147 1148 ds_initialized = true; 1149 1150 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1151 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1152 1153 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1154 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1155 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1156 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1157 } 1158 init_chain_block_buckets(); 1159 } 1160 1161 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1162 { 1163 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1164 1165 return lock_keys_hash + hash; 1166 } 1167 1168 /* Register a dynamically allocated key. */ 1169 void lockdep_register_key(struct lock_class_key *key) 1170 { 1171 struct hlist_head *hash_head; 1172 struct lock_class_key *k; 1173 unsigned long flags; 1174 1175 if (WARN_ON_ONCE(static_obj(key))) 1176 return; 1177 hash_head = keyhashentry(key); 1178 1179 raw_local_irq_save(flags); 1180 if (!graph_lock()) 1181 goto restore_irqs; 1182 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1183 if (WARN_ON_ONCE(k == key)) 1184 goto out_unlock; 1185 } 1186 hlist_add_head_rcu(&key->hash_entry, hash_head); 1187 out_unlock: 1188 graph_unlock(); 1189 restore_irqs: 1190 raw_local_irq_restore(flags); 1191 } 1192 EXPORT_SYMBOL_GPL(lockdep_register_key); 1193 1194 /* Check whether a key has been registered as a dynamic key. */ 1195 static bool is_dynamic_key(const struct lock_class_key *key) 1196 { 1197 struct hlist_head *hash_head; 1198 struct lock_class_key *k; 1199 bool found = false; 1200 1201 if (WARN_ON_ONCE(static_obj(key))) 1202 return false; 1203 1204 /* 1205 * If lock debugging is disabled lock_keys_hash[] may contain 1206 * pointers to memory that has already been freed. Avoid triggering 1207 * a use-after-free in that case by returning early. 1208 */ 1209 if (!debug_locks) 1210 return true; 1211 1212 hash_head = keyhashentry(key); 1213 1214 rcu_read_lock(); 1215 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1216 if (k == key) { 1217 found = true; 1218 break; 1219 } 1220 } 1221 rcu_read_unlock(); 1222 1223 return found; 1224 } 1225 1226 /* 1227 * Register a lock's class in the hash-table, if the class is not present 1228 * yet. Otherwise we look it up. We cache the result in the lock object 1229 * itself, so actual lookup of the hash should be once per lock object. 1230 */ 1231 static struct lock_class * 1232 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1233 { 1234 struct lockdep_subclass_key *key; 1235 struct hlist_head *hash_head; 1236 struct lock_class *class; 1237 1238 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1239 1240 class = look_up_lock_class(lock, subclass); 1241 if (likely(class)) 1242 goto out_set_class_cache; 1243 1244 if (!lock->key) { 1245 if (!assign_lock_key(lock)) 1246 return NULL; 1247 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1248 return NULL; 1249 } 1250 1251 key = lock->key->subkeys + subclass; 1252 hash_head = classhashentry(key); 1253 1254 if (!graph_lock()) { 1255 return NULL; 1256 } 1257 /* 1258 * We have to do the hash-walk again, to avoid races 1259 * with another CPU: 1260 */ 1261 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1262 if (class->key == key) 1263 goto out_unlock_set; 1264 } 1265 1266 init_data_structures_once(); 1267 1268 /* Allocate a new lock class and add it to the hash. */ 1269 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1270 lock_entry); 1271 if (!class) { 1272 if (!debug_locks_off_graph_unlock()) { 1273 return NULL; 1274 } 1275 1276 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1277 dump_stack(); 1278 return NULL; 1279 } 1280 nr_lock_classes++; 1281 __set_bit(class - lock_classes, lock_classes_in_use); 1282 debug_atomic_inc(nr_unused_locks); 1283 class->key = key; 1284 class->name = lock->name; 1285 class->subclass = subclass; 1286 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1287 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1288 class->name_version = count_matching_names(class); 1289 class->wait_type_inner = lock->wait_type_inner; 1290 class->wait_type_outer = lock->wait_type_outer; 1291 /* 1292 * We use RCU's safe list-add method to make 1293 * parallel walking of the hash-list safe: 1294 */ 1295 hlist_add_head_rcu(&class->hash_entry, hash_head); 1296 /* 1297 * Remove the class from the free list and add it to the global list 1298 * of classes. 1299 */ 1300 list_move_tail(&class->lock_entry, &all_lock_classes); 1301 1302 if (verbose(class)) { 1303 graph_unlock(); 1304 1305 printk("\nnew class %px: %s", class->key, class->name); 1306 if (class->name_version > 1) 1307 printk(KERN_CONT "#%d", class->name_version); 1308 printk(KERN_CONT "\n"); 1309 dump_stack(); 1310 1311 if (!graph_lock()) { 1312 return NULL; 1313 } 1314 } 1315 out_unlock_set: 1316 graph_unlock(); 1317 1318 out_set_class_cache: 1319 if (!subclass || force) 1320 lock->class_cache[0] = class; 1321 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1322 lock->class_cache[subclass] = class; 1323 1324 /* 1325 * Hash collision, did we smoke some? We found a class with a matching 1326 * hash but the subclass -- which is hashed in -- didn't match. 1327 */ 1328 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1329 return NULL; 1330 1331 return class; 1332 } 1333 1334 #ifdef CONFIG_PROVE_LOCKING 1335 /* 1336 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1337 * with NULL on failure) 1338 */ 1339 static struct lock_list *alloc_list_entry(void) 1340 { 1341 int idx = find_first_zero_bit(list_entries_in_use, 1342 ARRAY_SIZE(list_entries)); 1343 1344 if (idx >= ARRAY_SIZE(list_entries)) { 1345 if (!debug_locks_off_graph_unlock()) 1346 return NULL; 1347 1348 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1349 dump_stack(); 1350 return NULL; 1351 } 1352 nr_list_entries++; 1353 __set_bit(idx, list_entries_in_use); 1354 return list_entries + idx; 1355 } 1356 1357 /* 1358 * Add a new dependency to the head of the list: 1359 */ 1360 static int add_lock_to_list(struct lock_class *this, 1361 struct lock_class *links_to, struct list_head *head, 1362 unsigned long ip, u16 distance, u8 dep, 1363 const struct lock_trace *trace) 1364 { 1365 struct lock_list *entry; 1366 /* 1367 * Lock not present yet - get a new dependency struct and 1368 * add it to the list: 1369 */ 1370 entry = alloc_list_entry(); 1371 if (!entry) 1372 return 0; 1373 1374 entry->class = this; 1375 entry->links_to = links_to; 1376 entry->dep = dep; 1377 entry->distance = distance; 1378 entry->trace = trace; 1379 /* 1380 * Both allocation and removal are done under the graph lock; but 1381 * iteration is under RCU-sched; see look_up_lock_class() and 1382 * lockdep_free_key_range(). 1383 */ 1384 list_add_tail_rcu(&entry->entry, head); 1385 1386 return 1; 1387 } 1388 1389 /* 1390 * For good efficiency of modular, we use power of 2 1391 */ 1392 #define MAX_CIRCULAR_QUEUE_SIZE 4096UL 1393 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1394 1395 /* 1396 * The circular_queue and helpers are used to implement graph 1397 * breadth-first search (BFS) algorithm, by which we can determine 1398 * whether there is a path from a lock to another. In deadlock checks, 1399 * a path from the next lock to be acquired to a previous held lock 1400 * indicates that adding the <prev> -> <next> lock dependency will 1401 * produce a circle in the graph. Breadth-first search instead of 1402 * depth-first search is used in order to find the shortest (circular) 1403 * path. 1404 */ 1405 struct circular_queue { 1406 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1407 unsigned int front, rear; 1408 }; 1409 1410 static struct circular_queue lock_cq; 1411 1412 unsigned int max_bfs_queue_depth; 1413 1414 static unsigned int lockdep_dependency_gen_id; 1415 1416 static inline void __cq_init(struct circular_queue *cq) 1417 { 1418 cq->front = cq->rear = 0; 1419 lockdep_dependency_gen_id++; 1420 } 1421 1422 static inline int __cq_empty(struct circular_queue *cq) 1423 { 1424 return (cq->front == cq->rear); 1425 } 1426 1427 static inline int __cq_full(struct circular_queue *cq) 1428 { 1429 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1430 } 1431 1432 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1433 { 1434 if (__cq_full(cq)) 1435 return -1; 1436 1437 cq->element[cq->rear] = elem; 1438 cq->rear = (cq->rear + 1) & CQ_MASK; 1439 return 0; 1440 } 1441 1442 /* 1443 * Dequeue an element from the circular_queue, return a lock_list if 1444 * the queue is not empty, or NULL if otherwise. 1445 */ 1446 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1447 { 1448 struct lock_list * lock; 1449 1450 if (__cq_empty(cq)) 1451 return NULL; 1452 1453 lock = cq->element[cq->front]; 1454 cq->front = (cq->front + 1) & CQ_MASK; 1455 1456 return lock; 1457 } 1458 1459 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1460 { 1461 return (cq->rear - cq->front) & CQ_MASK; 1462 } 1463 1464 static inline void mark_lock_accessed(struct lock_list *lock) 1465 { 1466 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1467 } 1468 1469 static inline void visit_lock_entry(struct lock_list *lock, 1470 struct lock_list *parent) 1471 { 1472 lock->parent = parent; 1473 } 1474 1475 static inline unsigned long lock_accessed(struct lock_list *lock) 1476 { 1477 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1478 } 1479 1480 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1481 { 1482 return child->parent; 1483 } 1484 1485 static inline int get_lock_depth(struct lock_list *child) 1486 { 1487 int depth = 0; 1488 struct lock_list *parent; 1489 1490 while ((parent = get_lock_parent(child))) { 1491 child = parent; 1492 depth++; 1493 } 1494 return depth; 1495 } 1496 1497 /* 1498 * Return the forward or backward dependency list. 1499 * 1500 * @lock: the lock_list to get its class's dependency list 1501 * @offset: the offset to struct lock_class to determine whether it is 1502 * locks_after or locks_before 1503 */ 1504 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1505 { 1506 void *lock_class = lock->class; 1507 1508 return lock_class + offset; 1509 } 1510 /* 1511 * Return values of a bfs search: 1512 * 1513 * BFS_E* indicates an error 1514 * BFS_R* indicates a result (match or not) 1515 * 1516 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1517 * 1518 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1519 * 1520 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1521 * *@target_entry. 1522 * 1523 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1524 * _unchanged_. 1525 */ 1526 enum bfs_result { 1527 BFS_EINVALIDNODE = -2, 1528 BFS_EQUEUEFULL = -1, 1529 BFS_RMATCH = 0, 1530 BFS_RNOMATCH = 1, 1531 }; 1532 1533 /* 1534 * bfs_result < 0 means error 1535 */ 1536 static inline bool bfs_error(enum bfs_result res) 1537 { 1538 return res < 0; 1539 } 1540 1541 /* 1542 * DEP_*_BIT in lock_list::dep 1543 * 1544 * For dependency @prev -> @next: 1545 * 1546 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1547 * (->read == 2) 1548 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1549 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1550 * EN: @prev is exclusive locker and @next is non-recursive locker 1551 * 1552 * Note that we define the value of DEP_*_BITs so that: 1553 * bit0 is prev->read == 0 1554 * bit1 is next->read != 2 1555 */ 1556 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1557 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1558 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1559 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1560 1561 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1562 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1563 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1564 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1565 1566 static inline unsigned int 1567 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1568 { 1569 return (prev->read == 0) + ((next->read != 2) << 1); 1570 } 1571 1572 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1573 { 1574 return 1U << __calc_dep_bit(prev, next); 1575 } 1576 1577 /* 1578 * calculate the dep_bit for backwards edges. We care about whether @prev is 1579 * shared and whether @next is recursive. 1580 */ 1581 static inline unsigned int 1582 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1583 { 1584 return (next->read != 2) + ((prev->read == 0) << 1); 1585 } 1586 1587 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1588 { 1589 return 1U << __calc_dep_bitb(prev, next); 1590 } 1591 1592 /* 1593 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1594 * search. 1595 */ 1596 static inline void __bfs_init_root(struct lock_list *lock, 1597 struct lock_class *class) 1598 { 1599 lock->class = class; 1600 lock->parent = NULL; 1601 lock->only_xr = 0; 1602 } 1603 1604 /* 1605 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1606 * root for a BFS search. 1607 * 1608 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1609 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1610 * and -(S*)->. 1611 */ 1612 static inline void bfs_init_root(struct lock_list *lock, 1613 struct held_lock *hlock) 1614 { 1615 __bfs_init_root(lock, hlock_class(hlock)); 1616 lock->only_xr = (hlock->read == 2); 1617 } 1618 1619 /* 1620 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1621 * 1622 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1623 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1624 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1625 */ 1626 static inline void bfs_init_rootb(struct lock_list *lock, 1627 struct held_lock *hlock) 1628 { 1629 __bfs_init_root(lock, hlock_class(hlock)); 1630 lock->only_xr = (hlock->read != 0); 1631 } 1632 1633 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1634 { 1635 if (!lock || !lock->parent) 1636 return NULL; 1637 1638 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1639 &lock->entry, struct lock_list, entry); 1640 } 1641 1642 /* 1643 * Breadth-First Search to find a strong path in the dependency graph. 1644 * 1645 * @source_entry: the source of the path we are searching for. 1646 * @data: data used for the second parameter of @match function 1647 * @match: match function for the search 1648 * @target_entry: pointer to the target of a matched path 1649 * @offset: the offset to struct lock_class to determine whether it is 1650 * locks_after or locks_before 1651 * 1652 * We may have multiple edges (considering different kinds of dependencies, 1653 * e.g. ER and SN) between two nodes in the dependency graph. But 1654 * only the strong dependency path in the graph is relevant to deadlocks. A 1655 * strong dependency path is a dependency path that doesn't have two adjacent 1656 * dependencies as -(*R)-> -(S*)->, please see: 1657 * 1658 * Documentation/locking/lockdep-design.rst 1659 * 1660 * for more explanation of the definition of strong dependency paths 1661 * 1662 * In __bfs(), we only traverse in the strong dependency path: 1663 * 1664 * In lock_list::only_xr, we record whether the previous dependency only 1665 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1666 * filter out any -(S*)-> in the current dependency and after that, the 1667 * ->only_xr is set according to whether we only have -(*R)-> left. 1668 */ 1669 static enum bfs_result __bfs(struct lock_list *source_entry, 1670 void *data, 1671 bool (*match)(struct lock_list *entry, void *data), 1672 struct lock_list **target_entry, 1673 int offset) 1674 { 1675 struct circular_queue *cq = &lock_cq; 1676 struct lock_list *lock = NULL; 1677 struct lock_list *entry; 1678 struct list_head *head; 1679 unsigned int cq_depth; 1680 bool first; 1681 1682 lockdep_assert_locked(); 1683 1684 __cq_init(cq); 1685 __cq_enqueue(cq, source_entry); 1686 1687 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1688 if (!lock->class) 1689 return BFS_EINVALIDNODE; 1690 1691 /* 1692 * Step 1: check whether we already finish on this one. 1693 * 1694 * If we have visited all the dependencies from this @lock to 1695 * others (iow, if we have visited all lock_list entries in 1696 * @lock->class->locks_{after,before}) we skip, otherwise go 1697 * and visit all the dependencies in the list and mark this 1698 * list accessed. 1699 */ 1700 if (lock_accessed(lock)) 1701 continue; 1702 else 1703 mark_lock_accessed(lock); 1704 1705 /* 1706 * Step 2: check whether prev dependency and this form a strong 1707 * dependency path. 1708 */ 1709 if (lock->parent) { /* Parent exists, check prev dependency */ 1710 u8 dep = lock->dep; 1711 bool prev_only_xr = lock->parent->only_xr; 1712 1713 /* 1714 * Mask out all -(S*)-> if we only have *R in previous 1715 * step, because -(*R)-> -(S*)-> don't make up a strong 1716 * dependency. 1717 */ 1718 if (prev_only_xr) 1719 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1720 1721 /* If nothing left, we skip */ 1722 if (!dep) 1723 continue; 1724 1725 /* If there are only -(*R)-> left, set that for the next step */ 1726 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1727 } 1728 1729 /* 1730 * Step 3: we haven't visited this and there is a strong 1731 * dependency path to this, so check with @match. 1732 */ 1733 if (match(lock, data)) { 1734 *target_entry = lock; 1735 return BFS_RMATCH; 1736 } 1737 1738 /* 1739 * Step 4: if not match, expand the path by adding the 1740 * forward or backwards dependencis in the search 1741 * 1742 */ 1743 first = true; 1744 head = get_dep_list(lock, offset); 1745 list_for_each_entry_rcu(entry, head, entry) { 1746 visit_lock_entry(entry, lock); 1747 1748 /* 1749 * Note we only enqueue the first of the list into the 1750 * queue, because we can always find a sibling 1751 * dependency from one (see __bfs_next()), as a result 1752 * the space of queue is saved. 1753 */ 1754 if (!first) 1755 continue; 1756 1757 first = false; 1758 1759 if (__cq_enqueue(cq, entry)) 1760 return BFS_EQUEUEFULL; 1761 1762 cq_depth = __cq_get_elem_count(cq); 1763 if (max_bfs_queue_depth < cq_depth) 1764 max_bfs_queue_depth = cq_depth; 1765 } 1766 } 1767 1768 return BFS_RNOMATCH; 1769 } 1770 1771 static inline enum bfs_result 1772 __bfs_forwards(struct lock_list *src_entry, 1773 void *data, 1774 bool (*match)(struct lock_list *entry, void *data), 1775 struct lock_list **target_entry) 1776 { 1777 return __bfs(src_entry, data, match, target_entry, 1778 offsetof(struct lock_class, locks_after)); 1779 1780 } 1781 1782 static inline enum bfs_result 1783 __bfs_backwards(struct lock_list *src_entry, 1784 void *data, 1785 bool (*match)(struct lock_list *entry, void *data), 1786 struct lock_list **target_entry) 1787 { 1788 return __bfs(src_entry, data, match, target_entry, 1789 offsetof(struct lock_class, locks_before)); 1790 1791 } 1792 1793 static void print_lock_trace(const struct lock_trace *trace, 1794 unsigned int spaces) 1795 { 1796 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1797 } 1798 1799 /* 1800 * Print a dependency chain entry (this is only done when a deadlock 1801 * has been detected): 1802 */ 1803 static noinline void 1804 print_circular_bug_entry(struct lock_list *target, int depth) 1805 { 1806 if (debug_locks_silent) 1807 return; 1808 printk("\n-> #%u", depth); 1809 print_lock_name(target->class); 1810 printk(KERN_CONT ":\n"); 1811 print_lock_trace(target->trace, 6); 1812 } 1813 1814 static void 1815 print_circular_lock_scenario(struct held_lock *src, 1816 struct held_lock *tgt, 1817 struct lock_list *prt) 1818 { 1819 struct lock_class *source = hlock_class(src); 1820 struct lock_class *target = hlock_class(tgt); 1821 struct lock_class *parent = prt->class; 1822 1823 /* 1824 * A direct locking problem where unsafe_class lock is taken 1825 * directly by safe_class lock, then all we need to show 1826 * is the deadlock scenario, as it is obvious that the 1827 * unsafe lock is taken under the safe lock. 1828 * 1829 * But if there is a chain instead, where the safe lock takes 1830 * an intermediate lock (middle_class) where this lock is 1831 * not the same as the safe lock, then the lock chain is 1832 * used to describe the problem. Otherwise we would need 1833 * to show a different CPU case for each link in the chain 1834 * from the safe_class lock to the unsafe_class lock. 1835 */ 1836 if (parent != source) { 1837 printk("Chain exists of:\n "); 1838 __print_lock_name(source); 1839 printk(KERN_CONT " --> "); 1840 __print_lock_name(parent); 1841 printk(KERN_CONT " --> "); 1842 __print_lock_name(target); 1843 printk(KERN_CONT "\n\n"); 1844 } 1845 1846 printk(" Possible unsafe locking scenario:\n\n"); 1847 printk(" CPU0 CPU1\n"); 1848 printk(" ---- ----\n"); 1849 printk(" lock("); 1850 __print_lock_name(target); 1851 printk(KERN_CONT ");\n"); 1852 printk(" lock("); 1853 __print_lock_name(parent); 1854 printk(KERN_CONT ");\n"); 1855 printk(" lock("); 1856 __print_lock_name(target); 1857 printk(KERN_CONT ");\n"); 1858 printk(" lock("); 1859 __print_lock_name(source); 1860 printk(KERN_CONT ");\n"); 1861 printk("\n *** DEADLOCK ***\n\n"); 1862 } 1863 1864 /* 1865 * When a circular dependency is detected, print the 1866 * header first: 1867 */ 1868 static noinline void 1869 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1870 struct held_lock *check_src, 1871 struct held_lock *check_tgt) 1872 { 1873 struct task_struct *curr = current; 1874 1875 if (debug_locks_silent) 1876 return; 1877 1878 pr_warn("\n"); 1879 pr_warn("======================================================\n"); 1880 pr_warn("WARNING: possible circular locking dependency detected\n"); 1881 print_kernel_ident(); 1882 pr_warn("------------------------------------------------------\n"); 1883 pr_warn("%s/%d is trying to acquire lock:\n", 1884 curr->comm, task_pid_nr(curr)); 1885 print_lock(check_src); 1886 1887 pr_warn("\nbut task is already holding lock:\n"); 1888 1889 print_lock(check_tgt); 1890 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1891 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1892 1893 print_circular_bug_entry(entry, depth); 1894 } 1895 1896 /* 1897 * We are about to add A -> B into the dependency graph, and in __bfs() a 1898 * strong dependency path A -> .. -> B is found: hlock_class equals 1899 * entry->class. 1900 * 1901 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1902 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1903 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1904 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1905 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1906 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1907 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is reduntant. 1908 * 1909 * We need to make sure both the start and the end of A -> .. -> B is not 1910 * weaker than A -> B. For the start part, please see the comment in 1911 * check_redundant(). For the end part, we need: 1912 * 1913 * Either 1914 * 1915 * a) A -> B is -(*R)-> (everything is not weaker than that) 1916 * 1917 * or 1918 * 1919 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1920 * 1921 */ 1922 static inline bool hlock_equal(struct lock_list *entry, void *data) 1923 { 1924 struct held_lock *hlock = (struct held_lock *)data; 1925 1926 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1927 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1928 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1929 } 1930 1931 /* 1932 * We are about to add B -> A into the dependency graph, and in __bfs() a 1933 * strong dependency path A -> .. -> B is found: hlock_class equals 1934 * entry->class. 1935 * 1936 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1937 * dependency cycle, that means: 1938 * 1939 * Either 1940 * 1941 * a) B -> A is -(E*)-> 1942 * 1943 * or 1944 * 1945 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 1946 * 1947 * as then we don't have -(*R)-> -(S*)-> in the cycle. 1948 */ 1949 static inline bool hlock_conflict(struct lock_list *entry, void *data) 1950 { 1951 struct held_lock *hlock = (struct held_lock *)data; 1952 1953 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1954 (hlock->read == 0 || /* B -> A is -(E*)-> */ 1955 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1956 } 1957 1958 static noinline void print_circular_bug(struct lock_list *this, 1959 struct lock_list *target, 1960 struct held_lock *check_src, 1961 struct held_lock *check_tgt) 1962 { 1963 struct task_struct *curr = current; 1964 struct lock_list *parent; 1965 struct lock_list *first_parent; 1966 int depth; 1967 1968 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1969 return; 1970 1971 this->trace = save_trace(); 1972 if (!this->trace) 1973 return; 1974 1975 depth = get_lock_depth(target); 1976 1977 print_circular_bug_header(target, depth, check_src, check_tgt); 1978 1979 parent = get_lock_parent(target); 1980 first_parent = parent; 1981 1982 while (parent) { 1983 print_circular_bug_entry(parent, --depth); 1984 parent = get_lock_parent(parent); 1985 } 1986 1987 printk("\nother info that might help us debug this:\n\n"); 1988 print_circular_lock_scenario(check_src, check_tgt, 1989 first_parent); 1990 1991 lockdep_print_held_locks(curr); 1992 1993 printk("\nstack backtrace:\n"); 1994 dump_stack(); 1995 } 1996 1997 static noinline void print_bfs_bug(int ret) 1998 { 1999 if (!debug_locks_off_graph_unlock()) 2000 return; 2001 2002 /* 2003 * Breadth-first-search failed, graph got corrupted? 2004 */ 2005 WARN(1, "lockdep bfs error:%d\n", ret); 2006 } 2007 2008 static bool noop_count(struct lock_list *entry, void *data) 2009 { 2010 (*(unsigned long *)data)++; 2011 return false; 2012 } 2013 2014 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2015 { 2016 unsigned long count = 0; 2017 struct lock_list *target_entry; 2018 2019 __bfs_forwards(this, (void *)&count, noop_count, &target_entry); 2020 2021 return count; 2022 } 2023 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2024 { 2025 unsigned long ret, flags; 2026 struct lock_list this; 2027 2028 __bfs_init_root(&this, class); 2029 2030 raw_local_irq_save(flags); 2031 lockdep_lock(); 2032 ret = __lockdep_count_forward_deps(&this); 2033 lockdep_unlock(); 2034 raw_local_irq_restore(flags); 2035 2036 return ret; 2037 } 2038 2039 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2040 { 2041 unsigned long count = 0; 2042 struct lock_list *target_entry; 2043 2044 __bfs_backwards(this, (void *)&count, noop_count, &target_entry); 2045 2046 return count; 2047 } 2048 2049 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2050 { 2051 unsigned long ret, flags; 2052 struct lock_list this; 2053 2054 __bfs_init_root(&this, class); 2055 2056 raw_local_irq_save(flags); 2057 lockdep_lock(); 2058 ret = __lockdep_count_backward_deps(&this); 2059 lockdep_unlock(); 2060 raw_local_irq_restore(flags); 2061 2062 return ret; 2063 } 2064 2065 /* 2066 * Check that the dependency graph starting at <src> can lead to 2067 * <target> or not. 2068 */ 2069 static noinline enum bfs_result 2070 check_path(struct held_lock *target, struct lock_list *src_entry, 2071 bool (*match)(struct lock_list *entry, void *data), 2072 struct lock_list **target_entry) 2073 { 2074 enum bfs_result ret; 2075 2076 ret = __bfs_forwards(src_entry, target, match, target_entry); 2077 2078 if (unlikely(bfs_error(ret))) 2079 print_bfs_bug(ret); 2080 2081 return ret; 2082 } 2083 2084 /* 2085 * Prove that the dependency graph starting at <src> can not 2086 * lead to <target>. If it can, there is a circle when adding 2087 * <target> -> <src> dependency. 2088 * 2089 * Print an error and return BFS_RMATCH if it does. 2090 */ 2091 static noinline enum bfs_result 2092 check_noncircular(struct held_lock *src, struct held_lock *target, 2093 struct lock_trace **const trace) 2094 { 2095 enum bfs_result ret; 2096 struct lock_list *target_entry; 2097 struct lock_list src_entry; 2098 2099 bfs_init_root(&src_entry, src); 2100 2101 debug_atomic_inc(nr_cyclic_checks); 2102 2103 ret = check_path(target, &src_entry, hlock_conflict, &target_entry); 2104 2105 if (unlikely(ret == BFS_RMATCH)) { 2106 if (!*trace) { 2107 /* 2108 * If save_trace fails here, the printing might 2109 * trigger a WARN but because of the !nr_entries it 2110 * should not do bad things. 2111 */ 2112 *trace = save_trace(); 2113 } 2114 2115 print_circular_bug(&src_entry, target_entry, src, target); 2116 } 2117 2118 return ret; 2119 } 2120 2121 #ifdef CONFIG_LOCKDEP_SMALL 2122 /* 2123 * Check that the dependency graph starting at <src> can lead to 2124 * <target> or not. If it can, <src> -> <target> dependency is already 2125 * in the graph. 2126 * 2127 * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if 2128 * any error appears in the bfs search. 2129 */ 2130 static noinline enum bfs_result 2131 check_redundant(struct held_lock *src, struct held_lock *target) 2132 { 2133 enum bfs_result ret; 2134 struct lock_list *target_entry; 2135 struct lock_list src_entry; 2136 2137 bfs_init_root(&src_entry, src); 2138 /* 2139 * Special setup for check_redundant(). 2140 * 2141 * To report redundant, we need to find a strong dependency path that 2142 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2143 * we need to let __bfs() only search for a path starting at a -(E*)->, 2144 * we achieve this by setting the initial node's ->only_xr to true in 2145 * that case. And if <prev> is S, we set initial ->only_xr to false 2146 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2147 */ 2148 src_entry.only_xr = src->read == 0; 2149 2150 debug_atomic_inc(nr_redundant_checks); 2151 2152 ret = check_path(target, &src_entry, hlock_equal, &target_entry); 2153 2154 if (ret == BFS_RMATCH) 2155 debug_atomic_inc(nr_redundant); 2156 2157 return ret; 2158 } 2159 #endif 2160 2161 #ifdef CONFIG_TRACE_IRQFLAGS 2162 2163 /* 2164 * Forwards and backwards subgraph searching, for the purposes of 2165 * proving that two subgraphs can be connected by a new dependency 2166 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2167 * 2168 * A irq safe->unsafe deadlock happens with the following conditions: 2169 * 2170 * 1) We have a strong dependency path A -> ... -> B 2171 * 2172 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2173 * irq can create a new dependency B -> A (consider the case that a holder 2174 * of B gets interrupted by an irq whose handler will try to acquire A). 2175 * 2176 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2177 * strong circle: 2178 * 2179 * For the usage bits of B: 2180 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2181 * ENABLED_IRQ usage suffices. 2182 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2183 * ENABLED_IRQ_*_READ usage suffices. 2184 * 2185 * For the usage bits of A: 2186 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2187 * USED_IN_IRQ usage suffices. 2188 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2189 * USED_IN_IRQ_*_READ usage suffices. 2190 */ 2191 2192 /* 2193 * There is a strong dependency path in the dependency graph: A -> B, and now 2194 * we need to decide which usage bit of A should be accumulated to detect 2195 * safe->unsafe bugs. 2196 * 2197 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2198 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2199 * 2200 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2201 * path, any usage of A should be considered. Otherwise, we should only 2202 * consider _READ usage. 2203 */ 2204 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2205 { 2206 if (!entry->only_xr) 2207 *(unsigned long *)mask |= entry->class->usage_mask; 2208 else /* Mask out _READ usage bits */ 2209 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2210 2211 return false; 2212 } 2213 2214 /* 2215 * There is a strong dependency path in the dependency graph: A -> B, and now 2216 * we need to decide which usage bit of B conflicts with the usage bits of A, 2217 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2218 * 2219 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2220 * path, any usage of B should be considered. Otherwise, we should only 2221 * consider _READ usage. 2222 */ 2223 static inline bool usage_match(struct lock_list *entry, void *mask) 2224 { 2225 if (!entry->only_xr) 2226 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2227 else /* Mask out _READ usage bits */ 2228 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2229 } 2230 2231 /* 2232 * Find a node in the forwards-direction dependency sub-graph starting 2233 * at @root->class that matches @bit. 2234 * 2235 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2236 * into *@target_entry. 2237 */ 2238 static enum bfs_result 2239 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2240 struct lock_list **target_entry) 2241 { 2242 enum bfs_result result; 2243 2244 debug_atomic_inc(nr_find_usage_forwards_checks); 2245 2246 result = __bfs_forwards(root, &usage_mask, usage_match, target_entry); 2247 2248 return result; 2249 } 2250 2251 /* 2252 * Find a node in the backwards-direction dependency sub-graph starting 2253 * at @root->class that matches @bit. 2254 */ 2255 static enum bfs_result 2256 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2257 struct lock_list **target_entry) 2258 { 2259 enum bfs_result result; 2260 2261 debug_atomic_inc(nr_find_usage_backwards_checks); 2262 2263 result = __bfs_backwards(root, &usage_mask, usage_match, target_entry); 2264 2265 return result; 2266 } 2267 2268 static void print_lock_class_header(struct lock_class *class, int depth) 2269 { 2270 int bit; 2271 2272 printk("%*s->", depth, ""); 2273 print_lock_name(class); 2274 #ifdef CONFIG_DEBUG_LOCKDEP 2275 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2276 #endif 2277 printk(KERN_CONT " {\n"); 2278 2279 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2280 if (class->usage_mask & (1 << bit)) { 2281 int len = depth; 2282 2283 len += printk("%*s %s", depth, "", usage_str[bit]); 2284 len += printk(KERN_CONT " at:\n"); 2285 print_lock_trace(class->usage_traces[bit], len); 2286 } 2287 } 2288 printk("%*s }\n", depth, ""); 2289 2290 printk("%*s ... key at: [<%px>] %pS\n", 2291 depth, "", class->key, class->key); 2292 } 2293 2294 /* 2295 * printk the shortest lock dependencies from @start to @end in reverse order: 2296 */ 2297 static void __used 2298 print_shortest_lock_dependencies(struct lock_list *leaf, 2299 struct lock_list *root) 2300 { 2301 struct lock_list *entry = leaf; 2302 int depth; 2303 2304 /*compute depth from generated tree by BFS*/ 2305 depth = get_lock_depth(leaf); 2306 2307 do { 2308 print_lock_class_header(entry->class, depth); 2309 printk("%*s ... acquired at:\n", depth, ""); 2310 print_lock_trace(entry->trace, 2); 2311 printk("\n"); 2312 2313 if (depth == 0 && (entry != root)) { 2314 printk("lockdep:%s bad path found in chain graph\n", __func__); 2315 break; 2316 } 2317 2318 entry = get_lock_parent(entry); 2319 depth--; 2320 } while (entry && (depth >= 0)); 2321 } 2322 2323 static void 2324 print_irq_lock_scenario(struct lock_list *safe_entry, 2325 struct lock_list *unsafe_entry, 2326 struct lock_class *prev_class, 2327 struct lock_class *next_class) 2328 { 2329 struct lock_class *safe_class = safe_entry->class; 2330 struct lock_class *unsafe_class = unsafe_entry->class; 2331 struct lock_class *middle_class = prev_class; 2332 2333 if (middle_class == safe_class) 2334 middle_class = next_class; 2335 2336 /* 2337 * A direct locking problem where unsafe_class lock is taken 2338 * directly by safe_class lock, then all we need to show 2339 * is the deadlock scenario, as it is obvious that the 2340 * unsafe lock is taken under the safe lock. 2341 * 2342 * But if there is a chain instead, where the safe lock takes 2343 * an intermediate lock (middle_class) where this lock is 2344 * not the same as the safe lock, then the lock chain is 2345 * used to describe the problem. Otherwise we would need 2346 * to show a different CPU case for each link in the chain 2347 * from the safe_class lock to the unsafe_class lock. 2348 */ 2349 if (middle_class != unsafe_class) { 2350 printk("Chain exists of:\n "); 2351 __print_lock_name(safe_class); 2352 printk(KERN_CONT " --> "); 2353 __print_lock_name(middle_class); 2354 printk(KERN_CONT " --> "); 2355 __print_lock_name(unsafe_class); 2356 printk(KERN_CONT "\n\n"); 2357 } 2358 2359 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2360 printk(" CPU0 CPU1\n"); 2361 printk(" ---- ----\n"); 2362 printk(" lock("); 2363 __print_lock_name(unsafe_class); 2364 printk(KERN_CONT ");\n"); 2365 printk(" local_irq_disable();\n"); 2366 printk(" lock("); 2367 __print_lock_name(safe_class); 2368 printk(KERN_CONT ");\n"); 2369 printk(" lock("); 2370 __print_lock_name(middle_class); 2371 printk(KERN_CONT ");\n"); 2372 printk(" <Interrupt>\n"); 2373 printk(" lock("); 2374 __print_lock_name(safe_class); 2375 printk(KERN_CONT ");\n"); 2376 printk("\n *** DEADLOCK ***\n\n"); 2377 } 2378 2379 static void 2380 print_bad_irq_dependency(struct task_struct *curr, 2381 struct lock_list *prev_root, 2382 struct lock_list *next_root, 2383 struct lock_list *backwards_entry, 2384 struct lock_list *forwards_entry, 2385 struct held_lock *prev, 2386 struct held_lock *next, 2387 enum lock_usage_bit bit1, 2388 enum lock_usage_bit bit2, 2389 const char *irqclass) 2390 { 2391 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2392 return; 2393 2394 pr_warn("\n"); 2395 pr_warn("=====================================================\n"); 2396 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2397 irqclass, irqclass); 2398 print_kernel_ident(); 2399 pr_warn("-----------------------------------------------------\n"); 2400 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2401 curr->comm, task_pid_nr(curr), 2402 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2403 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2404 lockdep_hardirqs_enabled(), 2405 curr->softirqs_enabled); 2406 print_lock(next); 2407 2408 pr_warn("\nand this task is already holding:\n"); 2409 print_lock(prev); 2410 pr_warn("which would create a new lock dependency:\n"); 2411 print_lock_name(hlock_class(prev)); 2412 pr_cont(" ->"); 2413 print_lock_name(hlock_class(next)); 2414 pr_cont("\n"); 2415 2416 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2417 irqclass); 2418 print_lock_name(backwards_entry->class); 2419 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2420 2421 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2422 2423 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2424 print_lock_name(forwards_entry->class); 2425 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2426 pr_warn("..."); 2427 2428 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2429 2430 pr_warn("\nother info that might help us debug this:\n\n"); 2431 print_irq_lock_scenario(backwards_entry, forwards_entry, 2432 hlock_class(prev), hlock_class(next)); 2433 2434 lockdep_print_held_locks(curr); 2435 2436 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2437 prev_root->trace = save_trace(); 2438 if (!prev_root->trace) 2439 return; 2440 print_shortest_lock_dependencies(backwards_entry, prev_root); 2441 2442 pr_warn("\nthe dependencies between the lock to be acquired"); 2443 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2444 next_root->trace = save_trace(); 2445 if (!next_root->trace) 2446 return; 2447 print_shortest_lock_dependencies(forwards_entry, next_root); 2448 2449 pr_warn("\nstack backtrace:\n"); 2450 dump_stack(); 2451 } 2452 2453 static const char *state_names[] = { 2454 #define LOCKDEP_STATE(__STATE) \ 2455 __stringify(__STATE), 2456 #include "lockdep_states.h" 2457 #undef LOCKDEP_STATE 2458 }; 2459 2460 static const char *state_rnames[] = { 2461 #define LOCKDEP_STATE(__STATE) \ 2462 __stringify(__STATE)"-READ", 2463 #include "lockdep_states.h" 2464 #undef LOCKDEP_STATE 2465 }; 2466 2467 static inline const char *state_name(enum lock_usage_bit bit) 2468 { 2469 if (bit & LOCK_USAGE_READ_MASK) 2470 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2471 else 2472 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2473 } 2474 2475 /* 2476 * The bit number is encoded like: 2477 * 2478 * bit0: 0 exclusive, 1 read lock 2479 * bit1: 0 used in irq, 1 irq enabled 2480 * bit2-n: state 2481 */ 2482 static int exclusive_bit(int new_bit) 2483 { 2484 int state = new_bit & LOCK_USAGE_STATE_MASK; 2485 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2486 2487 /* 2488 * keep state, bit flip the direction and strip read. 2489 */ 2490 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2491 } 2492 2493 /* 2494 * Observe that when given a bitmask where each bitnr is encoded as above, a 2495 * right shift of the mask transforms the individual bitnrs as -1 and 2496 * conversely, a left shift transforms into +1 for the individual bitnrs. 2497 * 2498 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2499 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2500 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2501 * 2502 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2503 * 2504 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2505 * all bits set) and recompose with bitnr1 flipped. 2506 */ 2507 static unsigned long invert_dir_mask(unsigned long mask) 2508 { 2509 unsigned long excl = 0; 2510 2511 /* Invert dir */ 2512 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2513 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2514 2515 return excl; 2516 } 2517 2518 /* 2519 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2520 * usage may cause deadlock too, for example: 2521 * 2522 * P1 P2 2523 * <irq disabled> 2524 * write_lock(l1); <irq enabled> 2525 * read_lock(l2); 2526 * write_lock(l2); 2527 * <in irq> 2528 * read_lock(l1); 2529 * 2530 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2531 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2532 * deadlock. 2533 * 2534 * In fact, all of the following cases may cause deadlocks: 2535 * 2536 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2537 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2538 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2539 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2540 * 2541 * As a result, to calculate the "exclusive mask", first we invert the 2542 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2543 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2544 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2545 */ 2546 static unsigned long exclusive_mask(unsigned long mask) 2547 { 2548 unsigned long excl = invert_dir_mask(mask); 2549 2550 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2551 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2552 2553 return excl; 2554 } 2555 2556 /* 2557 * Retrieve the _possible_ original mask to which @mask is 2558 * exclusive. Ie: this is the opposite of exclusive_mask(). 2559 * Note that 2 possible original bits can match an exclusive 2560 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2561 * cleared. So both are returned for each exclusive bit. 2562 */ 2563 static unsigned long original_mask(unsigned long mask) 2564 { 2565 unsigned long excl = invert_dir_mask(mask); 2566 2567 /* Include read in existing usages */ 2568 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2569 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2570 2571 return excl; 2572 } 2573 2574 /* 2575 * Find the first pair of bit match between an original 2576 * usage mask and an exclusive usage mask. 2577 */ 2578 static int find_exclusive_match(unsigned long mask, 2579 unsigned long excl_mask, 2580 enum lock_usage_bit *bitp, 2581 enum lock_usage_bit *excl_bitp) 2582 { 2583 int bit, excl, excl_read; 2584 2585 for_each_set_bit(bit, &mask, LOCK_USED) { 2586 /* 2587 * exclusive_bit() strips the read bit, however, 2588 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2589 * to search excl | LOCK_USAGE_READ_MASK as well. 2590 */ 2591 excl = exclusive_bit(bit); 2592 excl_read = excl | LOCK_USAGE_READ_MASK; 2593 if (excl_mask & lock_flag(excl)) { 2594 *bitp = bit; 2595 *excl_bitp = excl; 2596 return 0; 2597 } else if (excl_mask & lock_flag(excl_read)) { 2598 *bitp = bit; 2599 *excl_bitp = excl_read; 2600 return 0; 2601 } 2602 } 2603 return -1; 2604 } 2605 2606 /* 2607 * Prove that the new dependency does not connect a hardirq-safe(-read) 2608 * lock with a hardirq-unsafe lock - to achieve this we search 2609 * the backwards-subgraph starting at <prev>, and the 2610 * forwards-subgraph starting at <next>: 2611 */ 2612 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2613 struct held_lock *next) 2614 { 2615 unsigned long usage_mask = 0, forward_mask, backward_mask; 2616 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2617 struct lock_list *target_entry1; 2618 struct lock_list *target_entry; 2619 struct lock_list this, that; 2620 enum bfs_result ret; 2621 2622 /* 2623 * Step 1: gather all hard/soft IRQs usages backward in an 2624 * accumulated usage mask. 2625 */ 2626 bfs_init_rootb(&this, prev); 2627 2628 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL); 2629 if (bfs_error(ret)) { 2630 print_bfs_bug(ret); 2631 return 0; 2632 } 2633 2634 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2635 if (!usage_mask) 2636 return 1; 2637 2638 /* 2639 * Step 2: find exclusive uses forward that match the previous 2640 * backward accumulated mask. 2641 */ 2642 forward_mask = exclusive_mask(usage_mask); 2643 2644 bfs_init_root(&that, next); 2645 2646 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2647 if (bfs_error(ret)) { 2648 print_bfs_bug(ret); 2649 return 0; 2650 } 2651 if (ret == BFS_RNOMATCH) 2652 return 1; 2653 2654 /* 2655 * Step 3: we found a bad match! Now retrieve a lock from the backward 2656 * list whose usage mask matches the exclusive usage mask from the 2657 * lock found on the forward list. 2658 */ 2659 backward_mask = original_mask(target_entry1->class->usage_mask); 2660 2661 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2662 if (bfs_error(ret)) { 2663 print_bfs_bug(ret); 2664 return 0; 2665 } 2666 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2667 return 1; 2668 2669 /* 2670 * Step 4: narrow down to a pair of incompatible usage bits 2671 * and report it. 2672 */ 2673 ret = find_exclusive_match(target_entry->class->usage_mask, 2674 target_entry1->class->usage_mask, 2675 &backward_bit, &forward_bit); 2676 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2677 return 1; 2678 2679 print_bad_irq_dependency(curr, &this, &that, 2680 target_entry, target_entry1, 2681 prev, next, 2682 backward_bit, forward_bit, 2683 state_name(backward_bit)); 2684 2685 return 0; 2686 } 2687 2688 #else 2689 2690 static inline int check_irq_usage(struct task_struct *curr, 2691 struct held_lock *prev, struct held_lock *next) 2692 { 2693 return 1; 2694 } 2695 #endif /* CONFIG_TRACE_IRQFLAGS */ 2696 2697 static void inc_chains(int irq_context) 2698 { 2699 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2700 nr_hardirq_chains++; 2701 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2702 nr_softirq_chains++; 2703 else 2704 nr_process_chains++; 2705 } 2706 2707 static void dec_chains(int irq_context) 2708 { 2709 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2710 nr_hardirq_chains--; 2711 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2712 nr_softirq_chains--; 2713 else 2714 nr_process_chains--; 2715 } 2716 2717 static void 2718 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2719 { 2720 struct lock_class *next = hlock_class(nxt); 2721 struct lock_class *prev = hlock_class(prv); 2722 2723 printk(" Possible unsafe locking scenario:\n\n"); 2724 printk(" CPU0\n"); 2725 printk(" ----\n"); 2726 printk(" lock("); 2727 __print_lock_name(prev); 2728 printk(KERN_CONT ");\n"); 2729 printk(" lock("); 2730 __print_lock_name(next); 2731 printk(KERN_CONT ");\n"); 2732 printk("\n *** DEADLOCK ***\n\n"); 2733 printk(" May be due to missing lock nesting notation\n\n"); 2734 } 2735 2736 static void 2737 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2738 struct held_lock *next) 2739 { 2740 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2741 return; 2742 2743 pr_warn("\n"); 2744 pr_warn("============================================\n"); 2745 pr_warn("WARNING: possible recursive locking detected\n"); 2746 print_kernel_ident(); 2747 pr_warn("--------------------------------------------\n"); 2748 pr_warn("%s/%d is trying to acquire lock:\n", 2749 curr->comm, task_pid_nr(curr)); 2750 print_lock(next); 2751 pr_warn("\nbut task is already holding lock:\n"); 2752 print_lock(prev); 2753 2754 pr_warn("\nother info that might help us debug this:\n"); 2755 print_deadlock_scenario(next, prev); 2756 lockdep_print_held_locks(curr); 2757 2758 pr_warn("\nstack backtrace:\n"); 2759 dump_stack(); 2760 } 2761 2762 /* 2763 * Check whether we are holding such a class already. 2764 * 2765 * (Note that this has to be done separately, because the graph cannot 2766 * detect such classes of deadlocks.) 2767 * 2768 * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read 2769 */ 2770 static int 2771 check_deadlock(struct task_struct *curr, struct held_lock *next) 2772 { 2773 struct held_lock *prev; 2774 struct held_lock *nest = NULL; 2775 int i; 2776 2777 for (i = 0; i < curr->lockdep_depth; i++) { 2778 prev = curr->held_locks + i; 2779 2780 if (prev->instance == next->nest_lock) 2781 nest = prev; 2782 2783 if (hlock_class(prev) != hlock_class(next)) 2784 continue; 2785 2786 /* 2787 * Allow read-after-read recursion of the same 2788 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2789 */ 2790 if ((next->read == 2) && prev->read) 2791 return 2; 2792 2793 /* 2794 * We're holding the nest_lock, which serializes this lock's 2795 * nesting behaviour. 2796 */ 2797 if (nest) 2798 return 2; 2799 2800 print_deadlock_bug(curr, prev, next); 2801 return 0; 2802 } 2803 return 1; 2804 } 2805 2806 /* 2807 * There was a chain-cache miss, and we are about to add a new dependency 2808 * to a previous lock. We validate the following rules: 2809 * 2810 * - would the adding of the <prev> -> <next> dependency create a 2811 * circular dependency in the graph? [== circular deadlock] 2812 * 2813 * - does the new prev->next dependency connect any hardirq-safe lock 2814 * (in the full backwards-subgraph starting at <prev>) with any 2815 * hardirq-unsafe lock (in the full forwards-subgraph starting at 2816 * <next>)? [== illegal lock inversion with hardirq contexts] 2817 * 2818 * - does the new prev->next dependency connect any softirq-safe lock 2819 * (in the full backwards-subgraph starting at <prev>) with any 2820 * softirq-unsafe lock (in the full forwards-subgraph starting at 2821 * <next>)? [== illegal lock inversion with softirq contexts] 2822 * 2823 * any of these scenarios could lead to a deadlock. 2824 * 2825 * Then if all the validations pass, we add the forwards and backwards 2826 * dependency. 2827 */ 2828 static int 2829 check_prev_add(struct task_struct *curr, struct held_lock *prev, 2830 struct held_lock *next, u16 distance, 2831 struct lock_trace **const trace) 2832 { 2833 struct lock_list *entry; 2834 enum bfs_result ret; 2835 2836 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 2837 /* 2838 * The warning statements below may trigger a use-after-free 2839 * of the class name. It is better to trigger a use-after free 2840 * and to have the class name most of the time instead of not 2841 * having the class name available. 2842 */ 2843 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 2844 "Detected use-after-free of lock class %px/%s\n", 2845 hlock_class(prev), 2846 hlock_class(prev)->name); 2847 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 2848 "Detected use-after-free of lock class %px/%s\n", 2849 hlock_class(next), 2850 hlock_class(next)->name); 2851 return 2; 2852 } 2853 2854 /* 2855 * Prove that the new <prev> -> <next> dependency would not 2856 * create a circular dependency in the graph. (We do this by 2857 * a breadth-first search into the graph starting at <next>, 2858 * and check whether we can reach <prev>.) 2859 * 2860 * The search is limited by the size of the circular queue (i.e., 2861 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 2862 * in the graph whose neighbours are to be checked. 2863 */ 2864 ret = check_noncircular(next, prev, trace); 2865 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 2866 return 0; 2867 2868 if (!check_irq_usage(curr, prev, next)) 2869 return 0; 2870 2871 /* 2872 * Is the <prev> -> <next> dependency already present? 2873 * 2874 * (this may occur even though this is a new chain: consider 2875 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 2876 * chains - the second one will be new, but L1 already has 2877 * L2 added to its dependency list, due to the first chain.) 2878 */ 2879 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 2880 if (entry->class == hlock_class(next)) { 2881 if (distance == 1) 2882 entry->distance = 1; 2883 entry->dep |= calc_dep(prev, next); 2884 2885 /* 2886 * Also, update the reverse dependency in @next's 2887 * ->locks_before list. 2888 * 2889 * Here we reuse @entry as the cursor, which is fine 2890 * because we won't go to the next iteration of the 2891 * outer loop: 2892 * 2893 * For normal cases, we return in the inner loop. 2894 * 2895 * If we fail to return, we have inconsistency, i.e. 2896 * <prev>::locks_after contains <next> while 2897 * <next>::locks_before doesn't contain <prev>. In 2898 * that case, we return after the inner and indicate 2899 * something is wrong. 2900 */ 2901 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 2902 if (entry->class == hlock_class(prev)) { 2903 if (distance == 1) 2904 entry->distance = 1; 2905 entry->dep |= calc_depb(prev, next); 2906 return 1; 2907 } 2908 } 2909 2910 /* <prev> is not found in <next>::locks_before */ 2911 return 0; 2912 } 2913 } 2914 2915 #ifdef CONFIG_LOCKDEP_SMALL 2916 /* 2917 * Is the <prev> -> <next> link redundant? 2918 */ 2919 ret = check_redundant(prev, next); 2920 if (bfs_error(ret)) 2921 return 0; 2922 else if (ret == BFS_RMATCH) 2923 return 2; 2924 #endif 2925 2926 if (!*trace) { 2927 *trace = save_trace(); 2928 if (!*trace) 2929 return 0; 2930 } 2931 2932 /* 2933 * Ok, all validations passed, add the new lock 2934 * to the previous lock's dependency list: 2935 */ 2936 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 2937 &hlock_class(prev)->locks_after, 2938 next->acquire_ip, distance, 2939 calc_dep(prev, next), 2940 *trace); 2941 2942 if (!ret) 2943 return 0; 2944 2945 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 2946 &hlock_class(next)->locks_before, 2947 next->acquire_ip, distance, 2948 calc_depb(prev, next), 2949 *trace); 2950 if (!ret) 2951 return 0; 2952 2953 return 2; 2954 } 2955 2956 /* 2957 * Add the dependency to all directly-previous locks that are 'relevant'. 2958 * The ones that are relevant are (in increasing distance from curr): 2959 * all consecutive trylock entries and the final non-trylock entry - or 2960 * the end of this context's lock-chain - whichever comes first. 2961 */ 2962 static int 2963 check_prevs_add(struct task_struct *curr, struct held_lock *next) 2964 { 2965 struct lock_trace *trace = NULL; 2966 int depth = curr->lockdep_depth; 2967 struct held_lock *hlock; 2968 2969 /* 2970 * Debugging checks. 2971 * 2972 * Depth must not be zero for a non-head lock: 2973 */ 2974 if (!depth) 2975 goto out_bug; 2976 /* 2977 * At least two relevant locks must exist for this 2978 * to be a head: 2979 */ 2980 if (curr->held_locks[depth].irq_context != 2981 curr->held_locks[depth-1].irq_context) 2982 goto out_bug; 2983 2984 for (;;) { 2985 u16 distance = curr->lockdep_depth - depth + 1; 2986 hlock = curr->held_locks + depth - 1; 2987 2988 if (hlock->check) { 2989 int ret = check_prev_add(curr, hlock, next, distance, &trace); 2990 if (!ret) 2991 return 0; 2992 2993 /* 2994 * Stop after the first non-trylock entry, 2995 * as non-trylock entries have added their 2996 * own direct dependencies already, so this 2997 * lock is connected to them indirectly: 2998 */ 2999 if (!hlock->trylock) 3000 break; 3001 } 3002 3003 depth--; 3004 /* 3005 * End of lock-stack? 3006 */ 3007 if (!depth) 3008 break; 3009 /* 3010 * Stop the search if we cross into another context: 3011 */ 3012 if (curr->held_locks[depth].irq_context != 3013 curr->held_locks[depth-1].irq_context) 3014 break; 3015 } 3016 return 1; 3017 out_bug: 3018 if (!debug_locks_off_graph_unlock()) 3019 return 0; 3020 3021 /* 3022 * Clearly we all shouldn't be here, but since we made it we 3023 * can reliable say we messed up our state. See the above two 3024 * gotos for reasons why we could possibly end up here. 3025 */ 3026 WARN_ON(1); 3027 3028 return 0; 3029 } 3030 3031 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3032 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3033 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3034 unsigned long nr_zapped_lock_chains; 3035 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3036 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3037 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3038 3039 /* 3040 * The first 2 chain_hlocks entries in the chain block in the bucket 3041 * list contains the following meta data: 3042 * 3043 * entry[0]: 3044 * Bit 15 - always set to 1 (it is not a class index) 3045 * Bits 0-14 - upper 15 bits of the next block index 3046 * entry[1] - lower 16 bits of next block index 3047 * 3048 * A next block index of all 1 bits means it is the end of the list. 3049 * 3050 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3051 * the chain block size: 3052 * 3053 * entry[2] - upper 16 bits of the chain block size 3054 * entry[3] - lower 16 bits of the chain block size 3055 */ 3056 #define MAX_CHAIN_BUCKETS 16 3057 #define CHAIN_BLK_FLAG (1U << 15) 3058 #define CHAIN_BLK_LIST_END 0xFFFFU 3059 3060 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3061 3062 static inline int size_to_bucket(int size) 3063 { 3064 if (size > MAX_CHAIN_BUCKETS) 3065 return 0; 3066 3067 return size - 1; 3068 } 3069 3070 /* 3071 * Iterate all the chain blocks in a bucket. 3072 */ 3073 #define for_each_chain_block(bucket, prev, curr) \ 3074 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3075 (curr) >= 0; \ 3076 (prev) = (curr), (curr) = chain_block_next(curr)) 3077 3078 /* 3079 * next block or -1 3080 */ 3081 static inline int chain_block_next(int offset) 3082 { 3083 int next = chain_hlocks[offset]; 3084 3085 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3086 3087 if (next == CHAIN_BLK_LIST_END) 3088 return -1; 3089 3090 next &= ~CHAIN_BLK_FLAG; 3091 next <<= 16; 3092 next |= chain_hlocks[offset + 1]; 3093 3094 return next; 3095 } 3096 3097 /* 3098 * bucket-0 only 3099 */ 3100 static inline int chain_block_size(int offset) 3101 { 3102 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3103 } 3104 3105 static inline void init_chain_block(int offset, int next, int bucket, int size) 3106 { 3107 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3108 chain_hlocks[offset + 1] = (u16)next; 3109 3110 if (size && !bucket) { 3111 chain_hlocks[offset + 2] = size >> 16; 3112 chain_hlocks[offset + 3] = (u16)size; 3113 } 3114 } 3115 3116 static inline void add_chain_block(int offset, int size) 3117 { 3118 int bucket = size_to_bucket(size); 3119 int next = chain_block_buckets[bucket]; 3120 int prev, curr; 3121 3122 if (unlikely(size < 2)) { 3123 /* 3124 * We can't store single entries on the freelist. Leak them. 3125 * 3126 * One possible way out would be to uniquely mark them, other 3127 * than with CHAIN_BLK_FLAG, such that we can recover them when 3128 * the block before it is re-added. 3129 */ 3130 if (size) 3131 nr_lost_chain_hlocks++; 3132 return; 3133 } 3134 3135 nr_free_chain_hlocks += size; 3136 if (!bucket) { 3137 nr_large_chain_blocks++; 3138 3139 /* 3140 * Variable sized, sort large to small. 3141 */ 3142 for_each_chain_block(0, prev, curr) { 3143 if (size >= chain_block_size(curr)) 3144 break; 3145 } 3146 init_chain_block(offset, curr, 0, size); 3147 if (prev < 0) 3148 chain_block_buckets[0] = offset; 3149 else 3150 init_chain_block(prev, offset, 0, 0); 3151 return; 3152 } 3153 /* 3154 * Fixed size, add to head. 3155 */ 3156 init_chain_block(offset, next, bucket, size); 3157 chain_block_buckets[bucket] = offset; 3158 } 3159 3160 /* 3161 * Only the first block in the list can be deleted. 3162 * 3163 * For the variable size bucket[0], the first block (the largest one) is 3164 * returned, broken up and put back into the pool. So if a chain block of 3165 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3166 * queued up after the primordial chain block and never be used until the 3167 * hlock entries in the primordial chain block is almost used up. That 3168 * causes fragmentation and reduce allocation efficiency. That can be 3169 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3170 */ 3171 static inline void del_chain_block(int bucket, int size, int next) 3172 { 3173 nr_free_chain_hlocks -= size; 3174 chain_block_buckets[bucket] = next; 3175 3176 if (!bucket) 3177 nr_large_chain_blocks--; 3178 } 3179 3180 static void init_chain_block_buckets(void) 3181 { 3182 int i; 3183 3184 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3185 chain_block_buckets[i] = -1; 3186 3187 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3188 } 3189 3190 /* 3191 * Return offset of a chain block of the right size or -1 if not found. 3192 * 3193 * Fairly simple worst-fit allocator with the addition of a number of size 3194 * specific free lists. 3195 */ 3196 static int alloc_chain_hlocks(int req) 3197 { 3198 int bucket, curr, size; 3199 3200 /* 3201 * We rely on the MSB to act as an escape bit to denote freelist 3202 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3203 */ 3204 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3205 3206 init_data_structures_once(); 3207 3208 if (nr_free_chain_hlocks < req) 3209 return -1; 3210 3211 /* 3212 * We require a minimum of 2 (u16) entries to encode a freelist 3213 * 'pointer'. 3214 */ 3215 req = max(req, 2); 3216 bucket = size_to_bucket(req); 3217 curr = chain_block_buckets[bucket]; 3218 3219 if (bucket) { 3220 if (curr >= 0) { 3221 del_chain_block(bucket, req, chain_block_next(curr)); 3222 return curr; 3223 } 3224 /* Try bucket 0 */ 3225 curr = chain_block_buckets[0]; 3226 } 3227 3228 /* 3229 * The variable sized freelist is sorted by size; the first entry is 3230 * the largest. Use it if it fits. 3231 */ 3232 if (curr >= 0) { 3233 size = chain_block_size(curr); 3234 if (likely(size >= req)) { 3235 del_chain_block(0, size, chain_block_next(curr)); 3236 add_chain_block(curr + req, size - req); 3237 return curr; 3238 } 3239 } 3240 3241 /* 3242 * Last resort, split a block in a larger sized bucket. 3243 */ 3244 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3245 bucket = size_to_bucket(size); 3246 curr = chain_block_buckets[bucket]; 3247 if (curr < 0) 3248 continue; 3249 3250 del_chain_block(bucket, size, chain_block_next(curr)); 3251 add_chain_block(curr + req, size - req); 3252 return curr; 3253 } 3254 3255 return -1; 3256 } 3257 3258 static inline void free_chain_hlocks(int base, int size) 3259 { 3260 add_chain_block(base, max(size, 2)); 3261 } 3262 3263 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3264 { 3265 u16 chain_hlock = chain_hlocks[chain->base + i]; 3266 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3267 3268 return lock_classes + class_idx - 1; 3269 } 3270 3271 /* 3272 * Returns the index of the first held_lock of the current chain 3273 */ 3274 static inline int get_first_held_lock(struct task_struct *curr, 3275 struct held_lock *hlock) 3276 { 3277 int i; 3278 struct held_lock *hlock_curr; 3279 3280 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3281 hlock_curr = curr->held_locks + i; 3282 if (hlock_curr->irq_context != hlock->irq_context) 3283 break; 3284 3285 } 3286 3287 return ++i; 3288 } 3289 3290 #ifdef CONFIG_DEBUG_LOCKDEP 3291 /* 3292 * Returns the next chain_key iteration 3293 */ 3294 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3295 { 3296 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3297 3298 printk(" hlock_id:%d -> chain_key:%016Lx", 3299 (unsigned int)hlock_id, 3300 (unsigned long long)new_chain_key); 3301 return new_chain_key; 3302 } 3303 3304 static void 3305 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3306 { 3307 struct held_lock *hlock; 3308 u64 chain_key = INITIAL_CHAIN_KEY; 3309 int depth = curr->lockdep_depth; 3310 int i = get_first_held_lock(curr, hlock_next); 3311 3312 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3313 hlock_next->irq_context); 3314 for (; i < depth; i++) { 3315 hlock = curr->held_locks + i; 3316 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3317 3318 print_lock(hlock); 3319 } 3320 3321 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3322 print_lock(hlock_next); 3323 } 3324 3325 static void print_chain_keys_chain(struct lock_chain *chain) 3326 { 3327 int i; 3328 u64 chain_key = INITIAL_CHAIN_KEY; 3329 u16 hlock_id; 3330 3331 printk("depth: %u\n", chain->depth); 3332 for (i = 0; i < chain->depth; i++) { 3333 hlock_id = chain_hlocks[chain->base + i]; 3334 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3335 3336 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1); 3337 printk("\n"); 3338 } 3339 } 3340 3341 static void print_collision(struct task_struct *curr, 3342 struct held_lock *hlock_next, 3343 struct lock_chain *chain) 3344 { 3345 pr_warn("\n"); 3346 pr_warn("============================\n"); 3347 pr_warn("WARNING: chain_key collision\n"); 3348 print_kernel_ident(); 3349 pr_warn("----------------------------\n"); 3350 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3351 pr_warn("Hash chain already cached but the contents don't match!\n"); 3352 3353 pr_warn("Held locks:"); 3354 print_chain_keys_held_locks(curr, hlock_next); 3355 3356 pr_warn("Locks in cached chain:"); 3357 print_chain_keys_chain(chain); 3358 3359 pr_warn("\nstack backtrace:\n"); 3360 dump_stack(); 3361 } 3362 #endif 3363 3364 /* 3365 * Checks whether the chain and the current held locks are consistent 3366 * in depth and also in content. If they are not it most likely means 3367 * that there was a collision during the calculation of the chain_key. 3368 * Returns: 0 not passed, 1 passed 3369 */ 3370 static int check_no_collision(struct task_struct *curr, 3371 struct held_lock *hlock, 3372 struct lock_chain *chain) 3373 { 3374 #ifdef CONFIG_DEBUG_LOCKDEP 3375 int i, j, id; 3376 3377 i = get_first_held_lock(curr, hlock); 3378 3379 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3380 print_collision(curr, hlock, chain); 3381 return 0; 3382 } 3383 3384 for (j = 0; j < chain->depth - 1; j++, i++) { 3385 id = hlock_id(&curr->held_locks[i]); 3386 3387 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3388 print_collision(curr, hlock, chain); 3389 return 0; 3390 } 3391 } 3392 #endif 3393 return 1; 3394 } 3395 3396 /* 3397 * Given an index that is >= -1, return the index of the next lock chain. 3398 * Return -2 if there is no next lock chain. 3399 */ 3400 long lockdep_next_lockchain(long i) 3401 { 3402 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3403 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3404 } 3405 3406 unsigned long lock_chain_count(void) 3407 { 3408 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3409 } 3410 3411 /* Must be called with the graph lock held. */ 3412 static struct lock_chain *alloc_lock_chain(void) 3413 { 3414 int idx = find_first_zero_bit(lock_chains_in_use, 3415 ARRAY_SIZE(lock_chains)); 3416 3417 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3418 return NULL; 3419 __set_bit(idx, lock_chains_in_use); 3420 return lock_chains + idx; 3421 } 3422 3423 /* 3424 * Adds a dependency chain into chain hashtable. And must be called with 3425 * graph_lock held. 3426 * 3427 * Return 0 if fail, and graph_lock is released. 3428 * Return 1 if succeed, with graph_lock held. 3429 */ 3430 static inline int add_chain_cache(struct task_struct *curr, 3431 struct held_lock *hlock, 3432 u64 chain_key) 3433 { 3434 struct hlist_head *hash_head = chainhashentry(chain_key); 3435 struct lock_chain *chain; 3436 int i, j; 3437 3438 /* 3439 * The caller must hold the graph lock, ensure we've got IRQs 3440 * disabled to make this an IRQ-safe lock.. for recursion reasons 3441 * lockdep won't complain about its own locking errors. 3442 */ 3443 if (lockdep_assert_locked()) 3444 return 0; 3445 3446 chain = alloc_lock_chain(); 3447 if (!chain) { 3448 if (!debug_locks_off_graph_unlock()) 3449 return 0; 3450 3451 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3452 dump_stack(); 3453 return 0; 3454 } 3455 chain->chain_key = chain_key; 3456 chain->irq_context = hlock->irq_context; 3457 i = get_first_held_lock(curr, hlock); 3458 chain->depth = curr->lockdep_depth + 1 - i; 3459 3460 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3461 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3462 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3463 3464 j = alloc_chain_hlocks(chain->depth); 3465 if (j < 0) { 3466 if (!debug_locks_off_graph_unlock()) 3467 return 0; 3468 3469 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3470 dump_stack(); 3471 return 0; 3472 } 3473 3474 chain->base = j; 3475 for (j = 0; j < chain->depth - 1; j++, i++) { 3476 int lock_id = hlock_id(curr->held_locks + i); 3477 3478 chain_hlocks[chain->base + j] = lock_id; 3479 } 3480 chain_hlocks[chain->base + j] = hlock_id(hlock); 3481 hlist_add_head_rcu(&chain->entry, hash_head); 3482 debug_atomic_inc(chain_lookup_misses); 3483 inc_chains(chain->irq_context); 3484 3485 return 1; 3486 } 3487 3488 /* 3489 * Look up a dependency chain. Must be called with either the graph lock or 3490 * the RCU read lock held. 3491 */ 3492 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3493 { 3494 struct hlist_head *hash_head = chainhashentry(chain_key); 3495 struct lock_chain *chain; 3496 3497 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3498 if (READ_ONCE(chain->chain_key) == chain_key) { 3499 debug_atomic_inc(chain_lookup_hits); 3500 return chain; 3501 } 3502 } 3503 return NULL; 3504 } 3505 3506 /* 3507 * If the key is not present yet in dependency chain cache then 3508 * add it and return 1 - in this case the new dependency chain is 3509 * validated. If the key is already hashed, return 0. 3510 * (On return with 1 graph_lock is held.) 3511 */ 3512 static inline int lookup_chain_cache_add(struct task_struct *curr, 3513 struct held_lock *hlock, 3514 u64 chain_key) 3515 { 3516 struct lock_class *class = hlock_class(hlock); 3517 struct lock_chain *chain = lookup_chain_cache(chain_key); 3518 3519 if (chain) { 3520 cache_hit: 3521 if (!check_no_collision(curr, hlock, chain)) 3522 return 0; 3523 3524 if (very_verbose(class)) { 3525 printk("\nhash chain already cached, key: " 3526 "%016Lx tail class: [%px] %s\n", 3527 (unsigned long long)chain_key, 3528 class->key, class->name); 3529 } 3530 3531 return 0; 3532 } 3533 3534 if (very_verbose(class)) { 3535 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3536 (unsigned long long)chain_key, class->key, class->name); 3537 } 3538 3539 if (!graph_lock()) 3540 return 0; 3541 3542 /* 3543 * We have to walk the chain again locked - to avoid duplicates: 3544 */ 3545 chain = lookup_chain_cache(chain_key); 3546 if (chain) { 3547 graph_unlock(); 3548 goto cache_hit; 3549 } 3550 3551 if (!add_chain_cache(curr, hlock, chain_key)) 3552 return 0; 3553 3554 return 1; 3555 } 3556 3557 static int validate_chain(struct task_struct *curr, 3558 struct held_lock *hlock, 3559 int chain_head, u64 chain_key) 3560 { 3561 /* 3562 * Trylock needs to maintain the stack of held locks, but it 3563 * does not add new dependencies, because trylock can be done 3564 * in any order. 3565 * 3566 * We look up the chain_key and do the O(N^2) check and update of 3567 * the dependencies only if this is a new dependency chain. 3568 * (If lookup_chain_cache_add() return with 1 it acquires 3569 * graph_lock for us) 3570 */ 3571 if (!hlock->trylock && hlock->check && 3572 lookup_chain_cache_add(curr, hlock, chain_key)) { 3573 /* 3574 * Check whether last held lock: 3575 * 3576 * - is irq-safe, if this lock is irq-unsafe 3577 * - is softirq-safe, if this lock is hardirq-unsafe 3578 * 3579 * And check whether the new lock's dependency graph 3580 * could lead back to the previous lock: 3581 * 3582 * - within the current held-lock stack 3583 * - across our accumulated lock dependency records 3584 * 3585 * any of these scenarios could lead to a deadlock. 3586 */ 3587 /* 3588 * The simple case: does the current hold the same lock 3589 * already? 3590 */ 3591 int ret = check_deadlock(curr, hlock); 3592 3593 if (!ret) 3594 return 0; 3595 /* 3596 * Mark recursive read, as we jump over it when 3597 * building dependencies (just like we jump over 3598 * trylock entries): 3599 */ 3600 if (ret == 2) 3601 hlock->read = 2; 3602 /* 3603 * Add dependency only if this lock is not the head 3604 * of the chain, and if it's not a secondary read-lock: 3605 */ 3606 if (!chain_head && ret != 2) { 3607 if (!check_prevs_add(curr, hlock)) 3608 return 0; 3609 } 3610 3611 graph_unlock(); 3612 } else { 3613 /* after lookup_chain_cache_add(): */ 3614 if (unlikely(!debug_locks)) 3615 return 0; 3616 } 3617 3618 return 1; 3619 } 3620 #else 3621 static inline int validate_chain(struct task_struct *curr, 3622 struct held_lock *hlock, 3623 int chain_head, u64 chain_key) 3624 { 3625 return 1; 3626 } 3627 3628 static void init_chain_block_buckets(void) { } 3629 #endif /* CONFIG_PROVE_LOCKING */ 3630 3631 /* 3632 * We are building curr_chain_key incrementally, so double-check 3633 * it from scratch, to make sure that it's done correctly: 3634 */ 3635 static void check_chain_key(struct task_struct *curr) 3636 { 3637 #ifdef CONFIG_DEBUG_LOCKDEP 3638 struct held_lock *hlock, *prev_hlock = NULL; 3639 unsigned int i; 3640 u64 chain_key = INITIAL_CHAIN_KEY; 3641 3642 for (i = 0; i < curr->lockdep_depth; i++) { 3643 hlock = curr->held_locks + i; 3644 if (chain_key != hlock->prev_chain_key) { 3645 debug_locks_off(); 3646 /* 3647 * We got mighty confused, our chain keys don't match 3648 * with what we expect, someone trample on our task state? 3649 */ 3650 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3651 curr->lockdep_depth, i, 3652 (unsigned long long)chain_key, 3653 (unsigned long long)hlock->prev_chain_key); 3654 return; 3655 } 3656 3657 /* 3658 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3659 * it registered lock class index? 3660 */ 3661 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3662 return; 3663 3664 if (prev_hlock && (prev_hlock->irq_context != 3665 hlock->irq_context)) 3666 chain_key = INITIAL_CHAIN_KEY; 3667 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3668 prev_hlock = hlock; 3669 } 3670 if (chain_key != curr->curr_chain_key) { 3671 debug_locks_off(); 3672 /* 3673 * More smoking hash instead of calculating it, damn see these 3674 * numbers float.. I bet that a pink elephant stepped on my memory. 3675 */ 3676 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3677 curr->lockdep_depth, i, 3678 (unsigned long long)chain_key, 3679 (unsigned long long)curr->curr_chain_key); 3680 } 3681 #endif 3682 } 3683 3684 #ifdef CONFIG_PROVE_LOCKING 3685 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3686 enum lock_usage_bit new_bit); 3687 3688 static void print_usage_bug_scenario(struct held_lock *lock) 3689 { 3690 struct lock_class *class = hlock_class(lock); 3691 3692 printk(" Possible unsafe locking scenario:\n\n"); 3693 printk(" CPU0\n"); 3694 printk(" ----\n"); 3695 printk(" lock("); 3696 __print_lock_name(class); 3697 printk(KERN_CONT ");\n"); 3698 printk(" <Interrupt>\n"); 3699 printk(" lock("); 3700 __print_lock_name(class); 3701 printk(KERN_CONT ");\n"); 3702 printk("\n *** DEADLOCK ***\n\n"); 3703 } 3704 3705 static void 3706 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3707 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3708 { 3709 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3710 return; 3711 3712 pr_warn("\n"); 3713 pr_warn("================================\n"); 3714 pr_warn("WARNING: inconsistent lock state\n"); 3715 print_kernel_ident(); 3716 pr_warn("--------------------------------\n"); 3717 3718 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3719 usage_str[prev_bit], usage_str[new_bit]); 3720 3721 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3722 curr->comm, task_pid_nr(curr), 3723 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3724 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3725 lockdep_hardirqs_enabled(), 3726 lockdep_softirqs_enabled(curr)); 3727 print_lock(this); 3728 3729 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3730 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3731 3732 print_irqtrace_events(curr); 3733 pr_warn("\nother info that might help us debug this:\n"); 3734 print_usage_bug_scenario(this); 3735 3736 lockdep_print_held_locks(curr); 3737 3738 pr_warn("\nstack backtrace:\n"); 3739 dump_stack(); 3740 } 3741 3742 /* 3743 * Print out an error if an invalid bit is set: 3744 */ 3745 static inline int 3746 valid_state(struct task_struct *curr, struct held_lock *this, 3747 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3748 { 3749 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3750 print_usage_bug(curr, this, bad_bit, new_bit); 3751 return 0; 3752 } 3753 return 1; 3754 } 3755 3756 3757 /* 3758 * print irq inversion bug: 3759 */ 3760 static void 3761 print_irq_inversion_bug(struct task_struct *curr, 3762 struct lock_list *root, struct lock_list *other, 3763 struct held_lock *this, int forwards, 3764 const char *irqclass) 3765 { 3766 struct lock_list *entry = other; 3767 struct lock_list *middle = NULL; 3768 int depth; 3769 3770 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3771 return; 3772 3773 pr_warn("\n"); 3774 pr_warn("========================================================\n"); 3775 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3776 print_kernel_ident(); 3777 pr_warn("--------------------------------------------------------\n"); 3778 pr_warn("%s/%d just changed the state of lock:\n", 3779 curr->comm, task_pid_nr(curr)); 3780 print_lock(this); 3781 if (forwards) 3782 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3783 else 3784 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3785 print_lock_name(other->class); 3786 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3787 3788 pr_warn("\nother info that might help us debug this:\n"); 3789 3790 /* Find a middle lock (if one exists) */ 3791 depth = get_lock_depth(other); 3792 do { 3793 if (depth == 0 && (entry != root)) { 3794 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3795 break; 3796 } 3797 middle = entry; 3798 entry = get_lock_parent(entry); 3799 depth--; 3800 } while (entry && entry != root && (depth >= 0)); 3801 if (forwards) 3802 print_irq_lock_scenario(root, other, 3803 middle ? middle->class : root->class, other->class); 3804 else 3805 print_irq_lock_scenario(other, root, 3806 middle ? middle->class : other->class, root->class); 3807 3808 lockdep_print_held_locks(curr); 3809 3810 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 3811 root->trace = save_trace(); 3812 if (!root->trace) 3813 return; 3814 print_shortest_lock_dependencies(other, root); 3815 3816 pr_warn("\nstack backtrace:\n"); 3817 dump_stack(); 3818 } 3819 3820 /* 3821 * Prove that in the forwards-direction subgraph starting at <this> 3822 * there is no lock matching <mask>: 3823 */ 3824 static int 3825 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 3826 enum lock_usage_bit bit) 3827 { 3828 enum bfs_result ret; 3829 struct lock_list root; 3830 struct lock_list *target_entry; 3831 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 3832 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 3833 3834 bfs_init_root(&root, this); 3835 ret = find_usage_forwards(&root, usage_mask, &target_entry); 3836 if (bfs_error(ret)) { 3837 print_bfs_bug(ret); 3838 return 0; 3839 } 3840 if (ret == BFS_RNOMATCH) 3841 return 1; 3842 3843 /* Check whether write or read usage is the match */ 3844 if (target_entry->class->usage_mask & lock_flag(bit)) { 3845 print_irq_inversion_bug(curr, &root, target_entry, 3846 this, 1, state_name(bit)); 3847 } else { 3848 print_irq_inversion_bug(curr, &root, target_entry, 3849 this, 1, state_name(read_bit)); 3850 } 3851 3852 return 0; 3853 } 3854 3855 /* 3856 * Prove that in the backwards-direction subgraph starting at <this> 3857 * there is no lock matching <mask>: 3858 */ 3859 static int 3860 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 3861 enum lock_usage_bit bit) 3862 { 3863 enum bfs_result ret; 3864 struct lock_list root; 3865 struct lock_list *target_entry; 3866 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 3867 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 3868 3869 bfs_init_rootb(&root, this); 3870 ret = find_usage_backwards(&root, usage_mask, &target_entry); 3871 if (bfs_error(ret)) { 3872 print_bfs_bug(ret); 3873 return 0; 3874 } 3875 if (ret == BFS_RNOMATCH) 3876 return 1; 3877 3878 /* Check whether write or read usage is the match */ 3879 if (target_entry->class->usage_mask & lock_flag(bit)) { 3880 print_irq_inversion_bug(curr, &root, target_entry, 3881 this, 0, state_name(bit)); 3882 } else { 3883 print_irq_inversion_bug(curr, &root, target_entry, 3884 this, 0, state_name(read_bit)); 3885 } 3886 3887 return 0; 3888 } 3889 3890 void print_irqtrace_events(struct task_struct *curr) 3891 { 3892 const struct irqtrace_events *trace = &curr->irqtrace; 3893 3894 printk("irq event stamp: %u\n", trace->irq_events); 3895 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 3896 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 3897 (void *)trace->hardirq_enable_ip); 3898 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 3899 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 3900 (void *)trace->hardirq_disable_ip); 3901 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 3902 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 3903 (void *)trace->softirq_enable_ip); 3904 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 3905 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 3906 (void *)trace->softirq_disable_ip); 3907 } 3908 3909 static int HARDIRQ_verbose(struct lock_class *class) 3910 { 3911 #if HARDIRQ_VERBOSE 3912 return class_filter(class); 3913 #endif 3914 return 0; 3915 } 3916 3917 static int SOFTIRQ_verbose(struct lock_class *class) 3918 { 3919 #if SOFTIRQ_VERBOSE 3920 return class_filter(class); 3921 #endif 3922 return 0; 3923 } 3924 3925 static int (*state_verbose_f[])(struct lock_class *class) = { 3926 #define LOCKDEP_STATE(__STATE) \ 3927 __STATE##_verbose, 3928 #include "lockdep_states.h" 3929 #undef LOCKDEP_STATE 3930 }; 3931 3932 static inline int state_verbose(enum lock_usage_bit bit, 3933 struct lock_class *class) 3934 { 3935 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 3936 } 3937 3938 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 3939 enum lock_usage_bit bit, const char *name); 3940 3941 static int 3942 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 3943 enum lock_usage_bit new_bit) 3944 { 3945 int excl_bit = exclusive_bit(new_bit); 3946 int read = new_bit & LOCK_USAGE_READ_MASK; 3947 int dir = new_bit & LOCK_USAGE_DIR_MASK; 3948 3949 /* 3950 * Validate that this particular lock does not have conflicting 3951 * usage states. 3952 */ 3953 if (!valid_state(curr, this, new_bit, excl_bit)) 3954 return 0; 3955 3956 /* 3957 * Check for read in write conflicts 3958 */ 3959 if (!read && !valid_state(curr, this, new_bit, 3960 excl_bit + LOCK_USAGE_READ_MASK)) 3961 return 0; 3962 3963 3964 /* 3965 * Validate that the lock dependencies don't have conflicting usage 3966 * states. 3967 */ 3968 if (dir) { 3969 /* 3970 * mark ENABLED has to look backwards -- to ensure no dependee 3971 * has USED_IN state, which, again, would allow recursion deadlocks. 3972 */ 3973 if (!check_usage_backwards(curr, this, excl_bit)) 3974 return 0; 3975 } else { 3976 /* 3977 * mark USED_IN has to look forwards -- to ensure no dependency 3978 * has ENABLED state, which would allow recursion deadlocks. 3979 */ 3980 if (!check_usage_forwards(curr, this, excl_bit)) 3981 return 0; 3982 } 3983 3984 if (state_verbose(new_bit, hlock_class(this))) 3985 return 2; 3986 3987 return 1; 3988 } 3989 3990 /* 3991 * Mark all held locks with a usage bit: 3992 */ 3993 static int 3994 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 3995 { 3996 struct held_lock *hlock; 3997 int i; 3998 3999 for (i = 0; i < curr->lockdep_depth; i++) { 4000 enum lock_usage_bit hlock_bit = base_bit; 4001 hlock = curr->held_locks + i; 4002 4003 if (hlock->read) 4004 hlock_bit += LOCK_USAGE_READ_MASK; 4005 4006 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4007 4008 if (!hlock->check) 4009 continue; 4010 4011 if (!mark_lock(curr, hlock, hlock_bit)) 4012 return 0; 4013 } 4014 4015 return 1; 4016 } 4017 4018 /* 4019 * Hardirqs will be enabled: 4020 */ 4021 static void __trace_hardirqs_on_caller(void) 4022 { 4023 struct task_struct *curr = current; 4024 4025 /* 4026 * We are going to turn hardirqs on, so set the 4027 * usage bit for all held locks: 4028 */ 4029 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4030 return; 4031 /* 4032 * If we have softirqs enabled, then set the usage 4033 * bit for all held locks. (disabled hardirqs prevented 4034 * this bit from being set before) 4035 */ 4036 if (curr->softirqs_enabled) 4037 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4038 } 4039 4040 /** 4041 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4042 * @ip: Caller address 4043 * 4044 * Invoked before a possible transition to RCU idle from exit to user or 4045 * guest mode. This ensures that all RCU operations are done before RCU 4046 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4047 * invoked to set the final state. 4048 */ 4049 void lockdep_hardirqs_on_prepare(unsigned long ip) 4050 { 4051 if (unlikely(!debug_locks)) 4052 return; 4053 4054 /* 4055 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4056 */ 4057 if (unlikely(in_nmi())) 4058 return; 4059 4060 if (unlikely(this_cpu_read(lockdep_recursion))) 4061 return; 4062 4063 if (unlikely(lockdep_hardirqs_enabled())) { 4064 /* 4065 * Neither irq nor preemption are disabled here 4066 * so this is racy by nature but losing one hit 4067 * in a stat is not a big deal. 4068 */ 4069 __debug_atomic_inc(redundant_hardirqs_on); 4070 return; 4071 } 4072 4073 /* 4074 * We're enabling irqs and according to our state above irqs weren't 4075 * already enabled, yet we find the hardware thinks they are in fact 4076 * enabled.. someone messed up their IRQ state tracing. 4077 */ 4078 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4079 return; 4080 4081 /* 4082 * See the fine text that goes along with this variable definition. 4083 */ 4084 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4085 return; 4086 4087 /* 4088 * Can't allow enabling interrupts while in an interrupt handler, 4089 * that's general bad form and such. Recursion, limited stack etc.. 4090 */ 4091 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4092 return; 4093 4094 current->hardirq_chain_key = current->curr_chain_key; 4095 4096 lockdep_recursion_inc(); 4097 __trace_hardirqs_on_caller(); 4098 lockdep_recursion_finish(); 4099 } 4100 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4101 4102 void noinstr lockdep_hardirqs_on(unsigned long ip) 4103 { 4104 struct irqtrace_events *trace = ¤t->irqtrace; 4105 4106 if (unlikely(!debug_locks)) 4107 return; 4108 4109 /* 4110 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4111 * tracking state and hardware state are out of sync. 4112 * 4113 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4114 * and not rely on hardware state like normal interrupts. 4115 */ 4116 if (unlikely(in_nmi())) { 4117 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4118 return; 4119 4120 /* 4121 * Skip: 4122 * - recursion check, because NMI can hit lockdep; 4123 * - hardware state check, because above; 4124 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4125 */ 4126 goto skip_checks; 4127 } 4128 4129 if (unlikely(this_cpu_read(lockdep_recursion))) 4130 return; 4131 4132 if (lockdep_hardirqs_enabled()) { 4133 /* 4134 * Neither irq nor preemption are disabled here 4135 * so this is racy by nature but losing one hit 4136 * in a stat is not a big deal. 4137 */ 4138 __debug_atomic_inc(redundant_hardirqs_on); 4139 return; 4140 } 4141 4142 /* 4143 * We're enabling irqs and according to our state above irqs weren't 4144 * already enabled, yet we find the hardware thinks they are in fact 4145 * enabled.. someone messed up their IRQ state tracing. 4146 */ 4147 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4148 return; 4149 4150 /* 4151 * Ensure the lock stack remained unchanged between 4152 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4153 */ 4154 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4155 current->curr_chain_key); 4156 4157 skip_checks: 4158 /* we'll do an OFF -> ON transition: */ 4159 __this_cpu_write(hardirqs_enabled, 1); 4160 trace->hardirq_enable_ip = ip; 4161 trace->hardirq_enable_event = ++trace->irq_events; 4162 debug_atomic_inc(hardirqs_on_events); 4163 } 4164 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4165 4166 /* 4167 * Hardirqs were disabled: 4168 */ 4169 void noinstr lockdep_hardirqs_off(unsigned long ip) 4170 { 4171 if (unlikely(!debug_locks)) 4172 return; 4173 4174 /* 4175 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4176 * they will restore the software state. This ensures the software 4177 * state is consistent inside NMIs as well. 4178 */ 4179 if (in_nmi()) { 4180 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4181 return; 4182 } else if (__this_cpu_read(lockdep_recursion)) 4183 return; 4184 4185 /* 4186 * So we're supposed to get called after you mask local IRQs, but for 4187 * some reason the hardware doesn't quite think you did a proper job. 4188 */ 4189 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4190 return; 4191 4192 if (lockdep_hardirqs_enabled()) { 4193 struct irqtrace_events *trace = ¤t->irqtrace; 4194 4195 /* 4196 * We have done an ON -> OFF transition: 4197 */ 4198 __this_cpu_write(hardirqs_enabled, 0); 4199 trace->hardirq_disable_ip = ip; 4200 trace->hardirq_disable_event = ++trace->irq_events; 4201 debug_atomic_inc(hardirqs_off_events); 4202 } else { 4203 debug_atomic_inc(redundant_hardirqs_off); 4204 } 4205 } 4206 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4207 4208 /* 4209 * Softirqs will be enabled: 4210 */ 4211 void lockdep_softirqs_on(unsigned long ip) 4212 { 4213 struct irqtrace_events *trace = ¤t->irqtrace; 4214 4215 if (unlikely(!lockdep_enabled())) 4216 return; 4217 4218 /* 4219 * We fancy IRQs being disabled here, see softirq.c, avoids 4220 * funny state and nesting things. 4221 */ 4222 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4223 return; 4224 4225 if (current->softirqs_enabled) { 4226 debug_atomic_inc(redundant_softirqs_on); 4227 return; 4228 } 4229 4230 lockdep_recursion_inc(); 4231 /* 4232 * We'll do an OFF -> ON transition: 4233 */ 4234 current->softirqs_enabled = 1; 4235 trace->softirq_enable_ip = ip; 4236 trace->softirq_enable_event = ++trace->irq_events; 4237 debug_atomic_inc(softirqs_on_events); 4238 /* 4239 * We are going to turn softirqs on, so set the 4240 * usage bit for all held locks, if hardirqs are 4241 * enabled too: 4242 */ 4243 if (lockdep_hardirqs_enabled()) 4244 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4245 lockdep_recursion_finish(); 4246 } 4247 4248 /* 4249 * Softirqs were disabled: 4250 */ 4251 void lockdep_softirqs_off(unsigned long ip) 4252 { 4253 if (unlikely(!lockdep_enabled())) 4254 return; 4255 4256 /* 4257 * We fancy IRQs being disabled here, see softirq.c 4258 */ 4259 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4260 return; 4261 4262 if (current->softirqs_enabled) { 4263 struct irqtrace_events *trace = ¤t->irqtrace; 4264 4265 /* 4266 * We have done an ON -> OFF transition: 4267 */ 4268 current->softirqs_enabled = 0; 4269 trace->softirq_disable_ip = ip; 4270 trace->softirq_disable_event = ++trace->irq_events; 4271 debug_atomic_inc(softirqs_off_events); 4272 /* 4273 * Whoops, we wanted softirqs off, so why aren't they? 4274 */ 4275 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4276 } else 4277 debug_atomic_inc(redundant_softirqs_off); 4278 } 4279 4280 static int 4281 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4282 { 4283 if (!check) 4284 goto lock_used; 4285 4286 /* 4287 * If non-trylock use in a hardirq or softirq context, then 4288 * mark the lock as used in these contexts: 4289 */ 4290 if (!hlock->trylock) { 4291 if (hlock->read) { 4292 if (lockdep_hardirq_context()) 4293 if (!mark_lock(curr, hlock, 4294 LOCK_USED_IN_HARDIRQ_READ)) 4295 return 0; 4296 if (curr->softirq_context) 4297 if (!mark_lock(curr, hlock, 4298 LOCK_USED_IN_SOFTIRQ_READ)) 4299 return 0; 4300 } else { 4301 if (lockdep_hardirq_context()) 4302 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4303 return 0; 4304 if (curr->softirq_context) 4305 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4306 return 0; 4307 } 4308 } 4309 if (!hlock->hardirqs_off) { 4310 if (hlock->read) { 4311 if (!mark_lock(curr, hlock, 4312 LOCK_ENABLED_HARDIRQ_READ)) 4313 return 0; 4314 if (curr->softirqs_enabled) 4315 if (!mark_lock(curr, hlock, 4316 LOCK_ENABLED_SOFTIRQ_READ)) 4317 return 0; 4318 } else { 4319 if (!mark_lock(curr, hlock, 4320 LOCK_ENABLED_HARDIRQ)) 4321 return 0; 4322 if (curr->softirqs_enabled) 4323 if (!mark_lock(curr, hlock, 4324 LOCK_ENABLED_SOFTIRQ)) 4325 return 0; 4326 } 4327 } 4328 4329 lock_used: 4330 /* mark it as used: */ 4331 if (!mark_lock(curr, hlock, LOCK_USED)) 4332 return 0; 4333 4334 return 1; 4335 } 4336 4337 static inline unsigned int task_irq_context(struct task_struct *task) 4338 { 4339 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4340 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4341 } 4342 4343 static int separate_irq_context(struct task_struct *curr, 4344 struct held_lock *hlock) 4345 { 4346 unsigned int depth = curr->lockdep_depth; 4347 4348 /* 4349 * Keep track of points where we cross into an interrupt context: 4350 */ 4351 if (depth) { 4352 struct held_lock *prev_hlock; 4353 4354 prev_hlock = curr->held_locks + depth-1; 4355 /* 4356 * If we cross into another context, reset the 4357 * hash key (this also prevents the checking and the 4358 * adding of the dependency to 'prev'): 4359 */ 4360 if (prev_hlock->irq_context != hlock->irq_context) 4361 return 1; 4362 } 4363 return 0; 4364 } 4365 4366 /* 4367 * Mark a lock with a usage bit, and validate the state transition: 4368 */ 4369 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4370 enum lock_usage_bit new_bit) 4371 { 4372 unsigned int new_mask, ret = 1; 4373 4374 if (new_bit >= LOCK_USAGE_STATES) { 4375 DEBUG_LOCKS_WARN_ON(1); 4376 return 0; 4377 } 4378 4379 if (new_bit == LOCK_USED && this->read) 4380 new_bit = LOCK_USED_READ; 4381 4382 new_mask = 1 << new_bit; 4383 4384 /* 4385 * If already set then do not dirty the cacheline, 4386 * nor do any checks: 4387 */ 4388 if (likely(hlock_class(this)->usage_mask & new_mask)) 4389 return 1; 4390 4391 if (!graph_lock()) 4392 return 0; 4393 /* 4394 * Make sure we didn't race: 4395 */ 4396 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4397 goto unlock; 4398 4399 if (!hlock_class(this)->usage_mask) 4400 debug_atomic_dec(nr_unused_locks); 4401 4402 hlock_class(this)->usage_mask |= new_mask; 4403 4404 if (new_bit < LOCK_TRACE_STATES) { 4405 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4406 return 0; 4407 } 4408 4409 if (new_bit < LOCK_USED) { 4410 ret = mark_lock_irq(curr, this, new_bit); 4411 if (!ret) 4412 return 0; 4413 } 4414 4415 unlock: 4416 graph_unlock(); 4417 4418 /* 4419 * We must printk outside of the graph_lock: 4420 */ 4421 if (ret == 2) { 4422 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4423 print_lock(this); 4424 print_irqtrace_events(curr); 4425 dump_stack(); 4426 } 4427 4428 return ret; 4429 } 4430 4431 static inline short task_wait_context(struct task_struct *curr) 4432 { 4433 /* 4434 * Set appropriate wait type for the context; for IRQs we have to take 4435 * into account force_irqthread as that is implied by PREEMPT_RT. 4436 */ 4437 if (lockdep_hardirq_context()) { 4438 /* 4439 * Check if force_irqthreads will run us threaded. 4440 */ 4441 if (curr->hardirq_threaded || curr->irq_config) 4442 return LD_WAIT_CONFIG; 4443 4444 return LD_WAIT_SPIN; 4445 } else if (curr->softirq_context) { 4446 /* 4447 * Softirqs are always threaded. 4448 */ 4449 return LD_WAIT_CONFIG; 4450 } 4451 4452 return LD_WAIT_MAX; 4453 } 4454 4455 static int 4456 print_lock_invalid_wait_context(struct task_struct *curr, 4457 struct held_lock *hlock) 4458 { 4459 short curr_inner; 4460 4461 if (!debug_locks_off()) 4462 return 0; 4463 if (debug_locks_silent) 4464 return 0; 4465 4466 pr_warn("\n"); 4467 pr_warn("=============================\n"); 4468 pr_warn("[ BUG: Invalid wait context ]\n"); 4469 print_kernel_ident(); 4470 pr_warn("-----------------------------\n"); 4471 4472 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4473 print_lock(hlock); 4474 4475 pr_warn("other info that might help us debug this:\n"); 4476 4477 curr_inner = task_wait_context(curr); 4478 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4479 4480 lockdep_print_held_locks(curr); 4481 4482 pr_warn("stack backtrace:\n"); 4483 dump_stack(); 4484 4485 return 0; 4486 } 4487 4488 /* 4489 * Verify the wait_type context. 4490 * 4491 * This check validates we takes locks in the right wait-type order; that is it 4492 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4493 * acquire spinlocks inside raw_spinlocks and the sort. 4494 * 4495 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4496 * can be taken from (pretty much) any context but also has constraints. 4497 * However when taken in a stricter environment the RCU lock does not loosen 4498 * the constraints. 4499 * 4500 * Therefore we must look for the strictest environment in the lock stack and 4501 * compare that to the lock we're trying to acquire. 4502 */ 4503 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4504 { 4505 short next_inner = hlock_class(next)->wait_type_inner; 4506 short next_outer = hlock_class(next)->wait_type_outer; 4507 short curr_inner; 4508 int depth; 4509 4510 if (!curr->lockdep_depth || !next_inner || next->trylock) 4511 return 0; 4512 4513 if (!next_outer) 4514 next_outer = next_inner; 4515 4516 /* 4517 * Find start of current irq_context.. 4518 */ 4519 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4520 struct held_lock *prev = curr->held_locks + depth; 4521 if (prev->irq_context != next->irq_context) 4522 break; 4523 } 4524 depth++; 4525 4526 curr_inner = task_wait_context(curr); 4527 4528 for (; depth < curr->lockdep_depth; depth++) { 4529 struct held_lock *prev = curr->held_locks + depth; 4530 short prev_inner = hlock_class(prev)->wait_type_inner; 4531 4532 if (prev_inner) { 4533 /* 4534 * We can have a bigger inner than a previous one 4535 * when outer is smaller than inner, as with RCU. 4536 * 4537 * Also due to trylocks. 4538 */ 4539 curr_inner = min(curr_inner, prev_inner); 4540 } 4541 } 4542 4543 if (next_outer > curr_inner) 4544 return print_lock_invalid_wait_context(curr, next); 4545 4546 return 0; 4547 } 4548 4549 #else /* CONFIG_PROVE_LOCKING */ 4550 4551 static inline int 4552 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4553 { 4554 return 1; 4555 } 4556 4557 static inline unsigned int task_irq_context(struct task_struct *task) 4558 { 4559 return 0; 4560 } 4561 4562 static inline int separate_irq_context(struct task_struct *curr, 4563 struct held_lock *hlock) 4564 { 4565 return 0; 4566 } 4567 4568 static inline int check_wait_context(struct task_struct *curr, 4569 struct held_lock *next) 4570 { 4571 return 0; 4572 } 4573 4574 #endif /* CONFIG_PROVE_LOCKING */ 4575 4576 /* 4577 * Initialize a lock instance's lock-class mapping info: 4578 */ 4579 void lockdep_init_map_waits(struct lockdep_map *lock, const char *name, 4580 struct lock_class_key *key, int subclass, 4581 short inner, short outer) 4582 { 4583 int i; 4584 4585 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4586 lock->class_cache[i] = NULL; 4587 4588 #ifdef CONFIG_LOCK_STAT 4589 lock->cpu = raw_smp_processor_id(); 4590 #endif 4591 4592 /* 4593 * Can't be having no nameless bastards around this place! 4594 */ 4595 if (DEBUG_LOCKS_WARN_ON(!name)) { 4596 lock->name = "NULL"; 4597 return; 4598 } 4599 4600 lock->name = name; 4601 4602 lock->wait_type_outer = outer; 4603 lock->wait_type_inner = inner; 4604 4605 /* 4606 * No key, no joy, we need to hash something. 4607 */ 4608 if (DEBUG_LOCKS_WARN_ON(!key)) 4609 return; 4610 /* 4611 * Sanity check, the lock-class key must either have been allocated 4612 * statically or must have been registered as a dynamic key. 4613 */ 4614 if (!static_obj(key) && !is_dynamic_key(key)) { 4615 if (debug_locks) 4616 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4617 DEBUG_LOCKS_WARN_ON(1); 4618 return; 4619 } 4620 lock->key = key; 4621 4622 if (unlikely(!debug_locks)) 4623 return; 4624 4625 if (subclass) { 4626 unsigned long flags; 4627 4628 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4629 return; 4630 4631 raw_local_irq_save(flags); 4632 lockdep_recursion_inc(); 4633 register_lock_class(lock, subclass, 1); 4634 lockdep_recursion_finish(); 4635 raw_local_irq_restore(flags); 4636 } 4637 } 4638 EXPORT_SYMBOL_GPL(lockdep_init_map_waits); 4639 4640 struct lock_class_key __lockdep_no_validate__; 4641 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4642 4643 static void 4644 print_lock_nested_lock_not_held(struct task_struct *curr, 4645 struct held_lock *hlock, 4646 unsigned long ip) 4647 { 4648 if (!debug_locks_off()) 4649 return; 4650 if (debug_locks_silent) 4651 return; 4652 4653 pr_warn("\n"); 4654 pr_warn("==================================\n"); 4655 pr_warn("WARNING: Nested lock was not taken\n"); 4656 print_kernel_ident(); 4657 pr_warn("----------------------------------\n"); 4658 4659 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4660 print_lock(hlock); 4661 4662 pr_warn("\nbut this task is not holding:\n"); 4663 pr_warn("%s\n", hlock->nest_lock->name); 4664 4665 pr_warn("\nstack backtrace:\n"); 4666 dump_stack(); 4667 4668 pr_warn("\nother info that might help us debug this:\n"); 4669 lockdep_print_held_locks(curr); 4670 4671 pr_warn("\nstack backtrace:\n"); 4672 dump_stack(); 4673 } 4674 4675 static int __lock_is_held(const struct lockdep_map *lock, int read); 4676 4677 /* 4678 * This gets called for every mutex_lock*()/spin_lock*() operation. 4679 * We maintain the dependency maps and validate the locking attempt: 4680 * 4681 * The callers must make sure that IRQs are disabled before calling it, 4682 * otherwise we could get an interrupt which would want to take locks, 4683 * which would end up in lockdep again. 4684 */ 4685 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4686 int trylock, int read, int check, int hardirqs_off, 4687 struct lockdep_map *nest_lock, unsigned long ip, 4688 int references, int pin_count) 4689 { 4690 struct task_struct *curr = current; 4691 struct lock_class *class = NULL; 4692 struct held_lock *hlock; 4693 unsigned int depth; 4694 int chain_head = 0; 4695 int class_idx; 4696 u64 chain_key; 4697 4698 if (unlikely(!debug_locks)) 4699 return 0; 4700 4701 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4702 check = 0; 4703 4704 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4705 class = lock->class_cache[subclass]; 4706 /* 4707 * Not cached? 4708 */ 4709 if (unlikely(!class)) { 4710 class = register_lock_class(lock, subclass, 0); 4711 if (!class) 4712 return 0; 4713 } 4714 4715 debug_class_ops_inc(class); 4716 4717 if (very_verbose(class)) { 4718 printk("\nacquire class [%px] %s", class->key, class->name); 4719 if (class->name_version > 1) 4720 printk(KERN_CONT "#%d", class->name_version); 4721 printk(KERN_CONT "\n"); 4722 dump_stack(); 4723 } 4724 4725 /* 4726 * Add the lock to the list of currently held locks. 4727 * (we dont increase the depth just yet, up until the 4728 * dependency checks are done) 4729 */ 4730 depth = curr->lockdep_depth; 4731 /* 4732 * Ran out of static storage for our per-task lock stack again have we? 4733 */ 4734 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4735 return 0; 4736 4737 class_idx = class - lock_classes; 4738 4739 if (depth) { /* we're holding locks */ 4740 hlock = curr->held_locks + depth - 1; 4741 if (hlock->class_idx == class_idx && nest_lock) { 4742 if (!references) 4743 references++; 4744 4745 if (!hlock->references) 4746 hlock->references++; 4747 4748 hlock->references += references; 4749 4750 /* Overflow */ 4751 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4752 return 0; 4753 4754 return 2; 4755 } 4756 } 4757 4758 hlock = curr->held_locks + depth; 4759 /* 4760 * Plain impossible, we just registered it and checked it weren't no 4761 * NULL like.. I bet this mushroom I ate was good! 4762 */ 4763 if (DEBUG_LOCKS_WARN_ON(!class)) 4764 return 0; 4765 hlock->class_idx = class_idx; 4766 hlock->acquire_ip = ip; 4767 hlock->instance = lock; 4768 hlock->nest_lock = nest_lock; 4769 hlock->irq_context = task_irq_context(curr); 4770 hlock->trylock = trylock; 4771 hlock->read = read; 4772 hlock->check = check; 4773 hlock->hardirqs_off = !!hardirqs_off; 4774 hlock->references = references; 4775 #ifdef CONFIG_LOCK_STAT 4776 hlock->waittime_stamp = 0; 4777 hlock->holdtime_stamp = lockstat_clock(); 4778 #endif 4779 hlock->pin_count = pin_count; 4780 4781 if (check_wait_context(curr, hlock)) 4782 return 0; 4783 4784 /* Initialize the lock usage bit */ 4785 if (!mark_usage(curr, hlock, check)) 4786 return 0; 4787 4788 /* 4789 * Calculate the chain hash: it's the combined hash of all the 4790 * lock keys along the dependency chain. We save the hash value 4791 * at every step so that we can get the current hash easily 4792 * after unlock. The chain hash is then used to cache dependency 4793 * results. 4794 * 4795 * The 'key ID' is what is the most compact key value to drive 4796 * the hash, not class->key. 4797 */ 4798 /* 4799 * Whoops, we did it again.. class_idx is invalid. 4800 */ 4801 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 4802 return 0; 4803 4804 chain_key = curr->curr_chain_key; 4805 if (!depth) { 4806 /* 4807 * How can we have a chain hash when we ain't got no keys?! 4808 */ 4809 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 4810 return 0; 4811 chain_head = 1; 4812 } 4813 4814 hlock->prev_chain_key = chain_key; 4815 if (separate_irq_context(curr, hlock)) { 4816 chain_key = INITIAL_CHAIN_KEY; 4817 chain_head = 1; 4818 } 4819 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 4820 4821 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 4822 print_lock_nested_lock_not_held(curr, hlock, ip); 4823 return 0; 4824 } 4825 4826 if (!debug_locks_silent) { 4827 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 4828 WARN_ON_ONCE(!hlock_class(hlock)->key); 4829 } 4830 4831 if (!validate_chain(curr, hlock, chain_head, chain_key)) 4832 return 0; 4833 4834 curr->curr_chain_key = chain_key; 4835 curr->lockdep_depth++; 4836 check_chain_key(curr); 4837 #ifdef CONFIG_DEBUG_LOCKDEP 4838 if (unlikely(!debug_locks)) 4839 return 0; 4840 #endif 4841 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 4842 debug_locks_off(); 4843 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 4844 printk(KERN_DEBUG "depth: %i max: %lu!\n", 4845 curr->lockdep_depth, MAX_LOCK_DEPTH); 4846 4847 lockdep_print_held_locks(current); 4848 debug_show_all_locks(); 4849 dump_stack(); 4850 4851 return 0; 4852 } 4853 4854 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 4855 max_lockdep_depth = curr->lockdep_depth; 4856 4857 return 1; 4858 } 4859 4860 static void print_unlock_imbalance_bug(struct task_struct *curr, 4861 struct lockdep_map *lock, 4862 unsigned long ip) 4863 { 4864 if (!debug_locks_off()) 4865 return; 4866 if (debug_locks_silent) 4867 return; 4868 4869 pr_warn("\n"); 4870 pr_warn("=====================================\n"); 4871 pr_warn("WARNING: bad unlock balance detected!\n"); 4872 print_kernel_ident(); 4873 pr_warn("-------------------------------------\n"); 4874 pr_warn("%s/%d is trying to release lock (", 4875 curr->comm, task_pid_nr(curr)); 4876 print_lockdep_cache(lock); 4877 pr_cont(") at:\n"); 4878 print_ip_sym(KERN_WARNING, ip); 4879 pr_warn("but there are no more locks to release!\n"); 4880 pr_warn("\nother info that might help us debug this:\n"); 4881 lockdep_print_held_locks(curr); 4882 4883 pr_warn("\nstack backtrace:\n"); 4884 dump_stack(); 4885 } 4886 4887 static noinstr int match_held_lock(const struct held_lock *hlock, 4888 const struct lockdep_map *lock) 4889 { 4890 if (hlock->instance == lock) 4891 return 1; 4892 4893 if (hlock->references) { 4894 const struct lock_class *class = lock->class_cache[0]; 4895 4896 if (!class) 4897 class = look_up_lock_class(lock, 0); 4898 4899 /* 4900 * If look_up_lock_class() failed to find a class, we're trying 4901 * to test if we hold a lock that has never yet been acquired. 4902 * Clearly if the lock hasn't been acquired _ever_, we're not 4903 * holding it either, so report failure. 4904 */ 4905 if (!class) 4906 return 0; 4907 4908 /* 4909 * References, but not a lock we're actually ref-counting? 4910 * State got messed up, follow the sites that change ->references 4911 * and try to make sense of it. 4912 */ 4913 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 4914 return 0; 4915 4916 if (hlock->class_idx == class - lock_classes) 4917 return 1; 4918 } 4919 4920 return 0; 4921 } 4922 4923 /* @depth must not be zero */ 4924 static struct held_lock *find_held_lock(struct task_struct *curr, 4925 struct lockdep_map *lock, 4926 unsigned int depth, int *idx) 4927 { 4928 struct held_lock *ret, *hlock, *prev_hlock; 4929 int i; 4930 4931 i = depth - 1; 4932 hlock = curr->held_locks + i; 4933 ret = hlock; 4934 if (match_held_lock(hlock, lock)) 4935 goto out; 4936 4937 ret = NULL; 4938 for (i--, prev_hlock = hlock--; 4939 i >= 0; 4940 i--, prev_hlock = hlock--) { 4941 /* 4942 * We must not cross into another context: 4943 */ 4944 if (prev_hlock->irq_context != hlock->irq_context) { 4945 ret = NULL; 4946 break; 4947 } 4948 if (match_held_lock(hlock, lock)) { 4949 ret = hlock; 4950 break; 4951 } 4952 } 4953 4954 out: 4955 *idx = i; 4956 return ret; 4957 } 4958 4959 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 4960 int idx, unsigned int *merged) 4961 { 4962 struct held_lock *hlock; 4963 int first_idx = idx; 4964 4965 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4966 return 0; 4967 4968 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 4969 switch (__lock_acquire(hlock->instance, 4970 hlock_class(hlock)->subclass, 4971 hlock->trylock, 4972 hlock->read, hlock->check, 4973 hlock->hardirqs_off, 4974 hlock->nest_lock, hlock->acquire_ip, 4975 hlock->references, hlock->pin_count)) { 4976 case 0: 4977 return 1; 4978 case 1: 4979 break; 4980 case 2: 4981 *merged += (idx == first_idx); 4982 break; 4983 default: 4984 WARN_ON(1); 4985 return 0; 4986 } 4987 } 4988 return 0; 4989 } 4990 4991 static int 4992 __lock_set_class(struct lockdep_map *lock, const char *name, 4993 struct lock_class_key *key, unsigned int subclass, 4994 unsigned long ip) 4995 { 4996 struct task_struct *curr = current; 4997 unsigned int depth, merged = 0; 4998 struct held_lock *hlock; 4999 struct lock_class *class; 5000 int i; 5001 5002 if (unlikely(!debug_locks)) 5003 return 0; 5004 5005 depth = curr->lockdep_depth; 5006 /* 5007 * This function is about (re)setting the class of a held lock, 5008 * yet we're not actually holding any locks. Naughty user! 5009 */ 5010 if (DEBUG_LOCKS_WARN_ON(!depth)) 5011 return 0; 5012 5013 hlock = find_held_lock(curr, lock, depth, &i); 5014 if (!hlock) { 5015 print_unlock_imbalance_bug(curr, lock, ip); 5016 return 0; 5017 } 5018 5019 lockdep_init_map_waits(lock, name, key, 0, 5020 lock->wait_type_inner, 5021 lock->wait_type_outer); 5022 class = register_lock_class(lock, subclass, 0); 5023 hlock->class_idx = class - lock_classes; 5024 5025 curr->lockdep_depth = i; 5026 curr->curr_chain_key = hlock->prev_chain_key; 5027 5028 if (reacquire_held_locks(curr, depth, i, &merged)) 5029 return 0; 5030 5031 /* 5032 * I took it apart and put it back together again, except now I have 5033 * these 'spare' parts.. where shall I put them. 5034 */ 5035 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5036 return 0; 5037 return 1; 5038 } 5039 5040 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5041 { 5042 struct task_struct *curr = current; 5043 unsigned int depth, merged = 0; 5044 struct held_lock *hlock; 5045 int i; 5046 5047 if (unlikely(!debug_locks)) 5048 return 0; 5049 5050 depth = curr->lockdep_depth; 5051 /* 5052 * This function is about (re)setting the class of a held lock, 5053 * yet we're not actually holding any locks. Naughty user! 5054 */ 5055 if (DEBUG_LOCKS_WARN_ON(!depth)) 5056 return 0; 5057 5058 hlock = find_held_lock(curr, lock, depth, &i); 5059 if (!hlock) { 5060 print_unlock_imbalance_bug(curr, lock, ip); 5061 return 0; 5062 } 5063 5064 curr->lockdep_depth = i; 5065 curr->curr_chain_key = hlock->prev_chain_key; 5066 5067 WARN(hlock->read, "downgrading a read lock"); 5068 hlock->read = 1; 5069 hlock->acquire_ip = ip; 5070 5071 if (reacquire_held_locks(curr, depth, i, &merged)) 5072 return 0; 5073 5074 /* Merging can't happen with unchanged classes.. */ 5075 if (DEBUG_LOCKS_WARN_ON(merged)) 5076 return 0; 5077 5078 /* 5079 * I took it apart and put it back together again, except now I have 5080 * these 'spare' parts.. where shall I put them. 5081 */ 5082 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5083 return 0; 5084 5085 return 1; 5086 } 5087 5088 /* 5089 * Remove the lock from the list of currently held locks - this gets 5090 * called on mutex_unlock()/spin_unlock*() (or on a failed 5091 * mutex_lock_interruptible()). 5092 */ 5093 static int 5094 __lock_release(struct lockdep_map *lock, unsigned long ip) 5095 { 5096 struct task_struct *curr = current; 5097 unsigned int depth, merged = 1; 5098 struct held_lock *hlock; 5099 int i; 5100 5101 if (unlikely(!debug_locks)) 5102 return 0; 5103 5104 depth = curr->lockdep_depth; 5105 /* 5106 * So we're all set to release this lock.. wait what lock? We don't 5107 * own any locks, you've been drinking again? 5108 */ 5109 if (depth <= 0) { 5110 print_unlock_imbalance_bug(curr, lock, ip); 5111 return 0; 5112 } 5113 5114 /* 5115 * Check whether the lock exists in the current stack 5116 * of held locks: 5117 */ 5118 hlock = find_held_lock(curr, lock, depth, &i); 5119 if (!hlock) { 5120 print_unlock_imbalance_bug(curr, lock, ip); 5121 return 0; 5122 } 5123 5124 if (hlock->instance == lock) 5125 lock_release_holdtime(hlock); 5126 5127 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5128 5129 if (hlock->references) { 5130 hlock->references--; 5131 if (hlock->references) { 5132 /* 5133 * We had, and after removing one, still have 5134 * references, the current lock stack is still 5135 * valid. We're done! 5136 */ 5137 return 1; 5138 } 5139 } 5140 5141 /* 5142 * We have the right lock to unlock, 'hlock' points to it. 5143 * Now we remove it from the stack, and add back the other 5144 * entries (if any), recalculating the hash along the way: 5145 */ 5146 5147 curr->lockdep_depth = i; 5148 curr->curr_chain_key = hlock->prev_chain_key; 5149 5150 /* 5151 * The most likely case is when the unlock is on the innermost 5152 * lock. In this case, we are done! 5153 */ 5154 if (i == depth-1) 5155 return 1; 5156 5157 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5158 return 0; 5159 5160 /* 5161 * We had N bottles of beer on the wall, we drank one, but now 5162 * there's not N-1 bottles of beer left on the wall... 5163 * Pouring two of the bottles together is acceptable. 5164 */ 5165 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5166 5167 /* 5168 * Since reacquire_held_locks() would have called check_chain_key() 5169 * indirectly via __lock_acquire(), we don't need to do it again 5170 * on return. 5171 */ 5172 return 0; 5173 } 5174 5175 static __always_inline 5176 int __lock_is_held(const struct lockdep_map *lock, int read) 5177 { 5178 struct task_struct *curr = current; 5179 int i; 5180 5181 for (i = 0; i < curr->lockdep_depth; i++) { 5182 struct held_lock *hlock = curr->held_locks + i; 5183 5184 if (match_held_lock(hlock, lock)) { 5185 if (read == -1 || hlock->read == read) 5186 return 1; 5187 5188 return 0; 5189 } 5190 } 5191 5192 return 0; 5193 } 5194 5195 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5196 { 5197 struct pin_cookie cookie = NIL_COOKIE; 5198 struct task_struct *curr = current; 5199 int i; 5200 5201 if (unlikely(!debug_locks)) 5202 return cookie; 5203 5204 for (i = 0; i < curr->lockdep_depth; i++) { 5205 struct held_lock *hlock = curr->held_locks + i; 5206 5207 if (match_held_lock(hlock, lock)) { 5208 /* 5209 * Grab 16bits of randomness; this is sufficient to not 5210 * be guessable and still allows some pin nesting in 5211 * our u32 pin_count. 5212 */ 5213 cookie.val = 1 + (prandom_u32() >> 16); 5214 hlock->pin_count += cookie.val; 5215 return cookie; 5216 } 5217 } 5218 5219 WARN(1, "pinning an unheld lock\n"); 5220 return cookie; 5221 } 5222 5223 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5224 { 5225 struct task_struct *curr = current; 5226 int i; 5227 5228 if (unlikely(!debug_locks)) 5229 return; 5230 5231 for (i = 0; i < curr->lockdep_depth; i++) { 5232 struct held_lock *hlock = curr->held_locks + i; 5233 5234 if (match_held_lock(hlock, lock)) { 5235 hlock->pin_count += cookie.val; 5236 return; 5237 } 5238 } 5239 5240 WARN(1, "pinning an unheld lock\n"); 5241 } 5242 5243 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5244 { 5245 struct task_struct *curr = current; 5246 int i; 5247 5248 if (unlikely(!debug_locks)) 5249 return; 5250 5251 for (i = 0; i < curr->lockdep_depth; i++) { 5252 struct held_lock *hlock = curr->held_locks + i; 5253 5254 if (match_held_lock(hlock, lock)) { 5255 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5256 return; 5257 5258 hlock->pin_count -= cookie.val; 5259 5260 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5261 hlock->pin_count = 0; 5262 5263 return; 5264 } 5265 } 5266 5267 WARN(1, "unpinning an unheld lock\n"); 5268 } 5269 5270 /* 5271 * Check whether we follow the irq-flags state precisely: 5272 */ 5273 static void check_flags(unsigned long flags) 5274 { 5275 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5276 if (!debug_locks) 5277 return; 5278 5279 if (irqs_disabled_flags(flags)) { 5280 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5281 printk("possible reason: unannotated irqs-off.\n"); 5282 } 5283 } else { 5284 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5285 printk("possible reason: unannotated irqs-on.\n"); 5286 } 5287 } 5288 5289 /* 5290 * We dont accurately track softirq state in e.g. 5291 * hardirq contexts (such as on 4KSTACKS), so only 5292 * check if not in hardirq contexts: 5293 */ 5294 if (!hardirq_count()) { 5295 if (softirq_count()) { 5296 /* like the above, but with softirqs */ 5297 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5298 } else { 5299 /* lick the above, does it taste good? */ 5300 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5301 } 5302 } 5303 5304 if (!debug_locks) 5305 print_irqtrace_events(current); 5306 #endif 5307 } 5308 5309 void lock_set_class(struct lockdep_map *lock, const char *name, 5310 struct lock_class_key *key, unsigned int subclass, 5311 unsigned long ip) 5312 { 5313 unsigned long flags; 5314 5315 if (unlikely(!lockdep_enabled())) 5316 return; 5317 5318 raw_local_irq_save(flags); 5319 lockdep_recursion_inc(); 5320 check_flags(flags); 5321 if (__lock_set_class(lock, name, key, subclass, ip)) 5322 check_chain_key(current); 5323 lockdep_recursion_finish(); 5324 raw_local_irq_restore(flags); 5325 } 5326 EXPORT_SYMBOL_GPL(lock_set_class); 5327 5328 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5329 { 5330 unsigned long flags; 5331 5332 if (unlikely(!lockdep_enabled())) 5333 return; 5334 5335 raw_local_irq_save(flags); 5336 lockdep_recursion_inc(); 5337 check_flags(flags); 5338 if (__lock_downgrade(lock, ip)) 5339 check_chain_key(current); 5340 lockdep_recursion_finish(); 5341 raw_local_irq_restore(flags); 5342 } 5343 EXPORT_SYMBOL_GPL(lock_downgrade); 5344 5345 /* NMI context !!! */ 5346 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5347 { 5348 #ifdef CONFIG_PROVE_LOCKING 5349 struct lock_class *class = look_up_lock_class(lock, subclass); 5350 unsigned long mask = LOCKF_USED; 5351 5352 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5353 if (!class) 5354 return; 5355 5356 /* 5357 * READ locks only conflict with USED, such that if we only ever use 5358 * READ locks, there is no deadlock possible -- RCU. 5359 */ 5360 if (!hlock->read) 5361 mask |= LOCKF_USED_READ; 5362 5363 if (!(class->usage_mask & mask)) 5364 return; 5365 5366 hlock->class_idx = class - lock_classes; 5367 5368 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5369 #endif 5370 } 5371 5372 static bool lockdep_nmi(void) 5373 { 5374 if (raw_cpu_read(lockdep_recursion)) 5375 return false; 5376 5377 if (!in_nmi()) 5378 return false; 5379 5380 return true; 5381 } 5382 5383 /* 5384 * read_lock() is recursive if: 5385 * 1. We force lockdep think this way in selftests or 5386 * 2. The implementation is not queued read/write lock or 5387 * 3. The locker is at an in_interrupt() context. 5388 */ 5389 bool read_lock_is_recursive(void) 5390 { 5391 return force_read_lock_recursive || 5392 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5393 in_interrupt(); 5394 } 5395 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5396 5397 /* 5398 * We are not always called with irqs disabled - do that here, 5399 * and also avoid lockdep recursion: 5400 */ 5401 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5402 int trylock, int read, int check, 5403 struct lockdep_map *nest_lock, unsigned long ip) 5404 { 5405 unsigned long flags; 5406 5407 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5408 5409 if (!debug_locks) 5410 return; 5411 5412 if (unlikely(!lockdep_enabled())) { 5413 /* XXX allow trylock from NMI ?!? */ 5414 if (lockdep_nmi() && !trylock) { 5415 struct held_lock hlock; 5416 5417 hlock.acquire_ip = ip; 5418 hlock.instance = lock; 5419 hlock.nest_lock = nest_lock; 5420 hlock.irq_context = 2; // XXX 5421 hlock.trylock = trylock; 5422 hlock.read = read; 5423 hlock.check = check; 5424 hlock.hardirqs_off = true; 5425 hlock.references = 0; 5426 5427 verify_lock_unused(lock, &hlock, subclass); 5428 } 5429 return; 5430 } 5431 5432 raw_local_irq_save(flags); 5433 check_flags(flags); 5434 5435 lockdep_recursion_inc(); 5436 __lock_acquire(lock, subclass, trylock, read, check, 5437 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5438 lockdep_recursion_finish(); 5439 raw_local_irq_restore(flags); 5440 } 5441 EXPORT_SYMBOL_GPL(lock_acquire); 5442 5443 void lock_release(struct lockdep_map *lock, unsigned long ip) 5444 { 5445 unsigned long flags; 5446 5447 trace_lock_release(lock, ip); 5448 5449 if (unlikely(!lockdep_enabled())) 5450 return; 5451 5452 raw_local_irq_save(flags); 5453 check_flags(flags); 5454 5455 lockdep_recursion_inc(); 5456 if (__lock_release(lock, ip)) 5457 check_chain_key(current); 5458 lockdep_recursion_finish(); 5459 raw_local_irq_restore(flags); 5460 } 5461 EXPORT_SYMBOL_GPL(lock_release); 5462 5463 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5464 { 5465 unsigned long flags; 5466 int ret = 0; 5467 5468 if (unlikely(!lockdep_enabled())) 5469 return 1; /* avoid false negative lockdep_assert_held() */ 5470 5471 raw_local_irq_save(flags); 5472 check_flags(flags); 5473 5474 lockdep_recursion_inc(); 5475 ret = __lock_is_held(lock, read); 5476 lockdep_recursion_finish(); 5477 raw_local_irq_restore(flags); 5478 5479 return ret; 5480 } 5481 EXPORT_SYMBOL_GPL(lock_is_held_type); 5482 NOKPROBE_SYMBOL(lock_is_held_type); 5483 5484 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5485 { 5486 struct pin_cookie cookie = NIL_COOKIE; 5487 unsigned long flags; 5488 5489 if (unlikely(!lockdep_enabled())) 5490 return cookie; 5491 5492 raw_local_irq_save(flags); 5493 check_flags(flags); 5494 5495 lockdep_recursion_inc(); 5496 cookie = __lock_pin_lock(lock); 5497 lockdep_recursion_finish(); 5498 raw_local_irq_restore(flags); 5499 5500 return cookie; 5501 } 5502 EXPORT_SYMBOL_GPL(lock_pin_lock); 5503 5504 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5505 { 5506 unsigned long flags; 5507 5508 if (unlikely(!lockdep_enabled())) 5509 return; 5510 5511 raw_local_irq_save(flags); 5512 check_flags(flags); 5513 5514 lockdep_recursion_inc(); 5515 __lock_repin_lock(lock, cookie); 5516 lockdep_recursion_finish(); 5517 raw_local_irq_restore(flags); 5518 } 5519 EXPORT_SYMBOL_GPL(lock_repin_lock); 5520 5521 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5522 { 5523 unsigned long flags; 5524 5525 if (unlikely(!lockdep_enabled())) 5526 return; 5527 5528 raw_local_irq_save(flags); 5529 check_flags(flags); 5530 5531 lockdep_recursion_inc(); 5532 __lock_unpin_lock(lock, cookie); 5533 lockdep_recursion_finish(); 5534 raw_local_irq_restore(flags); 5535 } 5536 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5537 5538 #ifdef CONFIG_LOCK_STAT 5539 static void print_lock_contention_bug(struct task_struct *curr, 5540 struct lockdep_map *lock, 5541 unsigned long ip) 5542 { 5543 if (!debug_locks_off()) 5544 return; 5545 if (debug_locks_silent) 5546 return; 5547 5548 pr_warn("\n"); 5549 pr_warn("=================================\n"); 5550 pr_warn("WARNING: bad contention detected!\n"); 5551 print_kernel_ident(); 5552 pr_warn("---------------------------------\n"); 5553 pr_warn("%s/%d is trying to contend lock (", 5554 curr->comm, task_pid_nr(curr)); 5555 print_lockdep_cache(lock); 5556 pr_cont(") at:\n"); 5557 print_ip_sym(KERN_WARNING, ip); 5558 pr_warn("but there are no locks held!\n"); 5559 pr_warn("\nother info that might help us debug this:\n"); 5560 lockdep_print_held_locks(curr); 5561 5562 pr_warn("\nstack backtrace:\n"); 5563 dump_stack(); 5564 } 5565 5566 static void 5567 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5568 { 5569 struct task_struct *curr = current; 5570 struct held_lock *hlock; 5571 struct lock_class_stats *stats; 5572 unsigned int depth; 5573 int i, contention_point, contending_point; 5574 5575 depth = curr->lockdep_depth; 5576 /* 5577 * Whee, we contended on this lock, except it seems we're not 5578 * actually trying to acquire anything much at all.. 5579 */ 5580 if (DEBUG_LOCKS_WARN_ON(!depth)) 5581 return; 5582 5583 hlock = find_held_lock(curr, lock, depth, &i); 5584 if (!hlock) { 5585 print_lock_contention_bug(curr, lock, ip); 5586 return; 5587 } 5588 5589 if (hlock->instance != lock) 5590 return; 5591 5592 hlock->waittime_stamp = lockstat_clock(); 5593 5594 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5595 contending_point = lock_point(hlock_class(hlock)->contending_point, 5596 lock->ip); 5597 5598 stats = get_lock_stats(hlock_class(hlock)); 5599 if (contention_point < LOCKSTAT_POINTS) 5600 stats->contention_point[contention_point]++; 5601 if (contending_point < LOCKSTAT_POINTS) 5602 stats->contending_point[contending_point]++; 5603 if (lock->cpu != smp_processor_id()) 5604 stats->bounces[bounce_contended + !!hlock->read]++; 5605 } 5606 5607 static void 5608 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5609 { 5610 struct task_struct *curr = current; 5611 struct held_lock *hlock; 5612 struct lock_class_stats *stats; 5613 unsigned int depth; 5614 u64 now, waittime = 0; 5615 int i, cpu; 5616 5617 depth = curr->lockdep_depth; 5618 /* 5619 * Yay, we acquired ownership of this lock we didn't try to 5620 * acquire, how the heck did that happen? 5621 */ 5622 if (DEBUG_LOCKS_WARN_ON(!depth)) 5623 return; 5624 5625 hlock = find_held_lock(curr, lock, depth, &i); 5626 if (!hlock) { 5627 print_lock_contention_bug(curr, lock, _RET_IP_); 5628 return; 5629 } 5630 5631 if (hlock->instance != lock) 5632 return; 5633 5634 cpu = smp_processor_id(); 5635 if (hlock->waittime_stamp) { 5636 now = lockstat_clock(); 5637 waittime = now - hlock->waittime_stamp; 5638 hlock->holdtime_stamp = now; 5639 } 5640 5641 stats = get_lock_stats(hlock_class(hlock)); 5642 if (waittime) { 5643 if (hlock->read) 5644 lock_time_inc(&stats->read_waittime, waittime); 5645 else 5646 lock_time_inc(&stats->write_waittime, waittime); 5647 } 5648 if (lock->cpu != cpu) 5649 stats->bounces[bounce_acquired + !!hlock->read]++; 5650 5651 lock->cpu = cpu; 5652 lock->ip = ip; 5653 } 5654 5655 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5656 { 5657 unsigned long flags; 5658 5659 trace_lock_acquired(lock, ip); 5660 5661 if (unlikely(!lock_stat || !lockdep_enabled())) 5662 return; 5663 5664 raw_local_irq_save(flags); 5665 check_flags(flags); 5666 lockdep_recursion_inc(); 5667 __lock_contended(lock, ip); 5668 lockdep_recursion_finish(); 5669 raw_local_irq_restore(flags); 5670 } 5671 EXPORT_SYMBOL_GPL(lock_contended); 5672 5673 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5674 { 5675 unsigned long flags; 5676 5677 trace_lock_contended(lock, ip); 5678 5679 if (unlikely(!lock_stat || !lockdep_enabled())) 5680 return; 5681 5682 raw_local_irq_save(flags); 5683 check_flags(flags); 5684 lockdep_recursion_inc(); 5685 __lock_acquired(lock, ip); 5686 lockdep_recursion_finish(); 5687 raw_local_irq_restore(flags); 5688 } 5689 EXPORT_SYMBOL_GPL(lock_acquired); 5690 #endif 5691 5692 /* 5693 * Used by the testsuite, sanitize the validator state 5694 * after a simulated failure: 5695 */ 5696 5697 void lockdep_reset(void) 5698 { 5699 unsigned long flags; 5700 int i; 5701 5702 raw_local_irq_save(flags); 5703 lockdep_init_task(current); 5704 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5705 nr_hardirq_chains = 0; 5706 nr_softirq_chains = 0; 5707 nr_process_chains = 0; 5708 debug_locks = 1; 5709 for (i = 0; i < CHAINHASH_SIZE; i++) 5710 INIT_HLIST_HEAD(chainhash_table + i); 5711 raw_local_irq_restore(flags); 5712 } 5713 5714 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5715 static void remove_class_from_lock_chain(struct pending_free *pf, 5716 struct lock_chain *chain, 5717 struct lock_class *class) 5718 { 5719 #ifdef CONFIG_PROVE_LOCKING 5720 int i; 5721 5722 for (i = chain->base; i < chain->base + chain->depth; i++) { 5723 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5724 continue; 5725 /* 5726 * Each lock class occurs at most once in a lock chain so once 5727 * we found a match we can break out of this loop. 5728 */ 5729 goto free_lock_chain; 5730 } 5731 /* Since the chain has not been modified, return. */ 5732 return; 5733 5734 free_lock_chain: 5735 free_chain_hlocks(chain->base, chain->depth); 5736 /* Overwrite the chain key for concurrent RCU readers. */ 5737 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5738 dec_chains(chain->irq_context); 5739 5740 /* 5741 * Note: calling hlist_del_rcu() from inside a 5742 * hlist_for_each_entry_rcu() loop is safe. 5743 */ 5744 hlist_del_rcu(&chain->entry); 5745 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5746 nr_zapped_lock_chains++; 5747 #endif 5748 } 5749 5750 /* Must be called with the graph lock held. */ 5751 static void remove_class_from_lock_chains(struct pending_free *pf, 5752 struct lock_class *class) 5753 { 5754 struct lock_chain *chain; 5755 struct hlist_head *head; 5756 int i; 5757 5758 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5759 head = chainhash_table + i; 5760 hlist_for_each_entry_rcu(chain, head, entry) { 5761 remove_class_from_lock_chain(pf, chain, class); 5762 } 5763 } 5764 } 5765 5766 /* 5767 * Remove all references to a lock class. The caller must hold the graph lock. 5768 */ 5769 static void zap_class(struct pending_free *pf, struct lock_class *class) 5770 { 5771 struct lock_list *entry; 5772 int i; 5773 5774 WARN_ON_ONCE(!class->key); 5775 5776 /* 5777 * Remove all dependencies this lock is 5778 * involved in: 5779 */ 5780 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5781 entry = list_entries + i; 5782 if (entry->class != class && entry->links_to != class) 5783 continue; 5784 __clear_bit(i, list_entries_in_use); 5785 nr_list_entries--; 5786 list_del_rcu(&entry->entry); 5787 } 5788 if (list_empty(&class->locks_after) && 5789 list_empty(&class->locks_before)) { 5790 list_move_tail(&class->lock_entry, &pf->zapped); 5791 hlist_del_rcu(&class->hash_entry); 5792 WRITE_ONCE(class->key, NULL); 5793 WRITE_ONCE(class->name, NULL); 5794 nr_lock_classes--; 5795 __clear_bit(class - lock_classes, lock_classes_in_use); 5796 } else { 5797 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 5798 class->name); 5799 } 5800 5801 remove_class_from_lock_chains(pf, class); 5802 nr_zapped_classes++; 5803 } 5804 5805 static void reinit_class(struct lock_class *class) 5806 { 5807 void *const p = class; 5808 const unsigned int offset = offsetof(struct lock_class, key); 5809 5810 WARN_ON_ONCE(!class->lock_entry.next); 5811 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5812 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5813 memset(p + offset, 0, sizeof(*class) - offset); 5814 WARN_ON_ONCE(!class->lock_entry.next); 5815 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5816 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5817 } 5818 5819 static inline int within(const void *addr, void *start, unsigned long size) 5820 { 5821 return addr >= start && addr < start + size; 5822 } 5823 5824 static bool inside_selftest(void) 5825 { 5826 return current == lockdep_selftest_task_struct; 5827 } 5828 5829 /* The caller must hold the graph lock. */ 5830 static struct pending_free *get_pending_free(void) 5831 { 5832 return delayed_free.pf + delayed_free.index; 5833 } 5834 5835 static void free_zapped_rcu(struct rcu_head *cb); 5836 5837 /* 5838 * Schedule an RCU callback if no RCU callback is pending. Must be called with 5839 * the graph lock held. 5840 */ 5841 static void call_rcu_zapped(struct pending_free *pf) 5842 { 5843 WARN_ON_ONCE(inside_selftest()); 5844 5845 if (list_empty(&pf->zapped)) 5846 return; 5847 5848 if (delayed_free.scheduled) 5849 return; 5850 5851 delayed_free.scheduled = true; 5852 5853 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 5854 delayed_free.index ^= 1; 5855 5856 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 5857 } 5858 5859 /* The caller must hold the graph lock. May be called from RCU context. */ 5860 static void __free_zapped_classes(struct pending_free *pf) 5861 { 5862 struct lock_class *class; 5863 5864 check_data_structures(); 5865 5866 list_for_each_entry(class, &pf->zapped, lock_entry) 5867 reinit_class(class); 5868 5869 list_splice_init(&pf->zapped, &free_lock_classes); 5870 5871 #ifdef CONFIG_PROVE_LOCKING 5872 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 5873 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 5874 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 5875 #endif 5876 } 5877 5878 static void free_zapped_rcu(struct rcu_head *ch) 5879 { 5880 struct pending_free *pf; 5881 unsigned long flags; 5882 5883 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 5884 return; 5885 5886 raw_local_irq_save(flags); 5887 lockdep_lock(); 5888 5889 /* closed head */ 5890 pf = delayed_free.pf + (delayed_free.index ^ 1); 5891 __free_zapped_classes(pf); 5892 delayed_free.scheduled = false; 5893 5894 /* 5895 * If there's anything on the open list, close and start a new callback. 5896 */ 5897 call_rcu_zapped(delayed_free.pf + delayed_free.index); 5898 5899 lockdep_unlock(); 5900 raw_local_irq_restore(flags); 5901 } 5902 5903 /* 5904 * Remove all lock classes from the class hash table and from the 5905 * all_lock_classes list whose key or name is in the address range [start, 5906 * start + size). Move these lock classes to the zapped_classes list. Must 5907 * be called with the graph lock held. 5908 */ 5909 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 5910 unsigned long size) 5911 { 5912 struct lock_class *class; 5913 struct hlist_head *head; 5914 int i; 5915 5916 /* Unhash all classes that were created by a module. */ 5917 for (i = 0; i < CLASSHASH_SIZE; i++) { 5918 head = classhash_table + i; 5919 hlist_for_each_entry_rcu(class, head, hash_entry) { 5920 if (!within(class->key, start, size) && 5921 !within(class->name, start, size)) 5922 continue; 5923 zap_class(pf, class); 5924 } 5925 } 5926 } 5927 5928 /* 5929 * Used in module.c to remove lock classes from memory that is going to be 5930 * freed; and possibly re-used by other modules. 5931 * 5932 * We will have had one synchronize_rcu() before getting here, so we're 5933 * guaranteed nobody will look up these exact classes -- they're properly dead 5934 * but still allocated. 5935 */ 5936 static void lockdep_free_key_range_reg(void *start, unsigned long size) 5937 { 5938 struct pending_free *pf; 5939 unsigned long flags; 5940 5941 init_data_structures_once(); 5942 5943 raw_local_irq_save(flags); 5944 lockdep_lock(); 5945 pf = get_pending_free(); 5946 __lockdep_free_key_range(pf, start, size); 5947 call_rcu_zapped(pf); 5948 lockdep_unlock(); 5949 raw_local_irq_restore(flags); 5950 5951 /* 5952 * Wait for any possible iterators from look_up_lock_class() to pass 5953 * before continuing to free the memory they refer to. 5954 */ 5955 synchronize_rcu(); 5956 } 5957 5958 /* 5959 * Free all lockdep keys in the range [start, start+size). Does not sleep. 5960 * Ignores debug_locks. Must only be used by the lockdep selftests. 5961 */ 5962 static void lockdep_free_key_range_imm(void *start, unsigned long size) 5963 { 5964 struct pending_free *pf = delayed_free.pf; 5965 unsigned long flags; 5966 5967 init_data_structures_once(); 5968 5969 raw_local_irq_save(flags); 5970 lockdep_lock(); 5971 __lockdep_free_key_range(pf, start, size); 5972 __free_zapped_classes(pf); 5973 lockdep_unlock(); 5974 raw_local_irq_restore(flags); 5975 } 5976 5977 void lockdep_free_key_range(void *start, unsigned long size) 5978 { 5979 init_data_structures_once(); 5980 5981 if (inside_selftest()) 5982 lockdep_free_key_range_imm(start, size); 5983 else 5984 lockdep_free_key_range_reg(start, size); 5985 } 5986 5987 /* 5988 * Check whether any element of the @lock->class_cache[] array refers to a 5989 * registered lock class. The caller must hold either the graph lock or the 5990 * RCU read lock. 5991 */ 5992 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 5993 { 5994 struct lock_class *class; 5995 struct hlist_head *head; 5996 int i, j; 5997 5998 for (i = 0; i < CLASSHASH_SIZE; i++) { 5999 head = classhash_table + i; 6000 hlist_for_each_entry_rcu(class, head, hash_entry) { 6001 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6002 if (lock->class_cache[j] == class) 6003 return true; 6004 } 6005 } 6006 return false; 6007 } 6008 6009 /* The caller must hold the graph lock. Does not sleep. */ 6010 static void __lockdep_reset_lock(struct pending_free *pf, 6011 struct lockdep_map *lock) 6012 { 6013 struct lock_class *class; 6014 int j; 6015 6016 /* 6017 * Remove all classes this lock might have: 6018 */ 6019 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6020 /* 6021 * If the class exists we look it up and zap it: 6022 */ 6023 class = look_up_lock_class(lock, j); 6024 if (class) 6025 zap_class(pf, class); 6026 } 6027 /* 6028 * Debug check: in the end all mapped classes should 6029 * be gone. 6030 */ 6031 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6032 debug_locks_off(); 6033 } 6034 6035 /* 6036 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6037 * released data structures from RCU context. 6038 */ 6039 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6040 { 6041 struct pending_free *pf; 6042 unsigned long flags; 6043 int locked; 6044 6045 raw_local_irq_save(flags); 6046 locked = graph_lock(); 6047 if (!locked) 6048 goto out_irq; 6049 6050 pf = get_pending_free(); 6051 __lockdep_reset_lock(pf, lock); 6052 call_rcu_zapped(pf); 6053 6054 graph_unlock(); 6055 out_irq: 6056 raw_local_irq_restore(flags); 6057 } 6058 6059 /* 6060 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6061 * lockdep selftests. 6062 */ 6063 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6064 { 6065 struct pending_free *pf = delayed_free.pf; 6066 unsigned long flags; 6067 6068 raw_local_irq_save(flags); 6069 lockdep_lock(); 6070 __lockdep_reset_lock(pf, lock); 6071 __free_zapped_classes(pf); 6072 lockdep_unlock(); 6073 raw_local_irq_restore(flags); 6074 } 6075 6076 void lockdep_reset_lock(struct lockdep_map *lock) 6077 { 6078 init_data_structures_once(); 6079 6080 if (inside_selftest()) 6081 lockdep_reset_lock_imm(lock); 6082 else 6083 lockdep_reset_lock_reg(lock); 6084 } 6085 6086 /* Unregister a dynamically allocated key. */ 6087 void lockdep_unregister_key(struct lock_class_key *key) 6088 { 6089 struct hlist_head *hash_head = keyhashentry(key); 6090 struct lock_class_key *k; 6091 struct pending_free *pf; 6092 unsigned long flags; 6093 bool found = false; 6094 6095 might_sleep(); 6096 6097 if (WARN_ON_ONCE(static_obj(key))) 6098 return; 6099 6100 raw_local_irq_save(flags); 6101 if (!graph_lock()) 6102 goto out_irq; 6103 6104 pf = get_pending_free(); 6105 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6106 if (k == key) { 6107 hlist_del_rcu(&k->hash_entry); 6108 found = true; 6109 break; 6110 } 6111 } 6112 WARN_ON_ONCE(!found); 6113 __lockdep_free_key_range(pf, key, 1); 6114 call_rcu_zapped(pf); 6115 graph_unlock(); 6116 out_irq: 6117 raw_local_irq_restore(flags); 6118 6119 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6120 synchronize_rcu(); 6121 } 6122 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6123 6124 void __init lockdep_init(void) 6125 { 6126 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6127 6128 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6129 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6130 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6131 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6132 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6133 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6134 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6135 6136 printk(" memory used by lock dependency info: %zu kB\n", 6137 (sizeof(lock_classes) + 6138 sizeof(lock_classes_in_use) + 6139 sizeof(classhash_table) + 6140 sizeof(list_entries) + 6141 sizeof(list_entries_in_use) + 6142 sizeof(chainhash_table) + 6143 sizeof(delayed_free) 6144 #ifdef CONFIG_PROVE_LOCKING 6145 + sizeof(lock_cq) 6146 + sizeof(lock_chains) 6147 + sizeof(lock_chains_in_use) 6148 + sizeof(chain_hlocks) 6149 #endif 6150 ) / 1024 6151 ); 6152 6153 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6154 printk(" memory used for stack traces: %zu kB\n", 6155 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6156 ); 6157 #endif 6158 6159 printk(" per task-struct memory footprint: %zu bytes\n", 6160 sizeof(((struct task_struct *)NULL)->held_locks)); 6161 } 6162 6163 static void 6164 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6165 const void *mem_to, struct held_lock *hlock) 6166 { 6167 if (!debug_locks_off()) 6168 return; 6169 if (debug_locks_silent) 6170 return; 6171 6172 pr_warn("\n"); 6173 pr_warn("=========================\n"); 6174 pr_warn("WARNING: held lock freed!\n"); 6175 print_kernel_ident(); 6176 pr_warn("-------------------------\n"); 6177 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6178 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6179 print_lock(hlock); 6180 lockdep_print_held_locks(curr); 6181 6182 pr_warn("\nstack backtrace:\n"); 6183 dump_stack(); 6184 } 6185 6186 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6187 const void* lock_from, unsigned long lock_len) 6188 { 6189 return lock_from + lock_len <= mem_from || 6190 mem_from + mem_len <= lock_from; 6191 } 6192 6193 /* 6194 * Called when kernel memory is freed (or unmapped), or if a lock 6195 * is destroyed or reinitialized - this code checks whether there is 6196 * any held lock in the memory range of <from> to <to>: 6197 */ 6198 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6199 { 6200 struct task_struct *curr = current; 6201 struct held_lock *hlock; 6202 unsigned long flags; 6203 int i; 6204 6205 if (unlikely(!debug_locks)) 6206 return; 6207 6208 raw_local_irq_save(flags); 6209 for (i = 0; i < curr->lockdep_depth; i++) { 6210 hlock = curr->held_locks + i; 6211 6212 if (not_in_range(mem_from, mem_len, hlock->instance, 6213 sizeof(*hlock->instance))) 6214 continue; 6215 6216 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6217 break; 6218 } 6219 raw_local_irq_restore(flags); 6220 } 6221 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6222 6223 static void print_held_locks_bug(void) 6224 { 6225 if (!debug_locks_off()) 6226 return; 6227 if (debug_locks_silent) 6228 return; 6229 6230 pr_warn("\n"); 6231 pr_warn("====================================\n"); 6232 pr_warn("WARNING: %s/%d still has locks held!\n", 6233 current->comm, task_pid_nr(current)); 6234 print_kernel_ident(); 6235 pr_warn("------------------------------------\n"); 6236 lockdep_print_held_locks(current); 6237 pr_warn("\nstack backtrace:\n"); 6238 dump_stack(); 6239 } 6240 6241 void debug_check_no_locks_held(void) 6242 { 6243 if (unlikely(current->lockdep_depth > 0)) 6244 print_held_locks_bug(); 6245 } 6246 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6247 6248 #ifdef __KERNEL__ 6249 void debug_show_all_locks(void) 6250 { 6251 struct task_struct *g, *p; 6252 6253 if (unlikely(!debug_locks)) { 6254 pr_warn("INFO: lockdep is turned off.\n"); 6255 return; 6256 } 6257 pr_warn("\nShowing all locks held in the system:\n"); 6258 6259 rcu_read_lock(); 6260 for_each_process_thread(g, p) { 6261 if (!p->lockdep_depth) 6262 continue; 6263 lockdep_print_held_locks(p); 6264 touch_nmi_watchdog(); 6265 touch_all_softlockup_watchdogs(); 6266 } 6267 rcu_read_unlock(); 6268 6269 pr_warn("\n"); 6270 pr_warn("=============================================\n\n"); 6271 } 6272 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6273 #endif 6274 6275 /* 6276 * Careful: only use this function if you are sure that 6277 * the task cannot run in parallel! 6278 */ 6279 void debug_show_held_locks(struct task_struct *task) 6280 { 6281 if (unlikely(!debug_locks)) { 6282 printk("INFO: lockdep is turned off.\n"); 6283 return; 6284 } 6285 lockdep_print_held_locks(task); 6286 } 6287 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6288 6289 asmlinkage __visible void lockdep_sys_exit(void) 6290 { 6291 struct task_struct *curr = current; 6292 6293 if (unlikely(curr->lockdep_depth)) { 6294 if (!debug_locks_off()) 6295 return; 6296 pr_warn("\n"); 6297 pr_warn("================================================\n"); 6298 pr_warn("WARNING: lock held when returning to user space!\n"); 6299 print_kernel_ident(); 6300 pr_warn("------------------------------------------------\n"); 6301 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6302 curr->comm, curr->pid); 6303 lockdep_print_held_locks(curr); 6304 } 6305 6306 /* 6307 * The lock history for each syscall should be independent. So wipe the 6308 * slate clean on return to userspace. 6309 */ 6310 lockdep_invariant_state(false); 6311 } 6312 6313 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6314 { 6315 struct task_struct *curr = current; 6316 6317 /* Note: the following can be executed concurrently, so be careful. */ 6318 pr_warn("\n"); 6319 pr_warn("=============================\n"); 6320 pr_warn("WARNING: suspicious RCU usage\n"); 6321 print_kernel_ident(); 6322 pr_warn("-----------------------------\n"); 6323 pr_warn("%s:%d %s!\n", file, line, s); 6324 pr_warn("\nother info that might help us debug this:\n\n"); 6325 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 6326 !rcu_lockdep_current_cpu_online() 6327 ? "RCU used illegally from offline CPU!\n" 6328 : "", 6329 rcu_scheduler_active, debug_locks); 6330 6331 /* 6332 * If a CPU is in the RCU-free window in idle (ie: in the section 6333 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 6334 * considers that CPU to be in an "extended quiescent state", 6335 * which means that RCU will be completely ignoring that CPU. 6336 * Therefore, rcu_read_lock() and friends have absolutely no 6337 * effect on a CPU running in that state. In other words, even if 6338 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6339 * delete data structures out from under it. RCU really has no 6340 * choice here: we need to keep an RCU-free window in idle where 6341 * the CPU may possibly enter into low power mode. This way we can 6342 * notice an extended quiescent state to other CPUs that started a grace 6343 * period. Otherwise we would delay any grace period as long as we run 6344 * in the idle task. 6345 * 6346 * So complain bitterly if someone does call rcu_read_lock(), 6347 * rcu_read_lock_bh() and so on from extended quiescent states. 6348 */ 6349 if (!rcu_is_watching()) 6350 pr_warn("RCU used illegally from extended quiescent state!\n"); 6351 6352 lockdep_print_held_locks(curr); 6353 pr_warn("\nstack backtrace:\n"); 6354 dump_stack(); 6355 } 6356 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6357