1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 59 #include <asm/sections.h> 60 61 #include "lockdep_internals.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 82 83 static __always_inline bool lockdep_enabled(void) 84 { 85 if (!debug_locks) 86 return false; 87 88 if (this_cpu_read(lockdep_recursion)) 89 return false; 90 91 if (current->lockdep_recursion) 92 return false; 93 94 return true; 95 } 96 97 /* 98 * lockdep_lock: protects the lockdep graph, the hashes and the 99 * class/list/hash allocators. 100 * 101 * This is one of the rare exceptions where it's justified 102 * to use a raw spinlock - we really dont want the spinlock 103 * code to recurse back into the lockdep code... 104 */ 105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 106 static struct task_struct *__owner; 107 108 static inline void lockdep_lock(void) 109 { 110 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 111 112 __this_cpu_inc(lockdep_recursion); 113 arch_spin_lock(&__lock); 114 __owner = current; 115 } 116 117 static inline void lockdep_unlock(void) 118 { 119 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 120 121 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 122 return; 123 124 __owner = NULL; 125 arch_spin_unlock(&__lock); 126 __this_cpu_dec(lockdep_recursion); 127 } 128 129 static inline bool lockdep_assert_locked(void) 130 { 131 return DEBUG_LOCKS_WARN_ON(__owner != current); 132 } 133 134 static struct task_struct *lockdep_selftest_task_struct; 135 136 137 static int graph_lock(void) 138 { 139 lockdep_lock(); 140 /* 141 * Make sure that if another CPU detected a bug while 142 * walking the graph we dont change it (while the other 143 * CPU is busy printing out stuff with the graph lock 144 * dropped already) 145 */ 146 if (!debug_locks) { 147 lockdep_unlock(); 148 return 0; 149 } 150 return 1; 151 } 152 153 static inline void graph_unlock(void) 154 { 155 lockdep_unlock(); 156 } 157 158 /* 159 * Turn lock debugging off and return with 0 if it was off already, 160 * and also release the graph lock: 161 */ 162 static inline int debug_locks_off_graph_unlock(void) 163 { 164 int ret = debug_locks_off(); 165 166 lockdep_unlock(); 167 168 return ret; 169 } 170 171 unsigned long nr_list_entries; 172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 174 175 /* 176 * All data structures here are protected by the global debug_lock. 177 * 178 * nr_lock_classes is the number of elements of lock_classes[] that is 179 * in use. 180 */ 181 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 182 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 184 unsigned long nr_lock_classes; 185 unsigned long nr_zapped_classes; 186 #ifndef CONFIG_DEBUG_LOCKDEP 187 static 188 #endif 189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 191 192 static inline struct lock_class *hlock_class(struct held_lock *hlock) 193 { 194 unsigned int class_idx = hlock->class_idx; 195 196 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 197 barrier(); 198 199 if (!test_bit(class_idx, lock_classes_in_use)) { 200 /* 201 * Someone passed in garbage, we give up. 202 */ 203 DEBUG_LOCKS_WARN_ON(1); 204 return NULL; 205 } 206 207 /* 208 * At this point, if the passed hlock->class_idx is still garbage, 209 * we just have to live with it 210 */ 211 return lock_classes + class_idx; 212 } 213 214 #ifdef CONFIG_LOCK_STAT 215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 216 217 static inline u64 lockstat_clock(void) 218 { 219 return local_clock(); 220 } 221 222 static int lock_point(unsigned long points[], unsigned long ip) 223 { 224 int i; 225 226 for (i = 0; i < LOCKSTAT_POINTS; i++) { 227 if (points[i] == 0) { 228 points[i] = ip; 229 break; 230 } 231 if (points[i] == ip) 232 break; 233 } 234 235 return i; 236 } 237 238 static void lock_time_inc(struct lock_time *lt, u64 time) 239 { 240 if (time > lt->max) 241 lt->max = time; 242 243 if (time < lt->min || !lt->nr) 244 lt->min = time; 245 246 lt->total += time; 247 lt->nr++; 248 } 249 250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 251 { 252 if (!src->nr) 253 return; 254 255 if (src->max > dst->max) 256 dst->max = src->max; 257 258 if (src->min < dst->min || !dst->nr) 259 dst->min = src->min; 260 261 dst->total += src->total; 262 dst->nr += src->nr; 263 } 264 265 struct lock_class_stats lock_stats(struct lock_class *class) 266 { 267 struct lock_class_stats stats; 268 int cpu, i; 269 270 memset(&stats, 0, sizeof(struct lock_class_stats)); 271 for_each_possible_cpu(cpu) { 272 struct lock_class_stats *pcs = 273 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 274 275 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 276 stats.contention_point[i] += pcs->contention_point[i]; 277 278 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 279 stats.contending_point[i] += pcs->contending_point[i]; 280 281 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 282 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 283 284 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 285 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 286 287 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 288 stats.bounces[i] += pcs->bounces[i]; 289 } 290 291 return stats; 292 } 293 294 void clear_lock_stats(struct lock_class *class) 295 { 296 int cpu; 297 298 for_each_possible_cpu(cpu) { 299 struct lock_class_stats *cpu_stats = 300 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 301 302 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 303 } 304 memset(class->contention_point, 0, sizeof(class->contention_point)); 305 memset(class->contending_point, 0, sizeof(class->contending_point)); 306 } 307 308 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 309 { 310 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 311 } 312 313 static void lock_release_holdtime(struct held_lock *hlock) 314 { 315 struct lock_class_stats *stats; 316 u64 holdtime; 317 318 if (!lock_stat) 319 return; 320 321 holdtime = lockstat_clock() - hlock->holdtime_stamp; 322 323 stats = get_lock_stats(hlock_class(hlock)); 324 if (hlock->read) 325 lock_time_inc(&stats->read_holdtime, holdtime); 326 else 327 lock_time_inc(&stats->write_holdtime, holdtime); 328 } 329 #else 330 static inline void lock_release_holdtime(struct held_lock *hlock) 331 { 332 } 333 #endif 334 335 /* 336 * We keep a global list of all lock classes. The list is only accessed with 337 * the lockdep spinlock lock held. free_lock_classes is a list with free 338 * elements. These elements are linked together by the lock_entry member in 339 * struct lock_class. 340 */ 341 LIST_HEAD(all_lock_classes); 342 static LIST_HEAD(free_lock_classes); 343 344 /** 345 * struct pending_free - information about data structures about to be freed 346 * @zapped: Head of a list with struct lock_class elements. 347 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 348 * are about to be freed. 349 */ 350 struct pending_free { 351 struct list_head zapped; 352 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 353 }; 354 355 /** 356 * struct delayed_free - data structures used for delayed freeing 357 * 358 * A data structure for delayed freeing of data structures that may be 359 * accessed by RCU readers at the time these were freed. 360 * 361 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 362 * @index: Index of @pf to which freed data structures are added. 363 * @scheduled: Whether or not an RCU callback has been scheduled. 364 * @pf: Array with information about data structures about to be freed. 365 */ 366 static struct delayed_free { 367 struct rcu_head rcu_head; 368 int index; 369 int scheduled; 370 struct pending_free pf[2]; 371 } delayed_free; 372 373 /* 374 * The lockdep classes are in a hash-table as well, for fast lookup: 375 */ 376 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 377 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 378 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 379 #define classhashentry(key) (classhash_table + __classhashfn((key))) 380 381 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 382 383 /* 384 * We put the lock dependency chains into a hash-table as well, to cache 385 * their existence: 386 */ 387 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 388 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 389 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 390 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 391 392 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 393 394 /* 395 * the id of held_lock 396 */ 397 static inline u16 hlock_id(struct held_lock *hlock) 398 { 399 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 400 401 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 402 } 403 404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 405 { 406 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 407 } 408 409 /* 410 * The hash key of the lock dependency chains is a hash itself too: 411 * it's a hash of all locks taken up to that lock, including that lock. 412 * It's a 64-bit hash, because it's important for the keys to be 413 * unique. 414 */ 415 static inline u64 iterate_chain_key(u64 key, u32 idx) 416 { 417 u32 k0 = key, k1 = key >> 32; 418 419 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 420 421 return k0 | (u64)k1 << 32; 422 } 423 424 void lockdep_init_task(struct task_struct *task) 425 { 426 task->lockdep_depth = 0; /* no locks held yet */ 427 task->curr_chain_key = INITIAL_CHAIN_KEY; 428 task->lockdep_recursion = 0; 429 } 430 431 static __always_inline void lockdep_recursion_inc(void) 432 { 433 __this_cpu_inc(lockdep_recursion); 434 } 435 436 static __always_inline void lockdep_recursion_finish(void) 437 { 438 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 439 __this_cpu_write(lockdep_recursion, 0); 440 } 441 442 void lockdep_set_selftest_task(struct task_struct *task) 443 { 444 lockdep_selftest_task_struct = task; 445 } 446 447 /* 448 * Debugging switches: 449 */ 450 451 #define VERBOSE 0 452 #define VERY_VERBOSE 0 453 454 #if VERBOSE 455 # define HARDIRQ_VERBOSE 1 456 # define SOFTIRQ_VERBOSE 1 457 #else 458 # define HARDIRQ_VERBOSE 0 459 # define SOFTIRQ_VERBOSE 0 460 #endif 461 462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 463 /* 464 * Quick filtering for interesting events: 465 */ 466 static int class_filter(struct lock_class *class) 467 { 468 #if 0 469 /* Example */ 470 if (class->name_version == 1 && 471 !strcmp(class->name, "lockname")) 472 return 1; 473 if (class->name_version == 1 && 474 !strcmp(class->name, "&struct->lockfield")) 475 return 1; 476 #endif 477 /* Filter everything else. 1 would be to allow everything else */ 478 return 0; 479 } 480 #endif 481 482 static int verbose(struct lock_class *class) 483 { 484 #if VERBOSE 485 return class_filter(class); 486 #endif 487 return 0; 488 } 489 490 static void print_lockdep_off(const char *bug_msg) 491 { 492 printk(KERN_DEBUG "%s\n", bug_msg); 493 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 494 #ifdef CONFIG_LOCK_STAT 495 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 496 #endif 497 } 498 499 unsigned long nr_stack_trace_entries; 500 501 #ifdef CONFIG_PROVE_LOCKING 502 /** 503 * struct lock_trace - single stack backtrace 504 * @hash_entry: Entry in a stack_trace_hash[] list. 505 * @hash: jhash() of @entries. 506 * @nr_entries: Number of entries in @entries. 507 * @entries: Actual stack backtrace. 508 */ 509 struct lock_trace { 510 struct hlist_node hash_entry; 511 u32 hash; 512 u32 nr_entries; 513 unsigned long entries[] __aligned(sizeof(unsigned long)); 514 }; 515 #define LOCK_TRACE_SIZE_IN_LONGS \ 516 (sizeof(struct lock_trace) / sizeof(unsigned long)) 517 /* 518 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 519 */ 520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 522 523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 524 { 525 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 526 memcmp(t1->entries, t2->entries, 527 t1->nr_entries * sizeof(t1->entries[0])) == 0; 528 } 529 530 static struct lock_trace *save_trace(void) 531 { 532 struct lock_trace *trace, *t2; 533 struct hlist_head *hash_head; 534 u32 hash; 535 int max_entries; 536 537 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 538 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 539 540 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 541 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 542 LOCK_TRACE_SIZE_IN_LONGS; 543 544 if (max_entries <= 0) { 545 if (!debug_locks_off_graph_unlock()) 546 return NULL; 547 548 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 549 dump_stack(); 550 551 return NULL; 552 } 553 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 554 555 hash = jhash(trace->entries, trace->nr_entries * 556 sizeof(trace->entries[0]), 0); 557 trace->hash = hash; 558 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 559 hlist_for_each_entry(t2, hash_head, hash_entry) { 560 if (traces_identical(trace, t2)) 561 return t2; 562 } 563 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 564 hlist_add_head(&trace->hash_entry, hash_head); 565 566 return trace; 567 } 568 569 /* Return the number of stack traces in the stack_trace[] array. */ 570 u64 lockdep_stack_trace_count(void) 571 { 572 struct lock_trace *trace; 573 u64 c = 0; 574 int i; 575 576 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 577 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 578 c++; 579 } 580 } 581 582 return c; 583 } 584 585 /* Return the number of stack hash chains that have at least one stack trace. */ 586 u64 lockdep_stack_hash_count(void) 587 { 588 u64 c = 0; 589 int i; 590 591 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 592 if (!hlist_empty(&stack_trace_hash[i])) 593 c++; 594 595 return c; 596 } 597 #endif 598 599 unsigned int nr_hardirq_chains; 600 unsigned int nr_softirq_chains; 601 unsigned int nr_process_chains; 602 unsigned int max_lockdep_depth; 603 604 #ifdef CONFIG_DEBUG_LOCKDEP 605 /* 606 * Various lockdep statistics: 607 */ 608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 609 #endif 610 611 #ifdef CONFIG_PROVE_LOCKING 612 /* 613 * Locking printouts: 614 */ 615 616 #define __USAGE(__STATE) \ 617 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 618 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 619 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 620 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 621 622 static const char *usage_str[] = 623 { 624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 625 #include "lockdep_states.h" 626 #undef LOCKDEP_STATE 627 [LOCK_USED] = "INITIAL USE", 628 [LOCK_USED_READ] = "INITIAL READ USE", 629 /* abused as string storage for verify_lock_unused() */ 630 [LOCK_USAGE_STATES] = "IN-NMI", 631 }; 632 #endif 633 634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 635 { 636 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 637 } 638 639 static inline unsigned long lock_flag(enum lock_usage_bit bit) 640 { 641 return 1UL << bit; 642 } 643 644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 645 { 646 /* 647 * The usage character defaults to '.' (i.e., irqs disabled and not in 648 * irq context), which is the safest usage category. 649 */ 650 char c = '.'; 651 652 /* 653 * The order of the following usage checks matters, which will 654 * result in the outcome character as follows: 655 * 656 * - '+': irq is enabled and not in irq context 657 * - '-': in irq context and irq is disabled 658 * - '?': in irq context and irq is enabled 659 */ 660 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 661 c = '+'; 662 if (class->usage_mask & lock_flag(bit)) 663 c = '?'; 664 } else if (class->usage_mask & lock_flag(bit)) 665 c = '-'; 666 667 return c; 668 } 669 670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 671 { 672 int i = 0; 673 674 #define LOCKDEP_STATE(__STATE) \ 675 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 676 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 677 #include "lockdep_states.h" 678 #undef LOCKDEP_STATE 679 680 usage[i] = '\0'; 681 } 682 683 static void __print_lock_name(struct lock_class *class) 684 { 685 char str[KSYM_NAME_LEN]; 686 const char *name; 687 688 name = class->name; 689 if (!name) { 690 name = __get_key_name(class->key, str); 691 printk(KERN_CONT "%s", name); 692 } else { 693 printk(KERN_CONT "%s", name); 694 if (class->name_version > 1) 695 printk(KERN_CONT "#%d", class->name_version); 696 if (class->subclass) 697 printk(KERN_CONT "/%d", class->subclass); 698 } 699 } 700 701 static void print_lock_name(struct lock_class *class) 702 { 703 char usage[LOCK_USAGE_CHARS]; 704 705 get_usage_chars(class, usage); 706 707 printk(KERN_CONT " ("); 708 __print_lock_name(class); 709 printk(KERN_CONT "){%s}-{%d:%d}", usage, 710 class->wait_type_outer ?: class->wait_type_inner, 711 class->wait_type_inner); 712 } 713 714 static void print_lockdep_cache(struct lockdep_map *lock) 715 { 716 const char *name; 717 char str[KSYM_NAME_LEN]; 718 719 name = lock->name; 720 if (!name) 721 name = __get_key_name(lock->key->subkeys, str); 722 723 printk(KERN_CONT "%s", name); 724 } 725 726 static void print_lock(struct held_lock *hlock) 727 { 728 /* 729 * We can be called locklessly through debug_show_all_locks() so be 730 * extra careful, the hlock might have been released and cleared. 731 * 732 * If this indeed happens, lets pretend it does not hurt to continue 733 * to print the lock unless the hlock class_idx does not point to a 734 * registered class. The rationale here is: since we don't attempt 735 * to distinguish whether we are in this situation, if it just 736 * happened we can't count on class_idx to tell either. 737 */ 738 struct lock_class *lock = hlock_class(hlock); 739 740 if (!lock) { 741 printk(KERN_CONT "<RELEASED>\n"); 742 return; 743 } 744 745 printk(KERN_CONT "%px", hlock->instance); 746 print_lock_name(lock); 747 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 748 } 749 750 static void lockdep_print_held_locks(struct task_struct *p) 751 { 752 int i, depth = READ_ONCE(p->lockdep_depth); 753 754 if (!depth) 755 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 756 else 757 printk("%d lock%s held by %s/%d:\n", depth, 758 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 759 /* 760 * It's not reliable to print a task's held locks if it's not sleeping 761 * and it's not the current task. 762 */ 763 if (p != current && task_is_running(p)) 764 return; 765 for (i = 0; i < depth; i++) { 766 printk(" #%d: ", i); 767 print_lock(p->held_locks + i); 768 } 769 } 770 771 static void print_kernel_ident(void) 772 { 773 printk("%s %.*s %s\n", init_utsname()->release, 774 (int)strcspn(init_utsname()->version, " "), 775 init_utsname()->version, 776 print_tainted()); 777 } 778 779 static int very_verbose(struct lock_class *class) 780 { 781 #if VERY_VERBOSE 782 return class_filter(class); 783 #endif 784 return 0; 785 } 786 787 /* 788 * Is this the address of a static object: 789 */ 790 #ifdef __KERNEL__ 791 static int static_obj(const void *obj) 792 { 793 unsigned long start = (unsigned long) &_stext, 794 end = (unsigned long) &_end, 795 addr = (unsigned long) obj; 796 797 if (arch_is_kernel_initmem_freed(addr)) 798 return 0; 799 800 /* 801 * static variable? 802 */ 803 if ((addr >= start) && (addr < end)) 804 return 1; 805 806 if (arch_is_kernel_data(addr)) 807 return 1; 808 809 /* 810 * in-kernel percpu var? 811 */ 812 if (is_kernel_percpu_address(addr)) 813 return 1; 814 815 /* 816 * module static or percpu var? 817 */ 818 return is_module_address(addr) || is_module_percpu_address(addr); 819 } 820 #endif 821 822 /* 823 * To make lock name printouts unique, we calculate a unique 824 * class->name_version generation counter. The caller must hold the graph 825 * lock. 826 */ 827 static int count_matching_names(struct lock_class *new_class) 828 { 829 struct lock_class *class; 830 int count = 0; 831 832 if (!new_class->name) 833 return 0; 834 835 list_for_each_entry(class, &all_lock_classes, lock_entry) { 836 if (new_class->key - new_class->subclass == class->key) 837 return class->name_version; 838 if (class->name && !strcmp(class->name, new_class->name)) 839 count = max(count, class->name_version); 840 } 841 842 return count + 1; 843 } 844 845 /* used from NMI context -- must be lockless */ 846 static noinstr struct lock_class * 847 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 848 { 849 struct lockdep_subclass_key *key; 850 struct hlist_head *hash_head; 851 struct lock_class *class; 852 853 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 854 instrumentation_begin(); 855 debug_locks_off(); 856 printk(KERN_ERR 857 "BUG: looking up invalid subclass: %u\n", subclass); 858 printk(KERN_ERR 859 "turning off the locking correctness validator.\n"); 860 dump_stack(); 861 instrumentation_end(); 862 return NULL; 863 } 864 865 /* 866 * If it is not initialised then it has never been locked, 867 * so it won't be present in the hash table. 868 */ 869 if (unlikely(!lock->key)) 870 return NULL; 871 872 /* 873 * NOTE: the class-key must be unique. For dynamic locks, a static 874 * lock_class_key variable is passed in through the mutex_init() 875 * (or spin_lock_init()) call - which acts as the key. For static 876 * locks we use the lock object itself as the key. 877 */ 878 BUILD_BUG_ON(sizeof(struct lock_class_key) > 879 sizeof(struct lockdep_map)); 880 881 key = lock->key->subkeys + subclass; 882 883 hash_head = classhashentry(key); 884 885 /* 886 * We do an RCU walk of the hash, see lockdep_free_key_range(). 887 */ 888 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 889 return NULL; 890 891 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 892 if (class->key == key) { 893 /* 894 * Huh! same key, different name? Did someone trample 895 * on some memory? We're most confused. 896 */ 897 WARN_ON_ONCE(class->name != lock->name && 898 lock->key != &__lockdep_no_validate__); 899 return class; 900 } 901 } 902 903 return NULL; 904 } 905 906 /* 907 * Static locks do not have their class-keys yet - for them the key is 908 * the lock object itself. If the lock is in the per cpu area, the 909 * canonical address of the lock (per cpu offset removed) is used. 910 */ 911 static bool assign_lock_key(struct lockdep_map *lock) 912 { 913 unsigned long can_addr, addr = (unsigned long)lock; 914 915 #ifdef __KERNEL__ 916 /* 917 * lockdep_free_key_range() assumes that struct lock_class_key 918 * objects do not overlap. Since we use the address of lock 919 * objects as class key for static objects, check whether the 920 * size of lock_class_key objects does not exceed the size of 921 * the smallest lock object. 922 */ 923 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 924 #endif 925 926 if (__is_kernel_percpu_address(addr, &can_addr)) 927 lock->key = (void *)can_addr; 928 else if (__is_module_percpu_address(addr, &can_addr)) 929 lock->key = (void *)can_addr; 930 else if (static_obj(lock)) 931 lock->key = (void *)lock; 932 else { 933 /* Debug-check: all keys must be persistent! */ 934 debug_locks_off(); 935 pr_err("INFO: trying to register non-static key.\n"); 936 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 937 pr_err("you didn't initialize this object before use?\n"); 938 pr_err("turning off the locking correctness validator.\n"); 939 dump_stack(); 940 return false; 941 } 942 943 return true; 944 } 945 946 #ifdef CONFIG_DEBUG_LOCKDEP 947 948 /* Check whether element @e occurs in list @h */ 949 static bool in_list(struct list_head *e, struct list_head *h) 950 { 951 struct list_head *f; 952 953 list_for_each(f, h) { 954 if (e == f) 955 return true; 956 } 957 958 return false; 959 } 960 961 /* 962 * Check whether entry @e occurs in any of the locks_after or locks_before 963 * lists. 964 */ 965 static bool in_any_class_list(struct list_head *e) 966 { 967 struct lock_class *class; 968 int i; 969 970 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 971 class = &lock_classes[i]; 972 if (in_list(e, &class->locks_after) || 973 in_list(e, &class->locks_before)) 974 return true; 975 } 976 return false; 977 } 978 979 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 980 { 981 struct lock_list *e; 982 983 list_for_each_entry(e, h, entry) { 984 if (e->links_to != c) { 985 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 986 c->name ? : "(?)", 987 (unsigned long)(e - list_entries), 988 e->links_to && e->links_to->name ? 989 e->links_to->name : "(?)", 990 e->class && e->class->name ? e->class->name : 991 "(?)"); 992 return false; 993 } 994 } 995 return true; 996 } 997 998 #ifdef CONFIG_PROVE_LOCKING 999 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1000 #endif 1001 1002 static bool check_lock_chain_key(struct lock_chain *chain) 1003 { 1004 #ifdef CONFIG_PROVE_LOCKING 1005 u64 chain_key = INITIAL_CHAIN_KEY; 1006 int i; 1007 1008 for (i = chain->base; i < chain->base + chain->depth; i++) 1009 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1010 /* 1011 * The 'unsigned long long' casts avoid that a compiler warning 1012 * is reported when building tools/lib/lockdep. 1013 */ 1014 if (chain->chain_key != chain_key) { 1015 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1016 (unsigned long long)(chain - lock_chains), 1017 (unsigned long long)chain->chain_key, 1018 (unsigned long long)chain_key); 1019 return false; 1020 } 1021 #endif 1022 return true; 1023 } 1024 1025 static bool in_any_zapped_class_list(struct lock_class *class) 1026 { 1027 struct pending_free *pf; 1028 int i; 1029 1030 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1031 if (in_list(&class->lock_entry, &pf->zapped)) 1032 return true; 1033 } 1034 1035 return false; 1036 } 1037 1038 static bool __check_data_structures(void) 1039 { 1040 struct lock_class *class; 1041 struct lock_chain *chain; 1042 struct hlist_head *head; 1043 struct lock_list *e; 1044 int i; 1045 1046 /* Check whether all classes occur in a lock list. */ 1047 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1048 class = &lock_classes[i]; 1049 if (!in_list(&class->lock_entry, &all_lock_classes) && 1050 !in_list(&class->lock_entry, &free_lock_classes) && 1051 !in_any_zapped_class_list(class)) { 1052 printk(KERN_INFO "class %px/%s is not in any class list\n", 1053 class, class->name ? : "(?)"); 1054 return false; 1055 } 1056 } 1057 1058 /* Check whether all classes have valid lock lists. */ 1059 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1060 class = &lock_classes[i]; 1061 if (!class_lock_list_valid(class, &class->locks_before)) 1062 return false; 1063 if (!class_lock_list_valid(class, &class->locks_after)) 1064 return false; 1065 } 1066 1067 /* Check the chain_key of all lock chains. */ 1068 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1069 head = chainhash_table + i; 1070 hlist_for_each_entry_rcu(chain, head, entry) { 1071 if (!check_lock_chain_key(chain)) 1072 return false; 1073 } 1074 } 1075 1076 /* 1077 * Check whether all list entries that are in use occur in a class 1078 * lock list. 1079 */ 1080 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1081 e = list_entries + i; 1082 if (!in_any_class_list(&e->entry)) { 1083 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1084 (unsigned int)(e - list_entries), 1085 e->class->name ? : "(?)", 1086 e->links_to->name ? : "(?)"); 1087 return false; 1088 } 1089 } 1090 1091 /* 1092 * Check whether all list entries that are not in use do not occur in 1093 * a class lock list. 1094 */ 1095 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1096 e = list_entries + i; 1097 if (in_any_class_list(&e->entry)) { 1098 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1099 (unsigned int)(e - list_entries), 1100 e->class && e->class->name ? e->class->name : 1101 "(?)", 1102 e->links_to && e->links_to->name ? 1103 e->links_to->name : "(?)"); 1104 return false; 1105 } 1106 } 1107 1108 return true; 1109 } 1110 1111 int check_consistency = 0; 1112 module_param(check_consistency, int, 0644); 1113 1114 static void check_data_structures(void) 1115 { 1116 static bool once = false; 1117 1118 if (check_consistency && !once) { 1119 if (!__check_data_structures()) { 1120 once = true; 1121 WARN_ON(once); 1122 } 1123 } 1124 } 1125 1126 #else /* CONFIG_DEBUG_LOCKDEP */ 1127 1128 static inline void check_data_structures(void) { } 1129 1130 #endif /* CONFIG_DEBUG_LOCKDEP */ 1131 1132 static void init_chain_block_buckets(void); 1133 1134 /* 1135 * Initialize the lock_classes[] array elements, the free_lock_classes list 1136 * and also the delayed_free structure. 1137 */ 1138 static void init_data_structures_once(void) 1139 { 1140 static bool __read_mostly ds_initialized, rcu_head_initialized; 1141 int i; 1142 1143 if (likely(rcu_head_initialized)) 1144 return; 1145 1146 if (system_state >= SYSTEM_SCHEDULING) { 1147 init_rcu_head(&delayed_free.rcu_head); 1148 rcu_head_initialized = true; 1149 } 1150 1151 if (ds_initialized) 1152 return; 1153 1154 ds_initialized = true; 1155 1156 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1157 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1158 1159 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1160 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1161 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1162 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1163 } 1164 init_chain_block_buckets(); 1165 } 1166 1167 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1168 { 1169 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1170 1171 return lock_keys_hash + hash; 1172 } 1173 1174 /* Register a dynamically allocated key. */ 1175 void lockdep_register_key(struct lock_class_key *key) 1176 { 1177 struct hlist_head *hash_head; 1178 struct lock_class_key *k; 1179 unsigned long flags; 1180 1181 if (WARN_ON_ONCE(static_obj(key))) 1182 return; 1183 hash_head = keyhashentry(key); 1184 1185 raw_local_irq_save(flags); 1186 if (!graph_lock()) 1187 goto restore_irqs; 1188 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1189 if (WARN_ON_ONCE(k == key)) 1190 goto out_unlock; 1191 } 1192 hlist_add_head_rcu(&key->hash_entry, hash_head); 1193 out_unlock: 1194 graph_unlock(); 1195 restore_irqs: 1196 raw_local_irq_restore(flags); 1197 } 1198 EXPORT_SYMBOL_GPL(lockdep_register_key); 1199 1200 /* Check whether a key has been registered as a dynamic key. */ 1201 static bool is_dynamic_key(const struct lock_class_key *key) 1202 { 1203 struct hlist_head *hash_head; 1204 struct lock_class_key *k; 1205 bool found = false; 1206 1207 if (WARN_ON_ONCE(static_obj(key))) 1208 return false; 1209 1210 /* 1211 * If lock debugging is disabled lock_keys_hash[] may contain 1212 * pointers to memory that has already been freed. Avoid triggering 1213 * a use-after-free in that case by returning early. 1214 */ 1215 if (!debug_locks) 1216 return true; 1217 1218 hash_head = keyhashentry(key); 1219 1220 rcu_read_lock(); 1221 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1222 if (k == key) { 1223 found = true; 1224 break; 1225 } 1226 } 1227 rcu_read_unlock(); 1228 1229 return found; 1230 } 1231 1232 /* 1233 * Register a lock's class in the hash-table, if the class is not present 1234 * yet. Otherwise we look it up. We cache the result in the lock object 1235 * itself, so actual lookup of the hash should be once per lock object. 1236 */ 1237 static struct lock_class * 1238 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1239 { 1240 struct lockdep_subclass_key *key; 1241 struct hlist_head *hash_head; 1242 struct lock_class *class; 1243 1244 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1245 1246 class = look_up_lock_class(lock, subclass); 1247 if (likely(class)) 1248 goto out_set_class_cache; 1249 1250 if (!lock->key) { 1251 if (!assign_lock_key(lock)) 1252 return NULL; 1253 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1254 return NULL; 1255 } 1256 1257 key = lock->key->subkeys + subclass; 1258 hash_head = classhashentry(key); 1259 1260 if (!graph_lock()) { 1261 return NULL; 1262 } 1263 /* 1264 * We have to do the hash-walk again, to avoid races 1265 * with another CPU: 1266 */ 1267 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1268 if (class->key == key) 1269 goto out_unlock_set; 1270 } 1271 1272 init_data_structures_once(); 1273 1274 /* Allocate a new lock class and add it to the hash. */ 1275 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1276 lock_entry); 1277 if (!class) { 1278 if (!debug_locks_off_graph_unlock()) { 1279 return NULL; 1280 } 1281 1282 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1283 dump_stack(); 1284 return NULL; 1285 } 1286 nr_lock_classes++; 1287 __set_bit(class - lock_classes, lock_classes_in_use); 1288 debug_atomic_inc(nr_unused_locks); 1289 class->key = key; 1290 class->name = lock->name; 1291 class->subclass = subclass; 1292 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1293 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1294 class->name_version = count_matching_names(class); 1295 class->wait_type_inner = lock->wait_type_inner; 1296 class->wait_type_outer = lock->wait_type_outer; 1297 class->lock_type = lock->lock_type; 1298 /* 1299 * We use RCU's safe list-add method to make 1300 * parallel walking of the hash-list safe: 1301 */ 1302 hlist_add_head_rcu(&class->hash_entry, hash_head); 1303 /* 1304 * Remove the class from the free list and add it to the global list 1305 * of classes. 1306 */ 1307 list_move_tail(&class->lock_entry, &all_lock_classes); 1308 1309 if (verbose(class)) { 1310 graph_unlock(); 1311 1312 printk("\nnew class %px: %s", class->key, class->name); 1313 if (class->name_version > 1) 1314 printk(KERN_CONT "#%d", class->name_version); 1315 printk(KERN_CONT "\n"); 1316 dump_stack(); 1317 1318 if (!graph_lock()) { 1319 return NULL; 1320 } 1321 } 1322 out_unlock_set: 1323 graph_unlock(); 1324 1325 out_set_class_cache: 1326 if (!subclass || force) 1327 lock->class_cache[0] = class; 1328 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1329 lock->class_cache[subclass] = class; 1330 1331 /* 1332 * Hash collision, did we smoke some? We found a class with a matching 1333 * hash but the subclass -- which is hashed in -- didn't match. 1334 */ 1335 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1336 return NULL; 1337 1338 return class; 1339 } 1340 1341 #ifdef CONFIG_PROVE_LOCKING 1342 /* 1343 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1344 * with NULL on failure) 1345 */ 1346 static struct lock_list *alloc_list_entry(void) 1347 { 1348 int idx = find_first_zero_bit(list_entries_in_use, 1349 ARRAY_SIZE(list_entries)); 1350 1351 if (idx >= ARRAY_SIZE(list_entries)) { 1352 if (!debug_locks_off_graph_unlock()) 1353 return NULL; 1354 1355 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1356 dump_stack(); 1357 return NULL; 1358 } 1359 nr_list_entries++; 1360 __set_bit(idx, list_entries_in_use); 1361 return list_entries + idx; 1362 } 1363 1364 /* 1365 * Add a new dependency to the head of the list: 1366 */ 1367 static int add_lock_to_list(struct lock_class *this, 1368 struct lock_class *links_to, struct list_head *head, 1369 unsigned long ip, u16 distance, u8 dep, 1370 const struct lock_trace *trace) 1371 { 1372 struct lock_list *entry; 1373 /* 1374 * Lock not present yet - get a new dependency struct and 1375 * add it to the list: 1376 */ 1377 entry = alloc_list_entry(); 1378 if (!entry) 1379 return 0; 1380 1381 entry->class = this; 1382 entry->links_to = links_to; 1383 entry->dep = dep; 1384 entry->distance = distance; 1385 entry->trace = trace; 1386 /* 1387 * Both allocation and removal are done under the graph lock; but 1388 * iteration is under RCU-sched; see look_up_lock_class() and 1389 * lockdep_free_key_range(). 1390 */ 1391 list_add_tail_rcu(&entry->entry, head); 1392 1393 return 1; 1394 } 1395 1396 /* 1397 * For good efficiency of modular, we use power of 2 1398 */ 1399 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1400 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1401 1402 /* 1403 * The circular_queue and helpers are used to implement graph 1404 * breadth-first search (BFS) algorithm, by which we can determine 1405 * whether there is a path from a lock to another. In deadlock checks, 1406 * a path from the next lock to be acquired to a previous held lock 1407 * indicates that adding the <prev> -> <next> lock dependency will 1408 * produce a circle in the graph. Breadth-first search instead of 1409 * depth-first search is used in order to find the shortest (circular) 1410 * path. 1411 */ 1412 struct circular_queue { 1413 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1414 unsigned int front, rear; 1415 }; 1416 1417 static struct circular_queue lock_cq; 1418 1419 unsigned int max_bfs_queue_depth; 1420 1421 static unsigned int lockdep_dependency_gen_id; 1422 1423 static inline void __cq_init(struct circular_queue *cq) 1424 { 1425 cq->front = cq->rear = 0; 1426 lockdep_dependency_gen_id++; 1427 } 1428 1429 static inline int __cq_empty(struct circular_queue *cq) 1430 { 1431 return (cq->front == cq->rear); 1432 } 1433 1434 static inline int __cq_full(struct circular_queue *cq) 1435 { 1436 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1437 } 1438 1439 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1440 { 1441 if (__cq_full(cq)) 1442 return -1; 1443 1444 cq->element[cq->rear] = elem; 1445 cq->rear = (cq->rear + 1) & CQ_MASK; 1446 return 0; 1447 } 1448 1449 /* 1450 * Dequeue an element from the circular_queue, return a lock_list if 1451 * the queue is not empty, or NULL if otherwise. 1452 */ 1453 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1454 { 1455 struct lock_list * lock; 1456 1457 if (__cq_empty(cq)) 1458 return NULL; 1459 1460 lock = cq->element[cq->front]; 1461 cq->front = (cq->front + 1) & CQ_MASK; 1462 1463 return lock; 1464 } 1465 1466 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1467 { 1468 return (cq->rear - cq->front) & CQ_MASK; 1469 } 1470 1471 static inline void mark_lock_accessed(struct lock_list *lock) 1472 { 1473 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1474 } 1475 1476 static inline void visit_lock_entry(struct lock_list *lock, 1477 struct lock_list *parent) 1478 { 1479 lock->parent = parent; 1480 } 1481 1482 static inline unsigned long lock_accessed(struct lock_list *lock) 1483 { 1484 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1485 } 1486 1487 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1488 { 1489 return child->parent; 1490 } 1491 1492 static inline int get_lock_depth(struct lock_list *child) 1493 { 1494 int depth = 0; 1495 struct lock_list *parent; 1496 1497 while ((parent = get_lock_parent(child))) { 1498 child = parent; 1499 depth++; 1500 } 1501 return depth; 1502 } 1503 1504 /* 1505 * Return the forward or backward dependency list. 1506 * 1507 * @lock: the lock_list to get its class's dependency list 1508 * @offset: the offset to struct lock_class to determine whether it is 1509 * locks_after or locks_before 1510 */ 1511 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1512 { 1513 void *lock_class = lock->class; 1514 1515 return lock_class + offset; 1516 } 1517 /* 1518 * Return values of a bfs search: 1519 * 1520 * BFS_E* indicates an error 1521 * BFS_R* indicates a result (match or not) 1522 * 1523 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1524 * 1525 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1526 * 1527 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1528 * *@target_entry. 1529 * 1530 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1531 * _unchanged_. 1532 */ 1533 enum bfs_result { 1534 BFS_EINVALIDNODE = -2, 1535 BFS_EQUEUEFULL = -1, 1536 BFS_RMATCH = 0, 1537 BFS_RNOMATCH = 1, 1538 }; 1539 1540 /* 1541 * bfs_result < 0 means error 1542 */ 1543 static inline bool bfs_error(enum bfs_result res) 1544 { 1545 return res < 0; 1546 } 1547 1548 /* 1549 * DEP_*_BIT in lock_list::dep 1550 * 1551 * For dependency @prev -> @next: 1552 * 1553 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1554 * (->read == 2) 1555 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1556 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1557 * EN: @prev is exclusive locker and @next is non-recursive locker 1558 * 1559 * Note that we define the value of DEP_*_BITs so that: 1560 * bit0 is prev->read == 0 1561 * bit1 is next->read != 2 1562 */ 1563 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1564 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1565 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1566 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1567 1568 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1569 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1570 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1571 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1572 1573 static inline unsigned int 1574 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1575 { 1576 return (prev->read == 0) + ((next->read != 2) << 1); 1577 } 1578 1579 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1580 { 1581 return 1U << __calc_dep_bit(prev, next); 1582 } 1583 1584 /* 1585 * calculate the dep_bit for backwards edges. We care about whether @prev is 1586 * shared and whether @next is recursive. 1587 */ 1588 static inline unsigned int 1589 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1590 { 1591 return (next->read != 2) + ((prev->read == 0) << 1); 1592 } 1593 1594 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1595 { 1596 return 1U << __calc_dep_bitb(prev, next); 1597 } 1598 1599 /* 1600 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1601 * search. 1602 */ 1603 static inline void __bfs_init_root(struct lock_list *lock, 1604 struct lock_class *class) 1605 { 1606 lock->class = class; 1607 lock->parent = NULL; 1608 lock->only_xr = 0; 1609 } 1610 1611 /* 1612 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1613 * root for a BFS search. 1614 * 1615 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1616 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1617 * and -(S*)->. 1618 */ 1619 static inline void bfs_init_root(struct lock_list *lock, 1620 struct held_lock *hlock) 1621 { 1622 __bfs_init_root(lock, hlock_class(hlock)); 1623 lock->only_xr = (hlock->read == 2); 1624 } 1625 1626 /* 1627 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1628 * 1629 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1630 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1631 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1632 */ 1633 static inline void bfs_init_rootb(struct lock_list *lock, 1634 struct held_lock *hlock) 1635 { 1636 __bfs_init_root(lock, hlock_class(hlock)); 1637 lock->only_xr = (hlock->read != 0); 1638 } 1639 1640 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1641 { 1642 if (!lock || !lock->parent) 1643 return NULL; 1644 1645 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1646 &lock->entry, struct lock_list, entry); 1647 } 1648 1649 /* 1650 * Breadth-First Search to find a strong path in the dependency graph. 1651 * 1652 * @source_entry: the source of the path we are searching for. 1653 * @data: data used for the second parameter of @match function 1654 * @match: match function for the search 1655 * @target_entry: pointer to the target of a matched path 1656 * @offset: the offset to struct lock_class to determine whether it is 1657 * locks_after or locks_before 1658 * 1659 * We may have multiple edges (considering different kinds of dependencies, 1660 * e.g. ER and SN) between two nodes in the dependency graph. But 1661 * only the strong dependency path in the graph is relevant to deadlocks. A 1662 * strong dependency path is a dependency path that doesn't have two adjacent 1663 * dependencies as -(*R)-> -(S*)->, please see: 1664 * 1665 * Documentation/locking/lockdep-design.rst 1666 * 1667 * for more explanation of the definition of strong dependency paths 1668 * 1669 * In __bfs(), we only traverse in the strong dependency path: 1670 * 1671 * In lock_list::only_xr, we record whether the previous dependency only 1672 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1673 * filter out any -(S*)-> in the current dependency and after that, the 1674 * ->only_xr is set according to whether we only have -(*R)-> left. 1675 */ 1676 static enum bfs_result __bfs(struct lock_list *source_entry, 1677 void *data, 1678 bool (*match)(struct lock_list *entry, void *data), 1679 bool (*skip)(struct lock_list *entry, void *data), 1680 struct lock_list **target_entry, 1681 int offset) 1682 { 1683 struct circular_queue *cq = &lock_cq; 1684 struct lock_list *lock = NULL; 1685 struct lock_list *entry; 1686 struct list_head *head; 1687 unsigned int cq_depth; 1688 bool first; 1689 1690 lockdep_assert_locked(); 1691 1692 __cq_init(cq); 1693 __cq_enqueue(cq, source_entry); 1694 1695 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1696 if (!lock->class) 1697 return BFS_EINVALIDNODE; 1698 1699 /* 1700 * Step 1: check whether we already finish on this one. 1701 * 1702 * If we have visited all the dependencies from this @lock to 1703 * others (iow, if we have visited all lock_list entries in 1704 * @lock->class->locks_{after,before}) we skip, otherwise go 1705 * and visit all the dependencies in the list and mark this 1706 * list accessed. 1707 */ 1708 if (lock_accessed(lock)) 1709 continue; 1710 else 1711 mark_lock_accessed(lock); 1712 1713 /* 1714 * Step 2: check whether prev dependency and this form a strong 1715 * dependency path. 1716 */ 1717 if (lock->parent) { /* Parent exists, check prev dependency */ 1718 u8 dep = lock->dep; 1719 bool prev_only_xr = lock->parent->only_xr; 1720 1721 /* 1722 * Mask out all -(S*)-> if we only have *R in previous 1723 * step, because -(*R)-> -(S*)-> don't make up a strong 1724 * dependency. 1725 */ 1726 if (prev_only_xr) 1727 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1728 1729 /* If nothing left, we skip */ 1730 if (!dep) 1731 continue; 1732 1733 /* If there are only -(*R)-> left, set that for the next step */ 1734 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1735 } 1736 1737 /* 1738 * Step 3: we haven't visited this and there is a strong 1739 * dependency path to this, so check with @match. 1740 * If @skip is provide and returns true, we skip this 1741 * lock (and any path this lock is in). 1742 */ 1743 if (skip && skip(lock, data)) 1744 continue; 1745 1746 if (match(lock, data)) { 1747 *target_entry = lock; 1748 return BFS_RMATCH; 1749 } 1750 1751 /* 1752 * Step 4: if not match, expand the path by adding the 1753 * forward or backwards dependencies in the search 1754 * 1755 */ 1756 first = true; 1757 head = get_dep_list(lock, offset); 1758 list_for_each_entry_rcu(entry, head, entry) { 1759 visit_lock_entry(entry, lock); 1760 1761 /* 1762 * Note we only enqueue the first of the list into the 1763 * queue, because we can always find a sibling 1764 * dependency from one (see __bfs_next()), as a result 1765 * the space of queue is saved. 1766 */ 1767 if (!first) 1768 continue; 1769 1770 first = false; 1771 1772 if (__cq_enqueue(cq, entry)) 1773 return BFS_EQUEUEFULL; 1774 1775 cq_depth = __cq_get_elem_count(cq); 1776 if (max_bfs_queue_depth < cq_depth) 1777 max_bfs_queue_depth = cq_depth; 1778 } 1779 } 1780 1781 return BFS_RNOMATCH; 1782 } 1783 1784 static inline enum bfs_result 1785 __bfs_forwards(struct lock_list *src_entry, 1786 void *data, 1787 bool (*match)(struct lock_list *entry, void *data), 1788 bool (*skip)(struct lock_list *entry, void *data), 1789 struct lock_list **target_entry) 1790 { 1791 return __bfs(src_entry, data, match, skip, target_entry, 1792 offsetof(struct lock_class, locks_after)); 1793 1794 } 1795 1796 static inline enum bfs_result 1797 __bfs_backwards(struct lock_list *src_entry, 1798 void *data, 1799 bool (*match)(struct lock_list *entry, void *data), 1800 bool (*skip)(struct lock_list *entry, void *data), 1801 struct lock_list **target_entry) 1802 { 1803 return __bfs(src_entry, data, match, skip, target_entry, 1804 offsetof(struct lock_class, locks_before)); 1805 1806 } 1807 1808 static void print_lock_trace(const struct lock_trace *trace, 1809 unsigned int spaces) 1810 { 1811 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1812 } 1813 1814 /* 1815 * Print a dependency chain entry (this is only done when a deadlock 1816 * has been detected): 1817 */ 1818 static noinline void 1819 print_circular_bug_entry(struct lock_list *target, int depth) 1820 { 1821 if (debug_locks_silent) 1822 return; 1823 printk("\n-> #%u", depth); 1824 print_lock_name(target->class); 1825 printk(KERN_CONT ":\n"); 1826 print_lock_trace(target->trace, 6); 1827 } 1828 1829 static void 1830 print_circular_lock_scenario(struct held_lock *src, 1831 struct held_lock *tgt, 1832 struct lock_list *prt) 1833 { 1834 struct lock_class *source = hlock_class(src); 1835 struct lock_class *target = hlock_class(tgt); 1836 struct lock_class *parent = prt->class; 1837 1838 /* 1839 * A direct locking problem where unsafe_class lock is taken 1840 * directly by safe_class lock, then all we need to show 1841 * is the deadlock scenario, as it is obvious that the 1842 * unsafe lock is taken under the safe lock. 1843 * 1844 * But if there is a chain instead, where the safe lock takes 1845 * an intermediate lock (middle_class) where this lock is 1846 * not the same as the safe lock, then the lock chain is 1847 * used to describe the problem. Otherwise we would need 1848 * to show a different CPU case for each link in the chain 1849 * from the safe_class lock to the unsafe_class lock. 1850 */ 1851 if (parent != source) { 1852 printk("Chain exists of:\n "); 1853 __print_lock_name(source); 1854 printk(KERN_CONT " --> "); 1855 __print_lock_name(parent); 1856 printk(KERN_CONT " --> "); 1857 __print_lock_name(target); 1858 printk(KERN_CONT "\n\n"); 1859 } 1860 1861 printk(" Possible unsafe locking scenario:\n\n"); 1862 printk(" CPU0 CPU1\n"); 1863 printk(" ---- ----\n"); 1864 printk(" lock("); 1865 __print_lock_name(target); 1866 printk(KERN_CONT ");\n"); 1867 printk(" lock("); 1868 __print_lock_name(parent); 1869 printk(KERN_CONT ");\n"); 1870 printk(" lock("); 1871 __print_lock_name(target); 1872 printk(KERN_CONT ");\n"); 1873 printk(" lock("); 1874 __print_lock_name(source); 1875 printk(KERN_CONT ");\n"); 1876 printk("\n *** DEADLOCK ***\n\n"); 1877 } 1878 1879 /* 1880 * When a circular dependency is detected, print the 1881 * header first: 1882 */ 1883 static noinline void 1884 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1885 struct held_lock *check_src, 1886 struct held_lock *check_tgt) 1887 { 1888 struct task_struct *curr = current; 1889 1890 if (debug_locks_silent) 1891 return; 1892 1893 pr_warn("\n"); 1894 pr_warn("======================================================\n"); 1895 pr_warn("WARNING: possible circular locking dependency detected\n"); 1896 print_kernel_ident(); 1897 pr_warn("------------------------------------------------------\n"); 1898 pr_warn("%s/%d is trying to acquire lock:\n", 1899 curr->comm, task_pid_nr(curr)); 1900 print_lock(check_src); 1901 1902 pr_warn("\nbut task is already holding lock:\n"); 1903 1904 print_lock(check_tgt); 1905 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1906 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1907 1908 print_circular_bug_entry(entry, depth); 1909 } 1910 1911 /* 1912 * We are about to add A -> B into the dependency graph, and in __bfs() a 1913 * strong dependency path A -> .. -> B is found: hlock_class equals 1914 * entry->class. 1915 * 1916 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1917 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1918 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1919 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1920 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1921 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1922 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1923 * 1924 * We need to make sure both the start and the end of A -> .. -> B is not 1925 * weaker than A -> B. For the start part, please see the comment in 1926 * check_redundant(). For the end part, we need: 1927 * 1928 * Either 1929 * 1930 * a) A -> B is -(*R)-> (everything is not weaker than that) 1931 * 1932 * or 1933 * 1934 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1935 * 1936 */ 1937 static inline bool hlock_equal(struct lock_list *entry, void *data) 1938 { 1939 struct held_lock *hlock = (struct held_lock *)data; 1940 1941 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1942 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1943 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1944 } 1945 1946 /* 1947 * We are about to add B -> A into the dependency graph, and in __bfs() a 1948 * strong dependency path A -> .. -> B is found: hlock_class equals 1949 * entry->class. 1950 * 1951 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1952 * dependency cycle, that means: 1953 * 1954 * Either 1955 * 1956 * a) B -> A is -(E*)-> 1957 * 1958 * or 1959 * 1960 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 1961 * 1962 * as then we don't have -(*R)-> -(S*)-> in the cycle. 1963 */ 1964 static inline bool hlock_conflict(struct lock_list *entry, void *data) 1965 { 1966 struct held_lock *hlock = (struct held_lock *)data; 1967 1968 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1969 (hlock->read == 0 || /* B -> A is -(E*)-> */ 1970 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1971 } 1972 1973 static noinline void print_circular_bug(struct lock_list *this, 1974 struct lock_list *target, 1975 struct held_lock *check_src, 1976 struct held_lock *check_tgt) 1977 { 1978 struct task_struct *curr = current; 1979 struct lock_list *parent; 1980 struct lock_list *first_parent; 1981 int depth; 1982 1983 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1984 return; 1985 1986 this->trace = save_trace(); 1987 if (!this->trace) 1988 return; 1989 1990 depth = get_lock_depth(target); 1991 1992 print_circular_bug_header(target, depth, check_src, check_tgt); 1993 1994 parent = get_lock_parent(target); 1995 first_parent = parent; 1996 1997 while (parent) { 1998 print_circular_bug_entry(parent, --depth); 1999 parent = get_lock_parent(parent); 2000 } 2001 2002 printk("\nother info that might help us debug this:\n\n"); 2003 print_circular_lock_scenario(check_src, check_tgt, 2004 first_parent); 2005 2006 lockdep_print_held_locks(curr); 2007 2008 printk("\nstack backtrace:\n"); 2009 dump_stack(); 2010 } 2011 2012 static noinline void print_bfs_bug(int ret) 2013 { 2014 if (!debug_locks_off_graph_unlock()) 2015 return; 2016 2017 /* 2018 * Breadth-first-search failed, graph got corrupted? 2019 */ 2020 WARN(1, "lockdep bfs error:%d\n", ret); 2021 } 2022 2023 static bool noop_count(struct lock_list *entry, void *data) 2024 { 2025 (*(unsigned long *)data)++; 2026 return false; 2027 } 2028 2029 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2030 { 2031 unsigned long count = 0; 2032 struct lock_list *target_entry; 2033 2034 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2035 2036 return count; 2037 } 2038 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2039 { 2040 unsigned long ret, flags; 2041 struct lock_list this; 2042 2043 __bfs_init_root(&this, class); 2044 2045 raw_local_irq_save(flags); 2046 lockdep_lock(); 2047 ret = __lockdep_count_forward_deps(&this); 2048 lockdep_unlock(); 2049 raw_local_irq_restore(flags); 2050 2051 return ret; 2052 } 2053 2054 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2055 { 2056 unsigned long count = 0; 2057 struct lock_list *target_entry; 2058 2059 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2060 2061 return count; 2062 } 2063 2064 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2065 { 2066 unsigned long ret, flags; 2067 struct lock_list this; 2068 2069 __bfs_init_root(&this, class); 2070 2071 raw_local_irq_save(flags); 2072 lockdep_lock(); 2073 ret = __lockdep_count_backward_deps(&this); 2074 lockdep_unlock(); 2075 raw_local_irq_restore(flags); 2076 2077 return ret; 2078 } 2079 2080 /* 2081 * Check that the dependency graph starting at <src> can lead to 2082 * <target> or not. 2083 */ 2084 static noinline enum bfs_result 2085 check_path(struct held_lock *target, struct lock_list *src_entry, 2086 bool (*match)(struct lock_list *entry, void *data), 2087 bool (*skip)(struct lock_list *entry, void *data), 2088 struct lock_list **target_entry) 2089 { 2090 enum bfs_result ret; 2091 2092 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2093 2094 if (unlikely(bfs_error(ret))) 2095 print_bfs_bug(ret); 2096 2097 return ret; 2098 } 2099 2100 /* 2101 * Prove that the dependency graph starting at <src> can not 2102 * lead to <target>. If it can, there is a circle when adding 2103 * <target> -> <src> dependency. 2104 * 2105 * Print an error and return BFS_RMATCH if it does. 2106 */ 2107 static noinline enum bfs_result 2108 check_noncircular(struct held_lock *src, struct held_lock *target, 2109 struct lock_trace **const trace) 2110 { 2111 enum bfs_result ret; 2112 struct lock_list *target_entry; 2113 struct lock_list src_entry; 2114 2115 bfs_init_root(&src_entry, src); 2116 2117 debug_atomic_inc(nr_cyclic_checks); 2118 2119 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2120 2121 if (unlikely(ret == BFS_RMATCH)) { 2122 if (!*trace) { 2123 /* 2124 * If save_trace fails here, the printing might 2125 * trigger a WARN but because of the !nr_entries it 2126 * should not do bad things. 2127 */ 2128 *trace = save_trace(); 2129 } 2130 2131 print_circular_bug(&src_entry, target_entry, src, target); 2132 } 2133 2134 return ret; 2135 } 2136 2137 #ifdef CONFIG_TRACE_IRQFLAGS 2138 2139 /* 2140 * Forwards and backwards subgraph searching, for the purposes of 2141 * proving that two subgraphs can be connected by a new dependency 2142 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2143 * 2144 * A irq safe->unsafe deadlock happens with the following conditions: 2145 * 2146 * 1) We have a strong dependency path A -> ... -> B 2147 * 2148 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2149 * irq can create a new dependency B -> A (consider the case that a holder 2150 * of B gets interrupted by an irq whose handler will try to acquire A). 2151 * 2152 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2153 * strong circle: 2154 * 2155 * For the usage bits of B: 2156 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2157 * ENABLED_IRQ usage suffices. 2158 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2159 * ENABLED_IRQ_*_READ usage suffices. 2160 * 2161 * For the usage bits of A: 2162 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2163 * USED_IN_IRQ usage suffices. 2164 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2165 * USED_IN_IRQ_*_READ usage suffices. 2166 */ 2167 2168 /* 2169 * There is a strong dependency path in the dependency graph: A -> B, and now 2170 * we need to decide which usage bit of A should be accumulated to detect 2171 * safe->unsafe bugs. 2172 * 2173 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2174 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2175 * 2176 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2177 * path, any usage of A should be considered. Otherwise, we should only 2178 * consider _READ usage. 2179 */ 2180 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2181 { 2182 if (!entry->only_xr) 2183 *(unsigned long *)mask |= entry->class->usage_mask; 2184 else /* Mask out _READ usage bits */ 2185 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2186 2187 return false; 2188 } 2189 2190 /* 2191 * There is a strong dependency path in the dependency graph: A -> B, and now 2192 * we need to decide which usage bit of B conflicts with the usage bits of A, 2193 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2194 * 2195 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2196 * path, any usage of B should be considered. Otherwise, we should only 2197 * consider _READ usage. 2198 */ 2199 static inline bool usage_match(struct lock_list *entry, void *mask) 2200 { 2201 if (!entry->only_xr) 2202 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2203 else /* Mask out _READ usage bits */ 2204 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2205 } 2206 2207 static inline bool usage_skip(struct lock_list *entry, void *mask) 2208 { 2209 /* 2210 * Skip local_lock() for irq inversion detection. 2211 * 2212 * For !RT, local_lock() is not a real lock, so it won't carry any 2213 * dependency. 2214 * 2215 * For RT, an irq inversion happens when we have lock A and B, and on 2216 * some CPU we can have: 2217 * 2218 * lock(A); 2219 * <interrupted> 2220 * lock(B); 2221 * 2222 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2223 * 2224 * Now we prove local_lock() cannot exist in that dependency. First we 2225 * have the observation for any lock chain L1 -> ... -> Ln, for any 2226 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2227 * wait context check will complain. And since B is not a sleep lock, 2228 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2229 * local_lock() is 3, which is greater than 2, therefore there is no 2230 * way the local_lock() exists in the dependency B -> ... -> A. 2231 * 2232 * As a result, we will skip local_lock(), when we search for irq 2233 * inversion bugs. 2234 */ 2235 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2236 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2237 return false; 2238 2239 return true; 2240 } 2241 2242 return false; 2243 } 2244 2245 /* 2246 * Find a node in the forwards-direction dependency sub-graph starting 2247 * at @root->class that matches @bit. 2248 * 2249 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2250 * into *@target_entry. 2251 */ 2252 static enum bfs_result 2253 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2254 struct lock_list **target_entry) 2255 { 2256 enum bfs_result result; 2257 2258 debug_atomic_inc(nr_find_usage_forwards_checks); 2259 2260 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2261 2262 return result; 2263 } 2264 2265 /* 2266 * Find a node in the backwards-direction dependency sub-graph starting 2267 * at @root->class that matches @bit. 2268 */ 2269 static enum bfs_result 2270 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2271 struct lock_list **target_entry) 2272 { 2273 enum bfs_result result; 2274 2275 debug_atomic_inc(nr_find_usage_backwards_checks); 2276 2277 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2278 2279 return result; 2280 } 2281 2282 static void print_lock_class_header(struct lock_class *class, int depth) 2283 { 2284 int bit; 2285 2286 printk("%*s->", depth, ""); 2287 print_lock_name(class); 2288 #ifdef CONFIG_DEBUG_LOCKDEP 2289 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2290 #endif 2291 printk(KERN_CONT " {\n"); 2292 2293 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2294 if (class->usage_mask & (1 << bit)) { 2295 int len = depth; 2296 2297 len += printk("%*s %s", depth, "", usage_str[bit]); 2298 len += printk(KERN_CONT " at:\n"); 2299 print_lock_trace(class->usage_traces[bit], len); 2300 } 2301 } 2302 printk("%*s }\n", depth, ""); 2303 2304 printk("%*s ... key at: [<%px>] %pS\n", 2305 depth, "", class->key, class->key); 2306 } 2307 2308 /* 2309 * Dependency path printing: 2310 * 2311 * After BFS we get a lock dependency path (linked via ->parent of lock_list), 2312 * printing out each lock in the dependency path will help on understanding how 2313 * the deadlock could happen. Here are some details about dependency path 2314 * printing: 2315 * 2316 * 1) A lock_list can be either forwards or backwards for a lock dependency, 2317 * for a lock dependency A -> B, there are two lock_lists: 2318 * 2319 * a) lock_list in the ->locks_after list of A, whose ->class is B and 2320 * ->links_to is A. In this case, we can say the lock_list is 2321 * "A -> B" (forwards case). 2322 * 2323 * b) lock_list in the ->locks_before list of B, whose ->class is A 2324 * and ->links_to is B. In this case, we can say the lock_list is 2325 * "B <- A" (bacwards case). 2326 * 2327 * The ->trace of both a) and b) point to the call trace where B was 2328 * acquired with A held. 2329 * 2330 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't 2331 * represent a certain lock dependency, it only provides an initial entry 2332 * for BFS. For example, BFS may introduce a "helper" lock_list whose 2333 * ->class is A, as a result BFS will search all dependencies starting with 2334 * A, e.g. A -> B or A -> C. 2335 * 2336 * The notation of a forwards helper lock_list is like "-> A", which means 2337 * we should search the forwards dependencies starting with "A", e.g A -> B 2338 * or A -> C. 2339 * 2340 * The notation of a bacwards helper lock_list is like "<- B", which means 2341 * we should search the backwards dependencies ending with "B", e.g. 2342 * B <- A or B <- C. 2343 */ 2344 2345 /* 2346 * printk the shortest lock dependencies from @root to @leaf in reverse order. 2347 * 2348 * We have a lock dependency path as follow: 2349 * 2350 * @root @leaf 2351 * | | 2352 * V V 2353 * ->parent ->parent 2354 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list | 2355 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln| 2356 * 2357 * , so it's natural that we start from @leaf and print every ->class and 2358 * ->trace until we reach the @root. 2359 */ 2360 static void __used 2361 print_shortest_lock_dependencies(struct lock_list *leaf, 2362 struct lock_list *root) 2363 { 2364 struct lock_list *entry = leaf; 2365 int depth; 2366 2367 /*compute depth from generated tree by BFS*/ 2368 depth = get_lock_depth(leaf); 2369 2370 do { 2371 print_lock_class_header(entry->class, depth); 2372 printk("%*s ... acquired at:\n", depth, ""); 2373 print_lock_trace(entry->trace, 2); 2374 printk("\n"); 2375 2376 if (depth == 0 && (entry != root)) { 2377 printk("lockdep:%s bad path found in chain graph\n", __func__); 2378 break; 2379 } 2380 2381 entry = get_lock_parent(entry); 2382 depth--; 2383 } while (entry && (depth >= 0)); 2384 } 2385 2386 /* 2387 * printk the shortest lock dependencies from @leaf to @root. 2388 * 2389 * We have a lock dependency path (from a backwards search) as follow: 2390 * 2391 * @leaf @root 2392 * | | 2393 * V V 2394 * ->parent ->parent 2395 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list | 2396 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln | 2397 * 2398 * , so when we iterate from @leaf to @root, we actually print the lock 2399 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order. 2400 * 2401 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the 2402 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call 2403 * trace of L1 in the dependency path, which is alright, because most of the 2404 * time we can figure out where L1 is held from the call trace of L2. 2405 */ 2406 static void __used 2407 print_shortest_lock_dependencies_backwards(struct lock_list *leaf, 2408 struct lock_list *root) 2409 { 2410 struct lock_list *entry = leaf; 2411 const struct lock_trace *trace = NULL; 2412 int depth; 2413 2414 /*compute depth from generated tree by BFS*/ 2415 depth = get_lock_depth(leaf); 2416 2417 do { 2418 print_lock_class_header(entry->class, depth); 2419 if (trace) { 2420 printk("%*s ... acquired at:\n", depth, ""); 2421 print_lock_trace(trace, 2); 2422 printk("\n"); 2423 } 2424 2425 /* 2426 * Record the pointer to the trace for the next lock_list 2427 * entry, see the comments for the function. 2428 */ 2429 trace = entry->trace; 2430 2431 if (depth == 0 && (entry != root)) { 2432 printk("lockdep:%s bad path found in chain graph\n", __func__); 2433 break; 2434 } 2435 2436 entry = get_lock_parent(entry); 2437 depth--; 2438 } while (entry && (depth >= 0)); 2439 } 2440 2441 static void 2442 print_irq_lock_scenario(struct lock_list *safe_entry, 2443 struct lock_list *unsafe_entry, 2444 struct lock_class *prev_class, 2445 struct lock_class *next_class) 2446 { 2447 struct lock_class *safe_class = safe_entry->class; 2448 struct lock_class *unsafe_class = unsafe_entry->class; 2449 struct lock_class *middle_class = prev_class; 2450 2451 if (middle_class == safe_class) 2452 middle_class = next_class; 2453 2454 /* 2455 * A direct locking problem where unsafe_class lock is taken 2456 * directly by safe_class lock, then all we need to show 2457 * is the deadlock scenario, as it is obvious that the 2458 * unsafe lock is taken under the safe lock. 2459 * 2460 * But if there is a chain instead, where the safe lock takes 2461 * an intermediate lock (middle_class) where this lock is 2462 * not the same as the safe lock, then the lock chain is 2463 * used to describe the problem. Otherwise we would need 2464 * to show a different CPU case for each link in the chain 2465 * from the safe_class lock to the unsafe_class lock. 2466 */ 2467 if (middle_class != unsafe_class) { 2468 printk("Chain exists of:\n "); 2469 __print_lock_name(safe_class); 2470 printk(KERN_CONT " --> "); 2471 __print_lock_name(middle_class); 2472 printk(KERN_CONT " --> "); 2473 __print_lock_name(unsafe_class); 2474 printk(KERN_CONT "\n\n"); 2475 } 2476 2477 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2478 printk(" CPU0 CPU1\n"); 2479 printk(" ---- ----\n"); 2480 printk(" lock("); 2481 __print_lock_name(unsafe_class); 2482 printk(KERN_CONT ");\n"); 2483 printk(" local_irq_disable();\n"); 2484 printk(" lock("); 2485 __print_lock_name(safe_class); 2486 printk(KERN_CONT ");\n"); 2487 printk(" lock("); 2488 __print_lock_name(middle_class); 2489 printk(KERN_CONT ");\n"); 2490 printk(" <Interrupt>\n"); 2491 printk(" lock("); 2492 __print_lock_name(safe_class); 2493 printk(KERN_CONT ");\n"); 2494 printk("\n *** DEADLOCK ***\n\n"); 2495 } 2496 2497 static void 2498 print_bad_irq_dependency(struct task_struct *curr, 2499 struct lock_list *prev_root, 2500 struct lock_list *next_root, 2501 struct lock_list *backwards_entry, 2502 struct lock_list *forwards_entry, 2503 struct held_lock *prev, 2504 struct held_lock *next, 2505 enum lock_usage_bit bit1, 2506 enum lock_usage_bit bit2, 2507 const char *irqclass) 2508 { 2509 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2510 return; 2511 2512 pr_warn("\n"); 2513 pr_warn("=====================================================\n"); 2514 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2515 irqclass, irqclass); 2516 print_kernel_ident(); 2517 pr_warn("-----------------------------------------------------\n"); 2518 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2519 curr->comm, task_pid_nr(curr), 2520 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2521 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2522 lockdep_hardirqs_enabled(), 2523 curr->softirqs_enabled); 2524 print_lock(next); 2525 2526 pr_warn("\nand this task is already holding:\n"); 2527 print_lock(prev); 2528 pr_warn("which would create a new lock dependency:\n"); 2529 print_lock_name(hlock_class(prev)); 2530 pr_cont(" ->"); 2531 print_lock_name(hlock_class(next)); 2532 pr_cont("\n"); 2533 2534 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2535 irqclass); 2536 print_lock_name(backwards_entry->class); 2537 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2538 2539 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2540 2541 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2542 print_lock_name(forwards_entry->class); 2543 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2544 pr_warn("..."); 2545 2546 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2547 2548 pr_warn("\nother info that might help us debug this:\n\n"); 2549 print_irq_lock_scenario(backwards_entry, forwards_entry, 2550 hlock_class(prev), hlock_class(next)); 2551 2552 lockdep_print_held_locks(curr); 2553 2554 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2555 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root); 2556 2557 pr_warn("\nthe dependencies between the lock to be acquired"); 2558 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2559 next_root->trace = save_trace(); 2560 if (!next_root->trace) 2561 return; 2562 print_shortest_lock_dependencies(forwards_entry, next_root); 2563 2564 pr_warn("\nstack backtrace:\n"); 2565 dump_stack(); 2566 } 2567 2568 static const char *state_names[] = { 2569 #define LOCKDEP_STATE(__STATE) \ 2570 __stringify(__STATE), 2571 #include "lockdep_states.h" 2572 #undef LOCKDEP_STATE 2573 }; 2574 2575 static const char *state_rnames[] = { 2576 #define LOCKDEP_STATE(__STATE) \ 2577 __stringify(__STATE)"-READ", 2578 #include "lockdep_states.h" 2579 #undef LOCKDEP_STATE 2580 }; 2581 2582 static inline const char *state_name(enum lock_usage_bit bit) 2583 { 2584 if (bit & LOCK_USAGE_READ_MASK) 2585 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2586 else 2587 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2588 } 2589 2590 /* 2591 * The bit number is encoded like: 2592 * 2593 * bit0: 0 exclusive, 1 read lock 2594 * bit1: 0 used in irq, 1 irq enabled 2595 * bit2-n: state 2596 */ 2597 static int exclusive_bit(int new_bit) 2598 { 2599 int state = new_bit & LOCK_USAGE_STATE_MASK; 2600 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2601 2602 /* 2603 * keep state, bit flip the direction and strip read. 2604 */ 2605 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2606 } 2607 2608 /* 2609 * Observe that when given a bitmask where each bitnr is encoded as above, a 2610 * right shift of the mask transforms the individual bitnrs as -1 and 2611 * conversely, a left shift transforms into +1 for the individual bitnrs. 2612 * 2613 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2614 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2615 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2616 * 2617 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2618 * 2619 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2620 * all bits set) and recompose with bitnr1 flipped. 2621 */ 2622 static unsigned long invert_dir_mask(unsigned long mask) 2623 { 2624 unsigned long excl = 0; 2625 2626 /* Invert dir */ 2627 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2628 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2629 2630 return excl; 2631 } 2632 2633 /* 2634 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2635 * usage may cause deadlock too, for example: 2636 * 2637 * P1 P2 2638 * <irq disabled> 2639 * write_lock(l1); <irq enabled> 2640 * read_lock(l2); 2641 * write_lock(l2); 2642 * <in irq> 2643 * read_lock(l1); 2644 * 2645 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2646 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2647 * deadlock. 2648 * 2649 * In fact, all of the following cases may cause deadlocks: 2650 * 2651 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2652 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2653 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2654 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2655 * 2656 * As a result, to calculate the "exclusive mask", first we invert the 2657 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2658 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2659 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2660 */ 2661 static unsigned long exclusive_mask(unsigned long mask) 2662 { 2663 unsigned long excl = invert_dir_mask(mask); 2664 2665 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2666 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2667 2668 return excl; 2669 } 2670 2671 /* 2672 * Retrieve the _possible_ original mask to which @mask is 2673 * exclusive. Ie: this is the opposite of exclusive_mask(). 2674 * Note that 2 possible original bits can match an exclusive 2675 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2676 * cleared. So both are returned for each exclusive bit. 2677 */ 2678 static unsigned long original_mask(unsigned long mask) 2679 { 2680 unsigned long excl = invert_dir_mask(mask); 2681 2682 /* Include read in existing usages */ 2683 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2684 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2685 2686 return excl; 2687 } 2688 2689 /* 2690 * Find the first pair of bit match between an original 2691 * usage mask and an exclusive usage mask. 2692 */ 2693 static int find_exclusive_match(unsigned long mask, 2694 unsigned long excl_mask, 2695 enum lock_usage_bit *bitp, 2696 enum lock_usage_bit *excl_bitp) 2697 { 2698 int bit, excl, excl_read; 2699 2700 for_each_set_bit(bit, &mask, LOCK_USED) { 2701 /* 2702 * exclusive_bit() strips the read bit, however, 2703 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2704 * to search excl | LOCK_USAGE_READ_MASK as well. 2705 */ 2706 excl = exclusive_bit(bit); 2707 excl_read = excl | LOCK_USAGE_READ_MASK; 2708 if (excl_mask & lock_flag(excl)) { 2709 *bitp = bit; 2710 *excl_bitp = excl; 2711 return 0; 2712 } else if (excl_mask & lock_flag(excl_read)) { 2713 *bitp = bit; 2714 *excl_bitp = excl_read; 2715 return 0; 2716 } 2717 } 2718 return -1; 2719 } 2720 2721 /* 2722 * Prove that the new dependency does not connect a hardirq-safe(-read) 2723 * lock with a hardirq-unsafe lock - to achieve this we search 2724 * the backwards-subgraph starting at <prev>, and the 2725 * forwards-subgraph starting at <next>: 2726 */ 2727 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2728 struct held_lock *next) 2729 { 2730 unsigned long usage_mask = 0, forward_mask, backward_mask; 2731 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2732 struct lock_list *target_entry1; 2733 struct lock_list *target_entry; 2734 struct lock_list this, that; 2735 enum bfs_result ret; 2736 2737 /* 2738 * Step 1: gather all hard/soft IRQs usages backward in an 2739 * accumulated usage mask. 2740 */ 2741 bfs_init_rootb(&this, prev); 2742 2743 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2744 if (bfs_error(ret)) { 2745 print_bfs_bug(ret); 2746 return 0; 2747 } 2748 2749 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2750 if (!usage_mask) 2751 return 1; 2752 2753 /* 2754 * Step 2: find exclusive uses forward that match the previous 2755 * backward accumulated mask. 2756 */ 2757 forward_mask = exclusive_mask(usage_mask); 2758 2759 bfs_init_root(&that, next); 2760 2761 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2762 if (bfs_error(ret)) { 2763 print_bfs_bug(ret); 2764 return 0; 2765 } 2766 if (ret == BFS_RNOMATCH) 2767 return 1; 2768 2769 /* 2770 * Step 3: we found a bad match! Now retrieve a lock from the backward 2771 * list whose usage mask matches the exclusive usage mask from the 2772 * lock found on the forward list. 2773 * 2774 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering 2775 * the follow case: 2776 * 2777 * When trying to add A -> B to the graph, we find that there is a 2778 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M, 2779 * that B -> ... -> M. However M is **softirq-safe**, if we use exact 2780 * invert bits of M's usage_mask, we will find another lock N that is 2781 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not 2782 * cause a inversion deadlock. 2783 */ 2784 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL); 2785 2786 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2787 if (bfs_error(ret)) { 2788 print_bfs_bug(ret); 2789 return 0; 2790 } 2791 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2792 return 1; 2793 2794 /* 2795 * Step 4: narrow down to a pair of incompatible usage bits 2796 * and report it. 2797 */ 2798 ret = find_exclusive_match(target_entry->class->usage_mask, 2799 target_entry1->class->usage_mask, 2800 &backward_bit, &forward_bit); 2801 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2802 return 1; 2803 2804 print_bad_irq_dependency(curr, &this, &that, 2805 target_entry, target_entry1, 2806 prev, next, 2807 backward_bit, forward_bit, 2808 state_name(backward_bit)); 2809 2810 return 0; 2811 } 2812 2813 #else 2814 2815 static inline int check_irq_usage(struct task_struct *curr, 2816 struct held_lock *prev, struct held_lock *next) 2817 { 2818 return 1; 2819 } 2820 2821 static inline bool usage_skip(struct lock_list *entry, void *mask) 2822 { 2823 return false; 2824 } 2825 2826 #endif /* CONFIG_TRACE_IRQFLAGS */ 2827 2828 #ifdef CONFIG_LOCKDEP_SMALL 2829 /* 2830 * Check that the dependency graph starting at <src> can lead to 2831 * <target> or not. If it can, <src> -> <target> dependency is already 2832 * in the graph. 2833 * 2834 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if 2835 * any error appears in the bfs search. 2836 */ 2837 static noinline enum bfs_result 2838 check_redundant(struct held_lock *src, struct held_lock *target) 2839 { 2840 enum bfs_result ret; 2841 struct lock_list *target_entry; 2842 struct lock_list src_entry; 2843 2844 bfs_init_root(&src_entry, src); 2845 /* 2846 * Special setup for check_redundant(). 2847 * 2848 * To report redundant, we need to find a strong dependency path that 2849 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2850 * we need to let __bfs() only search for a path starting at a -(E*)->, 2851 * we achieve this by setting the initial node's ->only_xr to true in 2852 * that case. And if <prev> is S, we set initial ->only_xr to false 2853 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2854 */ 2855 src_entry.only_xr = src->read == 0; 2856 2857 debug_atomic_inc(nr_redundant_checks); 2858 2859 /* 2860 * Note: we skip local_lock() for redundant check, because as the 2861 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2862 * the same. 2863 */ 2864 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2865 2866 if (ret == BFS_RMATCH) 2867 debug_atomic_inc(nr_redundant); 2868 2869 return ret; 2870 } 2871 2872 #else 2873 2874 static inline enum bfs_result 2875 check_redundant(struct held_lock *src, struct held_lock *target) 2876 { 2877 return BFS_RNOMATCH; 2878 } 2879 2880 #endif 2881 2882 static void inc_chains(int irq_context) 2883 { 2884 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2885 nr_hardirq_chains++; 2886 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2887 nr_softirq_chains++; 2888 else 2889 nr_process_chains++; 2890 } 2891 2892 static void dec_chains(int irq_context) 2893 { 2894 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2895 nr_hardirq_chains--; 2896 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2897 nr_softirq_chains--; 2898 else 2899 nr_process_chains--; 2900 } 2901 2902 static void 2903 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2904 { 2905 struct lock_class *next = hlock_class(nxt); 2906 struct lock_class *prev = hlock_class(prv); 2907 2908 printk(" Possible unsafe locking scenario:\n\n"); 2909 printk(" CPU0\n"); 2910 printk(" ----\n"); 2911 printk(" lock("); 2912 __print_lock_name(prev); 2913 printk(KERN_CONT ");\n"); 2914 printk(" lock("); 2915 __print_lock_name(next); 2916 printk(KERN_CONT ");\n"); 2917 printk("\n *** DEADLOCK ***\n\n"); 2918 printk(" May be due to missing lock nesting notation\n\n"); 2919 } 2920 2921 static void 2922 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2923 struct held_lock *next) 2924 { 2925 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2926 return; 2927 2928 pr_warn("\n"); 2929 pr_warn("============================================\n"); 2930 pr_warn("WARNING: possible recursive locking detected\n"); 2931 print_kernel_ident(); 2932 pr_warn("--------------------------------------------\n"); 2933 pr_warn("%s/%d is trying to acquire lock:\n", 2934 curr->comm, task_pid_nr(curr)); 2935 print_lock(next); 2936 pr_warn("\nbut task is already holding lock:\n"); 2937 print_lock(prev); 2938 2939 pr_warn("\nother info that might help us debug this:\n"); 2940 print_deadlock_scenario(next, prev); 2941 lockdep_print_held_locks(curr); 2942 2943 pr_warn("\nstack backtrace:\n"); 2944 dump_stack(); 2945 } 2946 2947 /* 2948 * Check whether we are holding such a class already. 2949 * 2950 * (Note that this has to be done separately, because the graph cannot 2951 * detect such classes of deadlocks.) 2952 * 2953 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 2954 * lock class is held but nest_lock is also held, i.e. we rely on the 2955 * nest_lock to avoid the deadlock. 2956 */ 2957 static int 2958 check_deadlock(struct task_struct *curr, struct held_lock *next) 2959 { 2960 struct held_lock *prev; 2961 struct held_lock *nest = NULL; 2962 int i; 2963 2964 for (i = 0; i < curr->lockdep_depth; i++) { 2965 prev = curr->held_locks + i; 2966 2967 if (prev->instance == next->nest_lock) 2968 nest = prev; 2969 2970 if (hlock_class(prev) != hlock_class(next)) 2971 continue; 2972 2973 /* 2974 * Allow read-after-read recursion of the same 2975 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2976 */ 2977 if ((next->read == 2) && prev->read) 2978 continue; 2979 2980 /* 2981 * We're holding the nest_lock, which serializes this lock's 2982 * nesting behaviour. 2983 */ 2984 if (nest) 2985 return 2; 2986 2987 print_deadlock_bug(curr, prev, next); 2988 return 0; 2989 } 2990 return 1; 2991 } 2992 2993 /* 2994 * There was a chain-cache miss, and we are about to add a new dependency 2995 * to a previous lock. We validate the following rules: 2996 * 2997 * - would the adding of the <prev> -> <next> dependency create a 2998 * circular dependency in the graph? [== circular deadlock] 2999 * 3000 * - does the new prev->next dependency connect any hardirq-safe lock 3001 * (in the full backwards-subgraph starting at <prev>) with any 3002 * hardirq-unsafe lock (in the full forwards-subgraph starting at 3003 * <next>)? [== illegal lock inversion with hardirq contexts] 3004 * 3005 * - does the new prev->next dependency connect any softirq-safe lock 3006 * (in the full backwards-subgraph starting at <prev>) with any 3007 * softirq-unsafe lock (in the full forwards-subgraph starting at 3008 * <next>)? [== illegal lock inversion with softirq contexts] 3009 * 3010 * any of these scenarios could lead to a deadlock. 3011 * 3012 * Then if all the validations pass, we add the forwards and backwards 3013 * dependency. 3014 */ 3015 static int 3016 check_prev_add(struct task_struct *curr, struct held_lock *prev, 3017 struct held_lock *next, u16 distance, 3018 struct lock_trace **const trace) 3019 { 3020 struct lock_list *entry; 3021 enum bfs_result ret; 3022 3023 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 3024 /* 3025 * The warning statements below may trigger a use-after-free 3026 * of the class name. It is better to trigger a use-after free 3027 * and to have the class name most of the time instead of not 3028 * having the class name available. 3029 */ 3030 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 3031 "Detected use-after-free of lock class %px/%s\n", 3032 hlock_class(prev), 3033 hlock_class(prev)->name); 3034 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 3035 "Detected use-after-free of lock class %px/%s\n", 3036 hlock_class(next), 3037 hlock_class(next)->name); 3038 return 2; 3039 } 3040 3041 /* 3042 * Prove that the new <prev> -> <next> dependency would not 3043 * create a circular dependency in the graph. (We do this by 3044 * a breadth-first search into the graph starting at <next>, 3045 * and check whether we can reach <prev>.) 3046 * 3047 * The search is limited by the size of the circular queue (i.e., 3048 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 3049 * in the graph whose neighbours are to be checked. 3050 */ 3051 ret = check_noncircular(next, prev, trace); 3052 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 3053 return 0; 3054 3055 if (!check_irq_usage(curr, prev, next)) 3056 return 0; 3057 3058 /* 3059 * Is the <prev> -> <next> dependency already present? 3060 * 3061 * (this may occur even though this is a new chain: consider 3062 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 3063 * chains - the second one will be new, but L1 already has 3064 * L2 added to its dependency list, due to the first chain.) 3065 */ 3066 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 3067 if (entry->class == hlock_class(next)) { 3068 if (distance == 1) 3069 entry->distance = 1; 3070 entry->dep |= calc_dep(prev, next); 3071 3072 /* 3073 * Also, update the reverse dependency in @next's 3074 * ->locks_before list. 3075 * 3076 * Here we reuse @entry as the cursor, which is fine 3077 * because we won't go to the next iteration of the 3078 * outer loop: 3079 * 3080 * For normal cases, we return in the inner loop. 3081 * 3082 * If we fail to return, we have inconsistency, i.e. 3083 * <prev>::locks_after contains <next> while 3084 * <next>::locks_before doesn't contain <prev>. In 3085 * that case, we return after the inner and indicate 3086 * something is wrong. 3087 */ 3088 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 3089 if (entry->class == hlock_class(prev)) { 3090 if (distance == 1) 3091 entry->distance = 1; 3092 entry->dep |= calc_depb(prev, next); 3093 return 1; 3094 } 3095 } 3096 3097 /* <prev> is not found in <next>::locks_before */ 3098 return 0; 3099 } 3100 } 3101 3102 /* 3103 * Is the <prev> -> <next> link redundant? 3104 */ 3105 ret = check_redundant(prev, next); 3106 if (bfs_error(ret)) 3107 return 0; 3108 else if (ret == BFS_RMATCH) 3109 return 2; 3110 3111 if (!*trace) { 3112 *trace = save_trace(); 3113 if (!*trace) 3114 return 0; 3115 } 3116 3117 /* 3118 * Ok, all validations passed, add the new lock 3119 * to the previous lock's dependency list: 3120 */ 3121 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3122 &hlock_class(prev)->locks_after, 3123 next->acquire_ip, distance, 3124 calc_dep(prev, next), 3125 *trace); 3126 3127 if (!ret) 3128 return 0; 3129 3130 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3131 &hlock_class(next)->locks_before, 3132 next->acquire_ip, distance, 3133 calc_depb(prev, next), 3134 *trace); 3135 if (!ret) 3136 return 0; 3137 3138 return 2; 3139 } 3140 3141 /* 3142 * Add the dependency to all directly-previous locks that are 'relevant'. 3143 * The ones that are relevant are (in increasing distance from curr): 3144 * all consecutive trylock entries and the final non-trylock entry - or 3145 * the end of this context's lock-chain - whichever comes first. 3146 */ 3147 static int 3148 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3149 { 3150 struct lock_trace *trace = NULL; 3151 int depth = curr->lockdep_depth; 3152 struct held_lock *hlock; 3153 3154 /* 3155 * Debugging checks. 3156 * 3157 * Depth must not be zero for a non-head lock: 3158 */ 3159 if (!depth) 3160 goto out_bug; 3161 /* 3162 * At least two relevant locks must exist for this 3163 * to be a head: 3164 */ 3165 if (curr->held_locks[depth].irq_context != 3166 curr->held_locks[depth-1].irq_context) 3167 goto out_bug; 3168 3169 for (;;) { 3170 u16 distance = curr->lockdep_depth - depth + 1; 3171 hlock = curr->held_locks + depth - 1; 3172 3173 if (hlock->check) { 3174 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3175 if (!ret) 3176 return 0; 3177 3178 /* 3179 * Stop after the first non-trylock entry, 3180 * as non-trylock entries have added their 3181 * own direct dependencies already, so this 3182 * lock is connected to them indirectly: 3183 */ 3184 if (!hlock->trylock) 3185 break; 3186 } 3187 3188 depth--; 3189 /* 3190 * End of lock-stack? 3191 */ 3192 if (!depth) 3193 break; 3194 /* 3195 * Stop the search if we cross into another context: 3196 */ 3197 if (curr->held_locks[depth].irq_context != 3198 curr->held_locks[depth-1].irq_context) 3199 break; 3200 } 3201 return 1; 3202 out_bug: 3203 if (!debug_locks_off_graph_unlock()) 3204 return 0; 3205 3206 /* 3207 * Clearly we all shouldn't be here, but since we made it we 3208 * can reliable say we messed up our state. See the above two 3209 * gotos for reasons why we could possibly end up here. 3210 */ 3211 WARN_ON(1); 3212 3213 return 0; 3214 } 3215 3216 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3217 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3218 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3219 unsigned long nr_zapped_lock_chains; 3220 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3221 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3222 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3223 3224 /* 3225 * The first 2 chain_hlocks entries in the chain block in the bucket 3226 * list contains the following meta data: 3227 * 3228 * entry[0]: 3229 * Bit 15 - always set to 1 (it is not a class index) 3230 * Bits 0-14 - upper 15 bits of the next block index 3231 * entry[1] - lower 16 bits of next block index 3232 * 3233 * A next block index of all 1 bits means it is the end of the list. 3234 * 3235 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3236 * the chain block size: 3237 * 3238 * entry[2] - upper 16 bits of the chain block size 3239 * entry[3] - lower 16 bits of the chain block size 3240 */ 3241 #define MAX_CHAIN_BUCKETS 16 3242 #define CHAIN_BLK_FLAG (1U << 15) 3243 #define CHAIN_BLK_LIST_END 0xFFFFU 3244 3245 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3246 3247 static inline int size_to_bucket(int size) 3248 { 3249 if (size > MAX_CHAIN_BUCKETS) 3250 return 0; 3251 3252 return size - 1; 3253 } 3254 3255 /* 3256 * Iterate all the chain blocks in a bucket. 3257 */ 3258 #define for_each_chain_block(bucket, prev, curr) \ 3259 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3260 (curr) >= 0; \ 3261 (prev) = (curr), (curr) = chain_block_next(curr)) 3262 3263 /* 3264 * next block or -1 3265 */ 3266 static inline int chain_block_next(int offset) 3267 { 3268 int next = chain_hlocks[offset]; 3269 3270 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3271 3272 if (next == CHAIN_BLK_LIST_END) 3273 return -1; 3274 3275 next &= ~CHAIN_BLK_FLAG; 3276 next <<= 16; 3277 next |= chain_hlocks[offset + 1]; 3278 3279 return next; 3280 } 3281 3282 /* 3283 * bucket-0 only 3284 */ 3285 static inline int chain_block_size(int offset) 3286 { 3287 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3288 } 3289 3290 static inline void init_chain_block(int offset, int next, int bucket, int size) 3291 { 3292 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3293 chain_hlocks[offset + 1] = (u16)next; 3294 3295 if (size && !bucket) { 3296 chain_hlocks[offset + 2] = size >> 16; 3297 chain_hlocks[offset + 3] = (u16)size; 3298 } 3299 } 3300 3301 static inline void add_chain_block(int offset, int size) 3302 { 3303 int bucket = size_to_bucket(size); 3304 int next = chain_block_buckets[bucket]; 3305 int prev, curr; 3306 3307 if (unlikely(size < 2)) { 3308 /* 3309 * We can't store single entries on the freelist. Leak them. 3310 * 3311 * One possible way out would be to uniquely mark them, other 3312 * than with CHAIN_BLK_FLAG, such that we can recover them when 3313 * the block before it is re-added. 3314 */ 3315 if (size) 3316 nr_lost_chain_hlocks++; 3317 return; 3318 } 3319 3320 nr_free_chain_hlocks += size; 3321 if (!bucket) { 3322 nr_large_chain_blocks++; 3323 3324 /* 3325 * Variable sized, sort large to small. 3326 */ 3327 for_each_chain_block(0, prev, curr) { 3328 if (size >= chain_block_size(curr)) 3329 break; 3330 } 3331 init_chain_block(offset, curr, 0, size); 3332 if (prev < 0) 3333 chain_block_buckets[0] = offset; 3334 else 3335 init_chain_block(prev, offset, 0, 0); 3336 return; 3337 } 3338 /* 3339 * Fixed size, add to head. 3340 */ 3341 init_chain_block(offset, next, bucket, size); 3342 chain_block_buckets[bucket] = offset; 3343 } 3344 3345 /* 3346 * Only the first block in the list can be deleted. 3347 * 3348 * For the variable size bucket[0], the first block (the largest one) is 3349 * returned, broken up and put back into the pool. So if a chain block of 3350 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3351 * queued up after the primordial chain block and never be used until the 3352 * hlock entries in the primordial chain block is almost used up. That 3353 * causes fragmentation and reduce allocation efficiency. That can be 3354 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3355 */ 3356 static inline void del_chain_block(int bucket, int size, int next) 3357 { 3358 nr_free_chain_hlocks -= size; 3359 chain_block_buckets[bucket] = next; 3360 3361 if (!bucket) 3362 nr_large_chain_blocks--; 3363 } 3364 3365 static void init_chain_block_buckets(void) 3366 { 3367 int i; 3368 3369 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3370 chain_block_buckets[i] = -1; 3371 3372 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3373 } 3374 3375 /* 3376 * Return offset of a chain block of the right size or -1 if not found. 3377 * 3378 * Fairly simple worst-fit allocator with the addition of a number of size 3379 * specific free lists. 3380 */ 3381 static int alloc_chain_hlocks(int req) 3382 { 3383 int bucket, curr, size; 3384 3385 /* 3386 * We rely on the MSB to act as an escape bit to denote freelist 3387 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3388 */ 3389 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3390 3391 init_data_structures_once(); 3392 3393 if (nr_free_chain_hlocks < req) 3394 return -1; 3395 3396 /* 3397 * We require a minimum of 2 (u16) entries to encode a freelist 3398 * 'pointer'. 3399 */ 3400 req = max(req, 2); 3401 bucket = size_to_bucket(req); 3402 curr = chain_block_buckets[bucket]; 3403 3404 if (bucket) { 3405 if (curr >= 0) { 3406 del_chain_block(bucket, req, chain_block_next(curr)); 3407 return curr; 3408 } 3409 /* Try bucket 0 */ 3410 curr = chain_block_buckets[0]; 3411 } 3412 3413 /* 3414 * The variable sized freelist is sorted by size; the first entry is 3415 * the largest. Use it if it fits. 3416 */ 3417 if (curr >= 0) { 3418 size = chain_block_size(curr); 3419 if (likely(size >= req)) { 3420 del_chain_block(0, size, chain_block_next(curr)); 3421 add_chain_block(curr + req, size - req); 3422 return curr; 3423 } 3424 } 3425 3426 /* 3427 * Last resort, split a block in a larger sized bucket. 3428 */ 3429 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3430 bucket = size_to_bucket(size); 3431 curr = chain_block_buckets[bucket]; 3432 if (curr < 0) 3433 continue; 3434 3435 del_chain_block(bucket, size, chain_block_next(curr)); 3436 add_chain_block(curr + req, size - req); 3437 return curr; 3438 } 3439 3440 return -1; 3441 } 3442 3443 static inline void free_chain_hlocks(int base, int size) 3444 { 3445 add_chain_block(base, max(size, 2)); 3446 } 3447 3448 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3449 { 3450 u16 chain_hlock = chain_hlocks[chain->base + i]; 3451 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3452 3453 return lock_classes + class_idx - 1; 3454 } 3455 3456 /* 3457 * Returns the index of the first held_lock of the current chain 3458 */ 3459 static inline int get_first_held_lock(struct task_struct *curr, 3460 struct held_lock *hlock) 3461 { 3462 int i; 3463 struct held_lock *hlock_curr; 3464 3465 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3466 hlock_curr = curr->held_locks + i; 3467 if (hlock_curr->irq_context != hlock->irq_context) 3468 break; 3469 3470 } 3471 3472 return ++i; 3473 } 3474 3475 #ifdef CONFIG_DEBUG_LOCKDEP 3476 /* 3477 * Returns the next chain_key iteration 3478 */ 3479 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3480 { 3481 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3482 3483 printk(" hlock_id:%d -> chain_key:%016Lx", 3484 (unsigned int)hlock_id, 3485 (unsigned long long)new_chain_key); 3486 return new_chain_key; 3487 } 3488 3489 static void 3490 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3491 { 3492 struct held_lock *hlock; 3493 u64 chain_key = INITIAL_CHAIN_KEY; 3494 int depth = curr->lockdep_depth; 3495 int i = get_first_held_lock(curr, hlock_next); 3496 3497 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3498 hlock_next->irq_context); 3499 for (; i < depth; i++) { 3500 hlock = curr->held_locks + i; 3501 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3502 3503 print_lock(hlock); 3504 } 3505 3506 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3507 print_lock(hlock_next); 3508 } 3509 3510 static void print_chain_keys_chain(struct lock_chain *chain) 3511 { 3512 int i; 3513 u64 chain_key = INITIAL_CHAIN_KEY; 3514 u16 hlock_id; 3515 3516 printk("depth: %u\n", chain->depth); 3517 for (i = 0; i < chain->depth; i++) { 3518 hlock_id = chain_hlocks[chain->base + i]; 3519 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3520 3521 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1); 3522 printk("\n"); 3523 } 3524 } 3525 3526 static void print_collision(struct task_struct *curr, 3527 struct held_lock *hlock_next, 3528 struct lock_chain *chain) 3529 { 3530 pr_warn("\n"); 3531 pr_warn("============================\n"); 3532 pr_warn("WARNING: chain_key collision\n"); 3533 print_kernel_ident(); 3534 pr_warn("----------------------------\n"); 3535 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3536 pr_warn("Hash chain already cached but the contents don't match!\n"); 3537 3538 pr_warn("Held locks:"); 3539 print_chain_keys_held_locks(curr, hlock_next); 3540 3541 pr_warn("Locks in cached chain:"); 3542 print_chain_keys_chain(chain); 3543 3544 pr_warn("\nstack backtrace:\n"); 3545 dump_stack(); 3546 } 3547 #endif 3548 3549 /* 3550 * Checks whether the chain and the current held locks are consistent 3551 * in depth and also in content. If they are not it most likely means 3552 * that there was a collision during the calculation of the chain_key. 3553 * Returns: 0 not passed, 1 passed 3554 */ 3555 static int check_no_collision(struct task_struct *curr, 3556 struct held_lock *hlock, 3557 struct lock_chain *chain) 3558 { 3559 #ifdef CONFIG_DEBUG_LOCKDEP 3560 int i, j, id; 3561 3562 i = get_first_held_lock(curr, hlock); 3563 3564 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3565 print_collision(curr, hlock, chain); 3566 return 0; 3567 } 3568 3569 for (j = 0; j < chain->depth - 1; j++, i++) { 3570 id = hlock_id(&curr->held_locks[i]); 3571 3572 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3573 print_collision(curr, hlock, chain); 3574 return 0; 3575 } 3576 } 3577 #endif 3578 return 1; 3579 } 3580 3581 /* 3582 * Given an index that is >= -1, return the index of the next lock chain. 3583 * Return -2 if there is no next lock chain. 3584 */ 3585 long lockdep_next_lockchain(long i) 3586 { 3587 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3588 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3589 } 3590 3591 unsigned long lock_chain_count(void) 3592 { 3593 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3594 } 3595 3596 /* Must be called with the graph lock held. */ 3597 static struct lock_chain *alloc_lock_chain(void) 3598 { 3599 int idx = find_first_zero_bit(lock_chains_in_use, 3600 ARRAY_SIZE(lock_chains)); 3601 3602 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3603 return NULL; 3604 __set_bit(idx, lock_chains_in_use); 3605 return lock_chains + idx; 3606 } 3607 3608 /* 3609 * Adds a dependency chain into chain hashtable. And must be called with 3610 * graph_lock held. 3611 * 3612 * Return 0 if fail, and graph_lock is released. 3613 * Return 1 if succeed, with graph_lock held. 3614 */ 3615 static inline int add_chain_cache(struct task_struct *curr, 3616 struct held_lock *hlock, 3617 u64 chain_key) 3618 { 3619 struct hlist_head *hash_head = chainhashentry(chain_key); 3620 struct lock_chain *chain; 3621 int i, j; 3622 3623 /* 3624 * The caller must hold the graph lock, ensure we've got IRQs 3625 * disabled to make this an IRQ-safe lock.. for recursion reasons 3626 * lockdep won't complain about its own locking errors. 3627 */ 3628 if (lockdep_assert_locked()) 3629 return 0; 3630 3631 chain = alloc_lock_chain(); 3632 if (!chain) { 3633 if (!debug_locks_off_graph_unlock()) 3634 return 0; 3635 3636 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3637 dump_stack(); 3638 return 0; 3639 } 3640 chain->chain_key = chain_key; 3641 chain->irq_context = hlock->irq_context; 3642 i = get_first_held_lock(curr, hlock); 3643 chain->depth = curr->lockdep_depth + 1 - i; 3644 3645 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3646 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3647 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3648 3649 j = alloc_chain_hlocks(chain->depth); 3650 if (j < 0) { 3651 if (!debug_locks_off_graph_unlock()) 3652 return 0; 3653 3654 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3655 dump_stack(); 3656 return 0; 3657 } 3658 3659 chain->base = j; 3660 for (j = 0; j < chain->depth - 1; j++, i++) { 3661 int lock_id = hlock_id(curr->held_locks + i); 3662 3663 chain_hlocks[chain->base + j] = lock_id; 3664 } 3665 chain_hlocks[chain->base + j] = hlock_id(hlock); 3666 hlist_add_head_rcu(&chain->entry, hash_head); 3667 debug_atomic_inc(chain_lookup_misses); 3668 inc_chains(chain->irq_context); 3669 3670 return 1; 3671 } 3672 3673 /* 3674 * Look up a dependency chain. Must be called with either the graph lock or 3675 * the RCU read lock held. 3676 */ 3677 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3678 { 3679 struct hlist_head *hash_head = chainhashentry(chain_key); 3680 struct lock_chain *chain; 3681 3682 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3683 if (READ_ONCE(chain->chain_key) == chain_key) { 3684 debug_atomic_inc(chain_lookup_hits); 3685 return chain; 3686 } 3687 } 3688 return NULL; 3689 } 3690 3691 /* 3692 * If the key is not present yet in dependency chain cache then 3693 * add it and return 1 - in this case the new dependency chain is 3694 * validated. If the key is already hashed, return 0. 3695 * (On return with 1 graph_lock is held.) 3696 */ 3697 static inline int lookup_chain_cache_add(struct task_struct *curr, 3698 struct held_lock *hlock, 3699 u64 chain_key) 3700 { 3701 struct lock_class *class = hlock_class(hlock); 3702 struct lock_chain *chain = lookup_chain_cache(chain_key); 3703 3704 if (chain) { 3705 cache_hit: 3706 if (!check_no_collision(curr, hlock, chain)) 3707 return 0; 3708 3709 if (very_verbose(class)) { 3710 printk("\nhash chain already cached, key: " 3711 "%016Lx tail class: [%px] %s\n", 3712 (unsigned long long)chain_key, 3713 class->key, class->name); 3714 } 3715 3716 return 0; 3717 } 3718 3719 if (very_verbose(class)) { 3720 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3721 (unsigned long long)chain_key, class->key, class->name); 3722 } 3723 3724 if (!graph_lock()) 3725 return 0; 3726 3727 /* 3728 * We have to walk the chain again locked - to avoid duplicates: 3729 */ 3730 chain = lookup_chain_cache(chain_key); 3731 if (chain) { 3732 graph_unlock(); 3733 goto cache_hit; 3734 } 3735 3736 if (!add_chain_cache(curr, hlock, chain_key)) 3737 return 0; 3738 3739 return 1; 3740 } 3741 3742 static int validate_chain(struct task_struct *curr, 3743 struct held_lock *hlock, 3744 int chain_head, u64 chain_key) 3745 { 3746 /* 3747 * Trylock needs to maintain the stack of held locks, but it 3748 * does not add new dependencies, because trylock can be done 3749 * in any order. 3750 * 3751 * We look up the chain_key and do the O(N^2) check and update of 3752 * the dependencies only if this is a new dependency chain. 3753 * (If lookup_chain_cache_add() return with 1 it acquires 3754 * graph_lock for us) 3755 */ 3756 if (!hlock->trylock && hlock->check && 3757 lookup_chain_cache_add(curr, hlock, chain_key)) { 3758 /* 3759 * Check whether last held lock: 3760 * 3761 * - is irq-safe, if this lock is irq-unsafe 3762 * - is softirq-safe, if this lock is hardirq-unsafe 3763 * 3764 * And check whether the new lock's dependency graph 3765 * could lead back to the previous lock: 3766 * 3767 * - within the current held-lock stack 3768 * - across our accumulated lock dependency records 3769 * 3770 * any of these scenarios could lead to a deadlock. 3771 */ 3772 /* 3773 * The simple case: does the current hold the same lock 3774 * already? 3775 */ 3776 int ret = check_deadlock(curr, hlock); 3777 3778 if (!ret) 3779 return 0; 3780 /* 3781 * Add dependency only if this lock is not the head 3782 * of the chain, and if the new lock introduces no more 3783 * lock dependency (because we already hold a lock with the 3784 * same lock class) nor deadlock (because the nest_lock 3785 * serializes nesting locks), see the comments for 3786 * check_deadlock(). 3787 */ 3788 if (!chain_head && ret != 2) { 3789 if (!check_prevs_add(curr, hlock)) 3790 return 0; 3791 } 3792 3793 graph_unlock(); 3794 } else { 3795 /* after lookup_chain_cache_add(): */ 3796 if (unlikely(!debug_locks)) 3797 return 0; 3798 } 3799 3800 return 1; 3801 } 3802 #else 3803 static inline int validate_chain(struct task_struct *curr, 3804 struct held_lock *hlock, 3805 int chain_head, u64 chain_key) 3806 { 3807 return 1; 3808 } 3809 3810 static void init_chain_block_buckets(void) { } 3811 #endif /* CONFIG_PROVE_LOCKING */ 3812 3813 /* 3814 * We are building curr_chain_key incrementally, so double-check 3815 * it from scratch, to make sure that it's done correctly: 3816 */ 3817 static void check_chain_key(struct task_struct *curr) 3818 { 3819 #ifdef CONFIG_DEBUG_LOCKDEP 3820 struct held_lock *hlock, *prev_hlock = NULL; 3821 unsigned int i; 3822 u64 chain_key = INITIAL_CHAIN_KEY; 3823 3824 for (i = 0; i < curr->lockdep_depth; i++) { 3825 hlock = curr->held_locks + i; 3826 if (chain_key != hlock->prev_chain_key) { 3827 debug_locks_off(); 3828 /* 3829 * We got mighty confused, our chain keys don't match 3830 * with what we expect, someone trample on our task state? 3831 */ 3832 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3833 curr->lockdep_depth, i, 3834 (unsigned long long)chain_key, 3835 (unsigned long long)hlock->prev_chain_key); 3836 return; 3837 } 3838 3839 /* 3840 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3841 * it registered lock class index? 3842 */ 3843 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3844 return; 3845 3846 if (prev_hlock && (prev_hlock->irq_context != 3847 hlock->irq_context)) 3848 chain_key = INITIAL_CHAIN_KEY; 3849 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3850 prev_hlock = hlock; 3851 } 3852 if (chain_key != curr->curr_chain_key) { 3853 debug_locks_off(); 3854 /* 3855 * More smoking hash instead of calculating it, damn see these 3856 * numbers float.. I bet that a pink elephant stepped on my memory. 3857 */ 3858 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3859 curr->lockdep_depth, i, 3860 (unsigned long long)chain_key, 3861 (unsigned long long)curr->curr_chain_key); 3862 } 3863 #endif 3864 } 3865 3866 #ifdef CONFIG_PROVE_LOCKING 3867 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3868 enum lock_usage_bit new_bit); 3869 3870 static void print_usage_bug_scenario(struct held_lock *lock) 3871 { 3872 struct lock_class *class = hlock_class(lock); 3873 3874 printk(" Possible unsafe locking scenario:\n\n"); 3875 printk(" CPU0\n"); 3876 printk(" ----\n"); 3877 printk(" lock("); 3878 __print_lock_name(class); 3879 printk(KERN_CONT ");\n"); 3880 printk(" <Interrupt>\n"); 3881 printk(" lock("); 3882 __print_lock_name(class); 3883 printk(KERN_CONT ");\n"); 3884 printk("\n *** DEADLOCK ***\n\n"); 3885 } 3886 3887 static void 3888 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3889 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3890 { 3891 if (!debug_locks_off() || debug_locks_silent) 3892 return; 3893 3894 pr_warn("\n"); 3895 pr_warn("================================\n"); 3896 pr_warn("WARNING: inconsistent lock state\n"); 3897 print_kernel_ident(); 3898 pr_warn("--------------------------------\n"); 3899 3900 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3901 usage_str[prev_bit], usage_str[new_bit]); 3902 3903 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3904 curr->comm, task_pid_nr(curr), 3905 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3906 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3907 lockdep_hardirqs_enabled(), 3908 lockdep_softirqs_enabled(curr)); 3909 print_lock(this); 3910 3911 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3912 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3913 3914 print_irqtrace_events(curr); 3915 pr_warn("\nother info that might help us debug this:\n"); 3916 print_usage_bug_scenario(this); 3917 3918 lockdep_print_held_locks(curr); 3919 3920 pr_warn("\nstack backtrace:\n"); 3921 dump_stack(); 3922 } 3923 3924 /* 3925 * Print out an error if an invalid bit is set: 3926 */ 3927 static inline int 3928 valid_state(struct task_struct *curr, struct held_lock *this, 3929 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3930 { 3931 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3932 graph_unlock(); 3933 print_usage_bug(curr, this, bad_bit, new_bit); 3934 return 0; 3935 } 3936 return 1; 3937 } 3938 3939 3940 /* 3941 * print irq inversion bug: 3942 */ 3943 static void 3944 print_irq_inversion_bug(struct task_struct *curr, 3945 struct lock_list *root, struct lock_list *other, 3946 struct held_lock *this, int forwards, 3947 const char *irqclass) 3948 { 3949 struct lock_list *entry = other; 3950 struct lock_list *middle = NULL; 3951 int depth; 3952 3953 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3954 return; 3955 3956 pr_warn("\n"); 3957 pr_warn("========================================================\n"); 3958 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3959 print_kernel_ident(); 3960 pr_warn("--------------------------------------------------------\n"); 3961 pr_warn("%s/%d just changed the state of lock:\n", 3962 curr->comm, task_pid_nr(curr)); 3963 print_lock(this); 3964 if (forwards) 3965 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3966 else 3967 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3968 print_lock_name(other->class); 3969 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3970 3971 pr_warn("\nother info that might help us debug this:\n"); 3972 3973 /* Find a middle lock (if one exists) */ 3974 depth = get_lock_depth(other); 3975 do { 3976 if (depth == 0 && (entry != root)) { 3977 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3978 break; 3979 } 3980 middle = entry; 3981 entry = get_lock_parent(entry); 3982 depth--; 3983 } while (entry && entry != root && (depth >= 0)); 3984 if (forwards) 3985 print_irq_lock_scenario(root, other, 3986 middle ? middle->class : root->class, other->class); 3987 else 3988 print_irq_lock_scenario(other, root, 3989 middle ? middle->class : other->class, root->class); 3990 3991 lockdep_print_held_locks(curr); 3992 3993 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 3994 root->trace = save_trace(); 3995 if (!root->trace) 3996 return; 3997 print_shortest_lock_dependencies(other, root); 3998 3999 pr_warn("\nstack backtrace:\n"); 4000 dump_stack(); 4001 } 4002 4003 /* 4004 * Prove that in the forwards-direction subgraph starting at <this> 4005 * there is no lock matching <mask>: 4006 */ 4007 static int 4008 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 4009 enum lock_usage_bit bit) 4010 { 4011 enum bfs_result ret; 4012 struct lock_list root; 4013 struct lock_list *target_entry; 4014 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4015 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4016 4017 bfs_init_root(&root, this); 4018 ret = find_usage_forwards(&root, usage_mask, &target_entry); 4019 if (bfs_error(ret)) { 4020 print_bfs_bug(ret); 4021 return 0; 4022 } 4023 if (ret == BFS_RNOMATCH) 4024 return 1; 4025 4026 /* Check whether write or read usage is the match */ 4027 if (target_entry->class->usage_mask & lock_flag(bit)) { 4028 print_irq_inversion_bug(curr, &root, target_entry, 4029 this, 1, state_name(bit)); 4030 } else { 4031 print_irq_inversion_bug(curr, &root, target_entry, 4032 this, 1, state_name(read_bit)); 4033 } 4034 4035 return 0; 4036 } 4037 4038 /* 4039 * Prove that in the backwards-direction subgraph starting at <this> 4040 * there is no lock matching <mask>: 4041 */ 4042 static int 4043 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 4044 enum lock_usage_bit bit) 4045 { 4046 enum bfs_result ret; 4047 struct lock_list root; 4048 struct lock_list *target_entry; 4049 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 4050 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 4051 4052 bfs_init_rootb(&root, this); 4053 ret = find_usage_backwards(&root, usage_mask, &target_entry); 4054 if (bfs_error(ret)) { 4055 print_bfs_bug(ret); 4056 return 0; 4057 } 4058 if (ret == BFS_RNOMATCH) 4059 return 1; 4060 4061 /* Check whether write or read usage is the match */ 4062 if (target_entry->class->usage_mask & lock_flag(bit)) { 4063 print_irq_inversion_bug(curr, &root, target_entry, 4064 this, 0, state_name(bit)); 4065 } else { 4066 print_irq_inversion_bug(curr, &root, target_entry, 4067 this, 0, state_name(read_bit)); 4068 } 4069 4070 return 0; 4071 } 4072 4073 void print_irqtrace_events(struct task_struct *curr) 4074 { 4075 const struct irqtrace_events *trace = &curr->irqtrace; 4076 4077 printk("irq event stamp: %u\n", trace->irq_events); 4078 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 4079 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 4080 (void *)trace->hardirq_enable_ip); 4081 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 4082 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 4083 (void *)trace->hardirq_disable_ip); 4084 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 4085 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 4086 (void *)trace->softirq_enable_ip); 4087 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 4088 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 4089 (void *)trace->softirq_disable_ip); 4090 } 4091 4092 static int HARDIRQ_verbose(struct lock_class *class) 4093 { 4094 #if HARDIRQ_VERBOSE 4095 return class_filter(class); 4096 #endif 4097 return 0; 4098 } 4099 4100 static int SOFTIRQ_verbose(struct lock_class *class) 4101 { 4102 #if SOFTIRQ_VERBOSE 4103 return class_filter(class); 4104 #endif 4105 return 0; 4106 } 4107 4108 static int (*state_verbose_f[])(struct lock_class *class) = { 4109 #define LOCKDEP_STATE(__STATE) \ 4110 __STATE##_verbose, 4111 #include "lockdep_states.h" 4112 #undef LOCKDEP_STATE 4113 }; 4114 4115 static inline int state_verbose(enum lock_usage_bit bit, 4116 struct lock_class *class) 4117 { 4118 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4119 } 4120 4121 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4122 enum lock_usage_bit bit, const char *name); 4123 4124 static int 4125 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4126 enum lock_usage_bit new_bit) 4127 { 4128 int excl_bit = exclusive_bit(new_bit); 4129 int read = new_bit & LOCK_USAGE_READ_MASK; 4130 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4131 4132 /* 4133 * Validate that this particular lock does not have conflicting 4134 * usage states. 4135 */ 4136 if (!valid_state(curr, this, new_bit, excl_bit)) 4137 return 0; 4138 4139 /* 4140 * Check for read in write conflicts 4141 */ 4142 if (!read && !valid_state(curr, this, new_bit, 4143 excl_bit + LOCK_USAGE_READ_MASK)) 4144 return 0; 4145 4146 4147 /* 4148 * Validate that the lock dependencies don't have conflicting usage 4149 * states. 4150 */ 4151 if (dir) { 4152 /* 4153 * mark ENABLED has to look backwards -- to ensure no dependee 4154 * has USED_IN state, which, again, would allow recursion deadlocks. 4155 */ 4156 if (!check_usage_backwards(curr, this, excl_bit)) 4157 return 0; 4158 } else { 4159 /* 4160 * mark USED_IN has to look forwards -- to ensure no dependency 4161 * has ENABLED state, which would allow recursion deadlocks. 4162 */ 4163 if (!check_usage_forwards(curr, this, excl_bit)) 4164 return 0; 4165 } 4166 4167 if (state_verbose(new_bit, hlock_class(this))) 4168 return 2; 4169 4170 return 1; 4171 } 4172 4173 /* 4174 * Mark all held locks with a usage bit: 4175 */ 4176 static int 4177 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4178 { 4179 struct held_lock *hlock; 4180 int i; 4181 4182 for (i = 0; i < curr->lockdep_depth; i++) { 4183 enum lock_usage_bit hlock_bit = base_bit; 4184 hlock = curr->held_locks + i; 4185 4186 if (hlock->read) 4187 hlock_bit += LOCK_USAGE_READ_MASK; 4188 4189 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4190 4191 if (!hlock->check) 4192 continue; 4193 4194 if (!mark_lock(curr, hlock, hlock_bit)) 4195 return 0; 4196 } 4197 4198 return 1; 4199 } 4200 4201 /* 4202 * Hardirqs will be enabled: 4203 */ 4204 static void __trace_hardirqs_on_caller(void) 4205 { 4206 struct task_struct *curr = current; 4207 4208 /* 4209 * We are going to turn hardirqs on, so set the 4210 * usage bit for all held locks: 4211 */ 4212 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4213 return; 4214 /* 4215 * If we have softirqs enabled, then set the usage 4216 * bit for all held locks. (disabled hardirqs prevented 4217 * this bit from being set before) 4218 */ 4219 if (curr->softirqs_enabled) 4220 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4221 } 4222 4223 /** 4224 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4225 * @ip: Caller address 4226 * 4227 * Invoked before a possible transition to RCU idle from exit to user or 4228 * guest mode. This ensures that all RCU operations are done before RCU 4229 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4230 * invoked to set the final state. 4231 */ 4232 void lockdep_hardirqs_on_prepare(unsigned long ip) 4233 { 4234 if (unlikely(!debug_locks)) 4235 return; 4236 4237 /* 4238 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4239 */ 4240 if (unlikely(in_nmi())) 4241 return; 4242 4243 if (unlikely(this_cpu_read(lockdep_recursion))) 4244 return; 4245 4246 if (unlikely(lockdep_hardirqs_enabled())) { 4247 /* 4248 * Neither irq nor preemption are disabled here 4249 * so this is racy by nature but losing one hit 4250 * in a stat is not a big deal. 4251 */ 4252 __debug_atomic_inc(redundant_hardirqs_on); 4253 return; 4254 } 4255 4256 /* 4257 * We're enabling irqs and according to our state above irqs weren't 4258 * already enabled, yet we find the hardware thinks they are in fact 4259 * enabled.. someone messed up their IRQ state tracing. 4260 */ 4261 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4262 return; 4263 4264 /* 4265 * See the fine text that goes along with this variable definition. 4266 */ 4267 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4268 return; 4269 4270 /* 4271 * Can't allow enabling interrupts while in an interrupt handler, 4272 * that's general bad form and such. Recursion, limited stack etc.. 4273 */ 4274 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4275 return; 4276 4277 current->hardirq_chain_key = current->curr_chain_key; 4278 4279 lockdep_recursion_inc(); 4280 __trace_hardirqs_on_caller(); 4281 lockdep_recursion_finish(); 4282 } 4283 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4284 4285 void noinstr lockdep_hardirqs_on(unsigned long ip) 4286 { 4287 struct irqtrace_events *trace = ¤t->irqtrace; 4288 4289 if (unlikely(!debug_locks)) 4290 return; 4291 4292 /* 4293 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4294 * tracking state and hardware state are out of sync. 4295 * 4296 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4297 * and not rely on hardware state like normal interrupts. 4298 */ 4299 if (unlikely(in_nmi())) { 4300 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4301 return; 4302 4303 /* 4304 * Skip: 4305 * - recursion check, because NMI can hit lockdep; 4306 * - hardware state check, because above; 4307 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4308 */ 4309 goto skip_checks; 4310 } 4311 4312 if (unlikely(this_cpu_read(lockdep_recursion))) 4313 return; 4314 4315 if (lockdep_hardirqs_enabled()) { 4316 /* 4317 * Neither irq nor preemption are disabled here 4318 * so this is racy by nature but losing one hit 4319 * in a stat is not a big deal. 4320 */ 4321 __debug_atomic_inc(redundant_hardirqs_on); 4322 return; 4323 } 4324 4325 /* 4326 * We're enabling irqs and according to our state above irqs weren't 4327 * already enabled, yet we find the hardware thinks they are in fact 4328 * enabled.. someone messed up their IRQ state tracing. 4329 */ 4330 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4331 return; 4332 4333 /* 4334 * Ensure the lock stack remained unchanged between 4335 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4336 */ 4337 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4338 current->curr_chain_key); 4339 4340 skip_checks: 4341 /* we'll do an OFF -> ON transition: */ 4342 __this_cpu_write(hardirqs_enabled, 1); 4343 trace->hardirq_enable_ip = ip; 4344 trace->hardirq_enable_event = ++trace->irq_events; 4345 debug_atomic_inc(hardirqs_on_events); 4346 } 4347 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4348 4349 /* 4350 * Hardirqs were disabled: 4351 */ 4352 void noinstr lockdep_hardirqs_off(unsigned long ip) 4353 { 4354 if (unlikely(!debug_locks)) 4355 return; 4356 4357 /* 4358 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4359 * they will restore the software state. This ensures the software 4360 * state is consistent inside NMIs as well. 4361 */ 4362 if (in_nmi()) { 4363 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4364 return; 4365 } else if (__this_cpu_read(lockdep_recursion)) 4366 return; 4367 4368 /* 4369 * So we're supposed to get called after you mask local IRQs, but for 4370 * some reason the hardware doesn't quite think you did a proper job. 4371 */ 4372 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4373 return; 4374 4375 if (lockdep_hardirqs_enabled()) { 4376 struct irqtrace_events *trace = ¤t->irqtrace; 4377 4378 /* 4379 * We have done an ON -> OFF transition: 4380 */ 4381 __this_cpu_write(hardirqs_enabled, 0); 4382 trace->hardirq_disable_ip = ip; 4383 trace->hardirq_disable_event = ++trace->irq_events; 4384 debug_atomic_inc(hardirqs_off_events); 4385 } else { 4386 debug_atomic_inc(redundant_hardirqs_off); 4387 } 4388 } 4389 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4390 4391 /* 4392 * Softirqs will be enabled: 4393 */ 4394 void lockdep_softirqs_on(unsigned long ip) 4395 { 4396 struct irqtrace_events *trace = ¤t->irqtrace; 4397 4398 if (unlikely(!lockdep_enabled())) 4399 return; 4400 4401 /* 4402 * We fancy IRQs being disabled here, see softirq.c, avoids 4403 * funny state and nesting things. 4404 */ 4405 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4406 return; 4407 4408 if (current->softirqs_enabled) { 4409 debug_atomic_inc(redundant_softirqs_on); 4410 return; 4411 } 4412 4413 lockdep_recursion_inc(); 4414 /* 4415 * We'll do an OFF -> ON transition: 4416 */ 4417 current->softirqs_enabled = 1; 4418 trace->softirq_enable_ip = ip; 4419 trace->softirq_enable_event = ++trace->irq_events; 4420 debug_atomic_inc(softirqs_on_events); 4421 /* 4422 * We are going to turn softirqs on, so set the 4423 * usage bit for all held locks, if hardirqs are 4424 * enabled too: 4425 */ 4426 if (lockdep_hardirqs_enabled()) 4427 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4428 lockdep_recursion_finish(); 4429 } 4430 4431 /* 4432 * Softirqs were disabled: 4433 */ 4434 void lockdep_softirqs_off(unsigned long ip) 4435 { 4436 if (unlikely(!lockdep_enabled())) 4437 return; 4438 4439 /* 4440 * We fancy IRQs being disabled here, see softirq.c 4441 */ 4442 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4443 return; 4444 4445 if (current->softirqs_enabled) { 4446 struct irqtrace_events *trace = ¤t->irqtrace; 4447 4448 /* 4449 * We have done an ON -> OFF transition: 4450 */ 4451 current->softirqs_enabled = 0; 4452 trace->softirq_disable_ip = ip; 4453 trace->softirq_disable_event = ++trace->irq_events; 4454 debug_atomic_inc(softirqs_off_events); 4455 /* 4456 * Whoops, we wanted softirqs off, so why aren't they? 4457 */ 4458 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4459 } else 4460 debug_atomic_inc(redundant_softirqs_off); 4461 } 4462 4463 static int 4464 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4465 { 4466 if (!check) 4467 goto lock_used; 4468 4469 /* 4470 * If non-trylock use in a hardirq or softirq context, then 4471 * mark the lock as used in these contexts: 4472 */ 4473 if (!hlock->trylock) { 4474 if (hlock->read) { 4475 if (lockdep_hardirq_context()) 4476 if (!mark_lock(curr, hlock, 4477 LOCK_USED_IN_HARDIRQ_READ)) 4478 return 0; 4479 if (curr->softirq_context) 4480 if (!mark_lock(curr, hlock, 4481 LOCK_USED_IN_SOFTIRQ_READ)) 4482 return 0; 4483 } else { 4484 if (lockdep_hardirq_context()) 4485 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4486 return 0; 4487 if (curr->softirq_context) 4488 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4489 return 0; 4490 } 4491 } 4492 if (!hlock->hardirqs_off) { 4493 if (hlock->read) { 4494 if (!mark_lock(curr, hlock, 4495 LOCK_ENABLED_HARDIRQ_READ)) 4496 return 0; 4497 if (curr->softirqs_enabled) 4498 if (!mark_lock(curr, hlock, 4499 LOCK_ENABLED_SOFTIRQ_READ)) 4500 return 0; 4501 } else { 4502 if (!mark_lock(curr, hlock, 4503 LOCK_ENABLED_HARDIRQ)) 4504 return 0; 4505 if (curr->softirqs_enabled) 4506 if (!mark_lock(curr, hlock, 4507 LOCK_ENABLED_SOFTIRQ)) 4508 return 0; 4509 } 4510 } 4511 4512 lock_used: 4513 /* mark it as used: */ 4514 if (!mark_lock(curr, hlock, LOCK_USED)) 4515 return 0; 4516 4517 return 1; 4518 } 4519 4520 static inline unsigned int task_irq_context(struct task_struct *task) 4521 { 4522 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4523 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4524 } 4525 4526 static int separate_irq_context(struct task_struct *curr, 4527 struct held_lock *hlock) 4528 { 4529 unsigned int depth = curr->lockdep_depth; 4530 4531 /* 4532 * Keep track of points where we cross into an interrupt context: 4533 */ 4534 if (depth) { 4535 struct held_lock *prev_hlock; 4536 4537 prev_hlock = curr->held_locks + depth-1; 4538 /* 4539 * If we cross into another context, reset the 4540 * hash key (this also prevents the checking and the 4541 * adding of the dependency to 'prev'): 4542 */ 4543 if (prev_hlock->irq_context != hlock->irq_context) 4544 return 1; 4545 } 4546 return 0; 4547 } 4548 4549 /* 4550 * Mark a lock with a usage bit, and validate the state transition: 4551 */ 4552 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4553 enum lock_usage_bit new_bit) 4554 { 4555 unsigned int new_mask, ret = 1; 4556 4557 if (new_bit >= LOCK_USAGE_STATES) { 4558 DEBUG_LOCKS_WARN_ON(1); 4559 return 0; 4560 } 4561 4562 if (new_bit == LOCK_USED && this->read) 4563 new_bit = LOCK_USED_READ; 4564 4565 new_mask = 1 << new_bit; 4566 4567 /* 4568 * If already set then do not dirty the cacheline, 4569 * nor do any checks: 4570 */ 4571 if (likely(hlock_class(this)->usage_mask & new_mask)) 4572 return 1; 4573 4574 if (!graph_lock()) 4575 return 0; 4576 /* 4577 * Make sure we didn't race: 4578 */ 4579 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4580 goto unlock; 4581 4582 if (!hlock_class(this)->usage_mask) 4583 debug_atomic_dec(nr_unused_locks); 4584 4585 hlock_class(this)->usage_mask |= new_mask; 4586 4587 if (new_bit < LOCK_TRACE_STATES) { 4588 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4589 return 0; 4590 } 4591 4592 if (new_bit < LOCK_USED) { 4593 ret = mark_lock_irq(curr, this, new_bit); 4594 if (!ret) 4595 return 0; 4596 } 4597 4598 unlock: 4599 graph_unlock(); 4600 4601 /* 4602 * We must printk outside of the graph_lock: 4603 */ 4604 if (ret == 2) { 4605 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4606 print_lock(this); 4607 print_irqtrace_events(curr); 4608 dump_stack(); 4609 } 4610 4611 return ret; 4612 } 4613 4614 static inline short task_wait_context(struct task_struct *curr) 4615 { 4616 /* 4617 * Set appropriate wait type for the context; for IRQs we have to take 4618 * into account force_irqthread as that is implied by PREEMPT_RT. 4619 */ 4620 if (lockdep_hardirq_context()) { 4621 /* 4622 * Check if force_irqthreads will run us threaded. 4623 */ 4624 if (curr->hardirq_threaded || curr->irq_config) 4625 return LD_WAIT_CONFIG; 4626 4627 return LD_WAIT_SPIN; 4628 } else if (curr->softirq_context) { 4629 /* 4630 * Softirqs are always threaded. 4631 */ 4632 return LD_WAIT_CONFIG; 4633 } 4634 4635 return LD_WAIT_MAX; 4636 } 4637 4638 static int 4639 print_lock_invalid_wait_context(struct task_struct *curr, 4640 struct held_lock *hlock) 4641 { 4642 short curr_inner; 4643 4644 if (!debug_locks_off()) 4645 return 0; 4646 if (debug_locks_silent) 4647 return 0; 4648 4649 pr_warn("\n"); 4650 pr_warn("=============================\n"); 4651 pr_warn("[ BUG: Invalid wait context ]\n"); 4652 print_kernel_ident(); 4653 pr_warn("-----------------------------\n"); 4654 4655 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4656 print_lock(hlock); 4657 4658 pr_warn("other info that might help us debug this:\n"); 4659 4660 curr_inner = task_wait_context(curr); 4661 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4662 4663 lockdep_print_held_locks(curr); 4664 4665 pr_warn("stack backtrace:\n"); 4666 dump_stack(); 4667 4668 return 0; 4669 } 4670 4671 /* 4672 * Verify the wait_type context. 4673 * 4674 * This check validates we takes locks in the right wait-type order; that is it 4675 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4676 * acquire spinlocks inside raw_spinlocks and the sort. 4677 * 4678 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4679 * can be taken from (pretty much) any context but also has constraints. 4680 * However when taken in a stricter environment the RCU lock does not loosen 4681 * the constraints. 4682 * 4683 * Therefore we must look for the strictest environment in the lock stack and 4684 * compare that to the lock we're trying to acquire. 4685 */ 4686 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4687 { 4688 u8 next_inner = hlock_class(next)->wait_type_inner; 4689 u8 next_outer = hlock_class(next)->wait_type_outer; 4690 u8 curr_inner; 4691 int depth; 4692 4693 if (!next_inner || next->trylock) 4694 return 0; 4695 4696 if (!next_outer) 4697 next_outer = next_inner; 4698 4699 /* 4700 * Find start of current irq_context.. 4701 */ 4702 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4703 struct held_lock *prev = curr->held_locks + depth; 4704 if (prev->irq_context != next->irq_context) 4705 break; 4706 } 4707 depth++; 4708 4709 curr_inner = task_wait_context(curr); 4710 4711 for (; depth < curr->lockdep_depth; depth++) { 4712 struct held_lock *prev = curr->held_locks + depth; 4713 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4714 4715 if (prev_inner) { 4716 /* 4717 * We can have a bigger inner than a previous one 4718 * when outer is smaller than inner, as with RCU. 4719 * 4720 * Also due to trylocks. 4721 */ 4722 curr_inner = min(curr_inner, prev_inner); 4723 } 4724 } 4725 4726 if (next_outer > curr_inner) 4727 return print_lock_invalid_wait_context(curr, next); 4728 4729 return 0; 4730 } 4731 4732 #else /* CONFIG_PROVE_LOCKING */ 4733 4734 static inline int 4735 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4736 { 4737 return 1; 4738 } 4739 4740 static inline unsigned int task_irq_context(struct task_struct *task) 4741 { 4742 return 0; 4743 } 4744 4745 static inline int separate_irq_context(struct task_struct *curr, 4746 struct held_lock *hlock) 4747 { 4748 return 0; 4749 } 4750 4751 static inline int check_wait_context(struct task_struct *curr, 4752 struct held_lock *next) 4753 { 4754 return 0; 4755 } 4756 4757 #endif /* CONFIG_PROVE_LOCKING */ 4758 4759 /* 4760 * Initialize a lock instance's lock-class mapping info: 4761 */ 4762 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4763 struct lock_class_key *key, int subclass, 4764 u8 inner, u8 outer, u8 lock_type) 4765 { 4766 int i; 4767 4768 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4769 lock->class_cache[i] = NULL; 4770 4771 #ifdef CONFIG_LOCK_STAT 4772 lock->cpu = raw_smp_processor_id(); 4773 #endif 4774 4775 /* 4776 * Can't be having no nameless bastards around this place! 4777 */ 4778 if (DEBUG_LOCKS_WARN_ON(!name)) { 4779 lock->name = "NULL"; 4780 return; 4781 } 4782 4783 lock->name = name; 4784 4785 lock->wait_type_outer = outer; 4786 lock->wait_type_inner = inner; 4787 lock->lock_type = lock_type; 4788 4789 /* 4790 * No key, no joy, we need to hash something. 4791 */ 4792 if (DEBUG_LOCKS_WARN_ON(!key)) 4793 return; 4794 /* 4795 * Sanity check, the lock-class key must either have been allocated 4796 * statically or must have been registered as a dynamic key. 4797 */ 4798 if (!static_obj(key) && !is_dynamic_key(key)) { 4799 if (debug_locks) 4800 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4801 DEBUG_LOCKS_WARN_ON(1); 4802 return; 4803 } 4804 lock->key = key; 4805 4806 if (unlikely(!debug_locks)) 4807 return; 4808 4809 if (subclass) { 4810 unsigned long flags; 4811 4812 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4813 return; 4814 4815 raw_local_irq_save(flags); 4816 lockdep_recursion_inc(); 4817 register_lock_class(lock, subclass, 1); 4818 lockdep_recursion_finish(); 4819 raw_local_irq_restore(flags); 4820 } 4821 } 4822 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4823 4824 struct lock_class_key __lockdep_no_validate__; 4825 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4826 4827 static void 4828 print_lock_nested_lock_not_held(struct task_struct *curr, 4829 struct held_lock *hlock, 4830 unsigned long ip) 4831 { 4832 if (!debug_locks_off()) 4833 return; 4834 if (debug_locks_silent) 4835 return; 4836 4837 pr_warn("\n"); 4838 pr_warn("==================================\n"); 4839 pr_warn("WARNING: Nested lock was not taken\n"); 4840 print_kernel_ident(); 4841 pr_warn("----------------------------------\n"); 4842 4843 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4844 print_lock(hlock); 4845 4846 pr_warn("\nbut this task is not holding:\n"); 4847 pr_warn("%s\n", hlock->nest_lock->name); 4848 4849 pr_warn("\nstack backtrace:\n"); 4850 dump_stack(); 4851 4852 pr_warn("\nother info that might help us debug this:\n"); 4853 lockdep_print_held_locks(curr); 4854 4855 pr_warn("\nstack backtrace:\n"); 4856 dump_stack(); 4857 } 4858 4859 static int __lock_is_held(const struct lockdep_map *lock, int read); 4860 4861 /* 4862 * This gets called for every mutex_lock*()/spin_lock*() operation. 4863 * We maintain the dependency maps and validate the locking attempt: 4864 * 4865 * The callers must make sure that IRQs are disabled before calling it, 4866 * otherwise we could get an interrupt which would want to take locks, 4867 * which would end up in lockdep again. 4868 */ 4869 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4870 int trylock, int read, int check, int hardirqs_off, 4871 struct lockdep_map *nest_lock, unsigned long ip, 4872 int references, int pin_count) 4873 { 4874 struct task_struct *curr = current; 4875 struct lock_class *class = NULL; 4876 struct held_lock *hlock; 4877 unsigned int depth; 4878 int chain_head = 0; 4879 int class_idx; 4880 u64 chain_key; 4881 4882 if (unlikely(!debug_locks)) 4883 return 0; 4884 4885 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4886 check = 0; 4887 4888 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4889 class = lock->class_cache[subclass]; 4890 /* 4891 * Not cached? 4892 */ 4893 if (unlikely(!class)) { 4894 class = register_lock_class(lock, subclass, 0); 4895 if (!class) 4896 return 0; 4897 } 4898 4899 debug_class_ops_inc(class); 4900 4901 if (very_verbose(class)) { 4902 printk("\nacquire class [%px] %s", class->key, class->name); 4903 if (class->name_version > 1) 4904 printk(KERN_CONT "#%d", class->name_version); 4905 printk(KERN_CONT "\n"); 4906 dump_stack(); 4907 } 4908 4909 /* 4910 * Add the lock to the list of currently held locks. 4911 * (we dont increase the depth just yet, up until the 4912 * dependency checks are done) 4913 */ 4914 depth = curr->lockdep_depth; 4915 /* 4916 * Ran out of static storage for our per-task lock stack again have we? 4917 */ 4918 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4919 return 0; 4920 4921 class_idx = class - lock_classes; 4922 4923 if (depth) { /* we're holding locks */ 4924 hlock = curr->held_locks + depth - 1; 4925 if (hlock->class_idx == class_idx && nest_lock) { 4926 if (!references) 4927 references++; 4928 4929 if (!hlock->references) 4930 hlock->references++; 4931 4932 hlock->references += references; 4933 4934 /* Overflow */ 4935 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4936 return 0; 4937 4938 return 2; 4939 } 4940 } 4941 4942 hlock = curr->held_locks + depth; 4943 /* 4944 * Plain impossible, we just registered it and checked it weren't no 4945 * NULL like.. I bet this mushroom I ate was good! 4946 */ 4947 if (DEBUG_LOCKS_WARN_ON(!class)) 4948 return 0; 4949 hlock->class_idx = class_idx; 4950 hlock->acquire_ip = ip; 4951 hlock->instance = lock; 4952 hlock->nest_lock = nest_lock; 4953 hlock->irq_context = task_irq_context(curr); 4954 hlock->trylock = trylock; 4955 hlock->read = read; 4956 hlock->check = check; 4957 hlock->hardirqs_off = !!hardirqs_off; 4958 hlock->references = references; 4959 #ifdef CONFIG_LOCK_STAT 4960 hlock->waittime_stamp = 0; 4961 hlock->holdtime_stamp = lockstat_clock(); 4962 #endif 4963 hlock->pin_count = pin_count; 4964 4965 if (check_wait_context(curr, hlock)) 4966 return 0; 4967 4968 /* Initialize the lock usage bit */ 4969 if (!mark_usage(curr, hlock, check)) 4970 return 0; 4971 4972 /* 4973 * Calculate the chain hash: it's the combined hash of all the 4974 * lock keys along the dependency chain. We save the hash value 4975 * at every step so that we can get the current hash easily 4976 * after unlock. The chain hash is then used to cache dependency 4977 * results. 4978 * 4979 * The 'key ID' is what is the most compact key value to drive 4980 * the hash, not class->key. 4981 */ 4982 /* 4983 * Whoops, we did it again.. class_idx is invalid. 4984 */ 4985 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 4986 return 0; 4987 4988 chain_key = curr->curr_chain_key; 4989 if (!depth) { 4990 /* 4991 * How can we have a chain hash when we ain't got no keys?! 4992 */ 4993 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 4994 return 0; 4995 chain_head = 1; 4996 } 4997 4998 hlock->prev_chain_key = chain_key; 4999 if (separate_irq_context(curr, hlock)) { 5000 chain_key = INITIAL_CHAIN_KEY; 5001 chain_head = 1; 5002 } 5003 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 5004 5005 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 5006 print_lock_nested_lock_not_held(curr, hlock, ip); 5007 return 0; 5008 } 5009 5010 if (!debug_locks_silent) { 5011 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 5012 WARN_ON_ONCE(!hlock_class(hlock)->key); 5013 } 5014 5015 if (!validate_chain(curr, hlock, chain_head, chain_key)) 5016 return 0; 5017 5018 curr->curr_chain_key = chain_key; 5019 curr->lockdep_depth++; 5020 check_chain_key(curr); 5021 #ifdef CONFIG_DEBUG_LOCKDEP 5022 if (unlikely(!debug_locks)) 5023 return 0; 5024 #endif 5025 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 5026 debug_locks_off(); 5027 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 5028 printk(KERN_DEBUG "depth: %i max: %lu!\n", 5029 curr->lockdep_depth, MAX_LOCK_DEPTH); 5030 5031 lockdep_print_held_locks(current); 5032 debug_show_all_locks(); 5033 dump_stack(); 5034 5035 return 0; 5036 } 5037 5038 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 5039 max_lockdep_depth = curr->lockdep_depth; 5040 5041 return 1; 5042 } 5043 5044 static void print_unlock_imbalance_bug(struct task_struct *curr, 5045 struct lockdep_map *lock, 5046 unsigned long ip) 5047 { 5048 if (!debug_locks_off()) 5049 return; 5050 if (debug_locks_silent) 5051 return; 5052 5053 pr_warn("\n"); 5054 pr_warn("=====================================\n"); 5055 pr_warn("WARNING: bad unlock balance detected!\n"); 5056 print_kernel_ident(); 5057 pr_warn("-------------------------------------\n"); 5058 pr_warn("%s/%d is trying to release lock (", 5059 curr->comm, task_pid_nr(curr)); 5060 print_lockdep_cache(lock); 5061 pr_cont(") at:\n"); 5062 print_ip_sym(KERN_WARNING, ip); 5063 pr_warn("but there are no more locks to release!\n"); 5064 pr_warn("\nother info that might help us debug this:\n"); 5065 lockdep_print_held_locks(curr); 5066 5067 pr_warn("\nstack backtrace:\n"); 5068 dump_stack(); 5069 } 5070 5071 static noinstr int match_held_lock(const struct held_lock *hlock, 5072 const struct lockdep_map *lock) 5073 { 5074 if (hlock->instance == lock) 5075 return 1; 5076 5077 if (hlock->references) { 5078 const struct lock_class *class = lock->class_cache[0]; 5079 5080 if (!class) 5081 class = look_up_lock_class(lock, 0); 5082 5083 /* 5084 * If look_up_lock_class() failed to find a class, we're trying 5085 * to test if we hold a lock that has never yet been acquired. 5086 * Clearly if the lock hasn't been acquired _ever_, we're not 5087 * holding it either, so report failure. 5088 */ 5089 if (!class) 5090 return 0; 5091 5092 /* 5093 * References, but not a lock we're actually ref-counting? 5094 * State got messed up, follow the sites that change ->references 5095 * and try to make sense of it. 5096 */ 5097 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 5098 return 0; 5099 5100 if (hlock->class_idx == class - lock_classes) 5101 return 1; 5102 } 5103 5104 return 0; 5105 } 5106 5107 /* @depth must not be zero */ 5108 static struct held_lock *find_held_lock(struct task_struct *curr, 5109 struct lockdep_map *lock, 5110 unsigned int depth, int *idx) 5111 { 5112 struct held_lock *ret, *hlock, *prev_hlock; 5113 int i; 5114 5115 i = depth - 1; 5116 hlock = curr->held_locks + i; 5117 ret = hlock; 5118 if (match_held_lock(hlock, lock)) 5119 goto out; 5120 5121 ret = NULL; 5122 for (i--, prev_hlock = hlock--; 5123 i >= 0; 5124 i--, prev_hlock = hlock--) { 5125 /* 5126 * We must not cross into another context: 5127 */ 5128 if (prev_hlock->irq_context != hlock->irq_context) { 5129 ret = NULL; 5130 break; 5131 } 5132 if (match_held_lock(hlock, lock)) { 5133 ret = hlock; 5134 break; 5135 } 5136 } 5137 5138 out: 5139 *idx = i; 5140 return ret; 5141 } 5142 5143 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5144 int idx, unsigned int *merged) 5145 { 5146 struct held_lock *hlock; 5147 int first_idx = idx; 5148 5149 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5150 return 0; 5151 5152 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5153 switch (__lock_acquire(hlock->instance, 5154 hlock_class(hlock)->subclass, 5155 hlock->trylock, 5156 hlock->read, hlock->check, 5157 hlock->hardirqs_off, 5158 hlock->nest_lock, hlock->acquire_ip, 5159 hlock->references, hlock->pin_count)) { 5160 case 0: 5161 return 1; 5162 case 1: 5163 break; 5164 case 2: 5165 *merged += (idx == first_idx); 5166 break; 5167 default: 5168 WARN_ON(1); 5169 return 0; 5170 } 5171 } 5172 return 0; 5173 } 5174 5175 static int 5176 __lock_set_class(struct lockdep_map *lock, const char *name, 5177 struct lock_class_key *key, unsigned int subclass, 5178 unsigned long ip) 5179 { 5180 struct task_struct *curr = current; 5181 unsigned int depth, merged = 0; 5182 struct held_lock *hlock; 5183 struct lock_class *class; 5184 int i; 5185 5186 if (unlikely(!debug_locks)) 5187 return 0; 5188 5189 depth = curr->lockdep_depth; 5190 /* 5191 * This function is about (re)setting the class of a held lock, 5192 * yet we're not actually holding any locks. Naughty user! 5193 */ 5194 if (DEBUG_LOCKS_WARN_ON(!depth)) 5195 return 0; 5196 5197 hlock = find_held_lock(curr, lock, depth, &i); 5198 if (!hlock) { 5199 print_unlock_imbalance_bug(curr, lock, ip); 5200 return 0; 5201 } 5202 5203 lockdep_init_map_waits(lock, name, key, 0, 5204 lock->wait_type_inner, 5205 lock->wait_type_outer); 5206 class = register_lock_class(lock, subclass, 0); 5207 hlock->class_idx = class - lock_classes; 5208 5209 curr->lockdep_depth = i; 5210 curr->curr_chain_key = hlock->prev_chain_key; 5211 5212 if (reacquire_held_locks(curr, depth, i, &merged)) 5213 return 0; 5214 5215 /* 5216 * I took it apart and put it back together again, except now I have 5217 * these 'spare' parts.. where shall I put them. 5218 */ 5219 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5220 return 0; 5221 return 1; 5222 } 5223 5224 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5225 { 5226 struct task_struct *curr = current; 5227 unsigned int depth, merged = 0; 5228 struct held_lock *hlock; 5229 int i; 5230 5231 if (unlikely(!debug_locks)) 5232 return 0; 5233 5234 depth = curr->lockdep_depth; 5235 /* 5236 * This function is about (re)setting the class of a held lock, 5237 * yet we're not actually holding any locks. Naughty user! 5238 */ 5239 if (DEBUG_LOCKS_WARN_ON(!depth)) 5240 return 0; 5241 5242 hlock = find_held_lock(curr, lock, depth, &i); 5243 if (!hlock) { 5244 print_unlock_imbalance_bug(curr, lock, ip); 5245 return 0; 5246 } 5247 5248 curr->lockdep_depth = i; 5249 curr->curr_chain_key = hlock->prev_chain_key; 5250 5251 WARN(hlock->read, "downgrading a read lock"); 5252 hlock->read = 1; 5253 hlock->acquire_ip = ip; 5254 5255 if (reacquire_held_locks(curr, depth, i, &merged)) 5256 return 0; 5257 5258 /* Merging can't happen with unchanged classes.. */ 5259 if (DEBUG_LOCKS_WARN_ON(merged)) 5260 return 0; 5261 5262 /* 5263 * I took it apart and put it back together again, except now I have 5264 * these 'spare' parts.. where shall I put them. 5265 */ 5266 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5267 return 0; 5268 5269 return 1; 5270 } 5271 5272 /* 5273 * Remove the lock from the list of currently held locks - this gets 5274 * called on mutex_unlock()/spin_unlock*() (or on a failed 5275 * mutex_lock_interruptible()). 5276 */ 5277 static int 5278 __lock_release(struct lockdep_map *lock, unsigned long ip) 5279 { 5280 struct task_struct *curr = current; 5281 unsigned int depth, merged = 1; 5282 struct held_lock *hlock; 5283 int i; 5284 5285 if (unlikely(!debug_locks)) 5286 return 0; 5287 5288 depth = curr->lockdep_depth; 5289 /* 5290 * So we're all set to release this lock.. wait what lock? We don't 5291 * own any locks, you've been drinking again? 5292 */ 5293 if (depth <= 0) { 5294 print_unlock_imbalance_bug(curr, lock, ip); 5295 return 0; 5296 } 5297 5298 /* 5299 * Check whether the lock exists in the current stack 5300 * of held locks: 5301 */ 5302 hlock = find_held_lock(curr, lock, depth, &i); 5303 if (!hlock) { 5304 print_unlock_imbalance_bug(curr, lock, ip); 5305 return 0; 5306 } 5307 5308 if (hlock->instance == lock) 5309 lock_release_holdtime(hlock); 5310 5311 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5312 5313 if (hlock->references) { 5314 hlock->references--; 5315 if (hlock->references) { 5316 /* 5317 * We had, and after removing one, still have 5318 * references, the current lock stack is still 5319 * valid. We're done! 5320 */ 5321 return 1; 5322 } 5323 } 5324 5325 /* 5326 * We have the right lock to unlock, 'hlock' points to it. 5327 * Now we remove it from the stack, and add back the other 5328 * entries (if any), recalculating the hash along the way: 5329 */ 5330 5331 curr->lockdep_depth = i; 5332 curr->curr_chain_key = hlock->prev_chain_key; 5333 5334 /* 5335 * The most likely case is when the unlock is on the innermost 5336 * lock. In this case, we are done! 5337 */ 5338 if (i == depth-1) 5339 return 1; 5340 5341 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5342 return 0; 5343 5344 /* 5345 * We had N bottles of beer on the wall, we drank one, but now 5346 * there's not N-1 bottles of beer left on the wall... 5347 * Pouring two of the bottles together is acceptable. 5348 */ 5349 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5350 5351 /* 5352 * Since reacquire_held_locks() would have called check_chain_key() 5353 * indirectly via __lock_acquire(), we don't need to do it again 5354 * on return. 5355 */ 5356 return 0; 5357 } 5358 5359 static __always_inline 5360 int __lock_is_held(const struct lockdep_map *lock, int read) 5361 { 5362 struct task_struct *curr = current; 5363 int i; 5364 5365 for (i = 0; i < curr->lockdep_depth; i++) { 5366 struct held_lock *hlock = curr->held_locks + i; 5367 5368 if (match_held_lock(hlock, lock)) { 5369 if (read == -1 || hlock->read == read) 5370 return LOCK_STATE_HELD; 5371 5372 return LOCK_STATE_NOT_HELD; 5373 } 5374 } 5375 5376 return LOCK_STATE_NOT_HELD; 5377 } 5378 5379 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5380 { 5381 struct pin_cookie cookie = NIL_COOKIE; 5382 struct task_struct *curr = current; 5383 int i; 5384 5385 if (unlikely(!debug_locks)) 5386 return cookie; 5387 5388 for (i = 0; i < curr->lockdep_depth; i++) { 5389 struct held_lock *hlock = curr->held_locks + i; 5390 5391 if (match_held_lock(hlock, lock)) { 5392 /* 5393 * Grab 16bits of randomness; this is sufficient to not 5394 * be guessable and still allows some pin nesting in 5395 * our u32 pin_count. 5396 */ 5397 cookie.val = 1 + (prandom_u32() >> 16); 5398 hlock->pin_count += cookie.val; 5399 return cookie; 5400 } 5401 } 5402 5403 WARN(1, "pinning an unheld lock\n"); 5404 return cookie; 5405 } 5406 5407 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5408 { 5409 struct task_struct *curr = current; 5410 int i; 5411 5412 if (unlikely(!debug_locks)) 5413 return; 5414 5415 for (i = 0; i < curr->lockdep_depth; i++) { 5416 struct held_lock *hlock = curr->held_locks + i; 5417 5418 if (match_held_lock(hlock, lock)) { 5419 hlock->pin_count += cookie.val; 5420 return; 5421 } 5422 } 5423 5424 WARN(1, "pinning an unheld lock\n"); 5425 } 5426 5427 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5428 { 5429 struct task_struct *curr = current; 5430 int i; 5431 5432 if (unlikely(!debug_locks)) 5433 return; 5434 5435 for (i = 0; i < curr->lockdep_depth; i++) { 5436 struct held_lock *hlock = curr->held_locks + i; 5437 5438 if (match_held_lock(hlock, lock)) { 5439 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5440 return; 5441 5442 hlock->pin_count -= cookie.val; 5443 5444 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5445 hlock->pin_count = 0; 5446 5447 return; 5448 } 5449 } 5450 5451 WARN(1, "unpinning an unheld lock\n"); 5452 } 5453 5454 /* 5455 * Check whether we follow the irq-flags state precisely: 5456 */ 5457 static noinstr void check_flags(unsigned long flags) 5458 { 5459 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5460 if (!debug_locks) 5461 return; 5462 5463 /* Get the warning out.. */ 5464 instrumentation_begin(); 5465 5466 if (irqs_disabled_flags(flags)) { 5467 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5468 printk("possible reason: unannotated irqs-off.\n"); 5469 } 5470 } else { 5471 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5472 printk("possible reason: unannotated irqs-on.\n"); 5473 } 5474 } 5475 5476 /* 5477 * We dont accurately track softirq state in e.g. 5478 * hardirq contexts (such as on 4KSTACKS), so only 5479 * check if not in hardirq contexts: 5480 */ 5481 if (!hardirq_count()) { 5482 if (softirq_count()) { 5483 /* like the above, but with softirqs */ 5484 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5485 } else { 5486 /* lick the above, does it taste good? */ 5487 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5488 } 5489 } 5490 5491 if (!debug_locks) 5492 print_irqtrace_events(current); 5493 5494 instrumentation_end(); 5495 #endif 5496 } 5497 5498 void lock_set_class(struct lockdep_map *lock, const char *name, 5499 struct lock_class_key *key, unsigned int subclass, 5500 unsigned long ip) 5501 { 5502 unsigned long flags; 5503 5504 if (unlikely(!lockdep_enabled())) 5505 return; 5506 5507 raw_local_irq_save(flags); 5508 lockdep_recursion_inc(); 5509 check_flags(flags); 5510 if (__lock_set_class(lock, name, key, subclass, ip)) 5511 check_chain_key(current); 5512 lockdep_recursion_finish(); 5513 raw_local_irq_restore(flags); 5514 } 5515 EXPORT_SYMBOL_GPL(lock_set_class); 5516 5517 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5518 { 5519 unsigned long flags; 5520 5521 if (unlikely(!lockdep_enabled())) 5522 return; 5523 5524 raw_local_irq_save(flags); 5525 lockdep_recursion_inc(); 5526 check_flags(flags); 5527 if (__lock_downgrade(lock, ip)) 5528 check_chain_key(current); 5529 lockdep_recursion_finish(); 5530 raw_local_irq_restore(flags); 5531 } 5532 EXPORT_SYMBOL_GPL(lock_downgrade); 5533 5534 /* NMI context !!! */ 5535 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5536 { 5537 #ifdef CONFIG_PROVE_LOCKING 5538 struct lock_class *class = look_up_lock_class(lock, subclass); 5539 unsigned long mask = LOCKF_USED; 5540 5541 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5542 if (!class) 5543 return; 5544 5545 /* 5546 * READ locks only conflict with USED, such that if we only ever use 5547 * READ locks, there is no deadlock possible -- RCU. 5548 */ 5549 if (!hlock->read) 5550 mask |= LOCKF_USED_READ; 5551 5552 if (!(class->usage_mask & mask)) 5553 return; 5554 5555 hlock->class_idx = class - lock_classes; 5556 5557 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5558 #endif 5559 } 5560 5561 static bool lockdep_nmi(void) 5562 { 5563 if (raw_cpu_read(lockdep_recursion)) 5564 return false; 5565 5566 if (!in_nmi()) 5567 return false; 5568 5569 return true; 5570 } 5571 5572 /* 5573 * read_lock() is recursive if: 5574 * 1. We force lockdep think this way in selftests or 5575 * 2. The implementation is not queued read/write lock or 5576 * 3. The locker is at an in_interrupt() context. 5577 */ 5578 bool read_lock_is_recursive(void) 5579 { 5580 return force_read_lock_recursive || 5581 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5582 in_interrupt(); 5583 } 5584 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5585 5586 /* 5587 * We are not always called with irqs disabled - do that here, 5588 * and also avoid lockdep recursion: 5589 */ 5590 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5591 int trylock, int read, int check, 5592 struct lockdep_map *nest_lock, unsigned long ip) 5593 { 5594 unsigned long flags; 5595 5596 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5597 5598 if (!debug_locks) 5599 return; 5600 5601 if (unlikely(!lockdep_enabled())) { 5602 /* XXX allow trylock from NMI ?!? */ 5603 if (lockdep_nmi() && !trylock) { 5604 struct held_lock hlock; 5605 5606 hlock.acquire_ip = ip; 5607 hlock.instance = lock; 5608 hlock.nest_lock = nest_lock; 5609 hlock.irq_context = 2; // XXX 5610 hlock.trylock = trylock; 5611 hlock.read = read; 5612 hlock.check = check; 5613 hlock.hardirqs_off = true; 5614 hlock.references = 0; 5615 5616 verify_lock_unused(lock, &hlock, subclass); 5617 } 5618 return; 5619 } 5620 5621 raw_local_irq_save(flags); 5622 check_flags(flags); 5623 5624 lockdep_recursion_inc(); 5625 __lock_acquire(lock, subclass, trylock, read, check, 5626 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5627 lockdep_recursion_finish(); 5628 raw_local_irq_restore(flags); 5629 } 5630 EXPORT_SYMBOL_GPL(lock_acquire); 5631 5632 void lock_release(struct lockdep_map *lock, unsigned long ip) 5633 { 5634 unsigned long flags; 5635 5636 trace_lock_release(lock, ip); 5637 5638 if (unlikely(!lockdep_enabled())) 5639 return; 5640 5641 raw_local_irq_save(flags); 5642 check_flags(flags); 5643 5644 lockdep_recursion_inc(); 5645 if (__lock_release(lock, ip)) 5646 check_chain_key(current); 5647 lockdep_recursion_finish(); 5648 raw_local_irq_restore(flags); 5649 } 5650 EXPORT_SYMBOL_GPL(lock_release); 5651 5652 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5653 { 5654 unsigned long flags; 5655 int ret = LOCK_STATE_NOT_HELD; 5656 5657 /* 5658 * Avoid false negative lockdep_assert_held() and 5659 * lockdep_assert_not_held(). 5660 */ 5661 if (unlikely(!lockdep_enabled())) 5662 return LOCK_STATE_UNKNOWN; 5663 5664 raw_local_irq_save(flags); 5665 check_flags(flags); 5666 5667 lockdep_recursion_inc(); 5668 ret = __lock_is_held(lock, read); 5669 lockdep_recursion_finish(); 5670 raw_local_irq_restore(flags); 5671 5672 return ret; 5673 } 5674 EXPORT_SYMBOL_GPL(lock_is_held_type); 5675 NOKPROBE_SYMBOL(lock_is_held_type); 5676 5677 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5678 { 5679 struct pin_cookie cookie = NIL_COOKIE; 5680 unsigned long flags; 5681 5682 if (unlikely(!lockdep_enabled())) 5683 return cookie; 5684 5685 raw_local_irq_save(flags); 5686 check_flags(flags); 5687 5688 lockdep_recursion_inc(); 5689 cookie = __lock_pin_lock(lock); 5690 lockdep_recursion_finish(); 5691 raw_local_irq_restore(flags); 5692 5693 return cookie; 5694 } 5695 EXPORT_SYMBOL_GPL(lock_pin_lock); 5696 5697 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5698 { 5699 unsigned long flags; 5700 5701 if (unlikely(!lockdep_enabled())) 5702 return; 5703 5704 raw_local_irq_save(flags); 5705 check_flags(flags); 5706 5707 lockdep_recursion_inc(); 5708 __lock_repin_lock(lock, cookie); 5709 lockdep_recursion_finish(); 5710 raw_local_irq_restore(flags); 5711 } 5712 EXPORT_SYMBOL_GPL(lock_repin_lock); 5713 5714 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5715 { 5716 unsigned long flags; 5717 5718 if (unlikely(!lockdep_enabled())) 5719 return; 5720 5721 raw_local_irq_save(flags); 5722 check_flags(flags); 5723 5724 lockdep_recursion_inc(); 5725 __lock_unpin_lock(lock, cookie); 5726 lockdep_recursion_finish(); 5727 raw_local_irq_restore(flags); 5728 } 5729 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5730 5731 #ifdef CONFIG_LOCK_STAT 5732 static void print_lock_contention_bug(struct task_struct *curr, 5733 struct lockdep_map *lock, 5734 unsigned long ip) 5735 { 5736 if (!debug_locks_off()) 5737 return; 5738 if (debug_locks_silent) 5739 return; 5740 5741 pr_warn("\n"); 5742 pr_warn("=================================\n"); 5743 pr_warn("WARNING: bad contention detected!\n"); 5744 print_kernel_ident(); 5745 pr_warn("---------------------------------\n"); 5746 pr_warn("%s/%d is trying to contend lock (", 5747 curr->comm, task_pid_nr(curr)); 5748 print_lockdep_cache(lock); 5749 pr_cont(") at:\n"); 5750 print_ip_sym(KERN_WARNING, ip); 5751 pr_warn("but there are no locks held!\n"); 5752 pr_warn("\nother info that might help us debug this:\n"); 5753 lockdep_print_held_locks(curr); 5754 5755 pr_warn("\nstack backtrace:\n"); 5756 dump_stack(); 5757 } 5758 5759 static void 5760 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5761 { 5762 struct task_struct *curr = current; 5763 struct held_lock *hlock; 5764 struct lock_class_stats *stats; 5765 unsigned int depth; 5766 int i, contention_point, contending_point; 5767 5768 depth = curr->lockdep_depth; 5769 /* 5770 * Whee, we contended on this lock, except it seems we're not 5771 * actually trying to acquire anything much at all.. 5772 */ 5773 if (DEBUG_LOCKS_WARN_ON(!depth)) 5774 return; 5775 5776 hlock = find_held_lock(curr, lock, depth, &i); 5777 if (!hlock) { 5778 print_lock_contention_bug(curr, lock, ip); 5779 return; 5780 } 5781 5782 if (hlock->instance != lock) 5783 return; 5784 5785 hlock->waittime_stamp = lockstat_clock(); 5786 5787 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5788 contending_point = lock_point(hlock_class(hlock)->contending_point, 5789 lock->ip); 5790 5791 stats = get_lock_stats(hlock_class(hlock)); 5792 if (contention_point < LOCKSTAT_POINTS) 5793 stats->contention_point[contention_point]++; 5794 if (contending_point < LOCKSTAT_POINTS) 5795 stats->contending_point[contending_point]++; 5796 if (lock->cpu != smp_processor_id()) 5797 stats->bounces[bounce_contended + !!hlock->read]++; 5798 } 5799 5800 static void 5801 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5802 { 5803 struct task_struct *curr = current; 5804 struct held_lock *hlock; 5805 struct lock_class_stats *stats; 5806 unsigned int depth; 5807 u64 now, waittime = 0; 5808 int i, cpu; 5809 5810 depth = curr->lockdep_depth; 5811 /* 5812 * Yay, we acquired ownership of this lock we didn't try to 5813 * acquire, how the heck did that happen? 5814 */ 5815 if (DEBUG_LOCKS_WARN_ON(!depth)) 5816 return; 5817 5818 hlock = find_held_lock(curr, lock, depth, &i); 5819 if (!hlock) { 5820 print_lock_contention_bug(curr, lock, _RET_IP_); 5821 return; 5822 } 5823 5824 if (hlock->instance != lock) 5825 return; 5826 5827 cpu = smp_processor_id(); 5828 if (hlock->waittime_stamp) { 5829 now = lockstat_clock(); 5830 waittime = now - hlock->waittime_stamp; 5831 hlock->holdtime_stamp = now; 5832 } 5833 5834 stats = get_lock_stats(hlock_class(hlock)); 5835 if (waittime) { 5836 if (hlock->read) 5837 lock_time_inc(&stats->read_waittime, waittime); 5838 else 5839 lock_time_inc(&stats->write_waittime, waittime); 5840 } 5841 if (lock->cpu != cpu) 5842 stats->bounces[bounce_acquired + !!hlock->read]++; 5843 5844 lock->cpu = cpu; 5845 lock->ip = ip; 5846 } 5847 5848 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5849 { 5850 unsigned long flags; 5851 5852 trace_lock_contended(lock, ip); 5853 5854 if (unlikely(!lock_stat || !lockdep_enabled())) 5855 return; 5856 5857 raw_local_irq_save(flags); 5858 check_flags(flags); 5859 lockdep_recursion_inc(); 5860 __lock_contended(lock, ip); 5861 lockdep_recursion_finish(); 5862 raw_local_irq_restore(flags); 5863 } 5864 EXPORT_SYMBOL_GPL(lock_contended); 5865 5866 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5867 { 5868 unsigned long flags; 5869 5870 trace_lock_acquired(lock, ip); 5871 5872 if (unlikely(!lock_stat || !lockdep_enabled())) 5873 return; 5874 5875 raw_local_irq_save(flags); 5876 check_flags(flags); 5877 lockdep_recursion_inc(); 5878 __lock_acquired(lock, ip); 5879 lockdep_recursion_finish(); 5880 raw_local_irq_restore(flags); 5881 } 5882 EXPORT_SYMBOL_GPL(lock_acquired); 5883 #endif 5884 5885 /* 5886 * Used by the testsuite, sanitize the validator state 5887 * after a simulated failure: 5888 */ 5889 5890 void lockdep_reset(void) 5891 { 5892 unsigned long flags; 5893 int i; 5894 5895 raw_local_irq_save(flags); 5896 lockdep_init_task(current); 5897 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5898 nr_hardirq_chains = 0; 5899 nr_softirq_chains = 0; 5900 nr_process_chains = 0; 5901 debug_locks = 1; 5902 for (i = 0; i < CHAINHASH_SIZE; i++) 5903 INIT_HLIST_HEAD(chainhash_table + i); 5904 raw_local_irq_restore(flags); 5905 } 5906 5907 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5908 static void remove_class_from_lock_chain(struct pending_free *pf, 5909 struct lock_chain *chain, 5910 struct lock_class *class) 5911 { 5912 #ifdef CONFIG_PROVE_LOCKING 5913 int i; 5914 5915 for (i = chain->base; i < chain->base + chain->depth; i++) { 5916 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5917 continue; 5918 /* 5919 * Each lock class occurs at most once in a lock chain so once 5920 * we found a match we can break out of this loop. 5921 */ 5922 goto free_lock_chain; 5923 } 5924 /* Since the chain has not been modified, return. */ 5925 return; 5926 5927 free_lock_chain: 5928 free_chain_hlocks(chain->base, chain->depth); 5929 /* Overwrite the chain key for concurrent RCU readers. */ 5930 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5931 dec_chains(chain->irq_context); 5932 5933 /* 5934 * Note: calling hlist_del_rcu() from inside a 5935 * hlist_for_each_entry_rcu() loop is safe. 5936 */ 5937 hlist_del_rcu(&chain->entry); 5938 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5939 nr_zapped_lock_chains++; 5940 #endif 5941 } 5942 5943 /* Must be called with the graph lock held. */ 5944 static void remove_class_from_lock_chains(struct pending_free *pf, 5945 struct lock_class *class) 5946 { 5947 struct lock_chain *chain; 5948 struct hlist_head *head; 5949 int i; 5950 5951 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5952 head = chainhash_table + i; 5953 hlist_for_each_entry_rcu(chain, head, entry) { 5954 remove_class_from_lock_chain(pf, chain, class); 5955 } 5956 } 5957 } 5958 5959 /* 5960 * Remove all references to a lock class. The caller must hold the graph lock. 5961 */ 5962 static void zap_class(struct pending_free *pf, struct lock_class *class) 5963 { 5964 struct lock_list *entry; 5965 int i; 5966 5967 WARN_ON_ONCE(!class->key); 5968 5969 /* 5970 * Remove all dependencies this lock is 5971 * involved in: 5972 */ 5973 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5974 entry = list_entries + i; 5975 if (entry->class != class && entry->links_to != class) 5976 continue; 5977 __clear_bit(i, list_entries_in_use); 5978 nr_list_entries--; 5979 list_del_rcu(&entry->entry); 5980 } 5981 if (list_empty(&class->locks_after) && 5982 list_empty(&class->locks_before)) { 5983 list_move_tail(&class->lock_entry, &pf->zapped); 5984 hlist_del_rcu(&class->hash_entry); 5985 WRITE_ONCE(class->key, NULL); 5986 WRITE_ONCE(class->name, NULL); 5987 nr_lock_classes--; 5988 __clear_bit(class - lock_classes, lock_classes_in_use); 5989 } else { 5990 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 5991 class->name); 5992 } 5993 5994 remove_class_from_lock_chains(pf, class); 5995 nr_zapped_classes++; 5996 } 5997 5998 static void reinit_class(struct lock_class *class) 5999 { 6000 void *const p = class; 6001 const unsigned int offset = offsetof(struct lock_class, key); 6002 6003 WARN_ON_ONCE(!class->lock_entry.next); 6004 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6005 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6006 memset(p + offset, 0, sizeof(*class) - offset); 6007 WARN_ON_ONCE(!class->lock_entry.next); 6008 WARN_ON_ONCE(!list_empty(&class->locks_after)); 6009 WARN_ON_ONCE(!list_empty(&class->locks_before)); 6010 } 6011 6012 static inline int within(const void *addr, void *start, unsigned long size) 6013 { 6014 return addr >= start && addr < start + size; 6015 } 6016 6017 static bool inside_selftest(void) 6018 { 6019 return current == lockdep_selftest_task_struct; 6020 } 6021 6022 /* The caller must hold the graph lock. */ 6023 static struct pending_free *get_pending_free(void) 6024 { 6025 return delayed_free.pf + delayed_free.index; 6026 } 6027 6028 static void free_zapped_rcu(struct rcu_head *cb); 6029 6030 /* 6031 * Schedule an RCU callback if no RCU callback is pending. Must be called with 6032 * the graph lock held. 6033 */ 6034 static void call_rcu_zapped(struct pending_free *pf) 6035 { 6036 WARN_ON_ONCE(inside_selftest()); 6037 6038 if (list_empty(&pf->zapped)) 6039 return; 6040 6041 if (delayed_free.scheduled) 6042 return; 6043 6044 delayed_free.scheduled = true; 6045 6046 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 6047 delayed_free.index ^= 1; 6048 6049 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 6050 } 6051 6052 /* The caller must hold the graph lock. May be called from RCU context. */ 6053 static void __free_zapped_classes(struct pending_free *pf) 6054 { 6055 struct lock_class *class; 6056 6057 check_data_structures(); 6058 6059 list_for_each_entry(class, &pf->zapped, lock_entry) 6060 reinit_class(class); 6061 6062 list_splice_init(&pf->zapped, &free_lock_classes); 6063 6064 #ifdef CONFIG_PROVE_LOCKING 6065 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 6066 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 6067 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 6068 #endif 6069 } 6070 6071 static void free_zapped_rcu(struct rcu_head *ch) 6072 { 6073 struct pending_free *pf; 6074 unsigned long flags; 6075 6076 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 6077 return; 6078 6079 raw_local_irq_save(flags); 6080 lockdep_lock(); 6081 6082 /* closed head */ 6083 pf = delayed_free.pf + (delayed_free.index ^ 1); 6084 __free_zapped_classes(pf); 6085 delayed_free.scheduled = false; 6086 6087 /* 6088 * If there's anything on the open list, close and start a new callback. 6089 */ 6090 call_rcu_zapped(delayed_free.pf + delayed_free.index); 6091 6092 lockdep_unlock(); 6093 raw_local_irq_restore(flags); 6094 } 6095 6096 /* 6097 * Remove all lock classes from the class hash table and from the 6098 * all_lock_classes list whose key or name is in the address range [start, 6099 * start + size). Move these lock classes to the zapped_classes list. Must 6100 * be called with the graph lock held. 6101 */ 6102 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 6103 unsigned long size) 6104 { 6105 struct lock_class *class; 6106 struct hlist_head *head; 6107 int i; 6108 6109 /* Unhash all classes that were created by a module. */ 6110 for (i = 0; i < CLASSHASH_SIZE; i++) { 6111 head = classhash_table + i; 6112 hlist_for_each_entry_rcu(class, head, hash_entry) { 6113 if (!within(class->key, start, size) && 6114 !within(class->name, start, size)) 6115 continue; 6116 zap_class(pf, class); 6117 } 6118 } 6119 } 6120 6121 /* 6122 * Used in module.c to remove lock classes from memory that is going to be 6123 * freed; and possibly re-used by other modules. 6124 * 6125 * We will have had one synchronize_rcu() before getting here, so we're 6126 * guaranteed nobody will look up these exact classes -- they're properly dead 6127 * but still allocated. 6128 */ 6129 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6130 { 6131 struct pending_free *pf; 6132 unsigned long flags; 6133 6134 init_data_structures_once(); 6135 6136 raw_local_irq_save(flags); 6137 lockdep_lock(); 6138 pf = get_pending_free(); 6139 __lockdep_free_key_range(pf, start, size); 6140 call_rcu_zapped(pf); 6141 lockdep_unlock(); 6142 raw_local_irq_restore(flags); 6143 6144 /* 6145 * Wait for any possible iterators from look_up_lock_class() to pass 6146 * before continuing to free the memory they refer to. 6147 */ 6148 synchronize_rcu(); 6149 } 6150 6151 /* 6152 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6153 * Ignores debug_locks. Must only be used by the lockdep selftests. 6154 */ 6155 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6156 { 6157 struct pending_free *pf = delayed_free.pf; 6158 unsigned long flags; 6159 6160 init_data_structures_once(); 6161 6162 raw_local_irq_save(flags); 6163 lockdep_lock(); 6164 __lockdep_free_key_range(pf, start, size); 6165 __free_zapped_classes(pf); 6166 lockdep_unlock(); 6167 raw_local_irq_restore(flags); 6168 } 6169 6170 void lockdep_free_key_range(void *start, unsigned long size) 6171 { 6172 init_data_structures_once(); 6173 6174 if (inside_selftest()) 6175 lockdep_free_key_range_imm(start, size); 6176 else 6177 lockdep_free_key_range_reg(start, size); 6178 } 6179 6180 /* 6181 * Check whether any element of the @lock->class_cache[] array refers to a 6182 * registered lock class. The caller must hold either the graph lock or the 6183 * RCU read lock. 6184 */ 6185 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6186 { 6187 struct lock_class *class; 6188 struct hlist_head *head; 6189 int i, j; 6190 6191 for (i = 0; i < CLASSHASH_SIZE; i++) { 6192 head = classhash_table + i; 6193 hlist_for_each_entry_rcu(class, head, hash_entry) { 6194 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6195 if (lock->class_cache[j] == class) 6196 return true; 6197 } 6198 } 6199 return false; 6200 } 6201 6202 /* The caller must hold the graph lock. Does not sleep. */ 6203 static void __lockdep_reset_lock(struct pending_free *pf, 6204 struct lockdep_map *lock) 6205 { 6206 struct lock_class *class; 6207 int j; 6208 6209 /* 6210 * Remove all classes this lock might have: 6211 */ 6212 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6213 /* 6214 * If the class exists we look it up and zap it: 6215 */ 6216 class = look_up_lock_class(lock, j); 6217 if (class) 6218 zap_class(pf, class); 6219 } 6220 /* 6221 * Debug check: in the end all mapped classes should 6222 * be gone. 6223 */ 6224 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6225 debug_locks_off(); 6226 } 6227 6228 /* 6229 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6230 * released data structures from RCU context. 6231 */ 6232 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6233 { 6234 struct pending_free *pf; 6235 unsigned long flags; 6236 int locked; 6237 6238 raw_local_irq_save(flags); 6239 locked = graph_lock(); 6240 if (!locked) 6241 goto out_irq; 6242 6243 pf = get_pending_free(); 6244 __lockdep_reset_lock(pf, lock); 6245 call_rcu_zapped(pf); 6246 6247 graph_unlock(); 6248 out_irq: 6249 raw_local_irq_restore(flags); 6250 } 6251 6252 /* 6253 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6254 * lockdep selftests. 6255 */ 6256 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6257 { 6258 struct pending_free *pf = delayed_free.pf; 6259 unsigned long flags; 6260 6261 raw_local_irq_save(flags); 6262 lockdep_lock(); 6263 __lockdep_reset_lock(pf, lock); 6264 __free_zapped_classes(pf); 6265 lockdep_unlock(); 6266 raw_local_irq_restore(flags); 6267 } 6268 6269 void lockdep_reset_lock(struct lockdep_map *lock) 6270 { 6271 init_data_structures_once(); 6272 6273 if (inside_selftest()) 6274 lockdep_reset_lock_imm(lock); 6275 else 6276 lockdep_reset_lock_reg(lock); 6277 } 6278 6279 /* Unregister a dynamically allocated key. */ 6280 void lockdep_unregister_key(struct lock_class_key *key) 6281 { 6282 struct hlist_head *hash_head = keyhashentry(key); 6283 struct lock_class_key *k; 6284 struct pending_free *pf; 6285 unsigned long flags; 6286 bool found = false; 6287 6288 might_sleep(); 6289 6290 if (WARN_ON_ONCE(static_obj(key))) 6291 return; 6292 6293 raw_local_irq_save(flags); 6294 if (!graph_lock()) 6295 goto out_irq; 6296 6297 pf = get_pending_free(); 6298 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6299 if (k == key) { 6300 hlist_del_rcu(&k->hash_entry); 6301 found = true; 6302 break; 6303 } 6304 } 6305 WARN_ON_ONCE(!found); 6306 __lockdep_free_key_range(pf, key, 1); 6307 call_rcu_zapped(pf); 6308 graph_unlock(); 6309 out_irq: 6310 raw_local_irq_restore(flags); 6311 6312 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6313 synchronize_rcu(); 6314 } 6315 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6316 6317 void __init lockdep_init(void) 6318 { 6319 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6320 6321 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6322 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6323 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6324 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6325 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6326 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6327 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6328 6329 printk(" memory used by lock dependency info: %zu kB\n", 6330 (sizeof(lock_classes) + 6331 sizeof(lock_classes_in_use) + 6332 sizeof(classhash_table) + 6333 sizeof(list_entries) + 6334 sizeof(list_entries_in_use) + 6335 sizeof(chainhash_table) + 6336 sizeof(delayed_free) 6337 #ifdef CONFIG_PROVE_LOCKING 6338 + sizeof(lock_cq) 6339 + sizeof(lock_chains) 6340 + sizeof(lock_chains_in_use) 6341 + sizeof(chain_hlocks) 6342 #endif 6343 ) / 1024 6344 ); 6345 6346 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6347 printk(" memory used for stack traces: %zu kB\n", 6348 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6349 ); 6350 #endif 6351 6352 printk(" per task-struct memory footprint: %zu bytes\n", 6353 sizeof(((struct task_struct *)NULL)->held_locks)); 6354 } 6355 6356 static void 6357 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6358 const void *mem_to, struct held_lock *hlock) 6359 { 6360 if (!debug_locks_off()) 6361 return; 6362 if (debug_locks_silent) 6363 return; 6364 6365 pr_warn("\n"); 6366 pr_warn("=========================\n"); 6367 pr_warn("WARNING: held lock freed!\n"); 6368 print_kernel_ident(); 6369 pr_warn("-------------------------\n"); 6370 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6371 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6372 print_lock(hlock); 6373 lockdep_print_held_locks(curr); 6374 6375 pr_warn("\nstack backtrace:\n"); 6376 dump_stack(); 6377 } 6378 6379 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6380 const void* lock_from, unsigned long lock_len) 6381 { 6382 return lock_from + lock_len <= mem_from || 6383 mem_from + mem_len <= lock_from; 6384 } 6385 6386 /* 6387 * Called when kernel memory is freed (or unmapped), or if a lock 6388 * is destroyed or reinitialized - this code checks whether there is 6389 * any held lock in the memory range of <from> to <to>: 6390 */ 6391 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6392 { 6393 struct task_struct *curr = current; 6394 struct held_lock *hlock; 6395 unsigned long flags; 6396 int i; 6397 6398 if (unlikely(!debug_locks)) 6399 return; 6400 6401 raw_local_irq_save(flags); 6402 for (i = 0; i < curr->lockdep_depth; i++) { 6403 hlock = curr->held_locks + i; 6404 6405 if (not_in_range(mem_from, mem_len, hlock->instance, 6406 sizeof(*hlock->instance))) 6407 continue; 6408 6409 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6410 break; 6411 } 6412 raw_local_irq_restore(flags); 6413 } 6414 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6415 6416 static void print_held_locks_bug(void) 6417 { 6418 if (!debug_locks_off()) 6419 return; 6420 if (debug_locks_silent) 6421 return; 6422 6423 pr_warn("\n"); 6424 pr_warn("====================================\n"); 6425 pr_warn("WARNING: %s/%d still has locks held!\n", 6426 current->comm, task_pid_nr(current)); 6427 print_kernel_ident(); 6428 pr_warn("------------------------------------\n"); 6429 lockdep_print_held_locks(current); 6430 pr_warn("\nstack backtrace:\n"); 6431 dump_stack(); 6432 } 6433 6434 void debug_check_no_locks_held(void) 6435 { 6436 if (unlikely(current->lockdep_depth > 0)) 6437 print_held_locks_bug(); 6438 } 6439 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6440 6441 #ifdef __KERNEL__ 6442 void debug_show_all_locks(void) 6443 { 6444 struct task_struct *g, *p; 6445 6446 if (unlikely(!debug_locks)) { 6447 pr_warn("INFO: lockdep is turned off.\n"); 6448 return; 6449 } 6450 pr_warn("\nShowing all locks held in the system:\n"); 6451 6452 rcu_read_lock(); 6453 for_each_process_thread(g, p) { 6454 if (!p->lockdep_depth) 6455 continue; 6456 lockdep_print_held_locks(p); 6457 touch_nmi_watchdog(); 6458 touch_all_softlockup_watchdogs(); 6459 } 6460 rcu_read_unlock(); 6461 6462 pr_warn("\n"); 6463 pr_warn("=============================================\n\n"); 6464 } 6465 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6466 #endif 6467 6468 /* 6469 * Careful: only use this function if you are sure that 6470 * the task cannot run in parallel! 6471 */ 6472 void debug_show_held_locks(struct task_struct *task) 6473 { 6474 if (unlikely(!debug_locks)) { 6475 printk("INFO: lockdep is turned off.\n"); 6476 return; 6477 } 6478 lockdep_print_held_locks(task); 6479 } 6480 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6481 6482 asmlinkage __visible void lockdep_sys_exit(void) 6483 { 6484 struct task_struct *curr = current; 6485 6486 if (unlikely(curr->lockdep_depth)) { 6487 if (!debug_locks_off()) 6488 return; 6489 pr_warn("\n"); 6490 pr_warn("================================================\n"); 6491 pr_warn("WARNING: lock held when returning to user space!\n"); 6492 print_kernel_ident(); 6493 pr_warn("------------------------------------------------\n"); 6494 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6495 curr->comm, curr->pid); 6496 lockdep_print_held_locks(curr); 6497 } 6498 6499 /* 6500 * The lock history for each syscall should be independent. So wipe the 6501 * slate clean on return to userspace. 6502 */ 6503 lockdep_invariant_state(false); 6504 } 6505 6506 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6507 { 6508 struct task_struct *curr = current; 6509 int dl = READ_ONCE(debug_locks); 6510 6511 /* Note: the following can be executed concurrently, so be careful. */ 6512 pr_warn("\n"); 6513 pr_warn("=============================\n"); 6514 pr_warn("WARNING: suspicious RCU usage\n"); 6515 print_kernel_ident(); 6516 pr_warn("-----------------------------\n"); 6517 pr_warn("%s:%d %s!\n", file, line, s); 6518 pr_warn("\nother info that might help us debug this:\n\n"); 6519 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s", 6520 !rcu_lockdep_current_cpu_online() 6521 ? "RCU used illegally from offline CPU!\n" 6522 : "", 6523 rcu_scheduler_active, dl, 6524 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n"); 6525 6526 /* 6527 * If a CPU is in the RCU-free window in idle (ie: in the section 6528 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 6529 * considers that CPU to be in an "extended quiescent state", 6530 * which means that RCU will be completely ignoring that CPU. 6531 * Therefore, rcu_read_lock() and friends have absolutely no 6532 * effect on a CPU running in that state. In other words, even if 6533 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6534 * delete data structures out from under it. RCU really has no 6535 * choice here: we need to keep an RCU-free window in idle where 6536 * the CPU may possibly enter into low power mode. This way we can 6537 * notice an extended quiescent state to other CPUs that started a grace 6538 * period. Otherwise we would delay any grace period as long as we run 6539 * in the idle task. 6540 * 6541 * So complain bitterly if someone does call rcu_read_lock(), 6542 * rcu_read_lock_bh() and so on from extended quiescent states. 6543 */ 6544 if (!rcu_is_watching()) 6545 pr_warn("RCU used illegally from extended quiescent state!\n"); 6546 6547 lockdep_print_held_locks(curr); 6548 pr_warn("\nstack backtrace:\n"); 6549 dump_stack(); 6550 } 6551 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6552