xref: /openbmc/linux/kernel/locking/lockdep.c (revision 06ff634c0dae791c17ceeeb60c74e14470d76898)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 
58 #include <asm/sections.h>
59 
60 #include "lockdep_internals.h"
61 
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/lock.h>
64 
65 #ifdef CONFIG_PROVE_LOCKING
66 int prove_locking = 1;
67 module_param(prove_locking, int, 0644);
68 #else
69 #define prove_locking 0
70 #endif
71 
72 #ifdef CONFIG_LOCK_STAT
73 int lock_stat = 1;
74 module_param(lock_stat, int, 0644);
75 #else
76 #define lock_stat 0
77 #endif
78 
79 /*
80  * lockdep_lock: protects the lockdep graph, the hashes and the
81  *               class/list/hash allocators.
82  *
83  * This is one of the rare exceptions where it's justified
84  * to use a raw spinlock - we really dont want the spinlock
85  * code to recurse back into the lockdep code...
86  */
87 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
88 static struct task_struct *__owner;
89 
90 static inline void lockdep_lock(void)
91 {
92 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
93 
94 	arch_spin_lock(&__lock);
95 	__owner = current;
96 	current->lockdep_recursion++;
97 }
98 
99 static inline void lockdep_unlock(void)
100 {
101 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
102 		return;
103 
104 	current->lockdep_recursion--;
105 	__owner = NULL;
106 	arch_spin_unlock(&__lock);
107 }
108 
109 static inline bool lockdep_assert_locked(void)
110 {
111 	return DEBUG_LOCKS_WARN_ON(__owner != current);
112 }
113 
114 static struct task_struct *lockdep_selftest_task_struct;
115 
116 
117 static int graph_lock(void)
118 {
119 	lockdep_lock();
120 	/*
121 	 * Make sure that if another CPU detected a bug while
122 	 * walking the graph we dont change it (while the other
123 	 * CPU is busy printing out stuff with the graph lock
124 	 * dropped already)
125 	 */
126 	if (!debug_locks) {
127 		lockdep_unlock();
128 		return 0;
129 	}
130 	return 1;
131 }
132 
133 static inline void graph_unlock(void)
134 {
135 	lockdep_unlock();
136 }
137 
138 /*
139  * Turn lock debugging off and return with 0 if it was off already,
140  * and also release the graph lock:
141  */
142 static inline int debug_locks_off_graph_unlock(void)
143 {
144 	int ret = debug_locks_off();
145 
146 	lockdep_unlock();
147 
148 	return ret;
149 }
150 
151 unsigned long nr_list_entries;
152 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
153 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
154 
155 /*
156  * All data structures here are protected by the global debug_lock.
157  *
158  * nr_lock_classes is the number of elements of lock_classes[] that is
159  * in use.
160  */
161 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
162 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
163 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
164 unsigned long nr_lock_classes;
165 unsigned long nr_zapped_classes;
166 #ifndef CONFIG_DEBUG_LOCKDEP
167 static
168 #endif
169 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
170 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
171 
172 static inline struct lock_class *hlock_class(struct held_lock *hlock)
173 {
174 	unsigned int class_idx = hlock->class_idx;
175 
176 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
177 	barrier();
178 
179 	if (!test_bit(class_idx, lock_classes_in_use)) {
180 		/*
181 		 * Someone passed in garbage, we give up.
182 		 */
183 		DEBUG_LOCKS_WARN_ON(1);
184 		return NULL;
185 	}
186 
187 	/*
188 	 * At this point, if the passed hlock->class_idx is still garbage,
189 	 * we just have to live with it
190 	 */
191 	return lock_classes + class_idx;
192 }
193 
194 #ifdef CONFIG_LOCK_STAT
195 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
196 
197 static inline u64 lockstat_clock(void)
198 {
199 	return local_clock();
200 }
201 
202 static int lock_point(unsigned long points[], unsigned long ip)
203 {
204 	int i;
205 
206 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
207 		if (points[i] == 0) {
208 			points[i] = ip;
209 			break;
210 		}
211 		if (points[i] == ip)
212 			break;
213 	}
214 
215 	return i;
216 }
217 
218 static void lock_time_inc(struct lock_time *lt, u64 time)
219 {
220 	if (time > lt->max)
221 		lt->max = time;
222 
223 	if (time < lt->min || !lt->nr)
224 		lt->min = time;
225 
226 	lt->total += time;
227 	lt->nr++;
228 }
229 
230 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
231 {
232 	if (!src->nr)
233 		return;
234 
235 	if (src->max > dst->max)
236 		dst->max = src->max;
237 
238 	if (src->min < dst->min || !dst->nr)
239 		dst->min = src->min;
240 
241 	dst->total += src->total;
242 	dst->nr += src->nr;
243 }
244 
245 struct lock_class_stats lock_stats(struct lock_class *class)
246 {
247 	struct lock_class_stats stats;
248 	int cpu, i;
249 
250 	memset(&stats, 0, sizeof(struct lock_class_stats));
251 	for_each_possible_cpu(cpu) {
252 		struct lock_class_stats *pcs =
253 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
254 
255 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
256 			stats.contention_point[i] += pcs->contention_point[i];
257 
258 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
259 			stats.contending_point[i] += pcs->contending_point[i];
260 
261 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
262 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
263 
264 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
265 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
266 
267 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
268 			stats.bounces[i] += pcs->bounces[i];
269 	}
270 
271 	return stats;
272 }
273 
274 void clear_lock_stats(struct lock_class *class)
275 {
276 	int cpu;
277 
278 	for_each_possible_cpu(cpu) {
279 		struct lock_class_stats *cpu_stats =
280 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
281 
282 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
283 	}
284 	memset(class->contention_point, 0, sizeof(class->contention_point));
285 	memset(class->contending_point, 0, sizeof(class->contending_point));
286 }
287 
288 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
289 {
290 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
291 }
292 
293 static void lock_release_holdtime(struct held_lock *hlock)
294 {
295 	struct lock_class_stats *stats;
296 	u64 holdtime;
297 
298 	if (!lock_stat)
299 		return;
300 
301 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
302 
303 	stats = get_lock_stats(hlock_class(hlock));
304 	if (hlock->read)
305 		lock_time_inc(&stats->read_holdtime, holdtime);
306 	else
307 		lock_time_inc(&stats->write_holdtime, holdtime);
308 }
309 #else
310 static inline void lock_release_holdtime(struct held_lock *hlock)
311 {
312 }
313 #endif
314 
315 /*
316  * We keep a global list of all lock classes. The list is only accessed with
317  * the lockdep spinlock lock held. free_lock_classes is a list with free
318  * elements. These elements are linked together by the lock_entry member in
319  * struct lock_class.
320  */
321 LIST_HEAD(all_lock_classes);
322 static LIST_HEAD(free_lock_classes);
323 
324 /**
325  * struct pending_free - information about data structures about to be freed
326  * @zapped: Head of a list with struct lock_class elements.
327  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
328  *	are about to be freed.
329  */
330 struct pending_free {
331 	struct list_head zapped;
332 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
333 };
334 
335 /**
336  * struct delayed_free - data structures used for delayed freeing
337  *
338  * A data structure for delayed freeing of data structures that may be
339  * accessed by RCU readers at the time these were freed.
340  *
341  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
342  * @index:     Index of @pf to which freed data structures are added.
343  * @scheduled: Whether or not an RCU callback has been scheduled.
344  * @pf:        Array with information about data structures about to be freed.
345  */
346 static struct delayed_free {
347 	struct rcu_head		rcu_head;
348 	int			index;
349 	int			scheduled;
350 	struct pending_free	pf[2];
351 } delayed_free;
352 
353 /*
354  * The lockdep classes are in a hash-table as well, for fast lookup:
355  */
356 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
357 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
358 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
359 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
360 
361 static struct hlist_head classhash_table[CLASSHASH_SIZE];
362 
363 /*
364  * We put the lock dependency chains into a hash-table as well, to cache
365  * their existence:
366  */
367 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
368 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
369 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
370 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
371 
372 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
373 
374 /*
375  * The hash key of the lock dependency chains is a hash itself too:
376  * it's a hash of all locks taken up to that lock, including that lock.
377  * It's a 64-bit hash, because it's important for the keys to be
378  * unique.
379  */
380 static inline u64 iterate_chain_key(u64 key, u32 idx)
381 {
382 	u32 k0 = key, k1 = key >> 32;
383 
384 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
385 
386 	return k0 | (u64)k1 << 32;
387 }
388 
389 void lockdep_init_task(struct task_struct *task)
390 {
391 	task->lockdep_depth = 0; /* no locks held yet */
392 	task->curr_chain_key = INITIAL_CHAIN_KEY;
393 	task->lockdep_recursion = 0;
394 }
395 
396 /*
397  * Split the recrursion counter in two to readily detect 'off' vs recursion.
398  */
399 #define LOCKDEP_RECURSION_BITS	16
400 #define LOCKDEP_OFF		(1U << LOCKDEP_RECURSION_BITS)
401 #define LOCKDEP_RECURSION_MASK	(LOCKDEP_OFF - 1)
402 
403 void lockdep_off(void)
404 {
405 	current->lockdep_recursion += LOCKDEP_OFF;
406 }
407 EXPORT_SYMBOL(lockdep_off);
408 
409 void lockdep_on(void)
410 {
411 	current->lockdep_recursion -= LOCKDEP_OFF;
412 }
413 EXPORT_SYMBOL(lockdep_on);
414 
415 static inline void lockdep_recursion_finish(void)
416 {
417 	if (WARN_ON_ONCE(--current->lockdep_recursion))
418 		current->lockdep_recursion = 0;
419 }
420 
421 void lockdep_set_selftest_task(struct task_struct *task)
422 {
423 	lockdep_selftest_task_struct = task;
424 }
425 
426 /*
427  * Debugging switches:
428  */
429 
430 #define VERBOSE			0
431 #define VERY_VERBOSE		0
432 
433 #if VERBOSE
434 # define HARDIRQ_VERBOSE	1
435 # define SOFTIRQ_VERBOSE	1
436 #else
437 # define HARDIRQ_VERBOSE	0
438 # define SOFTIRQ_VERBOSE	0
439 #endif
440 
441 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
442 /*
443  * Quick filtering for interesting events:
444  */
445 static int class_filter(struct lock_class *class)
446 {
447 #if 0
448 	/* Example */
449 	if (class->name_version == 1 &&
450 			!strcmp(class->name, "lockname"))
451 		return 1;
452 	if (class->name_version == 1 &&
453 			!strcmp(class->name, "&struct->lockfield"))
454 		return 1;
455 #endif
456 	/* Filter everything else. 1 would be to allow everything else */
457 	return 0;
458 }
459 #endif
460 
461 static int verbose(struct lock_class *class)
462 {
463 #if VERBOSE
464 	return class_filter(class);
465 #endif
466 	return 0;
467 }
468 
469 static void print_lockdep_off(const char *bug_msg)
470 {
471 	printk(KERN_DEBUG "%s\n", bug_msg);
472 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
473 #ifdef CONFIG_LOCK_STAT
474 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
475 #endif
476 }
477 
478 unsigned long nr_stack_trace_entries;
479 
480 #ifdef CONFIG_PROVE_LOCKING
481 /**
482  * struct lock_trace - single stack backtrace
483  * @hash_entry:	Entry in a stack_trace_hash[] list.
484  * @hash:	jhash() of @entries.
485  * @nr_entries:	Number of entries in @entries.
486  * @entries:	Actual stack backtrace.
487  */
488 struct lock_trace {
489 	struct hlist_node	hash_entry;
490 	u32			hash;
491 	u32			nr_entries;
492 	unsigned long		entries[0] __aligned(sizeof(unsigned long));
493 };
494 #define LOCK_TRACE_SIZE_IN_LONGS				\
495 	(sizeof(struct lock_trace) / sizeof(unsigned long))
496 /*
497  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
498  */
499 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
500 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
501 
502 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
503 {
504 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
505 		memcmp(t1->entries, t2->entries,
506 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
507 }
508 
509 static struct lock_trace *save_trace(void)
510 {
511 	struct lock_trace *trace, *t2;
512 	struct hlist_head *hash_head;
513 	u32 hash;
514 	int max_entries;
515 
516 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
517 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
518 
519 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
520 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
521 		LOCK_TRACE_SIZE_IN_LONGS;
522 
523 	if (max_entries <= 0) {
524 		if (!debug_locks_off_graph_unlock())
525 			return NULL;
526 
527 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
528 		dump_stack();
529 
530 		return NULL;
531 	}
532 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
533 
534 	hash = jhash(trace->entries, trace->nr_entries *
535 		     sizeof(trace->entries[0]), 0);
536 	trace->hash = hash;
537 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
538 	hlist_for_each_entry(t2, hash_head, hash_entry) {
539 		if (traces_identical(trace, t2))
540 			return t2;
541 	}
542 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
543 	hlist_add_head(&trace->hash_entry, hash_head);
544 
545 	return trace;
546 }
547 
548 /* Return the number of stack traces in the stack_trace[] array. */
549 u64 lockdep_stack_trace_count(void)
550 {
551 	struct lock_trace *trace;
552 	u64 c = 0;
553 	int i;
554 
555 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
556 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
557 			c++;
558 		}
559 	}
560 
561 	return c;
562 }
563 
564 /* Return the number of stack hash chains that have at least one stack trace. */
565 u64 lockdep_stack_hash_count(void)
566 {
567 	u64 c = 0;
568 	int i;
569 
570 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
571 		if (!hlist_empty(&stack_trace_hash[i]))
572 			c++;
573 
574 	return c;
575 }
576 #endif
577 
578 unsigned int nr_hardirq_chains;
579 unsigned int nr_softirq_chains;
580 unsigned int nr_process_chains;
581 unsigned int max_lockdep_depth;
582 
583 #ifdef CONFIG_DEBUG_LOCKDEP
584 /*
585  * Various lockdep statistics:
586  */
587 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
588 #endif
589 
590 #ifdef CONFIG_PROVE_LOCKING
591 /*
592  * Locking printouts:
593  */
594 
595 #define __USAGE(__STATE)						\
596 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
597 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
598 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
599 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
600 
601 static const char *usage_str[] =
602 {
603 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
604 #include "lockdep_states.h"
605 #undef LOCKDEP_STATE
606 	[LOCK_USED] = "INITIAL USE",
607 	[LOCK_USAGE_STATES] = "IN-NMI",
608 };
609 #endif
610 
611 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
612 {
613 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
614 }
615 
616 static inline unsigned long lock_flag(enum lock_usage_bit bit)
617 {
618 	return 1UL << bit;
619 }
620 
621 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
622 {
623 	/*
624 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
625 	 * irq context), which is the safest usage category.
626 	 */
627 	char c = '.';
628 
629 	/*
630 	 * The order of the following usage checks matters, which will
631 	 * result in the outcome character as follows:
632 	 *
633 	 * - '+': irq is enabled and not in irq context
634 	 * - '-': in irq context and irq is disabled
635 	 * - '?': in irq context and irq is enabled
636 	 */
637 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
638 		c = '+';
639 		if (class->usage_mask & lock_flag(bit))
640 			c = '?';
641 	} else if (class->usage_mask & lock_flag(bit))
642 		c = '-';
643 
644 	return c;
645 }
646 
647 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
648 {
649 	int i = 0;
650 
651 #define LOCKDEP_STATE(__STATE) 						\
652 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
653 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
654 #include "lockdep_states.h"
655 #undef LOCKDEP_STATE
656 
657 	usage[i] = '\0';
658 }
659 
660 static void __print_lock_name(struct lock_class *class)
661 {
662 	char str[KSYM_NAME_LEN];
663 	const char *name;
664 
665 	name = class->name;
666 	if (!name) {
667 		name = __get_key_name(class->key, str);
668 		printk(KERN_CONT "%s", name);
669 	} else {
670 		printk(KERN_CONT "%s", name);
671 		if (class->name_version > 1)
672 			printk(KERN_CONT "#%d", class->name_version);
673 		if (class->subclass)
674 			printk(KERN_CONT "/%d", class->subclass);
675 	}
676 }
677 
678 static void print_lock_name(struct lock_class *class)
679 {
680 	char usage[LOCK_USAGE_CHARS];
681 
682 	get_usage_chars(class, usage);
683 
684 	printk(KERN_CONT " (");
685 	__print_lock_name(class);
686 	printk(KERN_CONT "){%s}-{%hd:%hd}", usage,
687 			class->wait_type_outer ?: class->wait_type_inner,
688 			class->wait_type_inner);
689 }
690 
691 static void print_lockdep_cache(struct lockdep_map *lock)
692 {
693 	const char *name;
694 	char str[KSYM_NAME_LEN];
695 
696 	name = lock->name;
697 	if (!name)
698 		name = __get_key_name(lock->key->subkeys, str);
699 
700 	printk(KERN_CONT "%s", name);
701 }
702 
703 static void print_lock(struct held_lock *hlock)
704 {
705 	/*
706 	 * We can be called locklessly through debug_show_all_locks() so be
707 	 * extra careful, the hlock might have been released and cleared.
708 	 *
709 	 * If this indeed happens, lets pretend it does not hurt to continue
710 	 * to print the lock unless the hlock class_idx does not point to a
711 	 * registered class. The rationale here is: since we don't attempt
712 	 * to distinguish whether we are in this situation, if it just
713 	 * happened we can't count on class_idx to tell either.
714 	 */
715 	struct lock_class *lock = hlock_class(hlock);
716 
717 	if (!lock) {
718 		printk(KERN_CONT "<RELEASED>\n");
719 		return;
720 	}
721 
722 	printk(KERN_CONT "%px", hlock->instance);
723 	print_lock_name(lock);
724 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
725 }
726 
727 static void lockdep_print_held_locks(struct task_struct *p)
728 {
729 	int i, depth = READ_ONCE(p->lockdep_depth);
730 
731 	if (!depth)
732 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
733 	else
734 		printk("%d lock%s held by %s/%d:\n", depth,
735 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
736 	/*
737 	 * It's not reliable to print a task's held locks if it's not sleeping
738 	 * and it's not the current task.
739 	 */
740 	if (p->state == TASK_RUNNING && p != current)
741 		return;
742 	for (i = 0; i < depth; i++) {
743 		printk(" #%d: ", i);
744 		print_lock(p->held_locks + i);
745 	}
746 }
747 
748 static void print_kernel_ident(void)
749 {
750 	printk("%s %.*s %s\n", init_utsname()->release,
751 		(int)strcspn(init_utsname()->version, " "),
752 		init_utsname()->version,
753 		print_tainted());
754 }
755 
756 static int very_verbose(struct lock_class *class)
757 {
758 #if VERY_VERBOSE
759 	return class_filter(class);
760 #endif
761 	return 0;
762 }
763 
764 /*
765  * Is this the address of a static object:
766  */
767 #ifdef __KERNEL__
768 static int static_obj(const void *obj)
769 {
770 	unsigned long start = (unsigned long) &_stext,
771 		      end   = (unsigned long) &_end,
772 		      addr  = (unsigned long) obj;
773 
774 	if (arch_is_kernel_initmem_freed(addr))
775 		return 0;
776 
777 	/*
778 	 * static variable?
779 	 */
780 	if ((addr >= start) && (addr < end))
781 		return 1;
782 
783 	if (arch_is_kernel_data(addr))
784 		return 1;
785 
786 	/*
787 	 * in-kernel percpu var?
788 	 */
789 	if (is_kernel_percpu_address(addr))
790 		return 1;
791 
792 	/*
793 	 * module static or percpu var?
794 	 */
795 	return is_module_address(addr) || is_module_percpu_address(addr);
796 }
797 #endif
798 
799 /*
800  * To make lock name printouts unique, we calculate a unique
801  * class->name_version generation counter. The caller must hold the graph
802  * lock.
803  */
804 static int count_matching_names(struct lock_class *new_class)
805 {
806 	struct lock_class *class;
807 	int count = 0;
808 
809 	if (!new_class->name)
810 		return 0;
811 
812 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
813 		if (new_class->key - new_class->subclass == class->key)
814 			return class->name_version;
815 		if (class->name && !strcmp(class->name, new_class->name))
816 			count = max(count, class->name_version);
817 	}
818 
819 	return count + 1;
820 }
821 
822 /* used from NMI context -- must be lockless */
823 static inline struct lock_class *
824 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
825 {
826 	struct lockdep_subclass_key *key;
827 	struct hlist_head *hash_head;
828 	struct lock_class *class;
829 
830 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
831 		debug_locks_off();
832 		printk(KERN_ERR
833 			"BUG: looking up invalid subclass: %u\n", subclass);
834 		printk(KERN_ERR
835 			"turning off the locking correctness validator.\n");
836 		dump_stack();
837 		return NULL;
838 	}
839 
840 	/*
841 	 * If it is not initialised then it has never been locked,
842 	 * so it won't be present in the hash table.
843 	 */
844 	if (unlikely(!lock->key))
845 		return NULL;
846 
847 	/*
848 	 * NOTE: the class-key must be unique. For dynamic locks, a static
849 	 * lock_class_key variable is passed in through the mutex_init()
850 	 * (or spin_lock_init()) call - which acts as the key. For static
851 	 * locks we use the lock object itself as the key.
852 	 */
853 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
854 			sizeof(struct lockdep_map));
855 
856 	key = lock->key->subkeys + subclass;
857 
858 	hash_head = classhashentry(key);
859 
860 	/*
861 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
862 	 */
863 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
864 		return NULL;
865 
866 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
867 		if (class->key == key) {
868 			/*
869 			 * Huh! same key, different name? Did someone trample
870 			 * on some memory? We're most confused.
871 			 */
872 			WARN_ON_ONCE(class->name != lock->name &&
873 				     lock->key != &__lockdep_no_validate__);
874 			return class;
875 		}
876 	}
877 
878 	return NULL;
879 }
880 
881 /*
882  * Static locks do not have their class-keys yet - for them the key is
883  * the lock object itself. If the lock is in the per cpu area, the
884  * canonical address of the lock (per cpu offset removed) is used.
885  */
886 static bool assign_lock_key(struct lockdep_map *lock)
887 {
888 	unsigned long can_addr, addr = (unsigned long)lock;
889 
890 #ifdef __KERNEL__
891 	/*
892 	 * lockdep_free_key_range() assumes that struct lock_class_key
893 	 * objects do not overlap. Since we use the address of lock
894 	 * objects as class key for static objects, check whether the
895 	 * size of lock_class_key objects does not exceed the size of
896 	 * the smallest lock object.
897 	 */
898 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
899 #endif
900 
901 	if (__is_kernel_percpu_address(addr, &can_addr))
902 		lock->key = (void *)can_addr;
903 	else if (__is_module_percpu_address(addr, &can_addr))
904 		lock->key = (void *)can_addr;
905 	else if (static_obj(lock))
906 		lock->key = (void *)lock;
907 	else {
908 		/* Debug-check: all keys must be persistent! */
909 		debug_locks_off();
910 		pr_err("INFO: trying to register non-static key.\n");
911 		pr_err("the code is fine but needs lockdep annotation.\n");
912 		pr_err("turning off the locking correctness validator.\n");
913 		dump_stack();
914 		return false;
915 	}
916 
917 	return true;
918 }
919 
920 #ifdef CONFIG_DEBUG_LOCKDEP
921 
922 /* Check whether element @e occurs in list @h */
923 static bool in_list(struct list_head *e, struct list_head *h)
924 {
925 	struct list_head *f;
926 
927 	list_for_each(f, h) {
928 		if (e == f)
929 			return true;
930 	}
931 
932 	return false;
933 }
934 
935 /*
936  * Check whether entry @e occurs in any of the locks_after or locks_before
937  * lists.
938  */
939 static bool in_any_class_list(struct list_head *e)
940 {
941 	struct lock_class *class;
942 	int i;
943 
944 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
945 		class = &lock_classes[i];
946 		if (in_list(e, &class->locks_after) ||
947 		    in_list(e, &class->locks_before))
948 			return true;
949 	}
950 	return false;
951 }
952 
953 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
954 {
955 	struct lock_list *e;
956 
957 	list_for_each_entry(e, h, entry) {
958 		if (e->links_to != c) {
959 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
960 			       c->name ? : "(?)",
961 			       (unsigned long)(e - list_entries),
962 			       e->links_to && e->links_to->name ?
963 			       e->links_to->name : "(?)",
964 			       e->class && e->class->name ? e->class->name :
965 			       "(?)");
966 			return false;
967 		}
968 	}
969 	return true;
970 }
971 
972 #ifdef CONFIG_PROVE_LOCKING
973 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
974 #endif
975 
976 static bool check_lock_chain_key(struct lock_chain *chain)
977 {
978 #ifdef CONFIG_PROVE_LOCKING
979 	u64 chain_key = INITIAL_CHAIN_KEY;
980 	int i;
981 
982 	for (i = chain->base; i < chain->base + chain->depth; i++)
983 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
984 	/*
985 	 * The 'unsigned long long' casts avoid that a compiler warning
986 	 * is reported when building tools/lib/lockdep.
987 	 */
988 	if (chain->chain_key != chain_key) {
989 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
990 		       (unsigned long long)(chain - lock_chains),
991 		       (unsigned long long)chain->chain_key,
992 		       (unsigned long long)chain_key);
993 		return false;
994 	}
995 #endif
996 	return true;
997 }
998 
999 static bool in_any_zapped_class_list(struct lock_class *class)
1000 {
1001 	struct pending_free *pf;
1002 	int i;
1003 
1004 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1005 		if (in_list(&class->lock_entry, &pf->zapped))
1006 			return true;
1007 	}
1008 
1009 	return false;
1010 }
1011 
1012 static bool __check_data_structures(void)
1013 {
1014 	struct lock_class *class;
1015 	struct lock_chain *chain;
1016 	struct hlist_head *head;
1017 	struct lock_list *e;
1018 	int i;
1019 
1020 	/* Check whether all classes occur in a lock list. */
1021 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1022 		class = &lock_classes[i];
1023 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1024 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1025 		    !in_any_zapped_class_list(class)) {
1026 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1027 			       class, class->name ? : "(?)");
1028 			return false;
1029 		}
1030 	}
1031 
1032 	/* Check whether all classes have valid lock lists. */
1033 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1034 		class = &lock_classes[i];
1035 		if (!class_lock_list_valid(class, &class->locks_before))
1036 			return false;
1037 		if (!class_lock_list_valid(class, &class->locks_after))
1038 			return false;
1039 	}
1040 
1041 	/* Check the chain_key of all lock chains. */
1042 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1043 		head = chainhash_table + i;
1044 		hlist_for_each_entry_rcu(chain, head, entry) {
1045 			if (!check_lock_chain_key(chain))
1046 				return false;
1047 		}
1048 	}
1049 
1050 	/*
1051 	 * Check whether all list entries that are in use occur in a class
1052 	 * lock list.
1053 	 */
1054 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1055 		e = list_entries + i;
1056 		if (!in_any_class_list(&e->entry)) {
1057 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1058 			       (unsigned int)(e - list_entries),
1059 			       e->class->name ? : "(?)",
1060 			       e->links_to->name ? : "(?)");
1061 			return false;
1062 		}
1063 	}
1064 
1065 	/*
1066 	 * Check whether all list entries that are not in use do not occur in
1067 	 * a class lock list.
1068 	 */
1069 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1070 		e = list_entries + i;
1071 		if (in_any_class_list(&e->entry)) {
1072 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1073 			       (unsigned int)(e - list_entries),
1074 			       e->class && e->class->name ? e->class->name :
1075 			       "(?)",
1076 			       e->links_to && e->links_to->name ?
1077 			       e->links_to->name : "(?)");
1078 			return false;
1079 		}
1080 	}
1081 
1082 	return true;
1083 }
1084 
1085 int check_consistency = 0;
1086 module_param(check_consistency, int, 0644);
1087 
1088 static void check_data_structures(void)
1089 {
1090 	static bool once = false;
1091 
1092 	if (check_consistency && !once) {
1093 		if (!__check_data_structures()) {
1094 			once = true;
1095 			WARN_ON(once);
1096 		}
1097 	}
1098 }
1099 
1100 #else /* CONFIG_DEBUG_LOCKDEP */
1101 
1102 static inline void check_data_structures(void) { }
1103 
1104 #endif /* CONFIG_DEBUG_LOCKDEP */
1105 
1106 static void init_chain_block_buckets(void);
1107 
1108 /*
1109  * Initialize the lock_classes[] array elements, the free_lock_classes list
1110  * and also the delayed_free structure.
1111  */
1112 static void init_data_structures_once(void)
1113 {
1114 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1115 	int i;
1116 
1117 	if (likely(rcu_head_initialized))
1118 		return;
1119 
1120 	if (system_state >= SYSTEM_SCHEDULING) {
1121 		init_rcu_head(&delayed_free.rcu_head);
1122 		rcu_head_initialized = true;
1123 	}
1124 
1125 	if (ds_initialized)
1126 		return;
1127 
1128 	ds_initialized = true;
1129 
1130 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1131 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1132 
1133 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1134 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1135 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1136 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1137 	}
1138 	init_chain_block_buckets();
1139 }
1140 
1141 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1142 {
1143 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1144 
1145 	return lock_keys_hash + hash;
1146 }
1147 
1148 /* Register a dynamically allocated key. */
1149 void lockdep_register_key(struct lock_class_key *key)
1150 {
1151 	struct hlist_head *hash_head;
1152 	struct lock_class_key *k;
1153 	unsigned long flags;
1154 
1155 	if (WARN_ON_ONCE(static_obj(key)))
1156 		return;
1157 	hash_head = keyhashentry(key);
1158 
1159 	raw_local_irq_save(flags);
1160 	if (!graph_lock())
1161 		goto restore_irqs;
1162 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1163 		if (WARN_ON_ONCE(k == key))
1164 			goto out_unlock;
1165 	}
1166 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1167 out_unlock:
1168 	graph_unlock();
1169 restore_irqs:
1170 	raw_local_irq_restore(flags);
1171 }
1172 EXPORT_SYMBOL_GPL(lockdep_register_key);
1173 
1174 /* Check whether a key has been registered as a dynamic key. */
1175 static bool is_dynamic_key(const struct lock_class_key *key)
1176 {
1177 	struct hlist_head *hash_head;
1178 	struct lock_class_key *k;
1179 	bool found = false;
1180 
1181 	if (WARN_ON_ONCE(static_obj(key)))
1182 		return false;
1183 
1184 	/*
1185 	 * If lock debugging is disabled lock_keys_hash[] may contain
1186 	 * pointers to memory that has already been freed. Avoid triggering
1187 	 * a use-after-free in that case by returning early.
1188 	 */
1189 	if (!debug_locks)
1190 		return true;
1191 
1192 	hash_head = keyhashentry(key);
1193 
1194 	rcu_read_lock();
1195 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1196 		if (k == key) {
1197 			found = true;
1198 			break;
1199 		}
1200 	}
1201 	rcu_read_unlock();
1202 
1203 	return found;
1204 }
1205 
1206 /*
1207  * Register a lock's class in the hash-table, if the class is not present
1208  * yet. Otherwise we look it up. We cache the result in the lock object
1209  * itself, so actual lookup of the hash should be once per lock object.
1210  */
1211 static struct lock_class *
1212 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1213 {
1214 	struct lockdep_subclass_key *key;
1215 	struct hlist_head *hash_head;
1216 	struct lock_class *class;
1217 
1218 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1219 
1220 	class = look_up_lock_class(lock, subclass);
1221 	if (likely(class))
1222 		goto out_set_class_cache;
1223 
1224 	if (!lock->key) {
1225 		if (!assign_lock_key(lock))
1226 			return NULL;
1227 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1228 		return NULL;
1229 	}
1230 
1231 	key = lock->key->subkeys + subclass;
1232 	hash_head = classhashentry(key);
1233 
1234 	if (!graph_lock()) {
1235 		return NULL;
1236 	}
1237 	/*
1238 	 * We have to do the hash-walk again, to avoid races
1239 	 * with another CPU:
1240 	 */
1241 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1242 		if (class->key == key)
1243 			goto out_unlock_set;
1244 	}
1245 
1246 	init_data_structures_once();
1247 
1248 	/* Allocate a new lock class and add it to the hash. */
1249 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1250 					 lock_entry);
1251 	if (!class) {
1252 		if (!debug_locks_off_graph_unlock()) {
1253 			return NULL;
1254 		}
1255 
1256 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1257 		dump_stack();
1258 		return NULL;
1259 	}
1260 	nr_lock_classes++;
1261 	__set_bit(class - lock_classes, lock_classes_in_use);
1262 	debug_atomic_inc(nr_unused_locks);
1263 	class->key = key;
1264 	class->name = lock->name;
1265 	class->subclass = subclass;
1266 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1267 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1268 	class->name_version = count_matching_names(class);
1269 	class->wait_type_inner = lock->wait_type_inner;
1270 	class->wait_type_outer = lock->wait_type_outer;
1271 	/*
1272 	 * We use RCU's safe list-add method to make
1273 	 * parallel walking of the hash-list safe:
1274 	 */
1275 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1276 	/*
1277 	 * Remove the class from the free list and add it to the global list
1278 	 * of classes.
1279 	 */
1280 	list_move_tail(&class->lock_entry, &all_lock_classes);
1281 
1282 	if (verbose(class)) {
1283 		graph_unlock();
1284 
1285 		printk("\nnew class %px: %s", class->key, class->name);
1286 		if (class->name_version > 1)
1287 			printk(KERN_CONT "#%d", class->name_version);
1288 		printk(KERN_CONT "\n");
1289 		dump_stack();
1290 
1291 		if (!graph_lock()) {
1292 			return NULL;
1293 		}
1294 	}
1295 out_unlock_set:
1296 	graph_unlock();
1297 
1298 out_set_class_cache:
1299 	if (!subclass || force)
1300 		lock->class_cache[0] = class;
1301 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1302 		lock->class_cache[subclass] = class;
1303 
1304 	/*
1305 	 * Hash collision, did we smoke some? We found a class with a matching
1306 	 * hash but the subclass -- which is hashed in -- didn't match.
1307 	 */
1308 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1309 		return NULL;
1310 
1311 	return class;
1312 }
1313 
1314 #ifdef CONFIG_PROVE_LOCKING
1315 /*
1316  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1317  * with NULL on failure)
1318  */
1319 static struct lock_list *alloc_list_entry(void)
1320 {
1321 	int idx = find_first_zero_bit(list_entries_in_use,
1322 				      ARRAY_SIZE(list_entries));
1323 
1324 	if (idx >= ARRAY_SIZE(list_entries)) {
1325 		if (!debug_locks_off_graph_unlock())
1326 			return NULL;
1327 
1328 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1329 		dump_stack();
1330 		return NULL;
1331 	}
1332 	nr_list_entries++;
1333 	__set_bit(idx, list_entries_in_use);
1334 	return list_entries + idx;
1335 }
1336 
1337 /*
1338  * Add a new dependency to the head of the list:
1339  */
1340 static int add_lock_to_list(struct lock_class *this,
1341 			    struct lock_class *links_to, struct list_head *head,
1342 			    unsigned long ip, int distance,
1343 			    const struct lock_trace *trace)
1344 {
1345 	struct lock_list *entry;
1346 	/*
1347 	 * Lock not present yet - get a new dependency struct and
1348 	 * add it to the list:
1349 	 */
1350 	entry = alloc_list_entry();
1351 	if (!entry)
1352 		return 0;
1353 
1354 	entry->class = this;
1355 	entry->links_to = links_to;
1356 	entry->distance = distance;
1357 	entry->trace = trace;
1358 	/*
1359 	 * Both allocation and removal are done under the graph lock; but
1360 	 * iteration is under RCU-sched; see look_up_lock_class() and
1361 	 * lockdep_free_key_range().
1362 	 */
1363 	list_add_tail_rcu(&entry->entry, head);
1364 
1365 	return 1;
1366 }
1367 
1368 /*
1369  * For good efficiency of modular, we use power of 2
1370  */
1371 #define MAX_CIRCULAR_QUEUE_SIZE		4096UL
1372 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1373 
1374 /*
1375  * The circular_queue and helpers are used to implement graph
1376  * breadth-first search (BFS) algorithm, by which we can determine
1377  * whether there is a path from a lock to another. In deadlock checks,
1378  * a path from the next lock to be acquired to a previous held lock
1379  * indicates that adding the <prev> -> <next> lock dependency will
1380  * produce a circle in the graph. Breadth-first search instead of
1381  * depth-first search is used in order to find the shortest (circular)
1382  * path.
1383  */
1384 struct circular_queue {
1385 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1386 	unsigned int  front, rear;
1387 };
1388 
1389 static struct circular_queue lock_cq;
1390 
1391 unsigned int max_bfs_queue_depth;
1392 
1393 static unsigned int lockdep_dependency_gen_id;
1394 
1395 static inline void __cq_init(struct circular_queue *cq)
1396 {
1397 	cq->front = cq->rear = 0;
1398 	lockdep_dependency_gen_id++;
1399 }
1400 
1401 static inline int __cq_empty(struct circular_queue *cq)
1402 {
1403 	return (cq->front == cq->rear);
1404 }
1405 
1406 static inline int __cq_full(struct circular_queue *cq)
1407 {
1408 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1409 }
1410 
1411 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1412 {
1413 	if (__cq_full(cq))
1414 		return -1;
1415 
1416 	cq->element[cq->rear] = elem;
1417 	cq->rear = (cq->rear + 1) & CQ_MASK;
1418 	return 0;
1419 }
1420 
1421 /*
1422  * Dequeue an element from the circular_queue, return a lock_list if
1423  * the queue is not empty, or NULL if otherwise.
1424  */
1425 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1426 {
1427 	struct lock_list * lock;
1428 
1429 	if (__cq_empty(cq))
1430 		return NULL;
1431 
1432 	lock = cq->element[cq->front];
1433 	cq->front = (cq->front + 1) & CQ_MASK;
1434 
1435 	return lock;
1436 }
1437 
1438 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1439 {
1440 	return (cq->rear - cq->front) & CQ_MASK;
1441 }
1442 
1443 static inline void mark_lock_accessed(struct lock_list *lock,
1444 					struct lock_list *parent)
1445 {
1446 	unsigned long nr;
1447 
1448 	nr = lock - list_entries;
1449 	WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1450 	lock->parent = parent;
1451 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1452 }
1453 
1454 static inline unsigned long lock_accessed(struct lock_list *lock)
1455 {
1456 	unsigned long nr;
1457 
1458 	nr = lock - list_entries;
1459 	WARN_ON(nr >= ARRAY_SIZE(list_entries)); /* Out-of-bounds, input fail */
1460 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1461 }
1462 
1463 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1464 {
1465 	return child->parent;
1466 }
1467 
1468 static inline int get_lock_depth(struct lock_list *child)
1469 {
1470 	int depth = 0;
1471 	struct lock_list *parent;
1472 
1473 	while ((parent = get_lock_parent(child))) {
1474 		child = parent;
1475 		depth++;
1476 	}
1477 	return depth;
1478 }
1479 
1480 /*
1481  * Return the forward or backward dependency list.
1482  *
1483  * @lock:   the lock_list to get its class's dependency list
1484  * @offset: the offset to struct lock_class to determine whether it is
1485  *          locks_after or locks_before
1486  */
1487 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1488 {
1489 	void *lock_class = lock->class;
1490 
1491 	return lock_class + offset;
1492 }
1493 
1494 /*
1495  * Forward- or backward-dependency search, used for both circular dependency
1496  * checking and hardirq-unsafe/softirq-unsafe checking.
1497  */
1498 static int __bfs(struct lock_list *source_entry,
1499 		 void *data,
1500 		 int (*match)(struct lock_list *entry, void *data),
1501 		 struct lock_list **target_entry,
1502 		 int offset)
1503 {
1504 	struct lock_list *entry;
1505 	struct lock_list *lock;
1506 	struct list_head *head;
1507 	struct circular_queue *cq = &lock_cq;
1508 	int ret = 1;
1509 
1510 	lockdep_assert_locked();
1511 
1512 	if (match(source_entry, data)) {
1513 		*target_entry = source_entry;
1514 		ret = 0;
1515 		goto exit;
1516 	}
1517 
1518 	head = get_dep_list(source_entry, offset);
1519 	if (list_empty(head))
1520 		goto exit;
1521 
1522 	__cq_init(cq);
1523 	__cq_enqueue(cq, source_entry);
1524 
1525 	while ((lock = __cq_dequeue(cq))) {
1526 
1527 		if (!lock->class) {
1528 			ret = -2;
1529 			goto exit;
1530 		}
1531 
1532 		head = get_dep_list(lock, offset);
1533 
1534 		list_for_each_entry_rcu(entry, head, entry) {
1535 			if (!lock_accessed(entry)) {
1536 				unsigned int cq_depth;
1537 				mark_lock_accessed(entry, lock);
1538 				if (match(entry, data)) {
1539 					*target_entry = entry;
1540 					ret = 0;
1541 					goto exit;
1542 				}
1543 
1544 				if (__cq_enqueue(cq, entry)) {
1545 					ret = -1;
1546 					goto exit;
1547 				}
1548 				cq_depth = __cq_get_elem_count(cq);
1549 				if (max_bfs_queue_depth < cq_depth)
1550 					max_bfs_queue_depth = cq_depth;
1551 			}
1552 		}
1553 	}
1554 exit:
1555 	return ret;
1556 }
1557 
1558 static inline int __bfs_forwards(struct lock_list *src_entry,
1559 			void *data,
1560 			int (*match)(struct lock_list *entry, void *data),
1561 			struct lock_list **target_entry)
1562 {
1563 	return __bfs(src_entry, data, match, target_entry,
1564 		     offsetof(struct lock_class, locks_after));
1565 
1566 }
1567 
1568 static inline int __bfs_backwards(struct lock_list *src_entry,
1569 			void *data,
1570 			int (*match)(struct lock_list *entry, void *data),
1571 			struct lock_list **target_entry)
1572 {
1573 	return __bfs(src_entry, data, match, target_entry,
1574 		     offsetof(struct lock_class, locks_before));
1575 
1576 }
1577 
1578 static void print_lock_trace(const struct lock_trace *trace,
1579 			     unsigned int spaces)
1580 {
1581 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1582 }
1583 
1584 /*
1585  * Print a dependency chain entry (this is only done when a deadlock
1586  * has been detected):
1587  */
1588 static noinline void
1589 print_circular_bug_entry(struct lock_list *target, int depth)
1590 {
1591 	if (debug_locks_silent)
1592 		return;
1593 	printk("\n-> #%u", depth);
1594 	print_lock_name(target->class);
1595 	printk(KERN_CONT ":\n");
1596 	print_lock_trace(target->trace, 6);
1597 }
1598 
1599 static void
1600 print_circular_lock_scenario(struct held_lock *src,
1601 			     struct held_lock *tgt,
1602 			     struct lock_list *prt)
1603 {
1604 	struct lock_class *source = hlock_class(src);
1605 	struct lock_class *target = hlock_class(tgt);
1606 	struct lock_class *parent = prt->class;
1607 
1608 	/*
1609 	 * A direct locking problem where unsafe_class lock is taken
1610 	 * directly by safe_class lock, then all we need to show
1611 	 * is the deadlock scenario, as it is obvious that the
1612 	 * unsafe lock is taken under the safe lock.
1613 	 *
1614 	 * But if there is a chain instead, where the safe lock takes
1615 	 * an intermediate lock (middle_class) where this lock is
1616 	 * not the same as the safe lock, then the lock chain is
1617 	 * used to describe the problem. Otherwise we would need
1618 	 * to show a different CPU case for each link in the chain
1619 	 * from the safe_class lock to the unsafe_class lock.
1620 	 */
1621 	if (parent != source) {
1622 		printk("Chain exists of:\n  ");
1623 		__print_lock_name(source);
1624 		printk(KERN_CONT " --> ");
1625 		__print_lock_name(parent);
1626 		printk(KERN_CONT " --> ");
1627 		__print_lock_name(target);
1628 		printk(KERN_CONT "\n\n");
1629 	}
1630 
1631 	printk(" Possible unsafe locking scenario:\n\n");
1632 	printk("       CPU0                    CPU1\n");
1633 	printk("       ----                    ----\n");
1634 	printk("  lock(");
1635 	__print_lock_name(target);
1636 	printk(KERN_CONT ");\n");
1637 	printk("                               lock(");
1638 	__print_lock_name(parent);
1639 	printk(KERN_CONT ");\n");
1640 	printk("                               lock(");
1641 	__print_lock_name(target);
1642 	printk(KERN_CONT ");\n");
1643 	printk("  lock(");
1644 	__print_lock_name(source);
1645 	printk(KERN_CONT ");\n");
1646 	printk("\n *** DEADLOCK ***\n\n");
1647 }
1648 
1649 /*
1650  * When a circular dependency is detected, print the
1651  * header first:
1652  */
1653 static noinline void
1654 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1655 			struct held_lock *check_src,
1656 			struct held_lock *check_tgt)
1657 {
1658 	struct task_struct *curr = current;
1659 
1660 	if (debug_locks_silent)
1661 		return;
1662 
1663 	pr_warn("\n");
1664 	pr_warn("======================================================\n");
1665 	pr_warn("WARNING: possible circular locking dependency detected\n");
1666 	print_kernel_ident();
1667 	pr_warn("------------------------------------------------------\n");
1668 	pr_warn("%s/%d is trying to acquire lock:\n",
1669 		curr->comm, task_pid_nr(curr));
1670 	print_lock(check_src);
1671 
1672 	pr_warn("\nbut task is already holding lock:\n");
1673 
1674 	print_lock(check_tgt);
1675 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1676 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1677 
1678 	print_circular_bug_entry(entry, depth);
1679 }
1680 
1681 static inline int class_equal(struct lock_list *entry, void *data)
1682 {
1683 	return entry->class == data;
1684 }
1685 
1686 static noinline void print_circular_bug(struct lock_list *this,
1687 					struct lock_list *target,
1688 					struct held_lock *check_src,
1689 					struct held_lock *check_tgt)
1690 {
1691 	struct task_struct *curr = current;
1692 	struct lock_list *parent;
1693 	struct lock_list *first_parent;
1694 	int depth;
1695 
1696 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1697 		return;
1698 
1699 	this->trace = save_trace();
1700 	if (!this->trace)
1701 		return;
1702 
1703 	depth = get_lock_depth(target);
1704 
1705 	print_circular_bug_header(target, depth, check_src, check_tgt);
1706 
1707 	parent = get_lock_parent(target);
1708 	first_parent = parent;
1709 
1710 	while (parent) {
1711 		print_circular_bug_entry(parent, --depth);
1712 		parent = get_lock_parent(parent);
1713 	}
1714 
1715 	printk("\nother info that might help us debug this:\n\n");
1716 	print_circular_lock_scenario(check_src, check_tgt,
1717 				     first_parent);
1718 
1719 	lockdep_print_held_locks(curr);
1720 
1721 	printk("\nstack backtrace:\n");
1722 	dump_stack();
1723 }
1724 
1725 static noinline void print_bfs_bug(int ret)
1726 {
1727 	if (!debug_locks_off_graph_unlock())
1728 		return;
1729 
1730 	/*
1731 	 * Breadth-first-search failed, graph got corrupted?
1732 	 */
1733 	WARN(1, "lockdep bfs error:%d\n", ret);
1734 }
1735 
1736 static int noop_count(struct lock_list *entry, void *data)
1737 {
1738 	(*(unsigned long *)data)++;
1739 	return 0;
1740 }
1741 
1742 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
1743 {
1744 	unsigned long  count = 0;
1745 	struct lock_list *uninitialized_var(target_entry);
1746 
1747 	__bfs_forwards(this, (void *)&count, noop_count, &target_entry);
1748 
1749 	return count;
1750 }
1751 unsigned long lockdep_count_forward_deps(struct lock_class *class)
1752 {
1753 	unsigned long ret, flags;
1754 	struct lock_list this;
1755 
1756 	this.parent = NULL;
1757 	this.class = class;
1758 
1759 	raw_local_irq_save(flags);
1760 	lockdep_lock();
1761 	ret = __lockdep_count_forward_deps(&this);
1762 	lockdep_unlock();
1763 	raw_local_irq_restore(flags);
1764 
1765 	return ret;
1766 }
1767 
1768 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
1769 {
1770 	unsigned long  count = 0;
1771 	struct lock_list *uninitialized_var(target_entry);
1772 
1773 	__bfs_backwards(this, (void *)&count, noop_count, &target_entry);
1774 
1775 	return count;
1776 }
1777 
1778 unsigned long lockdep_count_backward_deps(struct lock_class *class)
1779 {
1780 	unsigned long ret, flags;
1781 	struct lock_list this;
1782 
1783 	this.parent = NULL;
1784 	this.class = class;
1785 
1786 	raw_local_irq_save(flags);
1787 	lockdep_lock();
1788 	ret = __lockdep_count_backward_deps(&this);
1789 	lockdep_unlock();
1790 	raw_local_irq_restore(flags);
1791 
1792 	return ret;
1793 }
1794 
1795 /*
1796  * Check that the dependency graph starting at <src> can lead to
1797  * <target> or not. Print an error and return 0 if it does.
1798  */
1799 static noinline int
1800 check_path(struct lock_class *target, struct lock_list *src_entry,
1801 	   struct lock_list **target_entry)
1802 {
1803 	int ret;
1804 
1805 	ret = __bfs_forwards(src_entry, (void *)target, class_equal,
1806 			     target_entry);
1807 
1808 	if (unlikely(ret < 0))
1809 		print_bfs_bug(ret);
1810 
1811 	return ret;
1812 }
1813 
1814 /*
1815  * Prove that the dependency graph starting at <src> can not
1816  * lead to <target>. If it can, there is a circle when adding
1817  * <target> -> <src> dependency.
1818  *
1819  * Print an error and return 0 if it does.
1820  */
1821 static noinline int
1822 check_noncircular(struct held_lock *src, struct held_lock *target,
1823 		  struct lock_trace **const trace)
1824 {
1825 	int ret;
1826 	struct lock_list *uninitialized_var(target_entry);
1827 	struct lock_list src_entry = {
1828 		.class = hlock_class(src),
1829 		.parent = NULL,
1830 	};
1831 
1832 	debug_atomic_inc(nr_cyclic_checks);
1833 
1834 	ret = check_path(hlock_class(target), &src_entry, &target_entry);
1835 
1836 	if (unlikely(!ret)) {
1837 		if (!*trace) {
1838 			/*
1839 			 * If save_trace fails here, the printing might
1840 			 * trigger a WARN but because of the !nr_entries it
1841 			 * should not do bad things.
1842 			 */
1843 			*trace = save_trace();
1844 		}
1845 
1846 		print_circular_bug(&src_entry, target_entry, src, target);
1847 	}
1848 
1849 	return ret;
1850 }
1851 
1852 #ifdef CONFIG_LOCKDEP_SMALL
1853 /*
1854  * Check that the dependency graph starting at <src> can lead to
1855  * <target> or not. If it can, <src> -> <target> dependency is already
1856  * in the graph.
1857  *
1858  * Print an error and return 2 if it does or 1 if it does not.
1859  */
1860 static noinline int
1861 check_redundant(struct held_lock *src, struct held_lock *target)
1862 {
1863 	int ret;
1864 	struct lock_list *uninitialized_var(target_entry);
1865 	struct lock_list src_entry = {
1866 		.class = hlock_class(src),
1867 		.parent = NULL,
1868 	};
1869 
1870 	debug_atomic_inc(nr_redundant_checks);
1871 
1872 	ret = check_path(hlock_class(target), &src_entry, &target_entry);
1873 
1874 	if (!ret) {
1875 		debug_atomic_inc(nr_redundant);
1876 		ret = 2;
1877 	} else if (ret < 0)
1878 		ret = 0;
1879 
1880 	return ret;
1881 }
1882 #endif
1883 
1884 #ifdef CONFIG_TRACE_IRQFLAGS
1885 
1886 static inline int usage_accumulate(struct lock_list *entry, void *mask)
1887 {
1888 	*(unsigned long *)mask |= entry->class->usage_mask;
1889 
1890 	return 0;
1891 }
1892 
1893 /*
1894  * Forwards and backwards subgraph searching, for the purposes of
1895  * proving that two subgraphs can be connected by a new dependency
1896  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
1897  */
1898 
1899 static inline int usage_match(struct lock_list *entry, void *mask)
1900 {
1901 	return entry->class->usage_mask & *(unsigned long *)mask;
1902 }
1903 
1904 /*
1905  * Find a node in the forwards-direction dependency sub-graph starting
1906  * at @root->class that matches @bit.
1907  *
1908  * Return 0 if such a node exists in the subgraph, and put that node
1909  * into *@target_entry.
1910  *
1911  * Return 1 otherwise and keep *@target_entry unchanged.
1912  * Return <0 on error.
1913  */
1914 static int
1915 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
1916 			struct lock_list **target_entry)
1917 {
1918 	int result;
1919 
1920 	debug_atomic_inc(nr_find_usage_forwards_checks);
1921 
1922 	result = __bfs_forwards(root, &usage_mask, usage_match, target_entry);
1923 
1924 	return result;
1925 }
1926 
1927 /*
1928  * Find a node in the backwards-direction dependency sub-graph starting
1929  * at @root->class that matches @bit.
1930  *
1931  * Return 0 if such a node exists in the subgraph, and put that node
1932  * into *@target_entry.
1933  *
1934  * Return 1 otherwise and keep *@target_entry unchanged.
1935  * Return <0 on error.
1936  */
1937 static int
1938 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
1939 			struct lock_list **target_entry)
1940 {
1941 	int result;
1942 
1943 	debug_atomic_inc(nr_find_usage_backwards_checks);
1944 
1945 	result = __bfs_backwards(root, &usage_mask, usage_match, target_entry);
1946 
1947 	return result;
1948 }
1949 
1950 static void print_lock_class_header(struct lock_class *class, int depth)
1951 {
1952 	int bit;
1953 
1954 	printk("%*s->", depth, "");
1955 	print_lock_name(class);
1956 #ifdef CONFIG_DEBUG_LOCKDEP
1957 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
1958 #endif
1959 	printk(KERN_CONT " {\n");
1960 
1961 	for (bit = 0; bit < LOCK_USAGE_STATES; bit++) {
1962 		if (class->usage_mask & (1 << bit)) {
1963 			int len = depth;
1964 
1965 			len += printk("%*s   %s", depth, "", usage_str[bit]);
1966 			len += printk(KERN_CONT " at:\n");
1967 			print_lock_trace(class->usage_traces[bit], len);
1968 		}
1969 	}
1970 	printk("%*s }\n", depth, "");
1971 
1972 	printk("%*s ... key      at: [<%px>] %pS\n",
1973 		depth, "", class->key, class->key);
1974 }
1975 
1976 /*
1977  * printk the shortest lock dependencies from @start to @end in reverse order:
1978  */
1979 static void __used
1980 print_shortest_lock_dependencies(struct lock_list *leaf,
1981 				 struct lock_list *root)
1982 {
1983 	struct lock_list *entry = leaf;
1984 	int depth;
1985 
1986 	/*compute depth from generated tree by BFS*/
1987 	depth = get_lock_depth(leaf);
1988 
1989 	do {
1990 		print_lock_class_header(entry->class, depth);
1991 		printk("%*s ... acquired at:\n", depth, "");
1992 		print_lock_trace(entry->trace, 2);
1993 		printk("\n");
1994 
1995 		if (depth == 0 && (entry != root)) {
1996 			printk("lockdep:%s bad path found in chain graph\n", __func__);
1997 			break;
1998 		}
1999 
2000 		entry = get_lock_parent(entry);
2001 		depth--;
2002 	} while (entry && (depth >= 0));
2003 }
2004 
2005 static void
2006 print_irq_lock_scenario(struct lock_list *safe_entry,
2007 			struct lock_list *unsafe_entry,
2008 			struct lock_class *prev_class,
2009 			struct lock_class *next_class)
2010 {
2011 	struct lock_class *safe_class = safe_entry->class;
2012 	struct lock_class *unsafe_class = unsafe_entry->class;
2013 	struct lock_class *middle_class = prev_class;
2014 
2015 	if (middle_class == safe_class)
2016 		middle_class = next_class;
2017 
2018 	/*
2019 	 * A direct locking problem where unsafe_class lock is taken
2020 	 * directly by safe_class lock, then all we need to show
2021 	 * is the deadlock scenario, as it is obvious that the
2022 	 * unsafe lock is taken under the safe lock.
2023 	 *
2024 	 * But if there is a chain instead, where the safe lock takes
2025 	 * an intermediate lock (middle_class) where this lock is
2026 	 * not the same as the safe lock, then the lock chain is
2027 	 * used to describe the problem. Otherwise we would need
2028 	 * to show a different CPU case for each link in the chain
2029 	 * from the safe_class lock to the unsafe_class lock.
2030 	 */
2031 	if (middle_class != unsafe_class) {
2032 		printk("Chain exists of:\n  ");
2033 		__print_lock_name(safe_class);
2034 		printk(KERN_CONT " --> ");
2035 		__print_lock_name(middle_class);
2036 		printk(KERN_CONT " --> ");
2037 		__print_lock_name(unsafe_class);
2038 		printk(KERN_CONT "\n\n");
2039 	}
2040 
2041 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2042 	printk("       CPU0                    CPU1\n");
2043 	printk("       ----                    ----\n");
2044 	printk("  lock(");
2045 	__print_lock_name(unsafe_class);
2046 	printk(KERN_CONT ");\n");
2047 	printk("                               local_irq_disable();\n");
2048 	printk("                               lock(");
2049 	__print_lock_name(safe_class);
2050 	printk(KERN_CONT ");\n");
2051 	printk("                               lock(");
2052 	__print_lock_name(middle_class);
2053 	printk(KERN_CONT ");\n");
2054 	printk("  <Interrupt>\n");
2055 	printk("    lock(");
2056 	__print_lock_name(safe_class);
2057 	printk(KERN_CONT ");\n");
2058 	printk("\n *** DEADLOCK ***\n\n");
2059 }
2060 
2061 static void
2062 print_bad_irq_dependency(struct task_struct *curr,
2063 			 struct lock_list *prev_root,
2064 			 struct lock_list *next_root,
2065 			 struct lock_list *backwards_entry,
2066 			 struct lock_list *forwards_entry,
2067 			 struct held_lock *prev,
2068 			 struct held_lock *next,
2069 			 enum lock_usage_bit bit1,
2070 			 enum lock_usage_bit bit2,
2071 			 const char *irqclass)
2072 {
2073 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2074 		return;
2075 
2076 	pr_warn("\n");
2077 	pr_warn("=====================================================\n");
2078 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2079 		irqclass, irqclass);
2080 	print_kernel_ident();
2081 	pr_warn("-----------------------------------------------------\n");
2082 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2083 		curr->comm, task_pid_nr(curr),
2084 		curr->hardirq_context, hardirq_count() >> HARDIRQ_SHIFT,
2085 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2086 		curr->hardirqs_enabled,
2087 		curr->softirqs_enabled);
2088 	print_lock(next);
2089 
2090 	pr_warn("\nand this task is already holding:\n");
2091 	print_lock(prev);
2092 	pr_warn("which would create a new lock dependency:\n");
2093 	print_lock_name(hlock_class(prev));
2094 	pr_cont(" ->");
2095 	print_lock_name(hlock_class(next));
2096 	pr_cont("\n");
2097 
2098 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2099 		irqclass);
2100 	print_lock_name(backwards_entry->class);
2101 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2102 
2103 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2104 
2105 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2106 	print_lock_name(forwards_entry->class);
2107 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2108 	pr_warn("...");
2109 
2110 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2111 
2112 	pr_warn("\nother info that might help us debug this:\n\n");
2113 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2114 				hlock_class(prev), hlock_class(next));
2115 
2116 	lockdep_print_held_locks(curr);
2117 
2118 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2119 	prev_root->trace = save_trace();
2120 	if (!prev_root->trace)
2121 		return;
2122 	print_shortest_lock_dependencies(backwards_entry, prev_root);
2123 
2124 	pr_warn("\nthe dependencies between the lock to be acquired");
2125 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2126 	next_root->trace = save_trace();
2127 	if (!next_root->trace)
2128 		return;
2129 	print_shortest_lock_dependencies(forwards_entry, next_root);
2130 
2131 	pr_warn("\nstack backtrace:\n");
2132 	dump_stack();
2133 }
2134 
2135 static const char *state_names[] = {
2136 #define LOCKDEP_STATE(__STATE) \
2137 	__stringify(__STATE),
2138 #include "lockdep_states.h"
2139 #undef LOCKDEP_STATE
2140 };
2141 
2142 static const char *state_rnames[] = {
2143 #define LOCKDEP_STATE(__STATE) \
2144 	__stringify(__STATE)"-READ",
2145 #include "lockdep_states.h"
2146 #undef LOCKDEP_STATE
2147 };
2148 
2149 static inline const char *state_name(enum lock_usage_bit bit)
2150 {
2151 	if (bit & LOCK_USAGE_READ_MASK)
2152 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2153 	else
2154 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2155 }
2156 
2157 /*
2158  * The bit number is encoded like:
2159  *
2160  *  bit0: 0 exclusive, 1 read lock
2161  *  bit1: 0 used in irq, 1 irq enabled
2162  *  bit2-n: state
2163  */
2164 static int exclusive_bit(int new_bit)
2165 {
2166 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2167 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2168 
2169 	/*
2170 	 * keep state, bit flip the direction and strip read.
2171 	 */
2172 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2173 }
2174 
2175 /*
2176  * Observe that when given a bitmask where each bitnr is encoded as above, a
2177  * right shift of the mask transforms the individual bitnrs as -1 and
2178  * conversely, a left shift transforms into +1 for the individual bitnrs.
2179  *
2180  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2181  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2182  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2183  *
2184  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2185  *
2186  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2187  * all bits set) and recompose with bitnr1 flipped.
2188  */
2189 static unsigned long invert_dir_mask(unsigned long mask)
2190 {
2191 	unsigned long excl = 0;
2192 
2193 	/* Invert dir */
2194 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2195 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2196 
2197 	return excl;
2198 }
2199 
2200 /*
2201  * As above, we clear bitnr0 (LOCK_*_READ off) with bitmask ops. First, for all
2202  * bits with bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*).
2203  * And then mask out all bitnr0.
2204  */
2205 static unsigned long exclusive_mask(unsigned long mask)
2206 {
2207 	unsigned long excl = invert_dir_mask(mask);
2208 
2209 	/* Strip read */
2210 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2211 	excl &= ~LOCKF_IRQ_READ;
2212 
2213 	return excl;
2214 }
2215 
2216 /*
2217  * Retrieve the _possible_ original mask to which @mask is
2218  * exclusive. Ie: this is the opposite of exclusive_mask().
2219  * Note that 2 possible original bits can match an exclusive
2220  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2221  * cleared. So both are returned for each exclusive bit.
2222  */
2223 static unsigned long original_mask(unsigned long mask)
2224 {
2225 	unsigned long excl = invert_dir_mask(mask);
2226 
2227 	/* Include read in existing usages */
2228 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2229 
2230 	return excl;
2231 }
2232 
2233 /*
2234  * Find the first pair of bit match between an original
2235  * usage mask and an exclusive usage mask.
2236  */
2237 static int find_exclusive_match(unsigned long mask,
2238 				unsigned long excl_mask,
2239 				enum lock_usage_bit *bitp,
2240 				enum lock_usage_bit *excl_bitp)
2241 {
2242 	int bit, excl;
2243 
2244 	for_each_set_bit(bit, &mask, LOCK_USED) {
2245 		excl = exclusive_bit(bit);
2246 		if (excl_mask & lock_flag(excl)) {
2247 			*bitp = bit;
2248 			*excl_bitp = excl;
2249 			return 0;
2250 		}
2251 	}
2252 	return -1;
2253 }
2254 
2255 /*
2256  * Prove that the new dependency does not connect a hardirq-safe(-read)
2257  * lock with a hardirq-unsafe lock - to achieve this we search
2258  * the backwards-subgraph starting at <prev>, and the
2259  * forwards-subgraph starting at <next>:
2260  */
2261 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2262 			   struct held_lock *next)
2263 {
2264 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2265 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2266 	struct lock_list *uninitialized_var(target_entry1);
2267 	struct lock_list *uninitialized_var(target_entry);
2268 	struct lock_list this, that;
2269 	int ret;
2270 
2271 	/*
2272 	 * Step 1: gather all hard/soft IRQs usages backward in an
2273 	 * accumulated usage mask.
2274 	 */
2275 	this.parent = NULL;
2276 	this.class = hlock_class(prev);
2277 
2278 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, NULL);
2279 	if (ret < 0) {
2280 		print_bfs_bug(ret);
2281 		return 0;
2282 	}
2283 
2284 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2285 	if (!usage_mask)
2286 		return 1;
2287 
2288 	/*
2289 	 * Step 2: find exclusive uses forward that match the previous
2290 	 * backward accumulated mask.
2291 	 */
2292 	forward_mask = exclusive_mask(usage_mask);
2293 
2294 	that.parent = NULL;
2295 	that.class = hlock_class(next);
2296 
2297 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2298 	if (ret < 0) {
2299 		print_bfs_bug(ret);
2300 		return 0;
2301 	}
2302 	if (ret == 1)
2303 		return ret;
2304 
2305 	/*
2306 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2307 	 * list whose usage mask matches the exclusive usage mask from the
2308 	 * lock found on the forward list.
2309 	 */
2310 	backward_mask = original_mask(target_entry1->class->usage_mask);
2311 
2312 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2313 	if (ret < 0) {
2314 		print_bfs_bug(ret);
2315 		return 0;
2316 	}
2317 	if (DEBUG_LOCKS_WARN_ON(ret == 1))
2318 		return 1;
2319 
2320 	/*
2321 	 * Step 4: narrow down to a pair of incompatible usage bits
2322 	 * and report it.
2323 	 */
2324 	ret = find_exclusive_match(target_entry->class->usage_mask,
2325 				   target_entry1->class->usage_mask,
2326 				   &backward_bit, &forward_bit);
2327 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2328 		return 1;
2329 
2330 	print_bad_irq_dependency(curr, &this, &that,
2331 				 target_entry, target_entry1,
2332 				 prev, next,
2333 				 backward_bit, forward_bit,
2334 				 state_name(backward_bit));
2335 
2336 	return 0;
2337 }
2338 
2339 #else
2340 
2341 static inline int check_irq_usage(struct task_struct *curr,
2342 				  struct held_lock *prev, struct held_lock *next)
2343 {
2344 	return 1;
2345 }
2346 #endif /* CONFIG_TRACE_IRQFLAGS */
2347 
2348 static void inc_chains(int irq_context)
2349 {
2350 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2351 		nr_hardirq_chains++;
2352 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2353 		nr_softirq_chains++;
2354 	else
2355 		nr_process_chains++;
2356 }
2357 
2358 static void dec_chains(int irq_context)
2359 {
2360 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2361 		nr_hardirq_chains--;
2362 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2363 		nr_softirq_chains--;
2364 	else
2365 		nr_process_chains--;
2366 }
2367 
2368 static void
2369 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2370 {
2371 	struct lock_class *next = hlock_class(nxt);
2372 	struct lock_class *prev = hlock_class(prv);
2373 
2374 	printk(" Possible unsafe locking scenario:\n\n");
2375 	printk("       CPU0\n");
2376 	printk("       ----\n");
2377 	printk("  lock(");
2378 	__print_lock_name(prev);
2379 	printk(KERN_CONT ");\n");
2380 	printk("  lock(");
2381 	__print_lock_name(next);
2382 	printk(KERN_CONT ");\n");
2383 	printk("\n *** DEADLOCK ***\n\n");
2384 	printk(" May be due to missing lock nesting notation\n\n");
2385 }
2386 
2387 static void
2388 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2389 		   struct held_lock *next)
2390 {
2391 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2392 		return;
2393 
2394 	pr_warn("\n");
2395 	pr_warn("============================================\n");
2396 	pr_warn("WARNING: possible recursive locking detected\n");
2397 	print_kernel_ident();
2398 	pr_warn("--------------------------------------------\n");
2399 	pr_warn("%s/%d is trying to acquire lock:\n",
2400 		curr->comm, task_pid_nr(curr));
2401 	print_lock(next);
2402 	pr_warn("\nbut task is already holding lock:\n");
2403 	print_lock(prev);
2404 
2405 	pr_warn("\nother info that might help us debug this:\n");
2406 	print_deadlock_scenario(next, prev);
2407 	lockdep_print_held_locks(curr);
2408 
2409 	pr_warn("\nstack backtrace:\n");
2410 	dump_stack();
2411 }
2412 
2413 /*
2414  * Check whether we are holding such a class already.
2415  *
2416  * (Note that this has to be done separately, because the graph cannot
2417  * detect such classes of deadlocks.)
2418  *
2419  * Returns: 0 on deadlock detected, 1 on OK, 2 on recursive read
2420  */
2421 static int
2422 check_deadlock(struct task_struct *curr, struct held_lock *next)
2423 {
2424 	struct held_lock *prev;
2425 	struct held_lock *nest = NULL;
2426 	int i;
2427 
2428 	for (i = 0; i < curr->lockdep_depth; i++) {
2429 		prev = curr->held_locks + i;
2430 
2431 		if (prev->instance == next->nest_lock)
2432 			nest = prev;
2433 
2434 		if (hlock_class(prev) != hlock_class(next))
2435 			continue;
2436 
2437 		/*
2438 		 * Allow read-after-read recursion of the same
2439 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2440 		 */
2441 		if ((next->read == 2) && prev->read)
2442 			return 2;
2443 
2444 		/*
2445 		 * We're holding the nest_lock, which serializes this lock's
2446 		 * nesting behaviour.
2447 		 */
2448 		if (nest)
2449 			return 2;
2450 
2451 		print_deadlock_bug(curr, prev, next);
2452 		return 0;
2453 	}
2454 	return 1;
2455 }
2456 
2457 /*
2458  * There was a chain-cache miss, and we are about to add a new dependency
2459  * to a previous lock. We validate the following rules:
2460  *
2461  *  - would the adding of the <prev> -> <next> dependency create a
2462  *    circular dependency in the graph? [== circular deadlock]
2463  *
2464  *  - does the new prev->next dependency connect any hardirq-safe lock
2465  *    (in the full backwards-subgraph starting at <prev>) with any
2466  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2467  *    <next>)? [== illegal lock inversion with hardirq contexts]
2468  *
2469  *  - does the new prev->next dependency connect any softirq-safe lock
2470  *    (in the full backwards-subgraph starting at <prev>) with any
2471  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2472  *    <next>)? [== illegal lock inversion with softirq contexts]
2473  *
2474  * any of these scenarios could lead to a deadlock.
2475  *
2476  * Then if all the validations pass, we add the forwards and backwards
2477  * dependency.
2478  */
2479 static int
2480 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2481 	       struct held_lock *next, int distance,
2482 	       struct lock_trace **const trace)
2483 {
2484 	struct lock_list *entry;
2485 	int ret;
2486 
2487 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2488 		/*
2489 		 * The warning statements below may trigger a use-after-free
2490 		 * of the class name. It is better to trigger a use-after free
2491 		 * and to have the class name most of the time instead of not
2492 		 * having the class name available.
2493 		 */
2494 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2495 			  "Detected use-after-free of lock class %px/%s\n",
2496 			  hlock_class(prev),
2497 			  hlock_class(prev)->name);
2498 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2499 			  "Detected use-after-free of lock class %px/%s\n",
2500 			  hlock_class(next),
2501 			  hlock_class(next)->name);
2502 		return 2;
2503 	}
2504 
2505 	/*
2506 	 * Prove that the new <prev> -> <next> dependency would not
2507 	 * create a circular dependency in the graph. (We do this by
2508 	 * a breadth-first search into the graph starting at <next>,
2509 	 * and check whether we can reach <prev>.)
2510 	 *
2511 	 * The search is limited by the size of the circular queue (i.e.,
2512 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2513 	 * in the graph whose neighbours are to be checked.
2514 	 */
2515 	ret = check_noncircular(next, prev, trace);
2516 	if (unlikely(ret <= 0))
2517 		return 0;
2518 
2519 	if (!check_irq_usage(curr, prev, next))
2520 		return 0;
2521 
2522 	/*
2523 	 * For recursive read-locks we do all the dependency checks,
2524 	 * but we dont store read-triggered dependencies (only
2525 	 * write-triggered dependencies). This ensures that only the
2526 	 * write-side dependencies matter, and that if for example a
2527 	 * write-lock never takes any other locks, then the reads are
2528 	 * equivalent to a NOP.
2529 	 */
2530 	if (next->read == 2 || prev->read == 2)
2531 		return 1;
2532 	/*
2533 	 * Is the <prev> -> <next> dependency already present?
2534 	 *
2535 	 * (this may occur even though this is a new chain: consider
2536 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2537 	 *  chains - the second one will be new, but L1 already has
2538 	 *  L2 added to its dependency list, due to the first chain.)
2539 	 */
2540 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2541 		if (entry->class == hlock_class(next)) {
2542 			if (distance == 1)
2543 				entry->distance = 1;
2544 			return 1;
2545 		}
2546 	}
2547 
2548 #ifdef CONFIG_LOCKDEP_SMALL
2549 	/*
2550 	 * Is the <prev> -> <next> link redundant?
2551 	 */
2552 	ret = check_redundant(prev, next);
2553 	if (ret != 1)
2554 		return ret;
2555 #endif
2556 
2557 	if (!*trace) {
2558 		*trace = save_trace();
2559 		if (!*trace)
2560 			return 0;
2561 	}
2562 
2563 	/*
2564 	 * Ok, all validations passed, add the new lock
2565 	 * to the previous lock's dependency list:
2566 	 */
2567 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
2568 			       &hlock_class(prev)->locks_after,
2569 			       next->acquire_ip, distance, *trace);
2570 
2571 	if (!ret)
2572 		return 0;
2573 
2574 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
2575 			       &hlock_class(next)->locks_before,
2576 			       next->acquire_ip, distance, *trace);
2577 	if (!ret)
2578 		return 0;
2579 
2580 	return 2;
2581 }
2582 
2583 /*
2584  * Add the dependency to all directly-previous locks that are 'relevant'.
2585  * The ones that are relevant are (in increasing distance from curr):
2586  * all consecutive trylock entries and the final non-trylock entry - or
2587  * the end of this context's lock-chain - whichever comes first.
2588  */
2589 static int
2590 check_prevs_add(struct task_struct *curr, struct held_lock *next)
2591 {
2592 	struct lock_trace *trace = NULL;
2593 	int depth = curr->lockdep_depth;
2594 	struct held_lock *hlock;
2595 
2596 	/*
2597 	 * Debugging checks.
2598 	 *
2599 	 * Depth must not be zero for a non-head lock:
2600 	 */
2601 	if (!depth)
2602 		goto out_bug;
2603 	/*
2604 	 * At least two relevant locks must exist for this
2605 	 * to be a head:
2606 	 */
2607 	if (curr->held_locks[depth].irq_context !=
2608 			curr->held_locks[depth-1].irq_context)
2609 		goto out_bug;
2610 
2611 	for (;;) {
2612 		int distance = curr->lockdep_depth - depth + 1;
2613 		hlock = curr->held_locks + depth - 1;
2614 
2615 		/*
2616 		 * Only non-recursive-read entries get new dependencies
2617 		 * added:
2618 		 */
2619 		if (hlock->read != 2 && hlock->check) {
2620 			int ret = check_prev_add(curr, hlock, next, distance,
2621 						 &trace);
2622 			if (!ret)
2623 				return 0;
2624 
2625 			/*
2626 			 * Stop after the first non-trylock entry,
2627 			 * as non-trylock entries have added their
2628 			 * own direct dependencies already, so this
2629 			 * lock is connected to them indirectly:
2630 			 */
2631 			if (!hlock->trylock)
2632 				break;
2633 		}
2634 
2635 		depth--;
2636 		/*
2637 		 * End of lock-stack?
2638 		 */
2639 		if (!depth)
2640 			break;
2641 		/*
2642 		 * Stop the search if we cross into another context:
2643 		 */
2644 		if (curr->held_locks[depth].irq_context !=
2645 				curr->held_locks[depth-1].irq_context)
2646 			break;
2647 	}
2648 	return 1;
2649 out_bug:
2650 	if (!debug_locks_off_graph_unlock())
2651 		return 0;
2652 
2653 	/*
2654 	 * Clearly we all shouldn't be here, but since we made it we
2655 	 * can reliable say we messed up our state. See the above two
2656 	 * gotos for reasons why we could possibly end up here.
2657 	 */
2658 	WARN_ON(1);
2659 
2660 	return 0;
2661 }
2662 
2663 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
2664 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
2665 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
2666 unsigned long nr_zapped_lock_chains;
2667 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
2668 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
2669 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
2670 
2671 /*
2672  * The first 2 chain_hlocks entries in the chain block in the bucket
2673  * list contains the following meta data:
2674  *
2675  *   entry[0]:
2676  *     Bit    15 - always set to 1 (it is not a class index)
2677  *     Bits 0-14 - upper 15 bits of the next block index
2678  *   entry[1]    - lower 16 bits of next block index
2679  *
2680  * A next block index of all 1 bits means it is the end of the list.
2681  *
2682  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
2683  * the chain block size:
2684  *
2685  *   entry[2] - upper 16 bits of the chain block size
2686  *   entry[3] - lower 16 bits of the chain block size
2687  */
2688 #define MAX_CHAIN_BUCKETS	16
2689 #define CHAIN_BLK_FLAG		(1U << 15)
2690 #define CHAIN_BLK_LIST_END	0xFFFFU
2691 
2692 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
2693 
2694 static inline int size_to_bucket(int size)
2695 {
2696 	if (size > MAX_CHAIN_BUCKETS)
2697 		return 0;
2698 
2699 	return size - 1;
2700 }
2701 
2702 /*
2703  * Iterate all the chain blocks in a bucket.
2704  */
2705 #define for_each_chain_block(bucket, prev, curr)		\
2706 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
2707 	     (curr) >= 0;					\
2708 	     (prev) = (curr), (curr) = chain_block_next(curr))
2709 
2710 /*
2711  * next block or -1
2712  */
2713 static inline int chain_block_next(int offset)
2714 {
2715 	int next = chain_hlocks[offset];
2716 
2717 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
2718 
2719 	if (next == CHAIN_BLK_LIST_END)
2720 		return -1;
2721 
2722 	next &= ~CHAIN_BLK_FLAG;
2723 	next <<= 16;
2724 	next |= chain_hlocks[offset + 1];
2725 
2726 	return next;
2727 }
2728 
2729 /*
2730  * bucket-0 only
2731  */
2732 static inline int chain_block_size(int offset)
2733 {
2734 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
2735 }
2736 
2737 static inline void init_chain_block(int offset, int next, int bucket, int size)
2738 {
2739 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
2740 	chain_hlocks[offset + 1] = (u16)next;
2741 
2742 	if (size && !bucket) {
2743 		chain_hlocks[offset + 2] = size >> 16;
2744 		chain_hlocks[offset + 3] = (u16)size;
2745 	}
2746 }
2747 
2748 static inline void add_chain_block(int offset, int size)
2749 {
2750 	int bucket = size_to_bucket(size);
2751 	int next = chain_block_buckets[bucket];
2752 	int prev, curr;
2753 
2754 	if (unlikely(size < 2)) {
2755 		/*
2756 		 * We can't store single entries on the freelist. Leak them.
2757 		 *
2758 		 * One possible way out would be to uniquely mark them, other
2759 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
2760 		 * the block before it is re-added.
2761 		 */
2762 		if (size)
2763 			nr_lost_chain_hlocks++;
2764 		return;
2765 	}
2766 
2767 	nr_free_chain_hlocks += size;
2768 	if (!bucket) {
2769 		nr_large_chain_blocks++;
2770 
2771 		/*
2772 		 * Variable sized, sort large to small.
2773 		 */
2774 		for_each_chain_block(0, prev, curr) {
2775 			if (size >= chain_block_size(curr))
2776 				break;
2777 		}
2778 		init_chain_block(offset, curr, 0, size);
2779 		if (prev < 0)
2780 			chain_block_buckets[0] = offset;
2781 		else
2782 			init_chain_block(prev, offset, 0, 0);
2783 		return;
2784 	}
2785 	/*
2786 	 * Fixed size, add to head.
2787 	 */
2788 	init_chain_block(offset, next, bucket, size);
2789 	chain_block_buckets[bucket] = offset;
2790 }
2791 
2792 /*
2793  * Only the first block in the list can be deleted.
2794  *
2795  * For the variable size bucket[0], the first block (the largest one) is
2796  * returned, broken up and put back into the pool. So if a chain block of
2797  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
2798  * queued up after the primordial chain block and never be used until the
2799  * hlock entries in the primordial chain block is almost used up. That
2800  * causes fragmentation and reduce allocation efficiency. That can be
2801  * monitored by looking at the "large chain blocks" number in lockdep_stats.
2802  */
2803 static inline void del_chain_block(int bucket, int size, int next)
2804 {
2805 	nr_free_chain_hlocks -= size;
2806 	chain_block_buckets[bucket] = next;
2807 
2808 	if (!bucket)
2809 		nr_large_chain_blocks--;
2810 }
2811 
2812 static void init_chain_block_buckets(void)
2813 {
2814 	int i;
2815 
2816 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
2817 		chain_block_buckets[i] = -1;
2818 
2819 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
2820 }
2821 
2822 /*
2823  * Return offset of a chain block of the right size or -1 if not found.
2824  *
2825  * Fairly simple worst-fit allocator with the addition of a number of size
2826  * specific free lists.
2827  */
2828 static int alloc_chain_hlocks(int req)
2829 {
2830 	int bucket, curr, size;
2831 
2832 	/*
2833 	 * We rely on the MSB to act as an escape bit to denote freelist
2834 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
2835 	 */
2836 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
2837 
2838 	init_data_structures_once();
2839 
2840 	if (nr_free_chain_hlocks < req)
2841 		return -1;
2842 
2843 	/*
2844 	 * We require a minimum of 2 (u16) entries to encode a freelist
2845 	 * 'pointer'.
2846 	 */
2847 	req = max(req, 2);
2848 	bucket = size_to_bucket(req);
2849 	curr = chain_block_buckets[bucket];
2850 
2851 	if (bucket) {
2852 		if (curr >= 0) {
2853 			del_chain_block(bucket, req, chain_block_next(curr));
2854 			return curr;
2855 		}
2856 		/* Try bucket 0 */
2857 		curr = chain_block_buckets[0];
2858 	}
2859 
2860 	/*
2861 	 * The variable sized freelist is sorted by size; the first entry is
2862 	 * the largest. Use it if it fits.
2863 	 */
2864 	if (curr >= 0) {
2865 		size = chain_block_size(curr);
2866 		if (likely(size >= req)) {
2867 			del_chain_block(0, size, chain_block_next(curr));
2868 			add_chain_block(curr + req, size - req);
2869 			return curr;
2870 		}
2871 	}
2872 
2873 	/*
2874 	 * Last resort, split a block in a larger sized bucket.
2875 	 */
2876 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
2877 		bucket = size_to_bucket(size);
2878 		curr = chain_block_buckets[bucket];
2879 		if (curr < 0)
2880 			continue;
2881 
2882 		del_chain_block(bucket, size, chain_block_next(curr));
2883 		add_chain_block(curr + req, size - req);
2884 		return curr;
2885 	}
2886 
2887 	return -1;
2888 }
2889 
2890 static inline void free_chain_hlocks(int base, int size)
2891 {
2892 	add_chain_block(base, max(size, 2));
2893 }
2894 
2895 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
2896 {
2897 	return lock_classes + chain_hlocks[chain->base + i];
2898 }
2899 
2900 /*
2901  * Returns the index of the first held_lock of the current chain
2902  */
2903 static inline int get_first_held_lock(struct task_struct *curr,
2904 					struct held_lock *hlock)
2905 {
2906 	int i;
2907 	struct held_lock *hlock_curr;
2908 
2909 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
2910 		hlock_curr = curr->held_locks + i;
2911 		if (hlock_curr->irq_context != hlock->irq_context)
2912 			break;
2913 
2914 	}
2915 
2916 	return ++i;
2917 }
2918 
2919 #ifdef CONFIG_DEBUG_LOCKDEP
2920 /*
2921  * Returns the next chain_key iteration
2922  */
2923 static u64 print_chain_key_iteration(int class_idx, u64 chain_key)
2924 {
2925 	u64 new_chain_key = iterate_chain_key(chain_key, class_idx);
2926 
2927 	printk(" class_idx:%d -> chain_key:%016Lx",
2928 		class_idx,
2929 		(unsigned long long)new_chain_key);
2930 	return new_chain_key;
2931 }
2932 
2933 static void
2934 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
2935 {
2936 	struct held_lock *hlock;
2937 	u64 chain_key = INITIAL_CHAIN_KEY;
2938 	int depth = curr->lockdep_depth;
2939 	int i = get_first_held_lock(curr, hlock_next);
2940 
2941 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
2942 		hlock_next->irq_context);
2943 	for (; i < depth; i++) {
2944 		hlock = curr->held_locks + i;
2945 		chain_key = print_chain_key_iteration(hlock->class_idx, chain_key);
2946 
2947 		print_lock(hlock);
2948 	}
2949 
2950 	print_chain_key_iteration(hlock_next->class_idx, chain_key);
2951 	print_lock(hlock_next);
2952 }
2953 
2954 static void print_chain_keys_chain(struct lock_chain *chain)
2955 {
2956 	int i;
2957 	u64 chain_key = INITIAL_CHAIN_KEY;
2958 	int class_id;
2959 
2960 	printk("depth: %u\n", chain->depth);
2961 	for (i = 0; i < chain->depth; i++) {
2962 		class_id = chain_hlocks[chain->base + i];
2963 		chain_key = print_chain_key_iteration(class_id, chain_key);
2964 
2965 		print_lock_name(lock_classes + class_id);
2966 		printk("\n");
2967 	}
2968 }
2969 
2970 static void print_collision(struct task_struct *curr,
2971 			struct held_lock *hlock_next,
2972 			struct lock_chain *chain)
2973 {
2974 	pr_warn("\n");
2975 	pr_warn("============================\n");
2976 	pr_warn("WARNING: chain_key collision\n");
2977 	print_kernel_ident();
2978 	pr_warn("----------------------------\n");
2979 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
2980 	pr_warn("Hash chain already cached but the contents don't match!\n");
2981 
2982 	pr_warn("Held locks:");
2983 	print_chain_keys_held_locks(curr, hlock_next);
2984 
2985 	pr_warn("Locks in cached chain:");
2986 	print_chain_keys_chain(chain);
2987 
2988 	pr_warn("\nstack backtrace:\n");
2989 	dump_stack();
2990 }
2991 #endif
2992 
2993 /*
2994  * Checks whether the chain and the current held locks are consistent
2995  * in depth and also in content. If they are not it most likely means
2996  * that there was a collision during the calculation of the chain_key.
2997  * Returns: 0 not passed, 1 passed
2998  */
2999 static int check_no_collision(struct task_struct *curr,
3000 			struct held_lock *hlock,
3001 			struct lock_chain *chain)
3002 {
3003 #ifdef CONFIG_DEBUG_LOCKDEP
3004 	int i, j, id;
3005 
3006 	i = get_first_held_lock(curr, hlock);
3007 
3008 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3009 		print_collision(curr, hlock, chain);
3010 		return 0;
3011 	}
3012 
3013 	for (j = 0; j < chain->depth - 1; j++, i++) {
3014 		id = curr->held_locks[i].class_idx;
3015 
3016 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3017 			print_collision(curr, hlock, chain);
3018 			return 0;
3019 		}
3020 	}
3021 #endif
3022 	return 1;
3023 }
3024 
3025 /*
3026  * Given an index that is >= -1, return the index of the next lock chain.
3027  * Return -2 if there is no next lock chain.
3028  */
3029 long lockdep_next_lockchain(long i)
3030 {
3031 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3032 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3033 }
3034 
3035 unsigned long lock_chain_count(void)
3036 {
3037 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3038 }
3039 
3040 /* Must be called with the graph lock held. */
3041 static struct lock_chain *alloc_lock_chain(void)
3042 {
3043 	int idx = find_first_zero_bit(lock_chains_in_use,
3044 				      ARRAY_SIZE(lock_chains));
3045 
3046 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3047 		return NULL;
3048 	__set_bit(idx, lock_chains_in_use);
3049 	return lock_chains + idx;
3050 }
3051 
3052 /*
3053  * Adds a dependency chain into chain hashtable. And must be called with
3054  * graph_lock held.
3055  *
3056  * Return 0 if fail, and graph_lock is released.
3057  * Return 1 if succeed, with graph_lock held.
3058  */
3059 static inline int add_chain_cache(struct task_struct *curr,
3060 				  struct held_lock *hlock,
3061 				  u64 chain_key)
3062 {
3063 	struct lock_class *class = hlock_class(hlock);
3064 	struct hlist_head *hash_head = chainhashentry(chain_key);
3065 	struct lock_chain *chain;
3066 	int i, j;
3067 
3068 	/*
3069 	 * The caller must hold the graph lock, ensure we've got IRQs
3070 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3071 	 * lockdep won't complain about its own locking errors.
3072 	 */
3073 	if (lockdep_assert_locked())
3074 		return 0;
3075 
3076 	chain = alloc_lock_chain();
3077 	if (!chain) {
3078 		if (!debug_locks_off_graph_unlock())
3079 			return 0;
3080 
3081 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3082 		dump_stack();
3083 		return 0;
3084 	}
3085 	chain->chain_key = chain_key;
3086 	chain->irq_context = hlock->irq_context;
3087 	i = get_first_held_lock(curr, hlock);
3088 	chain->depth = curr->lockdep_depth + 1 - i;
3089 
3090 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3091 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3092 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3093 
3094 	j = alloc_chain_hlocks(chain->depth);
3095 	if (j < 0) {
3096 		if (!debug_locks_off_graph_unlock())
3097 			return 0;
3098 
3099 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3100 		dump_stack();
3101 		return 0;
3102 	}
3103 
3104 	chain->base = j;
3105 	for (j = 0; j < chain->depth - 1; j++, i++) {
3106 		int lock_id = curr->held_locks[i].class_idx;
3107 
3108 		chain_hlocks[chain->base + j] = lock_id;
3109 	}
3110 	chain_hlocks[chain->base + j] = class - lock_classes;
3111 	hlist_add_head_rcu(&chain->entry, hash_head);
3112 	debug_atomic_inc(chain_lookup_misses);
3113 	inc_chains(chain->irq_context);
3114 
3115 	return 1;
3116 }
3117 
3118 /*
3119  * Look up a dependency chain. Must be called with either the graph lock or
3120  * the RCU read lock held.
3121  */
3122 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3123 {
3124 	struct hlist_head *hash_head = chainhashentry(chain_key);
3125 	struct lock_chain *chain;
3126 
3127 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3128 		if (READ_ONCE(chain->chain_key) == chain_key) {
3129 			debug_atomic_inc(chain_lookup_hits);
3130 			return chain;
3131 		}
3132 	}
3133 	return NULL;
3134 }
3135 
3136 /*
3137  * If the key is not present yet in dependency chain cache then
3138  * add it and return 1 - in this case the new dependency chain is
3139  * validated. If the key is already hashed, return 0.
3140  * (On return with 1 graph_lock is held.)
3141  */
3142 static inline int lookup_chain_cache_add(struct task_struct *curr,
3143 					 struct held_lock *hlock,
3144 					 u64 chain_key)
3145 {
3146 	struct lock_class *class = hlock_class(hlock);
3147 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3148 
3149 	if (chain) {
3150 cache_hit:
3151 		if (!check_no_collision(curr, hlock, chain))
3152 			return 0;
3153 
3154 		if (very_verbose(class)) {
3155 			printk("\nhash chain already cached, key: "
3156 					"%016Lx tail class: [%px] %s\n",
3157 					(unsigned long long)chain_key,
3158 					class->key, class->name);
3159 		}
3160 
3161 		return 0;
3162 	}
3163 
3164 	if (very_verbose(class)) {
3165 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3166 			(unsigned long long)chain_key, class->key, class->name);
3167 	}
3168 
3169 	if (!graph_lock())
3170 		return 0;
3171 
3172 	/*
3173 	 * We have to walk the chain again locked - to avoid duplicates:
3174 	 */
3175 	chain = lookup_chain_cache(chain_key);
3176 	if (chain) {
3177 		graph_unlock();
3178 		goto cache_hit;
3179 	}
3180 
3181 	if (!add_chain_cache(curr, hlock, chain_key))
3182 		return 0;
3183 
3184 	return 1;
3185 }
3186 
3187 static int validate_chain(struct task_struct *curr,
3188 			  struct held_lock *hlock,
3189 			  int chain_head, u64 chain_key)
3190 {
3191 	/*
3192 	 * Trylock needs to maintain the stack of held locks, but it
3193 	 * does not add new dependencies, because trylock can be done
3194 	 * in any order.
3195 	 *
3196 	 * We look up the chain_key and do the O(N^2) check and update of
3197 	 * the dependencies only if this is a new dependency chain.
3198 	 * (If lookup_chain_cache_add() return with 1 it acquires
3199 	 * graph_lock for us)
3200 	 */
3201 	if (!hlock->trylock && hlock->check &&
3202 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3203 		/*
3204 		 * Check whether last held lock:
3205 		 *
3206 		 * - is irq-safe, if this lock is irq-unsafe
3207 		 * - is softirq-safe, if this lock is hardirq-unsafe
3208 		 *
3209 		 * And check whether the new lock's dependency graph
3210 		 * could lead back to the previous lock:
3211 		 *
3212 		 * - within the current held-lock stack
3213 		 * - across our accumulated lock dependency records
3214 		 *
3215 		 * any of these scenarios could lead to a deadlock.
3216 		 */
3217 		/*
3218 		 * The simple case: does the current hold the same lock
3219 		 * already?
3220 		 */
3221 		int ret = check_deadlock(curr, hlock);
3222 
3223 		if (!ret)
3224 			return 0;
3225 		/*
3226 		 * Mark recursive read, as we jump over it when
3227 		 * building dependencies (just like we jump over
3228 		 * trylock entries):
3229 		 */
3230 		if (ret == 2)
3231 			hlock->read = 2;
3232 		/*
3233 		 * Add dependency only if this lock is not the head
3234 		 * of the chain, and if it's not a secondary read-lock:
3235 		 */
3236 		if (!chain_head && ret != 2) {
3237 			if (!check_prevs_add(curr, hlock))
3238 				return 0;
3239 		}
3240 
3241 		graph_unlock();
3242 	} else {
3243 		/* after lookup_chain_cache_add(): */
3244 		if (unlikely(!debug_locks))
3245 			return 0;
3246 	}
3247 
3248 	return 1;
3249 }
3250 #else
3251 static inline int validate_chain(struct task_struct *curr,
3252 				 struct held_lock *hlock,
3253 				 int chain_head, u64 chain_key)
3254 {
3255 	return 1;
3256 }
3257 
3258 static void init_chain_block_buckets(void)	{ }
3259 #endif /* CONFIG_PROVE_LOCKING */
3260 
3261 /*
3262  * We are building curr_chain_key incrementally, so double-check
3263  * it from scratch, to make sure that it's done correctly:
3264  */
3265 static void check_chain_key(struct task_struct *curr)
3266 {
3267 #ifdef CONFIG_DEBUG_LOCKDEP
3268 	struct held_lock *hlock, *prev_hlock = NULL;
3269 	unsigned int i;
3270 	u64 chain_key = INITIAL_CHAIN_KEY;
3271 
3272 	for (i = 0; i < curr->lockdep_depth; i++) {
3273 		hlock = curr->held_locks + i;
3274 		if (chain_key != hlock->prev_chain_key) {
3275 			debug_locks_off();
3276 			/*
3277 			 * We got mighty confused, our chain keys don't match
3278 			 * with what we expect, someone trample on our task state?
3279 			 */
3280 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3281 				curr->lockdep_depth, i,
3282 				(unsigned long long)chain_key,
3283 				(unsigned long long)hlock->prev_chain_key);
3284 			return;
3285 		}
3286 
3287 		/*
3288 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3289 		 * it registered lock class index?
3290 		 */
3291 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3292 			return;
3293 
3294 		if (prev_hlock && (prev_hlock->irq_context !=
3295 							hlock->irq_context))
3296 			chain_key = INITIAL_CHAIN_KEY;
3297 		chain_key = iterate_chain_key(chain_key, hlock->class_idx);
3298 		prev_hlock = hlock;
3299 	}
3300 	if (chain_key != curr->curr_chain_key) {
3301 		debug_locks_off();
3302 		/*
3303 		 * More smoking hash instead of calculating it, damn see these
3304 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3305 		 */
3306 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3307 			curr->lockdep_depth, i,
3308 			(unsigned long long)chain_key,
3309 			(unsigned long long)curr->curr_chain_key);
3310 	}
3311 #endif
3312 }
3313 
3314 #ifdef CONFIG_PROVE_LOCKING
3315 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3316 		     enum lock_usage_bit new_bit);
3317 
3318 static void print_usage_bug_scenario(struct held_lock *lock)
3319 {
3320 	struct lock_class *class = hlock_class(lock);
3321 
3322 	printk(" Possible unsafe locking scenario:\n\n");
3323 	printk("       CPU0\n");
3324 	printk("       ----\n");
3325 	printk("  lock(");
3326 	__print_lock_name(class);
3327 	printk(KERN_CONT ");\n");
3328 	printk("  <Interrupt>\n");
3329 	printk("    lock(");
3330 	__print_lock_name(class);
3331 	printk(KERN_CONT ");\n");
3332 	printk("\n *** DEADLOCK ***\n\n");
3333 }
3334 
3335 static void
3336 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3337 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3338 {
3339 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3340 		return;
3341 
3342 	pr_warn("\n");
3343 	pr_warn("================================\n");
3344 	pr_warn("WARNING: inconsistent lock state\n");
3345 	print_kernel_ident();
3346 	pr_warn("--------------------------------\n");
3347 
3348 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3349 		usage_str[prev_bit], usage_str[new_bit]);
3350 
3351 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3352 		curr->comm, task_pid_nr(curr),
3353 		lockdep_hardirq_context(curr), hardirq_count() >> HARDIRQ_SHIFT,
3354 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3355 		lockdep_hardirqs_enabled(curr),
3356 		lockdep_softirqs_enabled(curr));
3357 	print_lock(this);
3358 
3359 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3360 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3361 
3362 	print_irqtrace_events(curr);
3363 	pr_warn("\nother info that might help us debug this:\n");
3364 	print_usage_bug_scenario(this);
3365 
3366 	lockdep_print_held_locks(curr);
3367 
3368 	pr_warn("\nstack backtrace:\n");
3369 	dump_stack();
3370 }
3371 
3372 /*
3373  * Print out an error if an invalid bit is set:
3374  */
3375 static inline int
3376 valid_state(struct task_struct *curr, struct held_lock *this,
3377 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3378 {
3379 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3380 		print_usage_bug(curr, this, bad_bit, new_bit);
3381 		return 0;
3382 	}
3383 	return 1;
3384 }
3385 
3386 
3387 /*
3388  * print irq inversion bug:
3389  */
3390 static void
3391 print_irq_inversion_bug(struct task_struct *curr,
3392 			struct lock_list *root, struct lock_list *other,
3393 			struct held_lock *this, int forwards,
3394 			const char *irqclass)
3395 {
3396 	struct lock_list *entry = other;
3397 	struct lock_list *middle = NULL;
3398 	int depth;
3399 
3400 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3401 		return;
3402 
3403 	pr_warn("\n");
3404 	pr_warn("========================================================\n");
3405 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3406 	print_kernel_ident();
3407 	pr_warn("--------------------------------------------------------\n");
3408 	pr_warn("%s/%d just changed the state of lock:\n",
3409 		curr->comm, task_pid_nr(curr));
3410 	print_lock(this);
3411 	if (forwards)
3412 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3413 	else
3414 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3415 	print_lock_name(other->class);
3416 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3417 
3418 	pr_warn("\nother info that might help us debug this:\n");
3419 
3420 	/* Find a middle lock (if one exists) */
3421 	depth = get_lock_depth(other);
3422 	do {
3423 		if (depth == 0 && (entry != root)) {
3424 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3425 			break;
3426 		}
3427 		middle = entry;
3428 		entry = get_lock_parent(entry);
3429 		depth--;
3430 	} while (entry && entry != root && (depth >= 0));
3431 	if (forwards)
3432 		print_irq_lock_scenario(root, other,
3433 			middle ? middle->class : root->class, other->class);
3434 	else
3435 		print_irq_lock_scenario(other, root,
3436 			middle ? middle->class : other->class, root->class);
3437 
3438 	lockdep_print_held_locks(curr);
3439 
3440 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3441 	root->trace = save_trace();
3442 	if (!root->trace)
3443 		return;
3444 	print_shortest_lock_dependencies(other, root);
3445 
3446 	pr_warn("\nstack backtrace:\n");
3447 	dump_stack();
3448 }
3449 
3450 /*
3451  * Prove that in the forwards-direction subgraph starting at <this>
3452  * there is no lock matching <mask>:
3453  */
3454 static int
3455 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3456 		     enum lock_usage_bit bit, const char *irqclass)
3457 {
3458 	int ret;
3459 	struct lock_list root;
3460 	struct lock_list *uninitialized_var(target_entry);
3461 
3462 	root.parent = NULL;
3463 	root.class = hlock_class(this);
3464 	ret = find_usage_forwards(&root, lock_flag(bit), &target_entry);
3465 	if (ret < 0) {
3466 		print_bfs_bug(ret);
3467 		return 0;
3468 	}
3469 	if (ret == 1)
3470 		return ret;
3471 
3472 	print_irq_inversion_bug(curr, &root, target_entry,
3473 				this, 1, irqclass);
3474 	return 0;
3475 }
3476 
3477 /*
3478  * Prove that in the backwards-direction subgraph starting at <this>
3479  * there is no lock matching <mask>:
3480  */
3481 static int
3482 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3483 		      enum lock_usage_bit bit, const char *irqclass)
3484 {
3485 	int ret;
3486 	struct lock_list root;
3487 	struct lock_list *uninitialized_var(target_entry);
3488 
3489 	root.parent = NULL;
3490 	root.class = hlock_class(this);
3491 	ret = find_usage_backwards(&root, lock_flag(bit), &target_entry);
3492 	if (ret < 0) {
3493 		print_bfs_bug(ret);
3494 		return 0;
3495 	}
3496 	if (ret == 1)
3497 		return ret;
3498 
3499 	print_irq_inversion_bug(curr, &root, target_entry,
3500 				this, 0, irqclass);
3501 	return 0;
3502 }
3503 
3504 void print_irqtrace_events(struct task_struct *curr)
3505 {
3506 	printk("irq event stamp: %u\n", curr->irq_events);
3507 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3508 		curr->hardirq_enable_event, (void *)curr->hardirq_enable_ip,
3509 		(void *)curr->hardirq_enable_ip);
3510 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3511 		curr->hardirq_disable_event, (void *)curr->hardirq_disable_ip,
3512 		(void *)curr->hardirq_disable_ip);
3513 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3514 		curr->softirq_enable_event, (void *)curr->softirq_enable_ip,
3515 		(void *)curr->softirq_enable_ip);
3516 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3517 		curr->softirq_disable_event, (void *)curr->softirq_disable_ip,
3518 		(void *)curr->softirq_disable_ip);
3519 }
3520 
3521 static int HARDIRQ_verbose(struct lock_class *class)
3522 {
3523 #if HARDIRQ_VERBOSE
3524 	return class_filter(class);
3525 #endif
3526 	return 0;
3527 }
3528 
3529 static int SOFTIRQ_verbose(struct lock_class *class)
3530 {
3531 #if SOFTIRQ_VERBOSE
3532 	return class_filter(class);
3533 #endif
3534 	return 0;
3535 }
3536 
3537 #define STRICT_READ_CHECKS	1
3538 
3539 static int (*state_verbose_f[])(struct lock_class *class) = {
3540 #define LOCKDEP_STATE(__STATE) \
3541 	__STATE##_verbose,
3542 #include "lockdep_states.h"
3543 #undef LOCKDEP_STATE
3544 };
3545 
3546 static inline int state_verbose(enum lock_usage_bit bit,
3547 				struct lock_class *class)
3548 {
3549 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
3550 }
3551 
3552 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
3553 			     enum lock_usage_bit bit, const char *name);
3554 
3555 static int
3556 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
3557 		enum lock_usage_bit new_bit)
3558 {
3559 	int excl_bit = exclusive_bit(new_bit);
3560 	int read = new_bit & LOCK_USAGE_READ_MASK;
3561 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
3562 
3563 	/*
3564 	 * mark USED_IN has to look forwards -- to ensure no dependency
3565 	 * has ENABLED state, which would allow recursion deadlocks.
3566 	 *
3567 	 * mark ENABLED has to look backwards -- to ensure no dependee
3568 	 * has USED_IN state, which, again, would allow  recursion deadlocks.
3569 	 */
3570 	check_usage_f usage = dir ?
3571 		check_usage_backwards : check_usage_forwards;
3572 
3573 	/*
3574 	 * Validate that this particular lock does not have conflicting
3575 	 * usage states.
3576 	 */
3577 	if (!valid_state(curr, this, new_bit, excl_bit))
3578 		return 0;
3579 
3580 	/*
3581 	 * Validate that the lock dependencies don't have conflicting usage
3582 	 * states.
3583 	 */
3584 	if ((!read || STRICT_READ_CHECKS) &&
3585 			!usage(curr, this, excl_bit, state_name(new_bit & ~LOCK_USAGE_READ_MASK)))
3586 		return 0;
3587 
3588 	/*
3589 	 * Check for read in write conflicts
3590 	 */
3591 	if (!read) {
3592 		if (!valid_state(curr, this, new_bit, excl_bit + LOCK_USAGE_READ_MASK))
3593 			return 0;
3594 
3595 		if (STRICT_READ_CHECKS &&
3596 			!usage(curr, this, excl_bit + LOCK_USAGE_READ_MASK,
3597 				state_name(new_bit + LOCK_USAGE_READ_MASK)))
3598 			return 0;
3599 	}
3600 
3601 	if (state_verbose(new_bit, hlock_class(this)))
3602 		return 2;
3603 
3604 	return 1;
3605 }
3606 
3607 /*
3608  * Mark all held locks with a usage bit:
3609  */
3610 static int
3611 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
3612 {
3613 	struct held_lock *hlock;
3614 	int i;
3615 
3616 	for (i = 0; i < curr->lockdep_depth; i++) {
3617 		enum lock_usage_bit hlock_bit = base_bit;
3618 		hlock = curr->held_locks + i;
3619 
3620 		if (hlock->read)
3621 			hlock_bit += LOCK_USAGE_READ_MASK;
3622 
3623 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
3624 
3625 		if (!hlock->check)
3626 			continue;
3627 
3628 		if (!mark_lock(curr, hlock, hlock_bit))
3629 			return 0;
3630 	}
3631 
3632 	return 1;
3633 }
3634 
3635 /*
3636  * Hardirqs will be enabled:
3637  */
3638 static void __trace_hardirqs_on_caller(unsigned long ip)
3639 {
3640 	struct task_struct *curr = current;
3641 
3642 	/* we'll do an OFF -> ON transition: */
3643 	curr->hardirqs_enabled = 1;
3644 
3645 	/*
3646 	 * We are going to turn hardirqs on, so set the
3647 	 * usage bit for all held locks:
3648 	 */
3649 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
3650 		return;
3651 	/*
3652 	 * If we have softirqs enabled, then set the usage
3653 	 * bit for all held locks. (disabled hardirqs prevented
3654 	 * this bit from being set before)
3655 	 */
3656 	if (curr->softirqs_enabled)
3657 		if (!mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ))
3658 			return;
3659 
3660 	curr->hardirq_enable_ip = ip;
3661 	curr->hardirq_enable_event = ++curr->irq_events;
3662 	debug_atomic_inc(hardirqs_on_events);
3663 }
3664 
3665 void lockdep_hardirqs_on(unsigned long ip)
3666 {
3667 	if (unlikely(!debug_locks || current->lockdep_recursion))
3668 		return;
3669 
3670 	if (unlikely(current->hardirqs_enabled)) {
3671 		/*
3672 		 * Neither irq nor preemption are disabled here
3673 		 * so this is racy by nature but losing one hit
3674 		 * in a stat is not a big deal.
3675 		 */
3676 		__debug_atomic_inc(redundant_hardirqs_on);
3677 		return;
3678 	}
3679 
3680 	/*
3681 	 * We're enabling irqs and according to our state above irqs weren't
3682 	 * already enabled, yet we find the hardware thinks they are in fact
3683 	 * enabled.. someone messed up their IRQ state tracing.
3684 	 */
3685 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3686 		return;
3687 
3688 	/*
3689 	 * See the fine text that goes along with this variable definition.
3690 	 */
3691 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
3692 		return;
3693 
3694 	/*
3695 	 * Can't allow enabling interrupts while in an interrupt handler,
3696 	 * that's general bad form and such. Recursion, limited stack etc..
3697 	 */
3698 	if (DEBUG_LOCKS_WARN_ON(current->hardirq_context))
3699 		return;
3700 
3701 	current->lockdep_recursion++;
3702 	__trace_hardirqs_on_caller(ip);
3703 	lockdep_recursion_finish();
3704 }
3705 NOKPROBE_SYMBOL(lockdep_hardirqs_on);
3706 
3707 /*
3708  * Hardirqs were disabled:
3709  */
3710 void lockdep_hardirqs_off(unsigned long ip)
3711 {
3712 	struct task_struct *curr = current;
3713 
3714 	if (unlikely(!debug_locks || current->lockdep_recursion))
3715 		return;
3716 
3717 	/*
3718 	 * So we're supposed to get called after you mask local IRQs, but for
3719 	 * some reason the hardware doesn't quite think you did a proper job.
3720 	 */
3721 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3722 		return;
3723 
3724 	if (curr->hardirqs_enabled) {
3725 		/*
3726 		 * We have done an ON -> OFF transition:
3727 		 */
3728 		curr->hardirqs_enabled = 0;
3729 		curr->hardirq_disable_ip = ip;
3730 		curr->hardirq_disable_event = ++curr->irq_events;
3731 		debug_atomic_inc(hardirqs_off_events);
3732 	} else
3733 		debug_atomic_inc(redundant_hardirqs_off);
3734 }
3735 NOKPROBE_SYMBOL(lockdep_hardirqs_off);
3736 
3737 /*
3738  * Softirqs will be enabled:
3739  */
3740 void lockdep_softirqs_on(unsigned long ip)
3741 {
3742 	struct task_struct *curr = current;
3743 
3744 	if (unlikely(!debug_locks || current->lockdep_recursion))
3745 		return;
3746 
3747 	/*
3748 	 * We fancy IRQs being disabled here, see softirq.c, avoids
3749 	 * funny state and nesting things.
3750 	 */
3751 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3752 		return;
3753 
3754 	if (curr->softirqs_enabled) {
3755 		debug_atomic_inc(redundant_softirqs_on);
3756 		return;
3757 	}
3758 
3759 	current->lockdep_recursion++;
3760 	/*
3761 	 * We'll do an OFF -> ON transition:
3762 	 */
3763 	curr->softirqs_enabled = 1;
3764 	curr->softirq_enable_ip = ip;
3765 	curr->softirq_enable_event = ++curr->irq_events;
3766 	debug_atomic_inc(softirqs_on_events);
3767 	/*
3768 	 * We are going to turn softirqs on, so set the
3769 	 * usage bit for all held locks, if hardirqs are
3770 	 * enabled too:
3771 	 */
3772 	if (curr->hardirqs_enabled)
3773 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
3774 	lockdep_recursion_finish();
3775 }
3776 
3777 /*
3778  * Softirqs were disabled:
3779  */
3780 void lockdep_softirqs_off(unsigned long ip)
3781 {
3782 	struct task_struct *curr = current;
3783 
3784 	if (unlikely(!debug_locks || current->lockdep_recursion))
3785 		return;
3786 
3787 	/*
3788 	 * We fancy IRQs being disabled here, see softirq.c
3789 	 */
3790 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
3791 		return;
3792 
3793 	if (curr->softirqs_enabled) {
3794 		/*
3795 		 * We have done an ON -> OFF transition:
3796 		 */
3797 		curr->softirqs_enabled = 0;
3798 		curr->softirq_disable_ip = ip;
3799 		curr->softirq_disable_event = ++curr->irq_events;
3800 		debug_atomic_inc(softirqs_off_events);
3801 		/*
3802 		 * Whoops, we wanted softirqs off, so why aren't they?
3803 		 */
3804 		DEBUG_LOCKS_WARN_ON(!softirq_count());
3805 	} else
3806 		debug_atomic_inc(redundant_softirqs_off);
3807 }
3808 
3809 static int
3810 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
3811 {
3812 	if (!check)
3813 		goto lock_used;
3814 
3815 	/*
3816 	 * If non-trylock use in a hardirq or softirq context, then
3817 	 * mark the lock as used in these contexts:
3818 	 */
3819 	if (!hlock->trylock) {
3820 		if (hlock->read) {
3821 			if (curr->hardirq_context)
3822 				if (!mark_lock(curr, hlock,
3823 						LOCK_USED_IN_HARDIRQ_READ))
3824 					return 0;
3825 			if (curr->softirq_context)
3826 				if (!mark_lock(curr, hlock,
3827 						LOCK_USED_IN_SOFTIRQ_READ))
3828 					return 0;
3829 		} else {
3830 			if (curr->hardirq_context)
3831 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
3832 					return 0;
3833 			if (curr->softirq_context)
3834 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
3835 					return 0;
3836 		}
3837 	}
3838 	if (!hlock->hardirqs_off) {
3839 		if (hlock->read) {
3840 			if (!mark_lock(curr, hlock,
3841 					LOCK_ENABLED_HARDIRQ_READ))
3842 				return 0;
3843 			if (curr->softirqs_enabled)
3844 				if (!mark_lock(curr, hlock,
3845 						LOCK_ENABLED_SOFTIRQ_READ))
3846 					return 0;
3847 		} else {
3848 			if (!mark_lock(curr, hlock,
3849 					LOCK_ENABLED_HARDIRQ))
3850 				return 0;
3851 			if (curr->softirqs_enabled)
3852 				if (!mark_lock(curr, hlock,
3853 						LOCK_ENABLED_SOFTIRQ))
3854 					return 0;
3855 		}
3856 	}
3857 
3858 lock_used:
3859 	/* mark it as used: */
3860 	if (!mark_lock(curr, hlock, LOCK_USED))
3861 		return 0;
3862 
3863 	return 1;
3864 }
3865 
3866 static inline unsigned int task_irq_context(struct task_struct *task)
3867 {
3868 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!task->hardirq_context +
3869 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
3870 }
3871 
3872 static int separate_irq_context(struct task_struct *curr,
3873 		struct held_lock *hlock)
3874 {
3875 	unsigned int depth = curr->lockdep_depth;
3876 
3877 	/*
3878 	 * Keep track of points where we cross into an interrupt context:
3879 	 */
3880 	if (depth) {
3881 		struct held_lock *prev_hlock;
3882 
3883 		prev_hlock = curr->held_locks + depth-1;
3884 		/*
3885 		 * If we cross into another context, reset the
3886 		 * hash key (this also prevents the checking and the
3887 		 * adding of the dependency to 'prev'):
3888 		 */
3889 		if (prev_hlock->irq_context != hlock->irq_context)
3890 			return 1;
3891 	}
3892 	return 0;
3893 }
3894 
3895 /*
3896  * Mark a lock with a usage bit, and validate the state transition:
3897  */
3898 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3899 			     enum lock_usage_bit new_bit)
3900 {
3901 	unsigned int new_mask = 1 << new_bit, ret = 1;
3902 
3903 	if (new_bit >= LOCK_USAGE_STATES) {
3904 		DEBUG_LOCKS_WARN_ON(1);
3905 		return 0;
3906 	}
3907 
3908 	/*
3909 	 * If already set then do not dirty the cacheline,
3910 	 * nor do any checks:
3911 	 */
3912 	if (likely(hlock_class(this)->usage_mask & new_mask))
3913 		return 1;
3914 
3915 	if (!graph_lock())
3916 		return 0;
3917 	/*
3918 	 * Make sure we didn't race:
3919 	 */
3920 	if (unlikely(hlock_class(this)->usage_mask & new_mask)) {
3921 		graph_unlock();
3922 		return 1;
3923 	}
3924 
3925 	hlock_class(this)->usage_mask |= new_mask;
3926 
3927 	if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
3928 		return 0;
3929 
3930 	switch (new_bit) {
3931 	case LOCK_USED:
3932 		debug_atomic_dec(nr_unused_locks);
3933 		break;
3934 	default:
3935 		ret = mark_lock_irq(curr, this, new_bit);
3936 		if (!ret)
3937 			return 0;
3938 	}
3939 
3940 	graph_unlock();
3941 
3942 	/*
3943 	 * We must printk outside of the graph_lock:
3944 	 */
3945 	if (ret == 2) {
3946 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
3947 		print_lock(this);
3948 		print_irqtrace_events(curr);
3949 		dump_stack();
3950 	}
3951 
3952 	return ret;
3953 }
3954 
3955 static inline short task_wait_context(struct task_struct *curr)
3956 {
3957 	/*
3958 	 * Set appropriate wait type for the context; for IRQs we have to take
3959 	 * into account force_irqthread as that is implied by PREEMPT_RT.
3960 	 */
3961 	if (curr->hardirq_context) {
3962 		/*
3963 		 * Check if force_irqthreads will run us threaded.
3964 		 */
3965 		if (curr->hardirq_threaded || curr->irq_config)
3966 			return LD_WAIT_CONFIG;
3967 
3968 		return LD_WAIT_SPIN;
3969 	} else if (curr->softirq_context) {
3970 		/*
3971 		 * Softirqs are always threaded.
3972 		 */
3973 		return LD_WAIT_CONFIG;
3974 	}
3975 
3976 	return LD_WAIT_MAX;
3977 }
3978 
3979 static int
3980 print_lock_invalid_wait_context(struct task_struct *curr,
3981 				struct held_lock *hlock)
3982 {
3983 	short curr_inner;
3984 
3985 	if (!debug_locks_off())
3986 		return 0;
3987 	if (debug_locks_silent)
3988 		return 0;
3989 
3990 	pr_warn("\n");
3991 	pr_warn("=============================\n");
3992 	pr_warn("[ BUG: Invalid wait context ]\n");
3993 	print_kernel_ident();
3994 	pr_warn("-----------------------------\n");
3995 
3996 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
3997 	print_lock(hlock);
3998 
3999 	pr_warn("other info that might help us debug this:\n");
4000 
4001 	curr_inner = task_wait_context(curr);
4002 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4003 
4004 	lockdep_print_held_locks(curr);
4005 
4006 	pr_warn("stack backtrace:\n");
4007 	dump_stack();
4008 
4009 	return 0;
4010 }
4011 
4012 /*
4013  * Verify the wait_type context.
4014  *
4015  * This check validates we takes locks in the right wait-type order; that is it
4016  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4017  * acquire spinlocks inside raw_spinlocks and the sort.
4018  *
4019  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4020  * can be taken from (pretty much) any context but also has constraints.
4021  * However when taken in a stricter environment the RCU lock does not loosen
4022  * the constraints.
4023  *
4024  * Therefore we must look for the strictest environment in the lock stack and
4025  * compare that to the lock we're trying to acquire.
4026  */
4027 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4028 {
4029 	short next_inner = hlock_class(next)->wait_type_inner;
4030 	short next_outer = hlock_class(next)->wait_type_outer;
4031 	short curr_inner;
4032 	int depth;
4033 
4034 	if (!curr->lockdep_depth || !next_inner || next->trylock)
4035 		return 0;
4036 
4037 	if (!next_outer)
4038 		next_outer = next_inner;
4039 
4040 	/*
4041 	 * Find start of current irq_context..
4042 	 */
4043 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4044 		struct held_lock *prev = curr->held_locks + depth;
4045 		if (prev->irq_context != next->irq_context)
4046 			break;
4047 	}
4048 	depth++;
4049 
4050 	curr_inner = task_wait_context(curr);
4051 
4052 	for (; depth < curr->lockdep_depth; depth++) {
4053 		struct held_lock *prev = curr->held_locks + depth;
4054 		short prev_inner = hlock_class(prev)->wait_type_inner;
4055 
4056 		if (prev_inner) {
4057 			/*
4058 			 * We can have a bigger inner than a previous one
4059 			 * when outer is smaller than inner, as with RCU.
4060 			 *
4061 			 * Also due to trylocks.
4062 			 */
4063 			curr_inner = min(curr_inner, prev_inner);
4064 		}
4065 	}
4066 
4067 	if (next_outer > curr_inner)
4068 		return print_lock_invalid_wait_context(curr, next);
4069 
4070 	return 0;
4071 }
4072 
4073 #else /* CONFIG_PROVE_LOCKING */
4074 
4075 static inline int
4076 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4077 {
4078 	return 1;
4079 }
4080 
4081 static inline unsigned int task_irq_context(struct task_struct *task)
4082 {
4083 	return 0;
4084 }
4085 
4086 static inline int separate_irq_context(struct task_struct *curr,
4087 		struct held_lock *hlock)
4088 {
4089 	return 0;
4090 }
4091 
4092 static inline int check_wait_context(struct task_struct *curr,
4093 				     struct held_lock *next)
4094 {
4095 	return 0;
4096 }
4097 
4098 #endif /* CONFIG_PROVE_LOCKING */
4099 
4100 /*
4101  * Initialize a lock instance's lock-class mapping info:
4102  */
4103 void lockdep_init_map_waits(struct lockdep_map *lock, const char *name,
4104 			    struct lock_class_key *key, int subclass,
4105 			    short inner, short outer)
4106 {
4107 	int i;
4108 
4109 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4110 		lock->class_cache[i] = NULL;
4111 
4112 #ifdef CONFIG_LOCK_STAT
4113 	lock->cpu = raw_smp_processor_id();
4114 #endif
4115 
4116 	/*
4117 	 * Can't be having no nameless bastards around this place!
4118 	 */
4119 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4120 		lock->name = "NULL";
4121 		return;
4122 	}
4123 
4124 	lock->name = name;
4125 
4126 	lock->wait_type_outer = outer;
4127 	lock->wait_type_inner = inner;
4128 
4129 	/*
4130 	 * No key, no joy, we need to hash something.
4131 	 */
4132 	if (DEBUG_LOCKS_WARN_ON(!key))
4133 		return;
4134 	/*
4135 	 * Sanity check, the lock-class key must either have been allocated
4136 	 * statically or must have been registered as a dynamic key.
4137 	 */
4138 	if (!static_obj(key) && !is_dynamic_key(key)) {
4139 		if (debug_locks)
4140 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4141 		DEBUG_LOCKS_WARN_ON(1);
4142 		return;
4143 	}
4144 	lock->key = key;
4145 
4146 	if (unlikely(!debug_locks))
4147 		return;
4148 
4149 	if (subclass) {
4150 		unsigned long flags;
4151 
4152 		if (DEBUG_LOCKS_WARN_ON(current->lockdep_recursion))
4153 			return;
4154 
4155 		raw_local_irq_save(flags);
4156 		current->lockdep_recursion++;
4157 		register_lock_class(lock, subclass, 1);
4158 		lockdep_recursion_finish();
4159 		raw_local_irq_restore(flags);
4160 	}
4161 }
4162 EXPORT_SYMBOL_GPL(lockdep_init_map_waits);
4163 
4164 struct lock_class_key __lockdep_no_validate__;
4165 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4166 
4167 static void
4168 print_lock_nested_lock_not_held(struct task_struct *curr,
4169 				struct held_lock *hlock,
4170 				unsigned long ip)
4171 {
4172 	if (!debug_locks_off())
4173 		return;
4174 	if (debug_locks_silent)
4175 		return;
4176 
4177 	pr_warn("\n");
4178 	pr_warn("==================================\n");
4179 	pr_warn("WARNING: Nested lock was not taken\n");
4180 	print_kernel_ident();
4181 	pr_warn("----------------------------------\n");
4182 
4183 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4184 	print_lock(hlock);
4185 
4186 	pr_warn("\nbut this task is not holding:\n");
4187 	pr_warn("%s\n", hlock->nest_lock->name);
4188 
4189 	pr_warn("\nstack backtrace:\n");
4190 	dump_stack();
4191 
4192 	pr_warn("\nother info that might help us debug this:\n");
4193 	lockdep_print_held_locks(curr);
4194 
4195 	pr_warn("\nstack backtrace:\n");
4196 	dump_stack();
4197 }
4198 
4199 static int __lock_is_held(const struct lockdep_map *lock, int read);
4200 
4201 /*
4202  * This gets called for every mutex_lock*()/spin_lock*() operation.
4203  * We maintain the dependency maps and validate the locking attempt:
4204  *
4205  * The callers must make sure that IRQs are disabled before calling it,
4206  * otherwise we could get an interrupt which would want to take locks,
4207  * which would end up in lockdep again.
4208  */
4209 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4210 			  int trylock, int read, int check, int hardirqs_off,
4211 			  struct lockdep_map *nest_lock, unsigned long ip,
4212 			  int references, int pin_count)
4213 {
4214 	struct task_struct *curr = current;
4215 	struct lock_class *class = NULL;
4216 	struct held_lock *hlock;
4217 	unsigned int depth;
4218 	int chain_head = 0;
4219 	int class_idx;
4220 	u64 chain_key;
4221 
4222 	if (unlikely(!debug_locks))
4223 		return 0;
4224 
4225 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4226 		check = 0;
4227 
4228 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4229 		class = lock->class_cache[subclass];
4230 	/*
4231 	 * Not cached?
4232 	 */
4233 	if (unlikely(!class)) {
4234 		class = register_lock_class(lock, subclass, 0);
4235 		if (!class)
4236 			return 0;
4237 	}
4238 
4239 	debug_class_ops_inc(class);
4240 
4241 	if (very_verbose(class)) {
4242 		printk("\nacquire class [%px] %s", class->key, class->name);
4243 		if (class->name_version > 1)
4244 			printk(KERN_CONT "#%d", class->name_version);
4245 		printk(KERN_CONT "\n");
4246 		dump_stack();
4247 	}
4248 
4249 	/*
4250 	 * Add the lock to the list of currently held locks.
4251 	 * (we dont increase the depth just yet, up until the
4252 	 * dependency checks are done)
4253 	 */
4254 	depth = curr->lockdep_depth;
4255 	/*
4256 	 * Ran out of static storage for our per-task lock stack again have we?
4257 	 */
4258 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4259 		return 0;
4260 
4261 	class_idx = class - lock_classes;
4262 
4263 	if (depth) { /* we're holding locks */
4264 		hlock = curr->held_locks + depth - 1;
4265 		if (hlock->class_idx == class_idx && nest_lock) {
4266 			if (!references)
4267 				references++;
4268 
4269 			if (!hlock->references)
4270 				hlock->references++;
4271 
4272 			hlock->references += references;
4273 
4274 			/* Overflow */
4275 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4276 				return 0;
4277 
4278 			return 2;
4279 		}
4280 	}
4281 
4282 	hlock = curr->held_locks + depth;
4283 	/*
4284 	 * Plain impossible, we just registered it and checked it weren't no
4285 	 * NULL like.. I bet this mushroom I ate was good!
4286 	 */
4287 	if (DEBUG_LOCKS_WARN_ON(!class))
4288 		return 0;
4289 	hlock->class_idx = class_idx;
4290 	hlock->acquire_ip = ip;
4291 	hlock->instance = lock;
4292 	hlock->nest_lock = nest_lock;
4293 	hlock->irq_context = task_irq_context(curr);
4294 	hlock->trylock = trylock;
4295 	hlock->read = read;
4296 	hlock->check = check;
4297 	hlock->hardirqs_off = !!hardirqs_off;
4298 	hlock->references = references;
4299 #ifdef CONFIG_LOCK_STAT
4300 	hlock->waittime_stamp = 0;
4301 	hlock->holdtime_stamp = lockstat_clock();
4302 #endif
4303 	hlock->pin_count = pin_count;
4304 
4305 	if (check_wait_context(curr, hlock))
4306 		return 0;
4307 
4308 	/* Initialize the lock usage bit */
4309 	if (!mark_usage(curr, hlock, check))
4310 		return 0;
4311 
4312 	/*
4313 	 * Calculate the chain hash: it's the combined hash of all the
4314 	 * lock keys along the dependency chain. We save the hash value
4315 	 * at every step so that we can get the current hash easily
4316 	 * after unlock. The chain hash is then used to cache dependency
4317 	 * results.
4318 	 *
4319 	 * The 'key ID' is what is the most compact key value to drive
4320 	 * the hash, not class->key.
4321 	 */
4322 	/*
4323 	 * Whoops, we did it again.. class_idx is invalid.
4324 	 */
4325 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4326 		return 0;
4327 
4328 	chain_key = curr->curr_chain_key;
4329 	if (!depth) {
4330 		/*
4331 		 * How can we have a chain hash when we ain't got no keys?!
4332 		 */
4333 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4334 			return 0;
4335 		chain_head = 1;
4336 	}
4337 
4338 	hlock->prev_chain_key = chain_key;
4339 	if (separate_irq_context(curr, hlock)) {
4340 		chain_key = INITIAL_CHAIN_KEY;
4341 		chain_head = 1;
4342 	}
4343 	chain_key = iterate_chain_key(chain_key, class_idx);
4344 
4345 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4346 		print_lock_nested_lock_not_held(curr, hlock, ip);
4347 		return 0;
4348 	}
4349 
4350 	if (!debug_locks_silent) {
4351 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4352 		WARN_ON_ONCE(!hlock_class(hlock)->key);
4353 	}
4354 
4355 	if (!validate_chain(curr, hlock, chain_head, chain_key))
4356 		return 0;
4357 
4358 	curr->curr_chain_key = chain_key;
4359 	curr->lockdep_depth++;
4360 	check_chain_key(curr);
4361 #ifdef CONFIG_DEBUG_LOCKDEP
4362 	if (unlikely(!debug_locks))
4363 		return 0;
4364 #endif
4365 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4366 		debug_locks_off();
4367 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4368 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4369 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
4370 
4371 		lockdep_print_held_locks(current);
4372 		debug_show_all_locks();
4373 		dump_stack();
4374 
4375 		return 0;
4376 	}
4377 
4378 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4379 		max_lockdep_depth = curr->lockdep_depth;
4380 
4381 	return 1;
4382 }
4383 
4384 static void print_unlock_imbalance_bug(struct task_struct *curr,
4385 				       struct lockdep_map *lock,
4386 				       unsigned long ip)
4387 {
4388 	if (!debug_locks_off())
4389 		return;
4390 	if (debug_locks_silent)
4391 		return;
4392 
4393 	pr_warn("\n");
4394 	pr_warn("=====================================\n");
4395 	pr_warn("WARNING: bad unlock balance detected!\n");
4396 	print_kernel_ident();
4397 	pr_warn("-------------------------------------\n");
4398 	pr_warn("%s/%d is trying to release lock (",
4399 		curr->comm, task_pid_nr(curr));
4400 	print_lockdep_cache(lock);
4401 	pr_cont(") at:\n");
4402 	print_ip_sym(ip);
4403 	pr_warn("but there are no more locks to release!\n");
4404 	pr_warn("\nother info that might help us debug this:\n");
4405 	lockdep_print_held_locks(curr);
4406 
4407 	pr_warn("\nstack backtrace:\n");
4408 	dump_stack();
4409 }
4410 
4411 static int match_held_lock(const struct held_lock *hlock,
4412 					const struct lockdep_map *lock)
4413 {
4414 	if (hlock->instance == lock)
4415 		return 1;
4416 
4417 	if (hlock->references) {
4418 		const struct lock_class *class = lock->class_cache[0];
4419 
4420 		if (!class)
4421 			class = look_up_lock_class(lock, 0);
4422 
4423 		/*
4424 		 * If look_up_lock_class() failed to find a class, we're trying
4425 		 * to test if we hold a lock that has never yet been acquired.
4426 		 * Clearly if the lock hasn't been acquired _ever_, we're not
4427 		 * holding it either, so report failure.
4428 		 */
4429 		if (!class)
4430 			return 0;
4431 
4432 		/*
4433 		 * References, but not a lock we're actually ref-counting?
4434 		 * State got messed up, follow the sites that change ->references
4435 		 * and try to make sense of it.
4436 		 */
4437 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4438 			return 0;
4439 
4440 		if (hlock->class_idx == class - lock_classes)
4441 			return 1;
4442 	}
4443 
4444 	return 0;
4445 }
4446 
4447 /* @depth must not be zero */
4448 static struct held_lock *find_held_lock(struct task_struct *curr,
4449 					struct lockdep_map *lock,
4450 					unsigned int depth, int *idx)
4451 {
4452 	struct held_lock *ret, *hlock, *prev_hlock;
4453 	int i;
4454 
4455 	i = depth - 1;
4456 	hlock = curr->held_locks + i;
4457 	ret = hlock;
4458 	if (match_held_lock(hlock, lock))
4459 		goto out;
4460 
4461 	ret = NULL;
4462 	for (i--, prev_hlock = hlock--;
4463 	     i >= 0;
4464 	     i--, prev_hlock = hlock--) {
4465 		/*
4466 		 * We must not cross into another context:
4467 		 */
4468 		if (prev_hlock->irq_context != hlock->irq_context) {
4469 			ret = NULL;
4470 			break;
4471 		}
4472 		if (match_held_lock(hlock, lock)) {
4473 			ret = hlock;
4474 			break;
4475 		}
4476 	}
4477 
4478 out:
4479 	*idx = i;
4480 	return ret;
4481 }
4482 
4483 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
4484 				int idx, unsigned int *merged)
4485 {
4486 	struct held_lock *hlock;
4487 	int first_idx = idx;
4488 
4489 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4490 		return 0;
4491 
4492 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
4493 		switch (__lock_acquire(hlock->instance,
4494 				    hlock_class(hlock)->subclass,
4495 				    hlock->trylock,
4496 				    hlock->read, hlock->check,
4497 				    hlock->hardirqs_off,
4498 				    hlock->nest_lock, hlock->acquire_ip,
4499 				    hlock->references, hlock->pin_count)) {
4500 		case 0:
4501 			return 1;
4502 		case 1:
4503 			break;
4504 		case 2:
4505 			*merged += (idx == first_idx);
4506 			break;
4507 		default:
4508 			WARN_ON(1);
4509 			return 0;
4510 		}
4511 	}
4512 	return 0;
4513 }
4514 
4515 static int
4516 __lock_set_class(struct lockdep_map *lock, const char *name,
4517 		 struct lock_class_key *key, unsigned int subclass,
4518 		 unsigned long ip)
4519 {
4520 	struct task_struct *curr = current;
4521 	unsigned int depth, merged = 0;
4522 	struct held_lock *hlock;
4523 	struct lock_class *class;
4524 	int i;
4525 
4526 	if (unlikely(!debug_locks))
4527 		return 0;
4528 
4529 	depth = curr->lockdep_depth;
4530 	/*
4531 	 * This function is about (re)setting the class of a held lock,
4532 	 * yet we're not actually holding any locks. Naughty user!
4533 	 */
4534 	if (DEBUG_LOCKS_WARN_ON(!depth))
4535 		return 0;
4536 
4537 	hlock = find_held_lock(curr, lock, depth, &i);
4538 	if (!hlock) {
4539 		print_unlock_imbalance_bug(curr, lock, ip);
4540 		return 0;
4541 	}
4542 
4543 	lockdep_init_map_waits(lock, name, key, 0,
4544 			       lock->wait_type_inner,
4545 			       lock->wait_type_outer);
4546 	class = register_lock_class(lock, subclass, 0);
4547 	hlock->class_idx = class - lock_classes;
4548 
4549 	curr->lockdep_depth = i;
4550 	curr->curr_chain_key = hlock->prev_chain_key;
4551 
4552 	if (reacquire_held_locks(curr, depth, i, &merged))
4553 		return 0;
4554 
4555 	/*
4556 	 * I took it apart and put it back together again, except now I have
4557 	 * these 'spare' parts.. where shall I put them.
4558 	 */
4559 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
4560 		return 0;
4561 	return 1;
4562 }
4563 
4564 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4565 {
4566 	struct task_struct *curr = current;
4567 	unsigned int depth, merged = 0;
4568 	struct held_lock *hlock;
4569 	int i;
4570 
4571 	if (unlikely(!debug_locks))
4572 		return 0;
4573 
4574 	depth = curr->lockdep_depth;
4575 	/*
4576 	 * This function is about (re)setting the class of a held lock,
4577 	 * yet we're not actually holding any locks. Naughty user!
4578 	 */
4579 	if (DEBUG_LOCKS_WARN_ON(!depth))
4580 		return 0;
4581 
4582 	hlock = find_held_lock(curr, lock, depth, &i);
4583 	if (!hlock) {
4584 		print_unlock_imbalance_bug(curr, lock, ip);
4585 		return 0;
4586 	}
4587 
4588 	curr->lockdep_depth = i;
4589 	curr->curr_chain_key = hlock->prev_chain_key;
4590 
4591 	WARN(hlock->read, "downgrading a read lock");
4592 	hlock->read = 1;
4593 	hlock->acquire_ip = ip;
4594 
4595 	if (reacquire_held_locks(curr, depth, i, &merged))
4596 		return 0;
4597 
4598 	/* Merging can't happen with unchanged classes.. */
4599 	if (DEBUG_LOCKS_WARN_ON(merged))
4600 		return 0;
4601 
4602 	/*
4603 	 * I took it apart and put it back together again, except now I have
4604 	 * these 'spare' parts.. where shall I put them.
4605 	 */
4606 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
4607 		return 0;
4608 
4609 	return 1;
4610 }
4611 
4612 /*
4613  * Remove the lock from the list of currently held locks - this gets
4614  * called on mutex_unlock()/spin_unlock*() (or on a failed
4615  * mutex_lock_interruptible()).
4616  */
4617 static int
4618 __lock_release(struct lockdep_map *lock, unsigned long ip)
4619 {
4620 	struct task_struct *curr = current;
4621 	unsigned int depth, merged = 1;
4622 	struct held_lock *hlock;
4623 	int i;
4624 
4625 	if (unlikely(!debug_locks))
4626 		return 0;
4627 
4628 	depth = curr->lockdep_depth;
4629 	/*
4630 	 * So we're all set to release this lock.. wait what lock? We don't
4631 	 * own any locks, you've been drinking again?
4632 	 */
4633 	if (depth <= 0) {
4634 		print_unlock_imbalance_bug(curr, lock, ip);
4635 		return 0;
4636 	}
4637 
4638 	/*
4639 	 * Check whether the lock exists in the current stack
4640 	 * of held locks:
4641 	 */
4642 	hlock = find_held_lock(curr, lock, depth, &i);
4643 	if (!hlock) {
4644 		print_unlock_imbalance_bug(curr, lock, ip);
4645 		return 0;
4646 	}
4647 
4648 	if (hlock->instance == lock)
4649 		lock_release_holdtime(hlock);
4650 
4651 	WARN(hlock->pin_count, "releasing a pinned lock\n");
4652 
4653 	if (hlock->references) {
4654 		hlock->references--;
4655 		if (hlock->references) {
4656 			/*
4657 			 * We had, and after removing one, still have
4658 			 * references, the current lock stack is still
4659 			 * valid. We're done!
4660 			 */
4661 			return 1;
4662 		}
4663 	}
4664 
4665 	/*
4666 	 * We have the right lock to unlock, 'hlock' points to it.
4667 	 * Now we remove it from the stack, and add back the other
4668 	 * entries (if any), recalculating the hash along the way:
4669 	 */
4670 
4671 	curr->lockdep_depth = i;
4672 	curr->curr_chain_key = hlock->prev_chain_key;
4673 
4674 	/*
4675 	 * The most likely case is when the unlock is on the innermost
4676 	 * lock. In this case, we are done!
4677 	 */
4678 	if (i == depth-1)
4679 		return 1;
4680 
4681 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
4682 		return 0;
4683 
4684 	/*
4685 	 * We had N bottles of beer on the wall, we drank one, but now
4686 	 * there's not N-1 bottles of beer left on the wall...
4687 	 * Pouring two of the bottles together is acceptable.
4688 	 */
4689 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
4690 
4691 	/*
4692 	 * Since reacquire_held_locks() would have called check_chain_key()
4693 	 * indirectly via __lock_acquire(), we don't need to do it again
4694 	 * on return.
4695 	 */
4696 	return 0;
4697 }
4698 
4699 static nokprobe_inline
4700 int __lock_is_held(const struct lockdep_map *lock, int read)
4701 {
4702 	struct task_struct *curr = current;
4703 	int i;
4704 
4705 	for (i = 0; i < curr->lockdep_depth; i++) {
4706 		struct held_lock *hlock = curr->held_locks + i;
4707 
4708 		if (match_held_lock(hlock, lock)) {
4709 			if (read == -1 || hlock->read == read)
4710 				return 1;
4711 
4712 			return 0;
4713 		}
4714 	}
4715 
4716 	return 0;
4717 }
4718 
4719 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
4720 {
4721 	struct pin_cookie cookie = NIL_COOKIE;
4722 	struct task_struct *curr = current;
4723 	int i;
4724 
4725 	if (unlikely(!debug_locks))
4726 		return cookie;
4727 
4728 	for (i = 0; i < curr->lockdep_depth; i++) {
4729 		struct held_lock *hlock = curr->held_locks + i;
4730 
4731 		if (match_held_lock(hlock, lock)) {
4732 			/*
4733 			 * Grab 16bits of randomness; this is sufficient to not
4734 			 * be guessable and still allows some pin nesting in
4735 			 * our u32 pin_count.
4736 			 */
4737 			cookie.val = 1 + (prandom_u32() >> 16);
4738 			hlock->pin_count += cookie.val;
4739 			return cookie;
4740 		}
4741 	}
4742 
4743 	WARN(1, "pinning an unheld lock\n");
4744 	return cookie;
4745 }
4746 
4747 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4748 {
4749 	struct task_struct *curr = current;
4750 	int i;
4751 
4752 	if (unlikely(!debug_locks))
4753 		return;
4754 
4755 	for (i = 0; i < curr->lockdep_depth; i++) {
4756 		struct held_lock *hlock = curr->held_locks + i;
4757 
4758 		if (match_held_lock(hlock, lock)) {
4759 			hlock->pin_count += cookie.val;
4760 			return;
4761 		}
4762 	}
4763 
4764 	WARN(1, "pinning an unheld lock\n");
4765 }
4766 
4767 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
4768 {
4769 	struct task_struct *curr = current;
4770 	int i;
4771 
4772 	if (unlikely(!debug_locks))
4773 		return;
4774 
4775 	for (i = 0; i < curr->lockdep_depth; i++) {
4776 		struct held_lock *hlock = curr->held_locks + i;
4777 
4778 		if (match_held_lock(hlock, lock)) {
4779 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
4780 				return;
4781 
4782 			hlock->pin_count -= cookie.val;
4783 
4784 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
4785 				hlock->pin_count = 0;
4786 
4787 			return;
4788 		}
4789 	}
4790 
4791 	WARN(1, "unpinning an unheld lock\n");
4792 }
4793 
4794 /*
4795  * Check whether we follow the irq-flags state precisely:
4796  */
4797 static void check_flags(unsigned long flags)
4798 {
4799 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
4800 	if (!debug_locks)
4801 		return;
4802 
4803 	if (irqs_disabled_flags(flags)) {
4804 		if (DEBUG_LOCKS_WARN_ON(current->hardirqs_enabled)) {
4805 			printk("possible reason: unannotated irqs-off.\n");
4806 		}
4807 	} else {
4808 		if (DEBUG_LOCKS_WARN_ON(!current->hardirqs_enabled)) {
4809 			printk("possible reason: unannotated irqs-on.\n");
4810 		}
4811 	}
4812 
4813 	/*
4814 	 * We dont accurately track softirq state in e.g.
4815 	 * hardirq contexts (such as on 4KSTACKS), so only
4816 	 * check if not in hardirq contexts:
4817 	 */
4818 	if (!hardirq_count()) {
4819 		if (softirq_count()) {
4820 			/* like the above, but with softirqs */
4821 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
4822 		} else {
4823 			/* lick the above, does it taste good? */
4824 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
4825 		}
4826 	}
4827 
4828 	if (!debug_locks)
4829 		print_irqtrace_events(current);
4830 #endif
4831 }
4832 
4833 void lock_set_class(struct lockdep_map *lock, const char *name,
4834 		    struct lock_class_key *key, unsigned int subclass,
4835 		    unsigned long ip)
4836 {
4837 	unsigned long flags;
4838 
4839 	if (unlikely(current->lockdep_recursion))
4840 		return;
4841 
4842 	raw_local_irq_save(flags);
4843 	current->lockdep_recursion++;
4844 	check_flags(flags);
4845 	if (__lock_set_class(lock, name, key, subclass, ip))
4846 		check_chain_key(current);
4847 	lockdep_recursion_finish();
4848 	raw_local_irq_restore(flags);
4849 }
4850 EXPORT_SYMBOL_GPL(lock_set_class);
4851 
4852 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
4853 {
4854 	unsigned long flags;
4855 
4856 	if (unlikely(current->lockdep_recursion))
4857 		return;
4858 
4859 	raw_local_irq_save(flags);
4860 	current->lockdep_recursion++;
4861 	check_flags(flags);
4862 	if (__lock_downgrade(lock, ip))
4863 		check_chain_key(current);
4864 	lockdep_recursion_finish();
4865 	raw_local_irq_restore(flags);
4866 }
4867 EXPORT_SYMBOL_GPL(lock_downgrade);
4868 
4869 /* NMI context !!! */
4870 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
4871 {
4872 #ifdef CONFIG_PROVE_LOCKING
4873 	struct lock_class *class = look_up_lock_class(lock, subclass);
4874 
4875 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
4876 	if (!class)
4877 		return;
4878 
4879 	if (!(class->usage_mask & LOCK_USED))
4880 		return;
4881 
4882 	hlock->class_idx = class - lock_classes;
4883 
4884 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
4885 #endif
4886 }
4887 
4888 static bool lockdep_nmi(void)
4889 {
4890 	if (current->lockdep_recursion & LOCKDEP_RECURSION_MASK)
4891 		return false;
4892 
4893 	if (!in_nmi())
4894 		return false;
4895 
4896 	return true;
4897 }
4898 
4899 /*
4900  * We are not always called with irqs disabled - do that here,
4901  * and also avoid lockdep recursion:
4902  */
4903 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4904 			  int trylock, int read, int check,
4905 			  struct lockdep_map *nest_lock, unsigned long ip)
4906 {
4907 	unsigned long flags;
4908 
4909 	if (unlikely(current->lockdep_recursion)) {
4910 		/* XXX allow trylock from NMI ?!? */
4911 		if (lockdep_nmi() && !trylock) {
4912 			struct held_lock hlock;
4913 
4914 			hlock.acquire_ip = ip;
4915 			hlock.instance = lock;
4916 			hlock.nest_lock = nest_lock;
4917 			hlock.irq_context = 2; // XXX
4918 			hlock.trylock = trylock;
4919 			hlock.read = read;
4920 			hlock.check = check;
4921 			hlock.hardirqs_off = true;
4922 			hlock.references = 0;
4923 
4924 			verify_lock_unused(lock, &hlock, subclass);
4925 		}
4926 		return;
4927 	}
4928 
4929 	raw_local_irq_save(flags);
4930 	check_flags(flags);
4931 
4932 	current->lockdep_recursion++;
4933 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
4934 	__lock_acquire(lock, subclass, trylock, read, check,
4935 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
4936 	lockdep_recursion_finish();
4937 	raw_local_irq_restore(flags);
4938 }
4939 EXPORT_SYMBOL_GPL(lock_acquire);
4940 
4941 void lock_release(struct lockdep_map *lock, unsigned long ip)
4942 {
4943 	unsigned long flags;
4944 
4945 	if (unlikely(current->lockdep_recursion))
4946 		return;
4947 
4948 	raw_local_irq_save(flags);
4949 	check_flags(flags);
4950 	current->lockdep_recursion++;
4951 	trace_lock_release(lock, ip);
4952 	if (__lock_release(lock, ip))
4953 		check_chain_key(current);
4954 	lockdep_recursion_finish();
4955 	raw_local_irq_restore(flags);
4956 }
4957 EXPORT_SYMBOL_GPL(lock_release);
4958 
4959 int lock_is_held_type(const struct lockdep_map *lock, int read)
4960 {
4961 	unsigned long flags;
4962 	int ret = 0;
4963 
4964 	if (unlikely(current->lockdep_recursion))
4965 		return 1; /* avoid false negative lockdep_assert_held() */
4966 
4967 	raw_local_irq_save(flags);
4968 	check_flags(flags);
4969 
4970 	current->lockdep_recursion++;
4971 	ret = __lock_is_held(lock, read);
4972 	lockdep_recursion_finish();
4973 	raw_local_irq_restore(flags);
4974 
4975 	return ret;
4976 }
4977 EXPORT_SYMBOL_GPL(lock_is_held_type);
4978 NOKPROBE_SYMBOL(lock_is_held_type);
4979 
4980 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
4981 {
4982 	struct pin_cookie cookie = NIL_COOKIE;
4983 	unsigned long flags;
4984 
4985 	if (unlikely(current->lockdep_recursion))
4986 		return cookie;
4987 
4988 	raw_local_irq_save(flags);
4989 	check_flags(flags);
4990 
4991 	current->lockdep_recursion++;
4992 	cookie = __lock_pin_lock(lock);
4993 	lockdep_recursion_finish();
4994 	raw_local_irq_restore(flags);
4995 
4996 	return cookie;
4997 }
4998 EXPORT_SYMBOL_GPL(lock_pin_lock);
4999 
5000 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5001 {
5002 	unsigned long flags;
5003 
5004 	if (unlikely(current->lockdep_recursion))
5005 		return;
5006 
5007 	raw_local_irq_save(flags);
5008 	check_flags(flags);
5009 
5010 	current->lockdep_recursion++;
5011 	__lock_repin_lock(lock, cookie);
5012 	lockdep_recursion_finish();
5013 	raw_local_irq_restore(flags);
5014 }
5015 EXPORT_SYMBOL_GPL(lock_repin_lock);
5016 
5017 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5018 {
5019 	unsigned long flags;
5020 
5021 	if (unlikely(current->lockdep_recursion))
5022 		return;
5023 
5024 	raw_local_irq_save(flags);
5025 	check_flags(flags);
5026 
5027 	current->lockdep_recursion++;
5028 	__lock_unpin_lock(lock, cookie);
5029 	lockdep_recursion_finish();
5030 	raw_local_irq_restore(flags);
5031 }
5032 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5033 
5034 #ifdef CONFIG_LOCK_STAT
5035 static void print_lock_contention_bug(struct task_struct *curr,
5036 				      struct lockdep_map *lock,
5037 				      unsigned long ip)
5038 {
5039 	if (!debug_locks_off())
5040 		return;
5041 	if (debug_locks_silent)
5042 		return;
5043 
5044 	pr_warn("\n");
5045 	pr_warn("=================================\n");
5046 	pr_warn("WARNING: bad contention detected!\n");
5047 	print_kernel_ident();
5048 	pr_warn("---------------------------------\n");
5049 	pr_warn("%s/%d is trying to contend lock (",
5050 		curr->comm, task_pid_nr(curr));
5051 	print_lockdep_cache(lock);
5052 	pr_cont(") at:\n");
5053 	print_ip_sym(ip);
5054 	pr_warn("but there are no locks held!\n");
5055 	pr_warn("\nother info that might help us debug this:\n");
5056 	lockdep_print_held_locks(curr);
5057 
5058 	pr_warn("\nstack backtrace:\n");
5059 	dump_stack();
5060 }
5061 
5062 static void
5063 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5064 {
5065 	struct task_struct *curr = current;
5066 	struct held_lock *hlock;
5067 	struct lock_class_stats *stats;
5068 	unsigned int depth;
5069 	int i, contention_point, contending_point;
5070 
5071 	depth = curr->lockdep_depth;
5072 	/*
5073 	 * Whee, we contended on this lock, except it seems we're not
5074 	 * actually trying to acquire anything much at all..
5075 	 */
5076 	if (DEBUG_LOCKS_WARN_ON(!depth))
5077 		return;
5078 
5079 	hlock = find_held_lock(curr, lock, depth, &i);
5080 	if (!hlock) {
5081 		print_lock_contention_bug(curr, lock, ip);
5082 		return;
5083 	}
5084 
5085 	if (hlock->instance != lock)
5086 		return;
5087 
5088 	hlock->waittime_stamp = lockstat_clock();
5089 
5090 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5091 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5092 				      lock->ip);
5093 
5094 	stats = get_lock_stats(hlock_class(hlock));
5095 	if (contention_point < LOCKSTAT_POINTS)
5096 		stats->contention_point[contention_point]++;
5097 	if (contending_point < LOCKSTAT_POINTS)
5098 		stats->contending_point[contending_point]++;
5099 	if (lock->cpu != smp_processor_id())
5100 		stats->bounces[bounce_contended + !!hlock->read]++;
5101 }
5102 
5103 static void
5104 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5105 {
5106 	struct task_struct *curr = current;
5107 	struct held_lock *hlock;
5108 	struct lock_class_stats *stats;
5109 	unsigned int depth;
5110 	u64 now, waittime = 0;
5111 	int i, cpu;
5112 
5113 	depth = curr->lockdep_depth;
5114 	/*
5115 	 * Yay, we acquired ownership of this lock we didn't try to
5116 	 * acquire, how the heck did that happen?
5117 	 */
5118 	if (DEBUG_LOCKS_WARN_ON(!depth))
5119 		return;
5120 
5121 	hlock = find_held_lock(curr, lock, depth, &i);
5122 	if (!hlock) {
5123 		print_lock_contention_bug(curr, lock, _RET_IP_);
5124 		return;
5125 	}
5126 
5127 	if (hlock->instance != lock)
5128 		return;
5129 
5130 	cpu = smp_processor_id();
5131 	if (hlock->waittime_stamp) {
5132 		now = lockstat_clock();
5133 		waittime = now - hlock->waittime_stamp;
5134 		hlock->holdtime_stamp = now;
5135 	}
5136 
5137 	trace_lock_acquired(lock, ip);
5138 
5139 	stats = get_lock_stats(hlock_class(hlock));
5140 	if (waittime) {
5141 		if (hlock->read)
5142 			lock_time_inc(&stats->read_waittime, waittime);
5143 		else
5144 			lock_time_inc(&stats->write_waittime, waittime);
5145 	}
5146 	if (lock->cpu != cpu)
5147 		stats->bounces[bounce_acquired + !!hlock->read]++;
5148 
5149 	lock->cpu = cpu;
5150 	lock->ip = ip;
5151 }
5152 
5153 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5154 {
5155 	unsigned long flags;
5156 
5157 	if (unlikely(!lock_stat || !debug_locks))
5158 		return;
5159 
5160 	if (unlikely(current->lockdep_recursion))
5161 		return;
5162 
5163 	raw_local_irq_save(flags);
5164 	check_flags(flags);
5165 	current->lockdep_recursion++;
5166 	trace_lock_contended(lock, ip);
5167 	__lock_contended(lock, ip);
5168 	lockdep_recursion_finish();
5169 	raw_local_irq_restore(flags);
5170 }
5171 EXPORT_SYMBOL_GPL(lock_contended);
5172 
5173 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5174 {
5175 	unsigned long flags;
5176 
5177 	if (unlikely(!lock_stat || !debug_locks))
5178 		return;
5179 
5180 	if (unlikely(current->lockdep_recursion))
5181 		return;
5182 
5183 	raw_local_irq_save(flags);
5184 	check_flags(flags);
5185 	current->lockdep_recursion++;
5186 	__lock_acquired(lock, ip);
5187 	lockdep_recursion_finish();
5188 	raw_local_irq_restore(flags);
5189 }
5190 EXPORT_SYMBOL_GPL(lock_acquired);
5191 #endif
5192 
5193 /*
5194  * Used by the testsuite, sanitize the validator state
5195  * after a simulated failure:
5196  */
5197 
5198 void lockdep_reset(void)
5199 {
5200 	unsigned long flags;
5201 	int i;
5202 
5203 	raw_local_irq_save(flags);
5204 	lockdep_init_task(current);
5205 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5206 	nr_hardirq_chains = 0;
5207 	nr_softirq_chains = 0;
5208 	nr_process_chains = 0;
5209 	debug_locks = 1;
5210 	for (i = 0; i < CHAINHASH_SIZE; i++)
5211 		INIT_HLIST_HEAD(chainhash_table + i);
5212 	raw_local_irq_restore(flags);
5213 }
5214 
5215 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5216 static void remove_class_from_lock_chain(struct pending_free *pf,
5217 					 struct lock_chain *chain,
5218 					 struct lock_class *class)
5219 {
5220 #ifdef CONFIG_PROVE_LOCKING
5221 	int i;
5222 
5223 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5224 		if (chain_hlocks[i] != class - lock_classes)
5225 			continue;
5226 		/*
5227 		 * Each lock class occurs at most once in a lock chain so once
5228 		 * we found a match we can break out of this loop.
5229 		 */
5230 		goto free_lock_chain;
5231 	}
5232 	/* Since the chain has not been modified, return. */
5233 	return;
5234 
5235 free_lock_chain:
5236 	free_chain_hlocks(chain->base, chain->depth);
5237 	/* Overwrite the chain key for concurrent RCU readers. */
5238 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5239 	dec_chains(chain->irq_context);
5240 
5241 	/*
5242 	 * Note: calling hlist_del_rcu() from inside a
5243 	 * hlist_for_each_entry_rcu() loop is safe.
5244 	 */
5245 	hlist_del_rcu(&chain->entry);
5246 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5247 	nr_zapped_lock_chains++;
5248 #endif
5249 }
5250 
5251 /* Must be called with the graph lock held. */
5252 static void remove_class_from_lock_chains(struct pending_free *pf,
5253 					  struct lock_class *class)
5254 {
5255 	struct lock_chain *chain;
5256 	struct hlist_head *head;
5257 	int i;
5258 
5259 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5260 		head = chainhash_table + i;
5261 		hlist_for_each_entry_rcu(chain, head, entry) {
5262 			remove_class_from_lock_chain(pf, chain, class);
5263 		}
5264 	}
5265 }
5266 
5267 /*
5268  * Remove all references to a lock class. The caller must hold the graph lock.
5269  */
5270 static void zap_class(struct pending_free *pf, struct lock_class *class)
5271 {
5272 	struct lock_list *entry;
5273 	int i;
5274 
5275 	WARN_ON_ONCE(!class->key);
5276 
5277 	/*
5278 	 * Remove all dependencies this lock is
5279 	 * involved in:
5280 	 */
5281 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5282 		entry = list_entries + i;
5283 		if (entry->class != class && entry->links_to != class)
5284 			continue;
5285 		__clear_bit(i, list_entries_in_use);
5286 		nr_list_entries--;
5287 		list_del_rcu(&entry->entry);
5288 	}
5289 	if (list_empty(&class->locks_after) &&
5290 	    list_empty(&class->locks_before)) {
5291 		list_move_tail(&class->lock_entry, &pf->zapped);
5292 		hlist_del_rcu(&class->hash_entry);
5293 		WRITE_ONCE(class->key, NULL);
5294 		WRITE_ONCE(class->name, NULL);
5295 		nr_lock_classes--;
5296 		__clear_bit(class - lock_classes, lock_classes_in_use);
5297 	} else {
5298 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5299 			  class->name);
5300 	}
5301 
5302 	remove_class_from_lock_chains(pf, class);
5303 	nr_zapped_classes++;
5304 }
5305 
5306 static void reinit_class(struct lock_class *class)
5307 {
5308 	void *const p = class;
5309 	const unsigned int offset = offsetof(struct lock_class, key);
5310 
5311 	WARN_ON_ONCE(!class->lock_entry.next);
5312 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5313 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5314 	memset(p + offset, 0, sizeof(*class) - offset);
5315 	WARN_ON_ONCE(!class->lock_entry.next);
5316 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5317 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5318 }
5319 
5320 static inline int within(const void *addr, void *start, unsigned long size)
5321 {
5322 	return addr >= start && addr < start + size;
5323 }
5324 
5325 static bool inside_selftest(void)
5326 {
5327 	return current == lockdep_selftest_task_struct;
5328 }
5329 
5330 /* The caller must hold the graph lock. */
5331 static struct pending_free *get_pending_free(void)
5332 {
5333 	return delayed_free.pf + delayed_free.index;
5334 }
5335 
5336 static void free_zapped_rcu(struct rcu_head *cb);
5337 
5338 /*
5339  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5340  * the graph lock held.
5341  */
5342 static void call_rcu_zapped(struct pending_free *pf)
5343 {
5344 	WARN_ON_ONCE(inside_selftest());
5345 
5346 	if (list_empty(&pf->zapped))
5347 		return;
5348 
5349 	if (delayed_free.scheduled)
5350 		return;
5351 
5352 	delayed_free.scheduled = true;
5353 
5354 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5355 	delayed_free.index ^= 1;
5356 
5357 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5358 }
5359 
5360 /* The caller must hold the graph lock. May be called from RCU context. */
5361 static void __free_zapped_classes(struct pending_free *pf)
5362 {
5363 	struct lock_class *class;
5364 
5365 	check_data_structures();
5366 
5367 	list_for_each_entry(class, &pf->zapped, lock_entry)
5368 		reinit_class(class);
5369 
5370 	list_splice_init(&pf->zapped, &free_lock_classes);
5371 
5372 #ifdef CONFIG_PROVE_LOCKING
5373 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5374 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5375 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5376 #endif
5377 }
5378 
5379 static void free_zapped_rcu(struct rcu_head *ch)
5380 {
5381 	struct pending_free *pf;
5382 	unsigned long flags;
5383 
5384 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5385 		return;
5386 
5387 	raw_local_irq_save(flags);
5388 	lockdep_lock();
5389 
5390 	/* closed head */
5391 	pf = delayed_free.pf + (delayed_free.index ^ 1);
5392 	__free_zapped_classes(pf);
5393 	delayed_free.scheduled = false;
5394 
5395 	/*
5396 	 * If there's anything on the open list, close and start a new callback.
5397 	 */
5398 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
5399 
5400 	lockdep_unlock();
5401 	raw_local_irq_restore(flags);
5402 }
5403 
5404 /*
5405  * Remove all lock classes from the class hash table and from the
5406  * all_lock_classes list whose key or name is in the address range [start,
5407  * start + size). Move these lock classes to the zapped_classes list. Must
5408  * be called with the graph lock held.
5409  */
5410 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5411 				     unsigned long size)
5412 {
5413 	struct lock_class *class;
5414 	struct hlist_head *head;
5415 	int i;
5416 
5417 	/* Unhash all classes that were created by a module. */
5418 	for (i = 0; i < CLASSHASH_SIZE; i++) {
5419 		head = classhash_table + i;
5420 		hlist_for_each_entry_rcu(class, head, hash_entry) {
5421 			if (!within(class->key, start, size) &&
5422 			    !within(class->name, start, size))
5423 				continue;
5424 			zap_class(pf, class);
5425 		}
5426 	}
5427 }
5428 
5429 /*
5430  * Used in module.c to remove lock classes from memory that is going to be
5431  * freed; and possibly re-used by other modules.
5432  *
5433  * We will have had one synchronize_rcu() before getting here, so we're
5434  * guaranteed nobody will look up these exact classes -- they're properly dead
5435  * but still allocated.
5436  */
5437 static void lockdep_free_key_range_reg(void *start, unsigned long size)
5438 {
5439 	struct pending_free *pf;
5440 	unsigned long flags;
5441 
5442 	init_data_structures_once();
5443 
5444 	raw_local_irq_save(flags);
5445 	lockdep_lock();
5446 	pf = get_pending_free();
5447 	__lockdep_free_key_range(pf, start, size);
5448 	call_rcu_zapped(pf);
5449 	lockdep_unlock();
5450 	raw_local_irq_restore(flags);
5451 
5452 	/*
5453 	 * Wait for any possible iterators from look_up_lock_class() to pass
5454 	 * before continuing to free the memory they refer to.
5455 	 */
5456 	synchronize_rcu();
5457 }
5458 
5459 /*
5460  * Free all lockdep keys in the range [start, start+size). Does not sleep.
5461  * Ignores debug_locks. Must only be used by the lockdep selftests.
5462  */
5463 static void lockdep_free_key_range_imm(void *start, unsigned long size)
5464 {
5465 	struct pending_free *pf = delayed_free.pf;
5466 	unsigned long flags;
5467 
5468 	init_data_structures_once();
5469 
5470 	raw_local_irq_save(flags);
5471 	lockdep_lock();
5472 	__lockdep_free_key_range(pf, start, size);
5473 	__free_zapped_classes(pf);
5474 	lockdep_unlock();
5475 	raw_local_irq_restore(flags);
5476 }
5477 
5478 void lockdep_free_key_range(void *start, unsigned long size)
5479 {
5480 	init_data_structures_once();
5481 
5482 	if (inside_selftest())
5483 		lockdep_free_key_range_imm(start, size);
5484 	else
5485 		lockdep_free_key_range_reg(start, size);
5486 }
5487 
5488 /*
5489  * Check whether any element of the @lock->class_cache[] array refers to a
5490  * registered lock class. The caller must hold either the graph lock or the
5491  * RCU read lock.
5492  */
5493 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
5494 {
5495 	struct lock_class *class;
5496 	struct hlist_head *head;
5497 	int i, j;
5498 
5499 	for (i = 0; i < CLASSHASH_SIZE; i++) {
5500 		head = classhash_table + i;
5501 		hlist_for_each_entry_rcu(class, head, hash_entry) {
5502 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
5503 				if (lock->class_cache[j] == class)
5504 					return true;
5505 		}
5506 	}
5507 	return false;
5508 }
5509 
5510 /* The caller must hold the graph lock. Does not sleep. */
5511 static void __lockdep_reset_lock(struct pending_free *pf,
5512 				 struct lockdep_map *lock)
5513 {
5514 	struct lock_class *class;
5515 	int j;
5516 
5517 	/*
5518 	 * Remove all classes this lock might have:
5519 	 */
5520 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
5521 		/*
5522 		 * If the class exists we look it up and zap it:
5523 		 */
5524 		class = look_up_lock_class(lock, j);
5525 		if (class)
5526 			zap_class(pf, class);
5527 	}
5528 	/*
5529 	 * Debug check: in the end all mapped classes should
5530 	 * be gone.
5531 	 */
5532 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
5533 		debug_locks_off();
5534 }
5535 
5536 /*
5537  * Remove all information lockdep has about a lock if debug_locks == 1. Free
5538  * released data structures from RCU context.
5539  */
5540 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
5541 {
5542 	struct pending_free *pf;
5543 	unsigned long flags;
5544 	int locked;
5545 
5546 	raw_local_irq_save(flags);
5547 	locked = graph_lock();
5548 	if (!locked)
5549 		goto out_irq;
5550 
5551 	pf = get_pending_free();
5552 	__lockdep_reset_lock(pf, lock);
5553 	call_rcu_zapped(pf);
5554 
5555 	graph_unlock();
5556 out_irq:
5557 	raw_local_irq_restore(flags);
5558 }
5559 
5560 /*
5561  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
5562  * lockdep selftests.
5563  */
5564 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
5565 {
5566 	struct pending_free *pf = delayed_free.pf;
5567 	unsigned long flags;
5568 
5569 	raw_local_irq_save(flags);
5570 	lockdep_lock();
5571 	__lockdep_reset_lock(pf, lock);
5572 	__free_zapped_classes(pf);
5573 	lockdep_unlock();
5574 	raw_local_irq_restore(flags);
5575 }
5576 
5577 void lockdep_reset_lock(struct lockdep_map *lock)
5578 {
5579 	init_data_structures_once();
5580 
5581 	if (inside_selftest())
5582 		lockdep_reset_lock_imm(lock);
5583 	else
5584 		lockdep_reset_lock_reg(lock);
5585 }
5586 
5587 /* Unregister a dynamically allocated key. */
5588 void lockdep_unregister_key(struct lock_class_key *key)
5589 {
5590 	struct hlist_head *hash_head = keyhashentry(key);
5591 	struct lock_class_key *k;
5592 	struct pending_free *pf;
5593 	unsigned long flags;
5594 	bool found = false;
5595 
5596 	might_sleep();
5597 
5598 	if (WARN_ON_ONCE(static_obj(key)))
5599 		return;
5600 
5601 	raw_local_irq_save(flags);
5602 	if (!graph_lock())
5603 		goto out_irq;
5604 
5605 	pf = get_pending_free();
5606 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
5607 		if (k == key) {
5608 			hlist_del_rcu(&k->hash_entry);
5609 			found = true;
5610 			break;
5611 		}
5612 	}
5613 	WARN_ON_ONCE(!found);
5614 	__lockdep_free_key_range(pf, key, 1);
5615 	call_rcu_zapped(pf);
5616 	graph_unlock();
5617 out_irq:
5618 	raw_local_irq_restore(flags);
5619 
5620 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
5621 	synchronize_rcu();
5622 }
5623 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
5624 
5625 void __init lockdep_init(void)
5626 {
5627 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
5628 
5629 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
5630 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
5631 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
5632 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
5633 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
5634 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
5635 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
5636 
5637 	printk(" memory used by lock dependency info: %zu kB\n",
5638 	       (sizeof(lock_classes) +
5639 		sizeof(lock_classes_in_use) +
5640 		sizeof(classhash_table) +
5641 		sizeof(list_entries) +
5642 		sizeof(list_entries_in_use) +
5643 		sizeof(chainhash_table) +
5644 		sizeof(delayed_free)
5645 #ifdef CONFIG_PROVE_LOCKING
5646 		+ sizeof(lock_cq)
5647 		+ sizeof(lock_chains)
5648 		+ sizeof(lock_chains_in_use)
5649 		+ sizeof(chain_hlocks)
5650 #endif
5651 		) / 1024
5652 		);
5653 
5654 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
5655 	printk(" memory used for stack traces: %zu kB\n",
5656 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
5657 	       );
5658 #endif
5659 
5660 	printk(" per task-struct memory footprint: %zu bytes\n",
5661 	       sizeof(((struct task_struct *)NULL)->held_locks));
5662 }
5663 
5664 static void
5665 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
5666 		     const void *mem_to, struct held_lock *hlock)
5667 {
5668 	if (!debug_locks_off())
5669 		return;
5670 	if (debug_locks_silent)
5671 		return;
5672 
5673 	pr_warn("\n");
5674 	pr_warn("=========================\n");
5675 	pr_warn("WARNING: held lock freed!\n");
5676 	print_kernel_ident();
5677 	pr_warn("-------------------------\n");
5678 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
5679 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
5680 	print_lock(hlock);
5681 	lockdep_print_held_locks(curr);
5682 
5683 	pr_warn("\nstack backtrace:\n");
5684 	dump_stack();
5685 }
5686 
5687 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
5688 				const void* lock_from, unsigned long lock_len)
5689 {
5690 	return lock_from + lock_len <= mem_from ||
5691 		mem_from + mem_len <= lock_from;
5692 }
5693 
5694 /*
5695  * Called when kernel memory is freed (or unmapped), or if a lock
5696  * is destroyed or reinitialized - this code checks whether there is
5697  * any held lock in the memory range of <from> to <to>:
5698  */
5699 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
5700 {
5701 	struct task_struct *curr = current;
5702 	struct held_lock *hlock;
5703 	unsigned long flags;
5704 	int i;
5705 
5706 	if (unlikely(!debug_locks))
5707 		return;
5708 
5709 	raw_local_irq_save(flags);
5710 	for (i = 0; i < curr->lockdep_depth; i++) {
5711 		hlock = curr->held_locks + i;
5712 
5713 		if (not_in_range(mem_from, mem_len, hlock->instance,
5714 					sizeof(*hlock->instance)))
5715 			continue;
5716 
5717 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
5718 		break;
5719 	}
5720 	raw_local_irq_restore(flags);
5721 }
5722 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
5723 
5724 static void print_held_locks_bug(void)
5725 {
5726 	if (!debug_locks_off())
5727 		return;
5728 	if (debug_locks_silent)
5729 		return;
5730 
5731 	pr_warn("\n");
5732 	pr_warn("====================================\n");
5733 	pr_warn("WARNING: %s/%d still has locks held!\n",
5734 	       current->comm, task_pid_nr(current));
5735 	print_kernel_ident();
5736 	pr_warn("------------------------------------\n");
5737 	lockdep_print_held_locks(current);
5738 	pr_warn("\nstack backtrace:\n");
5739 	dump_stack();
5740 }
5741 
5742 void debug_check_no_locks_held(void)
5743 {
5744 	if (unlikely(current->lockdep_depth > 0))
5745 		print_held_locks_bug();
5746 }
5747 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
5748 
5749 #ifdef __KERNEL__
5750 void debug_show_all_locks(void)
5751 {
5752 	struct task_struct *g, *p;
5753 
5754 	if (unlikely(!debug_locks)) {
5755 		pr_warn("INFO: lockdep is turned off.\n");
5756 		return;
5757 	}
5758 	pr_warn("\nShowing all locks held in the system:\n");
5759 
5760 	rcu_read_lock();
5761 	for_each_process_thread(g, p) {
5762 		if (!p->lockdep_depth)
5763 			continue;
5764 		lockdep_print_held_locks(p);
5765 		touch_nmi_watchdog();
5766 		touch_all_softlockup_watchdogs();
5767 	}
5768 	rcu_read_unlock();
5769 
5770 	pr_warn("\n");
5771 	pr_warn("=============================================\n\n");
5772 }
5773 EXPORT_SYMBOL_GPL(debug_show_all_locks);
5774 #endif
5775 
5776 /*
5777  * Careful: only use this function if you are sure that
5778  * the task cannot run in parallel!
5779  */
5780 void debug_show_held_locks(struct task_struct *task)
5781 {
5782 	if (unlikely(!debug_locks)) {
5783 		printk("INFO: lockdep is turned off.\n");
5784 		return;
5785 	}
5786 	lockdep_print_held_locks(task);
5787 }
5788 EXPORT_SYMBOL_GPL(debug_show_held_locks);
5789 
5790 asmlinkage __visible void lockdep_sys_exit(void)
5791 {
5792 	struct task_struct *curr = current;
5793 
5794 	if (unlikely(curr->lockdep_depth)) {
5795 		if (!debug_locks_off())
5796 			return;
5797 		pr_warn("\n");
5798 		pr_warn("================================================\n");
5799 		pr_warn("WARNING: lock held when returning to user space!\n");
5800 		print_kernel_ident();
5801 		pr_warn("------------------------------------------------\n");
5802 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
5803 				curr->comm, curr->pid);
5804 		lockdep_print_held_locks(curr);
5805 	}
5806 
5807 	/*
5808 	 * The lock history for each syscall should be independent. So wipe the
5809 	 * slate clean on return to userspace.
5810 	 */
5811 	lockdep_invariant_state(false);
5812 }
5813 
5814 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
5815 {
5816 	struct task_struct *curr = current;
5817 
5818 	/* Note: the following can be executed concurrently, so be careful. */
5819 	pr_warn("\n");
5820 	pr_warn("=============================\n");
5821 	pr_warn("WARNING: suspicious RCU usage\n");
5822 	print_kernel_ident();
5823 	pr_warn("-----------------------------\n");
5824 	pr_warn("%s:%d %s!\n", file, line, s);
5825 	pr_warn("\nother info that might help us debug this:\n\n");
5826 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
5827 	       !rcu_lockdep_current_cpu_online()
5828 			? "RCU used illegally from offline CPU!\n"
5829 			: !rcu_is_watching()
5830 				? "RCU used illegally from idle CPU!\n"
5831 				: "",
5832 	       rcu_scheduler_active, debug_locks);
5833 
5834 	/*
5835 	 * If a CPU is in the RCU-free window in idle (ie: in the section
5836 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
5837 	 * considers that CPU to be in an "extended quiescent state",
5838 	 * which means that RCU will be completely ignoring that CPU.
5839 	 * Therefore, rcu_read_lock() and friends have absolutely no
5840 	 * effect on a CPU running in that state. In other words, even if
5841 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
5842 	 * delete data structures out from under it.  RCU really has no
5843 	 * choice here: we need to keep an RCU-free window in idle where
5844 	 * the CPU may possibly enter into low power mode. This way we can
5845 	 * notice an extended quiescent state to other CPUs that started a grace
5846 	 * period. Otherwise we would delay any grace period as long as we run
5847 	 * in the idle task.
5848 	 *
5849 	 * So complain bitterly if someone does call rcu_read_lock(),
5850 	 * rcu_read_lock_bh() and so on from extended quiescent states.
5851 	 */
5852 	if (!rcu_is_watching())
5853 		pr_warn("RCU used illegally from extended quiescent state!\n");
5854 
5855 	lockdep_print_held_locks(curr);
5856 	pr_warn("\nstack backtrace:\n");
5857 	dump_stack();
5858 }
5859 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
5860