xref: /openbmc/linux/kernel/locking/lockdep.c (revision 05911c5d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/lockdep.c
4  *
5  * Runtime locking correctness validator
6  *
7  * Started by Ingo Molnar:
8  *
9  *  Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11  *
12  * this code maps all the lock dependencies as they occur in a live kernel
13  * and will warn about the following classes of locking bugs:
14  *
15  * - lock inversion scenarios
16  * - circular lock dependencies
17  * - hardirq/softirq safe/unsafe locking bugs
18  *
19  * Bugs are reported even if the current locking scenario does not cause
20  * any deadlock at this point.
21  *
22  * I.e. if anytime in the past two locks were taken in a different order,
23  * even if it happened for another task, even if those were different
24  * locks (but of the same class as this lock), this code will detect it.
25  *
26  * Thanks to Arjan van de Ven for coming up with the initial idea of
27  * mapping lock dependencies runtime.
28  */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58 
59 #include <asm/sections.h>
60 
61 #include "lockdep_internals.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65 
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72 
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79 
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82 
83 static __always_inline bool lockdep_enabled(void)
84 {
85 	if (!debug_locks)
86 		return false;
87 
88 	if (this_cpu_read(lockdep_recursion))
89 		return false;
90 
91 	if (current->lockdep_recursion)
92 		return false;
93 
94 	return true;
95 }
96 
97 /*
98  * lockdep_lock: protects the lockdep graph, the hashes and the
99  *               class/list/hash allocators.
100  *
101  * This is one of the rare exceptions where it's justified
102  * to use a raw spinlock - we really dont want the spinlock
103  * code to recurse back into the lockdep code...
104  */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107 
108 static inline void lockdep_lock(void)
109 {
110 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111 
112 	__this_cpu_inc(lockdep_recursion);
113 	arch_spin_lock(&__lock);
114 	__owner = current;
115 }
116 
117 static inline void lockdep_unlock(void)
118 {
119 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120 
121 	if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122 		return;
123 
124 	__owner = NULL;
125 	arch_spin_unlock(&__lock);
126 	__this_cpu_dec(lockdep_recursion);
127 }
128 
129 static inline bool lockdep_assert_locked(void)
130 {
131 	return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133 
134 static struct task_struct *lockdep_selftest_task_struct;
135 
136 
137 static int graph_lock(void)
138 {
139 	lockdep_lock();
140 	/*
141 	 * Make sure that if another CPU detected a bug while
142 	 * walking the graph we dont change it (while the other
143 	 * CPU is busy printing out stuff with the graph lock
144 	 * dropped already)
145 	 */
146 	if (!debug_locks) {
147 		lockdep_unlock();
148 		return 0;
149 	}
150 	return 1;
151 }
152 
153 static inline void graph_unlock(void)
154 {
155 	lockdep_unlock();
156 }
157 
158 /*
159  * Turn lock debugging off and return with 0 if it was off already,
160  * and also release the graph lock:
161  */
162 static inline int debug_locks_off_graph_unlock(void)
163 {
164 	int ret = debug_locks_off();
165 
166 	lockdep_unlock();
167 
168 	return ret;
169 }
170 
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174 
175 /*
176  * All data structures here are protected by the global debug_lock.
177  *
178  * nr_lock_classes is the number of elements of lock_classes[] that is
179  * in use.
180  */
181 #define KEYHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE		(1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 #ifndef CONFIG_DEBUG_LOCKDEP
187 static
188 #endif
189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
191 
192 static inline struct lock_class *hlock_class(struct held_lock *hlock)
193 {
194 	unsigned int class_idx = hlock->class_idx;
195 
196 	/* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
197 	barrier();
198 
199 	if (!test_bit(class_idx, lock_classes_in_use)) {
200 		/*
201 		 * Someone passed in garbage, we give up.
202 		 */
203 		DEBUG_LOCKS_WARN_ON(1);
204 		return NULL;
205 	}
206 
207 	/*
208 	 * At this point, if the passed hlock->class_idx is still garbage,
209 	 * we just have to live with it
210 	 */
211 	return lock_classes + class_idx;
212 }
213 
214 #ifdef CONFIG_LOCK_STAT
215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
216 
217 static inline u64 lockstat_clock(void)
218 {
219 	return local_clock();
220 }
221 
222 static int lock_point(unsigned long points[], unsigned long ip)
223 {
224 	int i;
225 
226 	for (i = 0; i < LOCKSTAT_POINTS; i++) {
227 		if (points[i] == 0) {
228 			points[i] = ip;
229 			break;
230 		}
231 		if (points[i] == ip)
232 			break;
233 	}
234 
235 	return i;
236 }
237 
238 static void lock_time_inc(struct lock_time *lt, u64 time)
239 {
240 	if (time > lt->max)
241 		lt->max = time;
242 
243 	if (time < lt->min || !lt->nr)
244 		lt->min = time;
245 
246 	lt->total += time;
247 	lt->nr++;
248 }
249 
250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
251 {
252 	if (!src->nr)
253 		return;
254 
255 	if (src->max > dst->max)
256 		dst->max = src->max;
257 
258 	if (src->min < dst->min || !dst->nr)
259 		dst->min = src->min;
260 
261 	dst->total += src->total;
262 	dst->nr += src->nr;
263 }
264 
265 struct lock_class_stats lock_stats(struct lock_class *class)
266 {
267 	struct lock_class_stats stats;
268 	int cpu, i;
269 
270 	memset(&stats, 0, sizeof(struct lock_class_stats));
271 	for_each_possible_cpu(cpu) {
272 		struct lock_class_stats *pcs =
273 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
274 
275 		for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
276 			stats.contention_point[i] += pcs->contention_point[i];
277 
278 		for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
279 			stats.contending_point[i] += pcs->contending_point[i];
280 
281 		lock_time_add(&pcs->read_waittime, &stats.read_waittime);
282 		lock_time_add(&pcs->write_waittime, &stats.write_waittime);
283 
284 		lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
285 		lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
286 
287 		for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
288 			stats.bounces[i] += pcs->bounces[i];
289 	}
290 
291 	return stats;
292 }
293 
294 void clear_lock_stats(struct lock_class *class)
295 {
296 	int cpu;
297 
298 	for_each_possible_cpu(cpu) {
299 		struct lock_class_stats *cpu_stats =
300 			&per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
301 
302 		memset(cpu_stats, 0, sizeof(struct lock_class_stats));
303 	}
304 	memset(class->contention_point, 0, sizeof(class->contention_point));
305 	memset(class->contending_point, 0, sizeof(class->contending_point));
306 }
307 
308 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
309 {
310 	return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
311 }
312 
313 static void lock_release_holdtime(struct held_lock *hlock)
314 {
315 	struct lock_class_stats *stats;
316 	u64 holdtime;
317 
318 	if (!lock_stat)
319 		return;
320 
321 	holdtime = lockstat_clock() - hlock->holdtime_stamp;
322 
323 	stats = get_lock_stats(hlock_class(hlock));
324 	if (hlock->read)
325 		lock_time_inc(&stats->read_holdtime, holdtime);
326 	else
327 		lock_time_inc(&stats->write_holdtime, holdtime);
328 }
329 #else
330 static inline void lock_release_holdtime(struct held_lock *hlock)
331 {
332 }
333 #endif
334 
335 /*
336  * We keep a global list of all lock classes. The list is only accessed with
337  * the lockdep spinlock lock held. free_lock_classes is a list with free
338  * elements. These elements are linked together by the lock_entry member in
339  * struct lock_class.
340  */
341 LIST_HEAD(all_lock_classes);
342 static LIST_HEAD(free_lock_classes);
343 
344 /**
345  * struct pending_free - information about data structures about to be freed
346  * @zapped: Head of a list with struct lock_class elements.
347  * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
348  *	are about to be freed.
349  */
350 struct pending_free {
351 	struct list_head zapped;
352 	DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
353 };
354 
355 /**
356  * struct delayed_free - data structures used for delayed freeing
357  *
358  * A data structure for delayed freeing of data structures that may be
359  * accessed by RCU readers at the time these were freed.
360  *
361  * @rcu_head:  Used to schedule an RCU callback for freeing data structures.
362  * @index:     Index of @pf to which freed data structures are added.
363  * @scheduled: Whether or not an RCU callback has been scheduled.
364  * @pf:        Array with information about data structures about to be freed.
365  */
366 static struct delayed_free {
367 	struct rcu_head		rcu_head;
368 	int			index;
369 	int			scheduled;
370 	struct pending_free	pf[2];
371 } delayed_free;
372 
373 /*
374  * The lockdep classes are in a hash-table as well, for fast lookup:
375  */
376 #define CLASSHASH_BITS		(MAX_LOCKDEP_KEYS_BITS - 1)
377 #define CLASSHASH_SIZE		(1UL << CLASSHASH_BITS)
378 #define __classhashfn(key)	hash_long((unsigned long)key, CLASSHASH_BITS)
379 #define classhashentry(key)	(classhash_table + __classhashfn((key)))
380 
381 static struct hlist_head classhash_table[CLASSHASH_SIZE];
382 
383 /*
384  * We put the lock dependency chains into a hash-table as well, to cache
385  * their existence:
386  */
387 #define CHAINHASH_BITS		(MAX_LOCKDEP_CHAINS_BITS-1)
388 #define CHAINHASH_SIZE		(1UL << CHAINHASH_BITS)
389 #define __chainhashfn(chain)	hash_long(chain, CHAINHASH_BITS)
390 #define chainhashentry(chain)	(chainhash_table + __chainhashfn((chain)))
391 
392 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
393 
394 /*
395  * the id of held_lock
396  */
397 static inline u16 hlock_id(struct held_lock *hlock)
398 {
399 	BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
400 
401 	return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
402 }
403 
404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
405 {
406 	return hlock_id & (MAX_LOCKDEP_KEYS - 1);
407 }
408 
409 /*
410  * The hash key of the lock dependency chains is a hash itself too:
411  * it's a hash of all locks taken up to that lock, including that lock.
412  * It's a 64-bit hash, because it's important for the keys to be
413  * unique.
414  */
415 static inline u64 iterate_chain_key(u64 key, u32 idx)
416 {
417 	u32 k0 = key, k1 = key >> 32;
418 
419 	__jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
420 
421 	return k0 | (u64)k1 << 32;
422 }
423 
424 void lockdep_init_task(struct task_struct *task)
425 {
426 	task->lockdep_depth = 0; /* no locks held yet */
427 	task->curr_chain_key = INITIAL_CHAIN_KEY;
428 	task->lockdep_recursion = 0;
429 }
430 
431 static __always_inline void lockdep_recursion_inc(void)
432 {
433 	__this_cpu_inc(lockdep_recursion);
434 }
435 
436 static __always_inline void lockdep_recursion_finish(void)
437 {
438 	if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
439 		__this_cpu_write(lockdep_recursion, 0);
440 }
441 
442 void lockdep_set_selftest_task(struct task_struct *task)
443 {
444 	lockdep_selftest_task_struct = task;
445 }
446 
447 /*
448  * Debugging switches:
449  */
450 
451 #define VERBOSE			0
452 #define VERY_VERBOSE		0
453 
454 #if VERBOSE
455 # define HARDIRQ_VERBOSE	1
456 # define SOFTIRQ_VERBOSE	1
457 #else
458 # define HARDIRQ_VERBOSE	0
459 # define SOFTIRQ_VERBOSE	0
460 #endif
461 
462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
463 /*
464  * Quick filtering for interesting events:
465  */
466 static int class_filter(struct lock_class *class)
467 {
468 #if 0
469 	/* Example */
470 	if (class->name_version == 1 &&
471 			!strcmp(class->name, "lockname"))
472 		return 1;
473 	if (class->name_version == 1 &&
474 			!strcmp(class->name, "&struct->lockfield"))
475 		return 1;
476 #endif
477 	/* Filter everything else. 1 would be to allow everything else */
478 	return 0;
479 }
480 #endif
481 
482 static int verbose(struct lock_class *class)
483 {
484 #if VERBOSE
485 	return class_filter(class);
486 #endif
487 	return 0;
488 }
489 
490 static void print_lockdep_off(const char *bug_msg)
491 {
492 	printk(KERN_DEBUG "%s\n", bug_msg);
493 	printk(KERN_DEBUG "turning off the locking correctness validator.\n");
494 #ifdef CONFIG_LOCK_STAT
495 	printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
496 #endif
497 }
498 
499 unsigned long nr_stack_trace_entries;
500 
501 #ifdef CONFIG_PROVE_LOCKING
502 /**
503  * struct lock_trace - single stack backtrace
504  * @hash_entry:	Entry in a stack_trace_hash[] list.
505  * @hash:	jhash() of @entries.
506  * @nr_entries:	Number of entries in @entries.
507  * @entries:	Actual stack backtrace.
508  */
509 struct lock_trace {
510 	struct hlist_node	hash_entry;
511 	u32			hash;
512 	u32			nr_entries;
513 	unsigned long		entries[] __aligned(sizeof(unsigned long));
514 };
515 #define LOCK_TRACE_SIZE_IN_LONGS				\
516 	(sizeof(struct lock_trace) / sizeof(unsigned long))
517 /*
518  * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
519  */
520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
522 
523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
524 {
525 	return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
526 		memcmp(t1->entries, t2->entries,
527 		       t1->nr_entries * sizeof(t1->entries[0])) == 0;
528 }
529 
530 static struct lock_trace *save_trace(void)
531 {
532 	struct lock_trace *trace, *t2;
533 	struct hlist_head *hash_head;
534 	u32 hash;
535 	int max_entries;
536 
537 	BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
538 	BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
539 
540 	trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
541 	max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
542 		LOCK_TRACE_SIZE_IN_LONGS;
543 
544 	if (max_entries <= 0) {
545 		if (!debug_locks_off_graph_unlock())
546 			return NULL;
547 
548 		print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
549 		dump_stack();
550 
551 		return NULL;
552 	}
553 	trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
554 
555 	hash = jhash(trace->entries, trace->nr_entries *
556 		     sizeof(trace->entries[0]), 0);
557 	trace->hash = hash;
558 	hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
559 	hlist_for_each_entry(t2, hash_head, hash_entry) {
560 		if (traces_identical(trace, t2))
561 			return t2;
562 	}
563 	nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
564 	hlist_add_head(&trace->hash_entry, hash_head);
565 
566 	return trace;
567 }
568 
569 /* Return the number of stack traces in the stack_trace[] array. */
570 u64 lockdep_stack_trace_count(void)
571 {
572 	struct lock_trace *trace;
573 	u64 c = 0;
574 	int i;
575 
576 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
577 		hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
578 			c++;
579 		}
580 	}
581 
582 	return c;
583 }
584 
585 /* Return the number of stack hash chains that have at least one stack trace. */
586 u64 lockdep_stack_hash_count(void)
587 {
588 	u64 c = 0;
589 	int i;
590 
591 	for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
592 		if (!hlist_empty(&stack_trace_hash[i]))
593 			c++;
594 
595 	return c;
596 }
597 #endif
598 
599 unsigned int nr_hardirq_chains;
600 unsigned int nr_softirq_chains;
601 unsigned int nr_process_chains;
602 unsigned int max_lockdep_depth;
603 
604 #ifdef CONFIG_DEBUG_LOCKDEP
605 /*
606  * Various lockdep statistics:
607  */
608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
609 #endif
610 
611 #ifdef CONFIG_PROVE_LOCKING
612 /*
613  * Locking printouts:
614  */
615 
616 #define __USAGE(__STATE)						\
617 	[LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W",	\
618 	[LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W",		\
619 	[LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
620 	[LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
621 
622 static const char *usage_str[] =
623 {
624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
625 #include "lockdep_states.h"
626 #undef LOCKDEP_STATE
627 	[LOCK_USED] = "INITIAL USE",
628 	[LOCK_USED_READ] = "INITIAL READ USE",
629 	/* abused as string storage for verify_lock_unused() */
630 	[LOCK_USAGE_STATES] = "IN-NMI",
631 };
632 #endif
633 
634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
635 {
636 	return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
637 }
638 
639 static inline unsigned long lock_flag(enum lock_usage_bit bit)
640 {
641 	return 1UL << bit;
642 }
643 
644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
645 {
646 	/*
647 	 * The usage character defaults to '.' (i.e., irqs disabled and not in
648 	 * irq context), which is the safest usage category.
649 	 */
650 	char c = '.';
651 
652 	/*
653 	 * The order of the following usage checks matters, which will
654 	 * result in the outcome character as follows:
655 	 *
656 	 * - '+': irq is enabled and not in irq context
657 	 * - '-': in irq context and irq is disabled
658 	 * - '?': in irq context and irq is enabled
659 	 */
660 	if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
661 		c = '+';
662 		if (class->usage_mask & lock_flag(bit))
663 			c = '?';
664 	} else if (class->usage_mask & lock_flag(bit))
665 		c = '-';
666 
667 	return c;
668 }
669 
670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
671 {
672 	int i = 0;
673 
674 #define LOCKDEP_STATE(__STATE) 						\
675 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE);	\
676 	usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
677 #include "lockdep_states.h"
678 #undef LOCKDEP_STATE
679 
680 	usage[i] = '\0';
681 }
682 
683 static void __print_lock_name(struct lock_class *class)
684 {
685 	char str[KSYM_NAME_LEN];
686 	const char *name;
687 
688 	name = class->name;
689 	if (!name) {
690 		name = __get_key_name(class->key, str);
691 		printk(KERN_CONT "%s", name);
692 	} else {
693 		printk(KERN_CONT "%s", name);
694 		if (class->name_version > 1)
695 			printk(KERN_CONT "#%d", class->name_version);
696 		if (class->subclass)
697 			printk(KERN_CONT "/%d", class->subclass);
698 	}
699 }
700 
701 static void print_lock_name(struct lock_class *class)
702 {
703 	char usage[LOCK_USAGE_CHARS];
704 
705 	get_usage_chars(class, usage);
706 
707 	printk(KERN_CONT " (");
708 	__print_lock_name(class);
709 	printk(KERN_CONT "){%s}-{%d:%d}", usage,
710 			class->wait_type_outer ?: class->wait_type_inner,
711 			class->wait_type_inner);
712 }
713 
714 static void print_lockdep_cache(struct lockdep_map *lock)
715 {
716 	const char *name;
717 	char str[KSYM_NAME_LEN];
718 
719 	name = lock->name;
720 	if (!name)
721 		name = __get_key_name(lock->key->subkeys, str);
722 
723 	printk(KERN_CONT "%s", name);
724 }
725 
726 static void print_lock(struct held_lock *hlock)
727 {
728 	/*
729 	 * We can be called locklessly through debug_show_all_locks() so be
730 	 * extra careful, the hlock might have been released and cleared.
731 	 *
732 	 * If this indeed happens, lets pretend it does not hurt to continue
733 	 * to print the lock unless the hlock class_idx does not point to a
734 	 * registered class. The rationale here is: since we don't attempt
735 	 * to distinguish whether we are in this situation, if it just
736 	 * happened we can't count on class_idx to tell either.
737 	 */
738 	struct lock_class *lock = hlock_class(hlock);
739 
740 	if (!lock) {
741 		printk(KERN_CONT "<RELEASED>\n");
742 		return;
743 	}
744 
745 	printk(KERN_CONT "%px", hlock->instance);
746 	print_lock_name(lock);
747 	printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
748 }
749 
750 static void lockdep_print_held_locks(struct task_struct *p)
751 {
752 	int i, depth = READ_ONCE(p->lockdep_depth);
753 
754 	if (!depth)
755 		printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
756 	else
757 		printk("%d lock%s held by %s/%d:\n", depth,
758 		       depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
759 	/*
760 	 * It's not reliable to print a task's held locks if it's not sleeping
761 	 * and it's not the current task.
762 	 */
763 	if (p->state == TASK_RUNNING && p != current)
764 		return;
765 	for (i = 0; i < depth; i++) {
766 		printk(" #%d: ", i);
767 		print_lock(p->held_locks + i);
768 	}
769 }
770 
771 static void print_kernel_ident(void)
772 {
773 	printk("%s %.*s %s\n", init_utsname()->release,
774 		(int)strcspn(init_utsname()->version, " "),
775 		init_utsname()->version,
776 		print_tainted());
777 }
778 
779 static int very_verbose(struct lock_class *class)
780 {
781 #if VERY_VERBOSE
782 	return class_filter(class);
783 #endif
784 	return 0;
785 }
786 
787 /*
788  * Is this the address of a static object:
789  */
790 #ifdef __KERNEL__
791 static int static_obj(const void *obj)
792 {
793 	unsigned long start = (unsigned long) &_stext,
794 		      end   = (unsigned long) &_end,
795 		      addr  = (unsigned long) obj;
796 
797 	if (arch_is_kernel_initmem_freed(addr))
798 		return 0;
799 
800 	/*
801 	 * static variable?
802 	 */
803 	if ((addr >= start) && (addr < end))
804 		return 1;
805 
806 	if (arch_is_kernel_data(addr))
807 		return 1;
808 
809 	/*
810 	 * in-kernel percpu var?
811 	 */
812 	if (is_kernel_percpu_address(addr))
813 		return 1;
814 
815 	/*
816 	 * module static or percpu var?
817 	 */
818 	return is_module_address(addr) || is_module_percpu_address(addr);
819 }
820 #endif
821 
822 /*
823  * To make lock name printouts unique, we calculate a unique
824  * class->name_version generation counter. The caller must hold the graph
825  * lock.
826  */
827 static int count_matching_names(struct lock_class *new_class)
828 {
829 	struct lock_class *class;
830 	int count = 0;
831 
832 	if (!new_class->name)
833 		return 0;
834 
835 	list_for_each_entry(class, &all_lock_classes, lock_entry) {
836 		if (new_class->key - new_class->subclass == class->key)
837 			return class->name_version;
838 		if (class->name && !strcmp(class->name, new_class->name))
839 			count = max(count, class->name_version);
840 	}
841 
842 	return count + 1;
843 }
844 
845 /* used from NMI context -- must be lockless */
846 static noinstr struct lock_class *
847 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
848 {
849 	struct lockdep_subclass_key *key;
850 	struct hlist_head *hash_head;
851 	struct lock_class *class;
852 
853 	if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
854 		instrumentation_begin();
855 		debug_locks_off();
856 		printk(KERN_ERR
857 			"BUG: looking up invalid subclass: %u\n", subclass);
858 		printk(KERN_ERR
859 			"turning off the locking correctness validator.\n");
860 		dump_stack();
861 		instrumentation_end();
862 		return NULL;
863 	}
864 
865 	/*
866 	 * If it is not initialised then it has never been locked,
867 	 * so it won't be present in the hash table.
868 	 */
869 	if (unlikely(!lock->key))
870 		return NULL;
871 
872 	/*
873 	 * NOTE: the class-key must be unique. For dynamic locks, a static
874 	 * lock_class_key variable is passed in through the mutex_init()
875 	 * (or spin_lock_init()) call - which acts as the key. For static
876 	 * locks we use the lock object itself as the key.
877 	 */
878 	BUILD_BUG_ON(sizeof(struct lock_class_key) >
879 			sizeof(struct lockdep_map));
880 
881 	key = lock->key->subkeys + subclass;
882 
883 	hash_head = classhashentry(key);
884 
885 	/*
886 	 * We do an RCU walk of the hash, see lockdep_free_key_range().
887 	 */
888 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
889 		return NULL;
890 
891 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
892 		if (class->key == key) {
893 			/*
894 			 * Huh! same key, different name? Did someone trample
895 			 * on some memory? We're most confused.
896 			 */
897 			WARN_ON_ONCE(class->name != lock->name &&
898 				     lock->key != &__lockdep_no_validate__);
899 			return class;
900 		}
901 	}
902 
903 	return NULL;
904 }
905 
906 /*
907  * Static locks do not have their class-keys yet - for them the key is
908  * the lock object itself. If the lock is in the per cpu area, the
909  * canonical address of the lock (per cpu offset removed) is used.
910  */
911 static bool assign_lock_key(struct lockdep_map *lock)
912 {
913 	unsigned long can_addr, addr = (unsigned long)lock;
914 
915 #ifdef __KERNEL__
916 	/*
917 	 * lockdep_free_key_range() assumes that struct lock_class_key
918 	 * objects do not overlap. Since we use the address of lock
919 	 * objects as class key for static objects, check whether the
920 	 * size of lock_class_key objects does not exceed the size of
921 	 * the smallest lock object.
922 	 */
923 	BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
924 #endif
925 
926 	if (__is_kernel_percpu_address(addr, &can_addr))
927 		lock->key = (void *)can_addr;
928 	else if (__is_module_percpu_address(addr, &can_addr))
929 		lock->key = (void *)can_addr;
930 	else if (static_obj(lock))
931 		lock->key = (void *)lock;
932 	else {
933 		/* Debug-check: all keys must be persistent! */
934 		debug_locks_off();
935 		pr_err("INFO: trying to register non-static key.\n");
936 		pr_err("The code is fine but needs lockdep annotation, or maybe\n");
937 		pr_err("you didn't initialize this object before use?\n");
938 		pr_err("turning off the locking correctness validator.\n");
939 		dump_stack();
940 		return false;
941 	}
942 
943 	return true;
944 }
945 
946 #ifdef CONFIG_DEBUG_LOCKDEP
947 
948 /* Check whether element @e occurs in list @h */
949 static bool in_list(struct list_head *e, struct list_head *h)
950 {
951 	struct list_head *f;
952 
953 	list_for_each(f, h) {
954 		if (e == f)
955 			return true;
956 	}
957 
958 	return false;
959 }
960 
961 /*
962  * Check whether entry @e occurs in any of the locks_after or locks_before
963  * lists.
964  */
965 static bool in_any_class_list(struct list_head *e)
966 {
967 	struct lock_class *class;
968 	int i;
969 
970 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
971 		class = &lock_classes[i];
972 		if (in_list(e, &class->locks_after) ||
973 		    in_list(e, &class->locks_before))
974 			return true;
975 	}
976 	return false;
977 }
978 
979 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
980 {
981 	struct lock_list *e;
982 
983 	list_for_each_entry(e, h, entry) {
984 		if (e->links_to != c) {
985 			printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
986 			       c->name ? : "(?)",
987 			       (unsigned long)(e - list_entries),
988 			       e->links_to && e->links_to->name ?
989 			       e->links_to->name : "(?)",
990 			       e->class && e->class->name ? e->class->name :
991 			       "(?)");
992 			return false;
993 		}
994 	}
995 	return true;
996 }
997 
998 #ifdef CONFIG_PROVE_LOCKING
999 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1000 #endif
1001 
1002 static bool check_lock_chain_key(struct lock_chain *chain)
1003 {
1004 #ifdef CONFIG_PROVE_LOCKING
1005 	u64 chain_key = INITIAL_CHAIN_KEY;
1006 	int i;
1007 
1008 	for (i = chain->base; i < chain->base + chain->depth; i++)
1009 		chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1010 	/*
1011 	 * The 'unsigned long long' casts avoid that a compiler warning
1012 	 * is reported when building tools/lib/lockdep.
1013 	 */
1014 	if (chain->chain_key != chain_key) {
1015 		printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1016 		       (unsigned long long)(chain - lock_chains),
1017 		       (unsigned long long)chain->chain_key,
1018 		       (unsigned long long)chain_key);
1019 		return false;
1020 	}
1021 #endif
1022 	return true;
1023 }
1024 
1025 static bool in_any_zapped_class_list(struct lock_class *class)
1026 {
1027 	struct pending_free *pf;
1028 	int i;
1029 
1030 	for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1031 		if (in_list(&class->lock_entry, &pf->zapped))
1032 			return true;
1033 	}
1034 
1035 	return false;
1036 }
1037 
1038 static bool __check_data_structures(void)
1039 {
1040 	struct lock_class *class;
1041 	struct lock_chain *chain;
1042 	struct hlist_head *head;
1043 	struct lock_list *e;
1044 	int i;
1045 
1046 	/* Check whether all classes occur in a lock list. */
1047 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1048 		class = &lock_classes[i];
1049 		if (!in_list(&class->lock_entry, &all_lock_classes) &&
1050 		    !in_list(&class->lock_entry, &free_lock_classes) &&
1051 		    !in_any_zapped_class_list(class)) {
1052 			printk(KERN_INFO "class %px/%s is not in any class list\n",
1053 			       class, class->name ? : "(?)");
1054 			return false;
1055 		}
1056 	}
1057 
1058 	/* Check whether all classes have valid lock lists. */
1059 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1060 		class = &lock_classes[i];
1061 		if (!class_lock_list_valid(class, &class->locks_before))
1062 			return false;
1063 		if (!class_lock_list_valid(class, &class->locks_after))
1064 			return false;
1065 	}
1066 
1067 	/* Check the chain_key of all lock chains. */
1068 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1069 		head = chainhash_table + i;
1070 		hlist_for_each_entry_rcu(chain, head, entry) {
1071 			if (!check_lock_chain_key(chain))
1072 				return false;
1073 		}
1074 	}
1075 
1076 	/*
1077 	 * Check whether all list entries that are in use occur in a class
1078 	 * lock list.
1079 	 */
1080 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1081 		e = list_entries + i;
1082 		if (!in_any_class_list(&e->entry)) {
1083 			printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1084 			       (unsigned int)(e - list_entries),
1085 			       e->class->name ? : "(?)",
1086 			       e->links_to->name ? : "(?)");
1087 			return false;
1088 		}
1089 	}
1090 
1091 	/*
1092 	 * Check whether all list entries that are not in use do not occur in
1093 	 * a class lock list.
1094 	 */
1095 	for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1096 		e = list_entries + i;
1097 		if (in_any_class_list(&e->entry)) {
1098 			printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1099 			       (unsigned int)(e - list_entries),
1100 			       e->class && e->class->name ? e->class->name :
1101 			       "(?)",
1102 			       e->links_to && e->links_to->name ?
1103 			       e->links_to->name : "(?)");
1104 			return false;
1105 		}
1106 	}
1107 
1108 	return true;
1109 }
1110 
1111 int check_consistency = 0;
1112 module_param(check_consistency, int, 0644);
1113 
1114 static void check_data_structures(void)
1115 {
1116 	static bool once = false;
1117 
1118 	if (check_consistency && !once) {
1119 		if (!__check_data_structures()) {
1120 			once = true;
1121 			WARN_ON(once);
1122 		}
1123 	}
1124 }
1125 
1126 #else /* CONFIG_DEBUG_LOCKDEP */
1127 
1128 static inline void check_data_structures(void) { }
1129 
1130 #endif /* CONFIG_DEBUG_LOCKDEP */
1131 
1132 static void init_chain_block_buckets(void);
1133 
1134 /*
1135  * Initialize the lock_classes[] array elements, the free_lock_classes list
1136  * and also the delayed_free structure.
1137  */
1138 static void init_data_structures_once(void)
1139 {
1140 	static bool __read_mostly ds_initialized, rcu_head_initialized;
1141 	int i;
1142 
1143 	if (likely(rcu_head_initialized))
1144 		return;
1145 
1146 	if (system_state >= SYSTEM_SCHEDULING) {
1147 		init_rcu_head(&delayed_free.rcu_head);
1148 		rcu_head_initialized = true;
1149 	}
1150 
1151 	if (ds_initialized)
1152 		return;
1153 
1154 	ds_initialized = true;
1155 
1156 	INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1157 	INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1158 
1159 	for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1160 		list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1161 		INIT_LIST_HEAD(&lock_classes[i].locks_after);
1162 		INIT_LIST_HEAD(&lock_classes[i].locks_before);
1163 	}
1164 	init_chain_block_buckets();
1165 }
1166 
1167 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1168 {
1169 	unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1170 
1171 	return lock_keys_hash + hash;
1172 }
1173 
1174 /* Register a dynamically allocated key. */
1175 void lockdep_register_key(struct lock_class_key *key)
1176 {
1177 	struct hlist_head *hash_head;
1178 	struct lock_class_key *k;
1179 	unsigned long flags;
1180 
1181 	if (WARN_ON_ONCE(static_obj(key)))
1182 		return;
1183 	hash_head = keyhashentry(key);
1184 
1185 	raw_local_irq_save(flags);
1186 	if (!graph_lock())
1187 		goto restore_irqs;
1188 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1189 		if (WARN_ON_ONCE(k == key))
1190 			goto out_unlock;
1191 	}
1192 	hlist_add_head_rcu(&key->hash_entry, hash_head);
1193 out_unlock:
1194 	graph_unlock();
1195 restore_irqs:
1196 	raw_local_irq_restore(flags);
1197 }
1198 EXPORT_SYMBOL_GPL(lockdep_register_key);
1199 
1200 /* Check whether a key has been registered as a dynamic key. */
1201 static bool is_dynamic_key(const struct lock_class_key *key)
1202 {
1203 	struct hlist_head *hash_head;
1204 	struct lock_class_key *k;
1205 	bool found = false;
1206 
1207 	if (WARN_ON_ONCE(static_obj(key)))
1208 		return false;
1209 
1210 	/*
1211 	 * If lock debugging is disabled lock_keys_hash[] may contain
1212 	 * pointers to memory that has already been freed. Avoid triggering
1213 	 * a use-after-free in that case by returning early.
1214 	 */
1215 	if (!debug_locks)
1216 		return true;
1217 
1218 	hash_head = keyhashentry(key);
1219 
1220 	rcu_read_lock();
1221 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1222 		if (k == key) {
1223 			found = true;
1224 			break;
1225 		}
1226 	}
1227 	rcu_read_unlock();
1228 
1229 	return found;
1230 }
1231 
1232 /*
1233  * Register a lock's class in the hash-table, if the class is not present
1234  * yet. Otherwise we look it up. We cache the result in the lock object
1235  * itself, so actual lookup of the hash should be once per lock object.
1236  */
1237 static struct lock_class *
1238 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1239 {
1240 	struct lockdep_subclass_key *key;
1241 	struct hlist_head *hash_head;
1242 	struct lock_class *class;
1243 
1244 	DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1245 
1246 	class = look_up_lock_class(lock, subclass);
1247 	if (likely(class))
1248 		goto out_set_class_cache;
1249 
1250 	if (!lock->key) {
1251 		if (!assign_lock_key(lock))
1252 			return NULL;
1253 	} else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1254 		return NULL;
1255 	}
1256 
1257 	key = lock->key->subkeys + subclass;
1258 	hash_head = classhashentry(key);
1259 
1260 	if (!graph_lock()) {
1261 		return NULL;
1262 	}
1263 	/*
1264 	 * We have to do the hash-walk again, to avoid races
1265 	 * with another CPU:
1266 	 */
1267 	hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1268 		if (class->key == key)
1269 			goto out_unlock_set;
1270 	}
1271 
1272 	init_data_structures_once();
1273 
1274 	/* Allocate a new lock class and add it to the hash. */
1275 	class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1276 					 lock_entry);
1277 	if (!class) {
1278 		if (!debug_locks_off_graph_unlock()) {
1279 			return NULL;
1280 		}
1281 
1282 		print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1283 		dump_stack();
1284 		return NULL;
1285 	}
1286 	nr_lock_classes++;
1287 	__set_bit(class - lock_classes, lock_classes_in_use);
1288 	debug_atomic_inc(nr_unused_locks);
1289 	class->key = key;
1290 	class->name = lock->name;
1291 	class->subclass = subclass;
1292 	WARN_ON_ONCE(!list_empty(&class->locks_before));
1293 	WARN_ON_ONCE(!list_empty(&class->locks_after));
1294 	class->name_version = count_matching_names(class);
1295 	class->wait_type_inner = lock->wait_type_inner;
1296 	class->wait_type_outer = lock->wait_type_outer;
1297 	class->lock_type = lock->lock_type;
1298 	/*
1299 	 * We use RCU's safe list-add method to make
1300 	 * parallel walking of the hash-list safe:
1301 	 */
1302 	hlist_add_head_rcu(&class->hash_entry, hash_head);
1303 	/*
1304 	 * Remove the class from the free list and add it to the global list
1305 	 * of classes.
1306 	 */
1307 	list_move_tail(&class->lock_entry, &all_lock_classes);
1308 
1309 	if (verbose(class)) {
1310 		graph_unlock();
1311 
1312 		printk("\nnew class %px: %s", class->key, class->name);
1313 		if (class->name_version > 1)
1314 			printk(KERN_CONT "#%d", class->name_version);
1315 		printk(KERN_CONT "\n");
1316 		dump_stack();
1317 
1318 		if (!graph_lock()) {
1319 			return NULL;
1320 		}
1321 	}
1322 out_unlock_set:
1323 	graph_unlock();
1324 
1325 out_set_class_cache:
1326 	if (!subclass || force)
1327 		lock->class_cache[0] = class;
1328 	else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1329 		lock->class_cache[subclass] = class;
1330 
1331 	/*
1332 	 * Hash collision, did we smoke some? We found a class with a matching
1333 	 * hash but the subclass -- which is hashed in -- didn't match.
1334 	 */
1335 	if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1336 		return NULL;
1337 
1338 	return class;
1339 }
1340 
1341 #ifdef CONFIG_PROVE_LOCKING
1342 /*
1343  * Allocate a lockdep entry. (assumes the graph_lock held, returns
1344  * with NULL on failure)
1345  */
1346 static struct lock_list *alloc_list_entry(void)
1347 {
1348 	int idx = find_first_zero_bit(list_entries_in_use,
1349 				      ARRAY_SIZE(list_entries));
1350 
1351 	if (idx >= ARRAY_SIZE(list_entries)) {
1352 		if (!debug_locks_off_graph_unlock())
1353 			return NULL;
1354 
1355 		print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1356 		dump_stack();
1357 		return NULL;
1358 	}
1359 	nr_list_entries++;
1360 	__set_bit(idx, list_entries_in_use);
1361 	return list_entries + idx;
1362 }
1363 
1364 /*
1365  * Add a new dependency to the head of the list:
1366  */
1367 static int add_lock_to_list(struct lock_class *this,
1368 			    struct lock_class *links_to, struct list_head *head,
1369 			    unsigned long ip, u16 distance, u8 dep,
1370 			    const struct lock_trace *trace)
1371 {
1372 	struct lock_list *entry;
1373 	/*
1374 	 * Lock not present yet - get a new dependency struct and
1375 	 * add it to the list:
1376 	 */
1377 	entry = alloc_list_entry();
1378 	if (!entry)
1379 		return 0;
1380 
1381 	entry->class = this;
1382 	entry->links_to = links_to;
1383 	entry->dep = dep;
1384 	entry->distance = distance;
1385 	entry->trace = trace;
1386 	/*
1387 	 * Both allocation and removal are done under the graph lock; but
1388 	 * iteration is under RCU-sched; see look_up_lock_class() and
1389 	 * lockdep_free_key_range().
1390 	 */
1391 	list_add_tail_rcu(&entry->entry, head);
1392 
1393 	return 1;
1394 }
1395 
1396 /*
1397  * For good efficiency of modular, we use power of 2
1398  */
1399 #define MAX_CIRCULAR_QUEUE_SIZE		(1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1400 #define CQ_MASK				(MAX_CIRCULAR_QUEUE_SIZE-1)
1401 
1402 /*
1403  * The circular_queue and helpers are used to implement graph
1404  * breadth-first search (BFS) algorithm, by which we can determine
1405  * whether there is a path from a lock to another. In deadlock checks,
1406  * a path from the next lock to be acquired to a previous held lock
1407  * indicates that adding the <prev> -> <next> lock dependency will
1408  * produce a circle in the graph. Breadth-first search instead of
1409  * depth-first search is used in order to find the shortest (circular)
1410  * path.
1411  */
1412 struct circular_queue {
1413 	struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1414 	unsigned int  front, rear;
1415 };
1416 
1417 static struct circular_queue lock_cq;
1418 
1419 unsigned int max_bfs_queue_depth;
1420 
1421 static unsigned int lockdep_dependency_gen_id;
1422 
1423 static inline void __cq_init(struct circular_queue *cq)
1424 {
1425 	cq->front = cq->rear = 0;
1426 	lockdep_dependency_gen_id++;
1427 }
1428 
1429 static inline int __cq_empty(struct circular_queue *cq)
1430 {
1431 	return (cq->front == cq->rear);
1432 }
1433 
1434 static inline int __cq_full(struct circular_queue *cq)
1435 {
1436 	return ((cq->rear + 1) & CQ_MASK) == cq->front;
1437 }
1438 
1439 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1440 {
1441 	if (__cq_full(cq))
1442 		return -1;
1443 
1444 	cq->element[cq->rear] = elem;
1445 	cq->rear = (cq->rear + 1) & CQ_MASK;
1446 	return 0;
1447 }
1448 
1449 /*
1450  * Dequeue an element from the circular_queue, return a lock_list if
1451  * the queue is not empty, or NULL if otherwise.
1452  */
1453 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1454 {
1455 	struct lock_list * lock;
1456 
1457 	if (__cq_empty(cq))
1458 		return NULL;
1459 
1460 	lock = cq->element[cq->front];
1461 	cq->front = (cq->front + 1) & CQ_MASK;
1462 
1463 	return lock;
1464 }
1465 
1466 static inline unsigned int  __cq_get_elem_count(struct circular_queue *cq)
1467 {
1468 	return (cq->rear - cq->front) & CQ_MASK;
1469 }
1470 
1471 static inline void mark_lock_accessed(struct lock_list *lock)
1472 {
1473 	lock->class->dep_gen_id = lockdep_dependency_gen_id;
1474 }
1475 
1476 static inline void visit_lock_entry(struct lock_list *lock,
1477 				    struct lock_list *parent)
1478 {
1479 	lock->parent = parent;
1480 }
1481 
1482 static inline unsigned long lock_accessed(struct lock_list *lock)
1483 {
1484 	return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1485 }
1486 
1487 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1488 {
1489 	return child->parent;
1490 }
1491 
1492 static inline int get_lock_depth(struct lock_list *child)
1493 {
1494 	int depth = 0;
1495 	struct lock_list *parent;
1496 
1497 	while ((parent = get_lock_parent(child))) {
1498 		child = parent;
1499 		depth++;
1500 	}
1501 	return depth;
1502 }
1503 
1504 /*
1505  * Return the forward or backward dependency list.
1506  *
1507  * @lock:   the lock_list to get its class's dependency list
1508  * @offset: the offset to struct lock_class to determine whether it is
1509  *          locks_after or locks_before
1510  */
1511 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1512 {
1513 	void *lock_class = lock->class;
1514 
1515 	return lock_class + offset;
1516 }
1517 /*
1518  * Return values of a bfs search:
1519  *
1520  * BFS_E* indicates an error
1521  * BFS_R* indicates a result (match or not)
1522  *
1523  * BFS_EINVALIDNODE: Find a invalid node in the graph.
1524  *
1525  * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1526  *
1527  * BFS_RMATCH: Find the matched node in the graph, and put that node into
1528  *             *@target_entry.
1529  *
1530  * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1531  *               _unchanged_.
1532  */
1533 enum bfs_result {
1534 	BFS_EINVALIDNODE = -2,
1535 	BFS_EQUEUEFULL = -1,
1536 	BFS_RMATCH = 0,
1537 	BFS_RNOMATCH = 1,
1538 };
1539 
1540 /*
1541  * bfs_result < 0 means error
1542  */
1543 static inline bool bfs_error(enum bfs_result res)
1544 {
1545 	return res < 0;
1546 }
1547 
1548 /*
1549  * DEP_*_BIT in lock_list::dep
1550  *
1551  * For dependency @prev -> @next:
1552  *
1553  *   SR: @prev is shared reader (->read != 0) and @next is recursive reader
1554  *       (->read == 2)
1555  *   ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1556  *   SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1557  *   EN: @prev is exclusive locker and @next is non-recursive locker
1558  *
1559  * Note that we define the value of DEP_*_BITs so that:
1560  *   bit0 is prev->read == 0
1561  *   bit1 is next->read != 2
1562  */
1563 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1564 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1565 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1566 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1567 
1568 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1569 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1570 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1571 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1572 
1573 static inline unsigned int
1574 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1575 {
1576 	return (prev->read == 0) + ((next->read != 2) << 1);
1577 }
1578 
1579 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1580 {
1581 	return 1U << __calc_dep_bit(prev, next);
1582 }
1583 
1584 /*
1585  * calculate the dep_bit for backwards edges. We care about whether @prev is
1586  * shared and whether @next is recursive.
1587  */
1588 static inline unsigned int
1589 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1590 {
1591 	return (next->read != 2) + ((prev->read == 0) << 1);
1592 }
1593 
1594 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1595 {
1596 	return 1U << __calc_dep_bitb(prev, next);
1597 }
1598 
1599 /*
1600  * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1601  * search.
1602  */
1603 static inline void __bfs_init_root(struct lock_list *lock,
1604 				   struct lock_class *class)
1605 {
1606 	lock->class = class;
1607 	lock->parent = NULL;
1608 	lock->only_xr = 0;
1609 }
1610 
1611 /*
1612  * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1613  * root for a BFS search.
1614  *
1615  * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1616  * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1617  * and -(S*)->.
1618  */
1619 static inline void bfs_init_root(struct lock_list *lock,
1620 				 struct held_lock *hlock)
1621 {
1622 	__bfs_init_root(lock, hlock_class(hlock));
1623 	lock->only_xr = (hlock->read == 2);
1624 }
1625 
1626 /*
1627  * Similar to bfs_init_root() but initialize the root for backwards BFS.
1628  *
1629  * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1630  * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1631  * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1632  */
1633 static inline void bfs_init_rootb(struct lock_list *lock,
1634 				  struct held_lock *hlock)
1635 {
1636 	__bfs_init_root(lock, hlock_class(hlock));
1637 	lock->only_xr = (hlock->read != 0);
1638 }
1639 
1640 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1641 {
1642 	if (!lock || !lock->parent)
1643 		return NULL;
1644 
1645 	return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1646 				     &lock->entry, struct lock_list, entry);
1647 }
1648 
1649 /*
1650  * Breadth-First Search to find a strong path in the dependency graph.
1651  *
1652  * @source_entry: the source of the path we are searching for.
1653  * @data: data used for the second parameter of @match function
1654  * @match: match function for the search
1655  * @target_entry: pointer to the target of a matched path
1656  * @offset: the offset to struct lock_class to determine whether it is
1657  *          locks_after or locks_before
1658  *
1659  * We may have multiple edges (considering different kinds of dependencies,
1660  * e.g. ER and SN) between two nodes in the dependency graph. But
1661  * only the strong dependency path in the graph is relevant to deadlocks. A
1662  * strong dependency path is a dependency path that doesn't have two adjacent
1663  * dependencies as -(*R)-> -(S*)->, please see:
1664  *
1665  *         Documentation/locking/lockdep-design.rst
1666  *
1667  * for more explanation of the definition of strong dependency paths
1668  *
1669  * In __bfs(), we only traverse in the strong dependency path:
1670  *
1671  *     In lock_list::only_xr, we record whether the previous dependency only
1672  *     has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1673  *     filter out any -(S*)-> in the current dependency and after that, the
1674  *     ->only_xr is set according to whether we only have -(*R)-> left.
1675  */
1676 static enum bfs_result __bfs(struct lock_list *source_entry,
1677 			     void *data,
1678 			     bool (*match)(struct lock_list *entry, void *data),
1679 			     bool (*skip)(struct lock_list *entry, void *data),
1680 			     struct lock_list **target_entry,
1681 			     int offset)
1682 {
1683 	struct circular_queue *cq = &lock_cq;
1684 	struct lock_list *lock = NULL;
1685 	struct lock_list *entry;
1686 	struct list_head *head;
1687 	unsigned int cq_depth;
1688 	bool first;
1689 
1690 	lockdep_assert_locked();
1691 
1692 	__cq_init(cq);
1693 	__cq_enqueue(cq, source_entry);
1694 
1695 	while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696 		if (!lock->class)
1697 			return BFS_EINVALIDNODE;
1698 
1699 		/*
1700 		 * Step 1: check whether we already finish on this one.
1701 		 *
1702 		 * If we have visited all the dependencies from this @lock to
1703 		 * others (iow, if we have visited all lock_list entries in
1704 		 * @lock->class->locks_{after,before}) we skip, otherwise go
1705 		 * and visit all the dependencies in the list and mark this
1706 		 * list accessed.
1707 		 */
1708 		if (lock_accessed(lock))
1709 			continue;
1710 		else
1711 			mark_lock_accessed(lock);
1712 
1713 		/*
1714 		 * Step 2: check whether prev dependency and this form a strong
1715 		 *         dependency path.
1716 		 */
1717 		if (lock->parent) { /* Parent exists, check prev dependency */
1718 			u8 dep = lock->dep;
1719 			bool prev_only_xr = lock->parent->only_xr;
1720 
1721 			/*
1722 			 * Mask out all -(S*)-> if we only have *R in previous
1723 			 * step, because -(*R)-> -(S*)-> don't make up a strong
1724 			 * dependency.
1725 			 */
1726 			if (prev_only_xr)
1727 				dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728 
1729 			/* If nothing left, we skip */
1730 			if (!dep)
1731 				continue;
1732 
1733 			/* If there are only -(*R)-> left, set that for the next step */
1734 			lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1735 		}
1736 
1737 		/*
1738 		 * Step 3: we haven't visited this and there is a strong
1739 		 *         dependency path to this, so check with @match.
1740 		 *         If @skip is provide and returns true, we skip this
1741 		 *         lock (and any path this lock is in).
1742 		 */
1743 		if (skip && skip(lock, data))
1744 			continue;
1745 
1746 		if (match(lock, data)) {
1747 			*target_entry = lock;
1748 			return BFS_RMATCH;
1749 		}
1750 
1751 		/*
1752 		 * Step 4: if not match, expand the path by adding the
1753 		 *         forward or backwards dependencies in the search
1754 		 *
1755 		 */
1756 		first = true;
1757 		head = get_dep_list(lock, offset);
1758 		list_for_each_entry_rcu(entry, head, entry) {
1759 			visit_lock_entry(entry, lock);
1760 
1761 			/*
1762 			 * Note we only enqueue the first of the list into the
1763 			 * queue, because we can always find a sibling
1764 			 * dependency from one (see __bfs_next()), as a result
1765 			 * the space of queue is saved.
1766 			 */
1767 			if (!first)
1768 				continue;
1769 
1770 			first = false;
1771 
1772 			if (__cq_enqueue(cq, entry))
1773 				return BFS_EQUEUEFULL;
1774 
1775 			cq_depth = __cq_get_elem_count(cq);
1776 			if (max_bfs_queue_depth < cq_depth)
1777 				max_bfs_queue_depth = cq_depth;
1778 		}
1779 	}
1780 
1781 	return BFS_RNOMATCH;
1782 }
1783 
1784 static inline enum bfs_result
1785 __bfs_forwards(struct lock_list *src_entry,
1786 	       void *data,
1787 	       bool (*match)(struct lock_list *entry, void *data),
1788 	       bool (*skip)(struct lock_list *entry, void *data),
1789 	       struct lock_list **target_entry)
1790 {
1791 	return __bfs(src_entry, data, match, skip, target_entry,
1792 		     offsetof(struct lock_class, locks_after));
1793 
1794 }
1795 
1796 static inline enum bfs_result
1797 __bfs_backwards(struct lock_list *src_entry,
1798 		void *data,
1799 		bool (*match)(struct lock_list *entry, void *data),
1800 	       bool (*skip)(struct lock_list *entry, void *data),
1801 		struct lock_list **target_entry)
1802 {
1803 	return __bfs(src_entry, data, match, skip, target_entry,
1804 		     offsetof(struct lock_class, locks_before));
1805 
1806 }
1807 
1808 static void print_lock_trace(const struct lock_trace *trace,
1809 			     unsigned int spaces)
1810 {
1811 	stack_trace_print(trace->entries, trace->nr_entries, spaces);
1812 }
1813 
1814 /*
1815  * Print a dependency chain entry (this is only done when a deadlock
1816  * has been detected):
1817  */
1818 static noinline void
1819 print_circular_bug_entry(struct lock_list *target, int depth)
1820 {
1821 	if (debug_locks_silent)
1822 		return;
1823 	printk("\n-> #%u", depth);
1824 	print_lock_name(target->class);
1825 	printk(KERN_CONT ":\n");
1826 	print_lock_trace(target->trace, 6);
1827 }
1828 
1829 static void
1830 print_circular_lock_scenario(struct held_lock *src,
1831 			     struct held_lock *tgt,
1832 			     struct lock_list *prt)
1833 {
1834 	struct lock_class *source = hlock_class(src);
1835 	struct lock_class *target = hlock_class(tgt);
1836 	struct lock_class *parent = prt->class;
1837 
1838 	/*
1839 	 * A direct locking problem where unsafe_class lock is taken
1840 	 * directly by safe_class lock, then all we need to show
1841 	 * is the deadlock scenario, as it is obvious that the
1842 	 * unsafe lock is taken under the safe lock.
1843 	 *
1844 	 * But if there is a chain instead, where the safe lock takes
1845 	 * an intermediate lock (middle_class) where this lock is
1846 	 * not the same as the safe lock, then the lock chain is
1847 	 * used to describe the problem. Otherwise we would need
1848 	 * to show a different CPU case for each link in the chain
1849 	 * from the safe_class lock to the unsafe_class lock.
1850 	 */
1851 	if (parent != source) {
1852 		printk("Chain exists of:\n  ");
1853 		__print_lock_name(source);
1854 		printk(KERN_CONT " --> ");
1855 		__print_lock_name(parent);
1856 		printk(KERN_CONT " --> ");
1857 		__print_lock_name(target);
1858 		printk(KERN_CONT "\n\n");
1859 	}
1860 
1861 	printk(" Possible unsafe locking scenario:\n\n");
1862 	printk("       CPU0                    CPU1\n");
1863 	printk("       ----                    ----\n");
1864 	printk("  lock(");
1865 	__print_lock_name(target);
1866 	printk(KERN_CONT ");\n");
1867 	printk("                               lock(");
1868 	__print_lock_name(parent);
1869 	printk(KERN_CONT ");\n");
1870 	printk("                               lock(");
1871 	__print_lock_name(target);
1872 	printk(KERN_CONT ");\n");
1873 	printk("  lock(");
1874 	__print_lock_name(source);
1875 	printk(KERN_CONT ");\n");
1876 	printk("\n *** DEADLOCK ***\n\n");
1877 }
1878 
1879 /*
1880  * When a circular dependency is detected, print the
1881  * header first:
1882  */
1883 static noinline void
1884 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1885 			struct held_lock *check_src,
1886 			struct held_lock *check_tgt)
1887 {
1888 	struct task_struct *curr = current;
1889 
1890 	if (debug_locks_silent)
1891 		return;
1892 
1893 	pr_warn("\n");
1894 	pr_warn("======================================================\n");
1895 	pr_warn("WARNING: possible circular locking dependency detected\n");
1896 	print_kernel_ident();
1897 	pr_warn("------------------------------------------------------\n");
1898 	pr_warn("%s/%d is trying to acquire lock:\n",
1899 		curr->comm, task_pid_nr(curr));
1900 	print_lock(check_src);
1901 
1902 	pr_warn("\nbut task is already holding lock:\n");
1903 
1904 	print_lock(check_tgt);
1905 	pr_warn("\nwhich lock already depends on the new lock.\n\n");
1906 	pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1907 
1908 	print_circular_bug_entry(entry, depth);
1909 }
1910 
1911 /*
1912  * We are about to add A -> B into the dependency graph, and in __bfs() a
1913  * strong dependency path A -> .. -> B is found: hlock_class equals
1914  * entry->class.
1915  *
1916  * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1917  * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1918  * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1919  * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1920  * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1921  * having dependency A -> B, we could already get a equivalent path ..-> A ->
1922  * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1923  *
1924  * We need to make sure both the start and the end of A -> .. -> B is not
1925  * weaker than A -> B. For the start part, please see the comment in
1926  * check_redundant(). For the end part, we need:
1927  *
1928  * Either
1929  *
1930  *     a) A -> B is -(*R)-> (everything is not weaker than that)
1931  *
1932  * or
1933  *
1934  *     b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1935  *
1936  */
1937 static inline bool hlock_equal(struct lock_list *entry, void *data)
1938 {
1939 	struct held_lock *hlock = (struct held_lock *)data;
1940 
1941 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1942 	       (hlock->read == 2 ||  /* A -> B is -(*R)-> */
1943 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1944 }
1945 
1946 /*
1947  * We are about to add B -> A into the dependency graph, and in __bfs() a
1948  * strong dependency path A -> .. -> B is found: hlock_class equals
1949  * entry->class.
1950  *
1951  * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1952  * dependency cycle, that means:
1953  *
1954  * Either
1955  *
1956  *     a) B -> A is -(E*)->
1957  *
1958  * or
1959  *
1960  *     b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1961  *
1962  * as then we don't have -(*R)-> -(S*)-> in the cycle.
1963  */
1964 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1965 {
1966 	struct held_lock *hlock = (struct held_lock *)data;
1967 
1968 	return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1969 	       (hlock->read == 0 || /* B -> A is -(E*)-> */
1970 		!entry->only_xr); /* A -> .. -> B is -(*N)-> */
1971 }
1972 
1973 static noinline void print_circular_bug(struct lock_list *this,
1974 				struct lock_list *target,
1975 				struct held_lock *check_src,
1976 				struct held_lock *check_tgt)
1977 {
1978 	struct task_struct *curr = current;
1979 	struct lock_list *parent;
1980 	struct lock_list *first_parent;
1981 	int depth;
1982 
1983 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1984 		return;
1985 
1986 	this->trace = save_trace();
1987 	if (!this->trace)
1988 		return;
1989 
1990 	depth = get_lock_depth(target);
1991 
1992 	print_circular_bug_header(target, depth, check_src, check_tgt);
1993 
1994 	parent = get_lock_parent(target);
1995 	first_parent = parent;
1996 
1997 	while (parent) {
1998 		print_circular_bug_entry(parent, --depth);
1999 		parent = get_lock_parent(parent);
2000 	}
2001 
2002 	printk("\nother info that might help us debug this:\n\n");
2003 	print_circular_lock_scenario(check_src, check_tgt,
2004 				     first_parent);
2005 
2006 	lockdep_print_held_locks(curr);
2007 
2008 	printk("\nstack backtrace:\n");
2009 	dump_stack();
2010 }
2011 
2012 static noinline void print_bfs_bug(int ret)
2013 {
2014 	if (!debug_locks_off_graph_unlock())
2015 		return;
2016 
2017 	/*
2018 	 * Breadth-first-search failed, graph got corrupted?
2019 	 */
2020 	WARN(1, "lockdep bfs error:%d\n", ret);
2021 }
2022 
2023 static bool noop_count(struct lock_list *entry, void *data)
2024 {
2025 	(*(unsigned long *)data)++;
2026 	return false;
2027 }
2028 
2029 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2030 {
2031 	unsigned long  count = 0;
2032 	struct lock_list *target_entry;
2033 
2034 	__bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2035 
2036 	return count;
2037 }
2038 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2039 {
2040 	unsigned long ret, flags;
2041 	struct lock_list this;
2042 
2043 	__bfs_init_root(&this, class);
2044 
2045 	raw_local_irq_save(flags);
2046 	lockdep_lock();
2047 	ret = __lockdep_count_forward_deps(&this);
2048 	lockdep_unlock();
2049 	raw_local_irq_restore(flags);
2050 
2051 	return ret;
2052 }
2053 
2054 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2055 {
2056 	unsigned long  count = 0;
2057 	struct lock_list *target_entry;
2058 
2059 	__bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2060 
2061 	return count;
2062 }
2063 
2064 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2065 {
2066 	unsigned long ret, flags;
2067 	struct lock_list this;
2068 
2069 	__bfs_init_root(&this, class);
2070 
2071 	raw_local_irq_save(flags);
2072 	lockdep_lock();
2073 	ret = __lockdep_count_backward_deps(&this);
2074 	lockdep_unlock();
2075 	raw_local_irq_restore(flags);
2076 
2077 	return ret;
2078 }
2079 
2080 /*
2081  * Check that the dependency graph starting at <src> can lead to
2082  * <target> or not.
2083  */
2084 static noinline enum bfs_result
2085 check_path(struct held_lock *target, struct lock_list *src_entry,
2086 	   bool (*match)(struct lock_list *entry, void *data),
2087 	   bool (*skip)(struct lock_list *entry, void *data),
2088 	   struct lock_list **target_entry)
2089 {
2090 	enum bfs_result ret;
2091 
2092 	ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2093 
2094 	if (unlikely(bfs_error(ret)))
2095 		print_bfs_bug(ret);
2096 
2097 	return ret;
2098 }
2099 
2100 /*
2101  * Prove that the dependency graph starting at <src> can not
2102  * lead to <target>. If it can, there is a circle when adding
2103  * <target> -> <src> dependency.
2104  *
2105  * Print an error and return BFS_RMATCH if it does.
2106  */
2107 static noinline enum bfs_result
2108 check_noncircular(struct held_lock *src, struct held_lock *target,
2109 		  struct lock_trace **const trace)
2110 {
2111 	enum bfs_result ret;
2112 	struct lock_list *target_entry;
2113 	struct lock_list src_entry;
2114 
2115 	bfs_init_root(&src_entry, src);
2116 
2117 	debug_atomic_inc(nr_cyclic_checks);
2118 
2119 	ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2120 
2121 	if (unlikely(ret == BFS_RMATCH)) {
2122 		if (!*trace) {
2123 			/*
2124 			 * If save_trace fails here, the printing might
2125 			 * trigger a WARN but because of the !nr_entries it
2126 			 * should not do bad things.
2127 			 */
2128 			*trace = save_trace();
2129 		}
2130 
2131 		print_circular_bug(&src_entry, target_entry, src, target);
2132 	}
2133 
2134 	return ret;
2135 }
2136 
2137 #ifdef CONFIG_TRACE_IRQFLAGS
2138 
2139 /*
2140  * Forwards and backwards subgraph searching, for the purposes of
2141  * proving that two subgraphs can be connected by a new dependency
2142  * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2143  *
2144  * A irq safe->unsafe deadlock happens with the following conditions:
2145  *
2146  * 1) We have a strong dependency path A -> ... -> B
2147  *
2148  * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2149  *    irq can create a new dependency B -> A (consider the case that a holder
2150  *    of B gets interrupted by an irq whose handler will try to acquire A).
2151  *
2152  * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2153  *    strong circle:
2154  *
2155  *      For the usage bits of B:
2156  *        a) if A -> B is -(*N)->, then B -> A could be any type, so any
2157  *           ENABLED_IRQ usage suffices.
2158  *        b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2159  *           ENABLED_IRQ_*_READ usage suffices.
2160  *
2161  *      For the usage bits of A:
2162  *        c) if A -> B is -(E*)->, then B -> A could be any type, so any
2163  *           USED_IN_IRQ usage suffices.
2164  *        d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2165  *           USED_IN_IRQ_*_READ usage suffices.
2166  */
2167 
2168 /*
2169  * There is a strong dependency path in the dependency graph: A -> B, and now
2170  * we need to decide which usage bit of A should be accumulated to detect
2171  * safe->unsafe bugs.
2172  *
2173  * Note that usage_accumulate() is used in backwards search, so ->only_xr
2174  * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2175  *
2176  * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2177  * path, any usage of A should be considered. Otherwise, we should only
2178  * consider _READ usage.
2179  */
2180 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2181 {
2182 	if (!entry->only_xr)
2183 		*(unsigned long *)mask |= entry->class->usage_mask;
2184 	else /* Mask out _READ usage bits */
2185 		*(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2186 
2187 	return false;
2188 }
2189 
2190 /*
2191  * There is a strong dependency path in the dependency graph: A -> B, and now
2192  * we need to decide which usage bit of B conflicts with the usage bits of A,
2193  * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2194  *
2195  * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2196  * path, any usage of B should be considered. Otherwise, we should only
2197  * consider _READ usage.
2198  */
2199 static inline bool usage_match(struct lock_list *entry, void *mask)
2200 {
2201 	if (!entry->only_xr)
2202 		return !!(entry->class->usage_mask & *(unsigned long *)mask);
2203 	else /* Mask out _READ usage bits */
2204 		return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2205 }
2206 
2207 static inline bool usage_skip(struct lock_list *entry, void *mask)
2208 {
2209 	/*
2210 	 * Skip local_lock() for irq inversion detection.
2211 	 *
2212 	 * For !RT, local_lock() is not a real lock, so it won't carry any
2213 	 * dependency.
2214 	 *
2215 	 * For RT, an irq inversion happens when we have lock A and B, and on
2216 	 * some CPU we can have:
2217 	 *
2218 	 *	lock(A);
2219 	 *	<interrupted>
2220 	 *	  lock(B);
2221 	 *
2222 	 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2223 	 *
2224 	 * Now we prove local_lock() cannot exist in that dependency. First we
2225 	 * have the observation for any lock chain L1 -> ... -> Ln, for any
2226 	 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2227 	 * wait context check will complain. And since B is not a sleep lock,
2228 	 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2229 	 * local_lock() is 3, which is greater than 2, therefore there is no
2230 	 * way the local_lock() exists in the dependency B -> ... -> A.
2231 	 *
2232 	 * As a result, we will skip local_lock(), when we search for irq
2233 	 * inversion bugs.
2234 	 */
2235 	if (entry->class->lock_type == LD_LOCK_PERCPU) {
2236 		if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2237 			return false;
2238 
2239 		return true;
2240 	}
2241 
2242 	return false;
2243 }
2244 
2245 /*
2246  * Find a node in the forwards-direction dependency sub-graph starting
2247  * at @root->class that matches @bit.
2248  *
2249  * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2250  * into *@target_entry.
2251  */
2252 static enum bfs_result
2253 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2254 			struct lock_list **target_entry)
2255 {
2256 	enum bfs_result result;
2257 
2258 	debug_atomic_inc(nr_find_usage_forwards_checks);
2259 
2260 	result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2261 
2262 	return result;
2263 }
2264 
2265 /*
2266  * Find a node in the backwards-direction dependency sub-graph starting
2267  * at @root->class that matches @bit.
2268  */
2269 static enum bfs_result
2270 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2271 			struct lock_list **target_entry)
2272 {
2273 	enum bfs_result result;
2274 
2275 	debug_atomic_inc(nr_find_usage_backwards_checks);
2276 
2277 	result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2278 
2279 	return result;
2280 }
2281 
2282 static void print_lock_class_header(struct lock_class *class, int depth)
2283 {
2284 	int bit;
2285 
2286 	printk("%*s->", depth, "");
2287 	print_lock_name(class);
2288 #ifdef CONFIG_DEBUG_LOCKDEP
2289 	printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2290 #endif
2291 	printk(KERN_CONT " {\n");
2292 
2293 	for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2294 		if (class->usage_mask & (1 << bit)) {
2295 			int len = depth;
2296 
2297 			len += printk("%*s   %s", depth, "", usage_str[bit]);
2298 			len += printk(KERN_CONT " at:\n");
2299 			print_lock_trace(class->usage_traces[bit], len);
2300 		}
2301 	}
2302 	printk("%*s }\n", depth, "");
2303 
2304 	printk("%*s ... key      at: [<%px>] %pS\n",
2305 		depth, "", class->key, class->key);
2306 }
2307 
2308 /*
2309  * printk the shortest lock dependencies from @start to @end in reverse order:
2310  */
2311 static void __used
2312 print_shortest_lock_dependencies(struct lock_list *leaf,
2313 				 struct lock_list *root)
2314 {
2315 	struct lock_list *entry = leaf;
2316 	int depth;
2317 
2318 	/*compute depth from generated tree by BFS*/
2319 	depth = get_lock_depth(leaf);
2320 
2321 	do {
2322 		print_lock_class_header(entry->class, depth);
2323 		printk("%*s ... acquired at:\n", depth, "");
2324 		print_lock_trace(entry->trace, 2);
2325 		printk("\n");
2326 
2327 		if (depth == 0 && (entry != root)) {
2328 			printk("lockdep:%s bad path found in chain graph\n", __func__);
2329 			break;
2330 		}
2331 
2332 		entry = get_lock_parent(entry);
2333 		depth--;
2334 	} while (entry && (depth >= 0));
2335 }
2336 
2337 static void
2338 print_irq_lock_scenario(struct lock_list *safe_entry,
2339 			struct lock_list *unsafe_entry,
2340 			struct lock_class *prev_class,
2341 			struct lock_class *next_class)
2342 {
2343 	struct lock_class *safe_class = safe_entry->class;
2344 	struct lock_class *unsafe_class = unsafe_entry->class;
2345 	struct lock_class *middle_class = prev_class;
2346 
2347 	if (middle_class == safe_class)
2348 		middle_class = next_class;
2349 
2350 	/*
2351 	 * A direct locking problem where unsafe_class lock is taken
2352 	 * directly by safe_class lock, then all we need to show
2353 	 * is the deadlock scenario, as it is obvious that the
2354 	 * unsafe lock is taken under the safe lock.
2355 	 *
2356 	 * But if there is a chain instead, where the safe lock takes
2357 	 * an intermediate lock (middle_class) where this lock is
2358 	 * not the same as the safe lock, then the lock chain is
2359 	 * used to describe the problem. Otherwise we would need
2360 	 * to show a different CPU case for each link in the chain
2361 	 * from the safe_class lock to the unsafe_class lock.
2362 	 */
2363 	if (middle_class != unsafe_class) {
2364 		printk("Chain exists of:\n  ");
2365 		__print_lock_name(safe_class);
2366 		printk(KERN_CONT " --> ");
2367 		__print_lock_name(middle_class);
2368 		printk(KERN_CONT " --> ");
2369 		__print_lock_name(unsafe_class);
2370 		printk(KERN_CONT "\n\n");
2371 	}
2372 
2373 	printk(" Possible interrupt unsafe locking scenario:\n\n");
2374 	printk("       CPU0                    CPU1\n");
2375 	printk("       ----                    ----\n");
2376 	printk("  lock(");
2377 	__print_lock_name(unsafe_class);
2378 	printk(KERN_CONT ");\n");
2379 	printk("                               local_irq_disable();\n");
2380 	printk("                               lock(");
2381 	__print_lock_name(safe_class);
2382 	printk(KERN_CONT ");\n");
2383 	printk("                               lock(");
2384 	__print_lock_name(middle_class);
2385 	printk(KERN_CONT ");\n");
2386 	printk("  <Interrupt>\n");
2387 	printk("    lock(");
2388 	__print_lock_name(safe_class);
2389 	printk(KERN_CONT ");\n");
2390 	printk("\n *** DEADLOCK ***\n\n");
2391 }
2392 
2393 static void
2394 print_bad_irq_dependency(struct task_struct *curr,
2395 			 struct lock_list *prev_root,
2396 			 struct lock_list *next_root,
2397 			 struct lock_list *backwards_entry,
2398 			 struct lock_list *forwards_entry,
2399 			 struct held_lock *prev,
2400 			 struct held_lock *next,
2401 			 enum lock_usage_bit bit1,
2402 			 enum lock_usage_bit bit2,
2403 			 const char *irqclass)
2404 {
2405 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2406 		return;
2407 
2408 	pr_warn("\n");
2409 	pr_warn("=====================================================\n");
2410 	pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2411 		irqclass, irqclass);
2412 	print_kernel_ident();
2413 	pr_warn("-----------------------------------------------------\n");
2414 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2415 		curr->comm, task_pid_nr(curr),
2416 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2417 		curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2418 		lockdep_hardirqs_enabled(),
2419 		curr->softirqs_enabled);
2420 	print_lock(next);
2421 
2422 	pr_warn("\nand this task is already holding:\n");
2423 	print_lock(prev);
2424 	pr_warn("which would create a new lock dependency:\n");
2425 	print_lock_name(hlock_class(prev));
2426 	pr_cont(" ->");
2427 	print_lock_name(hlock_class(next));
2428 	pr_cont("\n");
2429 
2430 	pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2431 		irqclass);
2432 	print_lock_name(backwards_entry->class);
2433 	pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2434 
2435 	print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2436 
2437 	pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2438 	print_lock_name(forwards_entry->class);
2439 	pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2440 	pr_warn("...");
2441 
2442 	print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2443 
2444 	pr_warn("\nother info that might help us debug this:\n\n");
2445 	print_irq_lock_scenario(backwards_entry, forwards_entry,
2446 				hlock_class(prev), hlock_class(next));
2447 
2448 	lockdep_print_held_locks(curr);
2449 
2450 	pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2451 	prev_root->trace = save_trace();
2452 	if (!prev_root->trace)
2453 		return;
2454 	print_shortest_lock_dependencies(backwards_entry, prev_root);
2455 
2456 	pr_warn("\nthe dependencies between the lock to be acquired");
2457 	pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2458 	next_root->trace = save_trace();
2459 	if (!next_root->trace)
2460 		return;
2461 	print_shortest_lock_dependencies(forwards_entry, next_root);
2462 
2463 	pr_warn("\nstack backtrace:\n");
2464 	dump_stack();
2465 }
2466 
2467 static const char *state_names[] = {
2468 #define LOCKDEP_STATE(__STATE) \
2469 	__stringify(__STATE),
2470 #include "lockdep_states.h"
2471 #undef LOCKDEP_STATE
2472 };
2473 
2474 static const char *state_rnames[] = {
2475 #define LOCKDEP_STATE(__STATE) \
2476 	__stringify(__STATE)"-READ",
2477 #include "lockdep_states.h"
2478 #undef LOCKDEP_STATE
2479 };
2480 
2481 static inline const char *state_name(enum lock_usage_bit bit)
2482 {
2483 	if (bit & LOCK_USAGE_READ_MASK)
2484 		return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2485 	else
2486 		return state_names[bit >> LOCK_USAGE_DIR_MASK];
2487 }
2488 
2489 /*
2490  * The bit number is encoded like:
2491  *
2492  *  bit0: 0 exclusive, 1 read lock
2493  *  bit1: 0 used in irq, 1 irq enabled
2494  *  bit2-n: state
2495  */
2496 static int exclusive_bit(int new_bit)
2497 {
2498 	int state = new_bit & LOCK_USAGE_STATE_MASK;
2499 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
2500 
2501 	/*
2502 	 * keep state, bit flip the direction and strip read.
2503 	 */
2504 	return state | (dir ^ LOCK_USAGE_DIR_MASK);
2505 }
2506 
2507 /*
2508  * Observe that when given a bitmask where each bitnr is encoded as above, a
2509  * right shift of the mask transforms the individual bitnrs as -1 and
2510  * conversely, a left shift transforms into +1 for the individual bitnrs.
2511  *
2512  * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2513  * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2514  * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2515  *
2516  * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2517  *
2518  * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2519  * all bits set) and recompose with bitnr1 flipped.
2520  */
2521 static unsigned long invert_dir_mask(unsigned long mask)
2522 {
2523 	unsigned long excl = 0;
2524 
2525 	/* Invert dir */
2526 	excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2527 	excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2528 
2529 	return excl;
2530 }
2531 
2532 /*
2533  * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2534  * usage may cause deadlock too, for example:
2535  *
2536  * P1				P2
2537  * <irq disabled>
2538  * write_lock(l1);		<irq enabled>
2539  *				read_lock(l2);
2540  * write_lock(l2);
2541  * 				<in irq>
2542  * 				read_lock(l1);
2543  *
2544  * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2545  * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2546  * deadlock.
2547  *
2548  * In fact, all of the following cases may cause deadlocks:
2549  *
2550  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2551  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2552  * 	 LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2553  * 	 LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2554  *
2555  * As a result, to calculate the "exclusive mask", first we invert the
2556  * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2557  * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2558  * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2559  */
2560 static unsigned long exclusive_mask(unsigned long mask)
2561 {
2562 	unsigned long excl = invert_dir_mask(mask);
2563 
2564 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2565 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2566 
2567 	return excl;
2568 }
2569 
2570 /*
2571  * Retrieve the _possible_ original mask to which @mask is
2572  * exclusive. Ie: this is the opposite of exclusive_mask().
2573  * Note that 2 possible original bits can match an exclusive
2574  * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2575  * cleared. So both are returned for each exclusive bit.
2576  */
2577 static unsigned long original_mask(unsigned long mask)
2578 {
2579 	unsigned long excl = invert_dir_mask(mask);
2580 
2581 	/* Include read in existing usages */
2582 	excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2583 	excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2584 
2585 	return excl;
2586 }
2587 
2588 /*
2589  * Find the first pair of bit match between an original
2590  * usage mask and an exclusive usage mask.
2591  */
2592 static int find_exclusive_match(unsigned long mask,
2593 				unsigned long excl_mask,
2594 				enum lock_usage_bit *bitp,
2595 				enum lock_usage_bit *excl_bitp)
2596 {
2597 	int bit, excl, excl_read;
2598 
2599 	for_each_set_bit(bit, &mask, LOCK_USED) {
2600 		/*
2601 		 * exclusive_bit() strips the read bit, however,
2602 		 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2603 		 * to search excl | LOCK_USAGE_READ_MASK as well.
2604 		 */
2605 		excl = exclusive_bit(bit);
2606 		excl_read = excl | LOCK_USAGE_READ_MASK;
2607 		if (excl_mask & lock_flag(excl)) {
2608 			*bitp = bit;
2609 			*excl_bitp = excl;
2610 			return 0;
2611 		} else if (excl_mask & lock_flag(excl_read)) {
2612 			*bitp = bit;
2613 			*excl_bitp = excl_read;
2614 			return 0;
2615 		}
2616 	}
2617 	return -1;
2618 }
2619 
2620 /*
2621  * Prove that the new dependency does not connect a hardirq-safe(-read)
2622  * lock with a hardirq-unsafe lock - to achieve this we search
2623  * the backwards-subgraph starting at <prev>, and the
2624  * forwards-subgraph starting at <next>:
2625  */
2626 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2627 			   struct held_lock *next)
2628 {
2629 	unsigned long usage_mask = 0, forward_mask, backward_mask;
2630 	enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2631 	struct lock_list *target_entry1;
2632 	struct lock_list *target_entry;
2633 	struct lock_list this, that;
2634 	enum bfs_result ret;
2635 
2636 	/*
2637 	 * Step 1: gather all hard/soft IRQs usages backward in an
2638 	 * accumulated usage mask.
2639 	 */
2640 	bfs_init_rootb(&this, prev);
2641 
2642 	ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2643 	if (bfs_error(ret)) {
2644 		print_bfs_bug(ret);
2645 		return 0;
2646 	}
2647 
2648 	usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2649 	if (!usage_mask)
2650 		return 1;
2651 
2652 	/*
2653 	 * Step 2: find exclusive uses forward that match the previous
2654 	 * backward accumulated mask.
2655 	 */
2656 	forward_mask = exclusive_mask(usage_mask);
2657 
2658 	bfs_init_root(&that, next);
2659 
2660 	ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2661 	if (bfs_error(ret)) {
2662 		print_bfs_bug(ret);
2663 		return 0;
2664 	}
2665 	if (ret == BFS_RNOMATCH)
2666 		return 1;
2667 
2668 	/*
2669 	 * Step 3: we found a bad match! Now retrieve a lock from the backward
2670 	 * list whose usage mask matches the exclusive usage mask from the
2671 	 * lock found on the forward list.
2672 	 */
2673 	backward_mask = original_mask(target_entry1->class->usage_mask);
2674 
2675 	ret = find_usage_backwards(&this, backward_mask, &target_entry);
2676 	if (bfs_error(ret)) {
2677 		print_bfs_bug(ret);
2678 		return 0;
2679 	}
2680 	if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2681 		return 1;
2682 
2683 	/*
2684 	 * Step 4: narrow down to a pair of incompatible usage bits
2685 	 * and report it.
2686 	 */
2687 	ret = find_exclusive_match(target_entry->class->usage_mask,
2688 				   target_entry1->class->usage_mask,
2689 				   &backward_bit, &forward_bit);
2690 	if (DEBUG_LOCKS_WARN_ON(ret == -1))
2691 		return 1;
2692 
2693 	print_bad_irq_dependency(curr, &this, &that,
2694 				 target_entry, target_entry1,
2695 				 prev, next,
2696 				 backward_bit, forward_bit,
2697 				 state_name(backward_bit));
2698 
2699 	return 0;
2700 }
2701 
2702 #else
2703 
2704 static inline int check_irq_usage(struct task_struct *curr,
2705 				  struct held_lock *prev, struct held_lock *next)
2706 {
2707 	return 1;
2708 }
2709 
2710 static inline bool usage_skip(struct lock_list *entry, void *mask)
2711 {
2712 	return false;
2713 }
2714 
2715 #endif /* CONFIG_TRACE_IRQFLAGS */
2716 
2717 #ifdef CONFIG_LOCKDEP_SMALL
2718 /*
2719  * Check that the dependency graph starting at <src> can lead to
2720  * <target> or not. If it can, <src> -> <target> dependency is already
2721  * in the graph.
2722  *
2723  * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if
2724  * any error appears in the bfs search.
2725  */
2726 static noinline enum bfs_result
2727 check_redundant(struct held_lock *src, struct held_lock *target)
2728 {
2729 	enum bfs_result ret;
2730 	struct lock_list *target_entry;
2731 	struct lock_list src_entry;
2732 
2733 	bfs_init_root(&src_entry, src);
2734 	/*
2735 	 * Special setup for check_redundant().
2736 	 *
2737 	 * To report redundant, we need to find a strong dependency path that
2738 	 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2739 	 * we need to let __bfs() only search for a path starting at a -(E*)->,
2740 	 * we achieve this by setting the initial node's ->only_xr to true in
2741 	 * that case. And if <prev> is S, we set initial ->only_xr to false
2742 	 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2743 	 */
2744 	src_entry.only_xr = src->read == 0;
2745 
2746 	debug_atomic_inc(nr_redundant_checks);
2747 
2748 	/*
2749 	 * Note: we skip local_lock() for redundant check, because as the
2750 	 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2751 	 * the same.
2752 	 */
2753 	ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2754 
2755 	if (ret == BFS_RMATCH)
2756 		debug_atomic_inc(nr_redundant);
2757 
2758 	return ret;
2759 }
2760 
2761 #else
2762 
2763 static inline enum bfs_result
2764 check_redundant(struct held_lock *src, struct held_lock *target)
2765 {
2766 	return BFS_RNOMATCH;
2767 }
2768 
2769 #endif
2770 
2771 static void inc_chains(int irq_context)
2772 {
2773 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2774 		nr_hardirq_chains++;
2775 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2776 		nr_softirq_chains++;
2777 	else
2778 		nr_process_chains++;
2779 }
2780 
2781 static void dec_chains(int irq_context)
2782 {
2783 	if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2784 		nr_hardirq_chains--;
2785 	else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2786 		nr_softirq_chains--;
2787 	else
2788 		nr_process_chains--;
2789 }
2790 
2791 static void
2792 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2793 {
2794 	struct lock_class *next = hlock_class(nxt);
2795 	struct lock_class *prev = hlock_class(prv);
2796 
2797 	printk(" Possible unsafe locking scenario:\n\n");
2798 	printk("       CPU0\n");
2799 	printk("       ----\n");
2800 	printk("  lock(");
2801 	__print_lock_name(prev);
2802 	printk(KERN_CONT ");\n");
2803 	printk("  lock(");
2804 	__print_lock_name(next);
2805 	printk(KERN_CONT ");\n");
2806 	printk("\n *** DEADLOCK ***\n\n");
2807 	printk(" May be due to missing lock nesting notation\n\n");
2808 }
2809 
2810 static void
2811 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2812 		   struct held_lock *next)
2813 {
2814 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2815 		return;
2816 
2817 	pr_warn("\n");
2818 	pr_warn("============================================\n");
2819 	pr_warn("WARNING: possible recursive locking detected\n");
2820 	print_kernel_ident();
2821 	pr_warn("--------------------------------------------\n");
2822 	pr_warn("%s/%d is trying to acquire lock:\n",
2823 		curr->comm, task_pid_nr(curr));
2824 	print_lock(next);
2825 	pr_warn("\nbut task is already holding lock:\n");
2826 	print_lock(prev);
2827 
2828 	pr_warn("\nother info that might help us debug this:\n");
2829 	print_deadlock_scenario(next, prev);
2830 	lockdep_print_held_locks(curr);
2831 
2832 	pr_warn("\nstack backtrace:\n");
2833 	dump_stack();
2834 }
2835 
2836 /*
2837  * Check whether we are holding such a class already.
2838  *
2839  * (Note that this has to be done separately, because the graph cannot
2840  * detect such classes of deadlocks.)
2841  *
2842  * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2843  * lock class is held but nest_lock is also held, i.e. we rely on the
2844  * nest_lock to avoid the deadlock.
2845  */
2846 static int
2847 check_deadlock(struct task_struct *curr, struct held_lock *next)
2848 {
2849 	struct held_lock *prev;
2850 	struct held_lock *nest = NULL;
2851 	int i;
2852 
2853 	for (i = 0; i < curr->lockdep_depth; i++) {
2854 		prev = curr->held_locks + i;
2855 
2856 		if (prev->instance == next->nest_lock)
2857 			nest = prev;
2858 
2859 		if (hlock_class(prev) != hlock_class(next))
2860 			continue;
2861 
2862 		/*
2863 		 * Allow read-after-read recursion of the same
2864 		 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2865 		 */
2866 		if ((next->read == 2) && prev->read)
2867 			continue;
2868 
2869 		/*
2870 		 * We're holding the nest_lock, which serializes this lock's
2871 		 * nesting behaviour.
2872 		 */
2873 		if (nest)
2874 			return 2;
2875 
2876 		print_deadlock_bug(curr, prev, next);
2877 		return 0;
2878 	}
2879 	return 1;
2880 }
2881 
2882 /*
2883  * There was a chain-cache miss, and we are about to add a new dependency
2884  * to a previous lock. We validate the following rules:
2885  *
2886  *  - would the adding of the <prev> -> <next> dependency create a
2887  *    circular dependency in the graph? [== circular deadlock]
2888  *
2889  *  - does the new prev->next dependency connect any hardirq-safe lock
2890  *    (in the full backwards-subgraph starting at <prev>) with any
2891  *    hardirq-unsafe lock (in the full forwards-subgraph starting at
2892  *    <next>)? [== illegal lock inversion with hardirq contexts]
2893  *
2894  *  - does the new prev->next dependency connect any softirq-safe lock
2895  *    (in the full backwards-subgraph starting at <prev>) with any
2896  *    softirq-unsafe lock (in the full forwards-subgraph starting at
2897  *    <next>)? [== illegal lock inversion with softirq contexts]
2898  *
2899  * any of these scenarios could lead to a deadlock.
2900  *
2901  * Then if all the validations pass, we add the forwards and backwards
2902  * dependency.
2903  */
2904 static int
2905 check_prev_add(struct task_struct *curr, struct held_lock *prev,
2906 	       struct held_lock *next, u16 distance,
2907 	       struct lock_trace **const trace)
2908 {
2909 	struct lock_list *entry;
2910 	enum bfs_result ret;
2911 
2912 	if (!hlock_class(prev)->key || !hlock_class(next)->key) {
2913 		/*
2914 		 * The warning statements below may trigger a use-after-free
2915 		 * of the class name. It is better to trigger a use-after free
2916 		 * and to have the class name most of the time instead of not
2917 		 * having the class name available.
2918 		 */
2919 		WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
2920 			  "Detected use-after-free of lock class %px/%s\n",
2921 			  hlock_class(prev),
2922 			  hlock_class(prev)->name);
2923 		WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
2924 			  "Detected use-after-free of lock class %px/%s\n",
2925 			  hlock_class(next),
2926 			  hlock_class(next)->name);
2927 		return 2;
2928 	}
2929 
2930 	/*
2931 	 * Prove that the new <prev> -> <next> dependency would not
2932 	 * create a circular dependency in the graph. (We do this by
2933 	 * a breadth-first search into the graph starting at <next>,
2934 	 * and check whether we can reach <prev>.)
2935 	 *
2936 	 * The search is limited by the size of the circular queue (i.e.,
2937 	 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
2938 	 * in the graph whose neighbours are to be checked.
2939 	 */
2940 	ret = check_noncircular(next, prev, trace);
2941 	if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
2942 		return 0;
2943 
2944 	if (!check_irq_usage(curr, prev, next))
2945 		return 0;
2946 
2947 	/*
2948 	 * Is the <prev> -> <next> dependency already present?
2949 	 *
2950 	 * (this may occur even though this is a new chain: consider
2951 	 *  e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
2952 	 *  chains - the second one will be new, but L1 already has
2953 	 *  L2 added to its dependency list, due to the first chain.)
2954 	 */
2955 	list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
2956 		if (entry->class == hlock_class(next)) {
2957 			if (distance == 1)
2958 				entry->distance = 1;
2959 			entry->dep |= calc_dep(prev, next);
2960 
2961 			/*
2962 			 * Also, update the reverse dependency in @next's
2963 			 * ->locks_before list.
2964 			 *
2965 			 *  Here we reuse @entry as the cursor, which is fine
2966 			 *  because we won't go to the next iteration of the
2967 			 *  outer loop:
2968 			 *
2969 			 *  For normal cases, we return in the inner loop.
2970 			 *
2971 			 *  If we fail to return, we have inconsistency, i.e.
2972 			 *  <prev>::locks_after contains <next> while
2973 			 *  <next>::locks_before doesn't contain <prev>. In
2974 			 *  that case, we return after the inner and indicate
2975 			 *  something is wrong.
2976 			 */
2977 			list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
2978 				if (entry->class == hlock_class(prev)) {
2979 					if (distance == 1)
2980 						entry->distance = 1;
2981 					entry->dep |= calc_depb(prev, next);
2982 					return 1;
2983 				}
2984 			}
2985 
2986 			/* <prev> is not found in <next>::locks_before */
2987 			return 0;
2988 		}
2989 	}
2990 
2991 	/*
2992 	 * Is the <prev> -> <next> link redundant?
2993 	 */
2994 	ret = check_redundant(prev, next);
2995 	if (bfs_error(ret))
2996 		return 0;
2997 	else if (ret == BFS_RMATCH)
2998 		return 2;
2999 
3000 	if (!*trace) {
3001 		*trace = save_trace();
3002 		if (!*trace)
3003 			return 0;
3004 	}
3005 
3006 	/*
3007 	 * Ok, all validations passed, add the new lock
3008 	 * to the previous lock's dependency list:
3009 	 */
3010 	ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3011 			       &hlock_class(prev)->locks_after,
3012 			       next->acquire_ip, distance,
3013 			       calc_dep(prev, next),
3014 			       *trace);
3015 
3016 	if (!ret)
3017 		return 0;
3018 
3019 	ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3020 			       &hlock_class(next)->locks_before,
3021 			       next->acquire_ip, distance,
3022 			       calc_depb(prev, next),
3023 			       *trace);
3024 	if (!ret)
3025 		return 0;
3026 
3027 	return 2;
3028 }
3029 
3030 /*
3031  * Add the dependency to all directly-previous locks that are 'relevant'.
3032  * The ones that are relevant are (in increasing distance from curr):
3033  * all consecutive trylock entries and the final non-trylock entry - or
3034  * the end of this context's lock-chain - whichever comes first.
3035  */
3036 static int
3037 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3038 {
3039 	struct lock_trace *trace = NULL;
3040 	int depth = curr->lockdep_depth;
3041 	struct held_lock *hlock;
3042 
3043 	/*
3044 	 * Debugging checks.
3045 	 *
3046 	 * Depth must not be zero for a non-head lock:
3047 	 */
3048 	if (!depth)
3049 		goto out_bug;
3050 	/*
3051 	 * At least two relevant locks must exist for this
3052 	 * to be a head:
3053 	 */
3054 	if (curr->held_locks[depth].irq_context !=
3055 			curr->held_locks[depth-1].irq_context)
3056 		goto out_bug;
3057 
3058 	for (;;) {
3059 		u16 distance = curr->lockdep_depth - depth + 1;
3060 		hlock = curr->held_locks + depth - 1;
3061 
3062 		if (hlock->check) {
3063 			int ret = check_prev_add(curr, hlock, next, distance, &trace);
3064 			if (!ret)
3065 				return 0;
3066 
3067 			/*
3068 			 * Stop after the first non-trylock entry,
3069 			 * as non-trylock entries have added their
3070 			 * own direct dependencies already, so this
3071 			 * lock is connected to them indirectly:
3072 			 */
3073 			if (!hlock->trylock)
3074 				break;
3075 		}
3076 
3077 		depth--;
3078 		/*
3079 		 * End of lock-stack?
3080 		 */
3081 		if (!depth)
3082 			break;
3083 		/*
3084 		 * Stop the search if we cross into another context:
3085 		 */
3086 		if (curr->held_locks[depth].irq_context !=
3087 				curr->held_locks[depth-1].irq_context)
3088 			break;
3089 	}
3090 	return 1;
3091 out_bug:
3092 	if (!debug_locks_off_graph_unlock())
3093 		return 0;
3094 
3095 	/*
3096 	 * Clearly we all shouldn't be here, but since we made it we
3097 	 * can reliable say we messed up our state. See the above two
3098 	 * gotos for reasons why we could possibly end up here.
3099 	 */
3100 	WARN_ON(1);
3101 
3102 	return 0;
3103 }
3104 
3105 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3106 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3107 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3108 unsigned long nr_zapped_lock_chains;
3109 unsigned int nr_free_chain_hlocks;	/* Free chain_hlocks in buckets */
3110 unsigned int nr_lost_chain_hlocks;	/* Lost chain_hlocks */
3111 unsigned int nr_large_chain_blocks;	/* size > MAX_CHAIN_BUCKETS */
3112 
3113 /*
3114  * The first 2 chain_hlocks entries in the chain block in the bucket
3115  * list contains the following meta data:
3116  *
3117  *   entry[0]:
3118  *     Bit    15 - always set to 1 (it is not a class index)
3119  *     Bits 0-14 - upper 15 bits of the next block index
3120  *   entry[1]    - lower 16 bits of next block index
3121  *
3122  * A next block index of all 1 bits means it is the end of the list.
3123  *
3124  * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3125  * the chain block size:
3126  *
3127  *   entry[2] - upper 16 bits of the chain block size
3128  *   entry[3] - lower 16 bits of the chain block size
3129  */
3130 #define MAX_CHAIN_BUCKETS	16
3131 #define CHAIN_BLK_FLAG		(1U << 15)
3132 #define CHAIN_BLK_LIST_END	0xFFFFU
3133 
3134 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3135 
3136 static inline int size_to_bucket(int size)
3137 {
3138 	if (size > MAX_CHAIN_BUCKETS)
3139 		return 0;
3140 
3141 	return size - 1;
3142 }
3143 
3144 /*
3145  * Iterate all the chain blocks in a bucket.
3146  */
3147 #define for_each_chain_block(bucket, prev, curr)		\
3148 	for ((prev) = -1, (curr) = chain_block_buckets[bucket];	\
3149 	     (curr) >= 0;					\
3150 	     (prev) = (curr), (curr) = chain_block_next(curr))
3151 
3152 /*
3153  * next block or -1
3154  */
3155 static inline int chain_block_next(int offset)
3156 {
3157 	int next = chain_hlocks[offset];
3158 
3159 	WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3160 
3161 	if (next == CHAIN_BLK_LIST_END)
3162 		return -1;
3163 
3164 	next &= ~CHAIN_BLK_FLAG;
3165 	next <<= 16;
3166 	next |= chain_hlocks[offset + 1];
3167 
3168 	return next;
3169 }
3170 
3171 /*
3172  * bucket-0 only
3173  */
3174 static inline int chain_block_size(int offset)
3175 {
3176 	return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3177 }
3178 
3179 static inline void init_chain_block(int offset, int next, int bucket, int size)
3180 {
3181 	chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3182 	chain_hlocks[offset + 1] = (u16)next;
3183 
3184 	if (size && !bucket) {
3185 		chain_hlocks[offset + 2] = size >> 16;
3186 		chain_hlocks[offset + 3] = (u16)size;
3187 	}
3188 }
3189 
3190 static inline void add_chain_block(int offset, int size)
3191 {
3192 	int bucket = size_to_bucket(size);
3193 	int next = chain_block_buckets[bucket];
3194 	int prev, curr;
3195 
3196 	if (unlikely(size < 2)) {
3197 		/*
3198 		 * We can't store single entries on the freelist. Leak them.
3199 		 *
3200 		 * One possible way out would be to uniquely mark them, other
3201 		 * than with CHAIN_BLK_FLAG, such that we can recover them when
3202 		 * the block before it is re-added.
3203 		 */
3204 		if (size)
3205 			nr_lost_chain_hlocks++;
3206 		return;
3207 	}
3208 
3209 	nr_free_chain_hlocks += size;
3210 	if (!bucket) {
3211 		nr_large_chain_blocks++;
3212 
3213 		/*
3214 		 * Variable sized, sort large to small.
3215 		 */
3216 		for_each_chain_block(0, prev, curr) {
3217 			if (size >= chain_block_size(curr))
3218 				break;
3219 		}
3220 		init_chain_block(offset, curr, 0, size);
3221 		if (prev < 0)
3222 			chain_block_buckets[0] = offset;
3223 		else
3224 			init_chain_block(prev, offset, 0, 0);
3225 		return;
3226 	}
3227 	/*
3228 	 * Fixed size, add to head.
3229 	 */
3230 	init_chain_block(offset, next, bucket, size);
3231 	chain_block_buckets[bucket] = offset;
3232 }
3233 
3234 /*
3235  * Only the first block in the list can be deleted.
3236  *
3237  * For the variable size bucket[0], the first block (the largest one) is
3238  * returned, broken up and put back into the pool. So if a chain block of
3239  * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3240  * queued up after the primordial chain block and never be used until the
3241  * hlock entries in the primordial chain block is almost used up. That
3242  * causes fragmentation and reduce allocation efficiency. That can be
3243  * monitored by looking at the "large chain blocks" number in lockdep_stats.
3244  */
3245 static inline void del_chain_block(int bucket, int size, int next)
3246 {
3247 	nr_free_chain_hlocks -= size;
3248 	chain_block_buckets[bucket] = next;
3249 
3250 	if (!bucket)
3251 		nr_large_chain_blocks--;
3252 }
3253 
3254 static void init_chain_block_buckets(void)
3255 {
3256 	int i;
3257 
3258 	for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3259 		chain_block_buckets[i] = -1;
3260 
3261 	add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3262 }
3263 
3264 /*
3265  * Return offset of a chain block of the right size or -1 if not found.
3266  *
3267  * Fairly simple worst-fit allocator with the addition of a number of size
3268  * specific free lists.
3269  */
3270 static int alloc_chain_hlocks(int req)
3271 {
3272 	int bucket, curr, size;
3273 
3274 	/*
3275 	 * We rely on the MSB to act as an escape bit to denote freelist
3276 	 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3277 	 */
3278 	BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3279 
3280 	init_data_structures_once();
3281 
3282 	if (nr_free_chain_hlocks < req)
3283 		return -1;
3284 
3285 	/*
3286 	 * We require a minimum of 2 (u16) entries to encode a freelist
3287 	 * 'pointer'.
3288 	 */
3289 	req = max(req, 2);
3290 	bucket = size_to_bucket(req);
3291 	curr = chain_block_buckets[bucket];
3292 
3293 	if (bucket) {
3294 		if (curr >= 0) {
3295 			del_chain_block(bucket, req, chain_block_next(curr));
3296 			return curr;
3297 		}
3298 		/* Try bucket 0 */
3299 		curr = chain_block_buckets[0];
3300 	}
3301 
3302 	/*
3303 	 * The variable sized freelist is sorted by size; the first entry is
3304 	 * the largest. Use it if it fits.
3305 	 */
3306 	if (curr >= 0) {
3307 		size = chain_block_size(curr);
3308 		if (likely(size >= req)) {
3309 			del_chain_block(0, size, chain_block_next(curr));
3310 			add_chain_block(curr + req, size - req);
3311 			return curr;
3312 		}
3313 	}
3314 
3315 	/*
3316 	 * Last resort, split a block in a larger sized bucket.
3317 	 */
3318 	for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3319 		bucket = size_to_bucket(size);
3320 		curr = chain_block_buckets[bucket];
3321 		if (curr < 0)
3322 			continue;
3323 
3324 		del_chain_block(bucket, size, chain_block_next(curr));
3325 		add_chain_block(curr + req, size - req);
3326 		return curr;
3327 	}
3328 
3329 	return -1;
3330 }
3331 
3332 static inline void free_chain_hlocks(int base, int size)
3333 {
3334 	add_chain_block(base, max(size, 2));
3335 }
3336 
3337 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3338 {
3339 	u16 chain_hlock = chain_hlocks[chain->base + i];
3340 	unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3341 
3342 	return lock_classes + class_idx - 1;
3343 }
3344 
3345 /*
3346  * Returns the index of the first held_lock of the current chain
3347  */
3348 static inline int get_first_held_lock(struct task_struct *curr,
3349 					struct held_lock *hlock)
3350 {
3351 	int i;
3352 	struct held_lock *hlock_curr;
3353 
3354 	for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3355 		hlock_curr = curr->held_locks + i;
3356 		if (hlock_curr->irq_context != hlock->irq_context)
3357 			break;
3358 
3359 	}
3360 
3361 	return ++i;
3362 }
3363 
3364 #ifdef CONFIG_DEBUG_LOCKDEP
3365 /*
3366  * Returns the next chain_key iteration
3367  */
3368 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3369 {
3370 	u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3371 
3372 	printk(" hlock_id:%d -> chain_key:%016Lx",
3373 		(unsigned int)hlock_id,
3374 		(unsigned long long)new_chain_key);
3375 	return new_chain_key;
3376 }
3377 
3378 static void
3379 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3380 {
3381 	struct held_lock *hlock;
3382 	u64 chain_key = INITIAL_CHAIN_KEY;
3383 	int depth = curr->lockdep_depth;
3384 	int i = get_first_held_lock(curr, hlock_next);
3385 
3386 	printk("depth: %u (irq_context %u)\n", depth - i + 1,
3387 		hlock_next->irq_context);
3388 	for (; i < depth; i++) {
3389 		hlock = curr->held_locks + i;
3390 		chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3391 
3392 		print_lock(hlock);
3393 	}
3394 
3395 	print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3396 	print_lock(hlock_next);
3397 }
3398 
3399 static void print_chain_keys_chain(struct lock_chain *chain)
3400 {
3401 	int i;
3402 	u64 chain_key = INITIAL_CHAIN_KEY;
3403 	u16 hlock_id;
3404 
3405 	printk("depth: %u\n", chain->depth);
3406 	for (i = 0; i < chain->depth; i++) {
3407 		hlock_id = chain_hlocks[chain->base + i];
3408 		chain_key = print_chain_key_iteration(hlock_id, chain_key);
3409 
3410 		print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3411 		printk("\n");
3412 	}
3413 }
3414 
3415 static void print_collision(struct task_struct *curr,
3416 			struct held_lock *hlock_next,
3417 			struct lock_chain *chain)
3418 {
3419 	pr_warn("\n");
3420 	pr_warn("============================\n");
3421 	pr_warn("WARNING: chain_key collision\n");
3422 	print_kernel_ident();
3423 	pr_warn("----------------------------\n");
3424 	pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3425 	pr_warn("Hash chain already cached but the contents don't match!\n");
3426 
3427 	pr_warn("Held locks:");
3428 	print_chain_keys_held_locks(curr, hlock_next);
3429 
3430 	pr_warn("Locks in cached chain:");
3431 	print_chain_keys_chain(chain);
3432 
3433 	pr_warn("\nstack backtrace:\n");
3434 	dump_stack();
3435 }
3436 #endif
3437 
3438 /*
3439  * Checks whether the chain and the current held locks are consistent
3440  * in depth and also in content. If they are not it most likely means
3441  * that there was a collision during the calculation of the chain_key.
3442  * Returns: 0 not passed, 1 passed
3443  */
3444 static int check_no_collision(struct task_struct *curr,
3445 			struct held_lock *hlock,
3446 			struct lock_chain *chain)
3447 {
3448 #ifdef CONFIG_DEBUG_LOCKDEP
3449 	int i, j, id;
3450 
3451 	i = get_first_held_lock(curr, hlock);
3452 
3453 	if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3454 		print_collision(curr, hlock, chain);
3455 		return 0;
3456 	}
3457 
3458 	for (j = 0; j < chain->depth - 1; j++, i++) {
3459 		id = hlock_id(&curr->held_locks[i]);
3460 
3461 		if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3462 			print_collision(curr, hlock, chain);
3463 			return 0;
3464 		}
3465 	}
3466 #endif
3467 	return 1;
3468 }
3469 
3470 /*
3471  * Given an index that is >= -1, return the index of the next lock chain.
3472  * Return -2 if there is no next lock chain.
3473  */
3474 long lockdep_next_lockchain(long i)
3475 {
3476 	i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3477 	return i < ARRAY_SIZE(lock_chains) ? i : -2;
3478 }
3479 
3480 unsigned long lock_chain_count(void)
3481 {
3482 	return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3483 }
3484 
3485 /* Must be called with the graph lock held. */
3486 static struct lock_chain *alloc_lock_chain(void)
3487 {
3488 	int idx = find_first_zero_bit(lock_chains_in_use,
3489 				      ARRAY_SIZE(lock_chains));
3490 
3491 	if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3492 		return NULL;
3493 	__set_bit(idx, lock_chains_in_use);
3494 	return lock_chains + idx;
3495 }
3496 
3497 /*
3498  * Adds a dependency chain into chain hashtable. And must be called with
3499  * graph_lock held.
3500  *
3501  * Return 0 if fail, and graph_lock is released.
3502  * Return 1 if succeed, with graph_lock held.
3503  */
3504 static inline int add_chain_cache(struct task_struct *curr,
3505 				  struct held_lock *hlock,
3506 				  u64 chain_key)
3507 {
3508 	struct hlist_head *hash_head = chainhashentry(chain_key);
3509 	struct lock_chain *chain;
3510 	int i, j;
3511 
3512 	/*
3513 	 * The caller must hold the graph lock, ensure we've got IRQs
3514 	 * disabled to make this an IRQ-safe lock.. for recursion reasons
3515 	 * lockdep won't complain about its own locking errors.
3516 	 */
3517 	if (lockdep_assert_locked())
3518 		return 0;
3519 
3520 	chain = alloc_lock_chain();
3521 	if (!chain) {
3522 		if (!debug_locks_off_graph_unlock())
3523 			return 0;
3524 
3525 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3526 		dump_stack();
3527 		return 0;
3528 	}
3529 	chain->chain_key = chain_key;
3530 	chain->irq_context = hlock->irq_context;
3531 	i = get_first_held_lock(curr, hlock);
3532 	chain->depth = curr->lockdep_depth + 1 - i;
3533 
3534 	BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3535 	BUILD_BUG_ON((1UL << 6)  <= ARRAY_SIZE(curr->held_locks));
3536 	BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3537 
3538 	j = alloc_chain_hlocks(chain->depth);
3539 	if (j < 0) {
3540 		if (!debug_locks_off_graph_unlock())
3541 			return 0;
3542 
3543 		print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3544 		dump_stack();
3545 		return 0;
3546 	}
3547 
3548 	chain->base = j;
3549 	for (j = 0; j < chain->depth - 1; j++, i++) {
3550 		int lock_id = hlock_id(curr->held_locks + i);
3551 
3552 		chain_hlocks[chain->base + j] = lock_id;
3553 	}
3554 	chain_hlocks[chain->base + j] = hlock_id(hlock);
3555 	hlist_add_head_rcu(&chain->entry, hash_head);
3556 	debug_atomic_inc(chain_lookup_misses);
3557 	inc_chains(chain->irq_context);
3558 
3559 	return 1;
3560 }
3561 
3562 /*
3563  * Look up a dependency chain. Must be called with either the graph lock or
3564  * the RCU read lock held.
3565  */
3566 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3567 {
3568 	struct hlist_head *hash_head = chainhashentry(chain_key);
3569 	struct lock_chain *chain;
3570 
3571 	hlist_for_each_entry_rcu(chain, hash_head, entry) {
3572 		if (READ_ONCE(chain->chain_key) == chain_key) {
3573 			debug_atomic_inc(chain_lookup_hits);
3574 			return chain;
3575 		}
3576 	}
3577 	return NULL;
3578 }
3579 
3580 /*
3581  * If the key is not present yet in dependency chain cache then
3582  * add it and return 1 - in this case the new dependency chain is
3583  * validated. If the key is already hashed, return 0.
3584  * (On return with 1 graph_lock is held.)
3585  */
3586 static inline int lookup_chain_cache_add(struct task_struct *curr,
3587 					 struct held_lock *hlock,
3588 					 u64 chain_key)
3589 {
3590 	struct lock_class *class = hlock_class(hlock);
3591 	struct lock_chain *chain = lookup_chain_cache(chain_key);
3592 
3593 	if (chain) {
3594 cache_hit:
3595 		if (!check_no_collision(curr, hlock, chain))
3596 			return 0;
3597 
3598 		if (very_verbose(class)) {
3599 			printk("\nhash chain already cached, key: "
3600 					"%016Lx tail class: [%px] %s\n",
3601 					(unsigned long long)chain_key,
3602 					class->key, class->name);
3603 		}
3604 
3605 		return 0;
3606 	}
3607 
3608 	if (very_verbose(class)) {
3609 		printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3610 			(unsigned long long)chain_key, class->key, class->name);
3611 	}
3612 
3613 	if (!graph_lock())
3614 		return 0;
3615 
3616 	/*
3617 	 * We have to walk the chain again locked - to avoid duplicates:
3618 	 */
3619 	chain = lookup_chain_cache(chain_key);
3620 	if (chain) {
3621 		graph_unlock();
3622 		goto cache_hit;
3623 	}
3624 
3625 	if (!add_chain_cache(curr, hlock, chain_key))
3626 		return 0;
3627 
3628 	return 1;
3629 }
3630 
3631 static int validate_chain(struct task_struct *curr,
3632 			  struct held_lock *hlock,
3633 			  int chain_head, u64 chain_key)
3634 {
3635 	/*
3636 	 * Trylock needs to maintain the stack of held locks, but it
3637 	 * does not add new dependencies, because trylock can be done
3638 	 * in any order.
3639 	 *
3640 	 * We look up the chain_key and do the O(N^2) check and update of
3641 	 * the dependencies only if this is a new dependency chain.
3642 	 * (If lookup_chain_cache_add() return with 1 it acquires
3643 	 * graph_lock for us)
3644 	 */
3645 	if (!hlock->trylock && hlock->check &&
3646 	    lookup_chain_cache_add(curr, hlock, chain_key)) {
3647 		/*
3648 		 * Check whether last held lock:
3649 		 *
3650 		 * - is irq-safe, if this lock is irq-unsafe
3651 		 * - is softirq-safe, if this lock is hardirq-unsafe
3652 		 *
3653 		 * And check whether the new lock's dependency graph
3654 		 * could lead back to the previous lock:
3655 		 *
3656 		 * - within the current held-lock stack
3657 		 * - across our accumulated lock dependency records
3658 		 *
3659 		 * any of these scenarios could lead to a deadlock.
3660 		 */
3661 		/*
3662 		 * The simple case: does the current hold the same lock
3663 		 * already?
3664 		 */
3665 		int ret = check_deadlock(curr, hlock);
3666 
3667 		if (!ret)
3668 			return 0;
3669 		/*
3670 		 * Add dependency only if this lock is not the head
3671 		 * of the chain, and if the new lock introduces no more
3672 		 * lock dependency (because we already hold a lock with the
3673 		 * same lock class) nor deadlock (because the nest_lock
3674 		 * serializes nesting locks), see the comments for
3675 		 * check_deadlock().
3676 		 */
3677 		if (!chain_head && ret != 2) {
3678 			if (!check_prevs_add(curr, hlock))
3679 				return 0;
3680 		}
3681 
3682 		graph_unlock();
3683 	} else {
3684 		/* after lookup_chain_cache_add(): */
3685 		if (unlikely(!debug_locks))
3686 			return 0;
3687 	}
3688 
3689 	return 1;
3690 }
3691 #else
3692 static inline int validate_chain(struct task_struct *curr,
3693 				 struct held_lock *hlock,
3694 				 int chain_head, u64 chain_key)
3695 {
3696 	return 1;
3697 }
3698 
3699 static void init_chain_block_buckets(void)	{ }
3700 #endif /* CONFIG_PROVE_LOCKING */
3701 
3702 /*
3703  * We are building curr_chain_key incrementally, so double-check
3704  * it from scratch, to make sure that it's done correctly:
3705  */
3706 static void check_chain_key(struct task_struct *curr)
3707 {
3708 #ifdef CONFIG_DEBUG_LOCKDEP
3709 	struct held_lock *hlock, *prev_hlock = NULL;
3710 	unsigned int i;
3711 	u64 chain_key = INITIAL_CHAIN_KEY;
3712 
3713 	for (i = 0; i < curr->lockdep_depth; i++) {
3714 		hlock = curr->held_locks + i;
3715 		if (chain_key != hlock->prev_chain_key) {
3716 			debug_locks_off();
3717 			/*
3718 			 * We got mighty confused, our chain keys don't match
3719 			 * with what we expect, someone trample on our task state?
3720 			 */
3721 			WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3722 				curr->lockdep_depth, i,
3723 				(unsigned long long)chain_key,
3724 				(unsigned long long)hlock->prev_chain_key);
3725 			return;
3726 		}
3727 
3728 		/*
3729 		 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3730 		 * it registered lock class index?
3731 		 */
3732 		if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3733 			return;
3734 
3735 		if (prev_hlock && (prev_hlock->irq_context !=
3736 							hlock->irq_context))
3737 			chain_key = INITIAL_CHAIN_KEY;
3738 		chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3739 		prev_hlock = hlock;
3740 	}
3741 	if (chain_key != curr->curr_chain_key) {
3742 		debug_locks_off();
3743 		/*
3744 		 * More smoking hash instead of calculating it, damn see these
3745 		 * numbers float.. I bet that a pink elephant stepped on my memory.
3746 		 */
3747 		WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3748 			curr->lockdep_depth, i,
3749 			(unsigned long long)chain_key,
3750 			(unsigned long long)curr->curr_chain_key);
3751 	}
3752 #endif
3753 }
3754 
3755 #ifdef CONFIG_PROVE_LOCKING
3756 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3757 		     enum lock_usage_bit new_bit);
3758 
3759 static void print_usage_bug_scenario(struct held_lock *lock)
3760 {
3761 	struct lock_class *class = hlock_class(lock);
3762 
3763 	printk(" Possible unsafe locking scenario:\n\n");
3764 	printk("       CPU0\n");
3765 	printk("       ----\n");
3766 	printk("  lock(");
3767 	__print_lock_name(class);
3768 	printk(KERN_CONT ");\n");
3769 	printk("  <Interrupt>\n");
3770 	printk("    lock(");
3771 	__print_lock_name(class);
3772 	printk(KERN_CONT ");\n");
3773 	printk("\n *** DEADLOCK ***\n\n");
3774 }
3775 
3776 static void
3777 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3778 		enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3779 {
3780 	if (!debug_locks_off() || debug_locks_silent)
3781 		return;
3782 
3783 	pr_warn("\n");
3784 	pr_warn("================================\n");
3785 	pr_warn("WARNING: inconsistent lock state\n");
3786 	print_kernel_ident();
3787 	pr_warn("--------------------------------\n");
3788 
3789 	pr_warn("inconsistent {%s} -> {%s} usage.\n",
3790 		usage_str[prev_bit], usage_str[new_bit]);
3791 
3792 	pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3793 		curr->comm, task_pid_nr(curr),
3794 		lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3795 		lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3796 		lockdep_hardirqs_enabled(),
3797 		lockdep_softirqs_enabled(curr));
3798 	print_lock(this);
3799 
3800 	pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3801 	print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3802 
3803 	print_irqtrace_events(curr);
3804 	pr_warn("\nother info that might help us debug this:\n");
3805 	print_usage_bug_scenario(this);
3806 
3807 	lockdep_print_held_locks(curr);
3808 
3809 	pr_warn("\nstack backtrace:\n");
3810 	dump_stack();
3811 }
3812 
3813 /*
3814  * Print out an error if an invalid bit is set:
3815  */
3816 static inline int
3817 valid_state(struct task_struct *curr, struct held_lock *this,
3818 	    enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3819 {
3820 	if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3821 		graph_unlock();
3822 		print_usage_bug(curr, this, bad_bit, new_bit);
3823 		return 0;
3824 	}
3825 	return 1;
3826 }
3827 
3828 
3829 /*
3830  * print irq inversion bug:
3831  */
3832 static void
3833 print_irq_inversion_bug(struct task_struct *curr,
3834 			struct lock_list *root, struct lock_list *other,
3835 			struct held_lock *this, int forwards,
3836 			const char *irqclass)
3837 {
3838 	struct lock_list *entry = other;
3839 	struct lock_list *middle = NULL;
3840 	int depth;
3841 
3842 	if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3843 		return;
3844 
3845 	pr_warn("\n");
3846 	pr_warn("========================================================\n");
3847 	pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3848 	print_kernel_ident();
3849 	pr_warn("--------------------------------------------------------\n");
3850 	pr_warn("%s/%d just changed the state of lock:\n",
3851 		curr->comm, task_pid_nr(curr));
3852 	print_lock(this);
3853 	if (forwards)
3854 		pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3855 	else
3856 		pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3857 	print_lock_name(other->class);
3858 	pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3859 
3860 	pr_warn("\nother info that might help us debug this:\n");
3861 
3862 	/* Find a middle lock (if one exists) */
3863 	depth = get_lock_depth(other);
3864 	do {
3865 		if (depth == 0 && (entry != root)) {
3866 			pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3867 			break;
3868 		}
3869 		middle = entry;
3870 		entry = get_lock_parent(entry);
3871 		depth--;
3872 	} while (entry && entry != root && (depth >= 0));
3873 	if (forwards)
3874 		print_irq_lock_scenario(root, other,
3875 			middle ? middle->class : root->class, other->class);
3876 	else
3877 		print_irq_lock_scenario(other, root,
3878 			middle ? middle->class : other->class, root->class);
3879 
3880 	lockdep_print_held_locks(curr);
3881 
3882 	pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3883 	root->trace = save_trace();
3884 	if (!root->trace)
3885 		return;
3886 	print_shortest_lock_dependencies(other, root);
3887 
3888 	pr_warn("\nstack backtrace:\n");
3889 	dump_stack();
3890 }
3891 
3892 /*
3893  * Prove that in the forwards-direction subgraph starting at <this>
3894  * there is no lock matching <mask>:
3895  */
3896 static int
3897 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
3898 		     enum lock_usage_bit bit)
3899 {
3900 	enum bfs_result ret;
3901 	struct lock_list root;
3902 	struct lock_list *target_entry;
3903 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3904 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3905 
3906 	bfs_init_root(&root, this);
3907 	ret = find_usage_forwards(&root, usage_mask, &target_entry);
3908 	if (bfs_error(ret)) {
3909 		print_bfs_bug(ret);
3910 		return 0;
3911 	}
3912 	if (ret == BFS_RNOMATCH)
3913 		return 1;
3914 
3915 	/* Check whether write or read usage is the match */
3916 	if (target_entry->class->usage_mask & lock_flag(bit)) {
3917 		print_irq_inversion_bug(curr, &root, target_entry,
3918 					this, 1, state_name(bit));
3919 	} else {
3920 		print_irq_inversion_bug(curr, &root, target_entry,
3921 					this, 1, state_name(read_bit));
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 /*
3928  * Prove that in the backwards-direction subgraph starting at <this>
3929  * there is no lock matching <mask>:
3930  */
3931 static int
3932 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
3933 		      enum lock_usage_bit bit)
3934 {
3935 	enum bfs_result ret;
3936 	struct lock_list root;
3937 	struct lock_list *target_entry;
3938 	enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
3939 	unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
3940 
3941 	bfs_init_rootb(&root, this);
3942 	ret = find_usage_backwards(&root, usage_mask, &target_entry);
3943 	if (bfs_error(ret)) {
3944 		print_bfs_bug(ret);
3945 		return 0;
3946 	}
3947 	if (ret == BFS_RNOMATCH)
3948 		return 1;
3949 
3950 	/* Check whether write or read usage is the match */
3951 	if (target_entry->class->usage_mask & lock_flag(bit)) {
3952 		print_irq_inversion_bug(curr, &root, target_entry,
3953 					this, 0, state_name(bit));
3954 	} else {
3955 		print_irq_inversion_bug(curr, &root, target_entry,
3956 					this, 0, state_name(read_bit));
3957 	}
3958 
3959 	return 0;
3960 }
3961 
3962 void print_irqtrace_events(struct task_struct *curr)
3963 {
3964 	const struct irqtrace_events *trace = &curr->irqtrace;
3965 
3966 	printk("irq event stamp: %u\n", trace->irq_events);
3967 	printk("hardirqs last  enabled at (%u): [<%px>] %pS\n",
3968 		trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
3969 		(void *)trace->hardirq_enable_ip);
3970 	printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
3971 		trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
3972 		(void *)trace->hardirq_disable_ip);
3973 	printk("softirqs last  enabled at (%u): [<%px>] %pS\n",
3974 		trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
3975 		(void *)trace->softirq_enable_ip);
3976 	printk("softirqs last disabled at (%u): [<%px>] %pS\n",
3977 		trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
3978 		(void *)trace->softirq_disable_ip);
3979 }
3980 
3981 static int HARDIRQ_verbose(struct lock_class *class)
3982 {
3983 #if HARDIRQ_VERBOSE
3984 	return class_filter(class);
3985 #endif
3986 	return 0;
3987 }
3988 
3989 static int SOFTIRQ_verbose(struct lock_class *class)
3990 {
3991 #if SOFTIRQ_VERBOSE
3992 	return class_filter(class);
3993 #endif
3994 	return 0;
3995 }
3996 
3997 static int (*state_verbose_f[])(struct lock_class *class) = {
3998 #define LOCKDEP_STATE(__STATE) \
3999 	__STATE##_verbose,
4000 #include "lockdep_states.h"
4001 #undef LOCKDEP_STATE
4002 };
4003 
4004 static inline int state_verbose(enum lock_usage_bit bit,
4005 				struct lock_class *class)
4006 {
4007 	return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4008 }
4009 
4010 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4011 			     enum lock_usage_bit bit, const char *name);
4012 
4013 static int
4014 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4015 		enum lock_usage_bit new_bit)
4016 {
4017 	int excl_bit = exclusive_bit(new_bit);
4018 	int read = new_bit & LOCK_USAGE_READ_MASK;
4019 	int dir = new_bit & LOCK_USAGE_DIR_MASK;
4020 
4021 	/*
4022 	 * Validate that this particular lock does not have conflicting
4023 	 * usage states.
4024 	 */
4025 	if (!valid_state(curr, this, new_bit, excl_bit))
4026 		return 0;
4027 
4028 	/*
4029 	 * Check for read in write conflicts
4030 	 */
4031 	if (!read && !valid_state(curr, this, new_bit,
4032 				  excl_bit + LOCK_USAGE_READ_MASK))
4033 		return 0;
4034 
4035 
4036 	/*
4037 	 * Validate that the lock dependencies don't have conflicting usage
4038 	 * states.
4039 	 */
4040 	if (dir) {
4041 		/*
4042 		 * mark ENABLED has to look backwards -- to ensure no dependee
4043 		 * has USED_IN state, which, again, would allow  recursion deadlocks.
4044 		 */
4045 		if (!check_usage_backwards(curr, this, excl_bit))
4046 			return 0;
4047 	} else {
4048 		/*
4049 		 * mark USED_IN has to look forwards -- to ensure no dependency
4050 		 * has ENABLED state, which would allow recursion deadlocks.
4051 		 */
4052 		if (!check_usage_forwards(curr, this, excl_bit))
4053 			return 0;
4054 	}
4055 
4056 	if (state_verbose(new_bit, hlock_class(this)))
4057 		return 2;
4058 
4059 	return 1;
4060 }
4061 
4062 /*
4063  * Mark all held locks with a usage bit:
4064  */
4065 static int
4066 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4067 {
4068 	struct held_lock *hlock;
4069 	int i;
4070 
4071 	for (i = 0; i < curr->lockdep_depth; i++) {
4072 		enum lock_usage_bit hlock_bit = base_bit;
4073 		hlock = curr->held_locks + i;
4074 
4075 		if (hlock->read)
4076 			hlock_bit += LOCK_USAGE_READ_MASK;
4077 
4078 		BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4079 
4080 		if (!hlock->check)
4081 			continue;
4082 
4083 		if (!mark_lock(curr, hlock, hlock_bit))
4084 			return 0;
4085 	}
4086 
4087 	return 1;
4088 }
4089 
4090 /*
4091  * Hardirqs will be enabled:
4092  */
4093 static void __trace_hardirqs_on_caller(void)
4094 {
4095 	struct task_struct *curr = current;
4096 
4097 	/*
4098 	 * We are going to turn hardirqs on, so set the
4099 	 * usage bit for all held locks:
4100 	 */
4101 	if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4102 		return;
4103 	/*
4104 	 * If we have softirqs enabled, then set the usage
4105 	 * bit for all held locks. (disabled hardirqs prevented
4106 	 * this bit from being set before)
4107 	 */
4108 	if (curr->softirqs_enabled)
4109 		mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4110 }
4111 
4112 /**
4113  * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4114  * @ip:		Caller address
4115  *
4116  * Invoked before a possible transition to RCU idle from exit to user or
4117  * guest mode. This ensures that all RCU operations are done before RCU
4118  * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4119  * invoked to set the final state.
4120  */
4121 void lockdep_hardirqs_on_prepare(unsigned long ip)
4122 {
4123 	if (unlikely(!debug_locks))
4124 		return;
4125 
4126 	/*
4127 	 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4128 	 */
4129 	if (unlikely(in_nmi()))
4130 		return;
4131 
4132 	if (unlikely(this_cpu_read(lockdep_recursion)))
4133 		return;
4134 
4135 	if (unlikely(lockdep_hardirqs_enabled())) {
4136 		/*
4137 		 * Neither irq nor preemption are disabled here
4138 		 * so this is racy by nature but losing one hit
4139 		 * in a stat is not a big deal.
4140 		 */
4141 		__debug_atomic_inc(redundant_hardirqs_on);
4142 		return;
4143 	}
4144 
4145 	/*
4146 	 * We're enabling irqs and according to our state above irqs weren't
4147 	 * already enabled, yet we find the hardware thinks they are in fact
4148 	 * enabled.. someone messed up their IRQ state tracing.
4149 	 */
4150 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4151 		return;
4152 
4153 	/*
4154 	 * See the fine text that goes along with this variable definition.
4155 	 */
4156 	if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4157 		return;
4158 
4159 	/*
4160 	 * Can't allow enabling interrupts while in an interrupt handler,
4161 	 * that's general bad form and such. Recursion, limited stack etc..
4162 	 */
4163 	if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4164 		return;
4165 
4166 	current->hardirq_chain_key = current->curr_chain_key;
4167 
4168 	lockdep_recursion_inc();
4169 	__trace_hardirqs_on_caller();
4170 	lockdep_recursion_finish();
4171 }
4172 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4173 
4174 void noinstr lockdep_hardirqs_on(unsigned long ip)
4175 {
4176 	struct irqtrace_events *trace = &current->irqtrace;
4177 
4178 	if (unlikely(!debug_locks))
4179 		return;
4180 
4181 	/*
4182 	 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4183 	 * tracking state and hardware state are out of sync.
4184 	 *
4185 	 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4186 	 * and not rely on hardware state like normal interrupts.
4187 	 */
4188 	if (unlikely(in_nmi())) {
4189 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4190 			return;
4191 
4192 		/*
4193 		 * Skip:
4194 		 *  - recursion check, because NMI can hit lockdep;
4195 		 *  - hardware state check, because above;
4196 		 *  - chain_key check, see lockdep_hardirqs_on_prepare().
4197 		 */
4198 		goto skip_checks;
4199 	}
4200 
4201 	if (unlikely(this_cpu_read(lockdep_recursion)))
4202 		return;
4203 
4204 	if (lockdep_hardirqs_enabled()) {
4205 		/*
4206 		 * Neither irq nor preemption are disabled here
4207 		 * so this is racy by nature but losing one hit
4208 		 * in a stat is not a big deal.
4209 		 */
4210 		__debug_atomic_inc(redundant_hardirqs_on);
4211 		return;
4212 	}
4213 
4214 	/*
4215 	 * We're enabling irqs and according to our state above irqs weren't
4216 	 * already enabled, yet we find the hardware thinks they are in fact
4217 	 * enabled.. someone messed up their IRQ state tracing.
4218 	 */
4219 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4220 		return;
4221 
4222 	/*
4223 	 * Ensure the lock stack remained unchanged between
4224 	 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4225 	 */
4226 	DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4227 			    current->curr_chain_key);
4228 
4229 skip_checks:
4230 	/* we'll do an OFF -> ON transition: */
4231 	__this_cpu_write(hardirqs_enabled, 1);
4232 	trace->hardirq_enable_ip = ip;
4233 	trace->hardirq_enable_event = ++trace->irq_events;
4234 	debug_atomic_inc(hardirqs_on_events);
4235 }
4236 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4237 
4238 /*
4239  * Hardirqs were disabled:
4240  */
4241 void noinstr lockdep_hardirqs_off(unsigned long ip)
4242 {
4243 	if (unlikely(!debug_locks))
4244 		return;
4245 
4246 	/*
4247 	 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4248 	 * they will restore the software state. This ensures the software
4249 	 * state is consistent inside NMIs as well.
4250 	 */
4251 	if (in_nmi()) {
4252 		if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4253 			return;
4254 	} else if (__this_cpu_read(lockdep_recursion))
4255 		return;
4256 
4257 	/*
4258 	 * So we're supposed to get called after you mask local IRQs, but for
4259 	 * some reason the hardware doesn't quite think you did a proper job.
4260 	 */
4261 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4262 		return;
4263 
4264 	if (lockdep_hardirqs_enabled()) {
4265 		struct irqtrace_events *trace = &current->irqtrace;
4266 
4267 		/*
4268 		 * We have done an ON -> OFF transition:
4269 		 */
4270 		__this_cpu_write(hardirqs_enabled, 0);
4271 		trace->hardirq_disable_ip = ip;
4272 		trace->hardirq_disable_event = ++trace->irq_events;
4273 		debug_atomic_inc(hardirqs_off_events);
4274 	} else {
4275 		debug_atomic_inc(redundant_hardirqs_off);
4276 	}
4277 }
4278 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4279 
4280 /*
4281  * Softirqs will be enabled:
4282  */
4283 void lockdep_softirqs_on(unsigned long ip)
4284 {
4285 	struct irqtrace_events *trace = &current->irqtrace;
4286 
4287 	if (unlikely(!lockdep_enabled()))
4288 		return;
4289 
4290 	/*
4291 	 * We fancy IRQs being disabled here, see softirq.c, avoids
4292 	 * funny state and nesting things.
4293 	 */
4294 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4295 		return;
4296 
4297 	if (current->softirqs_enabled) {
4298 		debug_atomic_inc(redundant_softirqs_on);
4299 		return;
4300 	}
4301 
4302 	lockdep_recursion_inc();
4303 	/*
4304 	 * We'll do an OFF -> ON transition:
4305 	 */
4306 	current->softirqs_enabled = 1;
4307 	trace->softirq_enable_ip = ip;
4308 	trace->softirq_enable_event = ++trace->irq_events;
4309 	debug_atomic_inc(softirqs_on_events);
4310 	/*
4311 	 * We are going to turn softirqs on, so set the
4312 	 * usage bit for all held locks, if hardirqs are
4313 	 * enabled too:
4314 	 */
4315 	if (lockdep_hardirqs_enabled())
4316 		mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4317 	lockdep_recursion_finish();
4318 }
4319 
4320 /*
4321  * Softirqs were disabled:
4322  */
4323 void lockdep_softirqs_off(unsigned long ip)
4324 {
4325 	if (unlikely(!lockdep_enabled()))
4326 		return;
4327 
4328 	/*
4329 	 * We fancy IRQs being disabled here, see softirq.c
4330 	 */
4331 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4332 		return;
4333 
4334 	if (current->softirqs_enabled) {
4335 		struct irqtrace_events *trace = &current->irqtrace;
4336 
4337 		/*
4338 		 * We have done an ON -> OFF transition:
4339 		 */
4340 		current->softirqs_enabled = 0;
4341 		trace->softirq_disable_ip = ip;
4342 		trace->softirq_disable_event = ++trace->irq_events;
4343 		debug_atomic_inc(softirqs_off_events);
4344 		/*
4345 		 * Whoops, we wanted softirqs off, so why aren't they?
4346 		 */
4347 		DEBUG_LOCKS_WARN_ON(!softirq_count());
4348 	} else
4349 		debug_atomic_inc(redundant_softirqs_off);
4350 }
4351 
4352 static int
4353 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4354 {
4355 	if (!check)
4356 		goto lock_used;
4357 
4358 	/*
4359 	 * If non-trylock use in a hardirq or softirq context, then
4360 	 * mark the lock as used in these contexts:
4361 	 */
4362 	if (!hlock->trylock) {
4363 		if (hlock->read) {
4364 			if (lockdep_hardirq_context())
4365 				if (!mark_lock(curr, hlock,
4366 						LOCK_USED_IN_HARDIRQ_READ))
4367 					return 0;
4368 			if (curr->softirq_context)
4369 				if (!mark_lock(curr, hlock,
4370 						LOCK_USED_IN_SOFTIRQ_READ))
4371 					return 0;
4372 		} else {
4373 			if (lockdep_hardirq_context())
4374 				if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4375 					return 0;
4376 			if (curr->softirq_context)
4377 				if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4378 					return 0;
4379 		}
4380 	}
4381 	if (!hlock->hardirqs_off) {
4382 		if (hlock->read) {
4383 			if (!mark_lock(curr, hlock,
4384 					LOCK_ENABLED_HARDIRQ_READ))
4385 				return 0;
4386 			if (curr->softirqs_enabled)
4387 				if (!mark_lock(curr, hlock,
4388 						LOCK_ENABLED_SOFTIRQ_READ))
4389 					return 0;
4390 		} else {
4391 			if (!mark_lock(curr, hlock,
4392 					LOCK_ENABLED_HARDIRQ))
4393 				return 0;
4394 			if (curr->softirqs_enabled)
4395 				if (!mark_lock(curr, hlock,
4396 						LOCK_ENABLED_SOFTIRQ))
4397 					return 0;
4398 		}
4399 	}
4400 
4401 lock_used:
4402 	/* mark it as used: */
4403 	if (!mark_lock(curr, hlock, LOCK_USED))
4404 		return 0;
4405 
4406 	return 1;
4407 }
4408 
4409 static inline unsigned int task_irq_context(struct task_struct *task)
4410 {
4411 	return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4412 	       LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4413 }
4414 
4415 static int separate_irq_context(struct task_struct *curr,
4416 		struct held_lock *hlock)
4417 {
4418 	unsigned int depth = curr->lockdep_depth;
4419 
4420 	/*
4421 	 * Keep track of points where we cross into an interrupt context:
4422 	 */
4423 	if (depth) {
4424 		struct held_lock *prev_hlock;
4425 
4426 		prev_hlock = curr->held_locks + depth-1;
4427 		/*
4428 		 * If we cross into another context, reset the
4429 		 * hash key (this also prevents the checking and the
4430 		 * adding of the dependency to 'prev'):
4431 		 */
4432 		if (prev_hlock->irq_context != hlock->irq_context)
4433 			return 1;
4434 	}
4435 	return 0;
4436 }
4437 
4438 /*
4439  * Mark a lock with a usage bit, and validate the state transition:
4440  */
4441 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4442 			     enum lock_usage_bit new_bit)
4443 {
4444 	unsigned int new_mask, ret = 1;
4445 
4446 	if (new_bit >= LOCK_USAGE_STATES) {
4447 		DEBUG_LOCKS_WARN_ON(1);
4448 		return 0;
4449 	}
4450 
4451 	if (new_bit == LOCK_USED && this->read)
4452 		new_bit = LOCK_USED_READ;
4453 
4454 	new_mask = 1 << new_bit;
4455 
4456 	/*
4457 	 * If already set then do not dirty the cacheline,
4458 	 * nor do any checks:
4459 	 */
4460 	if (likely(hlock_class(this)->usage_mask & new_mask))
4461 		return 1;
4462 
4463 	if (!graph_lock())
4464 		return 0;
4465 	/*
4466 	 * Make sure we didn't race:
4467 	 */
4468 	if (unlikely(hlock_class(this)->usage_mask & new_mask))
4469 		goto unlock;
4470 
4471 	if (!hlock_class(this)->usage_mask)
4472 		debug_atomic_dec(nr_unused_locks);
4473 
4474 	hlock_class(this)->usage_mask |= new_mask;
4475 
4476 	if (new_bit < LOCK_TRACE_STATES) {
4477 		if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4478 			return 0;
4479 	}
4480 
4481 	if (new_bit < LOCK_USED) {
4482 		ret = mark_lock_irq(curr, this, new_bit);
4483 		if (!ret)
4484 			return 0;
4485 	}
4486 
4487 unlock:
4488 	graph_unlock();
4489 
4490 	/*
4491 	 * We must printk outside of the graph_lock:
4492 	 */
4493 	if (ret == 2) {
4494 		printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4495 		print_lock(this);
4496 		print_irqtrace_events(curr);
4497 		dump_stack();
4498 	}
4499 
4500 	return ret;
4501 }
4502 
4503 static inline short task_wait_context(struct task_struct *curr)
4504 {
4505 	/*
4506 	 * Set appropriate wait type for the context; for IRQs we have to take
4507 	 * into account force_irqthread as that is implied by PREEMPT_RT.
4508 	 */
4509 	if (lockdep_hardirq_context()) {
4510 		/*
4511 		 * Check if force_irqthreads will run us threaded.
4512 		 */
4513 		if (curr->hardirq_threaded || curr->irq_config)
4514 			return LD_WAIT_CONFIG;
4515 
4516 		return LD_WAIT_SPIN;
4517 	} else if (curr->softirq_context) {
4518 		/*
4519 		 * Softirqs are always threaded.
4520 		 */
4521 		return LD_WAIT_CONFIG;
4522 	}
4523 
4524 	return LD_WAIT_MAX;
4525 }
4526 
4527 static int
4528 print_lock_invalid_wait_context(struct task_struct *curr,
4529 				struct held_lock *hlock)
4530 {
4531 	short curr_inner;
4532 
4533 	if (!debug_locks_off())
4534 		return 0;
4535 	if (debug_locks_silent)
4536 		return 0;
4537 
4538 	pr_warn("\n");
4539 	pr_warn("=============================\n");
4540 	pr_warn("[ BUG: Invalid wait context ]\n");
4541 	print_kernel_ident();
4542 	pr_warn("-----------------------------\n");
4543 
4544 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4545 	print_lock(hlock);
4546 
4547 	pr_warn("other info that might help us debug this:\n");
4548 
4549 	curr_inner = task_wait_context(curr);
4550 	pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4551 
4552 	lockdep_print_held_locks(curr);
4553 
4554 	pr_warn("stack backtrace:\n");
4555 	dump_stack();
4556 
4557 	return 0;
4558 }
4559 
4560 /*
4561  * Verify the wait_type context.
4562  *
4563  * This check validates we takes locks in the right wait-type order; that is it
4564  * ensures that we do not take mutexes inside spinlocks and do not attempt to
4565  * acquire spinlocks inside raw_spinlocks and the sort.
4566  *
4567  * The entire thing is slightly more complex because of RCU, RCU is a lock that
4568  * can be taken from (pretty much) any context but also has constraints.
4569  * However when taken in a stricter environment the RCU lock does not loosen
4570  * the constraints.
4571  *
4572  * Therefore we must look for the strictest environment in the lock stack and
4573  * compare that to the lock we're trying to acquire.
4574  */
4575 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4576 {
4577 	u8 next_inner = hlock_class(next)->wait_type_inner;
4578 	u8 next_outer = hlock_class(next)->wait_type_outer;
4579 	u8 curr_inner;
4580 	int depth;
4581 
4582 	if (!curr->lockdep_depth || !next_inner || next->trylock)
4583 		return 0;
4584 
4585 	if (!next_outer)
4586 		next_outer = next_inner;
4587 
4588 	/*
4589 	 * Find start of current irq_context..
4590 	 */
4591 	for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4592 		struct held_lock *prev = curr->held_locks + depth;
4593 		if (prev->irq_context != next->irq_context)
4594 			break;
4595 	}
4596 	depth++;
4597 
4598 	curr_inner = task_wait_context(curr);
4599 
4600 	for (; depth < curr->lockdep_depth; depth++) {
4601 		struct held_lock *prev = curr->held_locks + depth;
4602 		u8 prev_inner = hlock_class(prev)->wait_type_inner;
4603 
4604 		if (prev_inner) {
4605 			/*
4606 			 * We can have a bigger inner than a previous one
4607 			 * when outer is smaller than inner, as with RCU.
4608 			 *
4609 			 * Also due to trylocks.
4610 			 */
4611 			curr_inner = min(curr_inner, prev_inner);
4612 		}
4613 	}
4614 
4615 	if (next_outer > curr_inner)
4616 		return print_lock_invalid_wait_context(curr, next);
4617 
4618 	return 0;
4619 }
4620 
4621 #else /* CONFIG_PROVE_LOCKING */
4622 
4623 static inline int
4624 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4625 {
4626 	return 1;
4627 }
4628 
4629 static inline unsigned int task_irq_context(struct task_struct *task)
4630 {
4631 	return 0;
4632 }
4633 
4634 static inline int separate_irq_context(struct task_struct *curr,
4635 		struct held_lock *hlock)
4636 {
4637 	return 0;
4638 }
4639 
4640 static inline int check_wait_context(struct task_struct *curr,
4641 				     struct held_lock *next)
4642 {
4643 	return 0;
4644 }
4645 
4646 #endif /* CONFIG_PROVE_LOCKING */
4647 
4648 /*
4649  * Initialize a lock instance's lock-class mapping info:
4650  */
4651 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4652 			    struct lock_class_key *key, int subclass,
4653 			    u8 inner, u8 outer, u8 lock_type)
4654 {
4655 	int i;
4656 
4657 	for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4658 		lock->class_cache[i] = NULL;
4659 
4660 #ifdef CONFIG_LOCK_STAT
4661 	lock->cpu = raw_smp_processor_id();
4662 #endif
4663 
4664 	/*
4665 	 * Can't be having no nameless bastards around this place!
4666 	 */
4667 	if (DEBUG_LOCKS_WARN_ON(!name)) {
4668 		lock->name = "NULL";
4669 		return;
4670 	}
4671 
4672 	lock->name = name;
4673 
4674 	lock->wait_type_outer = outer;
4675 	lock->wait_type_inner = inner;
4676 	lock->lock_type = lock_type;
4677 
4678 	/*
4679 	 * No key, no joy, we need to hash something.
4680 	 */
4681 	if (DEBUG_LOCKS_WARN_ON(!key))
4682 		return;
4683 	/*
4684 	 * Sanity check, the lock-class key must either have been allocated
4685 	 * statically or must have been registered as a dynamic key.
4686 	 */
4687 	if (!static_obj(key) && !is_dynamic_key(key)) {
4688 		if (debug_locks)
4689 			printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4690 		DEBUG_LOCKS_WARN_ON(1);
4691 		return;
4692 	}
4693 	lock->key = key;
4694 
4695 	if (unlikely(!debug_locks))
4696 		return;
4697 
4698 	if (subclass) {
4699 		unsigned long flags;
4700 
4701 		if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4702 			return;
4703 
4704 		raw_local_irq_save(flags);
4705 		lockdep_recursion_inc();
4706 		register_lock_class(lock, subclass, 1);
4707 		lockdep_recursion_finish();
4708 		raw_local_irq_restore(flags);
4709 	}
4710 }
4711 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4712 
4713 struct lock_class_key __lockdep_no_validate__;
4714 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4715 
4716 static void
4717 print_lock_nested_lock_not_held(struct task_struct *curr,
4718 				struct held_lock *hlock,
4719 				unsigned long ip)
4720 {
4721 	if (!debug_locks_off())
4722 		return;
4723 	if (debug_locks_silent)
4724 		return;
4725 
4726 	pr_warn("\n");
4727 	pr_warn("==================================\n");
4728 	pr_warn("WARNING: Nested lock was not taken\n");
4729 	print_kernel_ident();
4730 	pr_warn("----------------------------------\n");
4731 
4732 	pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4733 	print_lock(hlock);
4734 
4735 	pr_warn("\nbut this task is not holding:\n");
4736 	pr_warn("%s\n", hlock->nest_lock->name);
4737 
4738 	pr_warn("\nstack backtrace:\n");
4739 	dump_stack();
4740 
4741 	pr_warn("\nother info that might help us debug this:\n");
4742 	lockdep_print_held_locks(curr);
4743 
4744 	pr_warn("\nstack backtrace:\n");
4745 	dump_stack();
4746 }
4747 
4748 static int __lock_is_held(const struct lockdep_map *lock, int read);
4749 
4750 /*
4751  * This gets called for every mutex_lock*()/spin_lock*() operation.
4752  * We maintain the dependency maps and validate the locking attempt:
4753  *
4754  * The callers must make sure that IRQs are disabled before calling it,
4755  * otherwise we could get an interrupt which would want to take locks,
4756  * which would end up in lockdep again.
4757  */
4758 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4759 			  int trylock, int read, int check, int hardirqs_off,
4760 			  struct lockdep_map *nest_lock, unsigned long ip,
4761 			  int references, int pin_count)
4762 {
4763 	struct task_struct *curr = current;
4764 	struct lock_class *class = NULL;
4765 	struct held_lock *hlock;
4766 	unsigned int depth;
4767 	int chain_head = 0;
4768 	int class_idx;
4769 	u64 chain_key;
4770 
4771 	if (unlikely(!debug_locks))
4772 		return 0;
4773 
4774 	if (!prove_locking || lock->key == &__lockdep_no_validate__)
4775 		check = 0;
4776 
4777 	if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4778 		class = lock->class_cache[subclass];
4779 	/*
4780 	 * Not cached?
4781 	 */
4782 	if (unlikely(!class)) {
4783 		class = register_lock_class(lock, subclass, 0);
4784 		if (!class)
4785 			return 0;
4786 	}
4787 
4788 	debug_class_ops_inc(class);
4789 
4790 	if (very_verbose(class)) {
4791 		printk("\nacquire class [%px] %s", class->key, class->name);
4792 		if (class->name_version > 1)
4793 			printk(KERN_CONT "#%d", class->name_version);
4794 		printk(KERN_CONT "\n");
4795 		dump_stack();
4796 	}
4797 
4798 	/*
4799 	 * Add the lock to the list of currently held locks.
4800 	 * (we dont increase the depth just yet, up until the
4801 	 * dependency checks are done)
4802 	 */
4803 	depth = curr->lockdep_depth;
4804 	/*
4805 	 * Ran out of static storage for our per-task lock stack again have we?
4806 	 */
4807 	if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4808 		return 0;
4809 
4810 	class_idx = class - lock_classes;
4811 
4812 	if (depth) { /* we're holding locks */
4813 		hlock = curr->held_locks + depth - 1;
4814 		if (hlock->class_idx == class_idx && nest_lock) {
4815 			if (!references)
4816 				references++;
4817 
4818 			if (!hlock->references)
4819 				hlock->references++;
4820 
4821 			hlock->references += references;
4822 
4823 			/* Overflow */
4824 			if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4825 				return 0;
4826 
4827 			return 2;
4828 		}
4829 	}
4830 
4831 	hlock = curr->held_locks + depth;
4832 	/*
4833 	 * Plain impossible, we just registered it and checked it weren't no
4834 	 * NULL like.. I bet this mushroom I ate was good!
4835 	 */
4836 	if (DEBUG_LOCKS_WARN_ON(!class))
4837 		return 0;
4838 	hlock->class_idx = class_idx;
4839 	hlock->acquire_ip = ip;
4840 	hlock->instance = lock;
4841 	hlock->nest_lock = nest_lock;
4842 	hlock->irq_context = task_irq_context(curr);
4843 	hlock->trylock = trylock;
4844 	hlock->read = read;
4845 	hlock->check = check;
4846 	hlock->hardirqs_off = !!hardirqs_off;
4847 	hlock->references = references;
4848 #ifdef CONFIG_LOCK_STAT
4849 	hlock->waittime_stamp = 0;
4850 	hlock->holdtime_stamp = lockstat_clock();
4851 #endif
4852 	hlock->pin_count = pin_count;
4853 
4854 	if (check_wait_context(curr, hlock))
4855 		return 0;
4856 
4857 	/* Initialize the lock usage bit */
4858 	if (!mark_usage(curr, hlock, check))
4859 		return 0;
4860 
4861 	/*
4862 	 * Calculate the chain hash: it's the combined hash of all the
4863 	 * lock keys along the dependency chain. We save the hash value
4864 	 * at every step so that we can get the current hash easily
4865 	 * after unlock. The chain hash is then used to cache dependency
4866 	 * results.
4867 	 *
4868 	 * The 'key ID' is what is the most compact key value to drive
4869 	 * the hash, not class->key.
4870 	 */
4871 	/*
4872 	 * Whoops, we did it again.. class_idx is invalid.
4873 	 */
4874 	if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4875 		return 0;
4876 
4877 	chain_key = curr->curr_chain_key;
4878 	if (!depth) {
4879 		/*
4880 		 * How can we have a chain hash when we ain't got no keys?!
4881 		 */
4882 		if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4883 			return 0;
4884 		chain_head = 1;
4885 	}
4886 
4887 	hlock->prev_chain_key = chain_key;
4888 	if (separate_irq_context(curr, hlock)) {
4889 		chain_key = INITIAL_CHAIN_KEY;
4890 		chain_head = 1;
4891 	}
4892 	chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
4893 
4894 	if (nest_lock && !__lock_is_held(nest_lock, -1)) {
4895 		print_lock_nested_lock_not_held(curr, hlock, ip);
4896 		return 0;
4897 	}
4898 
4899 	if (!debug_locks_silent) {
4900 		WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
4901 		WARN_ON_ONCE(!hlock_class(hlock)->key);
4902 	}
4903 
4904 	if (!validate_chain(curr, hlock, chain_head, chain_key))
4905 		return 0;
4906 
4907 	curr->curr_chain_key = chain_key;
4908 	curr->lockdep_depth++;
4909 	check_chain_key(curr);
4910 #ifdef CONFIG_DEBUG_LOCKDEP
4911 	if (unlikely(!debug_locks))
4912 		return 0;
4913 #endif
4914 	if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
4915 		debug_locks_off();
4916 		print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
4917 		printk(KERN_DEBUG "depth: %i  max: %lu!\n",
4918 		       curr->lockdep_depth, MAX_LOCK_DEPTH);
4919 
4920 		lockdep_print_held_locks(current);
4921 		debug_show_all_locks();
4922 		dump_stack();
4923 
4924 		return 0;
4925 	}
4926 
4927 	if (unlikely(curr->lockdep_depth > max_lockdep_depth))
4928 		max_lockdep_depth = curr->lockdep_depth;
4929 
4930 	return 1;
4931 }
4932 
4933 static void print_unlock_imbalance_bug(struct task_struct *curr,
4934 				       struct lockdep_map *lock,
4935 				       unsigned long ip)
4936 {
4937 	if (!debug_locks_off())
4938 		return;
4939 	if (debug_locks_silent)
4940 		return;
4941 
4942 	pr_warn("\n");
4943 	pr_warn("=====================================\n");
4944 	pr_warn("WARNING: bad unlock balance detected!\n");
4945 	print_kernel_ident();
4946 	pr_warn("-------------------------------------\n");
4947 	pr_warn("%s/%d is trying to release lock (",
4948 		curr->comm, task_pid_nr(curr));
4949 	print_lockdep_cache(lock);
4950 	pr_cont(") at:\n");
4951 	print_ip_sym(KERN_WARNING, ip);
4952 	pr_warn("but there are no more locks to release!\n");
4953 	pr_warn("\nother info that might help us debug this:\n");
4954 	lockdep_print_held_locks(curr);
4955 
4956 	pr_warn("\nstack backtrace:\n");
4957 	dump_stack();
4958 }
4959 
4960 static noinstr int match_held_lock(const struct held_lock *hlock,
4961 				   const struct lockdep_map *lock)
4962 {
4963 	if (hlock->instance == lock)
4964 		return 1;
4965 
4966 	if (hlock->references) {
4967 		const struct lock_class *class = lock->class_cache[0];
4968 
4969 		if (!class)
4970 			class = look_up_lock_class(lock, 0);
4971 
4972 		/*
4973 		 * If look_up_lock_class() failed to find a class, we're trying
4974 		 * to test if we hold a lock that has never yet been acquired.
4975 		 * Clearly if the lock hasn't been acquired _ever_, we're not
4976 		 * holding it either, so report failure.
4977 		 */
4978 		if (!class)
4979 			return 0;
4980 
4981 		/*
4982 		 * References, but not a lock we're actually ref-counting?
4983 		 * State got messed up, follow the sites that change ->references
4984 		 * and try to make sense of it.
4985 		 */
4986 		if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
4987 			return 0;
4988 
4989 		if (hlock->class_idx == class - lock_classes)
4990 			return 1;
4991 	}
4992 
4993 	return 0;
4994 }
4995 
4996 /* @depth must not be zero */
4997 static struct held_lock *find_held_lock(struct task_struct *curr,
4998 					struct lockdep_map *lock,
4999 					unsigned int depth, int *idx)
5000 {
5001 	struct held_lock *ret, *hlock, *prev_hlock;
5002 	int i;
5003 
5004 	i = depth - 1;
5005 	hlock = curr->held_locks + i;
5006 	ret = hlock;
5007 	if (match_held_lock(hlock, lock))
5008 		goto out;
5009 
5010 	ret = NULL;
5011 	for (i--, prev_hlock = hlock--;
5012 	     i >= 0;
5013 	     i--, prev_hlock = hlock--) {
5014 		/*
5015 		 * We must not cross into another context:
5016 		 */
5017 		if (prev_hlock->irq_context != hlock->irq_context) {
5018 			ret = NULL;
5019 			break;
5020 		}
5021 		if (match_held_lock(hlock, lock)) {
5022 			ret = hlock;
5023 			break;
5024 		}
5025 	}
5026 
5027 out:
5028 	*idx = i;
5029 	return ret;
5030 }
5031 
5032 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5033 				int idx, unsigned int *merged)
5034 {
5035 	struct held_lock *hlock;
5036 	int first_idx = idx;
5037 
5038 	if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5039 		return 0;
5040 
5041 	for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5042 		switch (__lock_acquire(hlock->instance,
5043 				    hlock_class(hlock)->subclass,
5044 				    hlock->trylock,
5045 				    hlock->read, hlock->check,
5046 				    hlock->hardirqs_off,
5047 				    hlock->nest_lock, hlock->acquire_ip,
5048 				    hlock->references, hlock->pin_count)) {
5049 		case 0:
5050 			return 1;
5051 		case 1:
5052 			break;
5053 		case 2:
5054 			*merged += (idx == first_idx);
5055 			break;
5056 		default:
5057 			WARN_ON(1);
5058 			return 0;
5059 		}
5060 	}
5061 	return 0;
5062 }
5063 
5064 static int
5065 __lock_set_class(struct lockdep_map *lock, const char *name,
5066 		 struct lock_class_key *key, unsigned int subclass,
5067 		 unsigned long ip)
5068 {
5069 	struct task_struct *curr = current;
5070 	unsigned int depth, merged = 0;
5071 	struct held_lock *hlock;
5072 	struct lock_class *class;
5073 	int i;
5074 
5075 	if (unlikely(!debug_locks))
5076 		return 0;
5077 
5078 	depth = curr->lockdep_depth;
5079 	/*
5080 	 * This function is about (re)setting the class of a held lock,
5081 	 * yet we're not actually holding any locks. Naughty user!
5082 	 */
5083 	if (DEBUG_LOCKS_WARN_ON(!depth))
5084 		return 0;
5085 
5086 	hlock = find_held_lock(curr, lock, depth, &i);
5087 	if (!hlock) {
5088 		print_unlock_imbalance_bug(curr, lock, ip);
5089 		return 0;
5090 	}
5091 
5092 	lockdep_init_map_waits(lock, name, key, 0,
5093 			       lock->wait_type_inner,
5094 			       lock->wait_type_outer);
5095 	class = register_lock_class(lock, subclass, 0);
5096 	hlock->class_idx = class - lock_classes;
5097 
5098 	curr->lockdep_depth = i;
5099 	curr->curr_chain_key = hlock->prev_chain_key;
5100 
5101 	if (reacquire_held_locks(curr, depth, i, &merged))
5102 		return 0;
5103 
5104 	/*
5105 	 * I took it apart and put it back together again, except now I have
5106 	 * these 'spare' parts.. where shall I put them.
5107 	 */
5108 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5109 		return 0;
5110 	return 1;
5111 }
5112 
5113 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5114 {
5115 	struct task_struct *curr = current;
5116 	unsigned int depth, merged = 0;
5117 	struct held_lock *hlock;
5118 	int i;
5119 
5120 	if (unlikely(!debug_locks))
5121 		return 0;
5122 
5123 	depth = curr->lockdep_depth;
5124 	/*
5125 	 * This function is about (re)setting the class of a held lock,
5126 	 * yet we're not actually holding any locks. Naughty user!
5127 	 */
5128 	if (DEBUG_LOCKS_WARN_ON(!depth))
5129 		return 0;
5130 
5131 	hlock = find_held_lock(curr, lock, depth, &i);
5132 	if (!hlock) {
5133 		print_unlock_imbalance_bug(curr, lock, ip);
5134 		return 0;
5135 	}
5136 
5137 	curr->lockdep_depth = i;
5138 	curr->curr_chain_key = hlock->prev_chain_key;
5139 
5140 	WARN(hlock->read, "downgrading a read lock");
5141 	hlock->read = 1;
5142 	hlock->acquire_ip = ip;
5143 
5144 	if (reacquire_held_locks(curr, depth, i, &merged))
5145 		return 0;
5146 
5147 	/* Merging can't happen with unchanged classes.. */
5148 	if (DEBUG_LOCKS_WARN_ON(merged))
5149 		return 0;
5150 
5151 	/*
5152 	 * I took it apart and put it back together again, except now I have
5153 	 * these 'spare' parts.. where shall I put them.
5154 	 */
5155 	if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5156 		return 0;
5157 
5158 	return 1;
5159 }
5160 
5161 /*
5162  * Remove the lock from the list of currently held locks - this gets
5163  * called on mutex_unlock()/spin_unlock*() (or on a failed
5164  * mutex_lock_interruptible()).
5165  */
5166 static int
5167 __lock_release(struct lockdep_map *lock, unsigned long ip)
5168 {
5169 	struct task_struct *curr = current;
5170 	unsigned int depth, merged = 1;
5171 	struct held_lock *hlock;
5172 	int i;
5173 
5174 	if (unlikely(!debug_locks))
5175 		return 0;
5176 
5177 	depth = curr->lockdep_depth;
5178 	/*
5179 	 * So we're all set to release this lock.. wait what lock? We don't
5180 	 * own any locks, you've been drinking again?
5181 	 */
5182 	if (depth <= 0) {
5183 		print_unlock_imbalance_bug(curr, lock, ip);
5184 		return 0;
5185 	}
5186 
5187 	/*
5188 	 * Check whether the lock exists in the current stack
5189 	 * of held locks:
5190 	 */
5191 	hlock = find_held_lock(curr, lock, depth, &i);
5192 	if (!hlock) {
5193 		print_unlock_imbalance_bug(curr, lock, ip);
5194 		return 0;
5195 	}
5196 
5197 	if (hlock->instance == lock)
5198 		lock_release_holdtime(hlock);
5199 
5200 	WARN(hlock->pin_count, "releasing a pinned lock\n");
5201 
5202 	if (hlock->references) {
5203 		hlock->references--;
5204 		if (hlock->references) {
5205 			/*
5206 			 * We had, and after removing one, still have
5207 			 * references, the current lock stack is still
5208 			 * valid. We're done!
5209 			 */
5210 			return 1;
5211 		}
5212 	}
5213 
5214 	/*
5215 	 * We have the right lock to unlock, 'hlock' points to it.
5216 	 * Now we remove it from the stack, and add back the other
5217 	 * entries (if any), recalculating the hash along the way:
5218 	 */
5219 
5220 	curr->lockdep_depth = i;
5221 	curr->curr_chain_key = hlock->prev_chain_key;
5222 
5223 	/*
5224 	 * The most likely case is when the unlock is on the innermost
5225 	 * lock. In this case, we are done!
5226 	 */
5227 	if (i == depth-1)
5228 		return 1;
5229 
5230 	if (reacquire_held_locks(curr, depth, i + 1, &merged))
5231 		return 0;
5232 
5233 	/*
5234 	 * We had N bottles of beer on the wall, we drank one, but now
5235 	 * there's not N-1 bottles of beer left on the wall...
5236 	 * Pouring two of the bottles together is acceptable.
5237 	 */
5238 	DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5239 
5240 	/*
5241 	 * Since reacquire_held_locks() would have called check_chain_key()
5242 	 * indirectly via __lock_acquire(), we don't need to do it again
5243 	 * on return.
5244 	 */
5245 	return 0;
5246 }
5247 
5248 static __always_inline
5249 int __lock_is_held(const struct lockdep_map *lock, int read)
5250 {
5251 	struct task_struct *curr = current;
5252 	int i;
5253 
5254 	for (i = 0; i < curr->lockdep_depth; i++) {
5255 		struct held_lock *hlock = curr->held_locks + i;
5256 
5257 		if (match_held_lock(hlock, lock)) {
5258 			if (read == -1 || hlock->read == read)
5259 				return LOCK_STATE_HELD;
5260 
5261 			return LOCK_STATE_NOT_HELD;
5262 		}
5263 	}
5264 
5265 	return LOCK_STATE_NOT_HELD;
5266 }
5267 
5268 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5269 {
5270 	struct pin_cookie cookie = NIL_COOKIE;
5271 	struct task_struct *curr = current;
5272 	int i;
5273 
5274 	if (unlikely(!debug_locks))
5275 		return cookie;
5276 
5277 	for (i = 0; i < curr->lockdep_depth; i++) {
5278 		struct held_lock *hlock = curr->held_locks + i;
5279 
5280 		if (match_held_lock(hlock, lock)) {
5281 			/*
5282 			 * Grab 16bits of randomness; this is sufficient to not
5283 			 * be guessable and still allows some pin nesting in
5284 			 * our u32 pin_count.
5285 			 */
5286 			cookie.val = 1 + (prandom_u32() >> 16);
5287 			hlock->pin_count += cookie.val;
5288 			return cookie;
5289 		}
5290 	}
5291 
5292 	WARN(1, "pinning an unheld lock\n");
5293 	return cookie;
5294 }
5295 
5296 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5297 {
5298 	struct task_struct *curr = current;
5299 	int i;
5300 
5301 	if (unlikely(!debug_locks))
5302 		return;
5303 
5304 	for (i = 0; i < curr->lockdep_depth; i++) {
5305 		struct held_lock *hlock = curr->held_locks + i;
5306 
5307 		if (match_held_lock(hlock, lock)) {
5308 			hlock->pin_count += cookie.val;
5309 			return;
5310 		}
5311 	}
5312 
5313 	WARN(1, "pinning an unheld lock\n");
5314 }
5315 
5316 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5317 {
5318 	struct task_struct *curr = current;
5319 	int i;
5320 
5321 	if (unlikely(!debug_locks))
5322 		return;
5323 
5324 	for (i = 0; i < curr->lockdep_depth; i++) {
5325 		struct held_lock *hlock = curr->held_locks + i;
5326 
5327 		if (match_held_lock(hlock, lock)) {
5328 			if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5329 				return;
5330 
5331 			hlock->pin_count -= cookie.val;
5332 
5333 			if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5334 				hlock->pin_count = 0;
5335 
5336 			return;
5337 		}
5338 	}
5339 
5340 	WARN(1, "unpinning an unheld lock\n");
5341 }
5342 
5343 /*
5344  * Check whether we follow the irq-flags state precisely:
5345  */
5346 static noinstr void check_flags(unsigned long flags)
5347 {
5348 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5349 	if (!debug_locks)
5350 		return;
5351 
5352 	/* Get the warning out..  */
5353 	instrumentation_begin();
5354 
5355 	if (irqs_disabled_flags(flags)) {
5356 		if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5357 			printk("possible reason: unannotated irqs-off.\n");
5358 		}
5359 	} else {
5360 		if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5361 			printk("possible reason: unannotated irqs-on.\n");
5362 		}
5363 	}
5364 
5365 	/*
5366 	 * We dont accurately track softirq state in e.g.
5367 	 * hardirq contexts (such as on 4KSTACKS), so only
5368 	 * check if not in hardirq contexts:
5369 	 */
5370 	if (!hardirq_count()) {
5371 		if (softirq_count()) {
5372 			/* like the above, but with softirqs */
5373 			DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5374 		} else {
5375 			/* lick the above, does it taste good? */
5376 			DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5377 		}
5378 	}
5379 
5380 	if (!debug_locks)
5381 		print_irqtrace_events(current);
5382 
5383 	instrumentation_end();
5384 #endif
5385 }
5386 
5387 void lock_set_class(struct lockdep_map *lock, const char *name,
5388 		    struct lock_class_key *key, unsigned int subclass,
5389 		    unsigned long ip)
5390 {
5391 	unsigned long flags;
5392 
5393 	if (unlikely(!lockdep_enabled()))
5394 		return;
5395 
5396 	raw_local_irq_save(flags);
5397 	lockdep_recursion_inc();
5398 	check_flags(flags);
5399 	if (__lock_set_class(lock, name, key, subclass, ip))
5400 		check_chain_key(current);
5401 	lockdep_recursion_finish();
5402 	raw_local_irq_restore(flags);
5403 }
5404 EXPORT_SYMBOL_GPL(lock_set_class);
5405 
5406 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5407 {
5408 	unsigned long flags;
5409 
5410 	if (unlikely(!lockdep_enabled()))
5411 		return;
5412 
5413 	raw_local_irq_save(flags);
5414 	lockdep_recursion_inc();
5415 	check_flags(flags);
5416 	if (__lock_downgrade(lock, ip))
5417 		check_chain_key(current);
5418 	lockdep_recursion_finish();
5419 	raw_local_irq_restore(flags);
5420 }
5421 EXPORT_SYMBOL_GPL(lock_downgrade);
5422 
5423 /* NMI context !!! */
5424 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5425 {
5426 #ifdef CONFIG_PROVE_LOCKING
5427 	struct lock_class *class = look_up_lock_class(lock, subclass);
5428 	unsigned long mask = LOCKF_USED;
5429 
5430 	/* if it doesn't have a class (yet), it certainly hasn't been used yet */
5431 	if (!class)
5432 		return;
5433 
5434 	/*
5435 	 * READ locks only conflict with USED, such that if we only ever use
5436 	 * READ locks, there is no deadlock possible -- RCU.
5437 	 */
5438 	if (!hlock->read)
5439 		mask |= LOCKF_USED_READ;
5440 
5441 	if (!(class->usage_mask & mask))
5442 		return;
5443 
5444 	hlock->class_idx = class - lock_classes;
5445 
5446 	print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5447 #endif
5448 }
5449 
5450 static bool lockdep_nmi(void)
5451 {
5452 	if (raw_cpu_read(lockdep_recursion))
5453 		return false;
5454 
5455 	if (!in_nmi())
5456 		return false;
5457 
5458 	return true;
5459 }
5460 
5461 /*
5462  * read_lock() is recursive if:
5463  * 1. We force lockdep think this way in selftests or
5464  * 2. The implementation is not queued read/write lock or
5465  * 3. The locker is at an in_interrupt() context.
5466  */
5467 bool read_lock_is_recursive(void)
5468 {
5469 	return force_read_lock_recursive ||
5470 	       !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5471 	       in_interrupt();
5472 }
5473 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5474 
5475 /*
5476  * We are not always called with irqs disabled - do that here,
5477  * and also avoid lockdep recursion:
5478  */
5479 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5480 			  int trylock, int read, int check,
5481 			  struct lockdep_map *nest_lock, unsigned long ip)
5482 {
5483 	unsigned long flags;
5484 
5485 	trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5486 
5487 	if (!debug_locks)
5488 		return;
5489 
5490 	if (unlikely(!lockdep_enabled())) {
5491 		/* XXX allow trylock from NMI ?!? */
5492 		if (lockdep_nmi() && !trylock) {
5493 			struct held_lock hlock;
5494 
5495 			hlock.acquire_ip = ip;
5496 			hlock.instance = lock;
5497 			hlock.nest_lock = nest_lock;
5498 			hlock.irq_context = 2; // XXX
5499 			hlock.trylock = trylock;
5500 			hlock.read = read;
5501 			hlock.check = check;
5502 			hlock.hardirqs_off = true;
5503 			hlock.references = 0;
5504 
5505 			verify_lock_unused(lock, &hlock, subclass);
5506 		}
5507 		return;
5508 	}
5509 
5510 	raw_local_irq_save(flags);
5511 	check_flags(flags);
5512 
5513 	lockdep_recursion_inc();
5514 	__lock_acquire(lock, subclass, trylock, read, check,
5515 		       irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5516 	lockdep_recursion_finish();
5517 	raw_local_irq_restore(flags);
5518 }
5519 EXPORT_SYMBOL_GPL(lock_acquire);
5520 
5521 void lock_release(struct lockdep_map *lock, unsigned long ip)
5522 {
5523 	unsigned long flags;
5524 
5525 	trace_lock_release(lock, ip);
5526 
5527 	if (unlikely(!lockdep_enabled()))
5528 		return;
5529 
5530 	raw_local_irq_save(flags);
5531 	check_flags(flags);
5532 
5533 	lockdep_recursion_inc();
5534 	if (__lock_release(lock, ip))
5535 		check_chain_key(current);
5536 	lockdep_recursion_finish();
5537 	raw_local_irq_restore(flags);
5538 }
5539 EXPORT_SYMBOL_GPL(lock_release);
5540 
5541 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5542 {
5543 	unsigned long flags;
5544 	int ret = LOCK_STATE_NOT_HELD;
5545 
5546 	/*
5547 	 * Avoid false negative lockdep_assert_held() and
5548 	 * lockdep_assert_not_held().
5549 	 */
5550 	if (unlikely(!lockdep_enabled()))
5551 		return LOCK_STATE_UNKNOWN;
5552 
5553 	raw_local_irq_save(flags);
5554 	check_flags(flags);
5555 
5556 	lockdep_recursion_inc();
5557 	ret = __lock_is_held(lock, read);
5558 	lockdep_recursion_finish();
5559 	raw_local_irq_restore(flags);
5560 
5561 	return ret;
5562 }
5563 EXPORT_SYMBOL_GPL(lock_is_held_type);
5564 NOKPROBE_SYMBOL(lock_is_held_type);
5565 
5566 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5567 {
5568 	struct pin_cookie cookie = NIL_COOKIE;
5569 	unsigned long flags;
5570 
5571 	if (unlikely(!lockdep_enabled()))
5572 		return cookie;
5573 
5574 	raw_local_irq_save(flags);
5575 	check_flags(flags);
5576 
5577 	lockdep_recursion_inc();
5578 	cookie = __lock_pin_lock(lock);
5579 	lockdep_recursion_finish();
5580 	raw_local_irq_restore(flags);
5581 
5582 	return cookie;
5583 }
5584 EXPORT_SYMBOL_GPL(lock_pin_lock);
5585 
5586 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5587 {
5588 	unsigned long flags;
5589 
5590 	if (unlikely(!lockdep_enabled()))
5591 		return;
5592 
5593 	raw_local_irq_save(flags);
5594 	check_flags(flags);
5595 
5596 	lockdep_recursion_inc();
5597 	__lock_repin_lock(lock, cookie);
5598 	lockdep_recursion_finish();
5599 	raw_local_irq_restore(flags);
5600 }
5601 EXPORT_SYMBOL_GPL(lock_repin_lock);
5602 
5603 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5604 {
5605 	unsigned long flags;
5606 
5607 	if (unlikely(!lockdep_enabled()))
5608 		return;
5609 
5610 	raw_local_irq_save(flags);
5611 	check_flags(flags);
5612 
5613 	lockdep_recursion_inc();
5614 	__lock_unpin_lock(lock, cookie);
5615 	lockdep_recursion_finish();
5616 	raw_local_irq_restore(flags);
5617 }
5618 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5619 
5620 #ifdef CONFIG_LOCK_STAT
5621 static void print_lock_contention_bug(struct task_struct *curr,
5622 				      struct lockdep_map *lock,
5623 				      unsigned long ip)
5624 {
5625 	if (!debug_locks_off())
5626 		return;
5627 	if (debug_locks_silent)
5628 		return;
5629 
5630 	pr_warn("\n");
5631 	pr_warn("=================================\n");
5632 	pr_warn("WARNING: bad contention detected!\n");
5633 	print_kernel_ident();
5634 	pr_warn("---------------------------------\n");
5635 	pr_warn("%s/%d is trying to contend lock (",
5636 		curr->comm, task_pid_nr(curr));
5637 	print_lockdep_cache(lock);
5638 	pr_cont(") at:\n");
5639 	print_ip_sym(KERN_WARNING, ip);
5640 	pr_warn("but there are no locks held!\n");
5641 	pr_warn("\nother info that might help us debug this:\n");
5642 	lockdep_print_held_locks(curr);
5643 
5644 	pr_warn("\nstack backtrace:\n");
5645 	dump_stack();
5646 }
5647 
5648 static void
5649 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5650 {
5651 	struct task_struct *curr = current;
5652 	struct held_lock *hlock;
5653 	struct lock_class_stats *stats;
5654 	unsigned int depth;
5655 	int i, contention_point, contending_point;
5656 
5657 	depth = curr->lockdep_depth;
5658 	/*
5659 	 * Whee, we contended on this lock, except it seems we're not
5660 	 * actually trying to acquire anything much at all..
5661 	 */
5662 	if (DEBUG_LOCKS_WARN_ON(!depth))
5663 		return;
5664 
5665 	hlock = find_held_lock(curr, lock, depth, &i);
5666 	if (!hlock) {
5667 		print_lock_contention_bug(curr, lock, ip);
5668 		return;
5669 	}
5670 
5671 	if (hlock->instance != lock)
5672 		return;
5673 
5674 	hlock->waittime_stamp = lockstat_clock();
5675 
5676 	contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5677 	contending_point = lock_point(hlock_class(hlock)->contending_point,
5678 				      lock->ip);
5679 
5680 	stats = get_lock_stats(hlock_class(hlock));
5681 	if (contention_point < LOCKSTAT_POINTS)
5682 		stats->contention_point[contention_point]++;
5683 	if (contending_point < LOCKSTAT_POINTS)
5684 		stats->contending_point[contending_point]++;
5685 	if (lock->cpu != smp_processor_id())
5686 		stats->bounces[bounce_contended + !!hlock->read]++;
5687 }
5688 
5689 static void
5690 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5691 {
5692 	struct task_struct *curr = current;
5693 	struct held_lock *hlock;
5694 	struct lock_class_stats *stats;
5695 	unsigned int depth;
5696 	u64 now, waittime = 0;
5697 	int i, cpu;
5698 
5699 	depth = curr->lockdep_depth;
5700 	/*
5701 	 * Yay, we acquired ownership of this lock we didn't try to
5702 	 * acquire, how the heck did that happen?
5703 	 */
5704 	if (DEBUG_LOCKS_WARN_ON(!depth))
5705 		return;
5706 
5707 	hlock = find_held_lock(curr, lock, depth, &i);
5708 	if (!hlock) {
5709 		print_lock_contention_bug(curr, lock, _RET_IP_);
5710 		return;
5711 	}
5712 
5713 	if (hlock->instance != lock)
5714 		return;
5715 
5716 	cpu = smp_processor_id();
5717 	if (hlock->waittime_stamp) {
5718 		now = lockstat_clock();
5719 		waittime = now - hlock->waittime_stamp;
5720 		hlock->holdtime_stamp = now;
5721 	}
5722 
5723 	stats = get_lock_stats(hlock_class(hlock));
5724 	if (waittime) {
5725 		if (hlock->read)
5726 			lock_time_inc(&stats->read_waittime, waittime);
5727 		else
5728 			lock_time_inc(&stats->write_waittime, waittime);
5729 	}
5730 	if (lock->cpu != cpu)
5731 		stats->bounces[bounce_acquired + !!hlock->read]++;
5732 
5733 	lock->cpu = cpu;
5734 	lock->ip = ip;
5735 }
5736 
5737 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5738 {
5739 	unsigned long flags;
5740 
5741 	trace_lock_contended(lock, ip);
5742 
5743 	if (unlikely(!lock_stat || !lockdep_enabled()))
5744 		return;
5745 
5746 	raw_local_irq_save(flags);
5747 	check_flags(flags);
5748 	lockdep_recursion_inc();
5749 	__lock_contended(lock, ip);
5750 	lockdep_recursion_finish();
5751 	raw_local_irq_restore(flags);
5752 }
5753 EXPORT_SYMBOL_GPL(lock_contended);
5754 
5755 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5756 {
5757 	unsigned long flags;
5758 
5759 	trace_lock_acquired(lock, ip);
5760 
5761 	if (unlikely(!lock_stat || !lockdep_enabled()))
5762 		return;
5763 
5764 	raw_local_irq_save(flags);
5765 	check_flags(flags);
5766 	lockdep_recursion_inc();
5767 	__lock_acquired(lock, ip);
5768 	lockdep_recursion_finish();
5769 	raw_local_irq_restore(flags);
5770 }
5771 EXPORT_SYMBOL_GPL(lock_acquired);
5772 #endif
5773 
5774 /*
5775  * Used by the testsuite, sanitize the validator state
5776  * after a simulated failure:
5777  */
5778 
5779 void lockdep_reset(void)
5780 {
5781 	unsigned long flags;
5782 	int i;
5783 
5784 	raw_local_irq_save(flags);
5785 	lockdep_init_task(current);
5786 	memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5787 	nr_hardirq_chains = 0;
5788 	nr_softirq_chains = 0;
5789 	nr_process_chains = 0;
5790 	debug_locks = 1;
5791 	for (i = 0; i < CHAINHASH_SIZE; i++)
5792 		INIT_HLIST_HEAD(chainhash_table + i);
5793 	raw_local_irq_restore(flags);
5794 }
5795 
5796 /* Remove a class from a lock chain. Must be called with the graph lock held. */
5797 static void remove_class_from_lock_chain(struct pending_free *pf,
5798 					 struct lock_chain *chain,
5799 					 struct lock_class *class)
5800 {
5801 #ifdef CONFIG_PROVE_LOCKING
5802 	int i;
5803 
5804 	for (i = chain->base; i < chain->base + chain->depth; i++) {
5805 		if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5806 			continue;
5807 		/*
5808 		 * Each lock class occurs at most once in a lock chain so once
5809 		 * we found a match we can break out of this loop.
5810 		 */
5811 		goto free_lock_chain;
5812 	}
5813 	/* Since the chain has not been modified, return. */
5814 	return;
5815 
5816 free_lock_chain:
5817 	free_chain_hlocks(chain->base, chain->depth);
5818 	/* Overwrite the chain key for concurrent RCU readers. */
5819 	WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5820 	dec_chains(chain->irq_context);
5821 
5822 	/*
5823 	 * Note: calling hlist_del_rcu() from inside a
5824 	 * hlist_for_each_entry_rcu() loop is safe.
5825 	 */
5826 	hlist_del_rcu(&chain->entry);
5827 	__set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5828 	nr_zapped_lock_chains++;
5829 #endif
5830 }
5831 
5832 /* Must be called with the graph lock held. */
5833 static void remove_class_from_lock_chains(struct pending_free *pf,
5834 					  struct lock_class *class)
5835 {
5836 	struct lock_chain *chain;
5837 	struct hlist_head *head;
5838 	int i;
5839 
5840 	for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5841 		head = chainhash_table + i;
5842 		hlist_for_each_entry_rcu(chain, head, entry) {
5843 			remove_class_from_lock_chain(pf, chain, class);
5844 		}
5845 	}
5846 }
5847 
5848 /*
5849  * Remove all references to a lock class. The caller must hold the graph lock.
5850  */
5851 static void zap_class(struct pending_free *pf, struct lock_class *class)
5852 {
5853 	struct lock_list *entry;
5854 	int i;
5855 
5856 	WARN_ON_ONCE(!class->key);
5857 
5858 	/*
5859 	 * Remove all dependencies this lock is
5860 	 * involved in:
5861 	 */
5862 	for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5863 		entry = list_entries + i;
5864 		if (entry->class != class && entry->links_to != class)
5865 			continue;
5866 		__clear_bit(i, list_entries_in_use);
5867 		nr_list_entries--;
5868 		list_del_rcu(&entry->entry);
5869 	}
5870 	if (list_empty(&class->locks_after) &&
5871 	    list_empty(&class->locks_before)) {
5872 		list_move_tail(&class->lock_entry, &pf->zapped);
5873 		hlist_del_rcu(&class->hash_entry);
5874 		WRITE_ONCE(class->key, NULL);
5875 		WRITE_ONCE(class->name, NULL);
5876 		nr_lock_classes--;
5877 		__clear_bit(class - lock_classes, lock_classes_in_use);
5878 	} else {
5879 		WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5880 			  class->name);
5881 	}
5882 
5883 	remove_class_from_lock_chains(pf, class);
5884 	nr_zapped_classes++;
5885 }
5886 
5887 static void reinit_class(struct lock_class *class)
5888 {
5889 	void *const p = class;
5890 	const unsigned int offset = offsetof(struct lock_class, key);
5891 
5892 	WARN_ON_ONCE(!class->lock_entry.next);
5893 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5894 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5895 	memset(p + offset, 0, sizeof(*class) - offset);
5896 	WARN_ON_ONCE(!class->lock_entry.next);
5897 	WARN_ON_ONCE(!list_empty(&class->locks_after));
5898 	WARN_ON_ONCE(!list_empty(&class->locks_before));
5899 }
5900 
5901 static inline int within(const void *addr, void *start, unsigned long size)
5902 {
5903 	return addr >= start && addr < start + size;
5904 }
5905 
5906 static bool inside_selftest(void)
5907 {
5908 	return current == lockdep_selftest_task_struct;
5909 }
5910 
5911 /* The caller must hold the graph lock. */
5912 static struct pending_free *get_pending_free(void)
5913 {
5914 	return delayed_free.pf + delayed_free.index;
5915 }
5916 
5917 static void free_zapped_rcu(struct rcu_head *cb);
5918 
5919 /*
5920  * Schedule an RCU callback if no RCU callback is pending. Must be called with
5921  * the graph lock held.
5922  */
5923 static void call_rcu_zapped(struct pending_free *pf)
5924 {
5925 	WARN_ON_ONCE(inside_selftest());
5926 
5927 	if (list_empty(&pf->zapped))
5928 		return;
5929 
5930 	if (delayed_free.scheduled)
5931 		return;
5932 
5933 	delayed_free.scheduled = true;
5934 
5935 	WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
5936 	delayed_free.index ^= 1;
5937 
5938 	call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
5939 }
5940 
5941 /* The caller must hold the graph lock. May be called from RCU context. */
5942 static void __free_zapped_classes(struct pending_free *pf)
5943 {
5944 	struct lock_class *class;
5945 
5946 	check_data_structures();
5947 
5948 	list_for_each_entry(class, &pf->zapped, lock_entry)
5949 		reinit_class(class);
5950 
5951 	list_splice_init(&pf->zapped, &free_lock_classes);
5952 
5953 #ifdef CONFIG_PROVE_LOCKING
5954 	bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
5955 		      pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
5956 	bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
5957 #endif
5958 }
5959 
5960 static void free_zapped_rcu(struct rcu_head *ch)
5961 {
5962 	struct pending_free *pf;
5963 	unsigned long flags;
5964 
5965 	if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
5966 		return;
5967 
5968 	raw_local_irq_save(flags);
5969 	lockdep_lock();
5970 
5971 	/* closed head */
5972 	pf = delayed_free.pf + (delayed_free.index ^ 1);
5973 	__free_zapped_classes(pf);
5974 	delayed_free.scheduled = false;
5975 
5976 	/*
5977 	 * If there's anything on the open list, close and start a new callback.
5978 	 */
5979 	call_rcu_zapped(delayed_free.pf + delayed_free.index);
5980 
5981 	lockdep_unlock();
5982 	raw_local_irq_restore(flags);
5983 }
5984 
5985 /*
5986  * Remove all lock classes from the class hash table and from the
5987  * all_lock_classes list whose key or name is in the address range [start,
5988  * start + size). Move these lock classes to the zapped_classes list. Must
5989  * be called with the graph lock held.
5990  */
5991 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
5992 				     unsigned long size)
5993 {
5994 	struct lock_class *class;
5995 	struct hlist_head *head;
5996 	int i;
5997 
5998 	/* Unhash all classes that were created by a module. */
5999 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6000 		head = classhash_table + i;
6001 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6002 			if (!within(class->key, start, size) &&
6003 			    !within(class->name, start, size))
6004 				continue;
6005 			zap_class(pf, class);
6006 		}
6007 	}
6008 }
6009 
6010 /*
6011  * Used in module.c to remove lock classes from memory that is going to be
6012  * freed; and possibly re-used by other modules.
6013  *
6014  * We will have had one synchronize_rcu() before getting here, so we're
6015  * guaranteed nobody will look up these exact classes -- they're properly dead
6016  * but still allocated.
6017  */
6018 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6019 {
6020 	struct pending_free *pf;
6021 	unsigned long flags;
6022 
6023 	init_data_structures_once();
6024 
6025 	raw_local_irq_save(flags);
6026 	lockdep_lock();
6027 	pf = get_pending_free();
6028 	__lockdep_free_key_range(pf, start, size);
6029 	call_rcu_zapped(pf);
6030 	lockdep_unlock();
6031 	raw_local_irq_restore(flags);
6032 
6033 	/*
6034 	 * Wait for any possible iterators from look_up_lock_class() to pass
6035 	 * before continuing to free the memory they refer to.
6036 	 */
6037 	synchronize_rcu();
6038 }
6039 
6040 /*
6041  * Free all lockdep keys in the range [start, start+size). Does not sleep.
6042  * Ignores debug_locks. Must only be used by the lockdep selftests.
6043  */
6044 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6045 {
6046 	struct pending_free *pf = delayed_free.pf;
6047 	unsigned long flags;
6048 
6049 	init_data_structures_once();
6050 
6051 	raw_local_irq_save(flags);
6052 	lockdep_lock();
6053 	__lockdep_free_key_range(pf, start, size);
6054 	__free_zapped_classes(pf);
6055 	lockdep_unlock();
6056 	raw_local_irq_restore(flags);
6057 }
6058 
6059 void lockdep_free_key_range(void *start, unsigned long size)
6060 {
6061 	init_data_structures_once();
6062 
6063 	if (inside_selftest())
6064 		lockdep_free_key_range_imm(start, size);
6065 	else
6066 		lockdep_free_key_range_reg(start, size);
6067 }
6068 
6069 /*
6070  * Check whether any element of the @lock->class_cache[] array refers to a
6071  * registered lock class. The caller must hold either the graph lock or the
6072  * RCU read lock.
6073  */
6074 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6075 {
6076 	struct lock_class *class;
6077 	struct hlist_head *head;
6078 	int i, j;
6079 
6080 	for (i = 0; i < CLASSHASH_SIZE; i++) {
6081 		head = classhash_table + i;
6082 		hlist_for_each_entry_rcu(class, head, hash_entry) {
6083 			for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6084 				if (lock->class_cache[j] == class)
6085 					return true;
6086 		}
6087 	}
6088 	return false;
6089 }
6090 
6091 /* The caller must hold the graph lock. Does not sleep. */
6092 static void __lockdep_reset_lock(struct pending_free *pf,
6093 				 struct lockdep_map *lock)
6094 {
6095 	struct lock_class *class;
6096 	int j;
6097 
6098 	/*
6099 	 * Remove all classes this lock might have:
6100 	 */
6101 	for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6102 		/*
6103 		 * If the class exists we look it up and zap it:
6104 		 */
6105 		class = look_up_lock_class(lock, j);
6106 		if (class)
6107 			zap_class(pf, class);
6108 	}
6109 	/*
6110 	 * Debug check: in the end all mapped classes should
6111 	 * be gone.
6112 	 */
6113 	if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6114 		debug_locks_off();
6115 }
6116 
6117 /*
6118  * Remove all information lockdep has about a lock if debug_locks == 1. Free
6119  * released data structures from RCU context.
6120  */
6121 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6122 {
6123 	struct pending_free *pf;
6124 	unsigned long flags;
6125 	int locked;
6126 
6127 	raw_local_irq_save(flags);
6128 	locked = graph_lock();
6129 	if (!locked)
6130 		goto out_irq;
6131 
6132 	pf = get_pending_free();
6133 	__lockdep_reset_lock(pf, lock);
6134 	call_rcu_zapped(pf);
6135 
6136 	graph_unlock();
6137 out_irq:
6138 	raw_local_irq_restore(flags);
6139 }
6140 
6141 /*
6142  * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6143  * lockdep selftests.
6144  */
6145 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6146 {
6147 	struct pending_free *pf = delayed_free.pf;
6148 	unsigned long flags;
6149 
6150 	raw_local_irq_save(flags);
6151 	lockdep_lock();
6152 	__lockdep_reset_lock(pf, lock);
6153 	__free_zapped_classes(pf);
6154 	lockdep_unlock();
6155 	raw_local_irq_restore(flags);
6156 }
6157 
6158 void lockdep_reset_lock(struct lockdep_map *lock)
6159 {
6160 	init_data_structures_once();
6161 
6162 	if (inside_selftest())
6163 		lockdep_reset_lock_imm(lock);
6164 	else
6165 		lockdep_reset_lock_reg(lock);
6166 }
6167 
6168 /* Unregister a dynamically allocated key. */
6169 void lockdep_unregister_key(struct lock_class_key *key)
6170 {
6171 	struct hlist_head *hash_head = keyhashentry(key);
6172 	struct lock_class_key *k;
6173 	struct pending_free *pf;
6174 	unsigned long flags;
6175 	bool found = false;
6176 
6177 	might_sleep();
6178 
6179 	if (WARN_ON_ONCE(static_obj(key)))
6180 		return;
6181 
6182 	raw_local_irq_save(flags);
6183 	if (!graph_lock())
6184 		goto out_irq;
6185 
6186 	pf = get_pending_free();
6187 	hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6188 		if (k == key) {
6189 			hlist_del_rcu(&k->hash_entry);
6190 			found = true;
6191 			break;
6192 		}
6193 	}
6194 	WARN_ON_ONCE(!found);
6195 	__lockdep_free_key_range(pf, key, 1);
6196 	call_rcu_zapped(pf);
6197 	graph_unlock();
6198 out_irq:
6199 	raw_local_irq_restore(flags);
6200 
6201 	/* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6202 	synchronize_rcu();
6203 }
6204 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6205 
6206 void __init lockdep_init(void)
6207 {
6208 	printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6209 
6210 	printk("... MAX_LOCKDEP_SUBCLASSES:  %lu\n", MAX_LOCKDEP_SUBCLASSES);
6211 	printk("... MAX_LOCK_DEPTH:          %lu\n", MAX_LOCK_DEPTH);
6212 	printk("... MAX_LOCKDEP_KEYS:        %lu\n", MAX_LOCKDEP_KEYS);
6213 	printk("... CLASSHASH_SIZE:          %lu\n", CLASSHASH_SIZE);
6214 	printk("... MAX_LOCKDEP_ENTRIES:     %lu\n", MAX_LOCKDEP_ENTRIES);
6215 	printk("... MAX_LOCKDEP_CHAINS:      %lu\n", MAX_LOCKDEP_CHAINS);
6216 	printk("... CHAINHASH_SIZE:          %lu\n", CHAINHASH_SIZE);
6217 
6218 	printk(" memory used by lock dependency info: %zu kB\n",
6219 	       (sizeof(lock_classes) +
6220 		sizeof(lock_classes_in_use) +
6221 		sizeof(classhash_table) +
6222 		sizeof(list_entries) +
6223 		sizeof(list_entries_in_use) +
6224 		sizeof(chainhash_table) +
6225 		sizeof(delayed_free)
6226 #ifdef CONFIG_PROVE_LOCKING
6227 		+ sizeof(lock_cq)
6228 		+ sizeof(lock_chains)
6229 		+ sizeof(lock_chains_in_use)
6230 		+ sizeof(chain_hlocks)
6231 #endif
6232 		) / 1024
6233 		);
6234 
6235 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6236 	printk(" memory used for stack traces: %zu kB\n",
6237 	       (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6238 	       );
6239 #endif
6240 
6241 	printk(" per task-struct memory footprint: %zu bytes\n",
6242 	       sizeof(((struct task_struct *)NULL)->held_locks));
6243 }
6244 
6245 static void
6246 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6247 		     const void *mem_to, struct held_lock *hlock)
6248 {
6249 	if (!debug_locks_off())
6250 		return;
6251 	if (debug_locks_silent)
6252 		return;
6253 
6254 	pr_warn("\n");
6255 	pr_warn("=========================\n");
6256 	pr_warn("WARNING: held lock freed!\n");
6257 	print_kernel_ident();
6258 	pr_warn("-------------------------\n");
6259 	pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6260 		curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6261 	print_lock(hlock);
6262 	lockdep_print_held_locks(curr);
6263 
6264 	pr_warn("\nstack backtrace:\n");
6265 	dump_stack();
6266 }
6267 
6268 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6269 				const void* lock_from, unsigned long lock_len)
6270 {
6271 	return lock_from + lock_len <= mem_from ||
6272 		mem_from + mem_len <= lock_from;
6273 }
6274 
6275 /*
6276  * Called when kernel memory is freed (or unmapped), or if a lock
6277  * is destroyed or reinitialized - this code checks whether there is
6278  * any held lock in the memory range of <from> to <to>:
6279  */
6280 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6281 {
6282 	struct task_struct *curr = current;
6283 	struct held_lock *hlock;
6284 	unsigned long flags;
6285 	int i;
6286 
6287 	if (unlikely(!debug_locks))
6288 		return;
6289 
6290 	raw_local_irq_save(flags);
6291 	for (i = 0; i < curr->lockdep_depth; i++) {
6292 		hlock = curr->held_locks + i;
6293 
6294 		if (not_in_range(mem_from, mem_len, hlock->instance,
6295 					sizeof(*hlock->instance)))
6296 			continue;
6297 
6298 		print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6299 		break;
6300 	}
6301 	raw_local_irq_restore(flags);
6302 }
6303 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6304 
6305 static void print_held_locks_bug(void)
6306 {
6307 	if (!debug_locks_off())
6308 		return;
6309 	if (debug_locks_silent)
6310 		return;
6311 
6312 	pr_warn("\n");
6313 	pr_warn("====================================\n");
6314 	pr_warn("WARNING: %s/%d still has locks held!\n",
6315 	       current->comm, task_pid_nr(current));
6316 	print_kernel_ident();
6317 	pr_warn("------------------------------------\n");
6318 	lockdep_print_held_locks(current);
6319 	pr_warn("\nstack backtrace:\n");
6320 	dump_stack();
6321 }
6322 
6323 void debug_check_no_locks_held(void)
6324 {
6325 	if (unlikely(current->lockdep_depth > 0))
6326 		print_held_locks_bug();
6327 }
6328 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6329 
6330 #ifdef __KERNEL__
6331 void debug_show_all_locks(void)
6332 {
6333 	struct task_struct *g, *p;
6334 
6335 	if (unlikely(!debug_locks)) {
6336 		pr_warn("INFO: lockdep is turned off.\n");
6337 		return;
6338 	}
6339 	pr_warn("\nShowing all locks held in the system:\n");
6340 
6341 	rcu_read_lock();
6342 	for_each_process_thread(g, p) {
6343 		if (!p->lockdep_depth)
6344 			continue;
6345 		lockdep_print_held_locks(p);
6346 		touch_nmi_watchdog();
6347 		touch_all_softlockup_watchdogs();
6348 	}
6349 	rcu_read_unlock();
6350 
6351 	pr_warn("\n");
6352 	pr_warn("=============================================\n\n");
6353 }
6354 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6355 #endif
6356 
6357 /*
6358  * Careful: only use this function if you are sure that
6359  * the task cannot run in parallel!
6360  */
6361 void debug_show_held_locks(struct task_struct *task)
6362 {
6363 	if (unlikely(!debug_locks)) {
6364 		printk("INFO: lockdep is turned off.\n");
6365 		return;
6366 	}
6367 	lockdep_print_held_locks(task);
6368 }
6369 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6370 
6371 asmlinkage __visible void lockdep_sys_exit(void)
6372 {
6373 	struct task_struct *curr = current;
6374 
6375 	if (unlikely(curr->lockdep_depth)) {
6376 		if (!debug_locks_off())
6377 			return;
6378 		pr_warn("\n");
6379 		pr_warn("================================================\n");
6380 		pr_warn("WARNING: lock held when returning to user space!\n");
6381 		print_kernel_ident();
6382 		pr_warn("------------------------------------------------\n");
6383 		pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6384 				curr->comm, curr->pid);
6385 		lockdep_print_held_locks(curr);
6386 	}
6387 
6388 	/*
6389 	 * The lock history for each syscall should be independent. So wipe the
6390 	 * slate clean on return to userspace.
6391 	 */
6392 	lockdep_invariant_state(false);
6393 }
6394 
6395 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6396 {
6397 	struct task_struct *curr = current;
6398 
6399 	/* Note: the following can be executed concurrently, so be careful. */
6400 	pr_warn("\n");
6401 	pr_warn("=============================\n");
6402 	pr_warn("WARNING: suspicious RCU usage\n");
6403 	print_kernel_ident();
6404 	pr_warn("-----------------------------\n");
6405 	pr_warn("%s:%d %s!\n", file, line, s);
6406 	pr_warn("\nother info that might help us debug this:\n\n");
6407 	pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n",
6408 	       !rcu_lockdep_current_cpu_online()
6409 			? "RCU used illegally from offline CPU!\n"
6410 			: "",
6411 	       rcu_scheduler_active, debug_locks);
6412 
6413 	/*
6414 	 * If a CPU is in the RCU-free window in idle (ie: in the section
6415 	 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6416 	 * considers that CPU to be in an "extended quiescent state",
6417 	 * which means that RCU will be completely ignoring that CPU.
6418 	 * Therefore, rcu_read_lock() and friends have absolutely no
6419 	 * effect on a CPU running in that state. In other words, even if
6420 	 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6421 	 * delete data structures out from under it.  RCU really has no
6422 	 * choice here: we need to keep an RCU-free window in idle where
6423 	 * the CPU may possibly enter into low power mode. This way we can
6424 	 * notice an extended quiescent state to other CPUs that started a grace
6425 	 * period. Otherwise we would delay any grace period as long as we run
6426 	 * in the idle task.
6427 	 *
6428 	 * So complain bitterly if someone does call rcu_read_lock(),
6429 	 * rcu_read_lock_bh() and so on from extended quiescent states.
6430 	 */
6431 	if (!rcu_is_watching())
6432 		pr_warn("RCU used illegally from extended quiescent state!\n");
6433 
6434 	lockdep_print_held_locks(curr);
6435 	pr_warn("\nstack backtrace:\n");
6436 	dump_stack();
6437 }
6438 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6439