1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/lockdep.c 4 * 5 * Runtime locking correctness validator 6 * 7 * Started by Ingo Molnar: 8 * 9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> 10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 11 * 12 * this code maps all the lock dependencies as they occur in a live kernel 13 * and will warn about the following classes of locking bugs: 14 * 15 * - lock inversion scenarios 16 * - circular lock dependencies 17 * - hardirq/softirq safe/unsafe locking bugs 18 * 19 * Bugs are reported even if the current locking scenario does not cause 20 * any deadlock at this point. 21 * 22 * I.e. if anytime in the past two locks were taken in a different order, 23 * even if it happened for another task, even if those were different 24 * locks (but of the same class as this lock), this code will detect it. 25 * 26 * Thanks to Arjan van de Ven for coming up with the initial idea of 27 * mapping lock dependencies runtime. 28 */ 29 #define DISABLE_BRANCH_PROFILING 30 #include <linux/mutex.h> 31 #include <linux/sched.h> 32 #include <linux/sched/clock.h> 33 #include <linux/sched/task.h> 34 #include <linux/sched/mm.h> 35 #include <linux/delay.h> 36 #include <linux/module.h> 37 #include <linux/proc_fs.h> 38 #include <linux/seq_file.h> 39 #include <linux/spinlock.h> 40 #include <linux/kallsyms.h> 41 #include <linux/interrupt.h> 42 #include <linux/stacktrace.h> 43 #include <linux/debug_locks.h> 44 #include <linux/irqflags.h> 45 #include <linux/utsname.h> 46 #include <linux/hash.h> 47 #include <linux/ftrace.h> 48 #include <linux/stringify.h> 49 #include <linux/bitmap.h> 50 #include <linux/bitops.h> 51 #include <linux/gfp.h> 52 #include <linux/random.h> 53 #include <linux/jhash.h> 54 #include <linux/nmi.h> 55 #include <linux/rcupdate.h> 56 #include <linux/kprobes.h> 57 #include <linux/lockdep.h> 58 59 #include <asm/sections.h> 60 61 #include "lockdep_internals.h" 62 63 #define CREATE_TRACE_POINTS 64 #include <trace/events/lock.h> 65 66 #ifdef CONFIG_PROVE_LOCKING 67 int prove_locking = 1; 68 module_param(prove_locking, int, 0644); 69 #else 70 #define prove_locking 0 71 #endif 72 73 #ifdef CONFIG_LOCK_STAT 74 int lock_stat = 1; 75 module_param(lock_stat, int, 0644); 76 #else 77 #define lock_stat 0 78 #endif 79 80 DEFINE_PER_CPU(unsigned int, lockdep_recursion); 81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion); 82 83 static __always_inline bool lockdep_enabled(void) 84 { 85 if (!debug_locks) 86 return false; 87 88 if (this_cpu_read(lockdep_recursion)) 89 return false; 90 91 if (current->lockdep_recursion) 92 return false; 93 94 return true; 95 } 96 97 /* 98 * lockdep_lock: protects the lockdep graph, the hashes and the 99 * class/list/hash allocators. 100 * 101 * This is one of the rare exceptions where it's justified 102 * to use a raw spinlock - we really dont want the spinlock 103 * code to recurse back into the lockdep code... 104 */ 105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED; 106 static struct task_struct *__owner; 107 108 static inline void lockdep_lock(void) 109 { 110 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 111 112 __this_cpu_inc(lockdep_recursion); 113 arch_spin_lock(&__lock); 114 __owner = current; 115 } 116 117 static inline void lockdep_unlock(void) 118 { 119 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 120 121 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current)) 122 return; 123 124 __owner = NULL; 125 arch_spin_unlock(&__lock); 126 __this_cpu_dec(lockdep_recursion); 127 } 128 129 static inline bool lockdep_assert_locked(void) 130 { 131 return DEBUG_LOCKS_WARN_ON(__owner != current); 132 } 133 134 static struct task_struct *lockdep_selftest_task_struct; 135 136 137 static int graph_lock(void) 138 { 139 lockdep_lock(); 140 /* 141 * Make sure that if another CPU detected a bug while 142 * walking the graph we dont change it (while the other 143 * CPU is busy printing out stuff with the graph lock 144 * dropped already) 145 */ 146 if (!debug_locks) { 147 lockdep_unlock(); 148 return 0; 149 } 150 return 1; 151 } 152 153 static inline void graph_unlock(void) 154 { 155 lockdep_unlock(); 156 } 157 158 /* 159 * Turn lock debugging off and return with 0 if it was off already, 160 * and also release the graph lock: 161 */ 162 static inline int debug_locks_off_graph_unlock(void) 163 { 164 int ret = debug_locks_off(); 165 166 lockdep_unlock(); 167 168 return ret; 169 } 170 171 unsigned long nr_list_entries; 172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES]; 173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES); 174 175 /* 176 * All data structures here are protected by the global debug_lock. 177 * 178 * nr_lock_classes is the number of elements of lock_classes[] that is 179 * in use. 180 */ 181 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 182 #define KEYHASH_SIZE (1UL << KEYHASH_BITS) 183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE]; 184 unsigned long nr_lock_classes; 185 unsigned long nr_zapped_classes; 186 #ifndef CONFIG_DEBUG_LOCKDEP 187 static 188 #endif 189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS]; 190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS); 191 192 static inline struct lock_class *hlock_class(struct held_lock *hlock) 193 { 194 unsigned int class_idx = hlock->class_idx; 195 196 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */ 197 barrier(); 198 199 if (!test_bit(class_idx, lock_classes_in_use)) { 200 /* 201 * Someone passed in garbage, we give up. 202 */ 203 DEBUG_LOCKS_WARN_ON(1); 204 return NULL; 205 } 206 207 /* 208 * At this point, if the passed hlock->class_idx is still garbage, 209 * we just have to live with it 210 */ 211 return lock_classes + class_idx; 212 } 213 214 #ifdef CONFIG_LOCK_STAT 215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats); 216 217 static inline u64 lockstat_clock(void) 218 { 219 return local_clock(); 220 } 221 222 static int lock_point(unsigned long points[], unsigned long ip) 223 { 224 int i; 225 226 for (i = 0; i < LOCKSTAT_POINTS; i++) { 227 if (points[i] == 0) { 228 points[i] = ip; 229 break; 230 } 231 if (points[i] == ip) 232 break; 233 } 234 235 return i; 236 } 237 238 static void lock_time_inc(struct lock_time *lt, u64 time) 239 { 240 if (time > lt->max) 241 lt->max = time; 242 243 if (time < lt->min || !lt->nr) 244 lt->min = time; 245 246 lt->total += time; 247 lt->nr++; 248 } 249 250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst) 251 { 252 if (!src->nr) 253 return; 254 255 if (src->max > dst->max) 256 dst->max = src->max; 257 258 if (src->min < dst->min || !dst->nr) 259 dst->min = src->min; 260 261 dst->total += src->total; 262 dst->nr += src->nr; 263 } 264 265 struct lock_class_stats lock_stats(struct lock_class *class) 266 { 267 struct lock_class_stats stats; 268 int cpu, i; 269 270 memset(&stats, 0, sizeof(struct lock_class_stats)); 271 for_each_possible_cpu(cpu) { 272 struct lock_class_stats *pcs = 273 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 274 275 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++) 276 stats.contention_point[i] += pcs->contention_point[i]; 277 278 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++) 279 stats.contending_point[i] += pcs->contending_point[i]; 280 281 lock_time_add(&pcs->read_waittime, &stats.read_waittime); 282 lock_time_add(&pcs->write_waittime, &stats.write_waittime); 283 284 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime); 285 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime); 286 287 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++) 288 stats.bounces[i] += pcs->bounces[i]; 289 } 290 291 return stats; 292 } 293 294 void clear_lock_stats(struct lock_class *class) 295 { 296 int cpu; 297 298 for_each_possible_cpu(cpu) { 299 struct lock_class_stats *cpu_stats = 300 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes]; 301 302 memset(cpu_stats, 0, sizeof(struct lock_class_stats)); 303 } 304 memset(class->contention_point, 0, sizeof(class->contention_point)); 305 memset(class->contending_point, 0, sizeof(class->contending_point)); 306 } 307 308 static struct lock_class_stats *get_lock_stats(struct lock_class *class) 309 { 310 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes]; 311 } 312 313 static void lock_release_holdtime(struct held_lock *hlock) 314 { 315 struct lock_class_stats *stats; 316 u64 holdtime; 317 318 if (!lock_stat) 319 return; 320 321 holdtime = lockstat_clock() - hlock->holdtime_stamp; 322 323 stats = get_lock_stats(hlock_class(hlock)); 324 if (hlock->read) 325 lock_time_inc(&stats->read_holdtime, holdtime); 326 else 327 lock_time_inc(&stats->write_holdtime, holdtime); 328 } 329 #else 330 static inline void lock_release_holdtime(struct held_lock *hlock) 331 { 332 } 333 #endif 334 335 /* 336 * We keep a global list of all lock classes. The list is only accessed with 337 * the lockdep spinlock lock held. free_lock_classes is a list with free 338 * elements. These elements are linked together by the lock_entry member in 339 * struct lock_class. 340 */ 341 LIST_HEAD(all_lock_classes); 342 static LIST_HEAD(free_lock_classes); 343 344 /** 345 * struct pending_free - information about data structures about to be freed 346 * @zapped: Head of a list with struct lock_class elements. 347 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements 348 * are about to be freed. 349 */ 350 struct pending_free { 351 struct list_head zapped; 352 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS); 353 }; 354 355 /** 356 * struct delayed_free - data structures used for delayed freeing 357 * 358 * A data structure for delayed freeing of data structures that may be 359 * accessed by RCU readers at the time these were freed. 360 * 361 * @rcu_head: Used to schedule an RCU callback for freeing data structures. 362 * @index: Index of @pf to which freed data structures are added. 363 * @scheduled: Whether or not an RCU callback has been scheduled. 364 * @pf: Array with information about data structures about to be freed. 365 */ 366 static struct delayed_free { 367 struct rcu_head rcu_head; 368 int index; 369 int scheduled; 370 struct pending_free pf[2]; 371 } delayed_free; 372 373 /* 374 * The lockdep classes are in a hash-table as well, for fast lookup: 375 */ 376 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1) 377 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS) 378 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS) 379 #define classhashentry(key) (classhash_table + __classhashfn((key))) 380 381 static struct hlist_head classhash_table[CLASSHASH_SIZE]; 382 383 /* 384 * We put the lock dependency chains into a hash-table as well, to cache 385 * their existence: 386 */ 387 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1) 388 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS) 389 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS) 390 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain))) 391 392 static struct hlist_head chainhash_table[CHAINHASH_SIZE]; 393 394 /* 395 * the id of held_lock 396 */ 397 static inline u16 hlock_id(struct held_lock *hlock) 398 { 399 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16); 400 401 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS)); 402 } 403 404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id) 405 { 406 return hlock_id & (MAX_LOCKDEP_KEYS - 1); 407 } 408 409 /* 410 * The hash key of the lock dependency chains is a hash itself too: 411 * it's a hash of all locks taken up to that lock, including that lock. 412 * It's a 64-bit hash, because it's important for the keys to be 413 * unique. 414 */ 415 static inline u64 iterate_chain_key(u64 key, u32 idx) 416 { 417 u32 k0 = key, k1 = key >> 32; 418 419 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */ 420 421 return k0 | (u64)k1 << 32; 422 } 423 424 void lockdep_init_task(struct task_struct *task) 425 { 426 task->lockdep_depth = 0; /* no locks held yet */ 427 task->curr_chain_key = INITIAL_CHAIN_KEY; 428 task->lockdep_recursion = 0; 429 } 430 431 static __always_inline void lockdep_recursion_inc(void) 432 { 433 __this_cpu_inc(lockdep_recursion); 434 } 435 436 static __always_inline void lockdep_recursion_finish(void) 437 { 438 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion))) 439 __this_cpu_write(lockdep_recursion, 0); 440 } 441 442 void lockdep_set_selftest_task(struct task_struct *task) 443 { 444 lockdep_selftest_task_struct = task; 445 } 446 447 /* 448 * Debugging switches: 449 */ 450 451 #define VERBOSE 0 452 #define VERY_VERBOSE 0 453 454 #if VERBOSE 455 # define HARDIRQ_VERBOSE 1 456 # define SOFTIRQ_VERBOSE 1 457 #else 458 # define HARDIRQ_VERBOSE 0 459 # define SOFTIRQ_VERBOSE 0 460 #endif 461 462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE 463 /* 464 * Quick filtering for interesting events: 465 */ 466 static int class_filter(struct lock_class *class) 467 { 468 #if 0 469 /* Example */ 470 if (class->name_version == 1 && 471 !strcmp(class->name, "lockname")) 472 return 1; 473 if (class->name_version == 1 && 474 !strcmp(class->name, "&struct->lockfield")) 475 return 1; 476 #endif 477 /* Filter everything else. 1 would be to allow everything else */ 478 return 0; 479 } 480 #endif 481 482 static int verbose(struct lock_class *class) 483 { 484 #if VERBOSE 485 return class_filter(class); 486 #endif 487 return 0; 488 } 489 490 static void print_lockdep_off(const char *bug_msg) 491 { 492 printk(KERN_DEBUG "%s\n", bug_msg); 493 printk(KERN_DEBUG "turning off the locking correctness validator.\n"); 494 #ifdef CONFIG_LOCK_STAT 495 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n"); 496 #endif 497 } 498 499 unsigned long nr_stack_trace_entries; 500 501 #ifdef CONFIG_PROVE_LOCKING 502 /** 503 * struct lock_trace - single stack backtrace 504 * @hash_entry: Entry in a stack_trace_hash[] list. 505 * @hash: jhash() of @entries. 506 * @nr_entries: Number of entries in @entries. 507 * @entries: Actual stack backtrace. 508 */ 509 struct lock_trace { 510 struct hlist_node hash_entry; 511 u32 hash; 512 u32 nr_entries; 513 unsigned long entries[] __aligned(sizeof(unsigned long)); 514 }; 515 #define LOCK_TRACE_SIZE_IN_LONGS \ 516 (sizeof(struct lock_trace) / sizeof(unsigned long)) 517 /* 518 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock. 519 */ 520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES]; 521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE]; 522 523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2) 524 { 525 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries && 526 memcmp(t1->entries, t2->entries, 527 t1->nr_entries * sizeof(t1->entries[0])) == 0; 528 } 529 530 static struct lock_trace *save_trace(void) 531 { 532 struct lock_trace *trace, *t2; 533 struct hlist_head *hash_head; 534 u32 hash; 535 int max_entries; 536 537 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE); 538 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES); 539 540 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries); 541 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries - 542 LOCK_TRACE_SIZE_IN_LONGS; 543 544 if (max_entries <= 0) { 545 if (!debug_locks_off_graph_unlock()) 546 return NULL; 547 548 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!"); 549 dump_stack(); 550 551 return NULL; 552 } 553 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3); 554 555 hash = jhash(trace->entries, trace->nr_entries * 556 sizeof(trace->entries[0]), 0); 557 trace->hash = hash; 558 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1)); 559 hlist_for_each_entry(t2, hash_head, hash_entry) { 560 if (traces_identical(trace, t2)) 561 return t2; 562 } 563 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries; 564 hlist_add_head(&trace->hash_entry, hash_head); 565 566 return trace; 567 } 568 569 /* Return the number of stack traces in the stack_trace[] array. */ 570 u64 lockdep_stack_trace_count(void) 571 { 572 struct lock_trace *trace; 573 u64 c = 0; 574 int i; 575 576 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) { 577 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) { 578 c++; 579 } 580 } 581 582 return c; 583 } 584 585 /* Return the number of stack hash chains that have at least one stack trace. */ 586 u64 lockdep_stack_hash_count(void) 587 { 588 u64 c = 0; 589 int i; 590 591 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) 592 if (!hlist_empty(&stack_trace_hash[i])) 593 c++; 594 595 return c; 596 } 597 #endif 598 599 unsigned int nr_hardirq_chains; 600 unsigned int nr_softirq_chains; 601 unsigned int nr_process_chains; 602 unsigned int max_lockdep_depth; 603 604 #ifdef CONFIG_DEBUG_LOCKDEP 605 /* 606 * Various lockdep statistics: 607 */ 608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats); 609 #endif 610 611 #ifdef CONFIG_PROVE_LOCKING 612 /* 613 * Locking printouts: 614 */ 615 616 #define __USAGE(__STATE) \ 617 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \ 618 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \ 619 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\ 620 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R", 621 622 static const char *usage_str[] = 623 { 624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE) 625 #include "lockdep_states.h" 626 #undef LOCKDEP_STATE 627 [LOCK_USED] = "INITIAL USE", 628 [LOCK_USED_READ] = "INITIAL READ USE", 629 /* abused as string storage for verify_lock_unused() */ 630 [LOCK_USAGE_STATES] = "IN-NMI", 631 }; 632 #endif 633 634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str) 635 { 636 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str); 637 } 638 639 static inline unsigned long lock_flag(enum lock_usage_bit bit) 640 { 641 return 1UL << bit; 642 } 643 644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit) 645 { 646 /* 647 * The usage character defaults to '.' (i.e., irqs disabled and not in 648 * irq context), which is the safest usage category. 649 */ 650 char c = '.'; 651 652 /* 653 * The order of the following usage checks matters, which will 654 * result in the outcome character as follows: 655 * 656 * - '+': irq is enabled and not in irq context 657 * - '-': in irq context and irq is disabled 658 * - '?': in irq context and irq is enabled 659 */ 660 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) { 661 c = '+'; 662 if (class->usage_mask & lock_flag(bit)) 663 c = '?'; 664 } else if (class->usage_mask & lock_flag(bit)) 665 c = '-'; 666 667 return c; 668 } 669 670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS]) 671 { 672 int i = 0; 673 674 #define LOCKDEP_STATE(__STATE) \ 675 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \ 676 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ); 677 #include "lockdep_states.h" 678 #undef LOCKDEP_STATE 679 680 usage[i] = '\0'; 681 } 682 683 static void __print_lock_name(struct lock_class *class) 684 { 685 char str[KSYM_NAME_LEN]; 686 const char *name; 687 688 name = class->name; 689 if (!name) { 690 name = __get_key_name(class->key, str); 691 printk(KERN_CONT "%s", name); 692 } else { 693 printk(KERN_CONT "%s", name); 694 if (class->name_version > 1) 695 printk(KERN_CONT "#%d", class->name_version); 696 if (class->subclass) 697 printk(KERN_CONT "/%d", class->subclass); 698 } 699 } 700 701 static void print_lock_name(struct lock_class *class) 702 { 703 char usage[LOCK_USAGE_CHARS]; 704 705 get_usage_chars(class, usage); 706 707 printk(KERN_CONT " ("); 708 __print_lock_name(class); 709 printk(KERN_CONT "){%s}-{%d:%d}", usage, 710 class->wait_type_outer ?: class->wait_type_inner, 711 class->wait_type_inner); 712 } 713 714 static void print_lockdep_cache(struct lockdep_map *lock) 715 { 716 const char *name; 717 char str[KSYM_NAME_LEN]; 718 719 name = lock->name; 720 if (!name) 721 name = __get_key_name(lock->key->subkeys, str); 722 723 printk(KERN_CONT "%s", name); 724 } 725 726 static void print_lock(struct held_lock *hlock) 727 { 728 /* 729 * We can be called locklessly through debug_show_all_locks() so be 730 * extra careful, the hlock might have been released and cleared. 731 * 732 * If this indeed happens, lets pretend it does not hurt to continue 733 * to print the lock unless the hlock class_idx does not point to a 734 * registered class. The rationale here is: since we don't attempt 735 * to distinguish whether we are in this situation, if it just 736 * happened we can't count on class_idx to tell either. 737 */ 738 struct lock_class *lock = hlock_class(hlock); 739 740 if (!lock) { 741 printk(KERN_CONT "<RELEASED>\n"); 742 return; 743 } 744 745 printk(KERN_CONT "%px", hlock->instance); 746 print_lock_name(lock); 747 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip); 748 } 749 750 static void lockdep_print_held_locks(struct task_struct *p) 751 { 752 int i, depth = READ_ONCE(p->lockdep_depth); 753 754 if (!depth) 755 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p)); 756 else 757 printk("%d lock%s held by %s/%d:\n", depth, 758 depth > 1 ? "s" : "", p->comm, task_pid_nr(p)); 759 /* 760 * It's not reliable to print a task's held locks if it's not sleeping 761 * and it's not the current task. 762 */ 763 if (p->state == TASK_RUNNING && p != current) 764 return; 765 for (i = 0; i < depth; i++) { 766 printk(" #%d: ", i); 767 print_lock(p->held_locks + i); 768 } 769 } 770 771 static void print_kernel_ident(void) 772 { 773 printk("%s %.*s %s\n", init_utsname()->release, 774 (int)strcspn(init_utsname()->version, " "), 775 init_utsname()->version, 776 print_tainted()); 777 } 778 779 static int very_verbose(struct lock_class *class) 780 { 781 #if VERY_VERBOSE 782 return class_filter(class); 783 #endif 784 return 0; 785 } 786 787 /* 788 * Is this the address of a static object: 789 */ 790 #ifdef __KERNEL__ 791 static int static_obj(const void *obj) 792 { 793 unsigned long start = (unsigned long) &_stext, 794 end = (unsigned long) &_end, 795 addr = (unsigned long) obj; 796 797 if (arch_is_kernel_initmem_freed(addr)) 798 return 0; 799 800 /* 801 * static variable? 802 */ 803 if ((addr >= start) && (addr < end)) 804 return 1; 805 806 if (arch_is_kernel_data(addr)) 807 return 1; 808 809 /* 810 * in-kernel percpu var? 811 */ 812 if (is_kernel_percpu_address(addr)) 813 return 1; 814 815 /* 816 * module static or percpu var? 817 */ 818 return is_module_address(addr) || is_module_percpu_address(addr); 819 } 820 #endif 821 822 /* 823 * To make lock name printouts unique, we calculate a unique 824 * class->name_version generation counter. The caller must hold the graph 825 * lock. 826 */ 827 static int count_matching_names(struct lock_class *new_class) 828 { 829 struct lock_class *class; 830 int count = 0; 831 832 if (!new_class->name) 833 return 0; 834 835 list_for_each_entry(class, &all_lock_classes, lock_entry) { 836 if (new_class->key - new_class->subclass == class->key) 837 return class->name_version; 838 if (class->name && !strcmp(class->name, new_class->name)) 839 count = max(count, class->name_version); 840 } 841 842 return count + 1; 843 } 844 845 /* used from NMI context -- must be lockless */ 846 static noinstr struct lock_class * 847 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass) 848 { 849 struct lockdep_subclass_key *key; 850 struct hlist_head *hash_head; 851 struct lock_class *class; 852 853 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) { 854 instrumentation_begin(); 855 debug_locks_off(); 856 printk(KERN_ERR 857 "BUG: looking up invalid subclass: %u\n", subclass); 858 printk(KERN_ERR 859 "turning off the locking correctness validator.\n"); 860 dump_stack(); 861 instrumentation_end(); 862 return NULL; 863 } 864 865 /* 866 * If it is not initialised then it has never been locked, 867 * so it won't be present in the hash table. 868 */ 869 if (unlikely(!lock->key)) 870 return NULL; 871 872 /* 873 * NOTE: the class-key must be unique. For dynamic locks, a static 874 * lock_class_key variable is passed in through the mutex_init() 875 * (or spin_lock_init()) call - which acts as the key. For static 876 * locks we use the lock object itself as the key. 877 */ 878 BUILD_BUG_ON(sizeof(struct lock_class_key) > 879 sizeof(struct lockdep_map)); 880 881 key = lock->key->subkeys + subclass; 882 883 hash_head = classhashentry(key); 884 885 /* 886 * We do an RCU walk of the hash, see lockdep_free_key_range(). 887 */ 888 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 889 return NULL; 890 891 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 892 if (class->key == key) { 893 /* 894 * Huh! same key, different name? Did someone trample 895 * on some memory? We're most confused. 896 */ 897 WARN_ON_ONCE(class->name != lock->name && 898 lock->key != &__lockdep_no_validate__); 899 return class; 900 } 901 } 902 903 return NULL; 904 } 905 906 /* 907 * Static locks do not have their class-keys yet - for them the key is 908 * the lock object itself. If the lock is in the per cpu area, the 909 * canonical address of the lock (per cpu offset removed) is used. 910 */ 911 static bool assign_lock_key(struct lockdep_map *lock) 912 { 913 unsigned long can_addr, addr = (unsigned long)lock; 914 915 #ifdef __KERNEL__ 916 /* 917 * lockdep_free_key_range() assumes that struct lock_class_key 918 * objects do not overlap. Since we use the address of lock 919 * objects as class key for static objects, check whether the 920 * size of lock_class_key objects does not exceed the size of 921 * the smallest lock object. 922 */ 923 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t)); 924 #endif 925 926 if (__is_kernel_percpu_address(addr, &can_addr)) 927 lock->key = (void *)can_addr; 928 else if (__is_module_percpu_address(addr, &can_addr)) 929 lock->key = (void *)can_addr; 930 else if (static_obj(lock)) 931 lock->key = (void *)lock; 932 else { 933 /* Debug-check: all keys must be persistent! */ 934 debug_locks_off(); 935 pr_err("INFO: trying to register non-static key.\n"); 936 pr_err("The code is fine but needs lockdep annotation, or maybe\n"); 937 pr_err("you didn't initialize this object before use?\n"); 938 pr_err("turning off the locking correctness validator.\n"); 939 dump_stack(); 940 return false; 941 } 942 943 return true; 944 } 945 946 #ifdef CONFIG_DEBUG_LOCKDEP 947 948 /* Check whether element @e occurs in list @h */ 949 static bool in_list(struct list_head *e, struct list_head *h) 950 { 951 struct list_head *f; 952 953 list_for_each(f, h) { 954 if (e == f) 955 return true; 956 } 957 958 return false; 959 } 960 961 /* 962 * Check whether entry @e occurs in any of the locks_after or locks_before 963 * lists. 964 */ 965 static bool in_any_class_list(struct list_head *e) 966 { 967 struct lock_class *class; 968 int i; 969 970 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 971 class = &lock_classes[i]; 972 if (in_list(e, &class->locks_after) || 973 in_list(e, &class->locks_before)) 974 return true; 975 } 976 return false; 977 } 978 979 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h) 980 { 981 struct lock_list *e; 982 983 list_for_each_entry(e, h, entry) { 984 if (e->links_to != c) { 985 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s", 986 c->name ? : "(?)", 987 (unsigned long)(e - list_entries), 988 e->links_to && e->links_to->name ? 989 e->links_to->name : "(?)", 990 e->class && e->class->name ? e->class->name : 991 "(?)"); 992 return false; 993 } 994 } 995 return true; 996 } 997 998 #ifdef CONFIG_PROVE_LOCKING 999 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 1000 #endif 1001 1002 static bool check_lock_chain_key(struct lock_chain *chain) 1003 { 1004 #ifdef CONFIG_PROVE_LOCKING 1005 u64 chain_key = INITIAL_CHAIN_KEY; 1006 int i; 1007 1008 for (i = chain->base; i < chain->base + chain->depth; i++) 1009 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]); 1010 /* 1011 * The 'unsigned long long' casts avoid that a compiler warning 1012 * is reported when building tools/lib/lockdep. 1013 */ 1014 if (chain->chain_key != chain_key) { 1015 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n", 1016 (unsigned long long)(chain - lock_chains), 1017 (unsigned long long)chain->chain_key, 1018 (unsigned long long)chain_key); 1019 return false; 1020 } 1021 #endif 1022 return true; 1023 } 1024 1025 static bool in_any_zapped_class_list(struct lock_class *class) 1026 { 1027 struct pending_free *pf; 1028 int i; 1029 1030 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) { 1031 if (in_list(&class->lock_entry, &pf->zapped)) 1032 return true; 1033 } 1034 1035 return false; 1036 } 1037 1038 static bool __check_data_structures(void) 1039 { 1040 struct lock_class *class; 1041 struct lock_chain *chain; 1042 struct hlist_head *head; 1043 struct lock_list *e; 1044 int i; 1045 1046 /* Check whether all classes occur in a lock list. */ 1047 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1048 class = &lock_classes[i]; 1049 if (!in_list(&class->lock_entry, &all_lock_classes) && 1050 !in_list(&class->lock_entry, &free_lock_classes) && 1051 !in_any_zapped_class_list(class)) { 1052 printk(KERN_INFO "class %px/%s is not in any class list\n", 1053 class, class->name ? : "(?)"); 1054 return false; 1055 } 1056 } 1057 1058 /* Check whether all classes have valid lock lists. */ 1059 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1060 class = &lock_classes[i]; 1061 if (!class_lock_list_valid(class, &class->locks_before)) 1062 return false; 1063 if (!class_lock_list_valid(class, &class->locks_after)) 1064 return false; 1065 } 1066 1067 /* Check the chain_key of all lock chains. */ 1068 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 1069 head = chainhash_table + i; 1070 hlist_for_each_entry_rcu(chain, head, entry) { 1071 if (!check_lock_chain_key(chain)) 1072 return false; 1073 } 1074 } 1075 1076 /* 1077 * Check whether all list entries that are in use occur in a class 1078 * lock list. 1079 */ 1080 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1081 e = list_entries + i; 1082 if (!in_any_class_list(&e->entry)) { 1083 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n", 1084 (unsigned int)(e - list_entries), 1085 e->class->name ? : "(?)", 1086 e->links_to->name ? : "(?)"); 1087 return false; 1088 } 1089 } 1090 1091 /* 1092 * Check whether all list entries that are not in use do not occur in 1093 * a class lock list. 1094 */ 1095 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 1096 e = list_entries + i; 1097 if (in_any_class_list(&e->entry)) { 1098 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n", 1099 (unsigned int)(e - list_entries), 1100 e->class && e->class->name ? e->class->name : 1101 "(?)", 1102 e->links_to && e->links_to->name ? 1103 e->links_to->name : "(?)"); 1104 return false; 1105 } 1106 } 1107 1108 return true; 1109 } 1110 1111 int check_consistency = 0; 1112 module_param(check_consistency, int, 0644); 1113 1114 static void check_data_structures(void) 1115 { 1116 static bool once = false; 1117 1118 if (check_consistency && !once) { 1119 if (!__check_data_structures()) { 1120 once = true; 1121 WARN_ON(once); 1122 } 1123 } 1124 } 1125 1126 #else /* CONFIG_DEBUG_LOCKDEP */ 1127 1128 static inline void check_data_structures(void) { } 1129 1130 #endif /* CONFIG_DEBUG_LOCKDEP */ 1131 1132 static void init_chain_block_buckets(void); 1133 1134 /* 1135 * Initialize the lock_classes[] array elements, the free_lock_classes list 1136 * and also the delayed_free structure. 1137 */ 1138 static void init_data_structures_once(void) 1139 { 1140 static bool __read_mostly ds_initialized, rcu_head_initialized; 1141 int i; 1142 1143 if (likely(rcu_head_initialized)) 1144 return; 1145 1146 if (system_state >= SYSTEM_SCHEDULING) { 1147 init_rcu_head(&delayed_free.rcu_head); 1148 rcu_head_initialized = true; 1149 } 1150 1151 if (ds_initialized) 1152 return; 1153 1154 ds_initialized = true; 1155 1156 INIT_LIST_HEAD(&delayed_free.pf[0].zapped); 1157 INIT_LIST_HEAD(&delayed_free.pf[1].zapped); 1158 1159 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) { 1160 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes); 1161 INIT_LIST_HEAD(&lock_classes[i].locks_after); 1162 INIT_LIST_HEAD(&lock_classes[i].locks_before); 1163 } 1164 init_chain_block_buckets(); 1165 } 1166 1167 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key) 1168 { 1169 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS); 1170 1171 return lock_keys_hash + hash; 1172 } 1173 1174 /* Register a dynamically allocated key. */ 1175 void lockdep_register_key(struct lock_class_key *key) 1176 { 1177 struct hlist_head *hash_head; 1178 struct lock_class_key *k; 1179 unsigned long flags; 1180 1181 if (WARN_ON_ONCE(static_obj(key))) 1182 return; 1183 hash_head = keyhashentry(key); 1184 1185 raw_local_irq_save(flags); 1186 if (!graph_lock()) 1187 goto restore_irqs; 1188 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1189 if (WARN_ON_ONCE(k == key)) 1190 goto out_unlock; 1191 } 1192 hlist_add_head_rcu(&key->hash_entry, hash_head); 1193 out_unlock: 1194 graph_unlock(); 1195 restore_irqs: 1196 raw_local_irq_restore(flags); 1197 } 1198 EXPORT_SYMBOL_GPL(lockdep_register_key); 1199 1200 /* Check whether a key has been registered as a dynamic key. */ 1201 static bool is_dynamic_key(const struct lock_class_key *key) 1202 { 1203 struct hlist_head *hash_head; 1204 struct lock_class_key *k; 1205 bool found = false; 1206 1207 if (WARN_ON_ONCE(static_obj(key))) 1208 return false; 1209 1210 /* 1211 * If lock debugging is disabled lock_keys_hash[] may contain 1212 * pointers to memory that has already been freed. Avoid triggering 1213 * a use-after-free in that case by returning early. 1214 */ 1215 if (!debug_locks) 1216 return true; 1217 1218 hash_head = keyhashentry(key); 1219 1220 rcu_read_lock(); 1221 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 1222 if (k == key) { 1223 found = true; 1224 break; 1225 } 1226 } 1227 rcu_read_unlock(); 1228 1229 return found; 1230 } 1231 1232 /* 1233 * Register a lock's class in the hash-table, if the class is not present 1234 * yet. Otherwise we look it up. We cache the result in the lock object 1235 * itself, so actual lookup of the hash should be once per lock object. 1236 */ 1237 static struct lock_class * 1238 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force) 1239 { 1240 struct lockdep_subclass_key *key; 1241 struct hlist_head *hash_head; 1242 struct lock_class *class; 1243 1244 DEBUG_LOCKS_WARN_ON(!irqs_disabled()); 1245 1246 class = look_up_lock_class(lock, subclass); 1247 if (likely(class)) 1248 goto out_set_class_cache; 1249 1250 if (!lock->key) { 1251 if (!assign_lock_key(lock)) 1252 return NULL; 1253 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) { 1254 return NULL; 1255 } 1256 1257 key = lock->key->subkeys + subclass; 1258 hash_head = classhashentry(key); 1259 1260 if (!graph_lock()) { 1261 return NULL; 1262 } 1263 /* 1264 * We have to do the hash-walk again, to avoid races 1265 * with another CPU: 1266 */ 1267 hlist_for_each_entry_rcu(class, hash_head, hash_entry) { 1268 if (class->key == key) 1269 goto out_unlock_set; 1270 } 1271 1272 init_data_structures_once(); 1273 1274 /* Allocate a new lock class and add it to the hash. */ 1275 class = list_first_entry_or_null(&free_lock_classes, typeof(*class), 1276 lock_entry); 1277 if (!class) { 1278 if (!debug_locks_off_graph_unlock()) { 1279 return NULL; 1280 } 1281 1282 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!"); 1283 dump_stack(); 1284 return NULL; 1285 } 1286 nr_lock_classes++; 1287 __set_bit(class - lock_classes, lock_classes_in_use); 1288 debug_atomic_inc(nr_unused_locks); 1289 class->key = key; 1290 class->name = lock->name; 1291 class->subclass = subclass; 1292 WARN_ON_ONCE(!list_empty(&class->locks_before)); 1293 WARN_ON_ONCE(!list_empty(&class->locks_after)); 1294 class->name_version = count_matching_names(class); 1295 class->wait_type_inner = lock->wait_type_inner; 1296 class->wait_type_outer = lock->wait_type_outer; 1297 class->lock_type = lock->lock_type; 1298 /* 1299 * We use RCU's safe list-add method to make 1300 * parallel walking of the hash-list safe: 1301 */ 1302 hlist_add_head_rcu(&class->hash_entry, hash_head); 1303 /* 1304 * Remove the class from the free list and add it to the global list 1305 * of classes. 1306 */ 1307 list_move_tail(&class->lock_entry, &all_lock_classes); 1308 1309 if (verbose(class)) { 1310 graph_unlock(); 1311 1312 printk("\nnew class %px: %s", class->key, class->name); 1313 if (class->name_version > 1) 1314 printk(KERN_CONT "#%d", class->name_version); 1315 printk(KERN_CONT "\n"); 1316 dump_stack(); 1317 1318 if (!graph_lock()) { 1319 return NULL; 1320 } 1321 } 1322 out_unlock_set: 1323 graph_unlock(); 1324 1325 out_set_class_cache: 1326 if (!subclass || force) 1327 lock->class_cache[0] = class; 1328 else if (subclass < NR_LOCKDEP_CACHING_CLASSES) 1329 lock->class_cache[subclass] = class; 1330 1331 /* 1332 * Hash collision, did we smoke some? We found a class with a matching 1333 * hash but the subclass -- which is hashed in -- didn't match. 1334 */ 1335 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass)) 1336 return NULL; 1337 1338 return class; 1339 } 1340 1341 #ifdef CONFIG_PROVE_LOCKING 1342 /* 1343 * Allocate a lockdep entry. (assumes the graph_lock held, returns 1344 * with NULL on failure) 1345 */ 1346 static struct lock_list *alloc_list_entry(void) 1347 { 1348 int idx = find_first_zero_bit(list_entries_in_use, 1349 ARRAY_SIZE(list_entries)); 1350 1351 if (idx >= ARRAY_SIZE(list_entries)) { 1352 if (!debug_locks_off_graph_unlock()) 1353 return NULL; 1354 1355 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!"); 1356 dump_stack(); 1357 return NULL; 1358 } 1359 nr_list_entries++; 1360 __set_bit(idx, list_entries_in_use); 1361 return list_entries + idx; 1362 } 1363 1364 /* 1365 * Add a new dependency to the head of the list: 1366 */ 1367 static int add_lock_to_list(struct lock_class *this, 1368 struct lock_class *links_to, struct list_head *head, 1369 unsigned long ip, u16 distance, u8 dep, 1370 const struct lock_trace *trace) 1371 { 1372 struct lock_list *entry; 1373 /* 1374 * Lock not present yet - get a new dependency struct and 1375 * add it to the list: 1376 */ 1377 entry = alloc_list_entry(); 1378 if (!entry) 1379 return 0; 1380 1381 entry->class = this; 1382 entry->links_to = links_to; 1383 entry->dep = dep; 1384 entry->distance = distance; 1385 entry->trace = trace; 1386 /* 1387 * Both allocation and removal are done under the graph lock; but 1388 * iteration is under RCU-sched; see look_up_lock_class() and 1389 * lockdep_free_key_range(). 1390 */ 1391 list_add_tail_rcu(&entry->entry, head); 1392 1393 return 1; 1394 } 1395 1396 /* 1397 * For good efficiency of modular, we use power of 2 1398 */ 1399 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS) 1400 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1) 1401 1402 /* 1403 * The circular_queue and helpers are used to implement graph 1404 * breadth-first search (BFS) algorithm, by which we can determine 1405 * whether there is a path from a lock to another. In deadlock checks, 1406 * a path from the next lock to be acquired to a previous held lock 1407 * indicates that adding the <prev> -> <next> lock dependency will 1408 * produce a circle in the graph. Breadth-first search instead of 1409 * depth-first search is used in order to find the shortest (circular) 1410 * path. 1411 */ 1412 struct circular_queue { 1413 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE]; 1414 unsigned int front, rear; 1415 }; 1416 1417 static struct circular_queue lock_cq; 1418 1419 unsigned int max_bfs_queue_depth; 1420 1421 static unsigned int lockdep_dependency_gen_id; 1422 1423 static inline void __cq_init(struct circular_queue *cq) 1424 { 1425 cq->front = cq->rear = 0; 1426 lockdep_dependency_gen_id++; 1427 } 1428 1429 static inline int __cq_empty(struct circular_queue *cq) 1430 { 1431 return (cq->front == cq->rear); 1432 } 1433 1434 static inline int __cq_full(struct circular_queue *cq) 1435 { 1436 return ((cq->rear + 1) & CQ_MASK) == cq->front; 1437 } 1438 1439 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem) 1440 { 1441 if (__cq_full(cq)) 1442 return -1; 1443 1444 cq->element[cq->rear] = elem; 1445 cq->rear = (cq->rear + 1) & CQ_MASK; 1446 return 0; 1447 } 1448 1449 /* 1450 * Dequeue an element from the circular_queue, return a lock_list if 1451 * the queue is not empty, or NULL if otherwise. 1452 */ 1453 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq) 1454 { 1455 struct lock_list * lock; 1456 1457 if (__cq_empty(cq)) 1458 return NULL; 1459 1460 lock = cq->element[cq->front]; 1461 cq->front = (cq->front + 1) & CQ_MASK; 1462 1463 return lock; 1464 } 1465 1466 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq) 1467 { 1468 return (cq->rear - cq->front) & CQ_MASK; 1469 } 1470 1471 static inline void mark_lock_accessed(struct lock_list *lock) 1472 { 1473 lock->class->dep_gen_id = lockdep_dependency_gen_id; 1474 } 1475 1476 static inline void visit_lock_entry(struct lock_list *lock, 1477 struct lock_list *parent) 1478 { 1479 lock->parent = parent; 1480 } 1481 1482 static inline unsigned long lock_accessed(struct lock_list *lock) 1483 { 1484 return lock->class->dep_gen_id == lockdep_dependency_gen_id; 1485 } 1486 1487 static inline struct lock_list *get_lock_parent(struct lock_list *child) 1488 { 1489 return child->parent; 1490 } 1491 1492 static inline int get_lock_depth(struct lock_list *child) 1493 { 1494 int depth = 0; 1495 struct lock_list *parent; 1496 1497 while ((parent = get_lock_parent(child))) { 1498 child = parent; 1499 depth++; 1500 } 1501 return depth; 1502 } 1503 1504 /* 1505 * Return the forward or backward dependency list. 1506 * 1507 * @lock: the lock_list to get its class's dependency list 1508 * @offset: the offset to struct lock_class to determine whether it is 1509 * locks_after or locks_before 1510 */ 1511 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset) 1512 { 1513 void *lock_class = lock->class; 1514 1515 return lock_class + offset; 1516 } 1517 /* 1518 * Return values of a bfs search: 1519 * 1520 * BFS_E* indicates an error 1521 * BFS_R* indicates a result (match or not) 1522 * 1523 * BFS_EINVALIDNODE: Find a invalid node in the graph. 1524 * 1525 * BFS_EQUEUEFULL: The queue is full while doing the bfs. 1526 * 1527 * BFS_RMATCH: Find the matched node in the graph, and put that node into 1528 * *@target_entry. 1529 * 1530 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry 1531 * _unchanged_. 1532 */ 1533 enum bfs_result { 1534 BFS_EINVALIDNODE = -2, 1535 BFS_EQUEUEFULL = -1, 1536 BFS_RMATCH = 0, 1537 BFS_RNOMATCH = 1, 1538 }; 1539 1540 /* 1541 * bfs_result < 0 means error 1542 */ 1543 static inline bool bfs_error(enum bfs_result res) 1544 { 1545 return res < 0; 1546 } 1547 1548 /* 1549 * DEP_*_BIT in lock_list::dep 1550 * 1551 * For dependency @prev -> @next: 1552 * 1553 * SR: @prev is shared reader (->read != 0) and @next is recursive reader 1554 * (->read == 2) 1555 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader 1556 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2) 1557 * EN: @prev is exclusive locker and @next is non-recursive locker 1558 * 1559 * Note that we define the value of DEP_*_BITs so that: 1560 * bit0 is prev->read == 0 1561 * bit1 is next->read != 2 1562 */ 1563 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */ 1564 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */ 1565 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */ 1566 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */ 1567 1568 #define DEP_SR_MASK (1U << (DEP_SR_BIT)) 1569 #define DEP_ER_MASK (1U << (DEP_ER_BIT)) 1570 #define DEP_SN_MASK (1U << (DEP_SN_BIT)) 1571 #define DEP_EN_MASK (1U << (DEP_EN_BIT)) 1572 1573 static inline unsigned int 1574 __calc_dep_bit(struct held_lock *prev, struct held_lock *next) 1575 { 1576 return (prev->read == 0) + ((next->read != 2) << 1); 1577 } 1578 1579 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next) 1580 { 1581 return 1U << __calc_dep_bit(prev, next); 1582 } 1583 1584 /* 1585 * calculate the dep_bit for backwards edges. We care about whether @prev is 1586 * shared and whether @next is recursive. 1587 */ 1588 static inline unsigned int 1589 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next) 1590 { 1591 return (next->read != 2) + ((prev->read == 0) << 1); 1592 } 1593 1594 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next) 1595 { 1596 return 1U << __calc_dep_bitb(prev, next); 1597 } 1598 1599 /* 1600 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS 1601 * search. 1602 */ 1603 static inline void __bfs_init_root(struct lock_list *lock, 1604 struct lock_class *class) 1605 { 1606 lock->class = class; 1607 lock->parent = NULL; 1608 lock->only_xr = 0; 1609 } 1610 1611 /* 1612 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the 1613 * root for a BFS search. 1614 * 1615 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure 1616 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)-> 1617 * and -(S*)->. 1618 */ 1619 static inline void bfs_init_root(struct lock_list *lock, 1620 struct held_lock *hlock) 1621 { 1622 __bfs_init_root(lock, hlock_class(hlock)); 1623 lock->only_xr = (hlock->read == 2); 1624 } 1625 1626 /* 1627 * Similar to bfs_init_root() but initialize the root for backwards BFS. 1628 * 1629 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure 1630 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not 1631 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->). 1632 */ 1633 static inline void bfs_init_rootb(struct lock_list *lock, 1634 struct held_lock *hlock) 1635 { 1636 __bfs_init_root(lock, hlock_class(hlock)); 1637 lock->only_xr = (hlock->read != 0); 1638 } 1639 1640 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset) 1641 { 1642 if (!lock || !lock->parent) 1643 return NULL; 1644 1645 return list_next_or_null_rcu(get_dep_list(lock->parent, offset), 1646 &lock->entry, struct lock_list, entry); 1647 } 1648 1649 /* 1650 * Breadth-First Search to find a strong path in the dependency graph. 1651 * 1652 * @source_entry: the source of the path we are searching for. 1653 * @data: data used for the second parameter of @match function 1654 * @match: match function for the search 1655 * @target_entry: pointer to the target of a matched path 1656 * @offset: the offset to struct lock_class to determine whether it is 1657 * locks_after or locks_before 1658 * 1659 * We may have multiple edges (considering different kinds of dependencies, 1660 * e.g. ER and SN) between two nodes in the dependency graph. But 1661 * only the strong dependency path in the graph is relevant to deadlocks. A 1662 * strong dependency path is a dependency path that doesn't have two adjacent 1663 * dependencies as -(*R)-> -(S*)->, please see: 1664 * 1665 * Documentation/locking/lockdep-design.rst 1666 * 1667 * for more explanation of the definition of strong dependency paths 1668 * 1669 * In __bfs(), we only traverse in the strong dependency path: 1670 * 1671 * In lock_list::only_xr, we record whether the previous dependency only 1672 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we 1673 * filter out any -(S*)-> in the current dependency and after that, the 1674 * ->only_xr is set according to whether we only have -(*R)-> left. 1675 */ 1676 static enum bfs_result __bfs(struct lock_list *source_entry, 1677 void *data, 1678 bool (*match)(struct lock_list *entry, void *data), 1679 bool (*skip)(struct lock_list *entry, void *data), 1680 struct lock_list **target_entry, 1681 int offset) 1682 { 1683 struct circular_queue *cq = &lock_cq; 1684 struct lock_list *lock = NULL; 1685 struct lock_list *entry; 1686 struct list_head *head; 1687 unsigned int cq_depth; 1688 bool first; 1689 1690 lockdep_assert_locked(); 1691 1692 __cq_init(cq); 1693 __cq_enqueue(cq, source_entry); 1694 1695 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) { 1696 if (!lock->class) 1697 return BFS_EINVALIDNODE; 1698 1699 /* 1700 * Step 1: check whether we already finish on this one. 1701 * 1702 * If we have visited all the dependencies from this @lock to 1703 * others (iow, if we have visited all lock_list entries in 1704 * @lock->class->locks_{after,before}) we skip, otherwise go 1705 * and visit all the dependencies in the list and mark this 1706 * list accessed. 1707 */ 1708 if (lock_accessed(lock)) 1709 continue; 1710 else 1711 mark_lock_accessed(lock); 1712 1713 /* 1714 * Step 2: check whether prev dependency and this form a strong 1715 * dependency path. 1716 */ 1717 if (lock->parent) { /* Parent exists, check prev dependency */ 1718 u8 dep = lock->dep; 1719 bool prev_only_xr = lock->parent->only_xr; 1720 1721 /* 1722 * Mask out all -(S*)-> if we only have *R in previous 1723 * step, because -(*R)-> -(S*)-> don't make up a strong 1724 * dependency. 1725 */ 1726 if (prev_only_xr) 1727 dep &= ~(DEP_SR_MASK | DEP_SN_MASK); 1728 1729 /* If nothing left, we skip */ 1730 if (!dep) 1731 continue; 1732 1733 /* If there are only -(*R)-> left, set that for the next step */ 1734 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK)); 1735 } 1736 1737 /* 1738 * Step 3: we haven't visited this and there is a strong 1739 * dependency path to this, so check with @match. 1740 * If @skip is provide and returns true, we skip this 1741 * lock (and any path this lock is in). 1742 */ 1743 if (skip && skip(lock, data)) 1744 continue; 1745 1746 if (match(lock, data)) { 1747 *target_entry = lock; 1748 return BFS_RMATCH; 1749 } 1750 1751 /* 1752 * Step 4: if not match, expand the path by adding the 1753 * forward or backwards dependencies in the search 1754 * 1755 */ 1756 first = true; 1757 head = get_dep_list(lock, offset); 1758 list_for_each_entry_rcu(entry, head, entry) { 1759 visit_lock_entry(entry, lock); 1760 1761 /* 1762 * Note we only enqueue the first of the list into the 1763 * queue, because we can always find a sibling 1764 * dependency from one (see __bfs_next()), as a result 1765 * the space of queue is saved. 1766 */ 1767 if (!first) 1768 continue; 1769 1770 first = false; 1771 1772 if (__cq_enqueue(cq, entry)) 1773 return BFS_EQUEUEFULL; 1774 1775 cq_depth = __cq_get_elem_count(cq); 1776 if (max_bfs_queue_depth < cq_depth) 1777 max_bfs_queue_depth = cq_depth; 1778 } 1779 } 1780 1781 return BFS_RNOMATCH; 1782 } 1783 1784 static inline enum bfs_result 1785 __bfs_forwards(struct lock_list *src_entry, 1786 void *data, 1787 bool (*match)(struct lock_list *entry, void *data), 1788 bool (*skip)(struct lock_list *entry, void *data), 1789 struct lock_list **target_entry) 1790 { 1791 return __bfs(src_entry, data, match, skip, target_entry, 1792 offsetof(struct lock_class, locks_after)); 1793 1794 } 1795 1796 static inline enum bfs_result 1797 __bfs_backwards(struct lock_list *src_entry, 1798 void *data, 1799 bool (*match)(struct lock_list *entry, void *data), 1800 bool (*skip)(struct lock_list *entry, void *data), 1801 struct lock_list **target_entry) 1802 { 1803 return __bfs(src_entry, data, match, skip, target_entry, 1804 offsetof(struct lock_class, locks_before)); 1805 1806 } 1807 1808 static void print_lock_trace(const struct lock_trace *trace, 1809 unsigned int spaces) 1810 { 1811 stack_trace_print(trace->entries, trace->nr_entries, spaces); 1812 } 1813 1814 /* 1815 * Print a dependency chain entry (this is only done when a deadlock 1816 * has been detected): 1817 */ 1818 static noinline void 1819 print_circular_bug_entry(struct lock_list *target, int depth) 1820 { 1821 if (debug_locks_silent) 1822 return; 1823 printk("\n-> #%u", depth); 1824 print_lock_name(target->class); 1825 printk(KERN_CONT ":\n"); 1826 print_lock_trace(target->trace, 6); 1827 } 1828 1829 static void 1830 print_circular_lock_scenario(struct held_lock *src, 1831 struct held_lock *tgt, 1832 struct lock_list *prt) 1833 { 1834 struct lock_class *source = hlock_class(src); 1835 struct lock_class *target = hlock_class(tgt); 1836 struct lock_class *parent = prt->class; 1837 1838 /* 1839 * A direct locking problem where unsafe_class lock is taken 1840 * directly by safe_class lock, then all we need to show 1841 * is the deadlock scenario, as it is obvious that the 1842 * unsafe lock is taken under the safe lock. 1843 * 1844 * But if there is a chain instead, where the safe lock takes 1845 * an intermediate lock (middle_class) where this lock is 1846 * not the same as the safe lock, then the lock chain is 1847 * used to describe the problem. Otherwise we would need 1848 * to show a different CPU case for each link in the chain 1849 * from the safe_class lock to the unsafe_class lock. 1850 */ 1851 if (parent != source) { 1852 printk("Chain exists of:\n "); 1853 __print_lock_name(source); 1854 printk(KERN_CONT " --> "); 1855 __print_lock_name(parent); 1856 printk(KERN_CONT " --> "); 1857 __print_lock_name(target); 1858 printk(KERN_CONT "\n\n"); 1859 } 1860 1861 printk(" Possible unsafe locking scenario:\n\n"); 1862 printk(" CPU0 CPU1\n"); 1863 printk(" ---- ----\n"); 1864 printk(" lock("); 1865 __print_lock_name(target); 1866 printk(KERN_CONT ");\n"); 1867 printk(" lock("); 1868 __print_lock_name(parent); 1869 printk(KERN_CONT ");\n"); 1870 printk(" lock("); 1871 __print_lock_name(target); 1872 printk(KERN_CONT ");\n"); 1873 printk(" lock("); 1874 __print_lock_name(source); 1875 printk(KERN_CONT ");\n"); 1876 printk("\n *** DEADLOCK ***\n\n"); 1877 } 1878 1879 /* 1880 * When a circular dependency is detected, print the 1881 * header first: 1882 */ 1883 static noinline void 1884 print_circular_bug_header(struct lock_list *entry, unsigned int depth, 1885 struct held_lock *check_src, 1886 struct held_lock *check_tgt) 1887 { 1888 struct task_struct *curr = current; 1889 1890 if (debug_locks_silent) 1891 return; 1892 1893 pr_warn("\n"); 1894 pr_warn("======================================================\n"); 1895 pr_warn("WARNING: possible circular locking dependency detected\n"); 1896 print_kernel_ident(); 1897 pr_warn("------------------------------------------------------\n"); 1898 pr_warn("%s/%d is trying to acquire lock:\n", 1899 curr->comm, task_pid_nr(curr)); 1900 print_lock(check_src); 1901 1902 pr_warn("\nbut task is already holding lock:\n"); 1903 1904 print_lock(check_tgt); 1905 pr_warn("\nwhich lock already depends on the new lock.\n\n"); 1906 pr_warn("\nthe existing dependency chain (in reverse order) is:\n"); 1907 1908 print_circular_bug_entry(entry, depth); 1909 } 1910 1911 /* 1912 * We are about to add A -> B into the dependency graph, and in __bfs() a 1913 * strong dependency path A -> .. -> B is found: hlock_class equals 1914 * entry->class. 1915 * 1916 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former 1917 * is _stronger_ than or equal to the latter), we consider A -> B as redundant. 1918 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A 1919 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the 1920 * dependency graph, as any strong path ..-> A -> B ->.. we can get with 1921 * having dependency A -> B, we could already get a equivalent path ..-> A -> 1922 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant. 1923 * 1924 * We need to make sure both the start and the end of A -> .. -> B is not 1925 * weaker than A -> B. For the start part, please see the comment in 1926 * check_redundant(). For the end part, we need: 1927 * 1928 * Either 1929 * 1930 * a) A -> B is -(*R)-> (everything is not weaker than that) 1931 * 1932 * or 1933 * 1934 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this) 1935 * 1936 */ 1937 static inline bool hlock_equal(struct lock_list *entry, void *data) 1938 { 1939 struct held_lock *hlock = (struct held_lock *)data; 1940 1941 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1942 (hlock->read == 2 || /* A -> B is -(*R)-> */ 1943 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1944 } 1945 1946 /* 1947 * We are about to add B -> A into the dependency graph, and in __bfs() a 1948 * strong dependency path A -> .. -> B is found: hlock_class equals 1949 * entry->class. 1950 * 1951 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong 1952 * dependency cycle, that means: 1953 * 1954 * Either 1955 * 1956 * a) B -> A is -(E*)-> 1957 * 1958 * or 1959 * 1960 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B) 1961 * 1962 * as then we don't have -(*R)-> -(S*)-> in the cycle. 1963 */ 1964 static inline bool hlock_conflict(struct lock_list *entry, void *data) 1965 { 1966 struct held_lock *hlock = (struct held_lock *)data; 1967 1968 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */ 1969 (hlock->read == 0 || /* B -> A is -(E*)-> */ 1970 !entry->only_xr); /* A -> .. -> B is -(*N)-> */ 1971 } 1972 1973 static noinline void print_circular_bug(struct lock_list *this, 1974 struct lock_list *target, 1975 struct held_lock *check_src, 1976 struct held_lock *check_tgt) 1977 { 1978 struct task_struct *curr = current; 1979 struct lock_list *parent; 1980 struct lock_list *first_parent; 1981 int depth; 1982 1983 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 1984 return; 1985 1986 this->trace = save_trace(); 1987 if (!this->trace) 1988 return; 1989 1990 depth = get_lock_depth(target); 1991 1992 print_circular_bug_header(target, depth, check_src, check_tgt); 1993 1994 parent = get_lock_parent(target); 1995 first_parent = parent; 1996 1997 while (parent) { 1998 print_circular_bug_entry(parent, --depth); 1999 parent = get_lock_parent(parent); 2000 } 2001 2002 printk("\nother info that might help us debug this:\n\n"); 2003 print_circular_lock_scenario(check_src, check_tgt, 2004 first_parent); 2005 2006 lockdep_print_held_locks(curr); 2007 2008 printk("\nstack backtrace:\n"); 2009 dump_stack(); 2010 } 2011 2012 static noinline void print_bfs_bug(int ret) 2013 { 2014 if (!debug_locks_off_graph_unlock()) 2015 return; 2016 2017 /* 2018 * Breadth-first-search failed, graph got corrupted? 2019 */ 2020 WARN(1, "lockdep bfs error:%d\n", ret); 2021 } 2022 2023 static bool noop_count(struct lock_list *entry, void *data) 2024 { 2025 (*(unsigned long *)data)++; 2026 return false; 2027 } 2028 2029 static unsigned long __lockdep_count_forward_deps(struct lock_list *this) 2030 { 2031 unsigned long count = 0; 2032 struct lock_list *target_entry; 2033 2034 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry); 2035 2036 return count; 2037 } 2038 unsigned long lockdep_count_forward_deps(struct lock_class *class) 2039 { 2040 unsigned long ret, flags; 2041 struct lock_list this; 2042 2043 __bfs_init_root(&this, class); 2044 2045 raw_local_irq_save(flags); 2046 lockdep_lock(); 2047 ret = __lockdep_count_forward_deps(&this); 2048 lockdep_unlock(); 2049 raw_local_irq_restore(flags); 2050 2051 return ret; 2052 } 2053 2054 static unsigned long __lockdep_count_backward_deps(struct lock_list *this) 2055 { 2056 unsigned long count = 0; 2057 struct lock_list *target_entry; 2058 2059 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry); 2060 2061 return count; 2062 } 2063 2064 unsigned long lockdep_count_backward_deps(struct lock_class *class) 2065 { 2066 unsigned long ret, flags; 2067 struct lock_list this; 2068 2069 __bfs_init_root(&this, class); 2070 2071 raw_local_irq_save(flags); 2072 lockdep_lock(); 2073 ret = __lockdep_count_backward_deps(&this); 2074 lockdep_unlock(); 2075 raw_local_irq_restore(flags); 2076 2077 return ret; 2078 } 2079 2080 /* 2081 * Check that the dependency graph starting at <src> can lead to 2082 * <target> or not. 2083 */ 2084 static noinline enum bfs_result 2085 check_path(struct held_lock *target, struct lock_list *src_entry, 2086 bool (*match)(struct lock_list *entry, void *data), 2087 bool (*skip)(struct lock_list *entry, void *data), 2088 struct lock_list **target_entry) 2089 { 2090 enum bfs_result ret; 2091 2092 ret = __bfs_forwards(src_entry, target, match, skip, target_entry); 2093 2094 if (unlikely(bfs_error(ret))) 2095 print_bfs_bug(ret); 2096 2097 return ret; 2098 } 2099 2100 /* 2101 * Prove that the dependency graph starting at <src> can not 2102 * lead to <target>. If it can, there is a circle when adding 2103 * <target> -> <src> dependency. 2104 * 2105 * Print an error and return BFS_RMATCH if it does. 2106 */ 2107 static noinline enum bfs_result 2108 check_noncircular(struct held_lock *src, struct held_lock *target, 2109 struct lock_trace **const trace) 2110 { 2111 enum bfs_result ret; 2112 struct lock_list *target_entry; 2113 struct lock_list src_entry; 2114 2115 bfs_init_root(&src_entry, src); 2116 2117 debug_atomic_inc(nr_cyclic_checks); 2118 2119 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry); 2120 2121 if (unlikely(ret == BFS_RMATCH)) { 2122 if (!*trace) { 2123 /* 2124 * If save_trace fails here, the printing might 2125 * trigger a WARN but because of the !nr_entries it 2126 * should not do bad things. 2127 */ 2128 *trace = save_trace(); 2129 } 2130 2131 print_circular_bug(&src_entry, target_entry, src, target); 2132 } 2133 2134 return ret; 2135 } 2136 2137 #ifdef CONFIG_TRACE_IRQFLAGS 2138 2139 /* 2140 * Forwards and backwards subgraph searching, for the purposes of 2141 * proving that two subgraphs can be connected by a new dependency 2142 * without creating any illegal irq-safe -> irq-unsafe lock dependency. 2143 * 2144 * A irq safe->unsafe deadlock happens with the following conditions: 2145 * 2146 * 1) We have a strong dependency path A -> ... -> B 2147 * 2148 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore 2149 * irq can create a new dependency B -> A (consider the case that a holder 2150 * of B gets interrupted by an irq whose handler will try to acquire A). 2151 * 2152 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a 2153 * strong circle: 2154 * 2155 * For the usage bits of B: 2156 * a) if A -> B is -(*N)->, then B -> A could be any type, so any 2157 * ENABLED_IRQ usage suffices. 2158 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only 2159 * ENABLED_IRQ_*_READ usage suffices. 2160 * 2161 * For the usage bits of A: 2162 * c) if A -> B is -(E*)->, then B -> A could be any type, so any 2163 * USED_IN_IRQ usage suffices. 2164 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only 2165 * USED_IN_IRQ_*_READ usage suffices. 2166 */ 2167 2168 /* 2169 * There is a strong dependency path in the dependency graph: A -> B, and now 2170 * we need to decide which usage bit of A should be accumulated to detect 2171 * safe->unsafe bugs. 2172 * 2173 * Note that usage_accumulate() is used in backwards search, so ->only_xr 2174 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true). 2175 * 2176 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency 2177 * path, any usage of A should be considered. Otherwise, we should only 2178 * consider _READ usage. 2179 */ 2180 static inline bool usage_accumulate(struct lock_list *entry, void *mask) 2181 { 2182 if (!entry->only_xr) 2183 *(unsigned long *)mask |= entry->class->usage_mask; 2184 else /* Mask out _READ usage bits */ 2185 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ); 2186 2187 return false; 2188 } 2189 2190 /* 2191 * There is a strong dependency path in the dependency graph: A -> B, and now 2192 * we need to decide which usage bit of B conflicts with the usage bits of A, 2193 * i.e. which usage bit of B may introduce safe->unsafe deadlocks. 2194 * 2195 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency 2196 * path, any usage of B should be considered. Otherwise, we should only 2197 * consider _READ usage. 2198 */ 2199 static inline bool usage_match(struct lock_list *entry, void *mask) 2200 { 2201 if (!entry->only_xr) 2202 return !!(entry->class->usage_mask & *(unsigned long *)mask); 2203 else /* Mask out _READ usage bits */ 2204 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask); 2205 } 2206 2207 static inline bool usage_skip(struct lock_list *entry, void *mask) 2208 { 2209 /* 2210 * Skip local_lock() for irq inversion detection. 2211 * 2212 * For !RT, local_lock() is not a real lock, so it won't carry any 2213 * dependency. 2214 * 2215 * For RT, an irq inversion happens when we have lock A and B, and on 2216 * some CPU we can have: 2217 * 2218 * lock(A); 2219 * <interrupted> 2220 * lock(B); 2221 * 2222 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A. 2223 * 2224 * Now we prove local_lock() cannot exist in that dependency. First we 2225 * have the observation for any lock chain L1 -> ... -> Ln, for any 2226 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise 2227 * wait context check will complain. And since B is not a sleep lock, 2228 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of 2229 * local_lock() is 3, which is greater than 2, therefore there is no 2230 * way the local_lock() exists in the dependency B -> ... -> A. 2231 * 2232 * As a result, we will skip local_lock(), when we search for irq 2233 * inversion bugs. 2234 */ 2235 if (entry->class->lock_type == LD_LOCK_PERCPU) { 2236 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG)) 2237 return false; 2238 2239 return true; 2240 } 2241 2242 return false; 2243 } 2244 2245 /* 2246 * Find a node in the forwards-direction dependency sub-graph starting 2247 * at @root->class that matches @bit. 2248 * 2249 * Return BFS_MATCH if such a node exists in the subgraph, and put that node 2250 * into *@target_entry. 2251 */ 2252 static enum bfs_result 2253 find_usage_forwards(struct lock_list *root, unsigned long usage_mask, 2254 struct lock_list **target_entry) 2255 { 2256 enum bfs_result result; 2257 2258 debug_atomic_inc(nr_find_usage_forwards_checks); 2259 2260 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2261 2262 return result; 2263 } 2264 2265 /* 2266 * Find a node in the backwards-direction dependency sub-graph starting 2267 * at @root->class that matches @bit. 2268 */ 2269 static enum bfs_result 2270 find_usage_backwards(struct lock_list *root, unsigned long usage_mask, 2271 struct lock_list **target_entry) 2272 { 2273 enum bfs_result result; 2274 2275 debug_atomic_inc(nr_find_usage_backwards_checks); 2276 2277 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry); 2278 2279 return result; 2280 } 2281 2282 static void print_lock_class_header(struct lock_class *class, int depth) 2283 { 2284 int bit; 2285 2286 printk("%*s->", depth, ""); 2287 print_lock_name(class); 2288 #ifdef CONFIG_DEBUG_LOCKDEP 2289 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class)); 2290 #endif 2291 printk(KERN_CONT " {\n"); 2292 2293 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) { 2294 if (class->usage_mask & (1 << bit)) { 2295 int len = depth; 2296 2297 len += printk("%*s %s", depth, "", usage_str[bit]); 2298 len += printk(KERN_CONT " at:\n"); 2299 print_lock_trace(class->usage_traces[bit], len); 2300 } 2301 } 2302 printk("%*s }\n", depth, ""); 2303 2304 printk("%*s ... key at: [<%px>] %pS\n", 2305 depth, "", class->key, class->key); 2306 } 2307 2308 /* 2309 * printk the shortest lock dependencies from @start to @end in reverse order: 2310 */ 2311 static void __used 2312 print_shortest_lock_dependencies(struct lock_list *leaf, 2313 struct lock_list *root) 2314 { 2315 struct lock_list *entry = leaf; 2316 int depth; 2317 2318 /*compute depth from generated tree by BFS*/ 2319 depth = get_lock_depth(leaf); 2320 2321 do { 2322 print_lock_class_header(entry->class, depth); 2323 printk("%*s ... acquired at:\n", depth, ""); 2324 print_lock_trace(entry->trace, 2); 2325 printk("\n"); 2326 2327 if (depth == 0 && (entry != root)) { 2328 printk("lockdep:%s bad path found in chain graph\n", __func__); 2329 break; 2330 } 2331 2332 entry = get_lock_parent(entry); 2333 depth--; 2334 } while (entry && (depth >= 0)); 2335 } 2336 2337 static void 2338 print_irq_lock_scenario(struct lock_list *safe_entry, 2339 struct lock_list *unsafe_entry, 2340 struct lock_class *prev_class, 2341 struct lock_class *next_class) 2342 { 2343 struct lock_class *safe_class = safe_entry->class; 2344 struct lock_class *unsafe_class = unsafe_entry->class; 2345 struct lock_class *middle_class = prev_class; 2346 2347 if (middle_class == safe_class) 2348 middle_class = next_class; 2349 2350 /* 2351 * A direct locking problem where unsafe_class lock is taken 2352 * directly by safe_class lock, then all we need to show 2353 * is the deadlock scenario, as it is obvious that the 2354 * unsafe lock is taken under the safe lock. 2355 * 2356 * But if there is a chain instead, where the safe lock takes 2357 * an intermediate lock (middle_class) where this lock is 2358 * not the same as the safe lock, then the lock chain is 2359 * used to describe the problem. Otherwise we would need 2360 * to show a different CPU case for each link in the chain 2361 * from the safe_class lock to the unsafe_class lock. 2362 */ 2363 if (middle_class != unsafe_class) { 2364 printk("Chain exists of:\n "); 2365 __print_lock_name(safe_class); 2366 printk(KERN_CONT " --> "); 2367 __print_lock_name(middle_class); 2368 printk(KERN_CONT " --> "); 2369 __print_lock_name(unsafe_class); 2370 printk(KERN_CONT "\n\n"); 2371 } 2372 2373 printk(" Possible interrupt unsafe locking scenario:\n\n"); 2374 printk(" CPU0 CPU1\n"); 2375 printk(" ---- ----\n"); 2376 printk(" lock("); 2377 __print_lock_name(unsafe_class); 2378 printk(KERN_CONT ");\n"); 2379 printk(" local_irq_disable();\n"); 2380 printk(" lock("); 2381 __print_lock_name(safe_class); 2382 printk(KERN_CONT ");\n"); 2383 printk(" lock("); 2384 __print_lock_name(middle_class); 2385 printk(KERN_CONT ");\n"); 2386 printk(" <Interrupt>\n"); 2387 printk(" lock("); 2388 __print_lock_name(safe_class); 2389 printk(KERN_CONT ");\n"); 2390 printk("\n *** DEADLOCK ***\n\n"); 2391 } 2392 2393 static void 2394 print_bad_irq_dependency(struct task_struct *curr, 2395 struct lock_list *prev_root, 2396 struct lock_list *next_root, 2397 struct lock_list *backwards_entry, 2398 struct lock_list *forwards_entry, 2399 struct held_lock *prev, 2400 struct held_lock *next, 2401 enum lock_usage_bit bit1, 2402 enum lock_usage_bit bit2, 2403 const char *irqclass) 2404 { 2405 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2406 return; 2407 2408 pr_warn("\n"); 2409 pr_warn("=====================================================\n"); 2410 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n", 2411 irqclass, irqclass); 2412 print_kernel_ident(); 2413 pr_warn("-----------------------------------------------------\n"); 2414 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n", 2415 curr->comm, task_pid_nr(curr), 2416 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 2417 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT, 2418 lockdep_hardirqs_enabled(), 2419 curr->softirqs_enabled); 2420 print_lock(next); 2421 2422 pr_warn("\nand this task is already holding:\n"); 2423 print_lock(prev); 2424 pr_warn("which would create a new lock dependency:\n"); 2425 print_lock_name(hlock_class(prev)); 2426 pr_cont(" ->"); 2427 print_lock_name(hlock_class(next)); 2428 pr_cont("\n"); 2429 2430 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n", 2431 irqclass); 2432 print_lock_name(backwards_entry->class); 2433 pr_warn("\n... which became %s-irq-safe at:\n", irqclass); 2434 2435 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1); 2436 2437 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass); 2438 print_lock_name(forwards_entry->class); 2439 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass); 2440 pr_warn("..."); 2441 2442 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1); 2443 2444 pr_warn("\nother info that might help us debug this:\n\n"); 2445 print_irq_lock_scenario(backwards_entry, forwards_entry, 2446 hlock_class(prev), hlock_class(next)); 2447 2448 lockdep_print_held_locks(curr); 2449 2450 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass); 2451 prev_root->trace = save_trace(); 2452 if (!prev_root->trace) 2453 return; 2454 print_shortest_lock_dependencies(backwards_entry, prev_root); 2455 2456 pr_warn("\nthe dependencies between the lock to be acquired"); 2457 pr_warn(" and %s-irq-unsafe lock:\n", irqclass); 2458 next_root->trace = save_trace(); 2459 if (!next_root->trace) 2460 return; 2461 print_shortest_lock_dependencies(forwards_entry, next_root); 2462 2463 pr_warn("\nstack backtrace:\n"); 2464 dump_stack(); 2465 } 2466 2467 static const char *state_names[] = { 2468 #define LOCKDEP_STATE(__STATE) \ 2469 __stringify(__STATE), 2470 #include "lockdep_states.h" 2471 #undef LOCKDEP_STATE 2472 }; 2473 2474 static const char *state_rnames[] = { 2475 #define LOCKDEP_STATE(__STATE) \ 2476 __stringify(__STATE)"-READ", 2477 #include "lockdep_states.h" 2478 #undef LOCKDEP_STATE 2479 }; 2480 2481 static inline const char *state_name(enum lock_usage_bit bit) 2482 { 2483 if (bit & LOCK_USAGE_READ_MASK) 2484 return state_rnames[bit >> LOCK_USAGE_DIR_MASK]; 2485 else 2486 return state_names[bit >> LOCK_USAGE_DIR_MASK]; 2487 } 2488 2489 /* 2490 * The bit number is encoded like: 2491 * 2492 * bit0: 0 exclusive, 1 read lock 2493 * bit1: 0 used in irq, 1 irq enabled 2494 * bit2-n: state 2495 */ 2496 static int exclusive_bit(int new_bit) 2497 { 2498 int state = new_bit & LOCK_USAGE_STATE_MASK; 2499 int dir = new_bit & LOCK_USAGE_DIR_MASK; 2500 2501 /* 2502 * keep state, bit flip the direction and strip read. 2503 */ 2504 return state | (dir ^ LOCK_USAGE_DIR_MASK); 2505 } 2506 2507 /* 2508 * Observe that when given a bitmask where each bitnr is encoded as above, a 2509 * right shift of the mask transforms the individual bitnrs as -1 and 2510 * conversely, a left shift transforms into +1 for the individual bitnrs. 2511 * 2512 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can 2513 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0) 2514 * instead by subtracting the bit number by 2, or shifting the mask right by 2. 2515 * 2516 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2. 2517 * 2518 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is 2519 * all bits set) and recompose with bitnr1 flipped. 2520 */ 2521 static unsigned long invert_dir_mask(unsigned long mask) 2522 { 2523 unsigned long excl = 0; 2524 2525 /* Invert dir */ 2526 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK; 2527 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK; 2528 2529 return excl; 2530 } 2531 2532 /* 2533 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ 2534 * usage may cause deadlock too, for example: 2535 * 2536 * P1 P2 2537 * <irq disabled> 2538 * write_lock(l1); <irq enabled> 2539 * read_lock(l2); 2540 * write_lock(l2); 2541 * <in irq> 2542 * read_lock(l1); 2543 * 2544 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2 2545 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible 2546 * deadlock. 2547 * 2548 * In fact, all of the following cases may cause deadlocks: 2549 * 2550 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_* 2551 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_* 2552 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ 2553 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ 2554 * 2555 * As a result, to calculate the "exclusive mask", first we invert the 2556 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with 2557 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all 2558 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*). 2559 */ 2560 static unsigned long exclusive_mask(unsigned long mask) 2561 { 2562 unsigned long excl = invert_dir_mask(mask); 2563 2564 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2565 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2566 2567 return excl; 2568 } 2569 2570 /* 2571 * Retrieve the _possible_ original mask to which @mask is 2572 * exclusive. Ie: this is the opposite of exclusive_mask(). 2573 * Note that 2 possible original bits can match an exclusive 2574 * bit: one has LOCK_USAGE_READ_MASK set, the other has it 2575 * cleared. So both are returned for each exclusive bit. 2576 */ 2577 static unsigned long original_mask(unsigned long mask) 2578 { 2579 unsigned long excl = invert_dir_mask(mask); 2580 2581 /* Include read in existing usages */ 2582 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK; 2583 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK; 2584 2585 return excl; 2586 } 2587 2588 /* 2589 * Find the first pair of bit match between an original 2590 * usage mask and an exclusive usage mask. 2591 */ 2592 static int find_exclusive_match(unsigned long mask, 2593 unsigned long excl_mask, 2594 enum lock_usage_bit *bitp, 2595 enum lock_usage_bit *excl_bitp) 2596 { 2597 int bit, excl, excl_read; 2598 2599 for_each_set_bit(bit, &mask, LOCK_USED) { 2600 /* 2601 * exclusive_bit() strips the read bit, however, 2602 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need 2603 * to search excl | LOCK_USAGE_READ_MASK as well. 2604 */ 2605 excl = exclusive_bit(bit); 2606 excl_read = excl | LOCK_USAGE_READ_MASK; 2607 if (excl_mask & lock_flag(excl)) { 2608 *bitp = bit; 2609 *excl_bitp = excl; 2610 return 0; 2611 } else if (excl_mask & lock_flag(excl_read)) { 2612 *bitp = bit; 2613 *excl_bitp = excl_read; 2614 return 0; 2615 } 2616 } 2617 return -1; 2618 } 2619 2620 /* 2621 * Prove that the new dependency does not connect a hardirq-safe(-read) 2622 * lock with a hardirq-unsafe lock - to achieve this we search 2623 * the backwards-subgraph starting at <prev>, and the 2624 * forwards-subgraph starting at <next>: 2625 */ 2626 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev, 2627 struct held_lock *next) 2628 { 2629 unsigned long usage_mask = 0, forward_mask, backward_mask; 2630 enum lock_usage_bit forward_bit = 0, backward_bit = 0; 2631 struct lock_list *target_entry1; 2632 struct lock_list *target_entry; 2633 struct lock_list this, that; 2634 enum bfs_result ret; 2635 2636 /* 2637 * Step 1: gather all hard/soft IRQs usages backward in an 2638 * accumulated usage mask. 2639 */ 2640 bfs_init_rootb(&this, prev); 2641 2642 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL); 2643 if (bfs_error(ret)) { 2644 print_bfs_bug(ret); 2645 return 0; 2646 } 2647 2648 usage_mask &= LOCKF_USED_IN_IRQ_ALL; 2649 if (!usage_mask) 2650 return 1; 2651 2652 /* 2653 * Step 2: find exclusive uses forward that match the previous 2654 * backward accumulated mask. 2655 */ 2656 forward_mask = exclusive_mask(usage_mask); 2657 2658 bfs_init_root(&that, next); 2659 2660 ret = find_usage_forwards(&that, forward_mask, &target_entry1); 2661 if (bfs_error(ret)) { 2662 print_bfs_bug(ret); 2663 return 0; 2664 } 2665 if (ret == BFS_RNOMATCH) 2666 return 1; 2667 2668 /* 2669 * Step 3: we found a bad match! Now retrieve a lock from the backward 2670 * list whose usage mask matches the exclusive usage mask from the 2671 * lock found on the forward list. 2672 */ 2673 backward_mask = original_mask(target_entry1->class->usage_mask); 2674 2675 ret = find_usage_backwards(&this, backward_mask, &target_entry); 2676 if (bfs_error(ret)) { 2677 print_bfs_bug(ret); 2678 return 0; 2679 } 2680 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH)) 2681 return 1; 2682 2683 /* 2684 * Step 4: narrow down to a pair of incompatible usage bits 2685 * and report it. 2686 */ 2687 ret = find_exclusive_match(target_entry->class->usage_mask, 2688 target_entry1->class->usage_mask, 2689 &backward_bit, &forward_bit); 2690 if (DEBUG_LOCKS_WARN_ON(ret == -1)) 2691 return 1; 2692 2693 print_bad_irq_dependency(curr, &this, &that, 2694 target_entry, target_entry1, 2695 prev, next, 2696 backward_bit, forward_bit, 2697 state_name(backward_bit)); 2698 2699 return 0; 2700 } 2701 2702 #else 2703 2704 static inline int check_irq_usage(struct task_struct *curr, 2705 struct held_lock *prev, struct held_lock *next) 2706 { 2707 return 1; 2708 } 2709 2710 static inline bool usage_skip(struct lock_list *entry, void *mask) 2711 { 2712 return false; 2713 } 2714 2715 #endif /* CONFIG_TRACE_IRQFLAGS */ 2716 2717 #ifdef CONFIG_LOCKDEP_SMALL 2718 /* 2719 * Check that the dependency graph starting at <src> can lead to 2720 * <target> or not. If it can, <src> -> <target> dependency is already 2721 * in the graph. 2722 * 2723 * Return BFS_RMATCH if it does, or BFS_RMATCH if it does not, return BFS_E* if 2724 * any error appears in the bfs search. 2725 */ 2726 static noinline enum bfs_result 2727 check_redundant(struct held_lock *src, struct held_lock *target) 2728 { 2729 enum bfs_result ret; 2730 struct lock_list *target_entry; 2731 struct lock_list src_entry; 2732 2733 bfs_init_root(&src_entry, src); 2734 /* 2735 * Special setup for check_redundant(). 2736 * 2737 * To report redundant, we need to find a strong dependency path that 2738 * is equal to or stronger than <src> -> <target>. So if <src> is E, 2739 * we need to let __bfs() only search for a path starting at a -(E*)->, 2740 * we achieve this by setting the initial node's ->only_xr to true in 2741 * that case. And if <prev> is S, we set initial ->only_xr to false 2742 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant. 2743 */ 2744 src_entry.only_xr = src->read == 0; 2745 2746 debug_atomic_inc(nr_redundant_checks); 2747 2748 /* 2749 * Note: we skip local_lock() for redundant check, because as the 2750 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not 2751 * the same. 2752 */ 2753 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry); 2754 2755 if (ret == BFS_RMATCH) 2756 debug_atomic_inc(nr_redundant); 2757 2758 return ret; 2759 } 2760 2761 #else 2762 2763 static inline enum bfs_result 2764 check_redundant(struct held_lock *src, struct held_lock *target) 2765 { 2766 return BFS_RNOMATCH; 2767 } 2768 2769 #endif 2770 2771 static void inc_chains(int irq_context) 2772 { 2773 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2774 nr_hardirq_chains++; 2775 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2776 nr_softirq_chains++; 2777 else 2778 nr_process_chains++; 2779 } 2780 2781 static void dec_chains(int irq_context) 2782 { 2783 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT) 2784 nr_hardirq_chains--; 2785 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT) 2786 nr_softirq_chains--; 2787 else 2788 nr_process_chains--; 2789 } 2790 2791 static void 2792 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv) 2793 { 2794 struct lock_class *next = hlock_class(nxt); 2795 struct lock_class *prev = hlock_class(prv); 2796 2797 printk(" Possible unsafe locking scenario:\n\n"); 2798 printk(" CPU0\n"); 2799 printk(" ----\n"); 2800 printk(" lock("); 2801 __print_lock_name(prev); 2802 printk(KERN_CONT ");\n"); 2803 printk(" lock("); 2804 __print_lock_name(next); 2805 printk(KERN_CONT ");\n"); 2806 printk("\n *** DEADLOCK ***\n\n"); 2807 printk(" May be due to missing lock nesting notation\n\n"); 2808 } 2809 2810 static void 2811 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev, 2812 struct held_lock *next) 2813 { 2814 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 2815 return; 2816 2817 pr_warn("\n"); 2818 pr_warn("============================================\n"); 2819 pr_warn("WARNING: possible recursive locking detected\n"); 2820 print_kernel_ident(); 2821 pr_warn("--------------------------------------------\n"); 2822 pr_warn("%s/%d is trying to acquire lock:\n", 2823 curr->comm, task_pid_nr(curr)); 2824 print_lock(next); 2825 pr_warn("\nbut task is already holding lock:\n"); 2826 print_lock(prev); 2827 2828 pr_warn("\nother info that might help us debug this:\n"); 2829 print_deadlock_scenario(next, prev); 2830 lockdep_print_held_locks(curr); 2831 2832 pr_warn("\nstack backtrace:\n"); 2833 dump_stack(); 2834 } 2835 2836 /* 2837 * Check whether we are holding such a class already. 2838 * 2839 * (Note that this has to be done separately, because the graph cannot 2840 * detect such classes of deadlocks.) 2841 * 2842 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same 2843 * lock class is held but nest_lock is also held, i.e. we rely on the 2844 * nest_lock to avoid the deadlock. 2845 */ 2846 static int 2847 check_deadlock(struct task_struct *curr, struct held_lock *next) 2848 { 2849 struct held_lock *prev; 2850 struct held_lock *nest = NULL; 2851 int i; 2852 2853 for (i = 0; i < curr->lockdep_depth; i++) { 2854 prev = curr->held_locks + i; 2855 2856 if (prev->instance == next->nest_lock) 2857 nest = prev; 2858 2859 if (hlock_class(prev) != hlock_class(next)) 2860 continue; 2861 2862 /* 2863 * Allow read-after-read recursion of the same 2864 * lock class (i.e. read_lock(lock)+read_lock(lock)): 2865 */ 2866 if ((next->read == 2) && prev->read) 2867 continue; 2868 2869 /* 2870 * We're holding the nest_lock, which serializes this lock's 2871 * nesting behaviour. 2872 */ 2873 if (nest) 2874 return 2; 2875 2876 print_deadlock_bug(curr, prev, next); 2877 return 0; 2878 } 2879 return 1; 2880 } 2881 2882 /* 2883 * There was a chain-cache miss, and we are about to add a new dependency 2884 * to a previous lock. We validate the following rules: 2885 * 2886 * - would the adding of the <prev> -> <next> dependency create a 2887 * circular dependency in the graph? [== circular deadlock] 2888 * 2889 * - does the new prev->next dependency connect any hardirq-safe lock 2890 * (in the full backwards-subgraph starting at <prev>) with any 2891 * hardirq-unsafe lock (in the full forwards-subgraph starting at 2892 * <next>)? [== illegal lock inversion with hardirq contexts] 2893 * 2894 * - does the new prev->next dependency connect any softirq-safe lock 2895 * (in the full backwards-subgraph starting at <prev>) with any 2896 * softirq-unsafe lock (in the full forwards-subgraph starting at 2897 * <next>)? [== illegal lock inversion with softirq contexts] 2898 * 2899 * any of these scenarios could lead to a deadlock. 2900 * 2901 * Then if all the validations pass, we add the forwards and backwards 2902 * dependency. 2903 */ 2904 static int 2905 check_prev_add(struct task_struct *curr, struct held_lock *prev, 2906 struct held_lock *next, u16 distance, 2907 struct lock_trace **const trace) 2908 { 2909 struct lock_list *entry; 2910 enum bfs_result ret; 2911 2912 if (!hlock_class(prev)->key || !hlock_class(next)->key) { 2913 /* 2914 * The warning statements below may trigger a use-after-free 2915 * of the class name. It is better to trigger a use-after free 2916 * and to have the class name most of the time instead of not 2917 * having the class name available. 2918 */ 2919 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key, 2920 "Detected use-after-free of lock class %px/%s\n", 2921 hlock_class(prev), 2922 hlock_class(prev)->name); 2923 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key, 2924 "Detected use-after-free of lock class %px/%s\n", 2925 hlock_class(next), 2926 hlock_class(next)->name); 2927 return 2; 2928 } 2929 2930 /* 2931 * Prove that the new <prev> -> <next> dependency would not 2932 * create a circular dependency in the graph. (We do this by 2933 * a breadth-first search into the graph starting at <next>, 2934 * and check whether we can reach <prev>.) 2935 * 2936 * The search is limited by the size of the circular queue (i.e., 2937 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes 2938 * in the graph whose neighbours are to be checked. 2939 */ 2940 ret = check_noncircular(next, prev, trace); 2941 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH)) 2942 return 0; 2943 2944 if (!check_irq_usage(curr, prev, next)) 2945 return 0; 2946 2947 /* 2948 * Is the <prev> -> <next> dependency already present? 2949 * 2950 * (this may occur even though this is a new chain: consider 2951 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3 2952 * chains - the second one will be new, but L1 already has 2953 * L2 added to its dependency list, due to the first chain.) 2954 */ 2955 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) { 2956 if (entry->class == hlock_class(next)) { 2957 if (distance == 1) 2958 entry->distance = 1; 2959 entry->dep |= calc_dep(prev, next); 2960 2961 /* 2962 * Also, update the reverse dependency in @next's 2963 * ->locks_before list. 2964 * 2965 * Here we reuse @entry as the cursor, which is fine 2966 * because we won't go to the next iteration of the 2967 * outer loop: 2968 * 2969 * For normal cases, we return in the inner loop. 2970 * 2971 * If we fail to return, we have inconsistency, i.e. 2972 * <prev>::locks_after contains <next> while 2973 * <next>::locks_before doesn't contain <prev>. In 2974 * that case, we return after the inner and indicate 2975 * something is wrong. 2976 */ 2977 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) { 2978 if (entry->class == hlock_class(prev)) { 2979 if (distance == 1) 2980 entry->distance = 1; 2981 entry->dep |= calc_depb(prev, next); 2982 return 1; 2983 } 2984 } 2985 2986 /* <prev> is not found in <next>::locks_before */ 2987 return 0; 2988 } 2989 } 2990 2991 /* 2992 * Is the <prev> -> <next> link redundant? 2993 */ 2994 ret = check_redundant(prev, next); 2995 if (bfs_error(ret)) 2996 return 0; 2997 else if (ret == BFS_RMATCH) 2998 return 2; 2999 3000 if (!*trace) { 3001 *trace = save_trace(); 3002 if (!*trace) 3003 return 0; 3004 } 3005 3006 /* 3007 * Ok, all validations passed, add the new lock 3008 * to the previous lock's dependency list: 3009 */ 3010 ret = add_lock_to_list(hlock_class(next), hlock_class(prev), 3011 &hlock_class(prev)->locks_after, 3012 next->acquire_ip, distance, 3013 calc_dep(prev, next), 3014 *trace); 3015 3016 if (!ret) 3017 return 0; 3018 3019 ret = add_lock_to_list(hlock_class(prev), hlock_class(next), 3020 &hlock_class(next)->locks_before, 3021 next->acquire_ip, distance, 3022 calc_depb(prev, next), 3023 *trace); 3024 if (!ret) 3025 return 0; 3026 3027 return 2; 3028 } 3029 3030 /* 3031 * Add the dependency to all directly-previous locks that are 'relevant'. 3032 * The ones that are relevant are (in increasing distance from curr): 3033 * all consecutive trylock entries and the final non-trylock entry - or 3034 * the end of this context's lock-chain - whichever comes first. 3035 */ 3036 static int 3037 check_prevs_add(struct task_struct *curr, struct held_lock *next) 3038 { 3039 struct lock_trace *trace = NULL; 3040 int depth = curr->lockdep_depth; 3041 struct held_lock *hlock; 3042 3043 /* 3044 * Debugging checks. 3045 * 3046 * Depth must not be zero for a non-head lock: 3047 */ 3048 if (!depth) 3049 goto out_bug; 3050 /* 3051 * At least two relevant locks must exist for this 3052 * to be a head: 3053 */ 3054 if (curr->held_locks[depth].irq_context != 3055 curr->held_locks[depth-1].irq_context) 3056 goto out_bug; 3057 3058 for (;;) { 3059 u16 distance = curr->lockdep_depth - depth + 1; 3060 hlock = curr->held_locks + depth - 1; 3061 3062 if (hlock->check) { 3063 int ret = check_prev_add(curr, hlock, next, distance, &trace); 3064 if (!ret) 3065 return 0; 3066 3067 /* 3068 * Stop after the first non-trylock entry, 3069 * as non-trylock entries have added their 3070 * own direct dependencies already, so this 3071 * lock is connected to them indirectly: 3072 */ 3073 if (!hlock->trylock) 3074 break; 3075 } 3076 3077 depth--; 3078 /* 3079 * End of lock-stack? 3080 */ 3081 if (!depth) 3082 break; 3083 /* 3084 * Stop the search if we cross into another context: 3085 */ 3086 if (curr->held_locks[depth].irq_context != 3087 curr->held_locks[depth-1].irq_context) 3088 break; 3089 } 3090 return 1; 3091 out_bug: 3092 if (!debug_locks_off_graph_unlock()) 3093 return 0; 3094 3095 /* 3096 * Clearly we all shouldn't be here, but since we made it we 3097 * can reliable say we messed up our state. See the above two 3098 * gotos for reasons why we could possibly end up here. 3099 */ 3100 WARN_ON(1); 3101 3102 return 0; 3103 } 3104 3105 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS]; 3106 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS); 3107 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS]; 3108 unsigned long nr_zapped_lock_chains; 3109 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */ 3110 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */ 3111 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */ 3112 3113 /* 3114 * The first 2 chain_hlocks entries in the chain block in the bucket 3115 * list contains the following meta data: 3116 * 3117 * entry[0]: 3118 * Bit 15 - always set to 1 (it is not a class index) 3119 * Bits 0-14 - upper 15 bits of the next block index 3120 * entry[1] - lower 16 bits of next block index 3121 * 3122 * A next block index of all 1 bits means it is the end of the list. 3123 * 3124 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain 3125 * the chain block size: 3126 * 3127 * entry[2] - upper 16 bits of the chain block size 3128 * entry[3] - lower 16 bits of the chain block size 3129 */ 3130 #define MAX_CHAIN_BUCKETS 16 3131 #define CHAIN_BLK_FLAG (1U << 15) 3132 #define CHAIN_BLK_LIST_END 0xFFFFU 3133 3134 static int chain_block_buckets[MAX_CHAIN_BUCKETS]; 3135 3136 static inline int size_to_bucket(int size) 3137 { 3138 if (size > MAX_CHAIN_BUCKETS) 3139 return 0; 3140 3141 return size - 1; 3142 } 3143 3144 /* 3145 * Iterate all the chain blocks in a bucket. 3146 */ 3147 #define for_each_chain_block(bucket, prev, curr) \ 3148 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \ 3149 (curr) >= 0; \ 3150 (prev) = (curr), (curr) = chain_block_next(curr)) 3151 3152 /* 3153 * next block or -1 3154 */ 3155 static inline int chain_block_next(int offset) 3156 { 3157 int next = chain_hlocks[offset]; 3158 3159 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG)); 3160 3161 if (next == CHAIN_BLK_LIST_END) 3162 return -1; 3163 3164 next &= ~CHAIN_BLK_FLAG; 3165 next <<= 16; 3166 next |= chain_hlocks[offset + 1]; 3167 3168 return next; 3169 } 3170 3171 /* 3172 * bucket-0 only 3173 */ 3174 static inline int chain_block_size(int offset) 3175 { 3176 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3]; 3177 } 3178 3179 static inline void init_chain_block(int offset, int next, int bucket, int size) 3180 { 3181 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG; 3182 chain_hlocks[offset + 1] = (u16)next; 3183 3184 if (size && !bucket) { 3185 chain_hlocks[offset + 2] = size >> 16; 3186 chain_hlocks[offset + 3] = (u16)size; 3187 } 3188 } 3189 3190 static inline void add_chain_block(int offset, int size) 3191 { 3192 int bucket = size_to_bucket(size); 3193 int next = chain_block_buckets[bucket]; 3194 int prev, curr; 3195 3196 if (unlikely(size < 2)) { 3197 /* 3198 * We can't store single entries on the freelist. Leak them. 3199 * 3200 * One possible way out would be to uniquely mark them, other 3201 * than with CHAIN_BLK_FLAG, such that we can recover them when 3202 * the block before it is re-added. 3203 */ 3204 if (size) 3205 nr_lost_chain_hlocks++; 3206 return; 3207 } 3208 3209 nr_free_chain_hlocks += size; 3210 if (!bucket) { 3211 nr_large_chain_blocks++; 3212 3213 /* 3214 * Variable sized, sort large to small. 3215 */ 3216 for_each_chain_block(0, prev, curr) { 3217 if (size >= chain_block_size(curr)) 3218 break; 3219 } 3220 init_chain_block(offset, curr, 0, size); 3221 if (prev < 0) 3222 chain_block_buckets[0] = offset; 3223 else 3224 init_chain_block(prev, offset, 0, 0); 3225 return; 3226 } 3227 /* 3228 * Fixed size, add to head. 3229 */ 3230 init_chain_block(offset, next, bucket, size); 3231 chain_block_buckets[bucket] = offset; 3232 } 3233 3234 /* 3235 * Only the first block in the list can be deleted. 3236 * 3237 * For the variable size bucket[0], the first block (the largest one) is 3238 * returned, broken up and put back into the pool. So if a chain block of 3239 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be 3240 * queued up after the primordial chain block and never be used until the 3241 * hlock entries in the primordial chain block is almost used up. That 3242 * causes fragmentation and reduce allocation efficiency. That can be 3243 * monitored by looking at the "large chain blocks" number in lockdep_stats. 3244 */ 3245 static inline void del_chain_block(int bucket, int size, int next) 3246 { 3247 nr_free_chain_hlocks -= size; 3248 chain_block_buckets[bucket] = next; 3249 3250 if (!bucket) 3251 nr_large_chain_blocks--; 3252 } 3253 3254 static void init_chain_block_buckets(void) 3255 { 3256 int i; 3257 3258 for (i = 0; i < MAX_CHAIN_BUCKETS; i++) 3259 chain_block_buckets[i] = -1; 3260 3261 add_chain_block(0, ARRAY_SIZE(chain_hlocks)); 3262 } 3263 3264 /* 3265 * Return offset of a chain block of the right size or -1 if not found. 3266 * 3267 * Fairly simple worst-fit allocator with the addition of a number of size 3268 * specific free lists. 3269 */ 3270 static int alloc_chain_hlocks(int req) 3271 { 3272 int bucket, curr, size; 3273 3274 /* 3275 * We rely on the MSB to act as an escape bit to denote freelist 3276 * pointers. Make sure this bit isn't set in 'normal' class_idx usage. 3277 */ 3278 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG); 3279 3280 init_data_structures_once(); 3281 3282 if (nr_free_chain_hlocks < req) 3283 return -1; 3284 3285 /* 3286 * We require a minimum of 2 (u16) entries to encode a freelist 3287 * 'pointer'. 3288 */ 3289 req = max(req, 2); 3290 bucket = size_to_bucket(req); 3291 curr = chain_block_buckets[bucket]; 3292 3293 if (bucket) { 3294 if (curr >= 0) { 3295 del_chain_block(bucket, req, chain_block_next(curr)); 3296 return curr; 3297 } 3298 /* Try bucket 0 */ 3299 curr = chain_block_buckets[0]; 3300 } 3301 3302 /* 3303 * The variable sized freelist is sorted by size; the first entry is 3304 * the largest. Use it if it fits. 3305 */ 3306 if (curr >= 0) { 3307 size = chain_block_size(curr); 3308 if (likely(size >= req)) { 3309 del_chain_block(0, size, chain_block_next(curr)); 3310 add_chain_block(curr + req, size - req); 3311 return curr; 3312 } 3313 } 3314 3315 /* 3316 * Last resort, split a block in a larger sized bucket. 3317 */ 3318 for (size = MAX_CHAIN_BUCKETS; size > req; size--) { 3319 bucket = size_to_bucket(size); 3320 curr = chain_block_buckets[bucket]; 3321 if (curr < 0) 3322 continue; 3323 3324 del_chain_block(bucket, size, chain_block_next(curr)); 3325 add_chain_block(curr + req, size - req); 3326 return curr; 3327 } 3328 3329 return -1; 3330 } 3331 3332 static inline void free_chain_hlocks(int base, int size) 3333 { 3334 add_chain_block(base, max(size, 2)); 3335 } 3336 3337 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i) 3338 { 3339 u16 chain_hlock = chain_hlocks[chain->base + i]; 3340 unsigned int class_idx = chain_hlock_class_idx(chain_hlock); 3341 3342 return lock_classes + class_idx - 1; 3343 } 3344 3345 /* 3346 * Returns the index of the first held_lock of the current chain 3347 */ 3348 static inline int get_first_held_lock(struct task_struct *curr, 3349 struct held_lock *hlock) 3350 { 3351 int i; 3352 struct held_lock *hlock_curr; 3353 3354 for (i = curr->lockdep_depth - 1; i >= 0; i--) { 3355 hlock_curr = curr->held_locks + i; 3356 if (hlock_curr->irq_context != hlock->irq_context) 3357 break; 3358 3359 } 3360 3361 return ++i; 3362 } 3363 3364 #ifdef CONFIG_DEBUG_LOCKDEP 3365 /* 3366 * Returns the next chain_key iteration 3367 */ 3368 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key) 3369 { 3370 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id); 3371 3372 printk(" hlock_id:%d -> chain_key:%016Lx", 3373 (unsigned int)hlock_id, 3374 (unsigned long long)new_chain_key); 3375 return new_chain_key; 3376 } 3377 3378 static void 3379 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next) 3380 { 3381 struct held_lock *hlock; 3382 u64 chain_key = INITIAL_CHAIN_KEY; 3383 int depth = curr->lockdep_depth; 3384 int i = get_first_held_lock(curr, hlock_next); 3385 3386 printk("depth: %u (irq_context %u)\n", depth - i + 1, 3387 hlock_next->irq_context); 3388 for (; i < depth; i++) { 3389 hlock = curr->held_locks + i; 3390 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key); 3391 3392 print_lock(hlock); 3393 } 3394 3395 print_chain_key_iteration(hlock_id(hlock_next), chain_key); 3396 print_lock(hlock_next); 3397 } 3398 3399 static void print_chain_keys_chain(struct lock_chain *chain) 3400 { 3401 int i; 3402 u64 chain_key = INITIAL_CHAIN_KEY; 3403 u16 hlock_id; 3404 3405 printk("depth: %u\n", chain->depth); 3406 for (i = 0; i < chain->depth; i++) { 3407 hlock_id = chain_hlocks[chain->base + i]; 3408 chain_key = print_chain_key_iteration(hlock_id, chain_key); 3409 3410 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1); 3411 printk("\n"); 3412 } 3413 } 3414 3415 static void print_collision(struct task_struct *curr, 3416 struct held_lock *hlock_next, 3417 struct lock_chain *chain) 3418 { 3419 pr_warn("\n"); 3420 pr_warn("============================\n"); 3421 pr_warn("WARNING: chain_key collision\n"); 3422 print_kernel_ident(); 3423 pr_warn("----------------------------\n"); 3424 pr_warn("%s/%d: ", current->comm, task_pid_nr(current)); 3425 pr_warn("Hash chain already cached but the contents don't match!\n"); 3426 3427 pr_warn("Held locks:"); 3428 print_chain_keys_held_locks(curr, hlock_next); 3429 3430 pr_warn("Locks in cached chain:"); 3431 print_chain_keys_chain(chain); 3432 3433 pr_warn("\nstack backtrace:\n"); 3434 dump_stack(); 3435 } 3436 #endif 3437 3438 /* 3439 * Checks whether the chain and the current held locks are consistent 3440 * in depth and also in content. If they are not it most likely means 3441 * that there was a collision during the calculation of the chain_key. 3442 * Returns: 0 not passed, 1 passed 3443 */ 3444 static int check_no_collision(struct task_struct *curr, 3445 struct held_lock *hlock, 3446 struct lock_chain *chain) 3447 { 3448 #ifdef CONFIG_DEBUG_LOCKDEP 3449 int i, j, id; 3450 3451 i = get_first_held_lock(curr, hlock); 3452 3453 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) { 3454 print_collision(curr, hlock, chain); 3455 return 0; 3456 } 3457 3458 for (j = 0; j < chain->depth - 1; j++, i++) { 3459 id = hlock_id(&curr->held_locks[i]); 3460 3461 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) { 3462 print_collision(curr, hlock, chain); 3463 return 0; 3464 } 3465 } 3466 #endif 3467 return 1; 3468 } 3469 3470 /* 3471 * Given an index that is >= -1, return the index of the next lock chain. 3472 * Return -2 if there is no next lock chain. 3473 */ 3474 long lockdep_next_lockchain(long i) 3475 { 3476 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1); 3477 return i < ARRAY_SIZE(lock_chains) ? i : -2; 3478 } 3479 3480 unsigned long lock_chain_count(void) 3481 { 3482 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains)); 3483 } 3484 3485 /* Must be called with the graph lock held. */ 3486 static struct lock_chain *alloc_lock_chain(void) 3487 { 3488 int idx = find_first_zero_bit(lock_chains_in_use, 3489 ARRAY_SIZE(lock_chains)); 3490 3491 if (unlikely(idx >= ARRAY_SIZE(lock_chains))) 3492 return NULL; 3493 __set_bit(idx, lock_chains_in_use); 3494 return lock_chains + idx; 3495 } 3496 3497 /* 3498 * Adds a dependency chain into chain hashtable. And must be called with 3499 * graph_lock held. 3500 * 3501 * Return 0 if fail, and graph_lock is released. 3502 * Return 1 if succeed, with graph_lock held. 3503 */ 3504 static inline int add_chain_cache(struct task_struct *curr, 3505 struct held_lock *hlock, 3506 u64 chain_key) 3507 { 3508 struct hlist_head *hash_head = chainhashentry(chain_key); 3509 struct lock_chain *chain; 3510 int i, j; 3511 3512 /* 3513 * The caller must hold the graph lock, ensure we've got IRQs 3514 * disabled to make this an IRQ-safe lock.. for recursion reasons 3515 * lockdep won't complain about its own locking errors. 3516 */ 3517 if (lockdep_assert_locked()) 3518 return 0; 3519 3520 chain = alloc_lock_chain(); 3521 if (!chain) { 3522 if (!debug_locks_off_graph_unlock()) 3523 return 0; 3524 3525 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!"); 3526 dump_stack(); 3527 return 0; 3528 } 3529 chain->chain_key = chain_key; 3530 chain->irq_context = hlock->irq_context; 3531 i = get_first_held_lock(curr, hlock); 3532 chain->depth = curr->lockdep_depth + 1 - i; 3533 3534 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks)); 3535 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks)); 3536 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes)); 3537 3538 j = alloc_chain_hlocks(chain->depth); 3539 if (j < 0) { 3540 if (!debug_locks_off_graph_unlock()) 3541 return 0; 3542 3543 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!"); 3544 dump_stack(); 3545 return 0; 3546 } 3547 3548 chain->base = j; 3549 for (j = 0; j < chain->depth - 1; j++, i++) { 3550 int lock_id = hlock_id(curr->held_locks + i); 3551 3552 chain_hlocks[chain->base + j] = lock_id; 3553 } 3554 chain_hlocks[chain->base + j] = hlock_id(hlock); 3555 hlist_add_head_rcu(&chain->entry, hash_head); 3556 debug_atomic_inc(chain_lookup_misses); 3557 inc_chains(chain->irq_context); 3558 3559 return 1; 3560 } 3561 3562 /* 3563 * Look up a dependency chain. Must be called with either the graph lock or 3564 * the RCU read lock held. 3565 */ 3566 static inline struct lock_chain *lookup_chain_cache(u64 chain_key) 3567 { 3568 struct hlist_head *hash_head = chainhashentry(chain_key); 3569 struct lock_chain *chain; 3570 3571 hlist_for_each_entry_rcu(chain, hash_head, entry) { 3572 if (READ_ONCE(chain->chain_key) == chain_key) { 3573 debug_atomic_inc(chain_lookup_hits); 3574 return chain; 3575 } 3576 } 3577 return NULL; 3578 } 3579 3580 /* 3581 * If the key is not present yet in dependency chain cache then 3582 * add it and return 1 - in this case the new dependency chain is 3583 * validated. If the key is already hashed, return 0. 3584 * (On return with 1 graph_lock is held.) 3585 */ 3586 static inline int lookup_chain_cache_add(struct task_struct *curr, 3587 struct held_lock *hlock, 3588 u64 chain_key) 3589 { 3590 struct lock_class *class = hlock_class(hlock); 3591 struct lock_chain *chain = lookup_chain_cache(chain_key); 3592 3593 if (chain) { 3594 cache_hit: 3595 if (!check_no_collision(curr, hlock, chain)) 3596 return 0; 3597 3598 if (very_verbose(class)) { 3599 printk("\nhash chain already cached, key: " 3600 "%016Lx tail class: [%px] %s\n", 3601 (unsigned long long)chain_key, 3602 class->key, class->name); 3603 } 3604 3605 return 0; 3606 } 3607 3608 if (very_verbose(class)) { 3609 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n", 3610 (unsigned long long)chain_key, class->key, class->name); 3611 } 3612 3613 if (!graph_lock()) 3614 return 0; 3615 3616 /* 3617 * We have to walk the chain again locked - to avoid duplicates: 3618 */ 3619 chain = lookup_chain_cache(chain_key); 3620 if (chain) { 3621 graph_unlock(); 3622 goto cache_hit; 3623 } 3624 3625 if (!add_chain_cache(curr, hlock, chain_key)) 3626 return 0; 3627 3628 return 1; 3629 } 3630 3631 static int validate_chain(struct task_struct *curr, 3632 struct held_lock *hlock, 3633 int chain_head, u64 chain_key) 3634 { 3635 /* 3636 * Trylock needs to maintain the stack of held locks, but it 3637 * does not add new dependencies, because trylock can be done 3638 * in any order. 3639 * 3640 * We look up the chain_key and do the O(N^2) check and update of 3641 * the dependencies only if this is a new dependency chain. 3642 * (If lookup_chain_cache_add() return with 1 it acquires 3643 * graph_lock for us) 3644 */ 3645 if (!hlock->trylock && hlock->check && 3646 lookup_chain_cache_add(curr, hlock, chain_key)) { 3647 /* 3648 * Check whether last held lock: 3649 * 3650 * - is irq-safe, if this lock is irq-unsafe 3651 * - is softirq-safe, if this lock is hardirq-unsafe 3652 * 3653 * And check whether the new lock's dependency graph 3654 * could lead back to the previous lock: 3655 * 3656 * - within the current held-lock stack 3657 * - across our accumulated lock dependency records 3658 * 3659 * any of these scenarios could lead to a deadlock. 3660 */ 3661 /* 3662 * The simple case: does the current hold the same lock 3663 * already? 3664 */ 3665 int ret = check_deadlock(curr, hlock); 3666 3667 if (!ret) 3668 return 0; 3669 /* 3670 * Add dependency only if this lock is not the head 3671 * of the chain, and if the new lock introduces no more 3672 * lock dependency (because we already hold a lock with the 3673 * same lock class) nor deadlock (because the nest_lock 3674 * serializes nesting locks), see the comments for 3675 * check_deadlock(). 3676 */ 3677 if (!chain_head && ret != 2) { 3678 if (!check_prevs_add(curr, hlock)) 3679 return 0; 3680 } 3681 3682 graph_unlock(); 3683 } else { 3684 /* after lookup_chain_cache_add(): */ 3685 if (unlikely(!debug_locks)) 3686 return 0; 3687 } 3688 3689 return 1; 3690 } 3691 #else 3692 static inline int validate_chain(struct task_struct *curr, 3693 struct held_lock *hlock, 3694 int chain_head, u64 chain_key) 3695 { 3696 return 1; 3697 } 3698 3699 static void init_chain_block_buckets(void) { } 3700 #endif /* CONFIG_PROVE_LOCKING */ 3701 3702 /* 3703 * We are building curr_chain_key incrementally, so double-check 3704 * it from scratch, to make sure that it's done correctly: 3705 */ 3706 static void check_chain_key(struct task_struct *curr) 3707 { 3708 #ifdef CONFIG_DEBUG_LOCKDEP 3709 struct held_lock *hlock, *prev_hlock = NULL; 3710 unsigned int i; 3711 u64 chain_key = INITIAL_CHAIN_KEY; 3712 3713 for (i = 0; i < curr->lockdep_depth; i++) { 3714 hlock = curr->held_locks + i; 3715 if (chain_key != hlock->prev_chain_key) { 3716 debug_locks_off(); 3717 /* 3718 * We got mighty confused, our chain keys don't match 3719 * with what we expect, someone trample on our task state? 3720 */ 3721 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n", 3722 curr->lockdep_depth, i, 3723 (unsigned long long)chain_key, 3724 (unsigned long long)hlock->prev_chain_key); 3725 return; 3726 } 3727 3728 /* 3729 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is 3730 * it registered lock class index? 3731 */ 3732 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use))) 3733 return; 3734 3735 if (prev_hlock && (prev_hlock->irq_context != 3736 hlock->irq_context)) 3737 chain_key = INITIAL_CHAIN_KEY; 3738 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 3739 prev_hlock = hlock; 3740 } 3741 if (chain_key != curr->curr_chain_key) { 3742 debug_locks_off(); 3743 /* 3744 * More smoking hash instead of calculating it, damn see these 3745 * numbers float.. I bet that a pink elephant stepped on my memory. 3746 */ 3747 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n", 3748 curr->lockdep_depth, i, 3749 (unsigned long long)chain_key, 3750 (unsigned long long)curr->curr_chain_key); 3751 } 3752 #endif 3753 } 3754 3755 #ifdef CONFIG_PROVE_LOCKING 3756 static int mark_lock(struct task_struct *curr, struct held_lock *this, 3757 enum lock_usage_bit new_bit); 3758 3759 static void print_usage_bug_scenario(struct held_lock *lock) 3760 { 3761 struct lock_class *class = hlock_class(lock); 3762 3763 printk(" Possible unsafe locking scenario:\n\n"); 3764 printk(" CPU0\n"); 3765 printk(" ----\n"); 3766 printk(" lock("); 3767 __print_lock_name(class); 3768 printk(KERN_CONT ");\n"); 3769 printk(" <Interrupt>\n"); 3770 printk(" lock("); 3771 __print_lock_name(class); 3772 printk(KERN_CONT ");\n"); 3773 printk("\n *** DEADLOCK ***\n\n"); 3774 } 3775 3776 static void 3777 print_usage_bug(struct task_struct *curr, struct held_lock *this, 3778 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit) 3779 { 3780 if (!debug_locks_off() || debug_locks_silent) 3781 return; 3782 3783 pr_warn("\n"); 3784 pr_warn("================================\n"); 3785 pr_warn("WARNING: inconsistent lock state\n"); 3786 print_kernel_ident(); 3787 pr_warn("--------------------------------\n"); 3788 3789 pr_warn("inconsistent {%s} -> {%s} usage.\n", 3790 usage_str[prev_bit], usage_str[new_bit]); 3791 3792 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n", 3793 curr->comm, task_pid_nr(curr), 3794 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT, 3795 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT, 3796 lockdep_hardirqs_enabled(), 3797 lockdep_softirqs_enabled(curr)); 3798 print_lock(this); 3799 3800 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]); 3801 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1); 3802 3803 print_irqtrace_events(curr); 3804 pr_warn("\nother info that might help us debug this:\n"); 3805 print_usage_bug_scenario(this); 3806 3807 lockdep_print_held_locks(curr); 3808 3809 pr_warn("\nstack backtrace:\n"); 3810 dump_stack(); 3811 } 3812 3813 /* 3814 * Print out an error if an invalid bit is set: 3815 */ 3816 static inline int 3817 valid_state(struct task_struct *curr, struct held_lock *this, 3818 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit) 3819 { 3820 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) { 3821 graph_unlock(); 3822 print_usage_bug(curr, this, bad_bit, new_bit); 3823 return 0; 3824 } 3825 return 1; 3826 } 3827 3828 3829 /* 3830 * print irq inversion bug: 3831 */ 3832 static void 3833 print_irq_inversion_bug(struct task_struct *curr, 3834 struct lock_list *root, struct lock_list *other, 3835 struct held_lock *this, int forwards, 3836 const char *irqclass) 3837 { 3838 struct lock_list *entry = other; 3839 struct lock_list *middle = NULL; 3840 int depth; 3841 3842 if (!debug_locks_off_graph_unlock() || debug_locks_silent) 3843 return; 3844 3845 pr_warn("\n"); 3846 pr_warn("========================================================\n"); 3847 pr_warn("WARNING: possible irq lock inversion dependency detected\n"); 3848 print_kernel_ident(); 3849 pr_warn("--------------------------------------------------------\n"); 3850 pr_warn("%s/%d just changed the state of lock:\n", 3851 curr->comm, task_pid_nr(curr)); 3852 print_lock(this); 3853 if (forwards) 3854 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass); 3855 else 3856 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass); 3857 print_lock_name(other->class); 3858 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n"); 3859 3860 pr_warn("\nother info that might help us debug this:\n"); 3861 3862 /* Find a middle lock (if one exists) */ 3863 depth = get_lock_depth(other); 3864 do { 3865 if (depth == 0 && (entry != root)) { 3866 pr_warn("lockdep:%s bad path found in chain graph\n", __func__); 3867 break; 3868 } 3869 middle = entry; 3870 entry = get_lock_parent(entry); 3871 depth--; 3872 } while (entry && entry != root && (depth >= 0)); 3873 if (forwards) 3874 print_irq_lock_scenario(root, other, 3875 middle ? middle->class : root->class, other->class); 3876 else 3877 print_irq_lock_scenario(other, root, 3878 middle ? middle->class : other->class, root->class); 3879 3880 lockdep_print_held_locks(curr); 3881 3882 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n"); 3883 root->trace = save_trace(); 3884 if (!root->trace) 3885 return; 3886 print_shortest_lock_dependencies(other, root); 3887 3888 pr_warn("\nstack backtrace:\n"); 3889 dump_stack(); 3890 } 3891 3892 /* 3893 * Prove that in the forwards-direction subgraph starting at <this> 3894 * there is no lock matching <mask>: 3895 */ 3896 static int 3897 check_usage_forwards(struct task_struct *curr, struct held_lock *this, 3898 enum lock_usage_bit bit) 3899 { 3900 enum bfs_result ret; 3901 struct lock_list root; 3902 struct lock_list *target_entry; 3903 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 3904 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 3905 3906 bfs_init_root(&root, this); 3907 ret = find_usage_forwards(&root, usage_mask, &target_entry); 3908 if (bfs_error(ret)) { 3909 print_bfs_bug(ret); 3910 return 0; 3911 } 3912 if (ret == BFS_RNOMATCH) 3913 return 1; 3914 3915 /* Check whether write or read usage is the match */ 3916 if (target_entry->class->usage_mask & lock_flag(bit)) { 3917 print_irq_inversion_bug(curr, &root, target_entry, 3918 this, 1, state_name(bit)); 3919 } else { 3920 print_irq_inversion_bug(curr, &root, target_entry, 3921 this, 1, state_name(read_bit)); 3922 } 3923 3924 return 0; 3925 } 3926 3927 /* 3928 * Prove that in the backwards-direction subgraph starting at <this> 3929 * there is no lock matching <mask>: 3930 */ 3931 static int 3932 check_usage_backwards(struct task_struct *curr, struct held_lock *this, 3933 enum lock_usage_bit bit) 3934 { 3935 enum bfs_result ret; 3936 struct lock_list root; 3937 struct lock_list *target_entry; 3938 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK; 3939 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit); 3940 3941 bfs_init_rootb(&root, this); 3942 ret = find_usage_backwards(&root, usage_mask, &target_entry); 3943 if (bfs_error(ret)) { 3944 print_bfs_bug(ret); 3945 return 0; 3946 } 3947 if (ret == BFS_RNOMATCH) 3948 return 1; 3949 3950 /* Check whether write or read usage is the match */ 3951 if (target_entry->class->usage_mask & lock_flag(bit)) { 3952 print_irq_inversion_bug(curr, &root, target_entry, 3953 this, 0, state_name(bit)); 3954 } else { 3955 print_irq_inversion_bug(curr, &root, target_entry, 3956 this, 0, state_name(read_bit)); 3957 } 3958 3959 return 0; 3960 } 3961 3962 void print_irqtrace_events(struct task_struct *curr) 3963 { 3964 const struct irqtrace_events *trace = &curr->irqtrace; 3965 3966 printk("irq event stamp: %u\n", trace->irq_events); 3967 printk("hardirqs last enabled at (%u): [<%px>] %pS\n", 3968 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip, 3969 (void *)trace->hardirq_enable_ip); 3970 printk("hardirqs last disabled at (%u): [<%px>] %pS\n", 3971 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip, 3972 (void *)trace->hardirq_disable_ip); 3973 printk("softirqs last enabled at (%u): [<%px>] %pS\n", 3974 trace->softirq_enable_event, (void *)trace->softirq_enable_ip, 3975 (void *)trace->softirq_enable_ip); 3976 printk("softirqs last disabled at (%u): [<%px>] %pS\n", 3977 trace->softirq_disable_event, (void *)trace->softirq_disable_ip, 3978 (void *)trace->softirq_disable_ip); 3979 } 3980 3981 static int HARDIRQ_verbose(struct lock_class *class) 3982 { 3983 #if HARDIRQ_VERBOSE 3984 return class_filter(class); 3985 #endif 3986 return 0; 3987 } 3988 3989 static int SOFTIRQ_verbose(struct lock_class *class) 3990 { 3991 #if SOFTIRQ_VERBOSE 3992 return class_filter(class); 3993 #endif 3994 return 0; 3995 } 3996 3997 static int (*state_verbose_f[])(struct lock_class *class) = { 3998 #define LOCKDEP_STATE(__STATE) \ 3999 __STATE##_verbose, 4000 #include "lockdep_states.h" 4001 #undef LOCKDEP_STATE 4002 }; 4003 4004 static inline int state_verbose(enum lock_usage_bit bit, 4005 struct lock_class *class) 4006 { 4007 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class); 4008 } 4009 4010 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *, 4011 enum lock_usage_bit bit, const char *name); 4012 4013 static int 4014 mark_lock_irq(struct task_struct *curr, struct held_lock *this, 4015 enum lock_usage_bit new_bit) 4016 { 4017 int excl_bit = exclusive_bit(new_bit); 4018 int read = new_bit & LOCK_USAGE_READ_MASK; 4019 int dir = new_bit & LOCK_USAGE_DIR_MASK; 4020 4021 /* 4022 * Validate that this particular lock does not have conflicting 4023 * usage states. 4024 */ 4025 if (!valid_state(curr, this, new_bit, excl_bit)) 4026 return 0; 4027 4028 /* 4029 * Check for read in write conflicts 4030 */ 4031 if (!read && !valid_state(curr, this, new_bit, 4032 excl_bit + LOCK_USAGE_READ_MASK)) 4033 return 0; 4034 4035 4036 /* 4037 * Validate that the lock dependencies don't have conflicting usage 4038 * states. 4039 */ 4040 if (dir) { 4041 /* 4042 * mark ENABLED has to look backwards -- to ensure no dependee 4043 * has USED_IN state, which, again, would allow recursion deadlocks. 4044 */ 4045 if (!check_usage_backwards(curr, this, excl_bit)) 4046 return 0; 4047 } else { 4048 /* 4049 * mark USED_IN has to look forwards -- to ensure no dependency 4050 * has ENABLED state, which would allow recursion deadlocks. 4051 */ 4052 if (!check_usage_forwards(curr, this, excl_bit)) 4053 return 0; 4054 } 4055 4056 if (state_verbose(new_bit, hlock_class(this))) 4057 return 2; 4058 4059 return 1; 4060 } 4061 4062 /* 4063 * Mark all held locks with a usage bit: 4064 */ 4065 static int 4066 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit) 4067 { 4068 struct held_lock *hlock; 4069 int i; 4070 4071 for (i = 0; i < curr->lockdep_depth; i++) { 4072 enum lock_usage_bit hlock_bit = base_bit; 4073 hlock = curr->held_locks + i; 4074 4075 if (hlock->read) 4076 hlock_bit += LOCK_USAGE_READ_MASK; 4077 4078 BUG_ON(hlock_bit >= LOCK_USAGE_STATES); 4079 4080 if (!hlock->check) 4081 continue; 4082 4083 if (!mark_lock(curr, hlock, hlock_bit)) 4084 return 0; 4085 } 4086 4087 return 1; 4088 } 4089 4090 /* 4091 * Hardirqs will be enabled: 4092 */ 4093 static void __trace_hardirqs_on_caller(void) 4094 { 4095 struct task_struct *curr = current; 4096 4097 /* 4098 * We are going to turn hardirqs on, so set the 4099 * usage bit for all held locks: 4100 */ 4101 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ)) 4102 return; 4103 /* 4104 * If we have softirqs enabled, then set the usage 4105 * bit for all held locks. (disabled hardirqs prevented 4106 * this bit from being set before) 4107 */ 4108 if (curr->softirqs_enabled) 4109 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ); 4110 } 4111 4112 /** 4113 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts 4114 * @ip: Caller address 4115 * 4116 * Invoked before a possible transition to RCU idle from exit to user or 4117 * guest mode. This ensures that all RCU operations are done before RCU 4118 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be 4119 * invoked to set the final state. 4120 */ 4121 void lockdep_hardirqs_on_prepare(unsigned long ip) 4122 { 4123 if (unlikely(!debug_locks)) 4124 return; 4125 4126 /* 4127 * NMIs do not (and cannot) track lock dependencies, nothing to do. 4128 */ 4129 if (unlikely(in_nmi())) 4130 return; 4131 4132 if (unlikely(this_cpu_read(lockdep_recursion))) 4133 return; 4134 4135 if (unlikely(lockdep_hardirqs_enabled())) { 4136 /* 4137 * Neither irq nor preemption are disabled here 4138 * so this is racy by nature but losing one hit 4139 * in a stat is not a big deal. 4140 */ 4141 __debug_atomic_inc(redundant_hardirqs_on); 4142 return; 4143 } 4144 4145 /* 4146 * We're enabling irqs and according to our state above irqs weren't 4147 * already enabled, yet we find the hardware thinks they are in fact 4148 * enabled.. someone messed up their IRQ state tracing. 4149 */ 4150 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4151 return; 4152 4153 /* 4154 * See the fine text that goes along with this variable definition. 4155 */ 4156 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled)) 4157 return; 4158 4159 /* 4160 * Can't allow enabling interrupts while in an interrupt handler, 4161 * that's general bad form and such. Recursion, limited stack etc.. 4162 */ 4163 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context())) 4164 return; 4165 4166 current->hardirq_chain_key = current->curr_chain_key; 4167 4168 lockdep_recursion_inc(); 4169 __trace_hardirqs_on_caller(); 4170 lockdep_recursion_finish(); 4171 } 4172 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare); 4173 4174 void noinstr lockdep_hardirqs_on(unsigned long ip) 4175 { 4176 struct irqtrace_events *trace = ¤t->irqtrace; 4177 4178 if (unlikely(!debug_locks)) 4179 return; 4180 4181 /* 4182 * NMIs can happen in the middle of local_irq_{en,dis}able() where the 4183 * tracking state and hardware state are out of sync. 4184 * 4185 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from, 4186 * and not rely on hardware state like normal interrupts. 4187 */ 4188 if (unlikely(in_nmi())) { 4189 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4190 return; 4191 4192 /* 4193 * Skip: 4194 * - recursion check, because NMI can hit lockdep; 4195 * - hardware state check, because above; 4196 * - chain_key check, see lockdep_hardirqs_on_prepare(). 4197 */ 4198 goto skip_checks; 4199 } 4200 4201 if (unlikely(this_cpu_read(lockdep_recursion))) 4202 return; 4203 4204 if (lockdep_hardirqs_enabled()) { 4205 /* 4206 * Neither irq nor preemption are disabled here 4207 * so this is racy by nature but losing one hit 4208 * in a stat is not a big deal. 4209 */ 4210 __debug_atomic_inc(redundant_hardirqs_on); 4211 return; 4212 } 4213 4214 /* 4215 * We're enabling irqs and according to our state above irqs weren't 4216 * already enabled, yet we find the hardware thinks they are in fact 4217 * enabled.. someone messed up their IRQ state tracing. 4218 */ 4219 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4220 return; 4221 4222 /* 4223 * Ensure the lock stack remained unchanged between 4224 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on(). 4225 */ 4226 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key != 4227 current->curr_chain_key); 4228 4229 skip_checks: 4230 /* we'll do an OFF -> ON transition: */ 4231 __this_cpu_write(hardirqs_enabled, 1); 4232 trace->hardirq_enable_ip = ip; 4233 trace->hardirq_enable_event = ++trace->irq_events; 4234 debug_atomic_inc(hardirqs_on_events); 4235 } 4236 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on); 4237 4238 /* 4239 * Hardirqs were disabled: 4240 */ 4241 void noinstr lockdep_hardirqs_off(unsigned long ip) 4242 { 4243 if (unlikely(!debug_locks)) 4244 return; 4245 4246 /* 4247 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep; 4248 * they will restore the software state. This ensures the software 4249 * state is consistent inside NMIs as well. 4250 */ 4251 if (in_nmi()) { 4252 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI)) 4253 return; 4254 } else if (__this_cpu_read(lockdep_recursion)) 4255 return; 4256 4257 /* 4258 * So we're supposed to get called after you mask local IRQs, but for 4259 * some reason the hardware doesn't quite think you did a proper job. 4260 */ 4261 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4262 return; 4263 4264 if (lockdep_hardirqs_enabled()) { 4265 struct irqtrace_events *trace = ¤t->irqtrace; 4266 4267 /* 4268 * We have done an ON -> OFF transition: 4269 */ 4270 __this_cpu_write(hardirqs_enabled, 0); 4271 trace->hardirq_disable_ip = ip; 4272 trace->hardirq_disable_event = ++trace->irq_events; 4273 debug_atomic_inc(hardirqs_off_events); 4274 } else { 4275 debug_atomic_inc(redundant_hardirqs_off); 4276 } 4277 } 4278 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off); 4279 4280 /* 4281 * Softirqs will be enabled: 4282 */ 4283 void lockdep_softirqs_on(unsigned long ip) 4284 { 4285 struct irqtrace_events *trace = ¤t->irqtrace; 4286 4287 if (unlikely(!lockdep_enabled())) 4288 return; 4289 4290 /* 4291 * We fancy IRQs being disabled here, see softirq.c, avoids 4292 * funny state and nesting things. 4293 */ 4294 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4295 return; 4296 4297 if (current->softirqs_enabled) { 4298 debug_atomic_inc(redundant_softirqs_on); 4299 return; 4300 } 4301 4302 lockdep_recursion_inc(); 4303 /* 4304 * We'll do an OFF -> ON transition: 4305 */ 4306 current->softirqs_enabled = 1; 4307 trace->softirq_enable_ip = ip; 4308 trace->softirq_enable_event = ++trace->irq_events; 4309 debug_atomic_inc(softirqs_on_events); 4310 /* 4311 * We are going to turn softirqs on, so set the 4312 * usage bit for all held locks, if hardirqs are 4313 * enabled too: 4314 */ 4315 if (lockdep_hardirqs_enabled()) 4316 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ); 4317 lockdep_recursion_finish(); 4318 } 4319 4320 /* 4321 * Softirqs were disabled: 4322 */ 4323 void lockdep_softirqs_off(unsigned long ip) 4324 { 4325 if (unlikely(!lockdep_enabled())) 4326 return; 4327 4328 /* 4329 * We fancy IRQs being disabled here, see softirq.c 4330 */ 4331 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 4332 return; 4333 4334 if (current->softirqs_enabled) { 4335 struct irqtrace_events *trace = ¤t->irqtrace; 4336 4337 /* 4338 * We have done an ON -> OFF transition: 4339 */ 4340 current->softirqs_enabled = 0; 4341 trace->softirq_disable_ip = ip; 4342 trace->softirq_disable_event = ++trace->irq_events; 4343 debug_atomic_inc(softirqs_off_events); 4344 /* 4345 * Whoops, we wanted softirqs off, so why aren't they? 4346 */ 4347 DEBUG_LOCKS_WARN_ON(!softirq_count()); 4348 } else 4349 debug_atomic_inc(redundant_softirqs_off); 4350 } 4351 4352 static int 4353 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4354 { 4355 if (!check) 4356 goto lock_used; 4357 4358 /* 4359 * If non-trylock use in a hardirq or softirq context, then 4360 * mark the lock as used in these contexts: 4361 */ 4362 if (!hlock->trylock) { 4363 if (hlock->read) { 4364 if (lockdep_hardirq_context()) 4365 if (!mark_lock(curr, hlock, 4366 LOCK_USED_IN_HARDIRQ_READ)) 4367 return 0; 4368 if (curr->softirq_context) 4369 if (!mark_lock(curr, hlock, 4370 LOCK_USED_IN_SOFTIRQ_READ)) 4371 return 0; 4372 } else { 4373 if (lockdep_hardirq_context()) 4374 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ)) 4375 return 0; 4376 if (curr->softirq_context) 4377 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ)) 4378 return 0; 4379 } 4380 } 4381 if (!hlock->hardirqs_off) { 4382 if (hlock->read) { 4383 if (!mark_lock(curr, hlock, 4384 LOCK_ENABLED_HARDIRQ_READ)) 4385 return 0; 4386 if (curr->softirqs_enabled) 4387 if (!mark_lock(curr, hlock, 4388 LOCK_ENABLED_SOFTIRQ_READ)) 4389 return 0; 4390 } else { 4391 if (!mark_lock(curr, hlock, 4392 LOCK_ENABLED_HARDIRQ)) 4393 return 0; 4394 if (curr->softirqs_enabled) 4395 if (!mark_lock(curr, hlock, 4396 LOCK_ENABLED_SOFTIRQ)) 4397 return 0; 4398 } 4399 } 4400 4401 lock_used: 4402 /* mark it as used: */ 4403 if (!mark_lock(curr, hlock, LOCK_USED)) 4404 return 0; 4405 4406 return 1; 4407 } 4408 4409 static inline unsigned int task_irq_context(struct task_struct *task) 4410 { 4411 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() + 4412 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context; 4413 } 4414 4415 static int separate_irq_context(struct task_struct *curr, 4416 struct held_lock *hlock) 4417 { 4418 unsigned int depth = curr->lockdep_depth; 4419 4420 /* 4421 * Keep track of points where we cross into an interrupt context: 4422 */ 4423 if (depth) { 4424 struct held_lock *prev_hlock; 4425 4426 prev_hlock = curr->held_locks + depth-1; 4427 /* 4428 * If we cross into another context, reset the 4429 * hash key (this also prevents the checking and the 4430 * adding of the dependency to 'prev'): 4431 */ 4432 if (prev_hlock->irq_context != hlock->irq_context) 4433 return 1; 4434 } 4435 return 0; 4436 } 4437 4438 /* 4439 * Mark a lock with a usage bit, and validate the state transition: 4440 */ 4441 static int mark_lock(struct task_struct *curr, struct held_lock *this, 4442 enum lock_usage_bit new_bit) 4443 { 4444 unsigned int new_mask, ret = 1; 4445 4446 if (new_bit >= LOCK_USAGE_STATES) { 4447 DEBUG_LOCKS_WARN_ON(1); 4448 return 0; 4449 } 4450 4451 if (new_bit == LOCK_USED && this->read) 4452 new_bit = LOCK_USED_READ; 4453 4454 new_mask = 1 << new_bit; 4455 4456 /* 4457 * If already set then do not dirty the cacheline, 4458 * nor do any checks: 4459 */ 4460 if (likely(hlock_class(this)->usage_mask & new_mask)) 4461 return 1; 4462 4463 if (!graph_lock()) 4464 return 0; 4465 /* 4466 * Make sure we didn't race: 4467 */ 4468 if (unlikely(hlock_class(this)->usage_mask & new_mask)) 4469 goto unlock; 4470 4471 if (!hlock_class(this)->usage_mask) 4472 debug_atomic_dec(nr_unused_locks); 4473 4474 hlock_class(this)->usage_mask |= new_mask; 4475 4476 if (new_bit < LOCK_TRACE_STATES) { 4477 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace())) 4478 return 0; 4479 } 4480 4481 if (new_bit < LOCK_USED) { 4482 ret = mark_lock_irq(curr, this, new_bit); 4483 if (!ret) 4484 return 0; 4485 } 4486 4487 unlock: 4488 graph_unlock(); 4489 4490 /* 4491 * We must printk outside of the graph_lock: 4492 */ 4493 if (ret == 2) { 4494 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]); 4495 print_lock(this); 4496 print_irqtrace_events(curr); 4497 dump_stack(); 4498 } 4499 4500 return ret; 4501 } 4502 4503 static inline short task_wait_context(struct task_struct *curr) 4504 { 4505 /* 4506 * Set appropriate wait type for the context; for IRQs we have to take 4507 * into account force_irqthread as that is implied by PREEMPT_RT. 4508 */ 4509 if (lockdep_hardirq_context()) { 4510 /* 4511 * Check if force_irqthreads will run us threaded. 4512 */ 4513 if (curr->hardirq_threaded || curr->irq_config) 4514 return LD_WAIT_CONFIG; 4515 4516 return LD_WAIT_SPIN; 4517 } else if (curr->softirq_context) { 4518 /* 4519 * Softirqs are always threaded. 4520 */ 4521 return LD_WAIT_CONFIG; 4522 } 4523 4524 return LD_WAIT_MAX; 4525 } 4526 4527 static int 4528 print_lock_invalid_wait_context(struct task_struct *curr, 4529 struct held_lock *hlock) 4530 { 4531 short curr_inner; 4532 4533 if (!debug_locks_off()) 4534 return 0; 4535 if (debug_locks_silent) 4536 return 0; 4537 4538 pr_warn("\n"); 4539 pr_warn("=============================\n"); 4540 pr_warn("[ BUG: Invalid wait context ]\n"); 4541 print_kernel_ident(); 4542 pr_warn("-----------------------------\n"); 4543 4544 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4545 print_lock(hlock); 4546 4547 pr_warn("other info that might help us debug this:\n"); 4548 4549 curr_inner = task_wait_context(curr); 4550 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner); 4551 4552 lockdep_print_held_locks(curr); 4553 4554 pr_warn("stack backtrace:\n"); 4555 dump_stack(); 4556 4557 return 0; 4558 } 4559 4560 /* 4561 * Verify the wait_type context. 4562 * 4563 * This check validates we takes locks in the right wait-type order; that is it 4564 * ensures that we do not take mutexes inside spinlocks and do not attempt to 4565 * acquire spinlocks inside raw_spinlocks and the sort. 4566 * 4567 * The entire thing is slightly more complex because of RCU, RCU is a lock that 4568 * can be taken from (pretty much) any context but also has constraints. 4569 * However when taken in a stricter environment the RCU lock does not loosen 4570 * the constraints. 4571 * 4572 * Therefore we must look for the strictest environment in the lock stack and 4573 * compare that to the lock we're trying to acquire. 4574 */ 4575 static int check_wait_context(struct task_struct *curr, struct held_lock *next) 4576 { 4577 u8 next_inner = hlock_class(next)->wait_type_inner; 4578 u8 next_outer = hlock_class(next)->wait_type_outer; 4579 u8 curr_inner; 4580 int depth; 4581 4582 if (!curr->lockdep_depth || !next_inner || next->trylock) 4583 return 0; 4584 4585 if (!next_outer) 4586 next_outer = next_inner; 4587 4588 /* 4589 * Find start of current irq_context.. 4590 */ 4591 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) { 4592 struct held_lock *prev = curr->held_locks + depth; 4593 if (prev->irq_context != next->irq_context) 4594 break; 4595 } 4596 depth++; 4597 4598 curr_inner = task_wait_context(curr); 4599 4600 for (; depth < curr->lockdep_depth; depth++) { 4601 struct held_lock *prev = curr->held_locks + depth; 4602 u8 prev_inner = hlock_class(prev)->wait_type_inner; 4603 4604 if (prev_inner) { 4605 /* 4606 * We can have a bigger inner than a previous one 4607 * when outer is smaller than inner, as with RCU. 4608 * 4609 * Also due to trylocks. 4610 */ 4611 curr_inner = min(curr_inner, prev_inner); 4612 } 4613 } 4614 4615 if (next_outer > curr_inner) 4616 return print_lock_invalid_wait_context(curr, next); 4617 4618 return 0; 4619 } 4620 4621 #else /* CONFIG_PROVE_LOCKING */ 4622 4623 static inline int 4624 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check) 4625 { 4626 return 1; 4627 } 4628 4629 static inline unsigned int task_irq_context(struct task_struct *task) 4630 { 4631 return 0; 4632 } 4633 4634 static inline int separate_irq_context(struct task_struct *curr, 4635 struct held_lock *hlock) 4636 { 4637 return 0; 4638 } 4639 4640 static inline int check_wait_context(struct task_struct *curr, 4641 struct held_lock *next) 4642 { 4643 return 0; 4644 } 4645 4646 #endif /* CONFIG_PROVE_LOCKING */ 4647 4648 /* 4649 * Initialize a lock instance's lock-class mapping info: 4650 */ 4651 void lockdep_init_map_type(struct lockdep_map *lock, const char *name, 4652 struct lock_class_key *key, int subclass, 4653 u8 inner, u8 outer, u8 lock_type) 4654 { 4655 int i; 4656 4657 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++) 4658 lock->class_cache[i] = NULL; 4659 4660 #ifdef CONFIG_LOCK_STAT 4661 lock->cpu = raw_smp_processor_id(); 4662 #endif 4663 4664 /* 4665 * Can't be having no nameless bastards around this place! 4666 */ 4667 if (DEBUG_LOCKS_WARN_ON(!name)) { 4668 lock->name = "NULL"; 4669 return; 4670 } 4671 4672 lock->name = name; 4673 4674 lock->wait_type_outer = outer; 4675 lock->wait_type_inner = inner; 4676 lock->lock_type = lock_type; 4677 4678 /* 4679 * No key, no joy, we need to hash something. 4680 */ 4681 if (DEBUG_LOCKS_WARN_ON(!key)) 4682 return; 4683 /* 4684 * Sanity check, the lock-class key must either have been allocated 4685 * statically or must have been registered as a dynamic key. 4686 */ 4687 if (!static_obj(key) && !is_dynamic_key(key)) { 4688 if (debug_locks) 4689 printk(KERN_ERR "BUG: key %px has not been registered!\n", key); 4690 DEBUG_LOCKS_WARN_ON(1); 4691 return; 4692 } 4693 lock->key = key; 4694 4695 if (unlikely(!debug_locks)) 4696 return; 4697 4698 if (subclass) { 4699 unsigned long flags; 4700 4701 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled())) 4702 return; 4703 4704 raw_local_irq_save(flags); 4705 lockdep_recursion_inc(); 4706 register_lock_class(lock, subclass, 1); 4707 lockdep_recursion_finish(); 4708 raw_local_irq_restore(flags); 4709 } 4710 } 4711 EXPORT_SYMBOL_GPL(lockdep_init_map_type); 4712 4713 struct lock_class_key __lockdep_no_validate__; 4714 EXPORT_SYMBOL_GPL(__lockdep_no_validate__); 4715 4716 static void 4717 print_lock_nested_lock_not_held(struct task_struct *curr, 4718 struct held_lock *hlock, 4719 unsigned long ip) 4720 { 4721 if (!debug_locks_off()) 4722 return; 4723 if (debug_locks_silent) 4724 return; 4725 4726 pr_warn("\n"); 4727 pr_warn("==================================\n"); 4728 pr_warn("WARNING: Nested lock was not taken\n"); 4729 print_kernel_ident(); 4730 pr_warn("----------------------------------\n"); 4731 4732 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr)); 4733 print_lock(hlock); 4734 4735 pr_warn("\nbut this task is not holding:\n"); 4736 pr_warn("%s\n", hlock->nest_lock->name); 4737 4738 pr_warn("\nstack backtrace:\n"); 4739 dump_stack(); 4740 4741 pr_warn("\nother info that might help us debug this:\n"); 4742 lockdep_print_held_locks(curr); 4743 4744 pr_warn("\nstack backtrace:\n"); 4745 dump_stack(); 4746 } 4747 4748 static int __lock_is_held(const struct lockdep_map *lock, int read); 4749 4750 /* 4751 * This gets called for every mutex_lock*()/spin_lock*() operation. 4752 * We maintain the dependency maps and validate the locking attempt: 4753 * 4754 * The callers must make sure that IRQs are disabled before calling it, 4755 * otherwise we could get an interrupt which would want to take locks, 4756 * which would end up in lockdep again. 4757 */ 4758 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass, 4759 int trylock, int read, int check, int hardirqs_off, 4760 struct lockdep_map *nest_lock, unsigned long ip, 4761 int references, int pin_count) 4762 { 4763 struct task_struct *curr = current; 4764 struct lock_class *class = NULL; 4765 struct held_lock *hlock; 4766 unsigned int depth; 4767 int chain_head = 0; 4768 int class_idx; 4769 u64 chain_key; 4770 4771 if (unlikely(!debug_locks)) 4772 return 0; 4773 4774 if (!prove_locking || lock->key == &__lockdep_no_validate__) 4775 check = 0; 4776 4777 if (subclass < NR_LOCKDEP_CACHING_CLASSES) 4778 class = lock->class_cache[subclass]; 4779 /* 4780 * Not cached? 4781 */ 4782 if (unlikely(!class)) { 4783 class = register_lock_class(lock, subclass, 0); 4784 if (!class) 4785 return 0; 4786 } 4787 4788 debug_class_ops_inc(class); 4789 4790 if (very_verbose(class)) { 4791 printk("\nacquire class [%px] %s", class->key, class->name); 4792 if (class->name_version > 1) 4793 printk(KERN_CONT "#%d", class->name_version); 4794 printk(KERN_CONT "\n"); 4795 dump_stack(); 4796 } 4797 4798 /* 4799 * Add the lock to the list of currently held locks. 4800 * (we dont increase the depth just yet, up until the 4801 * dependency checks are done) 4802 */ 4803 depth = curr->lockdep_depth; 4804 /* 4805 * Ran out of static storage for our per-task lock stack again have we? 4806 */ 4807 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH)) 4808 return 0; 4809 4810 class_idx = class - lock_classes; 4811 4812 if (depth) { /* we're holding locks */ 4813 hlock = curr->held_locks + depth - 1; 4814 if (hlock->class_idx == class_idx && nest_lock) { 4815 if (!references) 4816 references++; 4817 4818 if (!hlock->references) 4819 hlock->references++; 4820 4821 hlock->references += references; 4822 4823 /* Overflow */ 4824 if (DEBUG_LOCKS_WARN_ON(hlock->references < references)) 4825 return 0; 4826 4827 return 2; 4828 } 4829 } 4830 4831 hlock = curr->held_locks + depth; 4832 /* 4833 * Plain impossible, we just registered it and checked it weren't no 4834 * NULL like.. I bet this mushroom I ate was good! 4835 */ 4836 if (DEBUG_LOCKS_WARN_ON(!class)) 4837 return 0; 4838 hlock->class_idx = class_idx; 4839 hlock->acquire_ip = ip; 4840 hlock->instance = lock; 4841 hlock->nest_lock = nest_lock; 4842 hlock->irq_context = task_irq_context(curr); 4843 hlock->trylock = trylock; 4844 hlock->read = read; 4845 hlock->check = check; 4846 hlock->hardirqs_off = !!hardirqs_off; 4847 hlock->references = references; 4848 #ifdef CONFIG_LOCK_STAT 4849 hlock->waittime_stamp = 0; 4850 hlock->holdtime_stamp = lockstat_clock(); 4851 #endif 4852 hlock->pin_count = pin_count; 4853 4854 if (check_wait_context(curr, hlock)) 4855 return 0; 4856 4857 /* Initialize the lock usage bit */ 4858 if (!mark_usage(curr, hlock, check)) 4859 return 0; 4860 4861 /* 4862 * Calculate the chain hash: it's the combined hash of all the 4863 * lock keys along the dependency chain. We save the hash value 4864 * at every step so that we can get the current hash easily 4865 * after unlock. The chain hash is then used to cache dependency 4866 * results. 4867 * 4868 * The 'key ID' is what is the most compact key value to drive 4869 * the hash, not class->key. 4870 */ 4871 /* 4872 * Whoops, we did it again.. class_idx is invalid. 4873 */ 4874 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use))) 4875 return 0; 4876 4877 chain_key = curr->curr_chain_key; 4878 if (!depth) { 4879 /* 4880 * How can we have a chain hash when we ain't got no keys?! 4881 */ 4882 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY)) 4883 return 0; 4884 chain_head = 1; 4885 } 4886 4887 hlock->prev_chain_key = chain_key; 4888 if (separate_irq_context(curr, hlock)) { 4889 chain_key = INITIAL_CHAIN_KEY; 4890 chain_head = 1; 4891 } 4892 chain_key = iterate_chain_key(chain_key, hlock_id(hlock)); 4893 4894 if (nest_lock && !__lock_is_held(nest_lock, -1)) { 4895 print_lock_nested_lock_not_held(curr, hlock, ip); 4896 return 0; 4897 } 4898 4899 if (!debug_locks_silent) { 4900 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key); 4901 WARN_ON_ONCE(!hlock_class(hlock)->key); 4902 } 4903 4904 if (!validate_chain(curr, hlock, chain_head, chain_key)) 4905 return 0; 4906 4907 curr->curr_chain_key = chain_key; 4908 curr->lockdep_depth++; 4909 check_chain_key(curr); 4910 #ifdef CONFIG_DEBUG_LOCKDEP 4911 if (unlikely(!debug_locks)) 4912 return 0; 4913 #endif 4914 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) { 4915 debug_locks_off(); 4916 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!"); 4917 printk(KERN_DEBUG "depth: %i max: %lu!\n", 4918 curr->lockdep_depth, MAX_LOCK_DEPTH); 4919 4920 lockdep_print_held_locks(current); 4921 debug_show_all_locks(); 4922 dump_stack(); 4923 4924 return 0; 4925 } 4926 4927 if (unlikely(curr->lockdep_depth > max_lockdep_depth)) 4928 max_lockdep_depth = curr->lockdep_depth; 4929 4930 return 1; 4931 } 4932 4933 static void print_unlock_imbalance_bug(struct task_struct *curr, 4934 struct lockdep_map *lock, 4935 unsigned long ip) 4936 { 4937 if (!debug_locks_off()) 4938 return; 4939 if (debug_locks_silent) 4940 return; 4941 4942 pr_warn("\n"); 4943 pr_warn("=====================================\n"); 4944 pr_warn("WARNING: bad unlock balance detected!\n"); 4945 print_kernel_ident(); 4946 pr_warn("-------------------------------------\n"); 4947 pr_warn("%s/%d is trying to release lock (", 4948 curr->comm, task_pid_nr(curr)); 4949 print_lockdep_cache(lock); 4950 pr_cont(") at:\n"); 4951 print_ip_sym(KERN_WARNING, ip); 4952 pr_warn("but there are no more locks to release!\n"); 4953 pr_warn("\nother info that might help us debug this:\n"); 4954 lockdep_print_held_locks(curr); 4955 4956 pr_warn("\nstack backtrace:\n"); 4957 dump_stack(); 4958 } 4959 4960 static noinstr int match_held_lock(const struct held_lock *hlock, 4961 const struct lockdep_map *lock) 4962 { 4963 if (hlock->instance == lock) 4964 return 1; 4965 4966 if (hlock->references) { 4967 const struct lock_class *class = lock->class_cache[0]; 4968 4969 if (!class) 4970 class = look_up_lock_class(lock, 0); 4971 4972 /* 4973 * If look_up_lock_class() failed to find a class, we're trying 4974 * to test if we hold a lock that has never yet been acquired. 4975 * Clearly if the lock hasn't been acquired _ever_, we're not 4976 * holding it either, so report failure. 4977 */ 4978 if (!class) 4979 return 0; 4980 4981 /* 4982 * References, but not a lock we're actually ref-counting? 4983 * State got messed up, follow the sites that change ->references 4984 * and try to make sense of it. 4985 */ 4986 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock)) 4987 return 0; 4988 4989 if (hlock->class_idx == class - lock_classes) 4990 return 1; 4991 } 4992 4993 return 0; 4994 } 4995 4996 /* @depth must not be zero */ 4997 static struct held_lock *find_held_lock(struct task_struct *curr, 4998 struct lockdep_map *lock, 4999 unsigned int depth, int *idx) 5000 { 5001 struct held_lock *ret, *hlock, *prev_hlock; 5002 int i; 5003 5004 i = depth - 1; 5005 hlock = curr->held_locks + i; 5006 ret = hlock; 5007 if (match_held_lock(hlock, lock)) 5008 goto out; 5009 5010 ret = NULL; 5011 for (i--, prev_hlock = hlock--; 5012 i >= 0; 5013 i--, prev_hlock = hlock--) { 5014 /* 5015 * We must not cross into another context: 5016 */ 5017 if (prev_hlock->irq_context != hlock->irq_context) { 5018 ret = NULL; 5019 break; 5020 } 5021 if (match_held_lock(hlock, lock)) { 5022 ret = hlock; 5023 break; 5024 } 5025 } 5026 5027 out: 5028 *idx = i; 5029 return ret; 5030 } 5031 5032 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth, 5033 int idx, unsigned int *merged) 5034 { 5035 struct held_lock *hlock; 5036 int first_idx = idx; 5037 5038 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled())) 5039 return 0; 5040 5041 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) { 5042 switch (__lock_acquire(hlock->instance, 5043 hlock_class(hlock)->subclass, 5044 hlock->trylock, 5045 hlock->read, hlock->check, 5046 hlock->hardirqs_off, 5047 hlock->nest_lock, hlock->acquire_ip, 5048 hlock->references, hlock->pin_count)) { 5049 case 0: 5050 return 1; 5051 case 1: 5052 break; 5053 case 2: 5054 *merged += (idx == first_idx); 5055 break; 5056 default: 5057 WARN_ON(1); 5058 return 0; 5059 } 5060 } 5061 return 0; 5062 } 5063 5064 static int 5065 __lock_set_class(struct lockdep_map *lock, const char *name, 5066 struct lock_class_key *key, unsigned int subclass, 5067 unsigned long ip) 5068 { 5069 struct task_struct *curr = current; 5070 unsigned int depth, merged = 0; 5071 struct held_lock *hlock; 5072 struct lock_class *class; 5073 int i; 5074 5075 if (unlikely(!debug_locks)) 5076 return 0; 5077 5078 depth = curr->lockdep_depth; 5079 /* 5080 * This function is about (re)setting the class of a held lock, 5081 * yet we're not actually holding any locks. Naughty user! 5082 */ 5083 if (DEBUG_LOCKS_WARN_ON(!depth)) 5084 return 0; 5085 5086 hlock = find_held_lock(curr, lock, depth, &i); 5087 if (!hlock) { 5088 print_unlock_imbalance_bug(curr, lock, ip); 5089 return 0; 5090 } 5091 5092 lockdep_init_map_waits(lock, name, key, 0, 5093 lock->wait_type_inner, 5094 lock->wait_type_outer); 5095 class = register_lock_class(lock, subclass, 0); 5096 hlock->class_idx = class - lock_classes; 5097 5098 curr->lockdep_depth = i; 5099 curr->curr_chain_key = hlock->prev_chain_key; 5100 5101 if (reacquire_held_locks(curr, depth, i, &merged)) 5102 return 0; 5103 5104 /* 5105 * I took it apart and put it back together again, except now I have 5106 * these 'spare' parts.. where shall I put them. 5107 */ 5108 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged)) 5109 return 0; 5110 return 1; 5111 } 5112 5113 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5114 { 5115 struct task_struct *curr = current; 5116 unsigned int depth, merged = 0; 5117 struct held_lock *hlock; 5118 int i; 5119 5120 if (unlikely(!debug_locks)) 5121 return 0; 5122 5123 depth = curr->lockdep_depth; 5124 /* 5125 * This function is about (re)setting the class of a held lock, 5126 * yet we're not actually holding any locks. Naughty user! 5127 */ 5128 if (DEBUG_LOCKS_WARN_ON(!depth)) 5129 return 0; 5130 5131 hlock = find_held_lock(curr, lock, depth, &i); 5132 if (!hlock) { 5133 print_unlock_imbalance_bug(curr, lock, ip); 5134 return 0; 5135 } 5136 5137 curr->lockdep_depth = i; 5138 curr->curr_chain_key = hlock->prev_chain_key; 5139 5140 WARN(hlock->read, "downgrading a read lock"); 5141 hlock->read = 1; 5142 hlock->acquire_ip = ip; 5143 5144 if (reacquire_held_locks(curr, depth, i, &merged)) 5145 return 0; 5146 5147 /* Merging can't happen with unchanged classes.. */ 5148 if (DEBUG_LOCKS_WARN_ON(merged)) 5149 return 0; 5150 5151 /* 5152 * I took it apart and put it back together again, except now I have 5153 * these 'spare' parts.. where shall I put them. 5154 */ 5155 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth)) 5156 return 0; 5157 5158 return 1; 5159 } 5160 5161 /* 5162 * Remove the lock from the list of currently held locks - this gets 5163 * called on mutex_unlock()/spin_unlock*() (or on a failed 5164 * mutex_lock_interruptible()). 5165 */ 5166 static int 5167 __lock_release(struct lockdep_map *lock, unsigned long ip) 5168 { 5169 struct task_struct *curr = current; 5170 unsigned int depth, merged = 1; 5171 struct held_lock *hlock; 5172 int i; 5173 5174 if (unlikely(!debug_locks)) 5175 return 0; 5176 5177 depth = curr->lockdep_depth; 5178 /* 5179 * So we're all set to release this lock.. wait what lock? We don't 5180 * own any locks, you've been drinking again? 5181 */ 5182 if (depth <= 0) { 5183 print_unlock_imbalance_bug(curr, lock, ip); 5184 return 0; 5185 } 5186 5187 /* 5188 * Check whether the lock exists in the current stack 5189 * of held locks: 5190 */ 5191 hlock = find_held_lock(curr, lock, depth, &i); 5192 if (!hlock) { 5193 print_unlock_imbalance_bug(curr, lock, ip); 5194 return 0; 5195 } 5196 5197 if (hlock->instance == lock) 5198 lock_release_holdtime(hlock); 5199 5200 WARN(hlock->pin_count, "releasing a pinned lock\n"); 5201 5202 if (hlock->references) { 5203 hlock->references--; 5204 if (hlock->references) { 5205 /* 5206 * We had, and after removing one, still have 5207 * references, the current lock stack is still 5208 * valid. We're done! 5209 */ 5210 return 1; 5211 } 5212 } 5213 5214 /* 5215 * We have the right lock to unlock, 'hlock' points to it. 5216 * Now we remove it from the stack, and add back the other 5217 * entries (if any), recalculating the hash along the way: 5218 */ 5219 5220 curr->lockdep_depth = i; 5221 curr->curr_chain_key = hlock->prev_chain_key; 5222 5223 /* 5224 * The most likely case is when the unlock is on the innermost 5225 * lock. In this case, we are done! 5226 */ 5227 if (i == depth-1) 5228 return 1; 5229 5230 if (reacquire_held_locks(curr, depth, i + 1, &merged)) 5231 return 0; 5232 5233 /* 5234 * We had N bottles of beer on the wall, we drank one, but now 5235 * there's not N-1 bottles of beer left on the wall... 5236 * Pouring two of the bottles together is acceptable. 5237 */ 5238 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged); 5239 5240 /* 5241 * Since reacquire_held_locks() would have called check_chain_key() 5242 * indirectly via __lock_acquire(), we don't need to do it again 5243 * on return. 5244 */ 5245 return 0; 5246 } 5247 5248 static __always_inline 5249 int __lock_is_held(const struct lockdep_map *lock, int read) 5250 { 5251 struct task_struct *curr = current; 5252 int i; 5253 5254 for (i = 0; i < curr->lockdep_depth; i++) { 5255 struct held_lock *hlock = curr->held_locks + i; 5256 5257 if (match_held_lock(hlock, lock)) { 5258 if (read == -1 || hlock->read == read) 5259 return LOCK_STATE_HELD; 5260 5261 return LOCK_STATE_NOT_HELD; 5262 } 5263 } 5264 5265 return LOCK_STATE_NOT_HELD; 5266 } 5267 5268 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock) 5269 { 5270 struct pin_cookie cookie = NIL_COOKIE; 5271 struct task_struct *curr = current; 5272 int i; 5273 5274 if (unlikely(!debug_locks)) 5275 return cookie; 5276 5277 for (i = 0; i < curr->lockdep_depth; i++) { 5278 struct held_lock *hlock = curr->held_locks + i; 5279 5280 if (match_held_lock(hlock, lock)) { 5281 /* 5282 * Grab 16bits of randomness; this is sufficient to not 5283 * be guessable and still allows some pin nesting in 5284 * our u32 pin_count. 5285 */ 5286 cookie.val = 1 + (prandom_u32() >> 16); 5287 hlock->pin_count += cookie.val; 5288 return cookie; 5289 } 5290 } 5291 5292 WARN(1, "pinning an unheld lock\n"); 5293 return cookie; 5294 } 5295 5296 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5297 { 5298 struct task_struct *curr = current; 5299 int i; 5300 5301 if (unlikely(!debug_locks)) 5302 return; 5303 5304 for (i = 0; i < curr->lockdep_depth; i++) { 5305 struct held_lock *hlock = curr->held_locks + i; 5306 5307 if (match_held_lock(hlock, lock)) { 5308 hlock->pin_count += cookie.val; 5309 return; 5310 } 5311 } 5312 5313 WARN(1, "pinning an unheld lock\n"); 5314 } 5315 5316 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5317 { 5318 struct task_struct *curr = current; 5319 int i; 5320 5321 if (unlikely(!debug_locks)) 5322 return; 5323 5324 for (i = 0; i < curr->lockdep_depth; i++) { 5325 struct held_lock *hlock = curr->held_locks + i; 5326 5327 if (match_held_lock(hlock, lock)) { 5328 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n")) 5329 return; 5330 5331 hlock->pin_count -= cookie.val; 5332 5333 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n")) 5334 hlock->pin_count = 0; 5335 5336 return; 5337 } 5338 } 5339 5340 WARN(1, "unpinning an unheld lock\n"); 5341 } 5342 5343 /* 5344 * Check whether we follow the irq-flags state precisely: 5345 */ 5346 static noinstr void check_flags(unsigned long flags) 5347 { 5348 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP) 5349 if (!debug_locks) 5350 return; 5351 5352 /* Get the warning out.. */ 5353 instrumentation_begin(); 5354 5355 if (irqs_disabled_flags(flags)) { 5356 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) { 5357 printk("possible reason: unannotated irqs-off.\n"); 5358 } 5359 } else { 5360 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) { 5361 printk("possible reason: unannotated irqs-on.\n"); 5362 } 5363 } 5364 5365 /* 5366 * We dont accurately track softirq state in e.g. 5367 * hardirq contexts (such as on 4KSTACKS), so only 5368 * check if not in hardirq contexts: 5369 */ 5370 if (!hardirq_count()) { 5371 if (softirq_count()) { 5372 /* like the above, but with softirqs */ 5373 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled); 5374 } else { 5375 /* lick the above, does it taste good? */ 5376 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled); 5377 } 5378 } 5379 5380 if (!debug_locks) 5381 print_irqtrace_events(current); 5382 5383 instrumentation_end(); 5384 #endif 5385 } 5386 5387 void lock_set_class(struct lockdep_map *lock, const char *name, 5388 struct lock_class_key *key, unsigned int subclass, 5389 unsigned long ip) 5390 { 5391 unsigned long flags; 5392 5393 if (unlikely(!lockdep_enabled())) 5394 return; 5395 5396 raw_local_irq_save(flags); 5397 lockdep_recursion_inc(); 5398 check_flags(flags); 5399 if (__lock_set_class(lock, name, key, subclass, ip)) 5400 check_chain_key(current); 5401 lockdep_recursion_finish(); 5402 raw_local_irq_restore(flags); 5403 } 5404 EXPORT_SYMBOL_GPL(lock_set_class); 5405 5406 void lock_downgrade(struct lockdep_map *lock, unsigned long ip) 5407 { 5408 unsigned long flags; 5409 5410 if (unlikely(!lockdep_enabled())) 5411 return; 5412 5413 raw_local_irq_save(flags); 5414 lockdep_recursion_inc(); 5415 check_flags(flags); 5416 if (__lock_downgrade(lock, ip)) 5417 check_chain_key(current); 5418 lockdep_recursion_finish(); 5419 raw_local_irq_restore(flags); 5420 } 5421 EXPORT_SYMBOL_GPL(lock_downgrade); 5422 5423 /* NMI context !!! */ 5424 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass) 5425 { 5426 #ifdef CONFIG_PROVE_LOCKING 5427 struct lock_class *class = look_up_lock_class(lock, subclass); 5428 unsigned long mask = LOCKF_USED; 5429 5430 /* if it doesn't have a class (yet), it certainly hasn't been used yet */ 5431 if (!class) 5432 return; 5433 5434 /* 5435 * READ locks only conflict with USED, such that if we only ever use 5436 * READ locks, there is no deadlock possible -- RCU. 5437 */ 5438 if (!hlock->read) 5439 mask |= LOCKF_USED_READ; 5440 5441 if (!(class->usage_mask & mask)) 5442 return; 5443 5444 hlock->class_idx = class - lock_classes; 5445 5446 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES); 5447 #endif 5448 } 5449 5450 static bool lockdep_nmi(void) 5451 { 5452 if (raw_cpu_read(lockdep_recursion)) 5453 return false; 5454 5455 if (!in_nmi()) 5456 return false; 5457 5458 return true; 5459 } 5460 5461 /* 5462 * read_lock() is recursive if: 5463 * 1. We force lockdep think this way in selftests or 5464 * 2. The implementation is not queued read/write lock or 5465 * 3. The locker is at an in_interrupt() context. 5466 */ 5467 bool read_lock_is_recursive(void) 5468 { 5469 return force_read_lock_recursive || 5470 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) || 5471 in_interrupt(); 5472 } 5473 EXPORT_SYMBOL_GPL(read_lock_is_recursive); 5474 5475 /* 5476 * We are not always called with irqs disabled - do that here, 5477 * and also avoid lockdep recursion: 5478 */ 5479 void lock_acquire(struct lockdep_map *lock, unsigned int subclass, 5480 int trylock, int read, int check, 5481 struct lockdep_map *nest_lock, unsigned long ip) 5482 { 5483 unsigned long flags; 5484 5485 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip); 5486 5487 if (!debug_locks) 5488 return; 5489 5490 if (unlikely(!lockdep_enabled())) { 5491 /* XXX allow trylock from NMI ?!? */ 5492 if (lockdep_nmi() && !trylock) { 5493 struct held_lock hlock; 5494 5495 hlock.acquire_ip = ip; 5496 hlock.instance = lock; 5497 hlock.nest_lock = nest_lock; 5498 hlock.irq_context = 2; // XXX 5499 hlock.trylock = trylock; 5500 hlock.read = read; 5501 hlock.check = check; 5502 hlock.hardirqs_off = true; 5503 hlock.references = 0; 5504 5505 verify_lock_unused(lock, &hlock, subclass); 5506 } 5507 return; 5508 } 5509 5510 raw_local_irq_save(flags); 5511 check_flags(flags); 5512 5513 lockdep_recursion_inc(); 5514 __lock_acquire(lock, subclass, trylock, read, check, 5515 irqs_disabled_flags(flags), nest_lock, ip, 0, 0); 5516 lockdep_recursion_finish(); 5517 raw_local_irq_restore(flags); 5518 } 5519 EXPORT_SYMBOL_GPL(lock_acquire); 5520 5521 void lock_release(struct lockdep_map *lock, unsigned long ip) 5522 { 5523 unsigned long flags; 5524 5525 trace_lock_release(lock, ip); 5526 5527 if (unlikely(!lockdep_enabled())) 5528 return; 5529 5530 raw_local_irq_save(flags); 5531 check_flags(flags); 5532 5533 lockdep_recursion_inc(); 5534 if (__lock_release(lock, ip)) 5535 check_chain_key(current); 5536 lockdep_recursion_finish(); 5537 raw_local_irq_restore(flags); 5538 } 5539 EXPORT_SYMBOL_GPL(lock_release); 5540 5541 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read) 5542 { 5543 unsigned long flags; 5544 int ret = LOCK_STATE_NOT_HELD; 5545 5546 /* 5547 * Avoid false negative lockdep_assert_held() and 5548 * lockdep_assert_not_held(). 5549 */ 5550 if (unlikely(!lockdep_enabled())) 5551 return LOCK_STATE_UNKNOWN; 5552 5553 raw_local_irq_save(flags); 5554 check_flags(flags); 5555 5556 lockdep_recursion_inc(); 5557 ret = __lock_is_held(lock, read); 5558 lockdep_recursion_finish(); 5559 raw_local_irq_restore(flags); 5560 5561 return ret; 5562 } 5563 EXPORT_SYMBOL_GPL(lock_is_held_type); 5564 NOKPROBE_SYMBOL(lock_is_held_type); 5565 5566 struct pin_cookie lock_pin_lock(struct lockdep_map *lock) 5567 { 5568 struct pin_cookie cookie = NIL_COOKIE; 5569 unsigned long flags; 5570 5571 if (unlikely(!lockdep_enabled())) 5572 return cookie; 5573 5574 raw_local_irq_save(flags); 5575 check_flags(flags); 5576 5577 lockdep_recursion_inc(); 5578 cookie = __lock_pin_lock(lock); 5579 lockdep_recursion_finish(); 5580 raw_local_irq_restore(flags); 5581 5582 return cookie; 5583 } 5584 EXPORT_SYMBOL_GPL(lock_pin_lock); 5585 5586 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5587 { 5588 unsigned long flags; 5589 5590 if (unlikely(!lockdep_enabled())) 5591 return; 5592 5593 raw_local_irq_save(flags); 5594 check_flags(flags); 5595 5596 lockdep_recursion_inc(); 5597 __lock_repin_lock(lock, cookie); 5598 lockdep_recursion_finish(); 5599 raw_local_irq_restore(flags); 5600 } 5601 EXPORT_SYMBOL_GPL(lock_repin_lock); 5602 5603 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie) 5604 { 5605 unsigned long flags; 5606 5607 if (unlikely(!lockdep_enabled())) 5608 return; 5609 5610 raw_local_irq_save(flags); 5611 check_flags(flags); 5612 5613 lockdep_recursion_inc(); 5614 __lock_unpin_lock(lock, cookie); 5615 lockdep_recursion_finish(); 5616 raw_local_irq_restore(flags); 5617 } 5618 EXPORT_SYMBOL_GPL(lock_unpin_lock); 5619 5620 #ifdef CONFIG_LOCK_STAT 5621 static void print_lock_contention_bug(struct task_struct *curr, 5622 struct lockdep_map *lock, 5623 unsigned long ip) 5624 { 5625 if (!debug_locks_off()) 5626 return; 5627 if (debug_locks_silent) 5628 return; 5629 5630 pr_warn("\n"); 5631 pr_warn("=================================\n"); 5632 pr_warn("WARNING: bad contention detected!\n"); 5633 print_kernel_ident(); 5634 pr_warn("---------------------------------\n"); 5635 pr_warn("%s/%d is trying to contend lock (", 5636 curr->comm, task_pid_nr(curr)); 5637 print_lockdep_cache(lock); 5638 pr_cont(") at:\n"); 5639 print_ip_sym(KERN_WARNING, ip); 5640 pr_warn("but there are no locks held!\n"); 5641 pr_warn("\nother info that might help us debug this:\n"); 5642 lockdep_print_held_locks(curr); 5643 5644 pr_warn("\nstack backtrace:\n"); 5645 dump_stack(); 5646 } 5647 5648 static void 5649 __lock_contended(struct lockdep_map *lock, unsigned long ip) 5650 { 5651 struct task_struct *curr = current; 5652 struct held_lock *hlock; 5653 struct lock_class_stats *stats; 5654 unsigned int depth; 5655 int i, contention_point, contending_point; 5656 5657 depth = curr->lockdep_depth; 5658 /* 5659 * Whee, we contended on this lock, except it seems we're not 5660 * actually trying to acquire anything much at all.. 5661 */ 5662 if (DEBUG_LOCKS_WARN_ON(!depth)) 5663 return; 5664 5665 hlock = find_held_lock(curr, lock, depth, &i); 5666 if (!hlock) { 5667 print_lock_contention_bug(curr, lock, ip); 5668 return; 5669 } 5670 5671 if (hlock->instance != lock) 5672 return; 5673 5674 hlock->waittime_stamp = lockstat_clock(); 5675 5676 contention_point = lock_point(hlock_class(hlock)->contention_point, ip); 5677 contending_point = lock_point(hlock_class(hlock)->contending_point, 5678 lock->ip); 5679 5680 stats = get_lock_stats(hlock_class(hlock)); 5681 if (contention_point < LOCKSTAT_POINTS) 5682 stats->contention_point[contention_point]++; 5683 if (contending_point < LOCKSTAT_POINTS) 5684 stats->contending_point[contending_point]++; 5685 if (lock->cpu != smp_processor_id()) 5686 stats->bounces[bounce_contended + !!hlock->read]++; 5687 } 5688 5689 static void 5690 __lock_acquired(struct lockdep_map *lock, unsigned long ip) 5691 { 5692 struct task_struct *curr = current; 5693 struct held_lock *hlock; 5694 struct lock_class_stats *stats; 5695 unsigned int depth; 5696 u64 now, waittime = 0; 5697 int i, cpu; 5698 5699 depth = curr->lockdep_depth; 5700 /* 5701 * Yay, we acquired ownership of this lock we didn't try to 5702 * acquire, how the heck did that happen? 5703 */ 5704 if (DEBUG_LOCKS_WARN_ON(!depth)) 5705 return; 5706 5707 hlock = find_held_lock(curr, lock, depth, &i); 5708 if (!hlock) { 5709 print_lock_contention_bug(curr, lock, _RET_IP_); 5710 return; 5711 } 5712 5713 if (hlock->instance != lock) 5714 return; 5715 5716 cpu = smp_processor_id(); 5717 if (hlock->waittime_stamp) { 5718 now = lockstat_clock(); 5719 waittime = now - hlock->waittime_stamp; 5720 hlock->holdtime_stamp = now; 5721 } 5722 5723 stats = get_lock_stats(hlock_class(hlock)); 5724 if (waittime) { 5725 if (hlock->read) 5726 lock_time_inc(&stats->read_waittime, waittime); 5727 else 5728 lock_time_inc(&stats->write_waittime, waittime); 5729 } 5730 if (lock->cpu != cpu) 5731 stats->bounces[bounce_acquired + !!hlock->read]++; 5732 5733 lock->cpu = cpu; 5734 lock->ip = ip; 5735 } 5736 5737 void lock_contended(struct lockdep_map *lock, unsigned long ip) 5738 { 5739 unsigned long flags; 5740 5741 trace_lock_contended(lock, ip); 5742 5743 if (unlikely(!lock_stat || !lockdep_enabled())) 5744 return; 5745 5746 raw_local_irq_save(flags); 5747 check_flags(flags); 5748 lockdep_recursion_inc(); 5749 __lock_contended(lock, ip); 5750 lockdep_recursion_finish(); 5751 raw_local_irq_restore(flags); 5752 } 5753 EXPORT_SYMBOL_GPL(lock_contended); 5754 5755 void lock_acquired(struct lockdep_map *lock, unsigned long ip) 5756 { 5757 unsigned long flags; 5758 5759 trace_lock_acquired(lock, ip); 5760 5761 if (unlikely(!lock_stat || !lockdep_enabled())) 5762 return; 5763 5764 raw_local_irq_save(flags); 5765 check_flags(flags); 5766 lockdep_recursion_inc(); 5767 __lock_acquired(lock, ip); 5768 lockdep_recursion_finish(); 5769 raw_local_irq_restore(flags); 5770 } 5771 EXPORT_SYMBOL_GPL(lock_acquired); 5772 #endif 5773 5774 /* 5775 * Used by the testsuite, sanitize the validator state 5776 * after a simulated failure: 5777 */ 5778 5779 void lockdep_reset(void) 5780 { 5781 unsigned long flags; 5782 int i; 5783 5784 raw_local_irq_save(flags); 5785 lockdep_init_task(current); 5786 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock)); 5787 nr_hardirq_chains = 0; 5788 nr_softirq_chains = 0; 5789 nr_process_chains = 0; 5790 debug_locks = 1; 5791 for (i = 0; i < CHAINHASH_SIZE; i++) 5792 INIT_HLIST_HEAD(chainhash_table + i); 5793 raw_local_irq_restore(flags); 5794 } 5795 5796 /* Remove a class from a lock chain. Must be called with the graph lock held. */ 5797 static void remove_class_from_lock_chain(struct pending_free *pf, 5798 struct lock_chain *chain, 5799 struct lock_class *class) 5800 { 5801 #ifdef CONFIG_PROVE_LOCKING 5802 int i; 5803 5804 for (i = chain->base; i < chain->base + chain->depth; i++) { 5805 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes) 5806 continue; 5807 /* 5808 * Each lock class occurs at most once in a lock chain so once 5809 * we found a match we can break out of this loop. 5810 */ 5811 goto free_lock_chain; 5812 } 5813 /* Since the chain has not been modified, return. */ 5814 return; 5815 5816 free_lock_chain: 5817 free_chain_hlocks(chain->base, chain->depth); 5818 /* Overwrite the chain key for concurrent RCU readers. */ 5819 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY); 5820 dec_chains(chain->irq_context); 5821 5822 /* 5823 * Note: calling hlist_del_rcu() from inside a 5824 * hlist_for_each_entry_rcu() loop is safe. 5825 */ 5826 hlist_del_rcu(&chain->entry); 5827 __set_bit(chain - lock_chains, pf->lock_chains_being_freed); 5828 nr_zapped_lock_chains++; 5829 #endif 5830 } 5831 5832 /* Must be called with the graph lock held. */ 5833 static void remove_class_from_lock_chains(struct pending_free *pf, 5834 struct lock_class *class) 5835 { 5836 struct lock_chain *chain; 5837 struct hlist_head *head; 5838 int i; 5839 5840 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) { 5841 head = chainhash_table + i; 5842 hlist_for_each_entry_rcu(chain, head, entry) { 5843 remove_class_from_lock_chain(pf, chain, class); 5844 } 5845 } 5846 } 5847 5848 /* 5849 * Remove all references to a lock class. The caller must hold the graph lock. 5850 */ 5851 static void zap_class(struct pending_free *pf, struct lock_class *class) 5852 { 5853 struct lock_list *entry; 5854 int i; 5855 5856 WARN_ON_ONCE(!class->key); 5857 5858 /* 5859 * Remove all dependencies this lock is 5860 * involved in: 5861 */ 5862 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) { 5863 entry = list_entries + i; 5864 if (entry->class != class && entry->links_to != class) 5865 continue; 5866 __clear_bit(i, list_entries_in_use); 5867 nr_list_entries--; 5868 list_del_rcu(&entry->entry); 5869 } 5870 if (list_empty(&class->locks_after) && 5871 list_empty(&class->locks_before)) { 5872 list_move_tail(&class->lock_entry, &pf->zapped); 5873 hlist_del_rcu(&class->hash_entry); 5874 WRITE_ONCE(class->key, NULL); 5875 WRITE_ONCE(class->name, NULL); 5876 nr_lock_classes--; 5877 __clear_bit(class - lock_classes, lock_classes_in_use); 5878 } else { 5879 WARN_ONCE(true, "%s() failed for class %s\n", __func__, 5880 class->name); 5881 } 5882 5883 remove_class_from_lock_chains(pf, class); 5884 nr_zapped_classes++; 5885 } 5886 5887 static void reinit_class(struct lock_class *class) 5888 { 5889 void *const p = class; 5890 const unsigned int offset = offsetof(struct lock_class, key); 5891 5892 WARN_ON_ONCE(!class->lock_entry.next); 5893 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5894 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5895 memset(p + offset, 0, sizeof(*class) - offset); 5896 WARN_ON_ONCE(!class->lock_entry.next); 5897 WARN_ON_ONCE(!list_empty(&class->locks_after)); 5898 WARN_ON_ONCE(!list_empty(&class->locks_before)); 5899 } 5900 5901 static inline int within(const void *addr, void *start, unsigned long size) 5902 { 5903 return addr >= start && addr < start + size; 5904 } 5905 5906 static bool inside_selftest(void) 5907 { 5908 return current == lockdep_selftest_task_struct; 5909 } 5910 5911 /* The caller must hold the graph lock. */ 5912 static struct pending_free *get_pending_free(void) 5913 { 5914 return delayed_free.pf + delayed_free.index; 5915 } 5916 5917 static void free_zapped_rcu(struct rcu_head *cb); 5918 5919 /* 5920 * Schedule an RCU callback if no RCU callback is pending. Must be called with 5921 * the graph lock held. 5922 */ 5923 static void call_rcu_zapped(struct pending_free *pf) 5924 { 5925 WARN_ON_ONCE(inside_selftest()); 5926 5927 if (list_empty(&pf->zapped)) 5928 return; 5929 5930 if (delayed_free.scheduled) 5931 return; 5932 5933 delayed_free.scheduled = true; 5934 5935 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf); 5936 delayed_free.index ^= 1; 5937 5938 call_rcu(&delayed_free.rcu_head, free_zapped_rcu); 5939 } 5940 5941 /* The caller must hold the graph lock. May be called from RCU context. */ 5942 static void __free_zapped_classes(struct pending_free *pf) 5943 { 5944 struct lock_class *class; 5945 5946 check_data_structures(); 5947 5948 list_for_each_entry(class, &pf->zapped, lock_entry) 5949 reinit_class(class); 5950 5951 list_splice_init(&pf->zapped, &free_lock_classes); 5952 5953 #ifdef CONFIG_PROVE_LOCKING 5954 bitmap_andnot(lock_chains_in_use, lock_chains_in_use, 5955 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains)); 5956 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains)); 5957 #endif 5958 } 5959 5960 static void free_zapped_rcu(struct rcu_head *ch) 5961 { 5962 struct pending_free *pf; 5963 unsigned long flags; 5964 5965 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head)) 5966 return; 5967 5968 raw_local_irq_save(flags); 5969 lockdep_lock(); 5970 5971 /* closed head */ 5972 pf = delayed_free.pf + (delayed_free.index ^ 1); 5973 __free_zapped_classes(pf); 5974 delayed_free.scheduled = false; 5975 5976 /* 5977 * If there's anything on the open list, close and start a new callback. 5978 */ 5979 call_rcu_zapped(delayed_free.pf + delayed_free.index); 5980 5981 lockdep_unlock(); 5982 raw_local_irq_restore(flags); 5983 } 5984 5985 /* 5986 * Remove all lock classes from the class hash table and from the 5987 * all_lock_classes list whose key or name is in the address range [start, 5988 * start + size). Move these lock classes to the zapped_classes list. Must 5989 * be called with the graph lock held. 5990 */ 5991 static void __lockdep_free_key_range(struct pending_free *pf, void *start, 5992 unsigned long size) 5993 { 5994 struct lock_class *class; 5995 struct hlist_head *head; 5996 int i; 5997 5998 /* Unhash all classes that were created by a module. */ 5999 for (i = 0; i < CLASSHASH_SIZE; i++) { 6000 head = classhash_table + i; 6001 hlist_for_each_entry_rcu(class, head, hash_entry) { 6002 if (!within(class->key, start, size) && 6003 !within(class->name, start, size)) 6004 continue; 6005 zap_class(pf, class); 6006 } 6007 } 6008 } 6009 6010 /* 6011 * Used in module.c to remove lock classes from memory that is going to be 6012 * freed; and possibly re-used by other modules. 6013 * 6014 * We will have had one synchronize_rcu() before getting here, so we're 6015 * guaranteed nobody will look up these exact classes -- they're properly dead 6016 * but still allocated. 6017 */ 6018 static void lockdep_free_key_range_reg(void *start, unsigned long size) 6019 { 6020 struct pending_free *pf; 6021 unsigned long flags; 6022 6023 init_data_structures_once(); 6024 6025 raw_local_irq_save(flags); 6026 lockdep_lock(); 6027 pf = get_pending_free(); 6028 __lockdep_free_key_range(pf, start, size); 6029 call_rcu_zapped(pf); 6030 lockdep_unlock(); 6031 raw_local_irq_restore(flags); 6032 6033 /* 6034 * Wait for any possible iterators from look_up_lock_class() to pass 6035 * before continuing to free the memory they refer to. 6036 */ 6037 synchronize_rcu(); 6038 } 6039 6040 /* 6041 * Free all lockdep keys in the range [start, start+size). Does not sleep. 6042 * Ignores debug_locks. Must only be used by the lockdep selftests. 6043 */ 6044 static void lockdep_free_key_range_imm(void *start, unsigned long size) 6045 { 6046 struct pending_free *pf = delayed_free.pf; 6047 unsigned long flags; 6048 6049 init_data_structures_once(); 6050 6051 raw_local_irq_save(flags); 6052 lockdep_lock(); 6053 __lockdep_free_key_range(pf, start, size); 6054 __free_zapped_classes(pf); 6055 lockdep_unlock(); 6056 raw_local_irq_restore(flags); 6057 } 6058 6059 void lockdep_free_key_range(void *start, unsigned long size) 6060 { 6061 init_data_structures_once(); 6062 6063 if (inside_selftest()) 6064 lockdep_free_key_range_imm(start, size); 6065 else 6066 lockdep_free_key_range_reg(start, size); 6067 } 6068 6069 /* 6070 * Check whether any element of the @lock->class_cache[] array refers to a 6071 * registered lock class. The caller must hold either the graph lock or the 6072 * RCU read lock. 6073 */ 6074 static bool lock_class_cache_is_registered(struct lockdep_map *lock) 6075 { 6076 struct lock_class *class; 6077 struct hlist_head *head; 6078 int i, j; 6079 6080 for (i = 0; i < CLASSHASH_SIZE; i++) { 6081 head = classhash_table + i; 6082 hlist_for_each_entry_rcu(class, head, hash_entry) { 6083 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++) 6084 if (lock->class_cache[j] == class) 6085 return true; 6086 } 6087 } 6088 return false; 6089 } 6090 6091 /* The caller must hold the graph lock. Does not sleep. */ 6092 static void __lockdep_reset_lock(struct pending_free *pf, 6093 struct lockdep_map *lock) 6094 { 6095 struct lock_class *class; 6096 int j; 6097 6098 /* 6099 * Remove all classes this lock might have: 6100 */ 6101 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) { 6102 /* 6103 * If the class exists we look it up and zap it: 6104 */ 6105 class = look_up_lock_class(lock, j); 6106 if (class) 6107 zap_class(pf, class); 6108 } 6109 /* 6110 * Debug check: in the end all mapped classes should 6111 * be gone. 6112 */ 6113 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock))) 6114 debug_locks_off(); 6115 } 6116 6117 /* 6118 * Remove all information lockdep has about a lock if debug_locks == 1. Free 6119 * released data structures from RCU context. 6120 */ 6121 static void lockdep_reset_lock_reg(struct lockdep_map *lock) 6122 { 6123 struct pending_free *pf; 6124 unsigned long flags; 6125 int locked; 6126 6127 raw_local_irq_save(flags); 6128 locked = graph_lock(); 6129 if (!locked) 6130 goto out_irq; 6131 6132 pf = get_pending_free(); 6133 __lockdep_reset_lock(pf, lock); 6134 call_rcu_zapped(pf); 6135 6136 graph_unlock(); 6137 out_irq: 6138 raw_local_irq_restore(flags); 6139 } 6140 6141 /* 6142 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the 6143 * lockdep selftests. 6144 */ 6145 static void lockdep_reset_lock_imm(struct lockdep_map *lock) 6146 { 6147 struct pending_free *pf = delayed_free.pf; 6148 unsigned long flags; 6149 6150 raw_local_irq_save(flags); 6151 lockdep_lock(); 6152 __lockdep_reset_lock(pf, lock); 6153 __free_zapped_classes(pf); 6154 lockdep_unlock(); 6155 raw_local_irq_restore(flags); 6156 } 6157 6158 void lockdep_reset_lock(struct lockdep_map *lock) 6159 { 6160 init_data_structures_once(); 6161 6162 if (inside_selftest()) 6163 lockdep_reset_lock_imm(lock); 6164 else 6165 lockdep_reset_lock_reg(lock); 6166 } 6167 6168 /* Unregister a dynamically allocated key. */ 6169 void lockdep_unregister_key(struct lock_class_key *key) 6170 { 6171 struct hlist_head *hash_head = keyhashentry(key); 6172 struct lock_class_key *k; 6173 struct pending_free *pf; 6174 unsigned long flags; 6175 bool found = false; 6176 6177 might_sleep(); 6178 6179 if (WARN_ON_ONCE(static_obj(key))) 6180 return; 6181 6182 raw_local_irq_save(flags); 6183 if (!graph_lock()) 6184 goto out_irq; 6185 6186 pf = get_pending_free(); 6187 hlist_for_each_entry_rcu(k, hash_head, hash_entry) { 6188 if (k == key) { 6189 hlist_del_rcu(&k->hash_entry); 6190 found = true; 6191 break; 6192 } 6193 } 6194 WARN_ON_ONCE(!found); 6195 __lockdep_free_key_range(pf, key, 1); 6196 call_rcu_zapped(pf); 6197 graph_unlock(); 6198 out_irq: 6199 raw_local_irq_restore(flags); 6200 6201 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */ 6202 synchronize_rcu(); 6203 } 6204 EXPORT_SYMBOL_GPL(lockdep_unregister_key); 6205 6206 void __init lockdep_init(void) 6207 { 6208 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n"); 6209 6210 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES); 6211 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH); 6212 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS); 6213 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE); 6214 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES); 6215 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS); 6216 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE); 6217 6218 printk(" memory used by lock dependency info: %zu kB\n", 6219 (sizeof(lock_classes) + 6220 sizeof(lock_classes_in_use) + 6221 sizeof(classhash_table) + 6222 sizeof(list_entries) + 6223 sizeof(list_entries_in_use) + 6224 sizeof(chainhash_table) + 6225 sizeof(delayed_free) 6226 #ifdef CONFIG_PROVE_LOCKING 6227 + sizeof(lock_cq) 6228 + sizeof(lock_chains) 6229 + sizeof(lock_chains_in_use) 6230 + sizeof(chain_hlocks) 6231 #endif 6232 ) / 1024 6233 ); 6234 6235 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING) 6236 printk(" memory used for stack traces: %zu kB\n", 6237 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024 6238 ); 6239 #endif 6240 6241 printk(" per task-struct memory footprint: %zu bytes\n", 6242 sizeof(((struct task_struct *)NULL)->held_locks)); 6243 } 6244 6245 static void 6246 print_freed_lock_bug(struct task_struct *curr, const void *mem_from, 6247 const void *mem_to, struct held_lock *hlock) 6248 { 6249 if (!debug_locks_off()) 6250 return; 6251 if (debug_locks_silent) 6252 return; 6253 6254 pr_warn("\n"); 6255 pr_warn("=========================\n"); 6256 pr_warn("WARNING: held lock freed!\n"); 6257 print_kernel_ident(); 6258 pr_warn("-------------------------\n"); 6259 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n", 6260 curr->comm, task_pid_nr(curr), mem_from, mem_to-1); 6261 print_lock(hlock); 6262 lockdep_print_held_locks(curr); 6263 6264 pr_warn("\nstack backtrace:\n"); 6265 dump_stack(); 6266 } 6267 6268 static inline int not_in_range(const void* mem_from, unsigned long mem_len, 6269 const void* lock_from, unsigned long lock_len) 6270 { 6271 return lock_from + lock_len <= mem_from || 6272 mem_from + mem_len <= lock_from; 6273 } 6274 6275 /* 6276 * Called when kernel memory is freed (or unmapped), or if a lock 6277 * is destroyed or reinitialized - this code checks whether there is 6278 * any held lock in the memory range of <from> to <to>: 6279 */ 6280 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len) 6281 { 6282 struct task_struct *curr = current; 6283 struct held_lock *hlock; 6284 unsigned long flags; 6285 int i; 6286 6287 if (unlikely(!debug_locks)) 6288 return; 6289 6290 raw_local_irq_save(flags); 6291 for (i = 0; i < curr->lockdep_depth; i++) { 6292 hlock = curr->held_locks + i; 6293 6294 if (not_in_range(mem_from, mem_len, hlock->instance, 6295 sizeof(*hlock->instance))) 6296 continue; 6297 6298 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock); 6299 break; 6300 } 6301 raw_local_irq_restore(flags); 6302 } 6303 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed); 6304 6305 static void print_held_locks_bug(void) 6306 { 6307 if (!debug_locks_off()) 6308 return; 6309 if (debug_locks_silent) 6310 return; 6311 6312 pr_warn("\n"); 6313 pr_warn("====================================\n"); 6314 pr_warn("WARNING: %s/%d still has locks held!\n", 6315 current->comm, task_pid_nr(current)); 6316 print_kernel_ident(); 6317 pr_warn("------------------------------------\n"); 6318 lockdep_print_held_locks(current); 6319 pr_warn("\nstack backtrace:\n"); 6320 dump_stack(); 6321 } 6322 6323 void debug_check_no_locks_held(void) 6324 { 6325 if (unlikely(current->lockdep_depth > 0)) 6326 print_held_locks_bug(); 6327 } 6328 EXPORT_SYMBOL_GPL(debug_check_no_locks_held); 6329 6330 #ifdef __KERNEL__ 6331 void debug_show_all_locks(void) 6332 { 6333 struct task_struct *g, *p; 6334 6335 if (unlikely(!debug_locks)) { 6336 pr_warn("INFO: lockdep is turned off.\n"); 6337 return; 6338 } 6339 pr_warn("\nShowing all locks held in the system:\n"); 6340 6341 rcu_read_lock(); 6342 for_each_process_thread(g, p) { 6343 if (!p->lockdep_depth) 6344 continue; 6345 lockdep_print_held_locks(p); 6346 touch_nmi_watchdog(); 6347 touch_all_softlockup_watchdogs(); 6348 } 6349 rcu_read_unlock(); 6350 6351 pr_warn("\n"); 6352 pr_warn("=============================================\n\n"); 6353 } 6354 EXPORT_SYMBOL_GPL(debug_show_all_locks); 6355 #endif 6356 6357 /* 6358 * Careful: only use this function if you are sure that 6359 * the task cannot run in parallel! 6360 */ 6361 void debug_show_held_locks(struct task_struct *task) 6362 { 6363 if (unlikely(!debug_locks)) { 6364 printk("INFO: lockdep is turned off.\n"); 6365 return; 6366 } 6367 lockdep_print_held_locks(task); 6368 } 6369 EXPORT_SYMBOL_GPL(debug_show_held_locks); 6370 6371 asmlinkage __visible void lockdep_sys_exit(void) 6372 { 6373 struct task_struct *curr = current; 6374 6375 if (unlikely(curr->lockdep_depth)) { 6376 if (!debug_locks_off()) 6377 return; 6378 pr_warn("\n"); 6379 pr_warn("================================================\n"); 6380 pr_warn("WARNING: lock held when returning to user space!\n"); 6381 print_kernel_ident(); 6382 pr_warn("------------------------------------------------\n"); 6383 pr_warn("%s/%d is leaving the kernel with locks still held!\n", 6384 curr->comm, curr->pid); 6385 lockdep_print_held_locks(curr); 6386 } 6387 6388 /* 6389 * The lock history for each syscall should be independent. So wipe the 6390 * slate clean on return to userspace. 6391 */ 6392 lockdep_invariant_state(false); 6393 } 6394 6395 void lockdep_rcu_suspicious(const char *file, const int line, const char *s) 6396 { 6397 struct task_struct *curr = current; 6398 6399 /* Note: the following can be executed concurrently, so be careful. */ 6400 pr_warn("\n"); 6401 pr_warn("=============================\n"); 6402 pr_warn("WARNING: suspicious RCU usage\n"); 6403 print_kernel_ident(); 6404 pr_warn("-----------------------------\n"); 6405 pr_warn("%s:%d %s!\n", file, line, s); 6406 pr_warn("\nother info that might help us debug this:\n\n"); 6407 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n", 6408 !rcu_lockdep_current_cpu_online() 6409 ? "RCU used illegally from offline CPU!\n" 6410 : "", 6411 rcu_scheduler_active, debug_locks); 6412 6413 /* 6414 * If a CPU is in the RCU-free window in idle (ie: in the section 6415 * between rcu_idle_enter() and rcu_idle_exit(), then RCU 6416 * considers that CPU to be in an "extended quiescent state", 6417 * which means that RCU will be completely ignoring that CPU. 6418 * Therefore, rcu_read_lock() and friends have absolutely no 6419 * effect on a CPU running in that state. In other words, even if 6420 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well 6421 * delete data structures out from under it. RCU really has no 6422 * choice here: we need to keep an RCU-free window in idle where 6423 * the CPU may possibly enter into low power mode. This way we can 6424 * notice an extended quiescent state to other CPUs that started a grace 6425 * period. Otherwise we would delay any grace period as long as we run 6426 * in the idle task. 6427 * 6428 * So complain bitterly if someone does call rcu_read_lock(), 6429 * rcu_read_lock_bh() and so on from extended quiescent states. 6430 */ 6431 if (!rcu_is_watching()) 6432 pr_warn("RCU used illegally from extended quiescent state!\n"); 6433 6434 lockdep_print_held_locks(curr); 6435 pr_warn("\nstack backtrace:\n"); 6436 dump_stack(); 6437 } 6438 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious); 6439