xref: /openbmc/linux/kernel/livepatch/transition.c (revision df0e68c1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * transition.c - Kernel Live Patching transition functions
4  *
5  * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/cpu.h>
11 #include <linux/stacktrace.h>
12 #include <linux/tracehook.h>
13 #include "core.h"
14 #include "patch.h"
15 #include "transition.h"
16 
17 #define MAX_STACK_ENTRIES  100
18 #define STACK_ERR_BUF_SIZE 128
19 
20 #define SIGNALS_TIMEOUT 15
21 
22 struct klp_patch *klp_transition_patch;
23 
24 static int klp_target_state = KLP_UNDEFINED;
25 
26 static unsigned int klp_signals_cnt;
27 
28 /*
29  * This work can be performed periodically to finish patching or unpatching any
30  * "straggler" tasks which failed to transition in the first attempt.
31  */
32 static void klp_transition_work_fn(struct work_struct *work)
33 {
34 	mutex_lock(&klp_mutex);
35 
36 	if (klp_transition_patch)
37 		klp_try_complete_transition();
38 
39 	mutex_unlock(&klp_mutex);
40 }
41 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
42 
43 /*
44  * This function is just a stub to implement a hard force
45  * of synchronize_rcu(). This requires synchronizing
46  * tasks even in userspace and idle.
47  */
48 static void klp_sync(struct work_struct *work)
49 {
50 }
51 
52 /*
53  * We allow to patch also functions where RCU is not watching,
54  * e.g. before user_exit(). We can not rely on the RCU infrastructure
55  * to do the synchronization. Instead hard force the sched synchronization.
56  *
57  * This approach allows to use RCU functions for manipulating func_stack
58  * safely.
59  */
60 static void klp_synchronize_transition(void)
61 {
62 	schedule_on_each_cpu(klp_sync);
63 }
64 
65 /*
66  * The transition to the target patch state is complete.  Clean up the data
67  * structures.
68  */
69 static void klp_complete_transition(void)
70 {
71 	struct klp_object *obj;
72 	struct klp_func *func;
73 	struct task_struct *g, *task;
74 	unsigned int cpu;
75 
76 	pr_debug("'%s': completing %s transition\n",
77 		 klp_transition_patch->mod->name,
78 		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
79 
80 	if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
81 		klp_unpatch_replaced_patches(klp_transition_patch);
82 		klp_discard_nops(klp_transition_patch);
83 	}
84 
85 	if (klp_target_state == KLP_UNPATCHED) {
86 		/*
87 		 * All tasks have transitioned to KLP_UNPATCHED so we can now
88 		 * remove the new functions from the func_stack.
89 		 */
90 		klp_unpatch_objects(klp_transition_patch);
91 
92 		/*
93 		 * Make sure klp_ftrace_handler() can no longer see functions
94 		 * from this patch on the ops->func_stack.  Otherwise, after
95 		 * func->transition gets cleared, the handler may choose a
96 		 * removed function.
97 		 */
98 		klp_synchronize_transition();
99 	}
100 
101 	klp_for_each_object(klp_transition_patch, obj)
102 		klp_for_each_func(obj, func)
103 			func->transition = false;
104 
105 	/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
106 	if (klp_target_state == KLP_PATCHED)
107 		klp_synchronize_transition();
108 
109 	read_lock(&tasklist_lock);
110 	for_each_process_thread(g, task) {
111 		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
112 		task->patch_state = KLP_UNDEFINED;
113 	}
114 	read_unlock(&tasklist_lock);
115 
116 	for_each_possible_cpu(cpu) {
117 		task = idle_task(cpu);
118 		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
119 		task->patch_state = KLP_UNDEFINED;
120 	}
121 
122 	klp_for_each_object(klp_transition_patch, obj) {
123 		if (!klp_is_object_loaded(obj))
124 			continue;
125 		if (klp_target_state == KLP_PATCHED)
126 			klp_post_patch_callback(obj);
127 		else if (klp_target_state == KLP_UNPATCHED)
128 			klp_post_unpatch_callback(obj);
129 	}
130 
131 	pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
132 		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
133 
134 	klp_target_state = KLP_UNDEFINED;
135 	klp_transition_patch = NULL;
136 }
137 
138 /*
139  * This is called in the error path, to cancel a transition before it has
140  * started, i.e. klp_init_transition() has been called but
141  * klp_start_transition() hasn't.  If the transition *has* been started,
142  * klp_reverse_transition() should be used instead.
143  */
144 void klp_cancel_transition(void)
145 {
146 	if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
147 		return;
148 
149 	pr_debug("'%s': canceling patching transition, going to unpatch\n",
150 		 klp_transition_patch->mod->name);
151 
152 	klp_target_state = KLP_UNPATCHED;
153 	klp_complete_transition();
154 }
155 
156 /*
157  * Switch the patched state of the task to the set of functions in the target
158  * patch state.
159  *
160  * NOTE: If task is not 'current', the caller must ensure the task is inactive.
161  * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
162  */
163 void klp_update_patch_state(struct task_struct *task)
164 {
165 	/*
166 	 * A variant of synchronize_rcu() is used to allow patching functions
167 	 * where RCU is not watching, see klp_synchronize_transition().
168 	 */
169 	preempt_disable_notrace();
170 
171 	/*
172 	 * This test_and_clear_tsk_thread_flag() call also serves as a read
173 	 * barrier (smp_rmb) for two cases:
174 	 *
175 	 * 1) Enforce the order of the TIF_PATCH_PENDING read and the
176 	 *    klp_target_state read.  The corresponding write barrier is in
177 	 *    klp_init_transition().
178 	 *
179 	 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
180 	 *    of func->transition, if klp_ftrace_handler() is called later on
181 	 *    the same CPU.  See __klp_disable_patch().
182 	 */
183 	if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
184 		task->patch_state = READ_ONCE(klp_target_state);
185 
186 	preempt_enable_notrace();
187 }
188 
189 /*
190  * Determine whether the given stack trace includes any references to a
191  * to-be-patched or to-be-unpatched function.
192  */
193 static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
194 				unsigned int nr_entries)
195 {
196 	unsigned long func_addr, func_size, address;
197 	struct klp_ops *ops;
198 	int i;
199 
200 	for (i = 0; i < nr_entries; i++) {
201 		address = entries[i];
202 
203 		if (klp_target_state == KLP_UNPATCHED) {
204 			 /*
205 			  * Check for the to-be-unpatched function
206 			  * (the func itself).
207 			  */
208 			func_addr = (unsigned long)func->new_func;
209 			func_size = func->new_size;
210 		} else {
211 			/*
212 			 * Check for the to-be-patched function
213 			 * (the previous func).
214 			 */
215 			ops = klp_find_ops(func->old_func);
216 
217 			if (list_is_singular(&ops->func_stack)) {
218 				/* original function */
219 				func_addr = (unsigned long)func->old_func;
220 				func_size = func->old_size;
221 			} else {
222 				/* previously patched function */
223 				struct klp_func *prev;
224 
225 				prev = list_next_entry(func, stack_node);
226 				func_addr = (unsigned long)prev->new_func;
227 				func_size = prev->new_size;
228 			}
229 		}
230 
231 		if (address >= func_addr && address < func_addr + func_size)
232 			return -EAGAIN;
233 	}
234 
235 	return 0;
236 }
237 
238 /*
239  * Determine whether it's safe to transition the task to the target patch state
240  * by looking for any to-be-patched or to-be-unpatched functions on its stack.
241  */
242 static int klp_check_stack(struct task_struct *task, const char **oldname)
243 {
244 	static unsigned long entries[MAX_STACK_ENTRIES];
245 	struct klp_object *obj;
246 	struct klp_func *func;
247 	int ret, nr_entries;
248 
249 	ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries));
250 	if (ret < 0)
251 		return -EINVAL;
252 	nr_entries = ret;
253 
254 	klp_for_each_object(klp_transition_patch, obj) {
255 		if (!obj->patched)
256 			continue;
257 		klp_for_each_func(obj, func) {
258 			ret = klp_check_stack_func(func, entries, nr_entries);
259 			if (ret) {
260 				*oldname = func->old_name;
261 				return -EADDRINUSE;
262 			}
263 		}
264 	}
265 
266 	return 0;
267 }
268 
269 static int klp_check_and_switch_task(struct task_struct *task, void *arg)
270 {
271 	int ret;
272 
273 	if (task_curr(task) && task != current)
274 		return -EBUSY;
275 
276 	ret = klp_check_stack(task, arg);
277 	if (ret)
278 		return ret;
279 
280 	clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
281 	task->patch_state = klp_target_state;
282 	return 0;
283 }
284 
285 /*
286  * Try to safely switch a task to the target patch state.  If it's currently
287  * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
288  * if the stack is unreliable, return false.
289  */
290 static bool klp_try_switch_task(struct task_struct *task)
291 {
292 	const char *old_name;
293 	int ret;
294 
295 	/* check if this task has already switched over */
296 	if (task->patch_state == klp_target_state)
297 		return true;
298 
299 	/*
300 	 * For arches which don't have reliable stack traces, we have to rely
301 	 * on other methods (e.g., switching tasks at kernel exit).
302 	 */
303 	if (!klp_have_reliable_stack())
304 		return false;
305 
306 	/*
307 	 * Now try to check the stack for any to-be-patched or to-be-unpatched
308 	 * functions.  If all goes well, switch the task to the target patch
309 	 * state.
310 	 */
311 	ret = task_call_func(task, klp_check_and_switch_task, &old_name);
312 	switch (ret) {
313 	case 0:		/* success */
314 		break;
315 
316 	case -EBUSY:	/* klp_check_and_switch_task() */
317 		pr_debug("%s: %s:%d is running\n",
318 			 __func__, task->comm, task->pid);
319 		break;
320 	case -EINVAL:	/* klp_check_and_switch_task() */
321 		pr_debug("%s: %s:%d has an unreliable stack\n",
322 			 __func__, task->comm, task->pid);
323 		break;
324 	case -EADDRINUSE: /* klp_check_and_switch_task() */
325 		pr_debug("%s: %s:%d is sleeping on function %s\n",
326 			 __func__, task->comm, task->pid, old_name);
327 		break;
328 
329 	default:
330 		pr_debug("%s: Unknown error code (%d) when trying to switch %s:%d\n",
331 			 __func__, ret, task->comm, task->pid);
332 		break;
333 	}
334 
335 	return !ret;
336 }
337 
338 /*
339  * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
340  * Kthreads with TIF_PATCH_PENDING set are woken up.
341  */
342 static void klp_send_signals(void)
343 {
344 	struct task_struct *g, *task;
345 
346 	if (klp_signals_cnt == SIGNALS_TIMEOUT)
347 		pr_notice("signaling remaining tasks\n");
348 
349 	read_lock(&tasklist_lock);
350 	for_each_process_thread(g, task) {
351 		if (!klp_patch_pending(task))
352 			continue;
353 
354 		/*
355 		 * There is a small race here. We could see TIF_PATCH_PENDING
356 		 * set and decide to wake up a kthread or send a fake signal.
357 		 * Meanwhile the task could migrate itself and the action
358 		 * would be meaningless. It is not serious though.
359 		 */
360 		if (task->flags & PF_KTHREAD) {
361 			/*
362 			 * Wake up a kthread which sleeps interruptedly and
363 			 * still has not been migrated.
364 			 */
365 			wake_up_state(task, TASK_INTERRUPTIBLE);
366 		} else {
367 			/*
368 			 * Send fake signal to all non-kthread tasks which are
369 			 * still not migrated.
370 			 */
371 			set_notify_signal(task);
372 		}
373 	}
374 	read_unlock(&tasklist_lock);
375 }
376 
377 /*
378  * Try to switch all remaining tasks to the target patch state by walking the
379  * stacks of sleeping tasks and looking for any to-be-patched or
380  * to-be-unpatched functions.  If such functions are found, the task can't be
381  * switched yet.
382  *
383  * If any tasks are still stuck in the initial patch state, schedule a retry.
384  */
385 void klp_try_complete_transition(void)
386 {
387 	unsigned int cpu;
388 	struct task_struct *g, *task;
389 	struct klp_patch *patch;
390 	bool complete = true;
391 
392 	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
393 
394 	/*
395 	 * Try to switch the tasks to the target patch state by walking their
396 	 * stacks and looking for any to-be-patched or to-be-unpatched
397 	 * functions.  If such functions are found on a stack, or if the stack
398 	 * is deemed unreliable, the task can't be switched yet.
399 	 *
400 	 * Usually this will transition most (or all) of the tasks on a system
401 	 * unless the patch includes changes to a very common function.
402 	 */
403 	read_lock(&tasklist_lock);
404 	for_each_process_thread(g, task)
405 		if (!klp_try_switch_task(task))
406 			complete = false;
407 	read_unlock(&tasklist_lock);
408 
409 	/*
410 	 * Ditto for the idle "swapper" tasks.
411 	 */
412 	cpus_read_lock();
413 	for_each_possible_cpu(cpu) {
414 		task = idle_task(cpu);
415 		if (cpu_online(cpu)) {
416 			if (!klp_try_switch_task(task)) {
417 				complete = false;
418 				/* Make idle task go through the main loop. */
419 				wake_up_if_idle(cpu);
420 			}
421 		} else if (task->patch_state != klp_target_state) {
422 			/* offline idle tasks can be switched immediately */
423 			clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
424 			task->patch_state = klp_target_state;
425 		}
426 	}
427 	cpus_read_unlock();
428 
429 	if (!complete) {
430 		if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
431 			klp_send_signals();
432 		klp_signals_cnt++;
433 
434 		/*
435 		 * Some tasks weren't able to be switched over.  Try again
436 		 * later and/or wait for other methods like kernel exit
437 		 * switching.
438 		 */
439 		schedule_delayed_work(&klp_transition_work,
440 				      round_jiffies_relative(HZ));
441 		return;
442 	}
443 
444 	/* we're done, now cleanup the data structures */
445 	patch = klp_transition_patch;
446 	klp_complete_transition();
447 
448 	/*
449 	 * It would make more sense to free the unused patches in
450 	 * klp_complete_transition() but it is called also
451 	 * from klp_cancel_transition().
452 	 */
453 	if (!patch->enabled)
454 		klp_free_patch_async(patch);
455 	else if (patch->replace)
456 		klp_free_replaced_patches_async(patch);
457 }
458 
459 /*
460  * Start the transition to the specified target patch state so tasks can begin
461  * switching to it.
462  */
463 void klp_start_transition(void)
464 {
465 	struct task_struct *g, *task;
466 	unsigned int cpu;
467 
468 	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
469 
470 	pr_notice("'%s': starting %s transition\n",
471 		  klp_transition_patch->mod->name,
472 		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
473 
474 	/*
475 	 * Mark all normal tasks as needing a patch state update.  They'll
476 	 * switch either in klp_try_complete_transition() or as they exit the
477 	 * kernel.
478 	 */
479 	read_lock(&tasklist_lock);
480 	for_each_process_thread(g, task)
481 		if (task->patch_state != klp_target_state)
482 			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
483 	read_unlock(&tasklist_lock);
484 
485 	/*
486 	 * Mark all idle tasks as needing a patch state update.  They'll switch
487 	 * either in klp_try_complete_transition() or at the idle loop switch
488 	 * point.
489 	 */
490 	for_each_possible_cpu(cpu) {
491 		task = idle_task(cpu);
492 		if (task->patch_state != klp_target_state)
493 			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
494 	}
495 
496 	klp_signals_cnt = 0;
497 }
498 
499 /*
500  * Initialize the global target patch state and all tasks to the initial patch
501  * state, and initialize all function transition states to true in preparation
502  * for patching or unpatching.
503  */
504 void klp_init_transition(struct klp_patch *patch, int state)
505 {
506 	struct task_struct *g, *task;
507 	unsigned int cpu;
508 	struct klp_object *obj;
509 	struct klp_func *func;
510 	int initial_state = !state;
511 
512 	WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
513 
514 	klp_transition_patch = patch;
515 
516 	/*
517 	 * Set the global target patch state which tasks will switch to.  This
518 	 * has no effect until the TIF_PATCH_PENDING flags get set later.
519 	 */
520 	klp_target_state = state;
521 
522 	pr_debug("'%s': initializing %s transition\n", patch->mod->name,
523 		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
524 
525 	/*
526 	 * Initialize all tasks to the initial patch state to prepare them for
527 	 * switching to the target state.
528 	 */
529 	read_lock(&tasklist_lock);
530 	for_each_process_thread(g, task) {
531 		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
532 		task->patch_state = initial_state;
533 	}
534 	read_unlock(&tasklist_lock);
535 
536 	/*
537 	 * Ditto for the idle "swapper" tasks.
538 	 */
539 	for_each_possible_cpu(cpu) {
540 		task = idle_task(cpu);
541 		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
542 		task->patch_state = initial_state;
543 	}
544 
545 	/*
546 	 * Enforce the order of the task->patch_state initializations and the
547 	 * func->transition updates to ensure that klp_ftrace_handler() doesn't
548 	 * see a func in transition with a task->patch_state of KLP_UNDEFINED.
549 	 *
550 	 * Also enforce the order of the klp_target_state write and future
551 	 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
552 	 * set a task->patch_state to KLP_UNDEFINED.
553 	 */
554 	smp_wmb();
555 
556 	/*
557 	 * Set the func transition states so klp_ftrace_handler() will know to
558 	 * switch to the transition logic.
559 	 *
560 	 * When patching, the funcs aren't yet in the func_stack and will be
561 	 * made visible to the ftrace handler shortly by the calls to
562 	 * klp_patch_object().
563 	 *
564 	 * When unpatching, the funcs are already in the func_stack and so are
565 	 * already visible to the ftrace handler.
566 	 */
567 	klp_for_each_object(patch, obj)
568 		klp_for_each_func(obj, func)
569 			func->transition = true;
570 }
571 
572 /*
573  * This function can be called in the middle of an existing transition to
574  * reverse the direction of the target patch state.  This can be done to
575  * effectively cancel an existing enable or disable operation if there are any
576  * tasks which are stuck in the initial patch state.
577  */
578 void klp_reverse_transition(void)
579 {
580 	unsigned int cpu;
581 	struct task_struct *g, *task;
582 
583 	pr_debug("'%s': reversing transition from %s\n",
584 		 klp_transition_patch->mod->name,
585 		 klp_target_state == KLP_PATCHED ? "patching to unpatching" :
586 						   "unpatching to patching");
587 
588 	klp_transition_patch->enabled = !klp_transition_patch->enabled;
589 
590 	klp_target_state = !klp_target_state;
591 
592 	/*
593 	 * Clear all TIF_PATCH_PENDING flags to prevent races caused by
594 	 * klp_update_patch_state() running in parallel with
595 	 * klp_start_transition().
596 	 */
597 	read_lock(&tasklist_lock);
598 	for_each_process_thread(g, task)
599 		clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
600 	read_unlock(&tasklist_lock);
601 
602 	for_each_possible_cpu(cpu)
603 		clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
604 
605 	/* Let any remaining calls to klp_update_patch_state() complete */
606 	klp_synchronize_transition();
607 
608 	klp_start_transition();
609 }
610 
611 /* Called from copy_process() during fork */
612 void klp_copy_process(struct task_struct *child)
613 {
614 	child->patch_state = current->patch_state;
615 
616 	/* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
617 }
618 
619 /*
620  * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
621  * existing transition to finish.
622  *
623  * NOTE: klp_update_patch_state(task) requires the task to be inactive or
624  * 'current'. This is not the case here and the consistency model could be
625  * broken. Administrator, who is the only one to execute the
626  * klp_force_transitions(), has to be aware of this.
627  */
628 void klp_force_transition(void)
629 {
630 	struct klp_patch *patch;
631 	struct task_struct *g, *task;
632 	unsigned int cpu;
633 
634 	pr_warn("forcing remaining tasks to the patched state\n");
635 
636 	read_lock(&tasklist_lock);
637 	for_each_process_thread(g, task)
638 		klp_update_patch_state(task);
639 	read_unlock(&tasklist_lock);
640 
641 	for_each_possible_cpu(cpu)
642 		klp_update_patch_state(idle_task(cpu));
643 
644 	klp_for_each_patch(patch)
645 		patch->forced = true;
646 }
647