xref: /openbmc/linux/kernel/livepatch/transition.c (revision bb3982b4)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * transition.c - Kernel Live Patching transition functions
4  *
5  * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/cpu.h>
11 #include <linux/stacktrace.h>
12 #include "core.h"
13 #include "patch.h"
14 #include "transition.h"
15 #include "../sched/sched.h"
16 
17 #define MAX_STACK_ENTRIES  100
18 #define STACK_ERR_BUF_SIZE 128
19 
20 #define SIGNALS_TIMEOUT 15
21 
22 struct klp_patch *klp_transition_patch;
23 
24 static int klp_target_state = KLP_UNDEFINED;
25 
26 static unsigned int klp_signals_cnt;
27 
28 /*
29  * This work can be performed periodically to finish patching or unpatching any
30  * "straggler" tasks which failed to transition in the first attempt.
31  */
32 static void klp_transition_work_fn(struct work_struct *work)
33 {
34 	mutex_lock(&klp_mutex);
35 
36 	if (klp_transition_patch)
37 		klp_try_complete_transition();
38 
39 	mutex_unlock(&klp_mutex);
40 }
41 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
42 
43 /*
44  * This function is just a stub to implement a hard force
45  * of synchronize_rcu(). This requires synchronizing
46  * tasks even in userspace and idle.
47  */
48 static void klp_sync(struct work_struct *work)
49 {
50 }
51 
52 /*
53  * We allow to patch also functions where RCU is not watching,
54  * e.g. before user_exit(). We can not rely on the RCU infrastructure
55  * to do the synchronization. Instead hard force the sched synchronization.
56  *
57  * This approach allows to use RCU functions for manipulating func_stack
58  * safely.
59  */
60 static void klp_synchronize_transition(void)
61 {
62 	schedule_on_each_cpu(klp_sync);
63 }
64 
65 /*
66  * The transition to the target patch state is complete.  Clean up the data
67  * structures.
68  */
69 static void klp_complete_transition(void)
70 {
71 	struct klp_object *obj;
72 	struct klp_func *func;
73 	struct task_struct *g, *task;
74 	unsigned int cpu;
75 
76 	pr_debug("'%s': completing %s transition\n",
77 		 klp_transition_patch->mod->name,
78 		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
79 
80 	if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
81 		klp_discard_replaced_patches(klp_transition_patch);
82 		klp_discard_nops(klp_transition_patch);
83 	}
84 
85 	if (klp_target_state == KLP_UNPATCHED) {
86 		/*
87 		 * All tasks have transitioned to KLP_UNPATCHED so we can now
88 		 * remove the new functions from the func_stack.
89 		 */
90 		klp_unpatch_objects(klp_transition_patch);
91 
92 		/*
93 		 * Make sure klp_ftrace_handler() can no longer see functions
94 		 * from this patch on the ops->func_stack.  Otherwise, after
95 		 * func->transition gets cleared, the handler may choose a
96 		 * removed function.
97 		 */
98 		klp_synchronize_transition();
99 	}
100 
101 	klp_for_each_object(klp_transition_patch, obj)
102 		klp_for_each_func(obj, func)
103 			func->transition = false;
104 
105 	/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
106 	if (klp_target_state == KLP_PATCHED)
107 		klp_synchronize_transition();
108 
109 	read_lock(&tasklist_lock);
110 	for_each_process_thread(g, task) {
111 		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
112 		task->patch_state = KLP_UNDEFINED;
113 	}
114 	read_unlock(&tasklist_lock);
115 
116 	for_each_possible_cpu(cpu) {
117 		task = idle_task(cpu);
118 		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
119 		task->patch_state = KLP_UNDEFINED;
120 	}
121 
122 	klp_for_each_object(klp_transition_patch, obj) {
123 		if (!klp_is_object_loaded(obj))
124 			continue;
125 		if (klp_target_state == KLP_PATCHED)
126 			klp_post_patch_callback(obj);
127 		else if (klp_target_state == KLP_UNPATCHED)
128 			klp_post_unpatch_callback(obj);
129 	}
130 
131 	pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
132 		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
133 
134 	klp_target_state = KLP_UNDEFINED;
135 	klp_transition_patch = NULL;
136 }
137 
138 /*
139  * This is called in the error path, to cancel a transition before it has
140  * started, i.e. klp_init_transition() has been called but
141  * klp_start_transition() hasn't.  If the transition *has* been started,
142  * klp_reverse_transition() should be used instead.
143  */
144 void klp_cancel_transition(void)
145 {
146 	if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
147 		return;
148 
149 	pr_debug("'%s': canceling patching transition, going to unpatch\n",
150 		 klp_transition_patch->mod->name);
151 
152 	klp_target_state = KLP_UNPATCHED;
153 	klp_complete_transition();
154 }
155 
156 /*
157  * Switch the patched state of the task to the set of functions in the target
158  * patch state.
159  *
160  * NOTE: If task is not 'current', the caller must ensure the task is inactive.
161  * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
162  */
163 void klp_update_patch_state(struct task_struct *task)
164 {
165 	/*
166 	 * A variant of synchronize_rcu() is used to allow patching functions
167 	 * where RCU is not watching, see klp_synchronize_transition().
168 	 */
169 	preempt_disable_notrace();
170 
171 	/*
172 	 * This test_and_clear_tsk_thread_flag() call also serves as a read
173 	 * barrier (smp_rmb) for two cases:
174 	 *
175 	 * 1) Enforce the order of the TIF_PATCH_PENDING read and the
176 	 *    klp_target_state read.  The corresponding write barrier is in
177 	 *    klp_init_transition().
178 	 *
179 	 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
180 	 *    of func->transition, if klp_ftrace_handler() is called later on
181 	 *    the same CPU.  See __klp_disable_patch().
182 	 */
183 	if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
184 		task->patch_state = READ_ONCE(klp_target_state);
185 
186 	preempt_enable_notrace();
187 }
188 
189 /*
190  * Determine whether the given stack trace includes any references to a
191  * to-be-patched or to-be-unpatched function.
192  */
193 static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
194 				unsigned int nr_entries)
195 {
196 	unsigned long func_addr, func_size, address;
197 	struct klp_ops *ops;
198 	int i;
199 
200 	for (i = 0; i < nr_entries; i++) {
201 		address = entries[i];
202 
203 		if (klp_target_state == KLP_UNPATCHED) {
204 			 /*
205 			  * Check for the to-be-unpatched function
206 			  * (the func itself).
207 			  */
208 			func_addr = (unsigned long)func->new_func;
209 			func_size = func->new_size;
210 		} else {
211 			/*
212 			 * Check for the to-be-patched function
213 			 * (the previous func).
214 			 */
215 			ops = klp_find_ops(func->old_func);
216 
217 			if (list_is_singular(&ops->func_stack)) {
218 				/* original function */
219 				func_addr = (unsigned long)func->old_func;
220 				func_size = func->old_size;
221 			} else {
222 				/* previously patched function */
223 				struct klp_func *prev;
224 
225 				prev = list_next_entry(func, stack_node);
226 				func_addr = (unsigned long)prev->new_func;
227 				func_size = prev->new_size;
228 			}
229 		}
230 
231 		if (address >= func_addr && address < func_addr + func_size)
232 			return -EAGAIN;
233 	}
234 
235 	return 0;
236 }
237 
238 /*
239  * Determine whether it's safe to transition the task to the target patch state
240  * by looking for any to-be-patched or to-be-unpatched functions on its stack.
241  */
242 static int klp_check_stack(struct task_struct *task, char *err_buf)
243 {
244 	static unsigned long entries[MAX_STACK_ENTRIES];
245 	struct klp_object *obj;
246 	struct klp_func *func;
247 	int ret, nr_entries;
248 
249 	ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries));
250 	WARN_ON_ONCE(ret == -ENOSYS);
251 	if (ret < 0) {
252 		snprintf(err_buf, STACK_ERR_BUF_SIZE,
253 			 "%s: %s:%d has an unreliable stack\n",
254 			 __func__, task->comm, task->pid);
255 		return ret;
256 	}
257 	nr_entries = ret;
258 
259 	klp_for_each_object(klp_transition_patch, obj) {
260 		if (!obj->patched)
261 			continue;
262 		klp_for_each_func(obj, func) {
263 			ret = klp_check_stack_func(func, entries, nr_entries);
264 			if (ret) {
265 				snprintf(err_buf, STACK_ERR_BUF_SIZE,
266 					 "%s: %s:%d is sleeping on function %s\n",
267 					 __func__, task->comm, task->pid,
268 					 func->old_name);
269 				return ret;
270 			}
271 		}
272 	}
273 
274 	return 0;
275 }
276 
277 /*
278  * Try to safely switch a task to the target patch state.  If it's currently
279  * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
280  * if the stack is unreliable, return false.
281  */
282 static bool klp_try_switch_task(struct task_struct *task)
283 {
284 	struct rq *rq;
285 	struct rq_flags flags;
286 	int ret;
287 	bool success = false;
288 	char err_buf[STACK_ERR_BUF_SIZE];
289 
290 	err_buf[0] = '\0';
291 
292 	/* check if this task has already switched over */
293 	if (task->patch_state == klp_target_state)
294 		return true;
295 
296 	/*
297 	 * Now try to check the stack for any to-be-patched or to-be-unpatched
298 	 * functions.  If all goes well, switch the task to the target patch
299 	 * state.
300 	 */
301 	rq = task_rq_lock(task, &flags);
302 
303 	if (task_running(rq, task) && task != current) {
304 		snprintf(err_buf, STACK_ERR_BUF_SIZE,
305 			 "%s: %s:%d is running\n", __func__, task->comm,
306 			 task->pid);
307 		goto done;
308 	}
309 
310 	ret = klp_check_stack(task, err_buf);
311 	if (ret)
312 		goto done;
313 
314 	success = true;
315 
316 	clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
317 	task->patch_state = klp_target_state;
318 
319 done:
320 	task_rq_unlock(rq, task, &flags);
321 
322 	/*
323 	 * Due to console deadlock issues, pr_debug() can't be used while
324 	 * holding the task rq lock.  Instead we have to use a temporary buffer
325 	 * and print the debug message after releasing the lock.
326 	 */
327 	if (err_buf[0] != '\0')
328 		pr_debug("%s", err_buf);
329 
330 	return success;
331 
332 }
333 
334 /*
335  * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
336  * Kthreads with TIF_PATCH_PENDING set are woken up.
337  */
338 static void klp_send_signals(void)
339 {
340 	struct task_struct *g, *task;
341 
342 	if (klp_signals_cnt == SIGNALS_TIMEOUT)
343 		pr_notice("signaling remaining tasks\n");
344 
345 	read_lock(&tasklist_lock);
346 	for_each_process_thread(g, task) {
347 		if (!klp_patch_pending(task))
348 			continue;
349 
350 		/*
351 		 * There is a small race here. We could see TIF_PATCH_PENDING
352 		 * set and decide to wake up a kthread or send a fake signal.
353 		 * Meanwhile the task could migrate itself and the action
354 		 * would be meaningless. It is not serious though.
355 		 */
356 		if (task->flags & PF_KTHREAD) {
357 			/*
358 			 * Wake up a kthread which sleeps interruptedly and
359 			 * still has not been migrated.
360 			 */
361 			wake_up_state(task, TASK_INTERRUPTIBLE);
362 		} else {
363 			/*
364 			 * Send fake signal to all non-kthread tasks which are
365 			 * still not migrated.
366 			 */
367 			spin_lock_irq(&task->sighand->siglock);
368 			signal_wake_up(task, 0);
369 			spin_unlock_irq(&task->sighand->siglock);
370 		}
371 	}
372 	read_unlock(&tasklist_lock);
373 }
374 
375 /*
376  * Try to switch all remaining tasks to the target patch state by walking the
377  * stacks of sleeping tasks and looking for any to-be-patched or
378  * to-be-unpatched functions.  If such functions are found, the task can't be
379  * switched yet.
380  *
381  * If any tasks are still stuck in the initial patch state, schedule a retry.
382  */
383 void klp_try_complete_transition(void)
384 {
385 	unsigned int cpu;
386 	struct task_struct *g, *task;
387 	struct klp_patch *patch;
388 	bool complete = true;
389 
390 	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
391 
392 	/*
393 	 * Try to switch the tasks to the target patch state by walking their
394 	 * stacks and looking for any to-be-patched or to-be-unpatched
395 	 * functions.  If such functions are found on a stack, or if the stack
396 	 * is deemed unreliable, the task can't be switched yet.
397 	 *
398 	 * Usually this will transition most (or all) of the tasks on a system
399 	 * unless the patch includes changes to a very common function.
400 	 */
401 	read_lock(&tasklist_lock);
402 	for_each_process_thread(g, task)
403 		if (!klp_try_switch_task(task))
404 			complete = false;
405 	read_unlock(&tasklist_lock);
406 
407 	/*
408 	 * Ditto for the idle "swapper" tasks.
409 	 */
410 	get_online_cpus();
411 	for_each_possible_cpu(cpu) {
412 		task = idle_task(cpu);
413 		if (cpu_online(cpu)) {
414 			if (!klp_try_switch_task(task))
415 				complete = false;
416 		} else if (task->patch_state != klp_target_state) {
417 			/* offline idle tasks can be switched immediately */
418 			clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
419 			task->patch_state = klp_target_state;
420 		}
421 	}
422 	put_online_cpus();
423 
424 	if (!complete) {
425 		if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
426 			klp_send_signals();
427 		klp_signals_cnt++;
428 
429 		/*
430 		 * Some tasks weren't able to be switched over.  Try again
431 		 * later and/or wait for other methods like kernel exit
432 		 * switching.
433 		 */
434 		schedule_delayed_work(&klp_transition_work,
435 				      round_jiffies_relative(HZ));
436 		return;
437 	}
438 
439 	/* we're done, now cleanup the data structures */
440 	patch = klp_transition_patch;
441 	klp_complete_transition();
442 
443 	/*
444 	 * It would make more sense to free the patch in
445 	 * klp_complete_transition() but it is called also
446 	 * from klp_cancel_transition().
447 	 */
448 	if (!patch->enabled) {
449 		klp_free_patch_start(patch);
450 		schedule_work(&patch->free_work);
451 	}
452 }
453 
454 /*
455  * Start the transition to the specified target patch state so tasks can begin
456  * switching to it.
457  */
458 void klp_start_transition(void)
459 {
460 	struct task_struct *g, *task;
461 	unsigned int cpu;
462 
463 	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
464 
465 	pr_notice("'%s': starting %s transition\n",
466 		  klp_transition_patch->mod->name,
467 		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
468 
469 	/*
470 	 * Mark all normal tasks as needing a patch state update.  They'll
471 	 * switch either in klp_try_complete_transition() or as they exit the
472 	 * kernel.
473 	 */
474 	read_lock(&tasklist_lock);
475 	for_each_process_thread(g, task)
476 		if (task->patch_state != klp_target_state)
477 			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
478 	read_unlock(&tasklist_lock);
479 
480 	/*
481 	 * Mark all idle tasks as needing a patch state update.  They'll switch
482 	 * either in klp_try_complete_transition() or at the idle loop switch
483 	 * point.
484 	 */
485 	for_each_possible_cpu(cpu) {
486 		task = idle_task(cpu);
487 		if (task->patch_state != klp_target_state)
488 			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
489 	}
490 
491 	klp_signals_cnt = 0;
492 }
493 
494 /*
495  * Initialize the global target patch state and all tasks to the initial patch
496  * state, and initialize all function transition states to true in preparation
497  * for patching or unpatching.
498  */
499 void klp_init_transition(struct klp_patch *patch, int state)
500 {
501 	struct task_struct *g, *task;
502 	unsigned int cpu;
503 	struct klp_object *obj;
504 	struct klp_func *func;
505 	int initial_state = !state;
506 
507 	WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
508 
509 	klp_transition_patch = patch;
510 
511 	/*
512 	 * Set the global target patch state which tasks will switch to.  This
513 	 * has no effect until the TIF_PATCH_PENDING flags get set later.
514 	 */
515 	klp_target_state = state;
516 
517 	pr_debug("'%s': initializing %s transition\n", patch->mod->name,
518 		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
519 
520 	/*
521 	 * Initialize all tasks to the initial patch state to prepare them for
522 	 * switching to the target state.
523 	 */
524 	read_lock(&tasklist_lock);
525 	for_each_process_thread(g, task) {
526 		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
527 		task->patch_state = initial_state;
528 	}
529 	read_unlock(&tasklist_lock);
530 
531 	/*
532 	 * Ditto for the idle "swapper" tasks.
533 	 */
534 	for_each_possible_cpu(cpu) {
535 		task = idle_task(cpu);
536 		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
537 		task->patch_state = initial_state;
538 	}
539 
540 	/*
541 	 * Enforce the order of the task->patch_state initializations and the
542 	 * func->transition updates to ensure that klp_ftrace_handler() doesn't
543 	 * see a func in transition with a task->patch_state of KLP_UNDEFINED.
544 	 *
545 	 * Also enforce the order of the klp_target_state write and future
546 	 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
547 	 * set a task->patch_state to KLP_UNDEFINED.
548 	 */
549 	smp_wmb();
550 
551 	/*
552 	 * Set the func transition states so klp_ftrace_handler() will know to
553 	 * switch to the transition logic.
554 	 *
555 	 * When patching, the funcs aren't yet in the func_stack and will be
556 	 * made visible to the ftrace handler shortly by the calls to
557 	 * klp_patch_object().
558 	 *
559 	 * When unpatching, the funcs are already in the func_stack and so are
560 	 * already visible to the ftrace handler.
561 	 */
562 	klp_for_each_object(patch, obj)
563 		klp_for_each_func(obj, func)
564 			func->transition = true;
565 }
566 
567 /*
568  * This function can be called in the middle of an existing transition to
569  * reverse the direction of the target patch state.  This can be done to
570  * effectively cancel an existing enable or disable operation if there are any
571  * tasks which are stuck in the initial patch state.
572  */
573 void klp_reverse_transition(void)
574 {
575 	unsigned int cpu;
576 	struct task_struct *g, *task;
577 
578 	pr_debug("'%s': reversing transition from %s\n",
579 		 klp_transition_patch->mod->name,
580 		 klp_target_state == KLP_PATCHED ? "patching to unpatching" :
581 						   "unpatching to patching");
582 
583 	klp_transition_patch->enabled = !klp_transition_patch->enabled;
584 
585 	klp_target_state = !klp_target_state;
586 
587 	/*
588 	 * Clear all TIF_PATCH_PENDING flags to prevent races caused by
589 	 * klp_update_patch_state() running in parallel with
590 	 * klp_start_transition().
591 	 */
592 	read_lock(&tasklist_lock);
593 	for_each_process_thread(g, task)
594 		clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
595 	read_unlock(&tasklist_lock);
596 
597 	for_each_possible_cpu(cpu)
598 		clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
599 
600 	/* Let any remaining calls to klp_update_patch_state() complete */
601 	klp_synchronize_transition();
602 
603 	klp_start_transition();
604 }
605 
606 /* Called from copy_process() during fork */
607 void klp_copy_process(struct task_struct *child)
608 {
609 	child->patch_state = current->patch_state;
610 
611 	/* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
612 }
613 
614 /*
615  * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
616  * existing transition to finish.
617  *
618  * NOTE: klp_update_patch_state(task) requires the task to be inactive or
619  * 'current'. This is not the case here and the consistency model could be
620  * broken. Administrator, who is the only one to execute the
621  * klp_force_transitions(), has to be aware of this.
622  */
623 void klp_force_transition(void)
624 {
625 	struct klp_patch *patch;
626 	struct task_struct *g, *task;
627 	unsigned int cpu;
628 
629 	pr_warn("forcing remaining tasks to the patched state\n");
630 
631 	read_lock(&tasklist_lock);
632 	for_each_process_thread(g, task)
633 		klp_update_patch_state(task);
634 	read_unlock(&tasklist_lock);
635 
636 	for_each_possible_cpu(cpu)
637 		klp_update_patch_state(idle_task(cpu));
638 
639 	klp_for_each_patch(patch)
640 		patch->forced = true;
641 }
642