xref: /openbmc/linux/kernel/livepatch/transition.c (revision 2c64e9cb)
1 /*
2  * transition.c - Kernel Live Patching transition functions
3  *
4  * Copyright (C) 2015-2016 Josh Poimboeuf <jpoimboe@redhat.com>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/cpu.h>
23 #include <linux/stacktrace.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "transition.h"
27 #include "../sched/sched.h"
28 
29 #define MAX_STACK_ENTRIES  100
30 #define STACK_ERR_BUF_SIZE 128
31 
32 #define SIGNALS_TIMEOUT 15
33 
34 struct klp_patch *klp_transition_patch;
35 
36 static int klp_target_state = KLP_UNDEFINED;
37 
38 static unsigned int klp_signals_cnt;
39 
40 /*
41  * This work can be performed periodically to finish patching or unpatching any
42  * "straggler" tasks which failed to transition in the first attempt.
43  */
44 static void klp_transition_work_fn(struct work_struct *work)
45 {
46 	mutex_lock(&klp_mutex);
47 
48 	if (klp_transition_patch)
49 		klp_try_complete_transition();
50 
51 	mutex_unlock(&klp_mutex);
52 }
53 static DECLARE_DELAYED_WORK(klp_transition_work, klp_transition_work_fn);
54 
55 /*
56  * This function is just a stub to implement a hard force
57  * of synchronize_rcu(). This requires synchronizing
58  * tasks even in userspace and idle.
59  */
60 static void klp_sync(struct work_struct *work)
61 {
62 }
63 
64 /*
65  * We allow to patch also functions where RCU is not watching,
66  * e.g. before user_exit(). We can not rely on the RCU infrastructure
67  * to do the synchronization. Instead hard force the sched synchronization.
68  *
69  * This approach allows to use RCU functions for manipulating func_stack
70  * safely.
71  */
72 static void klp_synchronize_transition(void)
73 {
74 	schedule_on_each_cpu(klp_sync);
75 }
76 
77 /*
78  * The transition to the target patch state is complete.  Clean up the data
79  * structures.
80  */
81 static void klp_complete_transition(void)
82 {
83 	struct klp_object *obj;
84 	struct klp_func *func;
85 	struct task_struct *g, *task;
86 	unsigned int cpu;
87 
88 	pr_debug("'%s': completing %s transition\n",
89 		 klp_transition_patch->mod->name,
90 		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
91 
92 	if (klp_transition_patch->replace && klp_target_state == KLP_PATCHED) {
93 		klp_discard_replaced_patches(klp_transition_patch);
94 		klp_discard_nops(klp_transition_patch);
95 	}
96 
97 	if (klp_target_state == KLP_UNPATCHED) {
98 		/*
99 		 * All tasks have transitioned to KLP_UNPATCHED so we can now
100 		 * remove the new functions from the func_stack.
101 		 */
102 		klp_unpatch_objects(klp_transition_patch);
103 
104 		/*
105 		 * Make sure klp_ftrace_handler() can no longer see functions
106 		 * from this patch on the ops->func_stack.  Otherwise, after
107 		 * func->transition gets cleared, the handler may choose a
108 		 * removed function.
109 		 */
110 		klp_synchronize_transition();
111 	}
112 
113 	klp_for_each_object(klp_transition_patch, obj)
114 		klp_for_each_func(obj, func)
115 			func->transition = false;
116 
117 	/* Prevent klp_ftrace_handler() from seeing KLP_UNDEFINED state */
118 	if (klp_target_state == KLP_PATCHED)
119 		klp_synchronize_transition();
120 
121 	read_lock(&tasklist_lock);
122 	for_each_process_thread(g, task) {
123 		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
124 		task->patch_state = KLP_UNDEFINED;
125 	}
126 	read_unlock(&tasklist_lock);
127 
128 	for_each_possible_cpu(cpu) {
129 		task = idle_task(cpu);
130 		WARN_ON_ONCE(test_tsk_thread_flag(task, TIF_PATCH_PENDING));
131 		task->patch_state = KLP_UNDEFINED;
132 	}
133 
134 	klp_for_each_object(klp_transition_patch, obj) {
135 		if (!klp_is_object_loaded(obj))
136 			continue;
137 		if (klp_target_state == KLP_PATCHED)
138 			klp_post_patch_callback(obj);
139 		else if (klp_target_state == KLP_UNPATCHED)
140 			klp_post_unpatch_callback(obj);
141 	}
142 
143 	pr_notice("'%s': %s complete\n", klp_transition_patch->mod->name,
144 		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
145 
146 	klp_target_state = KLP_UNDEFINED;
147 	klp_transition_patch = NULL;
148 }
149 
150 /*
151  * This is called in the error path, to cancel a transition before it has
152  * started, i.e. klp_init_transition() has been called but
153  * klp_start_transition() hasn't.  If the transition *has* been started,
154  * klp_reverse_transition() should be used instead.
155  */
156 void klp_cancel_transition(void)
157 {
158 	if (WARN_ON_ONCE(klp_target_state != KLP_PATCHED))
159 		return;
160 
161 	pr_debug("'%s': canceling patching transition, going to unpatch\n",
162 		 klp_transition_patch->mod->name);
163 
164 	klp_target_state = KLP_UNPATCHED;
165 	klp_complete_transition();
166 }
167 
168 /*
169  * Switch the patched state of the task to the set of functions in the target
170  * patch state.
171  *
172  * NOTE: If task is not 'current', the caller must ensure the task is inactive.
173  * Otherwise klp_ftrace_handler() might read the wrong 'patch_state' value.
174  */
175 void klp_update_patch_state(struct task_struct *task)
176 {
177 	/*
178 	 * A variant of synchronize_rcu() is used to allow patching functions
179 	 * where RCU is not watching, see klp_synchronize_transition().
180 	 */
181 	preempt_disable_notrace();
182 
183 	/*
184 	 * This test_and_clear_tsk_thread_flag() call also serves as a read
185 	 * barrier (smp_rmb) for two cases:
186 	 *
187 	 * 1) Enforce the order of the TIF_PATCH_PENDING read and the
188 	 *    klp_target_state read.  The corresponding write barrier is in
189 	 *    klp_init_transition().
190 	 *
191 	 * 2) Enforce the order of the TIF_PATCH_PENDING read and a future read
192 	 *    of func->transition, if klp_ftrace_handler() is called later on
193 	 *    the same CPU.  See __klp_disable_patch().
194 	 */
195 	if (test_and_clear_tsk_thread_flag(task, TIF_PATCH_PENDING))
196 		task->patch_state = READ_ONCE(klp_target_state);
197 
198 	preempt_enable_notrace();
199 }
200 
201 /*
202  * Determine whether the given stack trace includes any references to a
203  * to-be-patched or to-be-unpatched function.
204  */
205 static int klp_check_stack_func(struct klp_func *func, unsigned long *entries,
206 				unsigned int nr_entries)
207 {
208 	unsigned long func_addr, func_size, address;
209 	struct klp_ops *ops;
210 	int i;
211 
212 	for (i = 0; i < nr_entries; i++) {
213 		address = entries[i];
214 
215 		if (klp_target_state == KLP_UNPATCHED) {
216 			 /*
217 			  * Check for the to-be-unpatched function
218 			  * (the func itself).
219 			  */
220 			func_addr = (unsigned long)func->new_func;
221 			func_size = func->new_size;
222 		} else {
223 			/*
224 			 * Check for the to-be-patched function
225 			 * (the previous func).
226 			 */
227 			ops = klp_find_ops(func->old_func);
228 
229 			if (list_is_singular(&ops->func_stack)) {
230 				/* original function */
231 				func_addr = (unsigned long)func->old_func;
232 				func_size = func->old_size;
233 			} else {
234 				/* previously patched function */
235 				struct klp_func *prev;
236 
237 				prev = list_next_entry(func, stack_node);
238 				func_addr = (unsigned long)prev->new_func;
239 				func_size = prev->new_size;
240 			}
241 		}
242 
243 		if (address >= func_addr && address < func_addr + func_size)
244 			return -EAGAIN;
245 	}
246 
247 	return 0;
248 }
249 
250 /*
251  * Determine whether it's safe to transition the task to the target patch state
252  * by looking for any to-be-patched or to-be-unpatched functions on its stack.
253  */
254 static int klp_check_stack(struct task_struct *task, char *err_buf)
255 {
256 	static unsigned long entries[MAX_STACK_ENTRIES];
257 	struct klp_object *obj;
258 	struct klp_func *func;
259 	int ret, nr_entries;
260 
261 	ret = stack_trace_save_tsk_reliable(task, entries, ARRAY_SIZE(entries));
262 	WARN_ON_ONCE(ret == -ENOSYS);
263 	if (ret < 0) {
264 		snprintf(err_buf, STACK_ERR_BUF_SIZE,
265 			 "%s: %s:%d has an unreliable stack\n",
266 			 __func__, task->comm, task->pid);
267 		return ret;
268 	}
269 	nr_entries = ret;
270 
271 	klp_for_each_object(klp_transition_patch, obj) {
272 		if (!obj->patched)
273 			continue;
274 		klp_for_each_func(obj, func) {
275 			ret = klp_check_stack_func(func, entries, nr_entries);
276 			if (ret) {
277 				snprintf(err_buf, STACK_ERR_BUF_SIZE,
278 					 "%s: %s:%d is sleeping on function %s\n",
279 					 __func__, task->comm, task->pid,
280 					 func->old_name);
281 				return ret;
282 			}
283 		}
284 	}
285 
286 	return 0;
287 }
288 
289 /*
290  * Try to safely switch a task to the target patch state.  If it's currently
291  * running, or it's sleeping on a to-be-patched or to-be-unpatched function, or
292  * if the stack is unreliable, return false.
293  */
294 static bool klp_try_switch_task(struct task_struct *task)
295 {
296 	struct rq *rq;
297 	struct rq_flags flags;
298 	int ret;
299 	bool success = false;
300 	char err_buf[STACK_ERR_BUF_SIZE];
301 
302 	err_buf[0] = '\0';
303 
304 	/* check if this task has already switched over */
305 	if (task->patch_state == klp_target_state)
306 		return true;
307 
308 	/*
309 	 * Now try to check the stack for any to-be-patched or to-be-unpatched
310 	 * functions.  If all goes well, switch the task to the target patch
311 	 * state.
312 	 */
313 	rq = task_rq_lock(task, &flags);
314 
315 	if (task_running(rq, task) && task != current) {
316 		snprintf(err_buf, STACK_ERR_BUF_SIZE,
317 			 "%s: %s:%d is running\n", __func__, task->comm,
318 			 task->pid);
319 		goto done;
320 	}
321 
322 	ret = klp_check_stack(task, err_buf);
323 	if (ret)
324 		goto done;
325 
326 	success = true;
327 
328 	clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
329 	task->patch_state = klp_target_state;
330 
331 done:
332 	task_rq_unlock(rq, task, &flags);
333 
334 	/*
335 	 * Due to console deadlock issues, pr_debug() can't be used while
336 	 * holding the task rq lock.  Instead we have to use a temporary buffer
337 	 * and print the debug message after releasing the lock.
338 	 */
339 	if (err_buf[0] != '\0')
340 		pr_debug("%s", err_buf);
341 
342 	return success;
343 
344 }
345 
346 /*
347  * Sends a fake signal to all non-kthread tasks with TIF_PATCH_PENDING set.
348  * Kthreads with TIF_PATCH_PENDING set are woken up.
349  */
350 static void klp_send_signals(void)
351 {
352 	struct task_struct *g, *task;
353 
354 	if (klp_signals_cnt == SIGNALS_TIMEOUT)
355 		pr_notice("signaling remaining tasks\n");
356 
357 	read_lock(&tasklist_lock);
358 	for_each_process_thread(g, task) {
359 		if (!klp_patch_pending(task))
360 			continue;
361 
362 		/*
363 		 * There is a small race here. We could see TIF_PATCH_PENDING
364 		 * set and decide to wake up a kthread or send a fake signal.
365 		 * Meanwhile the task could migrate itself and the action
366 		 * would be meaningless. It is not serious though.
367 		 */
368 		if (task->flags & PF_KTHREAD) {
369 			/*
370 			 * Wake up a kthread which sleeps interruptedly and
371 			 * still has not been migrated.
372 			 */
373 			wake_up_state(task, TASK_INTERRUPTIBLE);
374 		} else {
375 			/*
376 			 * Send fake signal to all non-kthread tasks which are
377 			 * still not migrated.
378 			 */
379 			spin_lock_irq(&task->sighand->siglock);
380 			signal_wake_up(task, 0);
381 			spin_unlock_irq(&task->sighand->siglock);
382 		}
383 	}
384 	read_unlock(&tasklist_lock);
385 }
386 
387 /*
388  * Try to switch all remaining tasks to the target patch state by walking the
389  * stacks of sleeping tasks and looking for any to-be-patched or
390  * to-be-unpatched functions.  If such functions are found, the task can't be
391  * switched yet.
392  *
393  * If any tasks are still stuck in the initial patch state, schedule a retry.
394  */
395 void klp_try_complete_transition(void)
396 {
397 	unsigned int cpu;
398 	struct task_struct *g, *task;
399 	struct klp_patch *patch;
400 	bool complete = true;
401 
402 	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
403 
404 	/*
405 	 * Try to switch the tasks to the target patch state by walking their
406 	 * stacks and looking for any to-be-patched or to-be-unpatched
407 	 * functions.  If such functions are found on a stack, or if the stack
408 	 * is deemed unreliable, the task can't be switched yet.
409 	 *
410 	 * Usually this will transition most (or all) of the tasks on a system
411 	 * unless the patch includes changes to a very common function.
412 	 */
413 	read_lock(&tasklist_lock);
414 	for_each_process_thread(g, task)
415 		if (!klp_try_switch_task(task))
416 			complete = false;
417 	read_unlock(&tasklist_lock);
418 
419 	/*
420 	 * Ditto for the idle "swapper" tasks.
421 	 */
422 	get_online_cpus();
423 	for_each_possible_cpu(cpu) {
424 		task = idle_task(cpu);
425 		if (cpu_online(cpu)) {
426 			if (!klp_try_switch_task(task))
427 				complete = false;
428 		} else if (task->patch_state != klp_target_state) {
429 			/* offline idle tasks can be switched immediately */
430 			clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
431 			task->patch_state = klp_target_state;
432 		}
433 	}
434 	put_online_cpus();
435 
436 	if (!complete) {
437 		if (klp_signals_cnt && !(klp_signals_cnt % SIGNALS_TIMEOUT))
438 			klp_send_signals();
439 		klp_signals_cnt++;
440 
441 		/*
442 		 * Some tasks weren't able to be switched over.  Try again
443 		 * later and/or wait for other methods like kernel exit
444 		 * switching.
445 		 */
446 		schedule_delayed_work(&klp_transition_work,
447 				      round_jiffies_relative(HZ));
448 		return;
449 	}
450 
451 	/* we're done, now cleanup the data structures */
452 	patch = klp_transition_patch;
453 	klp_complete_transition();
454 
455 	/*
456 	 * It would make more sense to free the patch in
457 	 * klp_complete_transition() but it is called also
458 	 * from klp_cancel_transition().
459 	 */
460 	if (!patch->enabled) {
461 		klp_free_patch_start(patch);
462 		schedule_work(&patch->free_work);
463 	}
464 }
465 
466 /*
467  * Start the transition to the specified target patch state so tasks can begin
468  * switching to it.
469  */
470 void klp_start_transition(void)
471 {
472 	struct task_struct *g, *task;
473 	unsigned int cpu;
474 
475 	WARN_ON_ONCE(klp_target_state == KLP_UNDEFINED);
476 
477 	pr_notice("'%s': starting %s transition\n",
478 		  klp_transition_patch->mod->name,
479 		  klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
480 
481 	/*
482 	 * Mark all normal tasks as needing a patch state update.  They'll
483 	 * switch either in klp_try_complete_transition() or as they exit the
484 	 * kernel.
485 	 */
486 	read_lock(&tasklist_lock);
487 	for_each_process_thread(g, task)
488 		if (task->patch_state != klp_target_state)
489 			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
490 	read_unlock(&tasklist_lock);
491 
492 	/*
493 	 * Mark all idle tasks as needing a patch state update.  They'll switch
494 	 * either in klp_try_complete_transition() or at the idle loop switch
495 	 * point.
496 	 */
497 	for_each_possible_cpu(cpu) {
498 		task = idle_task(cpu);
499 		if (task->patch_state != klp_target_state)
500 			set_tsk_thread_flag(task, TIF_PATCH_PENDING);
501 	}
502 
503 	klp_signals_cnt = 0;
504 }
505 
506 /*
507  * Initialize the global target patch state and all tasks to the initial patch
508  * state, and initialize all function transition states to true in preparation
509  * for patching or unpatching.
510  */
511 void klp_init_transition(struct klp_patch *patch, int state)
512 {
513 	struct task_struct *g, *task;
514 	unsigned int cpu;
515 	struct klp_object *obj;
516 	struct klp_func *func;
517 	int initial_state = !state;
518 
519 	WARN_ON_ONCE(klp_target_state != KLP_UNDEFINED);
520 
521 	klp_transition_patch = patch;
522 
523 	/*
524 	 * Set the global target patch state which tasks will switch to.  This
525 	 * has no effect until the TIF_PATCH_PENDING flags get set later.
526 	 */
527 	klp_target_state = state;
528 
529 	pr_debug("'%s': initializing %s transition\n", patch->mod->name,
530 		 klp_target_state == KLP_PATCHED ? "patching" : "unpatching");
531 
532 	/*
533 	 * Initialize all tasks to the initial patch state to prepare them for
534 	 * switching to the target state.
535 	 */
536 	read_lock(&tasklist_lock);
537 	for_each_process_thread(g, task) {
538 		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
539 		task->patch_state = initial_state;
540 	}
541 	read_unlock(&tasklist_lock);
542 
543 	/*
544 	 * Ditto for the idle "swapper" tasks.
545 	 */
546 	for_each_possible_cpu(cpu) {
547 		task = idle_task(cpu);
548 		WARN_ON_ONCE(task->patch_state != KLP_UNDEFINED);
549 		task->patch_state = initial_state;
550 	}
551 
552 	/*
553 	 * Enforce the order of the task->patch_state initializations and the
554 	 * func->transition updates to ensure that klp_ftrace_handler() doesn't
555 	 * see a func in transition with a task->patch_state of KLP_UNDEFINED.
556 	 *
557 	 * Also enforce the order of the klp_target_state write and future
558 	 * TIF_PATCH_PENDING writes to ensure klp_update_patch_state() doesn't
559 	 * set a task->patch_state to KLP_UNDEFINED.
560 	 */
561 	smp_wmb();
562 
563 	/*
564 	 * Set the func transition states so klp_ftrace_handler() will know to
565 	 * switch to the transition logic.
566 	 *
567 	 * When patching, the funcs aren't yet in the func_stack and will be
568 	 * made visible to the ftrace handler shortly by the calls to
569 	 * klp_patch_object().
570 	 *
571 	 * When unpatching, the funcs are already in the func_stack and so are
572 	 * already visible to the ftrace handler.
573 	 */
574 	klp_for_each_object(patch, obj)
575 		klp_for_each_func(obj, func)
576 			func->transition = true;
577 }
578 
579 /*
580  * This function can be called in the middle of an existing transition to
581  * reverse the direction of the target patch state.  This can be done to
582  * effectively cancel an existing enable or disable operation if there are any
583  * tasks which are stuck in the initial patch state.
584  */
585 void klp_reverse_transition(void)
586 {
587 	unsigned int cpu;
588 	struct task_struct *g, *task;
589 
590 	pr_debug("'%s': reversing transition from %s\n",
591 		 klp_transition_patch->mod->name,
592 		 klp_target_state == KLP_PATCHED ? "patching to unpatching" :
593 						   "unpatching to patching");
594 
595 	klp_transition_patch->enabled = !klp_transition_patch->enabled;
596 
597 	klp_target_state = !klp_target_state;
598 
599 	/*
600 	 * Clear all TIF_PATCH_PENDING flags to prevent races caused by
601 	 * klp_update_patch_state() running in parallel with
602 	 * klp_start_transition().
603 	 */
604 	read_lock(&tasklist_lock);
605 	for_each_process_thread(g, task)
606 		clear_tsk_thread_flag(task, TIF_PATCH_PENDING);
607 	read_unlock(&tasklist_lock);
608 
609 	for_each_possible_cpu(cpu)
610 		clear_tsk_thread_flag(idle_task(cpu), TIF_PATCH_PENDING);
611 
612 	/* Let any remaining calls to klp_update_patch_state() complete */
613 	klp_synchronize_transition();
614 
615 	klp_start_transition();
616 }
617 
618 /* Called from copy_process() during fork */
619 void klp_copy_process(struct task_struct *child)
620 {
621 	child->patch_state = current->patch_state;
622 
623 	/* TIF_PATCH_PENDING gets copied in setup_thread_stack() */
624 }
625 
626 /*
627  * Drop TIF_PATCH_PENDING of all tasks on admin's request. This forces an
628  * existing transition to finish.
629  *
630  * NOTE: klp_update_patch_state(task) requires the task to be inactive or
631  * 'current'. This is not the case here and the consistency model could be
632  * broken. Administrator, who is the only one to execute the
633  * klp_force_transitions(), has to be aware of this.
634  */
635 void klp_force_transition(void)
636 {
637 	struct klp_patch *patch;
638 	struct task_struct *g, *task;
639 	unsigned int cpu;
640 
641 	pr_warn("forcing remaining tasks to the patched state\n");
642 
643 	read_lock(&tasklist_lock);
644 	for_each_process_thread(g, task)
645 		klp_update_patch_state(task);
646 	read_unlock(&tasklist_lock);
647 
648 	for_each_possible_cpu(cpu)
649 		klp_update_patch_state(idle_task(cpu));
650 
651 	klp_for_each_patch(patch)
652 		patch->forced = true;
653 }
654