xref: /openbmc/linux/kernel/livepatch/core.c (revision e3ff7c60)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * core.c - Kernel Live Patching Core
4  *
5  * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6  * Copyright (C) 2014 SUSE
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <linux/rcupdate.h>
23 #include <asm/cacheflush.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "state.h"
27 #include "transition.h"
28 
29 /*
30  * klp_mutex is a coarse lock which serializes access to klp data.  All
31  * accesses to klp-related variables and structures must have mutex protection,
32  * except within the following functions which carefully avoid the need for it:
33  *
34  * - klp_ftrace_handler()
35  * - klp_update_patch_state()
36  * - __klp_sched_try_switch()
37  */
38 DEFINE_MUTEX(klp_mutex);
39 
40 /*
41  * Actively used patches: enabled or in transition. Note that replaced
42  * or disabled patches are not listed even though the related kernel
43  * module still can be loaded.
44  */
45 LIST_HEAD(klp_patches);
46 
47 static struct kobject *klp_root_kobj;
48 
49 static bool klp_is_module(struct klp_object *obj)
50 {
51 	return obj->name;
52 }
53 
54 /* sets obj->mod if object is not vmlinux and module is found */
55 static void klp_find_object_module(struct klp_object *obj)
56 {
57 	struct module *mod;
58 
59 	if (!klp_is_module(obj))
60 		return;
61 
62 	rcu_read_lock_sched();
63 	/*
64 	 * We do not want to block removal of patched modules and therefore
65 	 * we do not take a reference here. The patches are removed by
66 	 * klp_module_going() instead.
67 	 */
68 	mod = find_module(obj->name);
69 	/*
70 	 * Do not mess work of klp_module_coming() and klp_module_going().
71 	 * Note that the patch might still be needed before klp_module_going()
72 	 * is called. Module functions can be called even in the GOING state
73 	 * until mod->exit() finishes. This is especially important for
74 	 * patches that modify semantic of the functions.
75 	 */
76 	if (mod && mod->klp_alive)
77 		obj->mod = mod;
78 
79 	rcu_read_unlock_sched();
80 }
81 
82 static bool klp_initialized(void)
83 {
84 	return !!klp_root_kobj;
85 }
86 
87 static struct klp_func *klp_find_func(struct klp_object *obj,
88 				      struct klp_func *old_func)
89 {
90 	struct klp_func *func;
91 
92 	klp_for_each_func(obj, func) {
93 		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
94 		    (old_func->old_sympos == func->old_sympos)) {
95 			return func;
96 		}
97 	}
98 
99 	return NULL;
100 }
101 
102 static struct klp_object *klp_find_object(struct klp_patch *patch,
103 					  struct klp_object *old_obj)
104 {
105 	struct klp_object *obj;
106 
107 	klp_for_each_object(patch, obj) {
108 		if (klp_is_module(old_obj)) {
109 			if (klp_is_module(obj) &&
110 			    strcmp(old_obj->name, obj->name) == 0) {
111 				return obj;
112 			}
113 		} else if (!klp_is_module(obj)) {
114 			return obj;
115 		}
116 	}
117 
118 	return NULL;
119 }
120 
121 struct klp_find_arg {
122 	const char *name;
123 	unsigned long addr;
124 	unsigned long count;
125 	unsigned long pos;
126 };
127 
128 static int klp_match_callback(void *data, unsigned long addr)
129 {
130 	struct klp_find_arg *args = data;
131 
132 	args->addr = addr;
133 	args->count++;
134 
135 	/*
136 	 * Finish the search when the symbol is found for the desired position
137 	 * or the position is not defined for a non-unique symbol.
138 	 */
139 	if ((args->pos && (args->count == args->pos)) ||
140 	    (!args->pos && (args->count > 1)))
141 		return 1;
142 
143 	return 0;
144 }
145 
146 static int klp_find_callback(void *data, const char *name,
147 			     struct module *mod, unsigned long addr)
148 {
149 	struct klp_find_arg *args = data;
150 
151 	if (strcmp(args->name, name))
152 		return 0;
153 
154 	return klp_match_callback(data, addr);
155 }
156 
157 static int klp_find_object_symbol(const char *objname, const char *name,
158 				  unsigned long sympos, unsigned long *addr)
159 {
160 	struct klp_find_arg args = {
161 		.name = name,
162 		.addr = 0,
163 		.count = 0,
164 		.pos = sympos,
165 	};
166 
167 	if (objname)
168 		module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
169 	else
170 		kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
171 
172 	/*
173 	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
174 	 * otherwise ensure the symbol position count matches sympos.
175 	 */
176 	if (args.addr == 0)
177 		pr_err("symbol '%s' not found in symbol table\n", name);
178 	else if (args.count > 1 && sympos == 0) {
179 		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
180 		       name, objname);
181 	} else if (sympos != args.count && sympos > 0) {
182 		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
183 		       sympos, name, objname ? objname : "vmlinux");
184 	} else {
185 		*addr = args.addr;
186 		return 0;
187 	}
188 
189 	*addr = 0;
190 	return -EINVAL;
191 }
192 
193 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
194 			       unsigned int symndx, Elf_Shdr *relasec,
195 			       const char *sec_objname)
196 {
197 	int i, cnt, ret;
198 	char sym_objname[MODULE_NAME_LEN];
199 	char sym_name[KSYM_NAME_LEN];
200 	Elf_Rela *relas;
201 	Elf_Sym *sym;
202 	unsigned long sympos, addr;
203 	bool sym_vmlinux;
204 	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
205 
206 	/*
207 	 * Since the field widths for sym_objname and sym_name in the sscanf()
208 	 * call are hard-coded and correspond to MODULE_NAME_LEN and
209 	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
210 	 * and KSYM_NAME_LEN have the values we expect them to have.
211 	 *
212 	 * Because the value of MODULE_NAME_LEN can differ among architectures,
213 	 * we use the smallest/strictest upper bound possible (56, based on
214 	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
215 	 */
216 	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
217 
218 	relas = (Elf_Rela *) relasec->sh_addr;
219 	/* For each rela in this klp relocation section */
220 	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
221 		sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
222 		if (sym->st_shndx != SHN_LIVEPATCH) {
223 			pr_err("symbol %s is not marked as a livepatch symbol\n",
224 			       strtab + sym->st_name);
225 			return -EINVAL;
226 		}
227 
228 		/* Format: .klp.sym.sym_objname.sym_name,sympos */
229 		cnt = sscanf(strtab + sym->st_name,
230 			     ".klp.sym.%55[^.].%511[^,],%lu",
231 			     sym_objname, sym_name, &sympos);
232 		if (cnt != 3) {
233 			pr_err("symbol %s has an incorrectly formatted name\n",
234 			       strtab + sym->st_name);
235 			return -EINVAL;
236 		}
237 
238 		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
239 
240 		/*
241 		 * Prevent module-specific KLP rela sections from referencing
242 		 * vmlinux symbols.  This helps prevent ordering issues with
243 		 * module special section initializations.  Presumably such
244 		 * symbols are exported and normal relas can be used instead.
245 		 */
246 		if (!sec_vmlinux && sym_vmlinux) {
247 			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
248 			       sym_name);
249 			return -EINVAL;
250 		}
251 
252 		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
253 		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
254 					     sym_name, sympos, &addr);
255 		if (ret)
256 			return ret;
257 
258 		sym->st_value = addr;
259 	}
260 
261 	return 0;
262 }
263 
264 void __weak clear_relocate_add(Elf_Shdr *sechdrs,
265 		   const char *strtab,
266 		   unsigned int symindex,
267 		   unsigned int relsec,
268 		   struct module *me)
269 {
270 }
271 
272 /*
273  * At a high-level, there are two types of klp relocation sections: those which
274  * reference symbols which live in vmlinux; and those which reference symbols
275  * which live in other modules.  This function is called for both types:
276  *
277  * 1) When a klp module itself loads, the module code calls this function to
278  *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
279  *    These relocations are written to the klp module text to allow the patched
280  *    code/data to reference unexported vmlinux symbols.  They're written as
281  *    early as possible to ensure that other module init code (.e.g.,
282  *    jump_label_apply_nops) can access any unexported vmlinux symbols which
283  *    might be referenced by the klp module's special sections.
284  *
285  * 2) When a to-be-patched module loads -- or is already loaded when a
286  *    corresponding klp module loads -- klp code calls this function to write
287  *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
288  *    are written to the klp module text to allow the patched code/data to
289  *    reference symbols which live in the to-be-patched module or one of its
290  *    module dependencies.  Exported symbols are supported, in addition to
291  *    unexported symbols, in order to enable late module patching, which allows
292  *    the to-be-patched module to be loaded and patched sometime *after* the
293  *    klp module is loaded.
294  */
295 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
296 				    const char *shstrtab, const char *strtab,
297 				    unsigned int symndx, unsigned int secndx,
298 				    const char *objname, bool apply)
299 {
300 	int cnt, ret;
301 	char sec_objname[MODULE_NAME_LEN];
302 	Elf_Shdr *sec = sechdrs + secndx;
303 
304 	/*
305 	 * Format: .klp.rela.sec_objname.section_name
306 	 * See comment in klp_resolve_symbols() for an explanation
307 	 * of the selected field width value.
308 	 */
309 	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
310 		     sec_objname);
311 	if (cnt != 1) {
312 		pr_err("section %s has an incorrectly formatted name\n",
313 		       shstrtab + sec->sh_name);
314 		return -EINVAL;
315 	}
316 
317 	if (strcmp(objname ? objname : "vmlinux", sec_objname))
318 		return 0;
319 
320 	if (apply) {
321 		ret = klp_resolve_symbols(sechdrs, strtab, symndx,
322 					  sec, sec_objname);
323 		if (ret)
324 			return ret;
325 
326 		return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
327 	}
328 
329 	clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
330 	return 0;
331 }
332 
333 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
334 			     const char *shstrtab, const char *strtab,
335 			     unsigned int symndx, unsigned int secndx,
336 			     const char *objname)
337 {
338 	return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
339 					secndx, objname, true);
340 }
341 
342 /*
343  * Sysfs Interface
344  *
345  * /sys/kernel/livepatch
346  * /sys/kernel/livepatch/<patch>
347  * /sys/kernel/livepatch/<patch>/enabled
348  * /sys/kernel/livepatch/<patch>/transition
349  * /sys/kernel/livepatch/<patch>/force
350  * /sys/kernel/livepatch/<patch>/<object>
351  * /sys/kernel/livepatch/<patch>/<object>/patched
352  * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
353  */
354 static int __klp_disable_patch(struct klp_patch *patch);
355 
356 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
357 			     const char *buf, size_t count)
358 {
359 	struct klp_patch *patch;
360 	int ret;
361 	bool enabled;
362 
363 	ret = kstrtobool(buf, &enabled);
364 	if (ret)
365 		return ret;
366 
367 	patch = container_of(kobj, struct klp_patch, kobj);
368 
369 	mutex_lock(&klp_mutex);
370 
371 	if (patch->enabled == enabled) {
372 		/* already in requested state */
373 		ret = -EINVAL;
374 		goto out;
375 	}
376 
377 	/*
378 	 * Allow to reverse a pending transition in both ways. It might be
379 	 * necessary to complete the transition without forcing and breaking
380 	 * the system integrity.
381 	 *
382 	 * Do not allow to re-enable a disabled patch.
383 	 */
384 	if (patch == klp_transition_patch)
385 		klp_reverse_transition();
386 	else if (!enabled)
387 		ret = __klp_disable_patch(patch);
388 	else
389 		ret = -EINVAL;
390 
391 out:
392 	mutex_unlock(&klp_mutex);
393 
394 	if (ret)
395 		return ret;
396 	return count;
397 }
398 
399 static ssize_t enabled_show(struct kobject *kobj,
400 			    struct kobj_attribute *attr, char *buf)
401 {
402 	struct klp_patch *patch;
403 
404 	patch = container_of(kobj, struct klp_patch, kobj);
405 	return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
406 }
407 
408 static ssize_t transition_show(struct kobject *kobj,
409 			       struct kobj_attribute *attr, char *buf)
410 {
411 	struct klp_patch *patch;
412 
413 	patch = container_of(kobj, struct klp_patch, kobj);
414 	return snprintf(buf, PAGE_SIZE-1, "%d\n",
415 			patch == klp_transition_patch);
416 }
417 
418 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
419 			   const char *buf, size_t count)
420 {
421 	struct klp_patch *patch;
422 	int ret;
423 	bool val;
424 
425 	ret = kstrtobool(buf, &val);
426 	if (ret)
427 		return ret;
428 
429 	if (!val)
430 		return count;
431 
432 	mutex_lock(&klp_mutex);
433 
434 	patch = container_of(kobj, struct klp_patch, kobj);
435 	if (patch != klp_transition_patch) {
436 		mutex_unlock(&klp_mutex);
437 		return -EINVAL;
438 	}
439 
440 	klp_force_transition();
441 
442 	mutex_unlock(&klp_mutex);
443 
444 	return count;
445 }
446 
447 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
448 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
449 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
450 static struct attribute *klp_patch_attrs[] = {
451 	&enabled_kobj_attr.attr,
452 	&transition_kobj_attr.attr,
453 	&force_kobj_attr.attr,
454 	NULL
455 };
456 ATTRIBUTE_GROUPS(klp_patch);
457 
458 static ssize_t patched_show(struct kobject *kobj,
459 			    struct kobj_attribute *attr, char *buf)
460 {
461 	struct klp_object *obj;
462 
463 	obj = container_of(kobj, struct klp_object, kobj);
464 	return sysfs_emit(buf, "%d\n", obj->patched);
465 }
466 
467 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
468 static struct attribute *klp_object_attrs[] = {
469 	&patched_kobj_attr.attr,
470 	NULL,
471 };
472 ATTRIBUTE_GROUPS(klp_object);
473 
474 static void klp_free_object_dynamic(struct klp_object *obj)
475 {
476 	kfree(obj->name);
477 	kfree(obj);
478 }
479 
480 static void klp_init_func_early(struct klp_object *obj,
481 				struct klp_func *func);
482 static void klp_init_object_early(struct klp_patch *patch,
483 				  struct klp_object *obj);
484 
485 static struct klp_object *klp_alloc_object_dynamic(const char *name,
486 						   struct klp_patch *patch)
487 {
488 	struct klp_object *obj;
489 
490 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
491 	if (!obj)
492 		return NULL;
493 
494 	if (name) {
495 		obj->name = kstrdup(name, GFP_KERNEL);
496 		if (!obj->name) {
497 			kfree(obj);
498 			return NULL;
499 		}
500 	}
501 
502 	klp_init_object_early(patch, obj);
503 	obj->dynamic = true;
504 
505 	return obj;
506 }
507 
508 static void klp_free_func_nop(struct klp_func *func)
509 {
510 	kfree(func->old_name);
511 	kfree(func);
512 }
513 
514 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
515 					   struct klp_object *obj)
516 {
517 	struct klp_func *func;
518 
519 	func = kzalloc(sizeof(*func), GFP_KERNEL);
520 	if (!func)
521 		return NULL;
522 
523 	if (old_func->old_name) {
524 		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
525 		if (!func->old_name) {
526 			kfree(func);
527 			return NULL;
528 		}
529 	}
530 
531 	klp_init_func_early(obj, func);
532 	/*
533 	 * func->new_func is same as func->old_func. These addresses are
534 	 * set when the object is loaded, see klp_init_object_loaded().
535 	 */
536 	func->old_sympos = old_func->old_sympos;
537 	func->nop = true;
538 
539 	return func;
540 }
541 
542 static int klp_add_object_nops(struct klp_patch *patch,
543 			       struct klp_object *old_obj)
544 {
545 	struct klp_object *obj;
546 	struct klp_func *func, *old_func;
547 
548 	obj = klp_find_object(patch, old_obj);
549 
550 	if (!obj) {
551 		obj = klp_alloc_object_dynamic(old_obj->name, patch);
552 		if (!obj)
553 			return -ENOMEM;
554 	}
555 
556 	klp_for_each_func(old_obj, old_func) {
557 		func = klp_find_func(obj, old_func);
558 		if (func)
559 			continue;
560 
561 		func = klp_alloc_func_nop(old_func, obj);
562 		if (!func)
563 			return -ENOMEM;
564 	}
565 
566 	return 0;
567 }
568 
569 /*
570  * Add 'nop' functions which simply return to the caller to run
571  * the original function. The 'nop' functions are added to a
572  * patch to facilitate a 'replace' mode.
573  */
574 static int klp_add_nops(struct klp_patch *patch)
575 {
576 	struct klp_patch *old_patch;
577 	struct klp_object *old_obj;
578 
579 	klp_for_each_patch(old_patch) {
580 		klp_for_each_object(old_patch, old_obj) {
581 			int err;
582 
583 			err = klp_add_object_nops(patch, old_obj);
584 			if (err)
585 				return err;
586 		}
587 	}
588 
589 	return 0;
590 }
591 
592 static void klp_kobj_release_patch(struct kobject *kobj)
593 {
594 	struct klp_patch *patch;
595 
596 	patch = container_of(kobj, struct klp_patch, kobj);
597 	complete(&patch->finish);
598 }
599 
600 static struct kobj_type klp_ktype_patch = {
601 	.release = klp_kobj_release_patch,
602 	.sysfs_ops = &kobj_sysfs_ops,
603 	.default_groups = klp_patch_groups,
604 };
605 
606 static void klp_kobj_release_object(struct kobject *kobj)
607 {
608 	struct klp_object *obj;
609 
610 	obj = container_of(kobj, struct klp_object, kobj);
611 
612 	if (obj->dynamic)
613 		klp_free_object_dynamic(obj);
614 }
615 
616 static struct kobj_type klp_ktype_object = {
617 	.release = klp_kobj_release_object,
618 	.sysfs_ops = &kobj_sysfs_ops,
619 	.default_groups = klp_object_groups,
620 };
621 
622 static void klp_kobj_release_func(struct kobject *kobj)
623 {
624 	struct klp_func *func;
625 
626 	func = container_of(kobj, struct klp_func, kobj);
627 
628 	if (func->nop)
629 		klp_free_func_nop(func);
630 }
631 
632 static struct kobj_type klp_ktype_func = {
633 	.release = klp_kobj_release_func,
634 	.sysfs_ops = &kobj_sysfs_ops,
635 };
636 
637 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
638 {
639 	struct klp_func *func, *tmp_func;
640 
641 	klp_for_each_func_safe(obj, func, tmp_func) {
642 		if (nops_only && !func->nop)
643 			continue;
644 
645 		list_del(&func->node);
646 		kobject_put(&func->kobj);
647 	}
648 }
649 
650 /* Clean up when a patched object is unloaded */
651 static void klp_free_object_loaded(struct klp_object *obj)
652 {
653 	struct klp_func *func;
654 
655 	obj->mod = NULL;
656 
657 	klp_for_each_func(obj, func) {
658 		func->old_func = NULL;
659 
660 		if (func->nop)
661 			func->new_func = NULL;
662 	}
663 }
664 
665 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
666 {
667 	struct klp_object *obj, *tmp_obj;
668 
669 	klp_for_each_object_safe(patch, obj, tmp_obj) {
670 		__klp_free_funcs(obj, nops_only);
671 
672 		if (nops_only && !obj->dynamic)
673 			continue;
674 
675 		list_del(&obj->node);
676 		kobject_put(&obj->kobj);
677 	}
678 }
679 
680 static void klp_free_objects(struct klp_patch *patch)
681 {
682 	__klp_free_objects(patch, false);
683 }
684 
685 static void klp_free_objects_dynamic(struct klp_patch *patch)
686 {
687 	__klp_free_objects(patch, true);
688 }
689 
690 /*
691  * This function implements the free operations that can be called safely
692  * under klp_mutex.
693  *
694  * The operation must be completed by calling klp_free_patch_finish()
695  * outside klp_mutex.
696  */
697 static void klp_free_patch_start(struct klp_patch *patch)
698 {
699 	if (!list_empty(&patch->list))
700 		list_del(&patch->list);
701 
702 	klp_free_objects(patch);
703 }
704 
705 /*
706  * This function implements the free part that must be called outside
707  * klp_mutex.
708  *
709  * It must be called after klp_free_patch_start(). And it has to be
710  * the last function accessing the livepatch structures when the patch
711  * gets disabled.
712  */
713 static void klp_free_patch_finish(struct klp_patch *patch)
714 {
715 	/*
716 	 * Avoid deadlock with enabled_store() sysfs callback by
717 	 * calling this outside klp_mutex. It is safe because
718 	 * this is called when the patch gets disabled and it
719 	 * cannot get enabled again.
720 	 */
721 	kobject_put(&patch->kobj);
722 	wait_for_completion(&patch->finish);
723 
724 	/* Put the module after the last access to struct klp_patch. */
725 	if (!patch->forced)
726 		module_put(patch->mod);
727 }
728 
729 /*
730  * The livepatch might be freed from sysfs interface created by the patch.
731  * This work allows to wait until the interface is destroyed in a separate
732  * context.
733  */
734 static void klp_free_patch_work_fn(struct work_struct *work)
735 {
736 	struct klp_patch *patch =
737 		container_of(work, struct klp_patch, free_work);
738 
739 	klp_free_patch_finish(patch);
740 }
741 
742 void klp_free_patch_async(struct klp_patch *patch)
743 {
744 	klp_free_patch_start(patch);
745 	schedule_work(&patch->free_work);
746 }
747 
748 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
749 {
750 	struct klp_patch *old_patch, *tmp_patch;
751 
752 	klp_for_each_patch_safe(old_patch, tmp_patch) {
753 		if (old_patch == new_patch)
754 			return;
755 		klp_free_patch_async(old_patch);
756 	}
757 }
758 
759 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
760 {
761 	if (!func->old_name)
762 		return -EINVAL;
763 
764 	/*
765 	 * NOPs get the address later. The patched module must be loaded,
766 	 * see klp_init_object_loaded().
767 	 */
768 	if (!func->new_func && !func->nop)
769 		return -EINVAL;
770 
771 	if (strlen(func->old_name) >= KSYM_NAME_LEN)
772 		return -EINVAL;
773 
774 	INIT_LIST_HEAD(&func->stack_node);
775 	func->patched = false;
776 	func->transition = false;
777 
778 	/* The format for the sysfs directory is <function,sympos> where sympos
779 	 * is the nth occurrence of this symbol in kallsyms for the patched
780 	 * object. If the user selects 0 for old_sympos, then 1 will be used
781 	 * since a unique symbol will be the first occurrence.
782 	 */
783 	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
784 			   func->old_name,
785 			   func->old_sympos ? func->old_sympos : 1);
786 }
787 
788 static int klp_write_object_relocs(struct klp_patch *patch,
789 				   struct klp_object *obj,
790 				   bool apply)
791 {
792 	int i, ret;
793 	struct klp_modinfo *info = patch->mod->klp_info;
794 
795 	for (i = 1; i < info->hdr.e_shnum; i++) {
796 		Elf_Shdr *sec = info->sechdrs + i;
797 
798 		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
799 			continue;
800 
801 		ret = klp_write_section_relocs(patch->mod, info->sechdrs,
802 					       info->secstrings,
803 					       patch->mod->core_kallsyms.strtab,
804 					       info->symndx, i, obj->name, apply);
805 		if (ret)
806 			return ret;
807 	}
808 
809 	return 0;
810 }
811 
812 static int klp_apply_object_relocs(struct klp_patch *patch,
813 				   struct klp_object *obj)
814 {
815 	return klp_write_object_relocs(patch, obj, true);
816 }
817 
818 static void klp_clear_object_relocs(struct klp_patch *patch,
819 				    struct klp_object *obj)
820 {
821 	klp_write_object_relocs(patch, obj, false);
822 }
823 
824 /* parts of the initialization that is done only when the object is loaded */
825 static int klp_init_object_loaded(struct klp_patch *patch,
826 				  struct klp_object *obj)
827 {
828 	struct klp_func *func;
829 	int ret;
830 
831 	if (klp_is_module(obj)) {
832 		/*
833 		 * Only write module-specific relocations here
834 		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
835 		 * written earlier during the initialization of the klp module
836 		 * itself.
837 		 */
838 		ret = klp_apply_object_relocs(patch, obj);
839 		if (ret)
840 			return ret;
841 	}
842 
843 	klp_for_each_func(obj, func) {
844 		ret = klp_find_object_symbol(obj->name, func->old_name,
845 					     func->old_sympos,
846 					     (unsigned long *)&func->old_func);
847 		if (ret)
848 			return ret;
849 
850 		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
851 						  &func->old_size, NULL);
852 		if (!ret) {
853 			pr_err("kallsyms size lookup failed for '%s'\n",
854 			       func->old_name);
855 			return -ENOENT;
856 		}
857 
858 		if (func->nop)
859 			func->new_func = func->old_func;
860 
861 		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
862 						  &func->new_size, NULL);
863 		if (!ret) {
864 			pr_err("kallsyms size lookup failed for '%s' replacement\n",
865 			       func->old_name);
866 			return -ENOENT;
867 		}
868 	}
869 
870 	return 0;
871 }
872 
873 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
874 {
875 	struct klp_func *func;
876 	int ret;
877 	const char *name;
878 
879 	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
880 		return -EINVAL;
881 
882 	obj->patched = false;
883 	obj->mod = NULL;
884 
885 	klp_find_object_module(obj);
886 
887 	name = klp_is_module(obj) ? obj->name : "vmlinux";
888 	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
889 	if (ret)
890 		return ret;
891 
892 	klp_for_each_func(obj, func) {
893 		ret = klp_init_func(obj, func);
894 		if (ret)
895 			return ret;
896 	}
897 
898 	if (klp_is_object_loaded(obj))
899 		ret = klp_init_object_loaded(patch, obj);
900 
901 	return ret;
902 }
903 
904 static void klp_init_func_early(struct klp_object *obj,
905 				struct klp_func *func)
906 {
907 	kobject_init(&func->kobj, &klp_ktype_func);
908 	list_add_tail(&func->node, &obj->func_list);
909 }
910 
911 static void klp_init_object_early(struct klp_patch *patch,
912 				  struct klp_object *obj)
913 {
914 	INIT_LIST_HEAD(&obj->func_list);
915 	kobject_init(&obj->kobj, &klp_ktype_object);
916 	list_add_tail(&obj->node, &patch->obj_list);
917 }
918 
919 static void klp_init_patch_early(struct klp_patch *patch)
920 {
921 	struct klp_object *obj;
922 	struct klp_func *func;
923 
924 	INIT_LIST_HEAD(&patch->list);
925 	INIT_LIST_HEAD(&patch->obj_list);
926 	kobject_init(&patch->kobj, &klp_ktype_patch);
927 	patch->enabled = false;
928 	patch->forced = false;
929 	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
930 	init_completion(&patch->finish);
931 
932 	klp_for_each_object_static(patch, obj) {
933 		klp_init_object_early(patch, obj);
934 
935 		klp_for_each_func_static(obj, func) {
936 			klp_init_func_early(obj, func);
937 		}
938 	}
939 }
940 
941 static int klp_init_patch(struct klp_patch *patch)
942 {
943 	struct klp_object *obj;
944 	int ret;
945 
946 	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
947 	if (ret)
948 		return ret;
949 
950 	if (patch->replace) {
951 		ret = klp_add_nops(patch);
952 		if (ret)
953 			return ret;
954 	}
955 
956 	klp_for_each_object(patch, obj) {
957 		ret = klp_init_object(patch, obj);
958 		if (ret)
959 			return ret;
960 	}
961 
962 	list_add_tail(&patch->list, &klp_patches);
963 
964 	return 0;
965 }
966 
967 static int __klp_disable_patch(struct klp_patch *patch)
968 {
969 	struct klp_object *obj;
970 
971 	if (WARN_ON(!patch->enabled))
972 		return -EINVAL;
973 
974 	if (klp_transition_patch)
975 		return -EBUSY;
976 
977 	klp_init_transition(patch, KLP_UNPATCHED);
978 
979 	klp_for_each_object(patch, obj)
980 		if (obj->patched)
981 			klp_pre_unpatch_callback(obj);
982 
983 	/*
984 	 * Enforce the order of the func->transition writes in
985 	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
986 	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
987 	 * is called shortly after klp_update_patch_state() switches the task,
988 	 * this ensures the handler sees that func->transition is set.
989 	 */
990 	smp_wmb();
991 
992 	klp_start_transition();
993 	patch->enabled = false;
994 	klp_try_complete_transition();
995 
996 	return 0;
997 }
998 
999 static int __klp_enable_patch(struct klp_patch *patch)
1000 {
1001 	struct klp_object *obj;
1002 	int ret;
1003 
1004 	if (klp_transition_patch)
1005 		return -EBUSY;
1006 
1007 	if (WARN_ON(patch->enabled))
1008 		return -EINVAL;
1009 
1010 	pr_notice("enabling patch '%s'\n", patch->mod->name);
1011 
1012 	klp_init_transition(patch, KLP_PATCHED);
1013 
1014 	/*
1015 	 * Enforce the order of the func->transition writes in
1016 	 * klp_init_transition() and the ops->func_stack writes in
1017 	 * klp_patch_object(), so that klp_ftrace_handler() will see the
1018 	 * func->transition updates before the handler is registered and the
1019 	 * new funcs become visible to the handler.
1020 	 */
1021 	smp_wmb();
1022 
1023 	klp_for_each_object(patch, obj) {
1024 		if (!klp_is_object_loaded(obj))
1025 			continue;
1026 
1027 		ret = klp_pre_patch_callback(obj);
1028 		if (ret) {
1029 			pr_warn("pre-patch callback failed for object '%s'\n",
1030 				klp_is_module(obj) ? obj->name : "vmlinux");
1031 			goto err;
1032 		}
1033 
1034 		ret = klp_patch_object(obj);
1035 		if (ret) {
1036 			pr_warn("failed to patch object '%s'\n",
1037 				klp_is_module(obj) ? obj->name : "vmlinux");
1038 			goto err;
1039 		}
1040 	}
1041 
1042 	klp_start_transition();
1043 	patch->enabled = true;
1044 	klp_try_complete_transition();
1045 
1046 	return 0;
1047 err:
1048 	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1049 
1050 	klp_cancel_transition();
1051 	return ret;
1052 }
1053 
1054 /**
1055  * klp_enable_patch() - enable the livepatch
1056  * @patch:	patch to be enabled
1057  *
1058  * Initializes the data structure associated with the patch, creates the sysfs
1059  * interface, performs the needed symbol lookups and code relocations,
1060  * registers the patched functions with ftrace.
1061  *
1062  * This function is supposed to be called from the livepatch module_init()
1063  * callback.
1064  *
1065  * Return: 0 on success, otherwise error
1066  */
1067 int klp_enable_patch(struct klp_patch *patch)
1068 {
1069 	int ret;
1070 	struct klp_object *obj;
1071 
1072 	if (!patch || !patch->mod || !patch->objs)
1073 		return -EINVAL;
1074 
1075 	klp_for_each_object_static(patch, obj) {
1076 		if (!obj->funcs)
1077 			return -EINVAL;
1078 	}
1079 
1080 
1081 	if (!is_livepatch_module(patch->mod)) {
1082 		pr_err("module %s is not marked as a livepatch module\n",
1083 		       patch->mod->name);
1084 		return -EINVAL;
1085 	}
1086 
1087 	if (!klp_initialized())
1088 		return -ENODEV;
1089 
1090 	if (!klp_have_reliable_stack()) {
1091 		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1092 		pr_warn("The livepatch transition may never complete.\n");
1093 	}
1094 
1095 	mutex_lock(&klp_mutex);
1096 
1097 	if (!klp_is_patch_compatible(patch)) {
1098 		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1099 			patch->mod->name);
1100 		mutex_unlock(&klp_mutex);
1101 		return -EINVAL;
1102 	}
1103 
1104 	if (!try_module_get(patch->mod)) {
1105 		mutex_unlock(&klp_mutex);
1106 		return -ENODEV;
1107 	}
1108 
1109 	klp_init_patch_early(patch);
1110 
1111 	ret = klp_init_patch(patch);
1112 	if (ret)
1113 		goto err;
1114 
1115 	ret = __klp_enable_patch(patch);
1116 	if (ret)
1117 		goto err;
1118 
1119 	mutex_unlock(&klp_mutex);
1120 
1121 	return 0;
1122 
1123 err:
1124 	klp_free_patch_start(patch);
1125 
1126 	mutex_unlock(&klp_mutex);
1127 
1128 	klp_free_patch_finish(patch);
1129 
1130 	return ret;
1131 }
1132 EXPORT_SYMBOL_GPL(klp_enable_patch);
1133 
1134 /*
1135  * This function unpatches objects from the replaced livepatches.
1136  *
1137  * We could be pretty aggressive here. It is called in the situation where
1138  * these structures are no longer accessed from the ftrace handler.
1139  * All functions are redirected by the klp_transition_patch. They
1140  * use either a new code or they are in the original code because
1141  * of the special nop function patches.
1142  *
1143  * The only exception is when the transition was forced. In this case,
1144  * klp_ftrace_handler() might still see the replaced patch on the stack.
1145  * Fortunately, it is carefully designed to work with removed functions
1146  * thanks to RCU. We only have to keep the patches on the system. Also
1147  * this is handled transparently by patch->module_put.
1148  */
1149 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1150 {
1151 	struct klp_patch *old_patch;
1152 
1153 	klp_for_each_patch(old_patch) {
1154 		if (old_patch == new_patch)
1155 			return;
1156 
1157 		old_patch->enabled = false;
1158 		klp_unpatch_objects(old_patch);
1159 	}
1160 }
1161 
1162 /*
1163  * This function removes the dynamically allocated 'nop' functions.
1164  *
1165  * We could be pretty aggressive. NOPs do not change the existing
1166  * behavior except for adding unnecessary delay by the ftrace handler.
1167  *
1168  * It is safe even when the transition was forced. The ftrace handler
1169  * will see a valid ops->func_stack entry thanks to RCU.
1170  *
1171  * We could even free the NOPs structures. They must be the last entry
1172  * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1173  * It does the same as klp_synchronize_transition() to make sure that
1174  * nobody is inside the ftrace handler once the operation finishes.
1175  *
1176  * IMPORTANT: It must be called right after removing the replaced patches!
1177  */
1178 void klp_discard_nops(struct klp_patch *new_patch)
1179 {
1180 	klp_unpatch_objects_dynamic(klp_transition_patch);
1181 	klp_free_objects_dynamic(klp_transition_patch);
1182 }
1183 
1184 /*
1185  * Remove parts of patches that touch a given kernel module. The list of
1186  * patches processed might be limited. When limit is NULL, all patches
1187  * will be handled.
1188  */
1189 static void klp_cleanup_module_patches_limited(struct module *mod,
1190 					       struct klp_patch *limit)
1191 {
1192 	struct klp_patch *patch;
1193 	struct klp_object *obj;
1194 
1195 	klp_for_each_patch(patch) {
1196 		if (patch == limit)
1197 			break;
1198 
1199 		klp_for_each_object(patch, obj) {
1200 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1201 				continue;
1202 
1203 			if (patch != klp_transition_patch)
1204 				klp_pre_unpatch_callback(obj);
1205 
1206 			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1207 				  patch->mod->name, obj->mod->name);
1208 			klp_unpatch_object(obj);
1209 
1210 			klp_post_unpatch_callback(obj);
1211 			klp_clear_object_relocs(patch, obj);
1212 			klp_free_object_loaded(obj);
1213 			break;
1214 		}
1215 	}
1216 }
1217 
1218 int klp_module_coming(struct module *mod)
1219 {
1220 	int ret;
1221 	struct klp_patch *patch;
1222 	struct klp_object *obj;
1223 
1224 	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1225 		return -EINVAL;
1226 
1227 	if (!strcmp(mod->name, "vmlinux")) {
1228 		pr_err("vmlinux.ko: invalid module name\n");
1229 		return -EINVAL;
1230 	}
1231 
1232 	mutex_lock(&klp_mutex);
1233 	/*
1234 	 * Each module has to know that klp_module_coming()
1235 	 * has been called. We never know what module will
1236 	 * get patched by a new patch.
1237 	 */
1238 	mod->klp_alive = true;
1239 
1240 	klp_for_each_patch(patch) {
1241 		klp_for_each_object(patch, obj) {
1242 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1243 				continue;
1244 
1245 			obj->mod = mod;
1246 
1247 			ret = klp_init_object_loaded(patch, obj);
1248 			if (ret) {
1249 				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1250 					patch->mod->name, obj->mod->name, ret);
1251 				goto err;
1252 			}
1253 
1254 			pr_notice("applying patch '%s' to loading module '%s'\n",
1255 				  patch->mod->name, obj->mod->name);
1256 
1257 			ret = klp_pre_patch_callback(obj);
1258 			if (ret) {
1259 				pr_warn("pre-patch callback failed for object '%s'\n",
1260 					obj->name);
1261 				goto err;
1262 			}
1263 
1264 			ret = klp_patch_object(obj);
1265 			if (ret) {
1266 				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1267 					patch->mod->name, obj->mod->name, ret);
1268 
1269 				klp_post_unpatch_callback(obj);
1270 				goto err;
1271 			}
1272 
1273 			if (patch != klp_transition_patch)
1274 				klp_post_patch_callback(obj);
1275 
1276 			break;
1277 		}
1278 	}
1279 
1280 	mutex_unlock(&klp_mutex);
1281 
1282 	return 0;
1283 
1284 err:
1285 	/*
1286 	 * If a patch is unsuccessfully applied, return
1287 	 * error to the module loader.
1288 	 */
1289 	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1290 		patch->mod->name, obj->mod->name, obj->mod->name);
1291 	mod->klp_alive = false;
1292 	obj->mod = NULL;
1293 	klp_cleanup_module_patches_limited(mod, patch);
1294 	mutex_unlock(&klp_mutex);
1295 
1296 	return ret;
1297 }
1298 
1299 void klp_module_going(struct module *mod)
1300 {
1301 	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1302 		    mod->state != MODULE_STATE_COMING))
1303 		return;
1304 
1305 	mutex_lock(&klp_mutex);
1306 	/*
1307 	 * Each module has to know that klp_module_going()
1308 	 * has been called. We never know what module will
1309 	 * get patched by a new patch.
1310 	 */
1311 	mod->klp_alive = false;
1312 
1313 	klp_cleanup_module_patches_limited(mod, NULL);
1314 
1315 	mutex_unlock(&klp_mutex);
1316 }
1317 
1318 static int __init klp_init(void)
1319 {
1320 	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1321 	if (!klp_root_kobj)
1322 		return -ENOMEM;
1323 
1324 	return 0;
1325 }
1326 
1327 module_init(klp_init);
1328