1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <linux/rcupdate.h> 23 #include <asm/cacheflush.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "state.h" 27 #include "transition.h" 28 29 /* 30 * klp_mutex is a coarse lock which serializes access to klp data. All 31 * accesses to klp-related variables and structures must have mutex protection, 32 * except within the following functions which carefully avoid the need for it: 33 * 34 * - klp_ftrace_handler() 35 * - klp_update_patch_state() 36 * - __klp_sched_try_switch() 37 */ 38 DEFINE_MUTEX(klp_mutex); 39 40 /* 41 * Actively used patches: enabled or in transition. Note that replaced 42 * or disabled patches are not listed even though the related kernel 43 * module still can be loaded. 44 */ 45 LIST_HEAD(klp_patches); 46 47 static struct kobject *klp_root_kobj; 48 49 static bool klp_is_module(struct klp_object *obj) 50 { 51 return obj->name; 52 } 53 54 /* sets obj->mod if object is not vmlinux and module is found */ 55 static void klp_find_object_module(struct klp_object *obj) 56 { 57 struct module *mod; 58 59 if (!klp_is_module(obj)) 60 return; 61 62 rcu_read_lock_sched(); 63 /* 64 * We do not want to block removal of patched modules and therefore 65 * we do not take a reference here. The patches are removed by 66 * klp_module_going() instead. 67 */ 68 mod = find_module(obj->name); 69 /* 70 * Do not mess work of klp_module_coming() and klp_module_going(). 71 * Note that the patch might still be needed before klp_module_going() 72 * is called. Module functions can be called even in the GOING state 73 * until mod->exit() finishes. This is especially important for 74 * patches that modify semantic of the functions. 75 */ 76 if (mod && mod->klp_alive) 77 obj->mod = mod; 78 79 rcu_read_unlock_sched(); 80 } 81 82 static bool klp_initialized(void) 83 { 84 return !!klp_root_kobj; 85 } 86 87 static struct klp_func *klp_find_func(struct klp_object *obj, 88 struct klp_func *old_func) 89 { 90 struct klp_func *func; 91 92 klp_for_each_func(obj, func) { 93 if ((strcmp(old_func->old_name, func->old_name) == 0) && 94 (old_func->old_sympos == func->old_sympos)) { 95 return func; 96 } 97 } 98 99 return NULL; 100 } 101 102 static struct klp_object *klp_find_object(struct klp_patch *patch, 103 struct klp_object *old_obj) 104 { 105 struct klp_object *obj; 106 107 klp_for_each_object(patch, obj) { 108 if (klp_is_module(old_obj)) { 109 if (klp_is_module(obj) && 110 strcmp(old_obj->name, obj->name) == 0) { 111 return obj; 112 } 113 } else if (!klp_is_module(obj)) { 114 return obj; 115 } 116 } 117 118 return NULL; 119 } 120 121 struct klp_find_arg { 122 const char *name; 123 unsigned long addr; 124 unsigned long count; 125 unsigned long pos; 126 }; 127 128 static int klp_match_callback(void *data, unsigned long addr) 129 { 130 struct klp_find_arg *args = data; 131 132 args->addr = addr; 133 args->count++; 134 135 /* 136 * Finish the search when the symbol is found for the desired position 137 * or the position is not defined for a non-unique symbol. 138 */ 139 if ((args->pos && (args->count == args->pos)) || 140 (!args->pos && (args->count > 1))) 141 return 1; 142 143 return 0; 144 } 145 146 static int klp_find_callback(void *data, const char *name, 147 struct module *mod, unsigned long addr) 148 { 149 struct klp_find_arg *args = data; 150 151 if (strcmp(args->name, name)) 152 return 0; 153 154 return klp_match_callback(data, addr); 155 } 156 157 static int klp_find_object_symbol(const char *objname, const char *name, 158 unsigned long sympos, unsigned long *addr) 159 { 160 struct klp_find_arg args = { 161 .name = name, 162 .addr = 0, 163 .count = 0, 164 .pos = sympos, 165 }; 166 167 if (objname) 168 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args); 169 else 170 kallsyms_on_each_match_symbol(klp_match_callback, name, &args); 171 172 /* 173 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 174 * otherwise ensure the symbol position count matches sympos. 175 */ 176 if (args.addr == 0) 177 pr_err("symbol '%s' not found in symbol table\n", name); 178 else if (args.count > 1 && sympos == 0) { 179 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 180 name, objname); 181 } else if (sympos != args.count && sympos > 0) { 182 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 183 sympos, name, objname ? objname : "vmlinux"); 184 } else { 185 *addr = args.addr; 186 return 0; 187 } 188 189 *addr = 0; 190 return -EINVAL; 191 } 192 193 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab, 194 unsigned int symndx, Elf_Shdr *relasec, 195 const char *sec_objname) 196 { 197 int i, cnt, ret; 198 char sym_objname[MODULE_NAME_LEN]; 199 char sym_name[KSYM_NAME_LEN]; 200 Elf_Rela *relas; 201 Elf_Sym *sym; 202 unsigned long sympos, addr; 203 bool sym_vmlinux; 204 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 205 206 /* 207 * Since the field widths for sym_objname and sym_name in the sscanf() 208 * call are hard-coded and correspond to MODULE_NAME_LEN and 209 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 210 * and KSYM_NAME_LEN have the values we expect them to have. 211 * 212 * Because the value of MODULE_NAME_LEN can differ among architectures, 213 * we use the smallest/strictest upper bound possible (56, based on 214 * the current definition of MODULE_NAME_LEN) to prevent overflows. 215 */ 216 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512); 217 218 relas = (Elf_Rela *) relasec->sh_addr; 219 /* For each rela in this klp relocation section */ 220 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 221 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 222 if (sym->st_shndx != SHN_LIVEPATCH) { 223 pr_err("symbol %s is not marked as a livepatch symbol\n", 224 strtab + sym->st_name); 225 return -EINVAL; 226 } 227 228 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 229 cnt = sscanf(strtab + sym->st_name, 230 ".klp.sym.%55[^.].%511[^,],%lu", 231 sym_objname, sym_name, &sympos); 232 if (cnt != 3) { 233 pr_err("symbol %s has an incorrectly formatted name\n", 234 strtab + sym->st_name); 235 return -EINVAL; 236 } 237 238 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 239 240 /* 241 * Prevent module-specific KLP rela sections from referencing 242 * vmlinux symbols. This helps prevent ordering issues with 243 * module special section initializations. Presumably such 244 * symbols are exported and normal relas can be used instead. 245 */ 246 if (!sec_vmlinux && sym_vmlinux) { 247 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section", 248 sym_name); 249 return -EINVAL; 250 } 251 252 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 253 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 254 sym_name, sympos, &addr); 255 if (ret) 256 return ret; 257 258 sym->st_value = addr; 259 } 260 261 return 0; 262 } 263 264 void __weak clear_relocate_add(Elf_Shdr *sechdrs, 265 const char *strtab, 266 unsigned int symindex, 267 unsigned int relsec, 268 struct module *me) 269 { 270 } 271 272 /* 273 * At a high-level, there are two types of klp relocation sections: those which 274 * reference symbols which live in vmlinux; and those which reference symbols 275 * which live in other modules. This function is called for both types: 276 * 277 * 1) When a klp module itself loads, the module code calls this function to 278 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 279 * These relocations are written to the klp module text to allow the patched 280 * code/data to reference unexported vmlinux symbols. They're written as 281 * early as possible to ensure that other module init code (.e.g., 282 * jump_label_apply_nops) can access any unexported vmlinux symbols which 283 * might be referenced by the klp module's special sections. 284 * 285 * 2) When a to-be-patched module loads -- or is already loaded when a 286 * corresponding klp module loads -- klp code calls this function to write 287 * module-specific klp relocations (.klp.rela.{module}.* sections). These 288 * are written to the klp module text to allow the patched code/data to 289 * reference symbols which live in the to-be-patched module or one of its 290 * module dependencies. Exported symbols are supported, in addition to 291 * unexported symbols, in order to enable late module patching, which allows 292 * the to-be-patched module to be loaded and patched sometime *after* the 293 * klp module is loaded. 294 */ 295 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 296 const char *shstrtab, const char *strtab, 297 unsigned int symndx, unsigned int secndx, 298 const char *objname, bool apply) 299 { 300 int cnt, ret; 301 char sec_objname[MODULE_NAME_LEN]; 302 Elf_Shdr *sec = sechdrs + secndx; 303 304 /* 305 * Format: .klp.rela.sec_objname.section_name 306 * See comment in klp_resolve_symbols() for an explanation 307 * of the selected field width value. 308 */ 309 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 310 sec_objname); 311 if (cnt != 1) { 312 pr_err("section %s has an incorrectly formatted name\n", 313 shstrtab + sec->sh_name); 314 return -EINVAL; 315 } 316 317 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 318 return 0; 319 320 if (apply) { 321 ret = klp_resolve_symbols(sechdrs, strtab, symndx, 322 sec, sec_objname); 323 if (ret) 324 return ret; 325 326 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 327 } 328 329 clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 330 return 0; 331 } 332 333 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 334 const char *shstrtab, const char *strtab, 335 unsigned int symndx, unsigned int secndx, 336 const char *objname) 337 { 338 return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx, 339 secndx, objname, true); 340 } 341 342 /* 343 * Sysfs Interface 344 * 345 * /sys/kernel/livepatch 346 * /sys/kernel/livepatch/<patch> 347 * /sys/kernel/livepatch/<patch>/enabled 348 * /sys/kernel/livepatch/<patch>/transition 349 * /sys/kernel/livepatch/<patch>/force 350 * /sys/kernel/livepatch/<patch>/<object> 351 * /sys/kernel/livepatch/<patch>/<object>/patched 352 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 353 */ 354 static int __klp_disable_patch(struct klp_patch *patch); 355 356 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 357 const char *buf, size_t count) 358 { 359 struct klp_patch *patch; 360 int ret; 361 bool enabled; 362 363 ret = kstrtobool(buf, &enabled); 364 if (ret) 365 return ret; 366 367 patch = container_of(kobj, struct klp_patch, kobj); 368 369 mutex_lock(&klp_mutex); 370 371 if (patch->enabled == enabled) { 372 /* already in requested state */ 373 ret = -EINVAL; 374 goto out; 375 } 376 377 /* 378 * Allow to reverse a pending transition in both ways. It might be 379 * necessary to complete the transition without forcing and breaking 380 * the system integrity. 381 * 382 * Do not allow to re-enable a disabled patch. 383 */ 384 if (patch == klp_transition_patch) 385 klp_reverse_transition(); 386 else if (!enabled) 387 ret = __klp_disable_patch(patch); 388 else 389 ret = -EINVAL; 390 391 out: 392 mutex_unlock(&klp_mutex); 393 394 if (ret) 395 return ret; 396 return count; 397 } 398 399 static ssize_t enabled_show(struct kobject *kobj, 400 struct kobj_attribute *attr, char *buf) 401 { 402 struct klp_patch *patch; 403 404 patch = container_of(kobj, struct klp_patch, kobj); 405 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 406 } 407 408 static ssize_t transition_show(struct kobject *kobj, 409 struct kobj_attribute *attr, char *buf) 410 { 411 struct klp_patch *patch; 412 413 patch = container_of(kobj, struct klp_patch, kobj); 414 return snprintf(buf, PAGE_SIZE-1, "%d\n", 415 patch == klp_transition_patch); 416 } 417 418 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 419 const char *buf, size_t count) 420 { 421 struct klp_patch *patch; 422 int ret; 423 bool val; 424 425 ret = kstrtobool(buf, &val); 426 if (ret) 427 return ret; 428 429 if (!val) 430 return count; 431 432 mutex_lock(&klp_mutex); 433 434 patch = container_of(kobj, struct klp_patch, kobj); 435 if (patch != klp_transition_patch) { 436 mutex_unlock(&klp_mutex); 437 return -EINVAL; 438 } 439 440 klp_force_transition(); 441 442 mutex_unlock(&klp_mutex); 443 444 return count; 445 } 446 447 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 448 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 449 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 450 static struct attribute *klp_patch_attrs[] = { 451 &enabled_kobj_attr.attr, 452 &transition_kobj_attr.attr, 453 &force_kobj_attr.attr, 454 NULL 455 }; 456 ATTRIBUTE_GROUPS(klp_patch); 457 458 static ssize_t patched_show(struct kobject *kobj, 459 struct kobj_attribute *attr, char *buf) 460 { 461 struct klp_object *obj; 462 463 obj = container_of(kobj, struct klp_object, kobj); 464 return sysfs_emit(buf, "%d\n", obj->patched); 465 } 466 467 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched); 468 static struct attribute *klp_object_attrs[] = { 469 &patched_kobj_attr.attr, 470 NULL, 471 }; 472 ATTRIBUTE_GROUPS(klp_object); 473 474 static void klp_free_object_dynamic(struct klp_object *obj) 475 { 476 kfree(obj->name); 477 kfree(obj); 478 } 479 480 static void klp_init_func_early(struct klp_object *obj, 481 struct klp_func *func); 482 static void klp_init_object_early(struct klp_patch *patch, 483 struct klp_object *obj); 484 485 static struct klp_object *klp_alloc_object_dynamic(const char *name, 486 struct klp_patch *patch) 487 { 488 struct klp_object *obj; 489 490 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 491 if (!obj) 492 return NULL; 493 494 if (name) { 495 obj->name = kstrdup(name, GFP_KERNEL); 496 if (!obj->name) { 497 kfree(obj); 498 return NULL; 499 } 500 } 501 502 klp_init_object_early(patch, obj); 503 obj->dynamic = true; 504 505 return obj; 506 } 507 508 static void klp_free_func_nop(struct klp_func *func) 509 { 510 kfree(func->old_name); 511 kfree(func); 512 } 513 514 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 515 struct klp_object *obj) 516 { 517 struct klp_func *func; 518 519 func = kzalloc(sizeof(*func), GFP_KERNEL); 520 if (!func) 521 return NULL; 522 523 if (old_func->old_name) { 524 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 525 if (!func->old_name) { 526 kfree(func); 527 return NULL; 528 } 529 } 530 531 klp_init_func_early(obj, func); 532 /* 533 * func->new_func is same as func->old_func. These addresses are 534 * set when the object is loaded, see klp_init_object_loaded(). 535 */ 536 func->old_sympos = old_func->old_sympos; 537 func->nop = true; 538 539 return func; 540 } 541 542 static int klp_add_object_nops(struct klp_patch *patch, 543 struct klp_object *old_obj) 544 { 545 struct klp_object *obj; 546 struct klp_func *func, *old_func; 547 548 obj = klp_find_object(patch, old_obj); 549 550 if (!obj) { 551 obj = klp_alloc_object_dynamic(old_obj->name, patch); 552 if (!obj) 553 return -ENOMEM; 554 } 555 556 klp_for_each_func(old_obj, old_func) { 557 func = klp_find_func(obj, old_func); 558 if (func) 559 continue; 560 561 func = klp_alloc_func_nop(old_func, obj); 562 if (!func) 563 return -ENOMEM; 564 } 565 566 return 0; 567 } 568 569 /* 570 * Add 'nop' functions which simply return to the caller to run 571 * the original function. The 'nop' functions are added to a 572 * patch to facilitate a 'replace' mode. 573 */ 574 static int klp_add_nops(struct klp_patch *patch) 575 { 576 struct klp_patch *old_patch; 577 struct klp_object *old_obj; 578 579 klp_for_each_patch(old_patch) { 580 klp_for_each_object(old_patch, old_obj) { 581 int err; 582 583 err = klp_add_object_nops(patch, old_obj); 584 if (err) 585 return err; 586 } 587 } 588 589 return 0; 590 } 591 592 static void klp_kobj_release_patch(struct kobject *kobj) 593 { 594 struct klp_patch *patch; 595 596 patch = container_of(kobj, struct klp_patch, kobj); 597 complete(&patch->finish); 598 } 599 600 static struct kobj_type klp_ktype_patch = { 601 .release = klp_kobj_release_patch, 602 .sysfs_ops = &kobj_sysfs_ops, 603 .default_groups = klp_patch_groups, 604 }; 605 606 static void klp_kobj_release_object(struct kobject *kobj) 607 { 608 struct klp_object *obj; 609 610 obj = container_of(kobj, struct klp_object, kobj); 611 612 if (obj->dynamic) 613 klp_free_object_dynamic(obj); 614 } 615 616 static struct kobj_type klp_ktype_object = { 617 .release = klp_kobj_release_object, 618 .sysfs_ops = &kobj_sysfs_ops, 619 .default_groups = klp_object_groups, 620 }; 621 622 static void klp_kobj_release_func(struct kobject *kobj) 623 { 624 struct klp_func *func; 625 626 func = container_of(kobj, struct klp_func, kobj); 627 628 if (func->nop) 629 klp_free_func_nop(func); 630 } 631 632 static struct kobj_type klp_ktype_func = { 633 .release = klp_kobj_release_func, 634 .sysfs_ops = &kobj_sysfs_ops, 635 }; 636 637 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 638 { 639 struct klp_func *func, *tmp_func; 640 641 klp_for_each_func_safe(obj, func, tmp_func) { 642 if (nops_only && !func->nop) 643 continue; 644 645 list_del(&func->node); 646 kobject_put(&func->kobj); 647 } 648 } 649 650 /* Clean up when a patched object is unloaded */ 651 static void klp_free_object_loaded(struct klp_object *obj) 652 { 653 struct klp_func *func; 654 655 obj->mod = NULL; 656 657 klp_for_each_func(obj, func) { 658 func->old_func = NULL; 659 660 if (func->nop) 661 func->new_func = NULL; 662 } 663 } 664 665 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 666 { 667 struct klp_object *obj, *tmp_obj; 668 669 klp_for_each_object_safe(patch, obj, tmp_obj) { 670 __klp_free_funcs(obj, nops_only); 671 672 if (nops_only && !obj->dynamic) 673 continue; 674 675 list_del(&obj->node); 676 kobject_put(&obj->kobj); 677 } 678 } 679 680 static void klp_free_objects(struct klp_patch *patch) 681 { 682 __klp_free_objects(patch, false); 683 } 684 685 static void klp_free_objects_dynamic(struct klp_patch *patch) 686 { 687 __klp_free_objects(patch, true); 688 } 689 690 /* 691 * This function implements the free operations that can be called safely 692 * under klp_mutex. 693 * 694 * The operation must be completed by calling klp_free_patch_finish() 695 * outside klp_mutex. 696 */ 697 static void klp_free_patch_start(struct klp_patch *patch) 698 { 699 if (!list_empty(&patch->list)) 700 list_del(&patch->list); 701 702 klp_free_objects(patch); 703 } 704 705 /* 706 * This function implements the free part that must be called outside 707 * klp_mutex. 708 * 709 * It must be called after klp_free_patch_start(). And it has to be 710 * the last function accessing the livepatch structures when the patch 711 * gets disabled. 712 */ 713 static void klp_free_patch_finish(struct klp_patch *patch) 714 { 715 /* 716 * Avoid deadlock with enabled_store() sysfs callback by 717 * calling this outside klp_mutex. It is safe because 718 * this is called when the patch gets disabled and it 719 * cannot get enabled again. 720 */ 721 kobject_put(&patch->kobj); 722 wait_for_completion(&patch->finish); 723 724 /* Put the module after the last access to struct klp_patch. */ 725 if (!patch->forced) 726 module_put(patch->mod); 727 } 728 729 /* 730 * The livepatch might be freed from sysfs interface created by the patch. 731 * This work allows to wait until the interface is destroyed in a separate 732 * context. 733 */ 734 static void klp_free_patch_work_fn(struct work_struct *work) 735 { 736 struct klp_patch *patch = 737 container_of(work, struct klp_patch, free_work); 738 739 klp_free_patch_finish(patch); 740 } 741 742 void klp_free_patch_async(struct klp_patch *patch) 743 { 744 klp_free_patch_start(patch); 745 schedule_work(&patch->free_work); 746 } 747 748 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 749 { 750 struct klp_patch *old_patch, *tmp_patch; 751 752 klp_for_each_patch_safe(old_patch, tmp_patch) { 753 if (old_patch == new_patch) 754 return; 755 klp_free_patch_async(old_patch); 756 } 757 } 758 759 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 760 { 761 if (!func->old_name) 762 return -EINVAL; 763 764 /* 765 * NOPs get the address later. The patched module must be loaded, 766 * see klp_init_object_loaded(). 767 */ 768 if (!func->new_func && !func->nop) 769 return -EINVAL; 770 771 if (strlen(func->old_name) >= KSYM_NAME_LEN) 772 return -EINVAL; 773 774 INIT_LIST_HEAD(&func->stack_node); 775 func->patched = false; 776 func->transition = false; 777 778 /* The format for the sysfs directory is <function,sympos> where sympos 779 * is the nth occurrence of this symbol in kallsyms for the patched 780 * object. If the user selects 0 for old_sympos, then 1 will be used 781 * since a unique symbol will be the first occurrence. 782 */ 783 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 784 func->old_name, 785 func->old_sympos ? func->old_sympos : 1); 786 } 787 788 static int klp_write_object_relocs(struct klp_patch *patch, 789 struct klp_object *obj, 790 bool apply) 791 { 792 int i, ret; 793 struct klp_modinfo *info = patch->mod->klp_info; 794 795 for (i = 1; i < info->hdr.e_shnum; i++) { 796 Elf_Shdr *sec = info->sechdrs + i; 797 798 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 799 continue; 800 801 ret = klp_write_section_relocs(patch->mod, info->sechdrs, 802 info->secstrings, 803 patch->mod->core_kallsyms.strtab, 804 info->symndx, i, obj->name, apply); 805 if (ret) 806 return ret; 807 } 808 809 return 0; 810 } 811 812 static int klp_apply_object_relocs(struct klp_patch *patch, 813 struct klp_object *obj) 814 { 815 return klp_write_object_relocs(patch, obj, true); 816 } 817 818 static void klp_clear_object_relocs(struct klp_patch *patch, 819 struct klp_object *obj) 820 { 821 klp_write_object_relocs(patch, obj, false); 822 } 823 824 /* parts of the initialization that is done only when the object is loaded */ 825 static int klp_init_object_loaded(struct klp_patch *patch, 826 struct klp_object *obj) 827 { 828 struct klp_func *func; 829 int ret; 830 831 if (klp_is_module(obj)) { 832 /* 833 * Only write module-specific relocations here 834 * (.klp.rela.{module}.*). vmlinux-specific relocations were 835 * written earlier during the initialization of the klp module 836 * itself. 837 */ 838 ret = klp_apply_object_relocs(patch, obj); 839 if (ret) 840 return ret; 841 } 842 843 klp_for_each_func(obj, func) { 844 ret = klp_find_object_symbol(obj->name, func->old_name, 845 func->old_sympos, 846 (unsigned long *)&func->old_func); 847 if (ret) 848 return ret; 849 850 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 851 &func->old_size, NULL); 852 if (!ret) { 853 pr_err("kallsyms size lookup failed for '%s'\n", 854 func->old_name); 855 return -ENOENT; 856 } 857 858 if (func->nop) 859 func->new_func = func->old_func; 860 861 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 862 &func->new_size, NULL); 863 if (!ret) { 864 pr_err("kallsyms size lookup failed for '%s' replacement\n", 865 func->old_name); 866 return -ENOENT; 867 } 868 } 869 870 return 0; 871 } 872 873 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 874 { 875 struct klp_func *func; 876 int ret; 877 const char *name; 878 879 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 880 return -EINVAL; 881 882 obj->patched = false; 883 obj->mod = NULL; 884 885 klp_find_object_module(obj); 886 887 name = klp_is_module(obj) ? obj->name : "vmlinux"; 888 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 889 if (ret) 890 return ret; 891 892 klp_for_each_func(obj, func) { 893 ret = klp_init_func(obj, func); 894 if (ret) 895 return ret; 896 } 897 898 if (klp_is_object_loaded(obj)) 899 ret = klp_init_object_loaded(patch, obj); 900 901 return ret; 902 } 903 904 static void klp_init_func_early(struct klp_object *obj, 905 struct klp_func *func) 906 { 907 kobject_init(&func->kobj, &klp_ktype_func); 908 list_add_tail(&func->node, &obj->func_list); 909 } 910 911 static void klp_init_object_early(struct klp_patch *patch, 912 struct klp_object *obj) 913 { 914 INIT_LIST_HEAD(&obj->func_list); 915 kobject_init(&obj->kobj, &klp_ktype_object); 916 list_add_tail(&obj->node, &patch->obj_list); 917 } 918 919 static void klp_init_patch_early(struct klp_patch *patch) 920 { 921 struct klp_object *obj; 922 struct klp_func *func; 923 924 INIT_LIST_HEAD(&patch->list); 925 INIT_LIST_HEAD(&patch->obj_list); 926 kobject_init(&patch->kobj, &klp_ktype_patch); 927 patch->enabled = false; 928 patch->forced = false; 929 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 930 init_completion(&patch->finish); 931 932 klp_for_each_object_static(patch, obj) { 933 klp_init_object_early(patch, obj); 934 935 klp_for_each_func_static(obj, func) { 936 klp_init_func_early(obj, func); 937 } 938 } 939 } 940 941 static int klp_init_patch(struct klp_patch *patch) 942 { 943 struct klp_object *obj; 944 int ret; 945 946 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 947 if (ret) 948 return ret; 949 950 if (patch->replace) { 951 ret = klp_add_nops(patch); 952 if (ret) 953 return ret; 954 } 955 956 klp_for_each_object(patch, obj) { 957 ret = klp_init_object(patch, obj); 958 if (ret) 959 return ret; 960 } 961 962 list_add_tail(&patch->list, &klp_patches); 963 964 return 0; 965 } 966 967 static int __klp_disable_patch(struct klp_patch *patch) 968 { 969 struct klp_object *obj; 970 971 if (WARN_ON(!patch->enabled)) 972 return -EINVAL; 973 974 if (klp_transition_patch) 975 return -EBUSY; 976 977 klp_init_transition(patch, KLP_UNPATCHED); 978 979 klp_for_each_object(patch, obj) 980 if (obj->patched) 981 klp_pre_unpatch_callback(obj); 982 983 /* 984 * Enforce the order of the func->transition writes in 985 * klp_init_transition() and the TIF_PATCH_PENDING writes in 986 * klp_start_transition(). In the rare case where klp_ftrace_handler() 987 * is called shortly after klp_update_patch_state() switches the task, 988 * this ensures the handler sees that func->transition is set. 989 */ 990 smp_wmb(); 991 992 klp_start_transition(); 993 patch->enabled = false; 994 klp_try_complete_transition(); 995 996 return 0; 997 } 998 999 static int __klp_enable_patch(struct klp_patch *patch) 1000 { 1001 struct klp_object *obj; 1002 int ret; 1003 1004 if (klp_transition_patch) 1005 return -EBUSY; 1006 1007 if (WARN_ON(patch->enabled)) 1008 return -EINVAL; 1009 1010 pr_notice("enabling patch '%s'\n", patch->mod->name); 1011 1012 klp_init_transition(patch, KLP_PATCHED); 1013 1014 /* 1015 * Enforce the order of the func->transition writes in 1016 * klp_init_transition() and the ops->func_stack writes in 1017 * klp_patch_object(), so that klp_ftrace_handler() will see the 1018 * func->transition updates before the handler is registered and the 1019 * new funcs become visible to the handler. 1020 */ 1021 smp_wmb(); 1022 1023 klp_for_each_object(patch, obj) { 1024 if (!klp_is_object_loaded(obj)) 1025 continue; 1026 1027 ret = klp_pre_patch_callback(obj); 1028 if (ret) { 1029 pr_warn("pre-patch callback failed for object '%s'\n", 1030 klp_is_module(obj) ? obj->name : "vmlinux"); 1031 goto err; 1032 } 1033 1034 ret = klp_patch_object(obj); 1035 if (ret) { 1036 pr_warn("failed to patch object '%s'\n", 1037 klp_is_module(obj) ? obj->name : "vmlinux"); 1038 goto err; 1039 } 1040 } 1041 1042 klp_start_transition(); 1043 patch->enabled = true; 1044 klp_try_complete_transition(); 1045 1046 return 0; 1047 err: 1048 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1049 1050 klp_cancel_transition(); 1051 return ret; 1052 } 1053 1054 /** 1055 * klp_enable_patch() - enable the livepatch 1056 * @patch: patch to be enabled 1057 * 1058 * Initializes the data structure associated with the patch, creates the sysfs 1059 * interface, performs the needed symbol lookups and code relocations, 1060 * registers the patched functions with ftrace. 1061 * 1062 * This function is supposed to be called from the livepatch module_init() 1063 * callback. 1064 * 1065 * Return: 0 on success, otherwise error 1066 */ 1067 int klp_enable_patch(struct klp_patch *patch) 1068 { 1069 int ret; 1070 struct klp_object *obj; 1071 1072 if (!patch || !patch->mod || !patch->objs) 1073 return -EINVAL; 1074 1075 klp_for_each_object_static(patch, obj) { 1076 if (!obj->funcs) 1077 return -EINVAL; 1078 } 1079 1080 1081 if (!is_livepatch_module(patch->mod)) { 1082 pr_err("module %s is not marked as a livepatch module\n", 1083 patch->mod->name); 1084 return -EINVAL; 1085 } 1086 1087 if (!klp_initialized()) 1088 return -ENODEV; 1089 1090 if (!klp_have_reliable_stack()) { 1091 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1092 pr_warn("The livepatch transition may never complete.\n"); 1093 } 1094 1095 mutex_lock(&klp_mutex); 1096 1097 if (!klp_is_patch_compatible(patch)) { 1098 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1099 patch->mod->name); 1100 mutex_unlock(&klp_mutex); 1101 return -EINVAL; 1102 } 1103 1104 if (!try_module_get(patch->mod)) { 1105 mutex_unlock(&klp_mutex); 1106 return -ENODEV; 1107 } 1108 1109 klp_init_patch_early(patch); 1110 1111 ret = klp_init_patch(patch); 1112 if (ret) 1113 goto err; 1114 1115 ret = __klp_enable_patch(patch); 1116 if (ret) 1117 goto err; 1118 1119 mutex_unlock(&klp_mutex); 1120 1121 return 0; 1122 1123 err: 1124 klp_free_patch_start(patch); 1125 1126 mutex_unlock(&klp_mutex); 1127 1128 klp_free_patch_finish(patch); 1129 1130 return ret; 1131 } 1132 EXPORT_SYMBOL_GPL(klp_enable_patch); 1133 1134 /* 1135 * This function unpatches objects from the replaced livepatches. 1136 * 1137 * We could be pretty aggressive here. It is called in the situation where 1138 * these structures are no longer accessed from the ftrace handler. 1139 * All functions are redirected by the klp_transition_patch. They 1140 * use either a new code or they are in the original code because 1141 * of the special nop function patches. 1142 * 1143 * The only exception is when the transition was forced. In this case, 1144 * klp_ftrace_handler() might still see the replaced patch on the stack. 1145 * Fortunately, it is carefully designed to work with removed functions 1146 * thanks to RCU. We only have to keep the patches on the system. Also 1147 * this is handled transparently by patch->module_put. 1148 */ 1149 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1150 { 1151 struct klp_patch *old_patch; 1152 1153 klp_for_each_patch(old_patch) { 1154 if (old_patch == new_patch) 1155 return; 1156 1157 old_patch->enabled = false; 1158 klp_unpatch_objects(old_patch); 1159 } 1160 } 1161 1162 /* 1163 * This function removes the dynamically allocated 'nop' functions. 1164 * 1165 * We could be pretty aggressive. NOPs do not change the existing 1166 * behavior except for adding unnecessary delay by the ftrace handler. 1167 * 1168 * It is safe even when the transition was forced. The ftrace handler 1169 * will see a valid ops->func_stack entry thanks to RCU. 1170 * 1171 * We could even free the NOPs structures. They must be the last entry 1172 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1173 * It does the same as klp_synchronize_transition() to make sure that 1174 * nobody is inside the ftrace handler once the operation finishes. 1175 * 1176 * IMPORTANT: It must be called right after removing the replaced patches! 1177 */ 1178 void klp_discard_nops(struct klp_patch *new_patch) 1179 { 1180 klp_unpatch_objects_dynamic(klp_transition_patch); 1181 klp_free_objects_dynamic(klp_transition_patch); 1182 } 1183 1184 /* 1185 * Remove parts of patches that touch a given kernel module. The list of 1186 * patches processed might be limited. When limit is NULL, all patches 1187 * will be handled. 1188 */ 1189 static void klp_cleanup_module_patches_limited(struct module *mod, 1190 struct klp_patch *limit) 1191 { 1192 struct klp_patch *patch; 1193 struct klp_object *obj; 1194 1195 klp_for_each_patch(patch) { 1196 if (patch == limit) 1197 break; 1198 1199 klp_for_each_object(patch, obj) { 1200 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1201 continue; 1202 1203 if (patch != klp_transition_patch) 1204 klp_pre_unpatch_callback(obj); 1205 1206 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1207 patch->mod->name, obj->mod->name); 1208 klp_unpatch_object(obj); 1209 1210 klp_post_unpatch_callback(obj); 1211 klp_clear_object_relocs(patch, obj); 1212 klp_free_object_loaded(obj); 1213 break; 1214 } 1215 } 1216 } 1217 1218 int klp_module_coming(struct module *mod) 1219 { 1220 int ret; 1221 struct klp_patch *patch; 1222 struct klp_object *obj; 1223 1224 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1225 return -EINVAL; 1226 1227 if (!strcmp(mod->name, "vmlinux")) { 1228 pr_err("vmlinux.ko: invalid module name\n"); 1229 return -EINVAL; 1230 } 1231 1232 mutex_lock(&klp_mutex); 1233 /* 1234 * Each module has to know that klp_module_coming() 1235 * has been called. We never know what module will 1236 * get patched by a new patch. 1237 */ 1238 mod->klp_alive = true; 1239 1240 klp_for_each_patch(patch) { 1241 klp_for_each_object(patch, obj) { 1242 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1243 continue; 1244 1245 obj->mod = mod; 1246 1247 ret = klp_init_object_loaded(patch, obj); 1248 if (ret) { 1249 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1250 patch->mod->name, obj->mod->name, ret); 1251 goto err; 1252 } 1253 1254 pr_notice("applying patch '%s' to loading module '%s'\n", 1255 patch->mod->name, obj->mod->name); 1256 1257 ret = klp_pre_patch_callback(obj); 1258 if (ret) { 1259 pr_warn("pre-patch callback failed for object '%s'\n", 1260 obj->name); 1261 goto err; 1262 } 1263 1264 ret = klp_patch_object(obj); 1265 if (ret) { 1266 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1267 patch->mod->name, obj->mod->name, ret); 1268 1269 klp_post_unpatch_callback(obj); 1270 goto err; 1271 } 1272 1273 if (patch != klp_transition_patch) 1274 klp_post_patch_callback(obj); 1275 1276 break; 1277 } 1278 } 1279 1280 mutex_unlock(&klp_mutex); 1281 1282 return 0; 1283 1284 err: 1285 /* 1286 * If a patch is unsuccessfully applied, return 1287 * error to the module loader. 1288 */ 1289 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1290 patch->mod->name, obj->mod->name, obj->mod->name); 1291 mod->klp_alive = false; 1292 obj->mod = NULL; 1293 klp_cleanup_module_patches_limited(mod, patch); 1294 mutex_unlock(&klp_mutex); 1295 1296 return ret; 1297 } 1298 1299 void klp_module_going(struct module *mod) 1300 { 1301 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1302 mod->state != MODULE_STATE_COMING)) 1303 return; 1304 1305 mutex_lock(&klp_mutex); 1306 /* 1307 * Each module has to know that klp_module_going() 1308 * has been called. We never know what module will 1309 * get patched by a new patch. 1310 */ 1311 mod->klp_alive = false; 1312 1313 klp_cleanup_module_patches_limited(mod, NULL); 1314 1315 mutex_unlock(&klp_mutex); 1316 } 1317 1318 static int __init klp_init(void) 1319 { 1320 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1321 if (!klp_root_kobj) 1322 return -ENOMEM; 1323 1324 return 0; 1325 } 1326 1327 module_init(klp_init); 1328