xref: /openbmc/linux/kernel/livepatch/core.c (revision c79fe9b436690209954f908a41b19e0bf575877a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * core.c - Kernel Live Patching Core
4  *
5  * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6  * Copyright (C) 2014 SUSE
7  */
8 
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <asm/cacheflush.h>
23 #include "core.h"
24 #include "patch.h"
25 #include "state.h"
26 #include "transition.h"
27 
28 /*
29  * klp_mutex is a coarse lock which serializes access to klp data.  All
30  * accesses to klp-related variables and structures must have mutex protection,
31  * except within the following functions which carefully avoid the need for it:
32  *
33  * - klp_ftrace_handler()
34  * - klp_update_patch_state()
35  */
36 DEFINE_MUTEX(klp_mutex);
37 
38 /*
39  * Actively used patches: enabled or in transition. Note that replaced
40  * or disabled patches are not listed even though the related kernel
41  * module still can be loaded.
42  */
43 LIST_HEAD(klp_patches);
44 
45 static struct kobject *klp_root_kobj;
46 
47 static bool klp_is_module(struct klp_object *obj)
48 {
49 	return obj->name;
50 }
51 
52 /* sets obj->mod if object is not vmlinux and module is found */
53 static void klp_find_object_module(struct klp_object *obj)
54 {
55 	struct module *mod;
56 
57 	if (!klp_is_module(obj))
58 		return;
59 
60 	mutex_lock(&module_mutex);
61 	/*
62 	 * We do not want to block removal of patched modules and therefore
63 	 * we do not take a reference here. The patches are removed by
64 	 * klp_module_going() instead.
65 	 */
66 	mod = find_module(obj->name);
67 	/*
68 	 * Do not mess work of klp_module_coming() and klp_module_going().
69 	 * Note that the patch might still be needed before klp_module_going()
70 	 * is called. Module functions can be called even in the GOING state
71 	 * until mod->exit() finishes. This is especially important for
72 	 * patches that modify semantic of the functions.
73 	 */
74 	if (mod && mod->klp_alive)
75 		obj->mod = mod;
76 
77 	mutex_unlock(&module_mutex);
78 }
79 
80 static bool klp_initialized(void)
81 {
82 	return !!klp_root_kobj;
83 }
84 
85 static struct klp_func *klp_find_func(struct klp_object *obj,
86 				      struct klp_func *old_func)
87 {
88 	struct klp_func *func;
89 
90 	klp_for_each_func(obj, func) {
91 		if ((strcmp(old_func->old_name, func->old_name) == 0) &&
92 		    (old_func->old_sympos == func->old_sympos)) {
93 			return func;
94 		}
95 	}
96 
97 	return NULL;
98 }
99 
100 static struct klp_object *klp_find_object(struct klp_patch *patch,
101 					  struct klp_object *old_obj)
102 {
103 	struct klp_object *obj;
104 
105 	klp_for_each_object(patch, obj) {
106 		if (klp_is_module(old_obj)) {
107 			if (klp_is_module(obj) &&
108 			    strcmp(old_obj->name, obj->name) == 0) {
109 				return obj;
110 			}
111 		} else if (!klp_is_module(obj)) {
112 			return obj;
113 		}
114 	}
115 
116 	return NULL;
117 }
118 
119 struct klp_find_arg {
120 	const char *objname;
121 	const char *name;
122 	unsigned long addr;
123 	unsigned long count;
124 	unsigned long pos;
125 };
126 
127 static int klp_find_callback(void *data, const char *name,
128 			     struct module *mod, unsigned long addr)
129 {
130 	struct klp_find_arg *args = data;
131 
132 	if ((mod && !args->objname) || (!mod && args->objname))
133 		return 0;
134 
135 	if (strcmp(args->name, name))
136 		return 0;
137 
138 	if (args->objname && strcmp(args->objname, mod->name))
139 		return 0;
140 
141 	args->addr = addr;
142 	args->count++;
143 
144 	/*
145 	 * Finish the search when the symbol is found for the desired position
146 	 * or the position is not defined for a non-unique symbol.
147 	 */
148 	if ((args->pos && (args->count == args->pos)) ||
149 	    (!args->pos && (args->count > 1)))
150 		return 1;
151 
152 	return 0;
153 }
154 
155 static int klp_find_object_symbol(const char *objname, const char *name,
156 				  unsigned long sympos, unsigned long *addr)
157 {
158 	struct klp_find_arg args = {
159 		.objname = objname,
160 		.name = name,
161 		.addr = 0,
162 		.count = 0,
163 		.pos = sympos,
164 	};
165 
166 	mutex_lock(&module_mutex);
167 	if (objname)
168 		module_kallsyms_on_each_symbol(klp_find_callback, &args);
169 	else
170 		kallsyms_on_each_symbol(klp_find_callback, &args);
171 	mutex_unlock(&module_mutex);
172 
173 	/*
174 	 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
175 	 * otherwise ensure the symbol position count matches sympos.
176 	 */
177 	if (args.addr == 0)
178 		pr_err("symbol '%s' not found in symbol table\n", name);
179 	else if (args.count > 1 && sympos == 0) {
180 		pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
181 		       name, objname);
182 	} else if (sympos != args.count && sympos > 0) {
183 		pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
184 		       sympos, name, objname ? objname : "vmlinux");
185 	} else {
186 		*addr = args.addr;
187 		return 0;
188 	}
189 
190 	*addr = 0;
191 	return -EINVAL;
192 }
193 
194 static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab,
195 			       unsigned int symndx, Elf_Shdr *relasec,
196 			       const char *sec_objname)
197 {
198 	int i, cnt, ret;
199 	char sym_objname[MODULE_NAME_LEN];
200 	char sym_name[KSYM_NAME_LEN];
201 	Elf_Rela *relas;
202 	Elf_Sym *sym;
203 	unsigned long sympos, addr;
204 	bool sym_vmlinux;
205 	bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
206 
207 	/*
208 	 * Since the field widths for sym_objname and sym_name in the sscanf()
209 	 * call are hard-coded and correspond to MODULE_NAME_LEN and
210 	 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
211 	 * and KSYM_NAME_LEN have the values we expect them to have.
212 	 *
213 	 * Because the value of MODULE_NAME_LEN can differ among architectures,
214 	 * we use the smallest/strictest upper bound possible (56, based on
215 	 * the current definition of MODULE_NAME_LEN) to prevent overflows.
216 	 */
217 	BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128);
218 
219 	relas = (Elf_Rela *) relasec->sh_addr;
220 	/* For each rela in this klp relocation section */
221 	for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
222 		sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
223 		if (sym->st_shndx != SHN_LIVEPATCH) {
224 			pr_err("symbol %s is not marked as a livepatch symbol\n",
225 			       strtab + sym->st_name);
226 			return -EINVAL;
227 		}
228 
229 		/* Format: .klp.sym.sym_objname.sym_name,sympos */
230 		cnt = sscanf(strtab + sym->st_name,
231 			     ".klp.sym.%55[^.].%127[^,],%lu",
232 			     sym_objname, sym_name, &sympos);
233 		if (cnt != 3) {
234 			pr_err("symbol %s has an incorrectly formatted name\n",
235 			       strtab + sym->st_name);
236 			return -EINVAL;
237 		}
238 
239 		sym_vmlinux = !strcmp(sym_objname, "vmlinux");
240 
241 		/*
242 		 * Prevent module-specific KLP rela sections from referencing
243 		 * vmlinux symbols.  This helps prevent ordering issues with
244 		 * module special section initializations.  Presumably such
245 		 * symbols are exported and normal relas can be used instead.
246 		 */
247 		if (!sec_vmlinux && sym_vmlinux) {
248 			pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section",
249 			       sym_name);
250 			return -EINVAL;
251 		}
252 
253 		/* klp_find_object_symbol() treats a NULL objname as vmlinux */
254 		ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
255 					     sym_name, sympos, &addr);
256 		if (ret)
257 			return ret;
258 
259 		sym->st_value = addr;
260 	}
261 
262 	return 0;
263 }
264 
265 /*
266  * At a high-level, there are two types of klp relocation sections: those which
267  * reference symbols which live in vmlinux; and those which reference symbols
268  * which live in other modules.  This function is called for both types:
269  *
270  * 1) When a klp module itself loads, the module code calls this function to
271  *    write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
272  *    These relocations are written to the klp module text to allow the patched
273  *    code/data to reference unexported vmlinux symbols.  They're written as
274  *    early as possible to ensure that other module init code (.e.g.,
275  *    jump_label_apply_nops) can access any unexported vmlinux symbols which
276  *    might be referenced by the klp module's special sections.
277  *
278  * 2) When a to-be-patched module loads -- or is already loaded when a
279  *    corresponding klp module loads -- klp code calls this function to write
280  *    module-specific klp relocations (.klp.rela.{module}.* sections).  These
281  *    are written to the klp module text to allow the patched code/data to
282  *    reference symbols which live in the to-be-patched module or one of its
283  *    module dependencies.  Exported symbols are supported, in addition to
284  *    unexported symbols, in order to enable late module patching, which allows
285  *    the to-be-patched module to be loaded and patched sometime *after* the
286  *    klp module is loaded.
287  */
288 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
289 			     const char *shstrtab, const char *strtab,
290 			     unsigned int symndx, unsigned int secndx,
291 			     const char *objname)
292 {
293 	int cnt, ret;
294 	char sec_objname[MODULE_NAME_LEN];
295 	Elf_Shdr *sec = sechdrs + secndx;
296 
297 	/*
298 	 * Format: .klp.rela.sec_objname.section_name
299 	 * See comment in klp_resolve_symbols() for an explanation
300 	 * of the selected field width value.
301 	 */
302 	cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
303 		     sec_objname);
304 	if (cnt != 1) {
305 		pr_err("section %s has an incorrectly formatted name\n",
306 		       shstrtab + sec->sh_name);
307 		return -EINVAL;
308 	}
309 
310 	if (strcmp(objname ? objname : "vmlinux", sec_objname))
311 		return 0;
312 
313 	ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname);
314 	if (ret)
315 		return ret;
316 
317 	return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
318 }
319 
320 /*
321  * Sysfs Interface
322  *
323  * /sys/kernel/livepatch
324  * /sys/kernel/livepatch/<patch>
325  * /sys/kernel/livepatch/<patch>/enabled
326  * /sys/kernel/livepatch/<patch>/transition
327  * /sys/kernel/livepatch/<patch>/force
328  * /sys/kernel/livepatch/<patch>/<object>
329  * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
330  */
331 static int __klp_disable_patch(struct klp_patch *patch);
332 
333 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
334 			     const char *buf, size_t count)
335 {
336 	struct klp_patch *patch;
337 	int ret;
338 	bool enabled;
339 
340 	ret = kstrtobool(buf, &enabled);
341 	if (ret)
342 		return ret;
343 
344 	patch = container_of(kobj, struct klp_patch, kobj);
345 
346 	mutex_lock(&klp_mutex);
347 
348 	if (patch->enabled == enabled) {
349 		/* already in requested state */
350 		ret = -EINVAL;
351 		goto out;
352 	}
353 
354 	/*
355 	 * Allow to reverse a pending transition in both ways. It might be
356 	 * necessary to complete the transition without forcing and breaking
357 	 * the system integrity.
358 	 *
359 	 * Do not allow to re-enable a disabled patch.
360 	 */
361 	if (patch == klp_transition_patch)
362 		klp_reverse_transition();
363 	else if (!enabled)
364 		ret = __klp_disable_patch(patch);
365 	else
366 		ret = -EINVAL;
367 
368 out:
369 	mutex_unlock(&klp_mutex);
370 
371 	if (ret)
372 		return ret;
373 	return count;
374 }
375 
376 static ssize_t enabled_show(struct kobject *kobj,
377 			    struct kobj_attribute *attr, char *buf)
378 {
379 	struct klp_patch *patch;
380 
381 	patch = container_of(kobj, struct klp_patch, kobj);
382 	return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled);
383 }
384 
385 static ssize_t transition_show(struct kobject *kobj,
386 			       struct kobj_attribute *attr, char *buf)
387 {
388 	struct klp_patch *patch;
389 
390 	patch = container_of(kobj, struct klp_patch, kobj);
391 	return snprintf(buf, PAGE_SIZE-1, "%d\n",
392 			patch == klp_transition_patch);
393 }
394 
395 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
396 			   const char *buf, size_t count)
397 {
398 	struct klp_patch *patch;
399 	int ret;
400 	bool val;
401 
402 	ret = kstrtobool(buf, &val);
403 	if (ret)
404 		return ret;
405 
406 	if (!val)
407 		return count;
408 
409 	mutex_lock(&klp_mutex);
410 
411 	patch = container_of(kobj, struct klp_patch, kobj);
412 	if (patch != klp_transition_patch) {
413 		mutex_unlock(&klp_mutex);
414 		return -EINVAL;
415 	}
416 
417 	klp_force_transition();
418 
419 	mutex_unlock(&klp_mutex);
420 
421 	return count;
422 }
423 
424 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
425 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
426 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
427 static struct attribute *klp_patch_attrs[] = {
428 	&enabled_kobj_attr.attr,
429 	&transition_kobj_attr.attr,
430 	&force_kobj_attr.attr,
431 	NULL
432 };
433 ATTRIBUTE_GROUPS(klp_patch);
434 
435 static void klp_free_object_dynamic(struct klp_object *obj)
436 {
437 	kfree(obj->name);
438 	kfree(obj);
439 }
440 
441 static void klp_init_func_early(struct klp_object *obj,
442 				struct klp_func *func);
443 static void klp_init_object_early(struct klp_patch *patch,
444 				  struct klp_object *obj);
445 
446 static struct klp_object *klp_alloc_object_dynamic(const char *name,
447 						   struct klp_patch *patch)
448 {
449 	struct klp_object *obj;
450 
451 	obj = kzalloc(sizeof(*obj), GFP_KERNEL);
452 	if (!obj)
453 		return NULL;
454 
455 	if (name) {
456 		obj->name = kstrdup(name, GFP_KERNEL);
457 		if (!obj->name) {
458 			kfree(obj);
459 			return NULL;
460 		}
461 	}
462 
463 	klp_init_object_early(patch, obj);
464 	obj->dynamic = true;
465 
466 	return obj;
467 }
468 
469 static void klp_free_func_nop(struct klp_func *func)
470 {
471 	kfree(func->old_name);
472 	kfree(func);
473 }
474 
475 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
476 					   struct klp_object *obj)
477 {
478 	struct klp_func *func;
479 
480 	func = kzalloc(sizeof(*func), GFP_KERNEL);
481 	if (!func)
482 		return NULL;
483 
484 	if (old_func->old_name) {
485 		func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
486 		if (!func->old_name) {
487 			kfree(func);
488 			return NULL;
489 		}
490 	}
491 
492 	klp_init_func_early(obj, func);
493 	/*
494 	 * func->new_func is same as func->old_func. These addresses are
495 	 * set when the object is loaded, see klp_init_object_loaded().
496 	 */
497 	func->old_sympos = old_func->old_sympos;
498 	func->nop = true;
499 
500 	return func;
501 }
502 
503 static int klp_add_object_nops(struct klp_patch *patch,
504 			       struct klp_object *old_obj)
505 {
506 	struct klp_object *obj;
507 	struct klp_func *func, *old_func;
508 
509 	obj = klp_find_object(patch, old_obj);
510 
511 	if (!obj) {
512 		obj = klp_alloc_object_dynamic(old_obj->name, patch);
513 		if (!obj)
514 			return -ENOMEM;
515 	}
516 
517 	klp_for_each_func(old_obj, old_func) {
518 		func = klp_find_func(obj, old_func);
519 		if (func)
520 			continue;
521 
522 		func = klp_alloc_func_nop(old_func, obj);
523 		if (!func)
524 			return -ENOMEM;
525 	}
526 
527 	return 0;
528 }
529 
530 /*
531  * Add 'nop' functions which simply return to the caller to run
532  * the original function. The 'nop' functions are added to a
533  * patch to facilitate a 'replace' mode.
534  */
535 static int klp_add_nops(struct klp_patch *patch)
536 {
537 	struct klp_patch *old_patch;
538 	struct klp_object *old_obj;
539 
540 	klp_for_each_patch(old_patch) {
541 		klp_for_each_object(old_patch, old_obj) {
542 			int err;
543 
544 			err = klp_add_object_nops(patch, old_obj);
545 			if (err)
546 				return err;
547 		}
548 	}
549 
550 	return 0;
551 }
552 
553 static void klp_kobj_release_patch(struct kobject *kobj)
554 {
555 	struct klp_patch *patch;
556 
557 	patch = container_of(kobj, struct klp_patch, kobj);
558 	complete(&patch->finish);
559 }
560 
561 static struct kobj_type klp_ktype_patch = {
562 	.release = klp_kobj_release_patch,
563 	.sysfs_ops = &kobj_sysfs_ops,
564 	.default_groups = klp_patch_groups,
565 };
566 
567 static void klp_kobj_release_object(struct kobject *kobj)
568 {
569 	struct klp_object *obj;
570 
571 	obj = container_of(kobj, struct klp_object, kobj);
572 
573 	if (obj->dynamic)
574 		klp_free_object_dynamic(obj);
575 }
576 
577 static struct kobj_type klp_ktype_object = {
578 	.release = klp_kobj_release_object,
579 	.sysfs_ops = &kobj_sysfs_ops,
580 };
581 
582 static void klp_kobj_release_func(struct kobject *kobj)
583 {
584 	struct klp_func *func;
585 
586 	func = container_of(kobj, struct klp_func, kobj);
587 
588 	if (func->nop)
589 		klp_free_func_nop(func);
590 }
591 
592 static struct kobj_type klp_ktype_func = {
593 	.release = klp_kobj_release_func,
594 	.sysfs_ops = &kobj_sysfs_ops,
595 };
596 
597 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
598 {
599 	struct klp_func *func, *tmp_func;
600 
601 	klp_for_each_func_safe(obj, func, tmp_func) {
602 		if (nops_only && !func->nop)
603 			continue;
604 
605 		list_del(&func->node);
606 		kobject_put(&func->kobj);
607 	}
608 }
609 
610 /* Clean up when a patched object is unloaded */
611 static void klp_free_object_loaded(struct klp_object *obj)
612 {
613 	struct klp_func *func;
614 
615 	obj->mod = NULL;
616 
617 	klp_for_each_func(obj, func) {
618 		func->old_func = NULL;
619 
620 		if (func->nop)
621 			func->new_func = NULL;
622 	}
623 }
624 
625 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
626 {
627 	struct klp_object *obj, *tmp_obj;
628 
629 	klp_for_each_object_safe(patch, obj, tmp_obj) {
630 		__klp_free_funcs(obj, nops_only);
631 
632 		if (nops_only && !obj->dynamic)
633 			continue;
634 
635 		list_del(&obj->node);
636 		kobject_put(&obj->kobj);
637 	}
638 }
639 
640 static void klp_free_objects(struct klp_patch *patch)
641 {
642 	__klp_free_objects(patch, false);
643 }
644 
645 static void klp_free_objects_dynamic(struct klp_patch *patch)
646 {
647 	__klp_free_objects(patch, true);
648 }
649 
650 /*
651  * This function implements the free operations that can be called safely
652  * under klp_mutex.
653  *
654  * The operation must be completed by calling klp_free_patch_finish()
655  * outside klp_mutex.
656  */
657 static void klp_free_patch_start(struct klp_patch *patch)
658 {
659 	if (!list_empty(&patch->list))
660 		list_del(&patch->list);
661 
662 	klp_free_objects(patch);
663 }
664 
665 /*
666  * This function implements the free part that must be called outside
667  * klp_mutex.
668  *
669  * It must be called after klp_free_patch_start(). And it has to be
670  * the last function accessing the livepatch structures when the patch
671  * gets disabled.
672  */
673 static void klp_free_patch_finish(struct klp_patch *patch)
674 {
675 	/*
676 	 * Avoid deadlock with enabled_store() sysfs callback by
677 	 * calling this outside klp_mutex. It is safe because
678 	 * this is called when the patch gets disabled and it
679 	 * cannot get enabled again.
680 	 */
681 	kobject_put(&patch->kobj);
682 	wait_for_completion(&patch->finish);
683 
684 	/* Put the module after the last access to struct klp_patch. */
685 	if (!patch->forced)
686 		module_put(patch->mod);
687 }
688 
689 /*
690  * The livepatch might be freed from sysfs interface created by the patch.
691  * This work allows to wait until the interface is destroyed in a separate
692  * context.
693  */
694 static void klp_free_patch_work_fn(struct work_struct *work)
695 {
696 	struct klp_patch *patch =
697 		container_of(work, struct klp_patch, free_work);
698 
699 	klp_free_patch_finish(patch);
700 }
701 
702 void klp_free_patch_async(struct klp_patch *patch)
703 {
704 	klp_free_patch_start(patch);
705 	schedule_work(&patch->free_work);
706 }
707 
708 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
709 {
710 	struct klp_patch *old_patch, *tmp_patch;
711 
712 	klp_for_each_patch_safe(old_patch, tmp_patch) {
713 		if (old_patch == new_patch)
714 			return;
715 		klp_free_patch_async(old_patch);
716 	}
717 }
718 
719 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
720 {
721 	if (!func->old_name)
722 		return -EINVAL;
723 
724 	/*
725 	 * NOPs get the address later. The patched module must be loaded,
726 	 * see klp_init_object_loaded().
727 	 */
728 	if (!func->new_func && !func->nop)
729 		return -EINVAL;
730 
731 	if (strlen(func->old_name) >= KSYM_NAME_LEN)
732 		return -EINVAL;
733 
734 	INIT_LIST_HEAD(&func->stack_node);
735 	func->patched = false;
736 	func->transition = false;
737 
738 	/* The format for the sysfs directory is <function,sympos> where sympos
739 	 * is the nth occurrence of this symbol in kallsyms for the patched
740 	 * object. If the user selects 0 for old_sympos, then 1 will be used
741 	 * since a unique symbol will be the first occurrence.
742 	 */
743 	return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
744 			   func->old_name,
745 			   func->old_sympos ? func->old_sympos : 1);
746 }
747 
748 static int klp_apply_object_relocs(struct klp_patch *patch,
749 				   struct klp_object *obj)
750 {
751 	int i, ret;
752 	struct klp_modinfo *info = patch->mod->klp_info;
753 
754 	for (i = 1; i < info->hdr.e_shnum; i++) {
755 		Elf_Shdr *sec = info->sechdrs + i;
756 
757 		if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
758 			continue;
759 
760 		ret = klp_apply_section_relocs(patch->mod, info->sechdrs,
761 					       info->secstrings,
762 					       patch->mod->core_kallsyms.strtab,
763 					       info->symndx, i, obj->name);
764 		if (ret)
765 			return ret;
766 	}
767 
768 	return 0;
769 }
770 
771 /* parts of the initialization that is done only when the object is loaded */
772 static int klp_init_object_loaded(struct klp_patch *patch,
773 				  struct klp_object *obj)
774 {
775 	struct klp_func *func;
776 	int ret;
777 
778 	if (klp_is_module(obj)) {
779 		/*
780 		 * Only write module-specific relocations here
781 		 * (.klp.rela.{module}.*).  vmlinux-specific relocations were
782 		 * written earlier during the initialization of the klp module
783 		 * itself.
784 		 */
785 		ret = klp_apply_object_relocs(patch, obj);
786 		if (ret)
787 			return ret;
788 	}
789 
790 	klp_for_each_func(obj, func) {
791 		ret = klp_find_object_symbol(obj->name, func->old_name,
792 					     func->old_sympos,
793 					     (unsigned long *)&func->old_func);
794 		if (ret)
795 			return ret;
796 
797 		ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
798 						  &func->old_size, NULL);
799 		if (!ret) {
800 			pr_err("kallsyms size lookup failed for '%s'\n",
801 			       func->old_name);
802 			return -ENOENT;
803 		}
804 
805 		if (func->nop)
806 			func->new_func = func->old_func;
807 
808 		ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
809 						  &func->new_size, NULL);
810 		if (!ret) {
811 			pr_err("kallsyms size lookup failed for '%s' replacement\n",
812 			       func->old_name);
813 			return -ENOENT;
814 		}
815 	}
816 
817 	return 0;
818 }
819 
820 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
821 {
822 	struct klp_func *func;
823 	int ret;
824 	const char *name;
825 
826 	if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
827 		return -EINVAL;
828 
829 	obj->patched = false;
830 	obj->mod = NULL;
831 
832 	klp_find_object_module(obj);
833 
834 	name = klp_is_module(obj) ? obj->name : "vmlinux";
835 	ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
836 	if (ret)
837 		return ret;
838 
839 	klp_for_each_func(obj, func) {
840 		ret = klp_init_func(obj, func);
841 		if (ret)
842 			return ret;
843 	}
844 
845 	if (klp_is_object_loaded(obj))
846 		ret = klp_init_object_loaded(patch, obj);
847 
848 	return ret;
849 }
850 
851 static void klp_init_func_early(struct klp_object *obj,
852 				struct klp_func *func)
853 {
854 	kobject_init(&func->kobj, &klp_ktype_func);
855 	list_add_tail(&func->node, &obj->func_list);
856 }
857 
858 static void klp_init_object_early(struct klp_patch *patch,
859 				  struct klp_object *obj)
860 {
861 	INIT_LIST_HEAD(&obj->func_list);
862 	kobject_init(&obj->kobj, &klp_ktype_object);
863 	list_add_tail(&obj->node, &patch->obj_list);
864 }
865 
866 static int klp_init_patch_early(struct klp_patch *patch)
867 {
868 	struct klp_object *obj;
869 	struct klp_func *func;
870 
871 	if (!patch->objs)
872 		return -EINVAL;
873 
874 	INIT_LIST_HEAD(&patch->list);
875 	INIT_LIST_HEAD(&patch->obj_list);
876 	kobject_init(&patch->kobj, &klp_ktype_patch);
877 	patch->enabled = false;
878 	patch->forced = false;
879 	INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
880 	init_completion(&patch->finish);
881 
882 	klp_for_each_object_static(patch, obj) {
883 		if (!obj->funcs)
884 			return -EINVAL;
885 
886 		klp_init_object_early(patch, obj);
887 
888 		klp_for_each_func_static(obj, func) {
889 			klp_init_func_early(obj, func);
890 		}
891 	}
892 
893 	if (!try_module_get(patch->mod))
894 		return -ENODEV;
895 
896 	return 0;
897 }
898 
899 static int klp_init_patch(struct klp_patch *patch)
900 {
901 	struct klp_object *obj;
902 	int ret;
903 
904 	ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
905 	if (ret)
906 		return ret;
907 
908 	if (patch->replace) {
909 		ret = klp_add_nops(patch);
910 		if (ret)
911 			return ret;
912 	}
913 
914 	klp_for_each_object(patch, obj) {
915 		ret = klp_init_object(patch, obj);
916 		if (ret)
917 			return ret;
918 	}
919 
920 	list_add_tail(&patch->list, &klp_patches);
921 
922 	return 0;
923 }
924 
925 static int __klp_disable_patch(struct klp_patch *patch)
926 {
927 	struct klp_object *obj;
928 
929 	if (WARN_ON(!patch->enabled))
930 		return -EINVAL;
931 
932 	if (klp_transition_patch)
933 		return -EBUSY;
934 
935 	klp_init_transition(patch, KLP_UNPATCHED);
936 
937 	klp_for_each_object(patch, obj)
938 		if (obj->patched)
939 			klp_pre_unpatch_callback(obj);
940 
941 	/*
942 	 * Enforce the order of the func->transition writes in
943 	 * klp_init_transition() and the TIF_PATCH_PENDING writes in
944 	 * klp_start_transition().  In the rare case where klp_ftrace_handler()
945 	 * is called shortly after klp_update_patch_state() switches the task,
946 	 * this ensures the handler sees that func->transition is set.
947 	 */
948 	smp_wmb();
949 
950 	klp_start_transition();
951 	patch->enabled = false;
952 	klp_try_complete_transition();
953 
954 	return 0;
955 }
956 
957 static int __klp_enable_patch(struct klp_patch *patch)
958 {
959 	struct klp_object *obj;
960 	int ret;
961 
962 	if (klp_transition_patch)
963 		return -EBUSY;
964 
965 	if (WARN_ON(patch->enabled))
966 		return -EINVAL;
967 
968 	pr_notice("enabling patch '%s'\n", patch->mod->name);
969 
970 	klp_init_transition(patch, KLP_PATCHED);
971 
972 	/*
973 	 * Enforce the order of the func->transition writes in
974 	 * klp_init_transition() and the ops->func_stack writes in
975 	 * klp_patch_object(), so that klp_ftrace_handler() will see the
976 	 * func->transition updates before the handler is registered and the
977 	 * new funcs become visible to the handler.
978 	 */
979 	smp_wmb();
980 
981 	klp_for_each_object(patch, obj) {
982 		if (!klp_is_object_loaded(obj))
983 			continue;
984 
985 		ret = klp_pre_patch_callback(obj);
986 		if (ret) {
987 			pr_warn("pre-patch callback failed for object '%s'\n",
988 				klp_is_module(obj) ? obj->name : "vmlinux");
989 			goto err;
990 		}
991 
992 		ret = klp_patch_object(obj);
993 		if (ret) {
994 			pr_warn("failed to patch object '%s'\n",
995 				klp_is_module(obj) ? obj->name : "vmlinux");
996 			goto err;
997 		}
998 	}
999 
1000 	klp_start_transition();
1001 	patch->enabled = true;
1002 	klp_try_complete_transition();
1003 
1004 	return 0;
1005 err:
1006 	pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1007 
1008 	klp_cancel_transition();
1009 	return ret;
1010 }
1011 
1012 /**
1013  * klp_enable_patch() - enable the livepatch
1014  * @patch:	patch to be enabled
1015  *
1016  * Initializes the data structure associated with the patch, creates the sysfs
1017  * interface, performs the needed symbol lookups and code relocations,
1018  * registers the patched functions with ftrace.
1019  *
1020  * This function is supposed to be called from the livepatch module_init()
1021  * callback.
1022  *
1023  * Return: 0 on success, otherwise error
1024  */
1025 int klp_enable_patch(struct klp_patch *patch)
1026 {
1027 	int ret;
1028 
1029 	if (!patch || !patch->mod)
1030 		return -EINVAL;
1031 
1032 	if (!is_livepatch_module(patch->mod)) {
1033 		pr_err("module %s is not marked as a livepatch module\n",
1034 		       patch->mod->name);
1035 		return -EINVAL;
1036 	}
1037 
1038 	if (!klp_initialized())
1039 		return -ENODEV;
1040 
1041 	if (!klp_have_reliable_stack()) {
1042 		pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1043 		pr_warn("The livepatch transition may never complete.\n");
1044 	}
1045 
1046 	mutex_lock(&klp_mutex);
1047 
1048 	if (!klp_is_patch_compatible(patch)) {
1049 		pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1050 			patch->mod->name);
1051 		mutex_unlock(&klp_mutex);
1052 		return -EINVAL;
1053 	}
1054 
1055 	ret = klp_init_patch_early(patch);
1056 	if (ret) {
1057 		mutex_unlock(&klp_mutex);
1058 		return ret;
1059 	}
1060 
1061 	ret = klp_init_patch(patch);
1062 	if (ret)
1063 		goto err;
1064 
1065 	ret = __klp_enable_patch(patch);
1066 	if (ret)
1067 		goto err;
1068 
1069 	mutex_unlock(&klp_mutex);
1070 
1071 	return 0;
1072 
1073 err:
1074 	klp_free_patch_start(patch);
1075 
1076 	mutex_unlock(&klp_mutex);
1077 
1078 	klp_free_patch_finish(patch);
1079 
1080 	return ret;
1081 }
1082 EXPORT_SYMBOL_GPL(klp_enable_patch);
1083 
1084 /*
1085  * This function unpatches objects from the replaced livepatches.
1086  *
1087  * We could be pretty aggressive here. It is called in the situation where
1088  * these structures are no longer accessed from the ftrace handler.
1089  * All functions are redirected by the klp_transition_patch. They
1090  * use either a new code or they are in the original code because
1091  * of the special nop function patches.
1092  *
1093  * The only exception is when the transition was forced. In this case,
1094  * klp_ftrace_handler() might still see the replaced patch on the stack.
1095  * Fortunately, it is carefully designed to work with removed functions
1096  * thanks to RCU. We only have to keep the patches on the system. Also
1097  * this is handled transparently by patch->module_put.
1098  */
1099 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1100 {
1101 	struct klp_patch *old_patch;
1102 
1103 	klp_for_each_patch(old_patch) {
1104 		if (old_patch == new_patch)
1105 			return;
1106 
1107 		old_patch->enabled = false;
1108 		klp_unpatch_objects(old_patch);
1109 	}
1110 }
1111 
1112 /*
1113  * This function removes the dynamically allocated 'nop' functions.
1114  *
1115  * We could be pretty aggressive. NOPs do not change the existing
1116  * behavior except for adding unnecessary delay by the ftrace handler.
1117  *
1118  * It is safe even when the transition was forced. The ftrace handler
1119  * will see a valid ops->func_stack entry thanks to RCU.
1120  *
1121  * We could even free the NOPs structures. They must be the last entry
1122  * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1123  * It does the same as klp_synchronize_transition() to make sure that
1124  * nobody is inside the ftrace handler once the operation finishes.
1125  *
1126  * IMPORTANT: It must be called right after removing the replaced patches!
1127  */
1128 void klp_discard_nops(struct klp_patch *new_patch)
1129 {
1130 	klp_unpatch_objects_dynamic(klp_transition_patch);
1131 	klp_free_objects_dynamic(klp_transition_patch);
1132 }
1133 
1134 /*
1135  * Remove parts of patches that touch a given kernel module. The list of
1136  * patches processed might be limited. When limit is NULL, all patches
1137  * will be handled.
1138  */
1139 static void klp_cleanup_module_patches_limited(struct module *mod,
1140 					       struct klp_patch *limit)
1141 {
1142 	struct klp_patch *patch;
1143 	struct klp_object *obj;
1144 
1145 	klp_for_each_patch(patch) {
1146 		if (patch == limit)
1147 			break;
1148 
1149 		klp_for_each_object(patch, obj) {
1150 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1151 				continue;
1152 
1153 			if (patch != klp_transition_patch)
1154 				klp_pre_unpatch_callback(obj);
1155 
1156 			pr_notice("reverting patch '%s' on unloading module '%s'\n",
1157 				  patch->mod->name, obj->mod->name);
1158 			klp_unpatch_object(obj);
1159 
1160 			klp_post_unpatch_callback(obj);
1161 
1162 			klp_free_object_loaded(obj);
1163 			break;
1164 		}
1165 	}
1166 }
1167 
1168 int klp_module_coming(struct module *mod)
1169 {
1170 	int ret;
1171 	struct klp_patch *patch;
1172 	struct klp_object *obj;
1173 
1174 	if (WARN_ON(mod->state != MODULE_STATE_COMING))
1175 		return -EINVAL;
1176 
1177 	if (!strcmp(mod->name, "vmlinux")) {
1178 		pr_err("vmlinux.ko: invalid module name");
1179 		return -EINVAL;
1180 	}
1181 
1182 	mutex_lock(&klp_mutex);
1183 	/*
1184 	 * Each module has to know that klp_module_coming()
1185 	 * has been called. We never know what module will
1186 	 * get patched by a new patch.
1187 	 */
1188 	mod->klp_alive = true;
1189 
1190 	klp_for_each_patch(patch) {
1191 		klp_for_each_object(patch, obj) {
1192 			if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1193 				continue;
1194 
1195 			obj->mod = mod;
1196 
1197 			ret = klp_init_object_loaded(patch, obj);
1198 			if (ret) {
1199 				pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1200 					patch->mod->name, obj->mod->name, ret);
1201 				goto err;
1202 			}
1203 
1204 			pr_notice("applying patch '%s' to loading module '%s'\n",
1205 				  patch->mod->name, obj->mod->name);
1206 
1207 			ret = klp_pre_patch_callback(obj);
1208 			if (ret) {
1209 				pr_warn("pre-patch callback failed for object '%s'\n",
1210 					obj->name);
1211 				goto err;
1212 			}
1213 
1214 			ret = klp_patch_object(obj);
1215 			if (ret) {
1216 				pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1217 					patch->mod->name, obj->mod->name, ret);
1218 
1219 				klp_post_unpatch_callback(obj);
1220 				goto err;
1221 			}
1222 
1223 			if (patch != klp_transition_patch)
1224 				klp_post_patch_callback(obj);
1225 
1226 			break;
1227 		}
1228 	}
1229 
1230 	mutex_unlock(&klp_mutex);
1231 
1232 	return 0;
1233 
1234 err:
1235 	/*
1236 	 * If a patch is unsuccessfully applied, return
1237 	 * error to the module loader.
1238 	 */
1239 	pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1240 		patch->mod->name, obj->mod->name, obj->mod->name);
1241 	mod->klp_alive = false;
1242 	obj->mod = NULL;
1243 	klp_cleanup_module_patches_limited(mod, patch);
1244 	mutex_unlock(&klp_mutex);
1245 
1246 	return ret;
1247 }
1248 
1249 void klp_module_going(struct module *mod)
1250 {
1251 	if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1252 		    mod->state != MODULE_STATE_COMING))
1253 		return;
1254 
1255 	mutex_lock(&klp_mutex);
1256 	/*
1257 	 * Each module has to know that klp_module_going()
1258 	 * has been called. We never know what module will
1259 	 * get patched by a new patch.
1260 	 */
1261 	mod->klp_alive = false;
1262 
1263 	klp_cleanup_module_patches_limited(mod, NULL);
1264 
1265 	mutex_unlock(&klp_mutex);
1266 }
1267 
1268 static int __init klp_init(void)
1269 {
1270 	klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1271 	if (!klp_root_kobj)
1272 		return -ENOMEM;
1273 
1274 	return 0;
1275 }
1276 
1277 module_init(klp_init);
1278