1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <linux/rcupdate.h> 23 #include <asm/cacheflush.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "state.h" 27 #include "transition.h" 28 29 /* 30 * klp_mutex is a coarse lock which serializes access to klp data. All 31 * accesses to klp-related variables and structures must have mutex protection, 32 * except within the following functions which carefully avoid the need for it: 33 * 34 * - klp_ftrace_handler() 35 * - klp_update_patch_state() 36 */ 37 DEFINE_MUTEX(klp_mutex); 38 39 /* 40 * Actively used patches: enabled or in transition. Note that replaced 41 * or disabled patches are not listed even though the related kernel 42 * module still can be loaded. 43 */ 44 LIST_HEAD(klp_patches); 45 46 static struct kobject *klp_root_kobj; 47 48 static bool klp_is_module(struct klp_object *obj) 49 { 50 return obj->name; 51 } 52 53 /* sets obj->mod if object is not vmlinux and module is found */ 54 static void klp_find_object_module(struct klp_object *obj) 55 { 56 struct module *mod; 57 58 if (!klp_is_module(obj)) 59 return; 60 61 rcu_read_lock_sched(); 62 /* 63 * We do not want to block removal of patched modules and therefore 64 * we do not take a reference here. The patches are removed by 65 * klp_module_going() instead. 66 */ 67 mod = find_module(obj->name); 68 /* 69 * Do not mess work of klp_module_coming() and klp_module_going(). 70 * Note that the patch might still be needed before klp_module_going() 71 * is called. Module functions can be called even in the GOING state 72 * until mod->exit() finishes. This is especially important for 73 * patches that modify semantic of the functions. 74 */ 75 if (mod && mod->klp_alive) 76 obj->mod = mod; 77 78 rcu_read_unlock_sched(); 79 } 80 81 static bool klp_initialized(void) 82 { 83 return !!klp_root_kobj; 84 } 85 86 static struct klp_func *klp_find_func(struct klp_object *obj, 87 struct klp_func *old_func) 88 { 89 struct klp_func *func; 90 91 klp_for_each_func(obj, func) { 92 if ((strcmp(old_func->old_name, func->old_name) == 0) && 93 (old_func->old_sympos == func->old_sympos)) { 94 return func; 95 } 96 } 97 98 return NULL; 99 } 100 101 static struct klp_object *klp_find_object(struct klp_patch *patch, 102 struct klp_object *old_obj) 103 { 104 struct klp_object *obj; 105 106 klp_for_each_object(patch, obj) { 107 if (klp_is_module(old_obj)) { 108 if (klp_is_module(obj) && 109 strcmp(old_obj->name, obj->name) == 0) { 110 return obj; 111 } 112 } else if (!klp_is_module(obj)) { 113 return obj; 114 } 115 } 116 117 return NULL; 118 } 119 120 struct klp_find_arg { 121 const char *objname; 122 const char *name; 123 unsigned long addr; 124 unsigned long count; 125 unsigned long pos; 126 }; 127 128 static int klp_find_callback(void *data, const char *name, 129 struct module *mod, unsigned long addr) 130 { 131 struct klp_find_arg *args = data; 132 133 if ((mod && !args->objname) || (!mod && args->objname)) 134 return 0; 135 136 if (strcmp(args->name, name)) 137 return 0; 138 139 if (args->objname && strcmp(args->objname, mod->name)) 140 return 0; 141 142 args->addr = addr; 143 args->count++; 144 145 /* 146 * Finish the search when the symbol is found for the desired position 147 * or the position is not defined for a non-unique symbol. 148 */ 149 if ((args->pos && (args->count == args->pos)) || 150 (!args->pos && (args->count > 1))) 151 return 1; 152 153 return 0; 154 } 155 156 static int klp_find_object_symbol(const char *objname, const char *name, 157 unsigned long sympos, unsigned long *addr) 158 { 159 struct klp_find_arg args = { 160 .objname = objname, 161 .name = name, 162 .addr = 0, 163 .count = 0, 164 .pos = sympos, 165 }; 166 167 if (objname) 168 module_kallsyms_on_each_symbol(klp_find_callback, &args); 169 else 170 kallsyms_on_each_symbol(klp_find_callback, &args); 171 172 /* 173 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 174 * otherwise ensure the symbol position count matches sympos. 175 */ 176 if (args.addr == 0) 177 pr_err("symbol '%s' not found in symbol table\n", name); 178 else if (args.count > 1 && sympos == 0) { 179 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 180 name, objname); 181 } else if (sympos != args.count && sympos > 0) { 182 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 183 sympos, name, objname ? objname : "vmlinux"); 184 } else { 185 *addr = args.addr; 186 return 0; 187 } 188 189 *addr = 0; 190 return -EINVAL; 191 } 192 193 static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab, 194 unsigned int symndx, Elf_Shdr *relasec, 195 const char *sec_objname) 196 { 197 int i, cnt, ret; 198 char sym_objname[MODULE_NAME_LEN]; 199 char sym_name[KSYM_NAME_LEN]; 200 Elf_Rela *relas; 201 Elf_Sym *sym; 202 unsigned long sympos, addr; 203 bool sym_vmlinux; 204 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 205 206 /* 207 * Since the field widths for sym_objname and sym_name in the sscanf() 208 * call are hard-coded and correspond to MODULE_NAME_LEN and 209 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 210 * and KSYM_NAME_LEN have the values we expect them to have. 211 * 212 * Because the value of MODULE_NAME_LEN can differ among architectures, 213 * we use the smallest/strictest upper bound possible (56, based on 214 * the current definition of MODULE_NAME_LEN) to prevent overflows. 215 */ 216 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128); 217 218 relas = (Elf_Rela *) relasec->sh_addr; 219 /* For each rela in this klp relocation section */ 220 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 221 sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 222 if (sym->st_shndx != SHN_LIVEPATCH) { 223 pr_err("symbol %s is not marked as a livepatch symbol\n", 224 strtab + sym->st_name); 225 return -EINVAL; 226 } 227 228 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 229 cnt = sscanf(strtab + sym->st_name, 230 ".klp.sym.%55[^.].%127[^,],%lu", 231 sym_objname, sym_name, &sympos); 232 if (cnt != 3) { 233 pr_err("symbol %s has an incorrectly formatted name\n", 234 strtab + sym->st_name); 235 return -EINVAL; 236 } 237 238 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 239 240 /* 241 * Prevent module-specific KLP rela sections from referencing 242 * vmlinux symbols. This helps prevent ordering issues with 243 * module special section initializations. Presumably such 244 * symbols are exported and normal relas can be used instead. 245 */ 246 if (!sec_vmlinux && sym_vmlinux) { 247 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section", 248 sym_name); 249 return -EINVAL; 250 } 251 252 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 253 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 254 sym_name, sympos, &addr); 255 if (ret) 256 return ret; 257 258 sym->st_value = addr; 259 } 260 261 return 0; 262 } 263 264 /* 265 * At a high-level, there are two types of klp relocation sections: those which 266 * reference symbols which live in vmlinux; and those which reference symbols 267 * which live in other modules. This function is called for both types: 268 * 269 * 1) When a klp module itself loads, the module code calls this function to 270 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 271 * These relocations are written to the klp module text to allow the patched 272 * code/data to reference unexported vmlinux symbols. They're written as 273 * early as possible to ensure that other module init code (.e.g., 274 * jump_label_apply_nops) can access any unexported vmlinux symbols which 275 * might be referenced by the klp module's special sections. 276 * 277 * 2) When a to-be-patched module loads -- or is already loaded when a 278 * corresponding klp module loads -- klp code calls this function to write 279 * module-specific klp relocations (.klp.rela.{module}.* sections). These 280 * are written to the klp module text to allow the patched code/data to 281 * reference symbols which live in the to-be-patched module or one of its 282 * module dependencies. Exported symbols are supported, in addition to 283 * unexported symbols, in order to enable late module patching, which allows 284 * the to-be-patched module to be loaded and patched sometime *after* the 285 * klp module is loaded. 286 */ 287 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 288 const char *shstrtab, const char *strtab, 289 unsigned int symndx, unsigned int secndx, 290 const char *objname) 291 { 292 int cnt, ret; 293 char sec_objname[MODULE_NAME_LEN]; 294 Elf_Shdr *sec = sechdrs + secndx; 295 296 /* 297 * Format: .klp.rela.sec_objname.section_name 298 * See comment in klp_resolve_symbols() for an explanation 299 * of the selected field width value. 300 */ 301 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 302 sec_objname); 303 if (cnt != 1) { 304 pr_err("section %s has an incorrectly formatted name\n", 305 shstrtab + sec->sh_name); 306 return -EINVAL; 307 } 308 309 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 310 return 0; 311 312 ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname); 313 if (ret) 314 return ret; 315 316 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 317 } 318 319 /* 320 * Sysfs Interface 321 * 322 * /sys/kernel/livepatch 323 * /sys/kernel/livepatch/<patch> 324 * /sys/kernel/livepatch/<patch>/enabled 325 * /sys/kernel/livepatch/<patch>/transition 326 * /sys/kernel/livepatch/<patch>/force 327 * /sys/kernel/livepatch/<patch>/<object> 328 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 329 */ 330 static int __klp_disable_patch(struct klp_patch *patch); 331 332 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 333 const char *buf, size_t count) 334 { 335 struct klp_patch *patch; 336 int ret; 337 bool enabled; 338 339 ret = kstrtobool(buf, &enabled); 340 if (ret) 341 return ret; 342 343 patch = container_of(kobj, struct klp_patch, kobj); 344 345 mutex_lock(&klp_mutex); 346 347 if (patch->enabled == enabled) { 348 /* already in requested state */ 349 ret = -EINVAL; 350 goto out; 351 } 352 353 /* 354 * Allow to reverse a pending transition in both ways. It might be 355 * necessary to complete the transition without forcing and breaking 356 * the system integrity. 357 * 358 * Do not allow to re-enable a disabled patch. 359 */ 360 if (patch == klp_transition_patch) 361 klp_reverse_transition(); 362 else if (!enabled) 363 ret = __klp_disable_patch(patch); 364 else 365 ret = -EINVAL; 366 367 out: 368 mutex_unlock(&klp_mutex); 369 370 if (ret) 371 return ret; 372 return count; 373 } 374 375 static ssize_t enabled_show(struct kobject *kobj, 376 struct kobj_attribute *attr, char *buf) 377 { 378 struct klp_patch *patch; 379 380 patch = container_of(kobj, struct klp_patch, kobj); 381 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 382 } 383 384 static ssize_t transition_show(struct kobject *kobj, 385 struct kobj_attribute *attr, char *buf) 386 { 387 struct klp_patch *patch; 388 389 patch = container_of(kobj, struct klp_patch, kobj); 390 return snprintf(buf, PAGE_SIZE-1, "%d\n", 391 patch == klp_transition_patch); 392 } 393 394 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 395 const char *buf, size_t count) 396 { 397 struct klp_patch *patch; 398 int ret; 399 bool val; 400 401 ret = kstrtobool(buf, &val); 402 if (ret) 403 return ret; 404 405 if (!val) 406 return count; 407 408 mutex_lock(&klp_mutex); 409 410 patch = container_of(kobj, struct klp_patch, kobj); 411 if (patch != klp_transition_patch) { 412 mutex_unlock(&klp_mutex); 413 return -EINVAL; 414 } 415 416 klp_force_transition(); 417 418 mutex_unlock(&klp_mutex); 419 420 return count; 421 } 422 423 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 424 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 425 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 426 static struct attribute *klp_patch_attrs[] = { 427 &enabled_kobj_attr.attr, 428 &transition_kobj_attr.attr, 429 &force_kobj_attr.attr, 430 NULL 431 }; 432 ATTRIBUTE_GROUPS(klp_patch); 433 434 static void klp_free_object_dynamic(struct klp_object *obj) 435 { 436 kfree(obj->name); 437 kfree(obj); 438 } 439 440 static void klp_init_func_early(struct klp_object *obj, 441 struct klp_func *func); 442 static void klp_init_object_early(struct klp_patch *patch, 443 struct klp_object *obj); 444 445 static struct klp_object *klp_alloc_object_dynamic(const char *name, 446 struct klp_patch *patch) 447 { 448 struct klp_object *obj; 449 450 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 451 if (!obj) 452 return NULL; 453 454 if (name) { 455 obj->name = kstrdup(name, GFP_KERNEL); 456 if (!obj->name) { 457 kfree(obj); 458 return NULL; 459 } 460 } 461 462 klp_init_object_early(patch, obj); 463 obj->dynamic = true; 464 465 return obj; 466 } 467 468 static void klp_free_func_nop(struct klp_func *func) 469 { 470 kfree(func->old_name); 471 kfree(func); 472 } 473 474 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 475 struct klp_object *obj) 476 { 477 struct klp_func *func; 478 479 func = kzalloc(sizeof(*func), GFP_KERNEL); 480 if (!func) 481 return NULL; 482 483 if (old_func->old_name) { 484 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 485 if (!func->old_name) { 486 kfree(func); 487 return NULL; 488 } 489 } 490 491 klp_init_func_early(obj, func); 492 /* 493 * func->new_func is same as func->old_func. These addresses are 494 * set when the object is loaded, see klp_init_object_loaded(). 495 */ 496 func->old_sympos = old_func->old_sympos; 497 func->nop = true; 498 499 return func; 500 } 501 502 static int klp_add_object_nops(struct klp_patch *patch, 503 struct klp_object *old_obj) 504 { 505 struct klp_object *obj; 506 struct klp_func *func, *old_func; 507 508 obj = klp_find_object(patch, old_obj); 509 510 if (!obj) { 511 obj = klp_alloc_object_dynamic(old_obj->name, patch); 512 if (!obj) 513 return -ENOMEM; 514 } 515 516 klp_for_each_func(old_obj, old_func) { 517 func = klp_find_func(obj, old_func); 518 if (func) 519 continue; 520 521 func = klp_alloc_func_nop(old_func, obj); 522 if (!func) 523 return -ENOMEM; 524 } 525 526 return 0; 527 } 528 529 /* 530 * Add 'nop' functions which simply return to the caller to run 531 * the original function. The 'nop' functions are added to a 532 * patch to facilitate a 'replace' mode. 533 */ 534 static int klp_add_nops(struct klp_patch *patch) 535 { 536 struct klp_patch *old_patch; 537 struct klp_object *old_obj; 538 539 klp_for_each_patch(old_patch) { 540 klp_for_each_object(old_patch, old_obj) { 541 int err; 542 543 err = klp_add_object_nops(patch, old_obj); 544 if (err) 545 return err; 546 } 547 } 548 549 return 0; 550 } 551 552 static void klp_kobj_release_patch(struct kobject *kobj) 553 { 554 struct klp_patch *patch; 555 556 patch = container_of(kobj, struct klp_patch, kobj); 557 complete(&patch->finish); 558 } 559 560 static struct kobj_type klp_ktype_patch = { 561 .release = klp_kobj_release_patch, 562 .sysfs_ops = &kobj_sysfs_ops, 563 .default_groups = klp_patch_groups, 564 }; 565 566 static void klp_kobj_release_object(struct kobject *kobj) 567 { 568 struct klp_object *obj; 569 570 obj = container_of(kobj, struct klp_object, kobj); 571 572 if (obj->dynamic) 573 klp_free_object_dynamic(obj); 574 } 575 576 static struct kobj_type klp_ktype_object = { 577 .release = klp_kobj_release_object, 578 .sysfs_ops = &kobj_sysfs_ops, 579 }; 580 581 static void klp_kobj_release_func(struct kobject *kobj) 582 { 583 struct klp_func *func; 584 585 func = container_of(kobj, struct klp_func, kobj); 586 587 if (func->nop) 588 klp_free_func_nop(func); 589 } 590 591 static struct kobj_type klp_ktype_func = { 592 .release = klp_kobj_release_func, 593 .sysfs_ops = &kobj_sysfs_ops, 594 }; 595 596 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 597 { 598 struct klp_func *func, *tmp_func; 599 600 klp_for_each_func_safe(obj, func, tmp_func) { 601 if (nops_only && !func->nop) 602 continue; 603 604 list_del(&func->node); 605 kobject_put(&func->kobj); 606 } 607 } 608 609 /* Clean up when a patched object is unloaded */ 610 static void klp_free_object_loaded(struct klp_object *obj) 611 { 612 struct klp_func *func; 613 614 obj->mod = NULL; 615 616 klp_for_each_func(obj, func) { 617 func->old_func = NULL; 618 619 if (func->nop) 620 func->new_func = NULL; 621 } 622 } 623 624 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 625 { 626 struct klp_object *obj, *tmp_obj; 627 628 klp_for_each_object_safe(patch, obj, tmp_obj) { 629 __klp_free_funcs(obj, nops_only); 630 631 if (nops_only && !obj->dynamic) 632 continue; 633 634 list_del(&obj->node); 635 kobject_put(&obj->kobj); 636 } 637 } 638 639 static void klp_free_objects(struct klp_patch *patch) 640 { 641 __klp_free_objects(patch, false); 642 } 643 644 static void klp_free_objects_dynamic(struct klp_patch *patch) 645 { 646 __klp_free_objects(patch, true); 647 } 648 649 /* 650 * This function implements the free operations that can be called safely 651 * under klp_mutex. 652 * 653 * The operation must be completed by calling klp_free_patch_finish() 654 * outside klp_mutex. 655 */ 656 static void klp_free_patch_start(struct klp_patch *patch) 657 { 658 if (!list_empty(&patch->list)) 659 list_del(&patch->list); 660 661 klp_free_objects(patch); 662 } 663 664 /* 665 * This function implements the free part that must be called outside 666 * klp_mutex. 667 * 668 * It must be called after klp_free_patch_start(). And it has to be 669 * the last function accessing the livepatch structures when the patch 670 * gets disabled. 671 */ 672 static void klp_free_patch_finish(struct klp_patch *patch) 673 { 674 /* 675 * Avoid deadlock with enabled_store() sysfs callback by 676 * calling this outside klp_mutex. It is safe because 677 * this is called when the patch gets disabled and it 678 * cannot get enabled again. 679 */ 680 kobject_put(&patch->kobj); 681 wait_for_completion(&patch->finish); 682 683 /* Put the module after the last access to struct klp_patch. */ 684 if (!patch->forced) 685 module_put(patch->mod); 686 } 687 688 /* 689 * The livepatch might be freed from sysfs interface created by the patch. 690 * This work allows to wait until the interface is destroyed in a separate 691 * context. 692 */ 693 static void klp_free_patch_work_fn(struct work_struct *work) 694 { 695 struct klp_patch *patch = 696 container_of(work, struct klp_patch, free_work); 697 698 klp_free_patch_finish(patch); 699 } 700 701 void klp_free_patch_async(struct klp_patch *patch) 702 { 703 klp_free_patch_start(patch); 704 schedule_work(&patch->free_work); 705 } 706 707 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 708 { 709 struct klp_patch *old_patch, *tmp_patch; 710 711 klp_for_each_patch_safe(old_patch, tmp_patch) { 712 if (old_patch == new_patch) 713 return; 714 klp_free_patch_async(old_patch); 715 } 716 } 717 718 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 719 { 720 if (!func->old_name) 721 return -EINVAL; 722 723 /* 724 * NOPs get the address later. The patched module must be loaded, 725 * see klp_init_object_loaded(). 726 */ 727 if (!func->new_func && !func->nop) 728 return -EINVAL; 729 730 if (strlen(func->old_name) >= KSYM_NAME_LEN) 731 return -EINVAL; 732 733 INIT_LIST_HEAD(&func->stack_node); 734 func->patched = false; 735 func->transition = false; 736 737 /* The format for the sysfs directory is <function,sympos> where sympos 738 * is the nth occurrence of this symbol in kallsyms for the patched 739 * object. If the user selects 0 for old_sympos, then 1 will be used 740 * since a unique symbol will be the first occurrence. 741 */ 742 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 743 func->old_name, 744 func->old_sympos ? func->old_sympos : 1); 745 } 746 747 static int klp_apply_object_relocs(struct klp_patch *patch, 748 struct klp_object *obj) 749 { 750 int i, ret; 751 struct klp_modinfo *info = patch->mod->klp_info; 752 753 for (i = 1; i < info->hdr.e_shnum; i++) { 754 Elf_Shdr *sec = info->sechdrs + i; 755 756 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 757 continue; 758 759 ret = klp_apply_section_relocs(patch->mod, info->sechdrs, 760 info->secstrings, 761 patch->mod->core_kallsyms.strtab, 762 info->symndx, i, obj->name); 763 if (ret) 764 return ret; 765 } 766 767 return 0; 768 } 769 770 /* parts of the initialization that is done only when the object is loaded */ 771 static int klp_init_object_loaded(struct klp_patch *patch, 772 struct klp_object *obj) 773 { 774 struct klp_func *func; 775 int ret; 776 777 if (klp_is_module(obj)) { 778 /* 779 * Only write module-specific relocations here 780 * (.klp.rela.{module}.*). vmlinux-specific relocations were 781 * written earlier during the initialization of the klp module 782 * itself. 783 */ 784 ret = klp_apply_object_relocs(patch, obj); 785 if (ret) 786 return ret; 787 } 788 789 klp_for_each_func(obj, func) { 790 ret = klp_find_object_symbol(obj->name, func->old_name, 791 func->old_sympos, 792 (unsigned long *)&func->old_func); 793 if (ret) 794 return ret; 795 796 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 797 &func->old_size, NULL); 798 if (!ret) { 799 pr_err("kallsyms size lookup failed for '%s'\n", 800 func->old_name); 801 return -ENOENT; 802 } 803 804 if (func->nop) 805 func->new_func = func->old_func; 806 807 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 808 &func->new_size, NULL); 809 if (!ret) { 810 pr_err("kallsyms size lookup failed for '%s' replacement\n", 811 func->old_name); 812 return -ENOENT; 813 } 814 } 815 816 return 0; 817 } 818 819 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 820 { 821 struct klp_func *func; 822 int ret; 823 const char *name; 824 825 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 826 return -EINVAL; 827 828 obj->patched = false; 829 obj->mod = NULL; 830 831 klp_find_object_module(obj); 832 833 name = klp_is_module(obj) ? obj->name : "vmlinux"; 834 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 835 if (ret) 836 return ret; 837 838 klp_for_each_func(obj, func) { 839 ret = klp_init_func(obj, func); 840 if (ret) 841 return ret; 842 } 843 844 if (klp_is_object_loaded(obj)) 845 ret = klp_init_object_loaded(patch, obj); 846 847 return ret; 848 } 849 850 static void klp_init_func_early(struct klp_object *obj, 851 struct klp_func *func) 852 { 853 kobject_init(&func->kobj, &klp_ktype_func); 854 list_add_tail(&func->node, &obj->func_list); 855 } 856 857 static void klp_init_object_early(struct klp_patch *patch, 858 struct klp_object *obj) 859 { 860 INIT_LIST_HEAD(&obj->func_list); 861 kobject_init(&obj->kobj, &klp_ktype_object); 862 list_add_tail(&obj->node, &patch->obj_list); 863 } 864 865 static int klp_init_patch_early(struct klp_patch *patch) 866 { 867 struct klp_object *obj; 868 struct klp_func *func; 869 870 if (!patch->objs) 871 return -EINVAL; 872 873 INIT_LIST_HEAD(&patch->list); 874 INIT_LIST_HEAD(&patch->obj_list); 875 kobject_init(&patch->kobj, &klp_ktype_patch); 876 patch->enabled = false; 877 patch->forced = false; 878 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 879 init_completion(&patch->finish); 880 881 klp_for_each_object_static(patch, obj) { 882 if (!obj->funcs) 883 return -EINVAL; 884 885 klp_init_object_early(patch, obj); 886 887 klp_for_each_func_static(obj, func) { 888 klp_init_func_early(obj, func); 889 } 890 } 891 892 if (!try_module_get(patch->mod)) 893 return -ENODEV; 894 895 return 0; 896 } 897 898 static int klp_init_patch(struct klp_patch *patch) 899 { 900 struct klp_object *obj; 901 int ret; 902 903 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 904 if (ret) 905 return ret; 906 907 if (patch->replace) { 908 ret = klp_add_nops(patch); 909 if (ret) 910 return ret; 911 } 912 913 klp_for_each_object(patch, obj) { 914 ret = klp_init_object(patch, obj); 915 if (ret) 916 return ret; 917 } 918 919 list_add_tail(&patch->list, &klp_patches); 920 921 return 0; 922 } 923 924 static int __klp_disable_patch(struct klp_patch *patch) 925 { 926 struct klp_object *obj; 927 928 if (WARN_ON(!patch->enabled)) 929 return -EINVAL; 930 931 if (klp_transition_patch) 932 return -EBUSY; 933 934 klp_init_transition(patch, KLP_UNPATCHED); 935 936 klp_for_each_object(patch, obj) 937 if (obj->patched) 938 klp_pre_unpatch_callback(obj); 939 940 /* 941 * Enforce the order of the func->transition writes in 942 * klp_init_transition() and the TIF_PATCH_PENDING writes in 943 * klp_start_transition(). In the rare case where klp_ftrace_handler() 944 * is called shortly after klp_update_patch_state() switches the task, 945 * this ensures the handler sees that func->transition is set. 946 */ 947 smp_wmb(); 948 949 klp_start_transition(); 950 patch->enabled = false; 951 klp_try_complete_transition(); 952 953 return 0; 954 } 955 956 static int __klp_enable_patch(struct klp_patch *patch) 957 { 958 struct klp_object *obj; 959 int ret; 960 961 if (klp_transition_patch) 962 return -EBUSY; 963 964 if (WARN_ON(patch->enabled)) 965 return -EINVAL; 966 967 pr_notice("enabling patch '%s'\n", patch->mod->name); 968 969 klp_init_transition(patch, KLP_PATCHED); 970 971 /* 972 * Enforce the order of the func->transition writes in 973 * klp_init_transition() and the ops->func_stack writes in 974 * klp_patch_object(), so that klp_ftrace_handler() will see the 975 * func->transition updates before the handler is registered and the 976 * new funcs become visible to the handler. 977 */ 978 smp_wmb(); 979 980 klp_for_each_object(patch, obj) { 981 if (!klp_is_object_loaded(obj)) 982 continue; 983 984 ret = klp_pre_patch_callback(obj); 985 if (ret) { 986 pr_warn("pre-patch callback failed for object '%s'\n", 987 klp_is_module(obj) ? obj->name : "vmlinux"); 988 goto err; 989 } 990 991 ret = klp_patch_object(obj); 992 if (ret) { 993 pr_warn("failed to patch object '%s'\n", 994 klp_is_module(obj) ? obj->name : "vmlinux"); 995 goto err; 996 } 997 } 998 999 klp_start_transition(); 1000 patch->enabled = true; 1001 klp_try_complete_transition(); 1002 1003 return 0; 1004 err: 1005 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1006 1007 klp_cancel_transition(); 1008 return ret; 1009 } 1010 1011 /** 1012 * klp_enable_patch() - enable the livepatch 1013 * @patch: patch to be enabled 1014 * 1015 * Initializes the data structure associated with the patch, creates the sysfs 1016 * interface, performs the needed symbol lookups and code relocations, 1017 * registers the patched functions with ftrace. 1018 * 1019 * This function is supposed to be called from the livepatch module_init() 1020 * callback. 1021 * 1022 * Return: 0 on success, otherwise error 1023 */ 1024 int klp_enable_patch(struct klp_patch *patch) 1025 { 1026 int ret; 1027 1028 if (!patch || !patch->mod) 1029 return -EINVAL; 1030 1031 if (!is_livepatch_module(patch->mod)) { 1032 pr_err("module %s is not marked as a livepatch module\n", 1033 patch->mod->name); 1034 return -EINVAL; 1035 } 1036 1037 if (!klp_initialized()) 1038 return -ENODEV; 1039 1040 if (!klp_have_reliable_stack()) { 1041 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1042 pr_warn("The livepatch transition may never complete.\n"); 1043 } 1044 1045 mutex_lock(&klp_mutex); 1046 1047 if (!klp_is_patch_compatible(patch)) { 1048 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1049 patch->mod->name); 1050 mutex_unlock(&klp_mutex); 1051 return -EINVAL; 1052 } 1053 1054 ret = klp_init_patch_early(patch); 1055 if (ret) { 1056 mutex_unlock(&klp_mutex); 1057 return ret; 1058 } 1059 1060 ret = klp_init_patch(patch); 1061 if (ret) 1062 goto err; 1063 1064 ret = __klp_enable_patch(patch); 1065 if (ret) 1066 goto err; 1067 1068 mutex_unlock(&klp_mutex); 1069 1070 return 0; 1071 1072 err: 1073 klp_free_patch_start(patch); 1074 1075 mutex_unlock(&klp_mutex); 1076 1077 klp_free_patch_finish(patch); 1078 1079 return ret; 1080 } 1081 EXPORT_SYMBOL_GPL(klp_enable_patch); 1082 1083 /* 1084 * This function unpatches objects from the replaced livepatches. 1085 * 1086 * We could be pretty aggressive here. It is called in the situation where 1087 * these structures are no longer accessed from the ftrace handler. 1088 * All functions are redirected by the klp_transition_patch. They 1089 * use either a new code or they are in the original code because 1090 * of the special nop function patches. 1091 * 1092 * The only exception is when the transition was forced. In this case, 1093 * klp_ftrace_handler() might still see the replaced patch on the stack. 1094 * Fortunately, it is carefully designed to work with removed functions 1095 * thanks to RCU. We only have to keep the patches on the system. Also 1096 * this is handled transparently by patch->module_put. 1097 */ 1098 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1099 { 1100 struct klp_patch *old_patch; 1101 1102 klp_for_each_patch(old_patch) { 1103 if (old_patch == new_patch) 1104 return; 1105 1106 old_patch->enabled = false; 1107 klp_unpatch_objects(old_patch); 1108 } 1109 } 1110 1111 /* 1112 * This function removes the dynamically allocated 'nop' functions. 1113 * 1114 * We could be pretty aggressive. NOPs do not change the existing 1115 * behavior except for adding unnecessary delay by the ftrace handler. 1116 * 1117 * It is safe even when the transition was forced. The ftrace handler 1118 * will see a valid ops->func_stack entry thanks to RCU. 1119 * 1120 * We could even free the NOPs structures. They must be the last entry 1121 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1122 * It does the same as klp_synchronize_transition() to make sure that 1123 * nobody is inside the ftrace handler once the operation finishes. 1124 * 1125 * IMPORTANT: It must be called right after removing the replaced patches! 1126 */ 1127 void klp_discard_nops(struct klp_patch *new_patch) 1128 { 1129 klp_unpatch_objects_dynamic(klp_transition_patch); 1130 klp_free_objects_dynamic(klp_transition_patch); 1131 } 1132 1133 /* 1134 * Remove parts of patches that touch a given kernel module. The list of 1135 * patches processed might be limited. When limit is NULL, all patches 1136 * will be handled. 1137 */ 1138 static void klp_cleanup_module_patches_limited(struct module *mod, 1139 struct klp_patch *limit) 1140 { 1141 struct klp_patch *patch; 1142 struct klp_object *obj; 1143 1144 klp_for_each_patch(patch) { 1145 if (patch == limit) 1146 break; 1147 1148 klp_for_each_object(patch, obj) { 1149 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1150 continue; 1151 1152 if (patch != klp_transition_patch) 1153 klp_pre_unpatch_callback(obj); 1154 1155 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1156 patch->mod->name, obj->mod->name); 1157 klp_unpatch_object(obj); 1158 1159 klp_post_unpatch_callback(obj); 1160 1161 klp_free_object_loaded(obj); 1162 break; 1163 } 1164 } 1165 } 1166 1167 int klp_module_coming(struct module *mod) 1168 { 1169 int ret; 1170 struct klp_patch *patch; 1171 struct klp_object *obj; 1172 1173 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1174 return -EINVAL; 1175 1176 if (!strcmp(mod->name, "vmlinux")) { 1177 pr_err("vmlinux.ko: invalid module name"); 1178 return -EINVAL; 1179 } 1180 1181 mutex_lock(&klp_mutex); 1182 /* 1183 * Each module has to know that klp_module_coming() 1184 * has been called. We never know what module will 1185 * get patched by a new patch. 1186 */ 1187 mod->klp_alive = true; 1188 1189 klp_for_each_patch(patch) { 1190 klp_for_each_object(patch, obj) { 1191 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1192 continue; 1193 1194 obj->mod = mod; 1195 1196 ret = klp_init_object_loaded(patch, obj); 1197 if (ret) { 1198 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1199 patch->mod->name, obj->mod->name, ret); 1200 goto err; 1201 } 1202 1203 pr_notice("applying patch '%s' to loading module '%s'\n", 1204 patch->mod->name, obj->mod->name); 1205 1206 ret = klp_pre_patch_callback(obj); 1207 if (ret) { 1208 pr_warn("pre-patch callback failed for object '%s'\n", 1209 obj->name); 1210 goto err; 1211 } 1212 1213 ret = klp_patch_object(obj); 1214 if (ret) { 1215 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1216 patch->mod->name, obj->mod->name, ret); 1217 1218 klp_post_unpatch_callback(obj); 1219 goto err; 1220 } 1221 1222 if (patch != klp_transition_patch) 1223 klp_post_patch_callback(obj); 1224 1225 break; 1226 } 1227 } 1228 1229 mutex_unlock(&klp_mutex); 1230 1231 return 0; 1232 1233 err: 1234 /* 1235 * If a patch is unsuccessfully applied, return 1236 * error to the module loader. 1237 */ 1238 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1239 patch->mod->name, obj->mod->name, obj->mod->name); 1240 mod->klp_alive = false; 1241 obj->mod = NULL; 1242 klp_cleanup_module_patches_limited(mod, patch); 1243 mutex_unlock(&klp_mutex); 1244 1245 return ret; 1246 } 1247 1248 void klp_module_going(struct module *mod) 1249 { 1250 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1251 mod->state != MODULE_STATE_COMING)) 1252 return; 1253 1254 mutex_lock(&klp_mutex); 1255 /* 1256 * Each module has to know that klp_module_going() 1257 * has been called. We never know what module will 1258 * get patched by a new patch. 1259 */ 1260 mod->klp_alive = false; 1261 1262 klp_cleanup_module_patches_limited(mod, NULL); 1263 1264 mutex_unlock(&klp_mutex); 1265 } 1266 1267 static int __init klp_init(void) 1268 { 1269 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1270 if (!klp_root_kobj) 1271 return -ENOMEM; 1272 1273 return 0; 1274 } 1275 1276 module_init(klp_init); 1277