1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <linux/rcupdate.h> 23 #include <asm/cacheflush.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "state.h" 27 #include "transition.h" 28 29 /* 30 * klp_mutex is a coarse lock which serializes access to klp data. All 31 * accesses to klp-related variables and structures must have mutex protection, 32 * except within the following functions which carefully avoid the need for it: 33 * 34 * - klp_ftrace_handler() 35 * - klp_update_patch_state() 36 */ 37 DEFINE_MUTEX(klp_mutex); 38 39 /* 40 * Actively used patches: enabled or in transition. Note that replaced 41 * or disabled patches are not listed even though the related kernel 42 * module still can be loaded. 43 */ 44 LIST_HEAD(klp_patches); 45 46 static struct kobject *klp_root_kobj; 47 48 static bool klp_is_module(struct klp_object *obj) 49 { 50 return obj->name; 51 } 52 53 /* sets obj->mod if object is not vmlinux and module is found */ 54 static void klp_find_object_module(struct klp_object *obj) 55 { 56 struct module *mod; 57 58 if (!klp_is_module(obj)) 59 return; 60 61 rcu_read_lock_sched(); 62 /* 63 * We do not want to block removal of patched modules and therefore 64 * we do not take a reference here. The patches are removed by 65 * klp_module_going() instead. 66 */ 67 mod = find_module(obj->name); 68 /* 69 * Do not mess work of klp_module_coming() and klp_module_going(). 70 * Note that the patch might still be needed before klp_module_going() 71 * is called. Module functions can be called even in the GOING state 72 * until mod->exit() finishes. This is especially important for 73 * patches that modify semantic of the functions. 74 */ 75 if (mod && mod->klp_alive) 76 obj->mod = mod; 77 78 rcu_read_unlock_sched(); 79 } 80 81 static bool klp_initialized(void) 82 { 83 return !!klp_root_kobj; 84 } 85 86 static struct klp_func *klp_find_func(struct klp_object *obj, 87 struct klp_func *old_func) 88 { 89 struct klp_func *func; 90 91 klp_for_each_func(obj, func) { 92 if ((strcmp(old_func->old_name, func->old_name) == 0) && 93 (old_func->old_sympos == func->old_sympos)) { 94 return func; 95 } 96 } 97 98 return NULL; 99 } 100 101 static struct klp_object *klp_find_object(struct klp_patch *patch, 102 struct klp_object *old_obj) 103 { 104 struct klp_object *obj; 105 106 klp_for_each_object(patch, obj) { 107 if (klp_is_module(old_obj)) { 108 if (klp_is_module(obj) && 109 strcmp(old_obj->name, obj->name) == 0) { 110 return obj; 111 } 112 } else if (!klp_is_module(obj)) { 113 return obj; 114 } 115 } 116 117 return NULL; 118 } 119 120 struct klp_find_arg { 121 const char *name; 122 unsigned long addr; 123 unsigned long count; 124 unsigned long pos; 125 }; 126 127 static int klp_match_callback(void *data, unsigned long addr) 128 { 129 struct klp_find_arg *args = data; 130 131 args->addr = addr; 132 args->count++; 133 134 /* 135 * Finish the search when the symbol is found for the desired position 136 * or the position is not defined for a non-unique symbol. 137 */ 138 if ((args->pos && (args->count == args->pos)) || 139 (!args->pos && (args->count > 1))) 140 return 1; 141 142 return 0; 143 } 144 145 static int klp_find_callback(void *data, const char *name, 146 struct module *mod, unsigned long addr) 147 { 148 struct klp_find_arg *args = data; 149 150 if (strcmp(args->name, name)) 151 return 0; 152 153 return klp_match_callback(data, addr); 154 } 155 156 static int klp_find_object_symbol(const char *objname, const char *name, 157 unsigned long sympos, unsigned long *addr) 158 { 159 struct klp_find_arg args = { 160 .name = name, 161 .addr = 0, 162 .count = 0, 163 .pos = sympos, 164 }; 165 166 if (objname) 167 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args); 168 else 169 kallsyms_on_each_match_symbol(klp_match_callback, name, &args); 170 171 /* 172 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 173 * otherwise ensure the symbol position count matches sympos. 174 */ 175 if (args.addr == 0) 176 pr_err("symbol '%s' not found in symbol table\n", name); 177 else if (args.count > 1 && sympos == 0) { 178 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 179 name, objname); 180 } else if (sympos != args.count && sympos > 0) { 181 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 182 sympos, name, objname ? objname : "vmlinux"); 183 } else { 184 *addr = args.addr; 185 return 0; 186 } 187 188 *addr = 0; 189 return -EINVAL; 190 } 191 192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab, 193 unsigned int symndx, Elf_Shdr *relasec, 194 const char *sec_objname) 195 { 196 int i, cnt, ret; 197 char sym_objname[MODULE_NAME_LEN]; 198 char sym_name[KSYM_NAME_LEN]; 199 Elf_Rela *relas; 200 Elf_Sym *sym; 201 unsigned long sympos, addr; 202 bool sym_vmlinux; 203 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 204 205 /* 206 * Since the field widths for sym_objname and sym_name in the sscanf() 207 * call are hard-coded and correspond to MODULE_NAME_LEN and 208 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 209 * and KSYM_NAME_LEN have the values we expect them to have. 210 * 211 * Because the value of MODULE_NAME_LEN can differ among architectures, 212 * we use the smallest/strictest upper bound possible (56, based on 213 * the current definition of MODULE_NAME_LEN) to prevent overflows. 214 */ 215 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512); 216 217 relas = (Elf_Rela *) relasec->sh_addr; 218 /* For each rela in this klp relocation section */ 219 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 220 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 221 if (sym->st_shndx != SHN_LIVEPATCH) { 222 pr_err("symbol %s is not marked as a livepatch symbol\n", 223 strtab + sym->st_name); 224 return -EINVAL; 225 } 226 227 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 228 cnt = sscanf(strtab + sym->st_name, 229 ".klp.sym.%55[^.].%511[^,],%lu", 230 sym_objname, sym_name, &sympos); 231 if (cnt != 3) { 232 pr_err("symbol %s has an incorrectly formatted name\n", 233 strtab + sym->st_name); 234 return -EINVAL; 235 } 236 237 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 238 239 /* 240 * Prevent module-specific KLP rela sections from referencing 241 * vmlinux symbols. This helps prevent ordering issues with 242 * module special section initializations. Presumably such 243 * symbols are exported and normal relas can be used instead. 244 */ 245 if (!sec_vmlinux && sym_vmlinux) { 246 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section", 247 sym_name); 248 return -EINVAL; 249 } 250 251 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 252 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 253 sym_name, sympos, &addr); 254 if (ret) 255 return ret; 256 257 sym->st_value = addr; 258 } 259 260 return 0; 261 } 262 263 /* 264 * At a high-level, there are two types of klp relocation sections: those which 265 * reference symbols which live in vmlinux; and those which reference symbols 266 * which live in other modules. This function is called for both types: 267 * 268 * 1) When a klp module itself loads, the module code calls this function to 269 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 270 * These relocations are written to the klp module text to allow the patched 271 * code/data to reference unexported vmlinux symbols. They're written as 272 * early as possible to ensure that other module init code (.e.g., 273 * jump_label_apply_nops) can access any unexported vmlinux symbols which 274 * might be referenced by the klp module's special sections. 275 * 276 * 2) When a to-be-patched module loads -- or is already loaded when a 277 * corresponding klp module loads -- klp code calls this function to write 278 * module-specific klp relocations (.klp.rela.{module}.* sections). These 279 * are written to the klp module text to allow the patched code/data to 280 * reference symbols which live in the to-be-patched module or one of its 281 * module dependencies. Exported symbols are supported, in addition to 282 * unexported symbols, in order to enable late module patching, which allows 283 * the to-be-patched module to be loaded and patched sometime *after* the 284 * klp module is loaded. 285 */ 286 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 287 const char *shstrtab, const char *strtab, 288 unsigned int symndx, unsigned int secndx, 289 const char *objname) 290 { 291 int cnt, ret; 292 char sec_objname[MODULE_NAME_LEN]; 293 Elf_Shdr *sec = sechdrs + secndx; 294 295 /* 296 * Format: .klp.rela.sec_objname.section_name 297 * See comment in klp_resolve_symbols() for an explanation 298 * of the selected field width value. 299 */ 300 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 301 sec_objname); 302 if (cnt != 1) { 303 pr_err("section %s has an incorrectly formatted name\n", 304 shstrtab + sec->sh_name); 305 return -EINVAL; 306 } 307 308 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 309 return 0; 310 311 ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname); 312 if (ret) 313 return ret; 314 315 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 316 } 317 318 /* 319 * Sysfs Interface 320 * 321 * /sys/kernel/livepatch 322 * /sys/kernel/livepatch/<patch> 323 * /sys/kernel/livepatch/<patch>/enabled 324 * /sys/kernel/livepatch/<patch>/transition 325 * /sys/kernel/livepatch/<patch>/force 326 * /sys/kernel/livepatch/<patch>/<object> 327 * /sys/kernel/livepatch/<patch>/<object>/patched 328 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 329 */ 330 static int __klp_disable_patch(struct klp_patch *patch); 331 332 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 333 const char *buf, size_t count) 334 { 335 struct klp_patch *patch; 336 int ret; 337 bool enabled; 338 339 ret = kstrtobool(buf, &enabled); 340 if (ret) 341 return ret; 342 343 patch = container_of(kobj, struct klp_patch, kobj); 344 345 mutex_lock(&klp_mutex); 346 347 if (patch->enabled == enabled) { 348 /* already in requested state */ 349 ret = -EINVAL; 350 goto out; 351 } 352 353 /* 354 * Allow to reverse a pending transition in both ways. It might be 355 * necessary to complete the transition without forcing and breaking 356 * the system integrity. 357 * 358 * Do not allow to re-enable a disabled patch. 359 */ 360 if (patch == klp_transition_patch) 361 klp_reverse_transition(); 362 else if (!enabled) 363 ret = __klp_disable_patch(patch); 364 else 365 ret = -EINVAL; 366 367 out: 368 mutex_unlock(&klp_mutex); 369 370 if (ret) 371 return ret; 372 return count; 373 } 374 375 static ssize_t enabled_show(struct kobject *kobj, 376 struct kobj_attribute *attr, char *buf) 377 { 378 struct klp_patch *patch; 379 380 patch = container_of(kobj, struct klp_patch, kobj); 381 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 382 } 383 384 static ssize_t transition_show(struct kobject *kobj, 385 struct kobj_attribute *attr, char *buf) 386 { 387 struct klp_patch *patch; 388 389 patch = container_of(kobj, struct klp_patch, kobj); 390 return snprintf(buf, PAGE_SIZE-1, "%d\n", 391 patch == klp_transition_patch); 392 } 393 394 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 395 const char *buf, size_t count) 396 { 397 struct klp_patch *patch; 398 int ret; 399 bool val; 400 401 ret = kstrtobool(buf, &val); 402 if (ret) 403 return ret; 404 405 if (!val) 406 return count; 407 408 mutex_lock(&klp_mutex); 409 410 patch = container_of(kobj, struct klp_patch, kobj); 411 if (patch != klp_transition_patch) { 412 mutex_unlock(&klp_mutex); 413 return -EINVAL; 414 } 415 416 klp_force_transition(); 417 418 mutex_unlock(&klp_mutex); 419 420 return count; 421 } 422 423 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 424 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 425 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 426 static struct attribute *klp_patch_attrs[] = { 427 &enabled_kobj_attr.attr, 428 &transition_kobj_attr.attr, 429 &force_kobj_attr.attr, 430 NULL 431 }; 432 ATTRIBUTE_GROUPS(klp_patch); 433 434 static ssize_t patched_show(struct kobject *kobj, 435 struct kobj_attribute *attr, char *buf) 436 { 437 struct klp_object *obj; 438 439 obj = container_of(kobj, struct klp_object, kobj); 440 return sysfs_emit(buf, "%d\n", obj->patched); 441 } 442 443 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched); 444 static struct attribute *klp_object_attrs[] = { 445 &patched_kobj_attr.attr, 446 NULL, 447 }; 448 ATTRIBUTE_GROUPS(klp_object); 449 450 static void klp_free_object_dynamic(struct klp_object *obj) 451 { 452 kfree(obj->name); 453 kfree(obj); 454 } 455 456 static void klp_init_func_early(struct klp_object *obj, 457 struct klp_func *func); 458 static void klp_init_object_early(struct klp_patch *patch, 459 struct klp_object *obj); 460 461 static struct klp_object *klp_alloc_object_dynamic(const char *name, 462 struct klp_patch *patch) 463 { 464 struct klp_object *obj; 465 466 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 467 if (!obj) 468 return NULL; 469 470 if (name) { 471 obj->name = kstrdup(name, GFP_KERNEL); 472 if (!obj->name) { 473 kfree(obj); 474 return NULL; 475 } 476 } 477 478 klp_init_object_early(patch, obj); 479 obj->dynamic = true; 480 481 return obj; 482 } 483 484 static void klp_free_func_nop(struct klp_func *func) 485 { 486 kfree(func->old_name); 487 kfree(func); 488 } 489 490 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 491 struct klp_object *obj) 492 { 493 struct klp_func *func; 494 495 func = kzalloc(sizeof(*func), GFP_KERNEL); 496 if (!func) 497 return NULL; 498 499 if (old_func->old_name) { 500 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 501 if (!func->old_name) { 502 kfree(func); 503 return NULL; 504 } 505 } 506 507 klp_init_func_early(obj, func); 508 /* 509 * func->new_func is same as func->old_func. These addresses are 510 * set when the object is loaded, see klp_init_object_loaded(). 511 */ 512 func->old_sympos = old_func->old_sympos; 513 func->nop = true; 514 515 return func; 516 } 517 518 static int klp_add_object_nops(struct klp_patch *patch, 519 struct klp_object *old_obj) 520 { 521 struct klp_object *obj; 522 struct klp_func *func, *old_func; 523 524 obj = klp_find_object(patch, old_obj); 525 526 if (!obj) { 527 obj = klp_alloc_object_dynamic(old_obj->name, patch); 528 if (!obj) 529 return -ENOMEM; 530 } 531 532 klp_for_each_func(old_obj, old_func) { 533 func = klp_find_func(obj, old_func); 534 if (func) 535 continue; 536 537 func = klp_alloc_func_nop(old_func, obj); 538 if (!func) 539 return -ENOMEM; 540 } 541 542 return 0; 543 } 544 545 /* 546 * Add 'nop' functions which simply return to the caller to run 547 * the original function. The 'nop' functions are added to a 548 * patch to facilitate a 'replace' mode. 549 */ 550 static int klp_add_nops(struct klp_patch *patch) 551 { 552 struct klp_patch *old_patch; 553 struct klp_object *old_obj; 554 555 klp_for_each_patch(old_patch) { 556 klp_for_each_object(old_patch, old_obj) { 557 int err; 558 559 err = klp_add_object_nops(patch, old_obj); 560 if (err) 561 return err; 562 } 563 } 564 565 return 0; 566 } 567 568 static void klp_kobj_release_patch(struct kobject *kobj) 569 { 570 struct klp_patch *patch; 571 572 patch = container_of(kobj, struct klp_patch, kobj); 573 complete(&patch->finish); 574 } 575 576 static struct kobj_type klp_ktype_patch = { 577 .release = klp_kobj_release_patch, 578 .sysfs_ops = &kobj_sysfs_ops, 579 .default_groups = klp_patch_groups, 580 }; 581 582 static void klp_kobj_release_object(struct kobject *kobj) 583 { 584 struct klp_object *obj; 585 586 obj = container_of(kobj, struct klp_object, kobj); 587 588 if (obj->dynamic) 589 klp_free_object_dynamic(obj); 590 } 591 592 static struct kobj_type klp_ktype_object = { 593 .release = klp_kobj_release_object, 594 .sysfs_ops = &kobj_sysfs_ops, 595 .default_groups = klp_object_groups, 596 }; 597 598 static void klp_kobj_release_func(struct kobject *kobj) 599 { 600 struct klp_func *func; 601 602 func = container_of(kobj, struct klp_func, kobj); 603 604 if (func->nop) 605 klp_free_func_nop(func); 606 } 607 608 static struct kobj_type klp_ktype_func = { 609 .release = klp_kobj_release_func, 610 .sysfs_ops = &kobj_sysfs_ops, 611 }; 612 613 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 614 { 615 struct klp_func *func, *tmp_func; 616 617 klp_for_each_func_safe(obj, func, tmp_func) { 618 if (nops_only && !func->nop) 619 continue; 620 621 list_del(&func->node); 622 kobject_put(&func->kobj); 623 } 624 } 625 626 /* Clean up when a patched object is unloaded */ 627 static void klp_free_object_loaded(struct klp_object *obj) 628 { 629 struct klp_func *func; 630 631 obj->mod = NULL; 632 633 klp_for_each_func(obj, func) { 634 func->old_func = NULL; 635 636 if (func->nop) 637 func->new_func = NULL; 638 } 639 } 640 641 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 642 { 643 struct klp_object *obj, *tmp_obj; 644 645 klp_for_each_object_safe(patch, obj, tmp_obj) { 646 __klp_free_funcs(obj, nops_only); 647 648 if (nops_only && !obj->dynamic) 649 continue; 650 651 list_del(&obj->node); 652 kobject_put(&obj->kobj); 653 } 654 } 655 656 static void klp_free_objects(struct klp_patch *patch) 657 { 658 __klp_free_objects(patch, false); 659 } 660 661 static void klp_free_objects_dynamic(struct klp_patch *patch) 662 { 663 __klp_free_objects(patch, true); 664 } 665 666 /* 667 * This function implements the free operations that can be called safely 668 * under klp_mutex. 669 * 670 * The operation must be completed by calling klp_free_patch_finish() 671 * outside klp_mutex. 672 */ 673 static void klp_free_patch_start(struct klp_patch *patch) 674 { 675 if (!list_empty(&patch->list)) 676 list_del(&patch->list); 677 678 klp_free_objects(patch); 679 } 680 681 /* 682 * This function implements the free part that must be called outside 683 * klp_mutex. 684 * 685 * It must be called after klp_free_patch_start(). And it has to be 686 * the last function accessing the livepatch structures when the patch 687 * gets disabled. 688 */ 689 static void klp_free_patch_finish(struct klp_patch *patch) 690 { 691 /* 692 * Avoid deadlock with enabled_store() sysfs callback by 693 * calling this outside klp_mutex. It is safe because 694 * this is called when the patch gets disabled and it 695 * cannot get enabled again. 696 */ 697 kobject_put(&patch->kobj); 698 wait_for_completion(&patch->finish); 699 700 /* Put the module after the last access to struct klp_patch. */ 701 if (!patch->forced) 702 module_put(patch->mod); 703 } 704 705 /* 706 * The livepatch might be freed from sysfs interface created by the patch. 707 * This work allows to wait until the interface is destroyed in a separate 708 * context. 709 */ 710 static void klp_free_patch_work_fn(struct work_struct *work) 711 { 712 struct klp_patch *patch = 713 container_of(work, struct klp_patch, free_work); 714 715 klp_free_patch_finish(patch); 716 } 717 718 void klp_free_patch_async(struct klp_patch *patch) 719 { 720 klp_free_patch_start(patch); 721 schedule_work(&patch->free_work); 722 } 723 724 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 725 { 726 struct klp_patch *old_patch, *tmp_patch; 727 728 klp_for_each_patch_safe(old_patch, tmp_patch) { 729 if (old_patch == new_patch) 730 return; 731 klp_free_patch_async(old_patch); 732 } 733 } 734 735 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 736 { 737 if (!func->old_name) 738 return -EINVAL; 739 740 /* 741 * NOPs get the address later. The patched module must be loaded, 742 * see klp_init_object_loaded(). 743 */ 744 if (!func->new_func && !func->nop) 745 return -EINVAL; 746 747 if (strlen(func->old_name) >= KSYM_NAME_LEN) 748 return -EINVAL; 749 750 INIT_LIST_HEAD(&func->stack_node); 751 func->patched = false; 752 func->transition = false; 753 754 /* The format for the sysfs directory is <function,sympos> where sympos 755 * is the nth occurrence of this symbol in kallsyms for the patched 756 * object. If the user selects 0 for old_sympos, then 1 will be used 757 * since a unique symbol will be the first occurrence. 758 */ 759 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 760 func->old_name, 761 func->old_sympos ? func->old_sympos : 1); 762 } 763 764 static int klp_apply_object_relocs(struct klp_patch *patch, 765 struct klp_object *obj) 766 { 767 int i, ret; 768 struct klp_modinfo *info = patch->mod->klp_info; 769 770 for (i = 1; i < info->hdr.e_shnum; i++) { 771 Elf_Shdr *sec = info->sechdrs + i; 772 773 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 774 continue; 775 776 ret = klp_apply_section_relocs(patch->mod, info->sechdrs, 777 info->secstrings, 778 patch->mod->core_kallsyms.strtab, 779 info->symndx, i, obj->name); 780 if (ret) 781 return ret; 782 } 783 784 return 0; 785 } 786 787 /* parts of the initialization that is done only when the object is loaded */ 788 static int klp_init_object_loaded(struct klp_patch *patch, 789 struct klp_object *obj) 790 { 791 struct klp_func *func; 792 int ret; 793 794 if (klp_is_module(obj)) { 795 /* 796 * Only write module-specific relocations here 797 * (.klp.rela.{module}.*). vmlinux-specific relocations were 798 * written earlier during the initialization of the klp module 799 * itself. 800 */ 801 ret = klp_apply_object_relocs(patch, obj); 802 if (ret) 803 return ret; 804 } 805 806 klp_for_each_func(obj, func) { 807 ret = klp_find_object_symbol(obj->name, func->old_name, 808 func->old_sympos, 809 (unsigned long *)&func->old_func); 810 if (ret) 811 return ret; 812 813 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 814 &func->old_size, NULL); 815 if (!ret) { 816 pr_err("kallsyms size lookup failed for '%s'\n", 817 func->old_name); 818 return -ENOENT; 819 } 820 821 if (func->nop) 822 func->new_func = func->old_func; 823 824 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 825 &func->new_size, NULL); 826 if (!ret) { 827 pr_err("kallsyms size lookup failed for '%s' replacement\n", 828 func->old_name); 829 return -ENOENT; 830 } 831 } 832 833 return 0; 834 } 835 836 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 837 { 838 struct klp_func *func; 839 int ret; 840 const char *name; 841 842 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 843 return -EINVAL; 844 845 obj->patched = false; 846 obj->mod = NULL; 847 848 klp_find_object_module(obj); 849 850 name = klp_is_module(obj) ? obj->name : "vmlinux"; 851 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 852 if (ret) 853 return ret; 854 855 klp_for_each_func(obj, func) { 856 ret = klp_init_func(obj, func); 857 if (ret) 858 return ret; 859 } 860 861 if (klp_is_object_loaded(obj)) 862 ret = klp_init_object_loaded(patch, obj); 863 864 return ret; 865 } 866 867 static void klp_init_func_early(struct klp_object *obj, 868 struct klp_func *func) 869 { 870 kobject_init(&func->kobj, &klp_ktype_func); 871 list_add_tail(&func->node, &obj->func_list); 872 } 873 874 static void klp_init_object_early(struct klp_patch *patch, 875 struct klp_object *obj) 876 { 877 INIT_LIST_HEAD(&obj->func_list); 878 kobject_init(&obj->kobj, &klp_ktype_object); 879 list_add_tail(&obj->node, &patch->obj_list); 880 } 881 882 static void klp_init_patch_early(struct klp_patch *patch) 883 { 884 struct klp_object *obj; 885 struct klp_func *func; 886 887 INIT_LIST_HEAD(&patch->list); 888 INIT_LIST_HEAD(&patch->obj_list); 889 kobject_init(&patch->kobj, &klp_ktype_patch); 890 patch->enabled = false; 891 patch->forced = false; 892 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 893 init_completion(&patch->finish); 894 895 klp_for_each_object_static(patch, obj) { 896 klp_init_object_early(patch, obj); 897 898 klp_for_each_func_static(obj, func) { 899 klp_init_func_early(obj, func); 900 } 901 } 902 } 903 904 static int klp_init_patch(struct klp_patch *patch) 905 { 906 struct klp_object *obj; 907 int ret; 908 909 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 910 if (ret) 911 return ret; 912 913 if (patch->replace) { 914 ret = klp_add_nops(patch); 915 if (ret) 916 return ret; 917 } 918 919 klp_for_each_object(patch, obj) { 920 ret = klp_init_object(patch, obj); 921 if (ret) 922 return ret; 923 } 924 925 list_add_tail(&patch->list, &klp_patches); 926 927 return 0; 928 } 929 930 static int __klp_disable_patch(struct klp_patch *patch) 931 { 932 struct klp_object *obj; 933 934 if (WARN_ON(!patch->enabled)) 935 return -EINVAL; 936 937 if (klp_transition_patch) 938 return -EBUSY; 939 940 klp_init_transition(patch, KLP_UNPATCHED); 941 942 klp_for_each_object(patch, obj) 943 if (obj->patched) 944 klp_pre_unpatch_callback(obj); 945 946 /* 947 * Enforce the order of the func->transition writes in 948 * klp_init_transition() and the TIF_PATCH_PENDING writes in 949 * klp_start_transition(). In the rare case where klp_ftrace_handler() 950 * is called shortly after klp_update_patch_state() switches the task, 951 * this ensures the handler sees that func->transition is set. 952 */ 953 smp_wmb(); 954 955 klp_start_transition(); 956 patch->enabled = false; 957 klp_try_complete_transition(); 958 959 return 0; 960 } 961 962 static int __klp_enable_patch(struct klp_patch *patch) 963 { 964 struct klp_object *obj; 965 int ret; 966 967 if (klp_transition_patch) 968 return -EBUSY; 969 970 if (WARN_ON(patch->enabled)) 971 return -EINVAL; 972 973 pr_notice("enabling patch '%s'\n", patch->mod->name); 974 975 klp_init_transition(patch, KLP_PATCHED); 976 977 /* 978 * Enforce the order of the func->transition writes in 979 * klp_init_transition() and the ops->func_stack writes in 980 * klp_patch_object(), so that klp_ftrace_handler() will see the 981 * func->transition updates before the handler is registered and the 982 * new funcs become visible to the handler. 983 */ 984 smp_wmb(); 985 986 klp_for_each_object(patch, obj) { 987 if (!klp_is_object_loaded(obj)) 988 continue; 989 990 ret = klp_pre_patch_callback(obj); 991 if (ret) { 992 pr_warn("pre-patch callback failed for object '%s'\n", 993 klp_is_module(obj) ? obj->name : "vmlinux"); 994 goto err; 995 } 996 997 ret = klp_patch_object(obj); 998 if (ret) { 999 pr_warn("failed to patch object '%s'\n", 1000 klp_is_module(obj) ? obj->name : "vmlinux"); 1001 goto err; 1002 } 1003 } 1004 1005 klp_start_transition(); 1006 patch->enabled = true; 1007 klp_try_complete_transition(); 1008 1009 return 0; 1010 err: 1011 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1012 1013 klp_cancel_transition(); 1014 return ret; 1015 } 1016 1017 /** 1018 * klp_enable_patch() - enable the livepatch 1019 * @patch: patch to be enabled 1020 * 1021 * Initializes the data structure associated with the patch, creates the sysfs 1022 * interface, performs the needed symbol lookups and code relocations, 1023 * registers the patched functions with ftrace. 1024 * 1025 * This function is supposed to be called from the livepatch module_init() 1026 * callback. 1027 * 1028 * Return: 0 on success, otherwise error 1029 */ 1030 int klp_enable_patch(struct klp_patch *patch) 1031 { 1032 int ret; 1033 struct klp_object *obj; 1034 1035 if (!patch || !patch->mod || !patch->objs) 1036 return -EINVAL; 1037 1038 klp_for_each_object_static(patch, obj) { 1039 if (!obj->funcs) 1040 return -EINVAL; 1041 } 1042 1043 1044 if (!is_livepatch_module(patch->mod)) { 1045 pr_err("module %s is not marked as a livepatch module\n", 1046 patch->mod->name); 1047 return -EINVAL; 1048 } 1049 1050 if (!klp_initialized()) 1051 return -ENODEV; 1052 1053 if (!klp_have_reliable_stack()) { 1054 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1055 pr_warn("The livepatch transition may never complete.\n"); 1056 } 1057 1058 mutex_lock(&klp_mutex); 1059 1060 if (!klp_is_patch_compatible(patch)) { 1061 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1062 patch->mod->name); 1063 mutex_unlock(&klp_mutex); 1064 return -EINVAL; 1065 } 1066 1067 if (!try_module_get(patch->mod)) { 1068 mutex_unlock(&klp_mutex); 1069 return -ENODEV; 1070 } 1071 1072 klp_init_patch_early(patch); 1073 1074 ret = klp_init_patch(patch); 1075 if (ret) 1076 goto err; 1077 1078 ret = __klp_enable_patch(patch); 1079 if (ret) 1080 goto err; 1081 1082 mutex_unlock(&klp_mutex); 1083 1084 return 0; 1085 1086 err: 1087 klp_free_patch_start(patch); 1088 1089 mutex_unlock(&klp_mutex); 1090 1091 klp_free_patch_finish(patch); 1092 1093 return ret; 1094 } 1095 EXPORT_SYMBOL_GPL(klp_enable_patch); 1096 1097 /* 1098 * This function unpatches objects from the replaced livepatches. 1099 * 1100 * We could be pretty aggressive here. It is called in the situation where 1101 * these structures are no longer accessed from the ftrace handler. 1102 * All functions are redirected by the klp_transition_patch. They 1103 * use either a new code or they are in the original code because 1104 * of the special nop function patches. 1105 * 1106 * The only exception is when the transition was forced. In this case, 1107 * klp_ftrace_handler() might still see the replaced patch on the stack. 1108 * Fortunately, it is carefully designed to work with removed functions 1109 * thanks to RCU. We only have to keep the patches on the system. Also 1110 * this is handled transparently by patch->module_put. 1111 */ 1112 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1113 { 1114 struct klp_patch *old_patch; 1115 1116 klp_for_each_patch(old_patch) { 1117 if (old_patch == new_patch) 1118 return; 1119 1120 old_patch->enabled = false; 1121 klp_unpatch_objects(old_patch); 1122 } 1123 } 1124 1125 /* 1126 * This function removes the dynamically allocated 'nop' functions. 1127 * 1128 * We could be pretty aggressive. NOPs do not change the existing 1129 * behavior except for adding unnecessary delay by the ftrace handler. 1130 * 1131 * It is safe even when the transition was forced. The ftrace handler 1132 * will see a valid ops->func_stack entry thanks to RCU. 1133 * 1134 * We could even free the NOPs structures. They must be the last entry 1135 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1136 * It does the same as klp_synchronize_transition() to make sure that 1137 * nobody is inside the ftrace handler once the operation finishes. 1138 * 1139 * IMPORTANT: It must be called right after removing the replaced patches! 1140 */ 1141 void klp_discard_nops(struct klp_patch *new_patch) 1142 { 1143 klp_unpatch_objects_dynamic(klp_transition_patch); 1144 klp_free_objects_dynamic(klp_transition_patch); 1145 } 1146 1147 /* 1148 * Remove parts of patches that touch a given kernel module. The list of 1149 * patches processed might be limited. When limit is NULL, all patches 1150 * will be handled. 1151 */ 1152 static void klp_cleanup_module_patches_limited(struct module *mod, 1153 struct klp_patch *limit) 1154 { 1155 struct klp_patch *patch; 1156 struct klp_object *obj; 1157 1158 klp_for_each_patch(patch) { 1159 if (patch == limit) 1160 break; 1161 1162 klp_for_each_object(patch, obj) { 1163 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1164 continue; 1165 1166 if (patch != klp_transition_patch) 1167 klp_pre_unpatch_callback(obj); 1168 1169 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1170 patch->mod->name, obj->mod->name); 1171 klp_unpatch_object(obj); 1172 1173 klp_post_unpatch_callback(obj); 1174 1175 klp_free_object_loaded(obj); 1176 break; 1177 } 1178 } 1179 } 1180 1181 int klp_module_coming(struct module *mod) 1182 { 1183 int ret; 1184 struct klp_patch *patch; 1185 struct klp_object *obj; 1186 1187 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1188 return -EINVAL; 1189 1190 if (!strcmp(mod->name, "vmlinux")) { 1191 pr_err("vmlinux.ko: invalid module name\n"); 1192 return -EINVAL; 1193 } 1194 1195 mutex_lock(&klp_mutex); 1196 /* 1197 * Each module has to know that klp_module_coming() 1198 * has been called. We never know what module will 1199 * get patched by a new patch. 1200 */ 1201 mod->klp_alive = true; 1202 1203 klp_for_each_patch(patch) { 1204 klp_for_each_object(patch, obj) { 1205 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1206 continue; 1207 1208 obj->mod = mod; 1209 1210 ret = klp_init_object_loaded(patch, obj); 1211 if (ret) { 1212 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1213 patch->mod->name, obj->mod->name, ret); 1214 goto err; 1215 } 1216 1217 pr_notice("applying patch '%s' to loading module '%s'\n", 1218 patch->mod->name, obj->mod->name); 1219 1220 ret = klp_pre_patch_callback(obj); 1221 if (ret) { 1222 pr_warn("pre-patch callback failed for object '%s'\n", 1223 obj->name); 1224 goto err; 1225 } 1226 1227 ret = klp_patch_object(obj); 1228 if (ret) { 1229 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1230 patch->mod->name, obj->mod->name, ret); 1231 1232 klp_post_unpatch_callback(obj); 1233 goto err; 1234 } 1235 1236 if (patch != klp_transition_patch) 1237 klp_post_patch_callback(obj); 1238 1239 break; 1240 } 1241 } 1242 1243 mutex_unlock(&klp_mutex); 1244 1245 return 0; 1246 1247 err: 1248 /* 1249 * If a patch is unsuccessfully applied, return 1250 * error to the module loader. 1251 */ 1252 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1253 patch->mod->name, obj->mod->name, obj->mod->name); 1254 mod->klp_alive = false; 1255 obj->mod = NULL; 1256 klp_cleanup_module_patches_limited(mod, patch); 1257 mutex_unlock(&klp_mutex); 1258 1259 return ret; 1260 } 1261 1262 void klp_module_going(struct module *mod) 1263 { 1264 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1265 mod->state != MODULE_STATE_COMING)) 1266 return; 1267 1268 mutex_lock(&klp_mutex); 1269 /* 1270 * Each module has to know that klp_module_going() 1271 * has been called. We never know what module will 1272 * get patched by a new patch. 1273 */ 1274 mod->klp_alive = false; 1275 1276 klp_cleanup_module_patches_limited(mod, NULL); 1277 1278 mutex_unlock(&klp_mutex); 1279 } 1280 1281 static int __init klp_init(void) 1282 { 1283 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1284 if (!klp_root_kobj) 1285 return -ENOMEM; 1286 1287 return 0; 1288 } 1289 1290 module_init(klp_init); 1291