1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <asm/cacheflush.h> 23 #include "core.h" 24 #include "patch.h" 25 #include "state.h" 26 #include "transition.h" 27 28 /* 29 * klp_mutex is a coarse lock which serializes access to klp data. All 30 * accesses to klp-related variables and structures must have mutex protection, 31 * except within the following functions which carefully avoid the need for it: 32 * 33 * - klp_ftrace_handler() 34 * - klp_update_patch_state() 35 */ 36 DEFINE_MUTEX(klp_mutex); 37 38 /* 39 * Actively used patches: enabled or in transition. Note that replaced 40 * or disabled patches are not listed even though the related kernel 41 * module still can be loaded. 42 */ 43 LIST_HEAD(klp_patches); 44 45 static struct kobject *klp_root_kobj; 46 47 static bool klp_is_module(struct klp_object *obj) 48 { 49 return obj->name; 50 } 51 52 /* sets obj->mod if object is not vmlinux and module is found */ 53 static void klp_find_object_module(struct klp_object *obj) 54 { 55 struct module *mod; 56 57 if (!klp_is_module(obj)) 58 return; 59 60 mutex_lock(&module_mutex); 61 /* 62 * We do not want to block removal of patched modules and therefore 63 * we do not take a reference here. The patches are removed by 64 * klp_module_going() instead. 65 */ 66 mod = find_module(obj->name); 67 /* 68 * Do not mess work of klp_module_coming() and klp_module_going(). 69 * Note that the patch might still be needed before klp_module_going() 70 * is called. Module functions can be called even in the GOING state 71 * until mod->exit() finishes. This is especially important for 72 * patches that modify semantic of the functions. 73 */ 74 if (mod && mod->klp_alive) 75 obj->mod = mod; 76 77 mutex_unlock(&module_mutex); 78 } 79 80 static bool klp_initialized(void) 81 { 82 return !!klp_root_kobj; 83 } 84 85 static struct klp_func *klp_find_func(struct klp_object *obj, 86 struct klp_func *old_func) 87 { 88 struct klp_func *func; 89 90 klp_for_each_func(obj, func) { 91 if ((strcmp(old_func->old_name, func->old_name) == 0) && 92 (old_func->old_sympos == func->old_sympos)) { 93 return func; 94 } 95 } 96 97 return NULL; 98 } 99 100 static struct klp_object *klp_find_object(struct klp_patch *patch, 101 struct klp_object *old_obj) 102 { 103 struct klp_object *obj; 104 105 klp_for_each_object(patch, obj) { 106 if (klp_is_module(old_obj)) { 107 if (klp_is_module(obj) && 108 strcmp(old_obj->name, obj->name) == 0) { 109 return obj; 110 } 111 } else if (!klp_is_module(obj)) { 112 return obj; 113 } 114 } 115 116 return NULL; 117 } 118 119 struct klp_find_arg { 120 const char *objname; 121 const char *name; 122 unsigned long addr; 123 unsigned long count; 124 unsigned long pos; 125 }; 126 127 static int klp_find_callback(void *data, const char *name, 128 struct module *mod, unsigned long addr) 129 { 130 struct klp_find_arg *args = data; 131 132 if ((mod && !args->objname) || (!mod && args->objname)) 133 return 0; 134 135 if (strcmp(args->name, name)) 136 return 0; 137 138 if (args->objname && strcmp(args->objname, mod->name)) 139 return 0; 140 141 args->addr = addr; 142 args->count++; 143 144 /* 145 * Finish the search when the symbol is found for the desired position 146 * or the position is not defined for a non-unique symbol. 147 */ 148 if ((args->pos && (args->count == args->pos)) || 149 (!args->pos && (args->count > 1))) 150 return 1; 151 152 return 0; 153 } 154 155 static int klp_find_object_symbol(const char *objname, const char *name, 156 unsigned long sympos, unsigned long *addr) 157 { 158 struct klp_find_arg args = { 159 .objname = objname, 160 .name = name, 161 .addr = 0, 162 .count = 0, 163 .pos = sympos, 164 }; 165 166 mutex_lock(&module_mutex); 167 if (objname) 168 module_kallsyms_on_each_symbol(klp_find_callback, &args); 169 else 170 kallsyms_on_each_symbol(klp_find_callback, &args); 171 mutex_unlock(&module_mutex); 172 173 /* 174 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 175 * otherwise ensure the symbol position count matches sympos. 176 */ 177 if (args.addr == 0) 178 pr_err("symbol '%s' not found in symbol table\n", name); 179 else if (args.count > 1 && sympos == 0) { 180 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 181 name, objname); 182 } else if (sympos != args.count && sympos > 0) { 183 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 184 sympos, name, objname ? objname : "vmlinux"); 185 } else { 186 *addr = args.addr; 187 return 0; 188 } 189 190 *addr = 0; 191 return -EINVAL; 192 } 193 194 static int klp_resolve_symbols(Elf64_Shdr *sechdrs, const char *strtab, 195 unsigned int symndx, Elf_Shdr *relasec, 196 const char *sec_objname) 197 { 198 int i, cnt, ret; 199 char sym_objname[MODULE_NAME_LEN]; 200 char sym_name[KSYM_NAME_LEN]; 201 Elf_Rela *relas; 202 Elf_Sym *sym; 203 unsigned long sympos, addr; 204 bool sym_vmlinux; 205 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 206 207 /* 208 * Since the field widths for sym_objname and sym_name in the sscanf() 209 * call are hard-coded and correspond to MODULE_NAME_LEN and 210 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 211 * and KSYM_NAME_LEN have the values we expect them to have. 212 * 213 * Because the value of MODULE_NAME_LEN can differ among architectures, 214 * we use the smallest/strictest upper bound possible (56, based on 215 * the current definition of MODULE_NAME_LEN) to prevent overflows. 216 */ 217 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 128); 218 219 relas = (Elf_Rela *) relasec->sh_addr; 220 /* For each rela in this klp relocation section */ 221 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 222 sym = (Elf64_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 223 if (sym->st_shndx != SHN_LIVEPATCH) { 224 pr_err("symbol %s is not marked as a livepatch symbol\n", 225 strtab + sym->st_name); 226 return -EINVAL; 227 } 228 229 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 230 cnt = sscanf(strtab + sym->st_name, 231 ".klp.sym.%55[^.].%127[^,],%lu", 232 sym_objname, sym_name, &sympos); 233 if (cnt != 3) { 234 pr_err("symbol %s has an incorrectly formatted name\n", 235 strtab + sym->st_name); 236 return -EINVAL; 237 } 238 239 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 240 241 /* 242 * Prevent module-specific KLP rela sections from referencing 243 * vmlinux symbols. This helps prevent ordering issues with 244 * module special section initializations. Presumably such 245 * symbols are exported and normal relas can be used instead. 246 */ 247 if (!sec_vmlinux && sym_vmlinux) { 248 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section", 249 sym_name); 250 return -EINVAL; 251 } 252 253 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 254 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 255 sym_name, sympos, &addr); 256 if (ret) 257 return ret; 258 259 sym->st_value = addr; 260 } 261 262 return 0; 263 } 264 265 /* 266 * At a high-level, there are two types of klp relocation sections: those which 267 * reference symbols which live in vmlinux; and those which reference symbols 268 * which live in other modules. This function is called for both types: 269 * 270 * 1) When a klp module itself loads, the module code calls this function to 271 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 272 * These relocations are written to the klp module text to allow the patched 273 * code/data to reference unexported vmlinux symbols. They're written as 274 * early as possible to ensure that other module init code (.e.g., 275 * jump_label_apply_nops) can access any unexported vmlinux symbols which 276 * might be referenced by the klp module's special sections. 277 * 278 * 2) When a to-be-patched module loads -- or is already loaded when a 279 * corresponding klp module loads -- klp code calls this function to write 280 * module-specific klp relocations (.klp.rela.{module}.* sections). These 281 * are written to the klp module text to allow the patched code/data to 282 * reference symbols which live in the to-be-patched module or one of its 283 * module dependencies. Exported symbols are supported, in addition to 284 * unexported symbols, in order to enable late module patching, which allows 285 * the to-be-patched module to be loaded and patched sometime *after* the 286 * klp module is loaded. 287 */ 288 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 289 const char *shstrtab, const char *strtab, 290 unsigned int symndx, unsigned int secndx, 291 const char *objname) 292 { 293 int cnt, ret; 294 char sec_objname[MODULE_NAME_LEN]; 295 Elf_Shdr *sec = sechdrs + secndx; 296 297 /* 298 * Format: .klp.rela.sec_objname.section_name 299 * See comment in klp_resolve_symbols() for an explanation 300 * of the selected field width value. 301 */ 302 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 303 sec_objname); 304 if (cnt != 1) { 305 pr_err("section %s has an incorrectly formatted name\n", 306 shstrtab + sec->sh_name); 307 return -EINVAL; 308 } 309 310 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 311 return 0; 312 313 ret = klp_resolve_symbols(sechdrs, strtab, symndx, sec, sec_objname); 314 if (ret) 315 return ret; 316 317 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 318 } 319 320 /* 321 * Sysfs Interface 322 * 323 * /sys/kernel/livepatch 324 * /sys/kernel/livepatch/<patch> 325 * /sys/kernel/livepatch/<patch>/enabled 326 * /sys/kernel/livepatch/<patch>/transition 327 * /sys/kernel/livepatch/<patch>/force 328 * /sys/kernel/livepatch/<patch>/<object> 329 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 330 */ 331 static int __klp_disable_patch(struct klp_patch *patch); 332 333 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 334 const char *buf, size_t count) 335 { 336 struct klp_patch *patch; 337 int ret; 338 bool enabled; 339 340 ret = kstrtobool(buf, &enabled); 341 if (ret) 342 return ret; 343 344 patch = container_of(kobj, struct klp_patch, kobj); 345 346 mutex_lock(&klp_mutex); 347 348 if (patch->enabled == enabled) { 349 /* already in requested state */ 350 ret = -EINVAL; 351 goto out; 352 } 353 354 /* 355 * Allow to reverse a pending transition in both ways. It might be 356 * necessary to complete the transition without forcing and breaking 357 * the system integrity. 358 * 359 * Do not allow to re-enable a disabled patch. 360 */ 361 if (patch == klp_transition_patch) 362 klp_reverse_transition(); 363 else if (!enabled) 364 ret = __klp_disable_patch(patch); 365 else 366 ret = -EINVAL; 367 368 out: 369 mutex_unlock(&klp_mutex); 370 371 if (ret) 372 return ret; 373 return count; 374 } 375 376 static ssize_t enabled_show(struct kobject *kobj, 377 struct kobj_attribute *attr, char *buf) 378 { 379 struct klp_patch *patch; 380 381 patch = container_of(kobj, struct klp_patch, kobj); 382 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 383 } 384 385 static ssize_t transition_show(struct kobject *kobj, 386 struct kobj_attribute *attr, char *buf) 387 { 388 struct klp_patch *patch; 389 390 patch = container_of(kobj, struct klp_patch, kobj); 391 return snprintf(buf, PAGE_SIZE-1, "%d\n", 392 patch == klp_transition_patch); 393 } 394 395 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 396 const char *buf, size_t count) 397 { 398 struct klp_patch *patch; 399 int ret; 400 bool val; 401 402 ret = kstrtobool(buf, &val); 403 if (ret) 404 return ret; 405 406 if (!val) 407 return count; 408 409 mutex_lock(&klp_mutex); 410 411 patch = container_of(kobj, struct klp_patch, kobj); 412 if (patch != klp_transition_patch) { 413 mutex_unlock(&klp_mutex); 414 return -EINVAL; 415 } 416 417 klp_force_transition(); 418 419 mutex_unlock(&klp_mutex); 420 421 return count; 422 } 423 424 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 425 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 426 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 427 static struct attribute *klp_patch_attrs[] = { 428 &enabled_kobj_attr.attr, 429 &transition_kobj_attr.attr, 430 &force_kobj_attr.attr, 431 NULL 432 }; 433 ATTRIBUTE_GROUPS(klp_patch); 434 435 static void klp_free_object_dynamic(struct klp_object *obj) 436 { 437 kfree(obj->name); 438 kfree(obj); 439 } 440 441 static void klp_init_func_early(struct klp_object *obj, 442 struct klp_func *func); 443 static void klp_init_object_early(struct klp_patch *patch, 444 struct klp_object *obj); 445 446 static struct klp_object *klp_alloc_object_dynamic(const char *name, 447 struct klp_patch *patch) 448 { 449 struct klp_object *obj; 450 451 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 452 if (!obj) 453 return NULL; 454 455 if (name) { 456 obj->name = kstrdup(name, GFP_KERNEL); 457 if (!obj->name) { 458 kfree(obj); 459 return NULL; 460 } 461 } 462 463 klp_init_object_early(patch, obj); 464 obj->dynamic = true; 465 466 return obj; 467 } 468 469 static void klp_free_func_nop(struct klp_func *func) 470 { 471 kfree(func->old_name); 472 kfree(func); 473 } 474 475 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 476 struct klp_object *obj) 477 { 478 struct klp_func *func; 479 480 func = kzalloc(sizeof(*func), GFP_KERNEL); 481 if (!func) 482 return NULL; 483 484 if (old_func->old_name) { 485 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 486 if (!func->old_name) { 487 kfree(func); 488 return NULL; 489 } 490 } 491 492 klp_init_func_early(obj, func); 493 /* 494 * func->new_func is same as func->old_func. These addresses are 495 * set when the object is loaded, see klp_init_object_loaded(). 496 */ 497 func->old_sympos = old_func->old_sympos; 498 func->nop = true; 499 500 return func; 501 } 502 503 static int klp_add_object_nops(struct klp_patch *patch, 504 struct klp_object *old_obj) 505 { 506 struct klp_object *obj; 507 struct klp_func *func, *old_func; 508 509 obj = klp_find_object(patch, old_obj); 510 511 if (!obj) { 512 obj = klp_alloc_object_dynamic(old_obj->name, patch); 513 if (!obj) 514 return -ENOMEM; 515 } 516 517 klp_for_each_func(old_obj, old_func) { 518 func = klp_find_func(obj, old_func); 519 if (func) 520 continue; 521 522 func = klp_alloc_func_nop(old_func, obj); 523 if (!func) 524 return -ENOMEM; 525 } 526 527 return 0; 528 } 529 530 /* 531 * Add 'nop' functions which simply return to the caller to run 532 * the original function. The 'nop' functions are added to a 533 * patch to facilitate a 'replace' mode. 534 */ 535 static int klp_add_nops(struct klp_patch *patch) 536 { 537 struct klp_patch *old_patch; 538 struct klp_object *old_obj; 539 540 klp_for_each_patch(old_patch) { 541 klp_for_each_object(old_patch, old_obj) { 542 int err; 543 544 err = klp_add_object_nops(patch, old_obj); 545 if (err) 546 return err; 547 } 548 } 549 550 return 0; 551 } 552 553 static void klp_kobj_release_patch(struct kobject *kobj) 554 { 555 struct klp_patch *patch; 556 557 patch = container_of(kobj, struct klp_patch, kobj); 558 complete(&patch->finish); 559 } 560 561 static struct kobj_type klp_ktype_patch = { 562 .release = klp_kobj_release_patch, 563 .sysfs_ops = &kobj_sysfs_ops, 564 .default_groups = klp_patch_groups, 565 }; 566 567 static void klp_kobj_release_object(struct kobject *kobj) 568 { 569 struct klp_object *obj; 570 571 obj = container_of(kobj, struct klp_object, kobj); 572 573 if (obj->dynamic) 574 klp_free_object_dynamic(obj); 575 } 576 577 static struct kobj_type klp_ktype_object = { 578 .release = klp_kobj_release_object, 579 .sysfs_ops = &kobj_sysfs_ops, 580 }; 581 582 static void klp_kobj_release_func(struct kobject *kobj) 583 { 584 struct klp_func *func; 585 586 func = container_of(kobj, struct klp_func, kobj); 587 588 if (func->nop) 589 klp_free_func_nop(func); 590 } 591 592 static struct kobj_type klp_ktype_func = { 593 .release = klp_kobj_release_func, 594 .sysfs_ops = &kobj_sysfs_ops, 595 }; 596 597 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 598 { 599 struct klp_func *func, *tmp_func; 600 601 klp_for_each_func_safe(obj, func, tmp_func) { 602 if (nops_only && !func->nop) 603 continue; 604 605 list_del(&func->node); 606 kobject_put(&func->kobj); 607 } 608 } 609 610 /* Clean up when a patched object is unloaded */ 611 static void klp_free_object_loaded(struct klp_object *obj) 612 { 613 struct klp_func *func; 614 615 obj->mod = NULL; 616 617 klp_for_each_func(obj, func) { 618 func->old_func = NULL; 619 620 if (func->nop) 621 func->new_func = NULL; 622 } 623 } 624 625 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 626 { 627 struct klp_object *obj, *tmp_obj; 628 629 klp_for_each_object_safe(patch, obj, tmp_obj) { 630 __klp_free_funcs(obj, nops_only); 631 632 if (nops_only && !obj->dynamic) 633 continue; 634 635 list_del(&obj->node); 636 kobject_put(&obj->kobj); 637 } 638 } 639 640 static void klp_free_objects(struct klp_patch *patch) 641 { 642 __klp_free_objects(patch, false); 643 } 644 645 static void klp_free_objects_dynamic(struct klp_patch *patch) 646 { 647 __klp_free_objects(patch, true); 648 } 649 650 /* 651 * This function implements the free operations that can be called safely 652 * under klp_mutex. 653 * 654 * The operation must be completed by calling klp_free_patch_finish() 655 * outside klp_mutex. 656 */ 657 static void klp_free_patch_start(struct klp_patch *patch) 658 { 659 if (!list_empty(&patch->list)) 660 list_del(&patch->list); 661 662 klp_free_objects(patch); 663 } 664 665 /* 666 * This function implements the free part that must be called outside 667 * klp_mutex. 668 * 669 * It must be called after klp_free_patch_start(). And it has to be 670 * the last function accessing the livepatch structures when the patch 671 * gets disabled. 672 */ 673 static void klp_free_patch_finish(struct klp_patch *patch) 674 { 675 /* 676 * Avoid deadlock with enabled_store() sysfs callback by 677 * calling this outside klp_mutex. It is safe because 678 * this is called when the patch gets disabled and it 679 * cannot get enabled again. 680 */ 681 kobject_put(&patch->kobj); 682 wait_for_completion(&patch->finish); 683 684 /* Put the module after the last access to struct klp_patch. */ 685 if (!patch->forced) 686 module_put(patch->mod); 687 } 688 689 /* 690 * The livepatch might be freed from sysfs interface created by the patch. 691 * This work allows to wait until the interface is destroyed in a separate 692 * context. 693 */ 694 static void klp_free_patch_work_fn(struct work_struct *work) 695 { 696 struct klp_patch *patch = 697 container_of(work, struct klp_patch, free_work); 698 699 klp_free_patch_finish(patch); 700 } 701 702 void klp_free_patch_async(struct klp_patch *patch) 703 { 704 klp_free_patch_start(patch); 705 schedule_work(&patch->free_work); 706 } 707 708 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 709 { 710 struct klp_patch *old_patch, *tmp_patch; 711 712 klp_for_each_patch_safe(old_patch, tmp_patch) { 713 if (old_patch == new_patch) 714 return; 715 klp_free_patch_async(old_patch); 716 } 717 } 718 719 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 720 { 721 if (!func->old_name) 722 return -EINVAL; 723 724 /* 725 * NOPs get the address later. The patched module must be loaded, 726 * see klp_init_object_loaded(). 727 */ 728 if (!func->new_func && !func->nop) 729 return -EINVAL; 730 731 if (strlen(func->old_name) >= KSYM_NAME_LEN) 732 return -EINVAL; 733 734 INIT_LIST_HEAD(&func->stack_node); 735 func->patched = false; 736 func->transition = false; 737 738 /* The format for the sysfs directory is <function,sympos> where sympos 739 * is the nth occurrence of this symbol in kallsyms for the patched 740 * object. If the user selects 0 for old_sympos, then 1 will be used 741 * since a unique symbol will be the first occurrence. 742 */ 743 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 744 func->old_name, 745 func->old_sympos ? func->old_sympos : 1); 746 } 747 748 static int klp_apply_object_relocs(struct klp_patch *patch, 749 struct klp_object *obj) 750 { 751 int i, ret; 752 struct klp_modinfo *info = patch->mod->klp_info; 753 754 for (i = 1; i < info->hdr.e_shnum; i++) { 755 Elf_Shdr *sec = info->sechdrs + i; 756 757 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 758 continue; 759 760 ret = klp_apply_section_relocs(patch->mod, info->sechdrs, 761 info->secstrings, 762 patch->mod->core_kallsyms.strtab, 763 info->symndx, i, obj->name); 764 if (ret) 765 return ret; 766 } 767 768 return 0; 769 } 770 771 /* parts of the initialization that is done only when the object is loaded */ 772 static int klp_init_object_loaded(struct klp_patch *patch, 773 struct klp_object *obj) 774 { 775 struct klp_func *func; 776 int ret; 777 778 if (klp_is_module(obj)) { 779 /* 780 * Only write module-specific relocations here 781 * (.klp.rela.{module}.*). vmlinux-specific relocations were 782 * written earlier during the initialization of the klp module 783 * itself. 784 */ 785 ret = klp_apply_object_relocs(patch, obj); 786 if (ret) 787 return ret; 788 } 789 790 klp_for_each_func(obj, func) { 791 ret = klp_find_object_symbol(obj->name, func->old_name, 792 func->old_sympos, 793 (unsigned long *)&func->old_func); 794 if (ret) 795 return ret; 796 797 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 798 &func->old_size, NULL); 799 if (!ret) { 800 pr_err("kallsyms size lookup failed for '%s'\n", 801 func->old_name); 802 return -ENOENT; 803 } 804 805 if (func->nop) 806 func->new_func = func->old_func; 807 808 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 809 &func->new_size, NULL); 810 if (!ret) { 811 pr_err("kallsyms size lookup failed for '%s' replacement\n", 812 func->old_name); 813 return -ENOENT; 814 } 815 } 816 817 return 0; 818 } 819 820 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 821 { 822 struct klp_func *func; 823 int ret; 824 const char *name; 825 826 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 827 return -EINVAL; 828 829 obj->patched = false; 830 obj->mod = NULL; 831 832 klp_find_object_module(obj); 833 834 name = klp_is_module(obj) ? obj->name : "vmlinux"; 835 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 836 if (ret) 837 return ret; 838 839 klp_for_each_func(obj, func) { 840 ret = klp_init_func(obj, func); 841 if (ret) 842 return ret; 843 } 844 845 if (klp_is_object_loaded(obj)) 846 ret = klp_init_object_loaded(patch, obj); 847 848 return ret; 849 } 850 851 static void klp_init_func_early(struct klp_object *obj, 852 struct klp_func *func) 853 { 854 kobject_init(&func->kobj, &klp_ktype_func); 855 list_add_tail(&func->node, &obj->func_list); 856 } 857 858 static void klp_init_object_early(struct klp_patch *patch, 859 struct klp_object *obj) 860 { 861 INIT_LIST_HEAD(&obj->func_list); 862 kobject_init(&obj->kobj, &klp_ktype_object); 863 list_add_tail(&obj->node, &patch->obj_list); 864 } 865 866 static int klp_init_patch_early(struct klp_patch *patch) 867 { 868 struct klp_object *obj; 869 struct klp_func *func; 870 871 if (!patch->objs) 872 return -EINVAL; 873 874 INIT_LIST_HEAD(&patch->list); 875 INIT_LIST_HEAD(&patch->obj_list); 876 kobject_init(&patch->kobj, &klp_ktype_patch); 877 patch->enabled = false; 878 patch->forced = false; 879 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 880 init_completion(&patch->finish); 881 882 klp_for_each_object_static(patch, obj) { 883 if (!obj->funcs) 884 return -EINVAL; 885 886 klp_init_object_early(patch, obj); 887 888 klp_for_each_func_static(obj, func) { 889 klp_init_func_early(obj, func); 890 } 891 } 892 893 if (!try_module_get(patch->mod)) 894 return -ENODEV; 895 896 return 0; 897 } 898 899 static int klp_init_patch(struct klp_patch *patch) 900 { 901 struct klp_object *obj; 902 int ret; 903 904 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 905 if (ret) 906 return ret; 907 908 if (patch->replace) { 909 ret = klp_add_nops(patch); 910 if (ret) 911 return ret; 912 } 913 914 klp_for_each_object(patch, obj) { 915 ret = klp_init_object(patch, obj); 916 if (ret) 917 return ret; 918 } 919 920 list_add_tail(&patch->list, &klp_patches); 921 922 return 0; 923 } 924 925 static int __klp_disable_patch(struct klp_patch *patch) 926 { 927 struct klp_object *obj; 928 929 if (WARN_ON(!patch->enabled)) 930 return -EINVAL; 931 932 if (klp_transition_patch) 933 return -EBUSY; 934 935 klp_init_transition(patch, KLP_UNPATCHED); 936 937 klp_for_each_object(patch, obj) 938 if (obj->patched) 939 klp_pre_unpatch_callback(obj); 940 941 /* 942 * Enforce the order of the func->transition writes in 943 * klp_init_transition() and the TIF_PATCH_PENDING writes in 944 * klp_start_transition(). In the rare case where klp_ftrace_handler() 945 * is called shortly after klp_update_patch_state() switches the task, 946 * this ensures the handler sees that func->transition is set. 947 */ 948 smp_wmb(); 949 950 klp_start_transition(); 951 patch->enabled = false; 952 klp_try_complete_transition(); 953 954 return 0; 955 } 956 957 static int __klp_enable_patch(struct klp_patch *patch) 958 { 959 struct klp_object *obj; 960 int ret; 961 962 if (klp_transition_patch) 963 return -EBUSY; 964 965 if (WARN_ON(patch->enabled)) 966 return -EINVAL; 967 968 pr_notice("enabling patch '%s'\n", patch->mod->name); 969 970 klp_init_transition(patch, KLP_PATCHED); 971 972 /* 973 * Enforce the order of the func->transition writes in 974 * klp_init_transition() and the ops->func_stack writes in 975 * klp_patch_object(), so that klp_ftrace_handler() will see the 976 * func->transition updates before the handler is registered and the 977 * new funcs become visible to the handler. 978 */ 979 smp_wmb(); 980 981 klp_for_each_object(patch, obj) { 982 if (!klp_is_object_loaded(obj)) 983 continue; 984 985 ret = klp_pre_patch_callback(obj); 986 if (ret) { 987 pr_warn("pre-patch callback failed for object '%s'\n", 988 klp_is_module(obj) ? obj->name : "vmlinux"); 989 goto err; 990 } 991 992 ret = klp_patch_object(obj); 993 if (ret) { 994 pr_warn("failed to patch object '%s'\n", 995 klp_is_module(obj) ? obj->name : "vmlinux"); 996 goto err; 997 } 998 } 999 1000 klp_start_transition(); 1001 patch->enabled = true; 1002 klp_try_complete_transition(); 1003 1004 return 0; 1005 err: 1006 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1007 1008 klp_cancel_transition(); 1009 return ret; 1010 } 1011 1012 /** 1013 * klp_enable_patch() - enable the livepatch 1014 * @patch: patch to be enabled 1015 * 1016 * Initializes the data structure associated with the patch, creates the sysfs 1017 * interface, performs the needed symbol lookups and code relocations, 1018 * registers the patched functions with ftrace. 1019 * 1020 * This function is supposed to be called from the livepatch module_init() 1021 * callback. 1022 * 1023 * Return: 0 on success, otherwise error 1024 */ 1025 int klp_enable_patch(struct klp_patch *patch) 1026 { 1027 int ret; 1028 1029 if (!patch || !patch->mod) 1030 return -EINVAL; 1031 1032 if (!is_livepatch_module(patch->mod)) { 1033 pr_err("module %s is not marked as a livepatch module\n", 1034 patch->mod->name); 1035 return -EINVAL; 1036 } 1037 1038 if (!klp_initialized()) 1039 return -ENODEV; 1040 1041 if (!klp_have_reliable_stack()) { 1042 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1043 pr_warn("The livepatch transition may never complete.\n"); 1044 } 1045 1046 mutex_lock(&klp_mutex); 1047 1048 if (!klp_is_patch_compatible(patch)) { 1049 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1050 patch->mod->name); 1051 mutex_unlock(&klp_mutex); 1052 return -EINVAL; 1053 } 1054 1055 ret = klp_init_patch_early(patch); 1056 if (ret) { 1057 mutex_unlock(&klp_mutex); 1058 return ret; 1059 } 1060 1061 ret = klp_init_patch(patch); 1062 if (ret) 1063 goto err; 1064 1065 ret = __klp_enable_patch(patch); 1066 if (ret) 1067 goto err; 1068 1069 mutex_unlock(&klp_mutex); 1070 1071 return 0; 1072 1073 err: 1074 klp_free_patch_start(patch); 1075 1076 mutex_unlock(&klp_mutex); 1077 1078 klp_free_patch_finish(patch); 1079 1080 return ret; 1081 } 1082 EXPORT_SYMBOL_GPL(klp_enable_patch); 1083 1084 /* 1085 * This function unpatches objects from the replaced livepatches. 1086 * 1087 * We could be pretty aggressive here. It is called in the situation where 1088 * these structures are no longer accessed from the ftrace handler. 1089 * All functions are redirected by the klp_transition_patch. They 1090 * use either a new code or they are in the original code because 1091 * of the special nop function patches. 1092 * 1093 * The only exception is when the transition was forced. In this case, 1094 * klp_ftrace_handler() might still see the replaced patch on the stack. 1095 * Fortunately, it is carefully designed to work with removed functions 1096 * thanks to RCU. We only have to keep the patches on the system. Also 1097 * this is handled transparently by patch->module_put. 1098 */ 1099 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1100 { 1101 struct klp_patch *old_patch; 1102 1103 klp_for_each_patch(old_patch) { 1104 if (old_patch == new_patch) 1105 return; 1106 1107 old_patch->enabled = false; 1108 klp_unpatch_objects(old_patch); 1109 } 1110 } 1111 1112 /* 1113 * This function removes the dynamically allocated 'nop' functions. 1114 * 1115 * We could be pretty aggressive. NOPs do not change the existing 1116 * behavior except for adding unnecessary delay by the ftrace handler. 1117 * 1118 * It is safe even when the transition was forced. The ftrace handler 1119 * will see a valid ops->func_stack entry thanks to RCU. 1120 * 1121 * We could even free the NOPs structures. They must be the last entry 1122 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1123 * It does the same as klp_synchronize_transition() to make sure that 1124 * nobody is inside the ftrace handler once the operation finishes. 1125 * 1126 * IMPORTANT: It must be called right after removing the replaced patches! 1127 */ 1128 void klp_discard_nops(struct klp_patch *new_patch) 1129 { 1130 klp_unpatch_objects_dynamic(klp_transition_patch); 1131 klp_free_objects_dynamic(klp_transition_patch); 1132 } 1133 1134 /* 1135 * Remove parts of patches that touch a given kernel module. The list of 1136 * patches processed might be limited. When limit is NULL, all patches 1137 * will be handled. 1138 */ 1139 static void klp_cleanup_module_patches_limited(struct module *mod, 1140 struct klp_patch *limit) 1141 { 1142 struct klp_patch *patch; 1143 struct klp_object *obj; 1144 1145 klp_for_each_patch(patch) { 1146 if (patch == limit) 1147 break; 1148 1149 klp_for_each_object(patch, obj) { 1150 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1151 continue; 1152 1153 if (patch != klp_transition_patch) 1154 klp_pre_unpatch_callback(obj); 1155 1156 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1157 patch->mod->name, obj->mod->name); 1158 klp_unpatch_object(obj); 1159 1160 klp_post_unpatch_callback(obj); 1161 1162 klp_free_object_loaded(obj); 1163 break; 1164 } 1165 } 1166 } 1167 1168 int klp_module_coming(struct module *mod) 1169 { 1170 int ret; 1171 struct klp_patch *patch; 1172 struct klp_object *obj; 1173 1174 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1175 return -EINVAL; 1176 1177 if (!strcmp(mod->name, "vmlinux")) { 1178 pr_err("vmlinux.ko: invalid module name"); 1179 return -EINVAL; 1180 } 1181 1182 mutex_lock(&klp_mutex); 1183 /* 1184 * Each module has to know that klp_module_coming() 1185 * has been called. We never know what module will 1186 * get patched by a new patch. 1187 */ 1188 mod->klp_alive = true; 1189 1190 klp_for_each_patch(patch) { 1191 klp_for_each_object(patch, obj) { 1192 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1193 continue; 1194 1195 obj->mod = mod; 1196 1197 ret = klp_init_object_loaded(patch, obj); 1198 if (ret) { 1199 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1200 patch->mod->name, obj->mod->name, ret); 1201 goto err; 1202 } 1203 1204 pr_notice("applying patch '%s' to loading module '%s'\n", 1205 patch->mod->name, obj->mod->name); 1206 1207 ret = klp_pre_patch_callback(obj); 1208 if (ret) { 1209 pr_warn("pre-patch callback failed for object '%s'\n", 1210 obj->name); 1211 goto err; 1212 } 1213 1214 ret = klp_patch_object(obj); 1215 if (ret) { 1216 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1217 patch->mod->name, obj->mod->name, ret); 1218 1219 klp_post_unpatch_callback(obj); 1220 goto err; 1221 } 1222 1223 if (patch != klp_transition_patch) 1224 klp_post_patch_callback(obj); 1225 1226 break; 1227 } 1228 } 1229 1230 mutex_unlock(&klp_mutex); 1231 1232 return 0; 1233 1234 err: 1235 /* 1236 * If a patch is unsuccessfully applied, return 1237 * error to the module loader. 1238 */ 1239 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1240 patch->mod->name, obj->mod->name, obj->mod->name); 1241 mod->klp_alive = false; 1242 obj->mod = NULL; 1243 klp_cleanup_module_patches_limited(mod, patch); 1244 mutex_unlock(&klp_mutex); 1245 1246 return ret; 1247 } 1248 1249 void klp_module_going(struct module *mod) 1250 { 1251 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1252 mod->state != MODULE_STATE_COMING)) 1253 return; 1254 1255 mutex_lock(&klp_mutex); 1256 /* 1257 * Each module has to know that klp_module_going() 1258 * has been called. We never know what module will 1259 * get patched by a new patch. 1260 */ 1261 mod->klp_alive = false; 1262 1263 klp_cleanup_module_patches_limited(mod, NULL); 1264 1265 mutex_unlock(&klp_mutex); 1266 } 1267 1268 static int __init klp_init(void) 1269 { 1270 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1271 if (!klp_root_kobj) 1272 return -ENOMEM; 1273 1274 return 0; 1275 } 1276 1277 module_init(klp_init); 1278