1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * core.c - Kernel Live Patching Core 4 * 5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com> 6 * Copyright (C) 2014 SUSE 7 */ 8 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/module.h> 12 #include <linux/kernel.h> 13 #include <linux/mutex.h> 14 #include <linux/slab.h> 15 #include <linux/list.h> 16 #include <linux/kallsyms.h> 17 #include <linux/livepatch.h> 18 #include <linux/elf.h> 19 #include <linux/moduleloader.h> 20 #include <linux/completion.h> 21 #include <linux/memory.h> 22 #include <linux/rcupdate.h> 23 #include <asm/cacheflush.h> 24 #include "core.h" 25 #include "patch.h" 26 #include "state.h" 27 #include "transition.h" 28 29 /* 30 * klp_mutex is a coarse lock which serializes access to klp data. All 31 * accesses to klp-related variables and structures must have mutex protection, 32 * except within the following functions which carefully avoid the need for it: 33 * 34 * - klp_ftrace_handler() 35 * - klp_update_patch_state() 36 */ 37 DEFINE_MUTEX(klp_mutex); 38 39 /* 40 * Actively used patches: enabled or in transition. Note that replaced 41 * or disabled patches are not listed even though the related kernel 42 * module still can be loaded. 43 */ 44 LIST_HEAD(klp_patches); 45 46 static struct kobject *klp_root_kobj; 47 48 static bool klp_is_module(struct klp_object *obj) 49 { 50 return obj->name; 51 } 52 53 /* sets obj->mod if object is not vmlinux and module is found */ 54 static void klp_find_object_module(struct klp_object *obj) 55 { 56 struct module *mod; 57 58 if (!klp_is_module(obj)) 59 return; 60 61 rcu_read_lock_sched(); 62 /* 63 * We do not want to block removal of patched modules and therefore 64 * we do not take a reference here. The patches are removed by 65 * klp_module_going() instead. 66 */ 67 mod = find_module(obj->name); 68 /* 69 * Do not mess work of klp_module_coming() and klp_module_going(). 70 * Note that the patch might still be needed before klp_module_going() 71 * is called. Module functions can be called even in the GOING state 72 * until mod->exit() finishes. This is especially important for 73 * patches that modify semantic of the functions. 74 */ 75 if (mod && mod->klp_alive) 76 obj->mod = mod; 77 78 rcu_read_unlock_sched(); 79 } 80 81 static bool klp_initialized(void) 82 { 83 return !!klp_root_kobj; 84 } 85 86 static struct klp_func *klp_find_func(struct klp_object *obj, 87 struct klp_func *old_func) 88 { 89 struct klp_func *func; 90 91 klp_for_each_func(obj, func) { 92 if ((strcmp(old_func->old_name, func->old_name) == 0) && 93 (old_func->old_sympos == func->old_sympos)) { 94 return func; 95 } 96 } 97 98 return NULL; 99 } 100 101 static struct klp_object *klp_find_object(struct klp_patch *patch, 102 struct klp_object *old_obj) 103 { 104 struct klp_object *obj; 105 106 klp_for_each_object(patch, obj) { 107 if (klp_is_module(old_obj)) { 108 if (klp_is_module(obj) && 109 strcmp(old_obj->name, obj->name) == 0) { 110 return obj; 111 } 112 } else if (!klp_is_module(obj)) { 113 return obj; 114 } 115 } 116 117 return NULL; 118 } 119 120 struct klp_find_arg { 121 const char *name; 122 unsigned long addr; 123 unsigned long count; 124 unsigned long pos; 125 }; 126 127 static int klp_match_callback(void *data, unsigned long addr) 128 { 129 struct klp_find_arg *args = data; 130 131 args->addr = addr; 132 args->count++; 133 134 /* 135 * Finish the search when the symbol is found for the desired position 136 * or the position is not defined for a non-unique symbol. 137 */ 138 if ((args->pos && (args->count == args->pos)) || 139 (!args->pos && (args->count > 1))) 140 return 1; 141 142 return 0; 143 } 144 145 static int klp_find_callback(void *data, const char *name, unsigned long addr) 146 { 147 struct klp_find_arg *args = data; 148 149 if (strcmp(args->name, name)) 150 return 0; 151 152 return klp_match_callback(data, addr); 153 } 154 155 static int klp_find_object_symbol(const char *objname, const char *name, 156 unsigned long sympos, unsigned long *addr) 157 { 158 struct klp_find_arg args = { 159 .name = name, 160 .addr = 0, 161 .count = 0, 162 .pos = sympos, 163 }; 164 165 if (objname) 166 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args); 167 else 168 kallsyms_on_each_match_symbol(klp_match_callback, name, &args); 169 170 /* 171 * Ensure an address was found. If sympos is 0, ensure symbol is unique; 172 * otherwise ensure the symbol position count matches sympos. 173 */ 174 if (args.addr == 0) 175 pr_err("symbol '%s' not found in symbol table\n", name); 176 else if (args.count > 1 && sympos == 0) { 177 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n", 178 name, objname); 179 } else if (sympos != args.count && sympos > 0) { 180 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n", 181 sympos, name, objname ? objname : "vmlinux"); 182 } else { 183 *addr = args.addr; 184 return 0; 185 } 186 187 *addr = 0; 188 return -EINVAL; 189 } 190 191 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab, 192 unsigned int symndx, Elf_Shdr *relasec, 193 const char *sec_objname) 194 { 195 int i, cnt, ret; 196 char sym_objname[MODULE_NAME_LEN]; 197 char sym_name[KSYM_NAME_LEN]; 198 Elf_Rela *relas; 199 Elf_Sym *sym; 200 unsigned long sympos, addr; 201 bool sym_vmlinux; 202 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux"); 203 204 /* 205 * Since the field widths for sym_objname and sym_name in the sscanf() 206 * call are hard-coded and correspond to MODULE_NAME_LEN and 207 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN 208 * and KSYM_NAME_LEN have the values we expect them to have. 209 * 210 * Because the value of MODULE_NAME_LEN can differ among architectures, 211 * we use the smallest/strictest upper bound possible (56, based on 212 * the current definition of MODULE_NAME_LEN) to prevent overflows. 213 */ 214 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512); 215 216 relas = (Elf_Rela *) relasec->sh_addr; 217 /* For each rela in this klp relocation section */ 218 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) { 219 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info); 220 if (sym->st_shndx != SHN_LIVEPATCH) { 221 pr_err("symbol %s is not marked as a livepatch symbol\n", 222 strtab + sym->st_name); 223 return -EINVAL; 224 } 225 226 /* Format: .klp.sym.sym_objname.sym_name,sympos */ 227 cnt = sscanf(strtab + sym->st_name, 228 ".klp.sym.%55[^.].%511[^,],%lu", 229 sym_objname, sym_name, &sympos); 230 if (cnt != 3) { 231 pr_err("symbol %s has an incorrectly formatted name\n", 232 strtab + sym->st_name); 233 return -EINVAL; 234 } 235 236 sym_vmlinux = !strcmp(sym_objname, "vmlinux"); 237 238 /* 239 * Prevent module-specific KLP rela sections from referencing 240 * vmlinux symbols. This helps prevent ordering issues with 241 * module special section initializations. Presumably such 242 * symbols are exported and normal relas can be used instead. 243 */ 244 if (!sec_vmlinux && sym_vmlinux) { 245 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section", 246 sym_name); 247 return -EINVAL; 248 } 249 250 /* klp_find_object_symbol() treats a NULL objname as vmlinux */ 251 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname, 252 sym_name, sympos, &addr); 253 if (ret) 254 return ret; 255 256 sym->st_value = addr; 257 } 258 259 return 0; 260 } 261 262 void __weak clear_relocate_add(Elf_Shdr *sechdrs, 263 const char *strtab, 264 unsigned int symindex, 265 unsigned int relsec, 266 struct module *me) 267 { 268 } 269 270 /* 271 * At a high-level, there are two types of klp relocation sections: those which 272 * reference symbols which live in vmlinux; and those which reference symbols 273 * which live in other modules. This function is called for both types: 274 * 275 * 1) When a klp module itself loads, the module code calls this function to 276 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections). 277 * These relocations are written to the klp module text to allow the patched 278 * code/data to reference unexported vmlinux symbols. They're written as 279 * early as possible to ensure that other module init code (.e.g., 280 * jump_label_apply_nops) can access any unexported vmlinux symbols which 281 * might be referenced by the klp module's special sections. 282 * 283 * 2) When a to-be-patched module loads -- or is already loaded when a 284 * corresponding klp module loads -- klp code calls this function to write 285 * module-specific klp relocations (.klp.rela.{module}.* sections). These 286 * are written to the klp module text to allow the patched code/data to 287 * reference symbols which live in the to-be-patched module or one of its 288 * module dependencies. Exported symbols are supported, in addition to 289 * unexported symbols, in order to enable late module patching, which allows 290 * the to-be-patched module to be loaded and patched sometime *after* the 291 * klp module is loaded. 292 */ 293 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 294 const char *shstrtab, const char *strtab, 295 unsigned int symndx, unsigned int secndx, 296 const char *objname, bool apply) 297 { 298 int cnt, ret; 299 char sec_objname[MODULE_NAME_LEN]; 300 Elf_Shdr *sec = sechdrs + secndx; 301 302 /* 303 * Format: .klp.rela.sec_objname.section_name 304 * See comment in klp_resolve_symbols() for an explanation 305 * of the selected field width value. 306 */ 307 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]", 308 sec_objname); 309 if (cnt != 1) { 310 pr_err("section %s has an incorrectly formatted name\n", 311 shstrtab + sec->sh_name); 312 return -EINVAL; 313 } 314 315 if (strcmp(objname ? objname : "vmlinux", sec_objname)) 316 return 0; 317 318 if (apply) { 319 ret = klp_resolve_symbols(sechdrs, strtab, symndx, 320 sec, sec_objname); 321 if (ret) 322 return ret; 323 324 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 325 } 326 327 clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod); 328 return 0; 329 } 330 331 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs, 332 const char *shstrtab, const char *strtab, 333 unsigned int symndx, unsigned int secndx, 334 const char *objname) 335 { 336 return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx, 337 secndx, objname, true); 338 } 339 340 /* 341 * Sysfs Interface 342 * 343 * /sys/kernel/livepatch 344 * /sys/kernel/livepatch/<patch> 345 * /sys/kernel/livepatch/<patch>/enabled 346 * /sys/kernel/livepatch/<patch>/transition 347 * /sys/kernel/livepatch/<patch>/force 348 * /sys/kernel/livepatch/<patch>/<object> 349 * /sys/kernel/livepatch/<patch>/<object>/patched 350 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos> 351 */ 352 static int __klp_disable_patch(struct klp_patch *patch); 353 354 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr, 355 const char *buf, size_t count) 356 { 357 struct klp_patch *patch; 358 int ret; 359 bool enabled; 360 361 ret = kstrtobool(buf, &enabled); 362 if (ret) 363 return ret; 364 365 patch = container_of(kobj, struct klp_patch, kobj); 366 367 mutex_lock(&klp_mutex); 368 369 if (patch->enabled == enabled) { 370 /* already in requested state */ 371 ret = -EINVAL; 372 goto out; 373 } 374 375 /* 376 * Allow to reverse a pending transition in both ways. It might be 377 * necessary to complete the transition without forcing and breaking 378 * the system integrity. 379 * 380 * Do not allow to re-enable a disabled patch. 381 */ 382 if (patch == klp_transition_patch) 383 klp_reverse_transition(); 384 else if (!enabled) 385 ret = __klp_disable_patch(patch); 386 else 387 ret = -EINVAL; 388 389 out: 390 mutex_unlock(&klp_mutex); 391 392 if (ret) 393 return ret; 394 return count; 395 } 396 397 static ssize_t enabled_show(struct kobject *kobj, 398 struct kobj_attribute *attr, char *buf) 399 { 400 struct klp_patch *patch; 401 402 patch = container_of(kobj, struct klp_patch, kobj); 403 return snprintf(buf, PAGE_SIZE-1, "%d\n", patch->enabled); 404 } 405 406 static ssize_t transition_show(struct kobject *kobj, 407 struct kobj_attribute *attr, char *buf) 408 { 409 struct klp_patch *patch; 410 411 patch = container_of(kobj, struct klp_patch, kobj); 412 return snprintf(buf, PAGE_SIZE-1, "%d\n", 413 patch == klp_transition_patch); 414 } 415 416 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr, 417 const char *buf, size_t count) 418 { 419 struct klp_patch *patch; 420 int ret; 421 bool val; 422 423 ret = kstrtobool(buf, &val); 424 if (ret) 425 return ret; 426 427 if (!val) 428 return count; 429 430 mutex_lock(&klp_mutex); 431 432 patch = container_of(kobj, struct klp_patch, kobj); 433 if (patch != klp_transition_patch) { 434 mutex_unlock(&klp_mutex); 435 return -EINVAL; 436 } 437 438 klp_force_transition(); 439 440 mutex_unlock(&klp_mutex); 441 442 return count; 443 } 444 445 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled); 446 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition); 447 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force); 448 static struct attribute *klp_patch_attrs[] = { 449 &enabled_kobj_attr.attr, 450 &transition_kobj_attr.attr, 451 &force_kobj_attr.attr, 452 NULL 453 }; 454 ATTRIBUTE_GROUPS(klp_patch); 455 456 static ssize_t patched_show(struct kobject *kobj, 457 struct kobj_attribute *attr, char *buf) 458 { 459 struct klp_object *obj; 460 461 obj = container_of(kobj, struct klp_object, kobj); 462 return sysfs_emit(buf, "%d\n", obj->patched); 463 } 464 465 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched); 466 static struct attribute *klp_object_attrs[] = { 467 &patched_kobj_attr.attr, 468 NULL, 469 }; 470 ATTRIBUTE_GROUPS(klp_object); 471 472 static void klp_free_object_dynamic(struct klp_object *obj) 473 { 474 kfree(obj->name); 475 kfree(obj); 476 } 477 478 static void klp_init_func_early(struct klp_object *obj, 479 struct klp_func *func); 480 static void klp_init_object_early(struct klp_patch *patch, 481 struct klp_object *obj); 482 483 static struct klp_object *klp_alloc_object_dynamic(const char *name, 484 struct klp_patch *patch) 485 { 486 struct klp_object *obj; 487 488 obj = kzalloc(sizeof(*obj), GFP_KERNEL); 489 if (!obj) 490 return NULL; 491 492 if (name) { 493 obj->name = kstrdup(name, GFP_KERNEL); 494 if (!obj->name) { 495 kfree(obj); 496 return NULL; 497 } 498 } 499 500 klp_init_object_early(patch, obj); 501 obj->dynamic = true; 502 503 return obj; 504 } 505 506 static void klp_free_func_nop(struct klp_func *func) 507 { 508 kfree(func->old_name); 509 kfree(func); 510 } 511 512 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func, 513 struct klp_object *obj) 514 { 515 struct klp_func *func; 516 517 func = kzalloc(sizeof(*func), GFP_KERNEL); 518 if (!func) 519 return NULL; 520 521 if (old_func->old_name) { 522 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL); 523 if (!func->old_name) { 524 kfree(func); 525 return NULL; 526 } 527 } 528 529 klp_init_func_early(obj, func); 530 /* 531 * func->new_func is same as func->old_func. These addresses are 532 * set when the object is loaded, see klp_init_object_loaded(). 533 */ 534 func->old_sympos = old_func->old_sympos; 535 func->nop = true; 536 537 return func; 538 } 539 540 static int klp_add_object_nops(struct klp_patch *patch, 541 struct klp_object *old_obj) 542 { 543 struct klp_object *obj; 544 struct klp_func *func, *old_func; 545 546 obj = klp_find_object(patch, old_obj); 547 548 if (!obj) { 549 obj = klp_alloc_object_dynamic(old_obj->name, patch); 550 if (!obj) 551 return -ENOMEM; 552 } 553 554 klp_for_each_func(old_obj, old_func) { 555 func = klp_find_func(obj, old_func); 556 if (func) 557 continue; 558 559 func = klp_alloc_func_nop(old_func, obj); 560 if (!func) 561 return -ENOMEM; 562 } 563 564 return 0; 565 } 566 567 /* 568 * Add 'nop' functions which simply return to the caller to run 569 * the original function. The 'nop' functions are added to a 570 * patch to facilitate a 'replace' mode. 571 */ 572 static int klp_add_nops(struct klp_patch *patch) 573 { 574 struct klp_patch *old_patch; 575 struct klp_object *old_obj; 576 577 klp_for_each_patch(old_patch) { 578 klp_for_each_object(old_patch, old_obj) { 579 int err; 580 581 err = klp_add_object_nops(patch, old_obj); 582 if (err) 583 return err; 584 } 585 } 586 587 return 0; 588 } 589 590 static void klp_kobj_release_patch(struct kobject *kobj) 591 { 592 struct klp_patch *patch; 593 594 patch = container_of(kobj, struct klp_patch, kobj); 595 complete(&patch->finish); 596 } 597 598 static struct kobj_type klp_ktype_patch = { 599 .release = klp_kobj_release_patch, 600 .sysfs_ops = &kobj_sysfs_ops, 601 .default_groups = klp_patch_groups, 602 }; 603 604 static void klp_kobj_release_object(struct kobject *kobj) 605 { 606 struct klp_object *obj; 607 608 obj = container_of(kobj, struct klp_object, kobj); 609 610 if (obj->dynamic) 611 klp_free_object_dynamic(obj); 612 } 613 614 static struct kobj_type klp_ktype_object = { 615 .release = klp_kobj_release_object, 616 .sysfs_ops = &kobj_sysfs_ops, 617 .default_groups = klp_object_groups, 618 }; 619 620 static void klp_kobj_release_func(struct kobject *kobj) 621 { 622 struct klp_func *func; 623 624 func = container_of(kobj, struct klp_func, kobj); 625 626 if (func->nop) 627 klp_free_func_nop(func); 628 } 629 630 static struct kobj_type klp_ktype_func = { 631 .release = klp_kobj_release_func, 632 .sysfs_ops = &kobj_sysfs_ops, 633 }; 634 635 static void __klp_free_funcs(struct klp_object *obj, bool nops_only) 636 { 637 struct klp_func *func, *tmp_func; 638 639 klp_for_each_func_safe(obj, func, tmp_func) { 640 if (nops_only && !func->nop) 641 continue; 642 643 list_del(&func->node); 644 kobject_put(&func->kobj); 645 } 646 } 647 648 /* Clean up when a patched object is unloaded */ 649 static void klp_free_object_loaded(struct klp_object *obj) 650 { 651 struct klp_func *func; 652 653 obj->mod = NULL; 654 655 klp_for_each_func(obj, func) { 656 func->old_func = NULL; 657 658 if (func->nop) 659 func->new_func = NULL; 660 } 661 } 662 663 static void __klp_free_objects(struct klp_patch *patch, bool nops_only) 664 { 665 struct klp_object *obj, *tmp_obj; 666 667 klp_for_each_object_safe(patch, obj, tmp_obj) { 668 __klp_free_funcs(obj, nops_only); 669 670 if (nops_only && !obj->dynamic) 671 continue; 672 673 list_del(&obj->node); 674 kobject_put(&obj->kobj); 675 } 676 } 677 678 static void klp_free_objects(struct klp_patch *patch) 679 { 680 __klp_free_objects(patch, false); 681 } 682 683 static void klp_free_objects_dynamic(struct klp_patch *patch) 684 { 685 __klp_free_objects(patch, true); 686 } 687 688 /* 689 * This function implements the free operations that can be called safely 690 * under klp_mutex. 691 * 692 * The operation must be completed by calling klp_free_patch_finish() 693 * outside klp_mutex. 694 */ 695 static void klp_free_patch_start(struct klp_patch *patch) 696 { 697 if (!list_empty(&patch->list)) 698 list_del(&patch->list); 699 700 klp_free_objects(patch); 701 } 702 703 /* 704 * This function implements the free part that must be called outside 705 * klp_mutex. 706 * 707 * It must be called after klp_free_patch_start(). And it has to be 708 * the last function accessing the livepatch structures when the patch 709 * gets disabled. 710 */ 711 static void klp_free_patch_finish(struct klp_patch *patch) 712 { 713 /* 714 * Avoid deadlock with enabled_store() sysfs callback by 715 * calling this outside klp_mutex. It is safe because 716 * this is called when the patch gets disabled and it 717 * cannot get enabled again. 718 */ 719 kobject_put(&patch->kobj); 720 wait_for_completion(&patch->finish); 721 722 /* Put the module after the last access to struct klp_patch. */ 723 if (!patch->forced) 724 module_put(patch->mod); 725 } 726 727 /* 728 * The livepatch might be freed from sysfs interface created by the patch. 729 * This work allows to wait until the interface is destroyed in a separate 730 * context. 731 */ 732 static void klp_free_patch_work_fn(struct work_struct *work) 733 { 734 struct klp_patch *patch = 735 container_of(work, struct klp_patch, free_work); 736 737 klp_free_patch_finish(patch); 738 } 739 740 void klp_free_patch_async(struct klp_patch *patch) 741 { 742 klp_free_patch_start(patch); 743 schedule_work(&patch->free_work); 744 } 745 746 void klp_free_replaced_patches_async(struct klp_patch *new_patch) 747 { 748 struct klp_patch *old_patch, *tmp_patch; 749 750 klp_for_each_patch_safe(old_patch, tmp_patch) { 751 if (old_patch == new_patch) 752 return; 753 klp_free_patch_async(old_patch); 754 } 755 } 756 757 static int klp_init_func(struct klp_object *obj, struct klp_func *func) 758 { 759 if (!func->old_name) 760 return -EINVAL; 761 762 /* 763 * NOPs get the address later. The patched module must be loaded, 764 * see klp_init_object_loaded(). 765 */ 766 if (!func->new_func && !func->nop) 767 return -EINVAL; 768 769 if (strlen(func->old_name) >= KSYM_NAME_LEN) 770 return -EINVAL; 771 772 INIT_LIST_HEAD(&func->stack_node); 773 func->patched = false; 774 func->transition = false; 775 776 /* The format for the sysfs directory is <function,sympos> where sympos 777 * is the nth occurrence of this symbol in kallsyms for the patched 778 * object. If the user selects 0 for old_sympos, then 1 will be used 779 * since a unique symbol will be the first occurrence. 780 */ 781 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu", 782 func->old_name, 783 func->old_sympos ? func->old_sympos : 1); 784 } 785 786 static int klp_write_object_relocs(struct klp_patch *patch, 787 struct klp_object *obj, 788 bool apply) 789 { 790 int i, ret; 791 struct klp_modinfo *info = patch->mod->klp_info; 792 793 for (i = 1; i < info->hdr.e_shnum; i++) { 794 Elf_Shdr *sec = info->sechdrs + i; 795 796 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH)) 797 continue; 798 799 ret = klp_write_section_relocs(patch->mod, info->sechdrs, 800 info->secstrings, 801 patch->mod->core_kallsyms.strtab, 802 info->symndx, i, obj->name, apply); 803 if (ret) 804 return ret; 805 } 806 807 return 0; 808 } 809 810 static int klp_apply_object_relocs(struct klp_patch *patch, 811 struct klp_object *obj) 812 { 813 return klp_write_object_relocs(patch, obj, true); 814 } 815 816 static void klp_clear_object_relocs(struct klp_patch *patch, 817 struct klp_object *obj) 818 { 819 klp_write_object_relocs(patch, obj, false); 820 } 821 822 /* parts of the initialization that is done only when the object is loaded */ 823 static int klp_init_object_loaded(struct klp_patch *patch, 824 struct klp_object *obj) 825 { 826 struct klp_func *func; 827 int ret; 828 829 if (klp_is_module(obj)) { 830 /* 831 * Only write module-specific relocations here 832 * (.klp.rela.{module}.*). vmlinux-specific relocations were 833 * written earlier during the initialization of the klp module 834 * itself. 835 */ 836 ret = klp_apply_object_relocs(patch, obj); 837 if (ret) 838 return ret; 839 } 840 841 klp_for_each_func(obj, func) { 842 ret = klp_find_object_symbol(obj->name, func->old_name, 843 func->old_sympos, 844 (unsigned long *)&func->old_func); 845 if (ret) 846 return ret; 847 848 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func, 849 &func->old_size, NULL); 850 if (!ret) { 851 pr_err("kallsyms size lookup failed for '%s'\n", 852 func->old_name); 853 return -ENOENT; 854 } 855 856 if (func->nop) 857 func->new_func = func->old_func; 858 859 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func, 860 &func->new_size, NULL); 861 if (!ret) { 862 pr_err("kallsyms size lookup failed for '%s' replacement\n", 863 func->old_name); 864 return -ENOENT; 865 } 866 } 867 868 return 0; 869 } 870 871 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj) 872 { 873 struct klp_func *func; 874 int ret; 875 const char *name; 876 877 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN) 878 return -EINVAL; 879 880 obj->patched = false; 881 obj->mod = NULL; 882 883 klp_find_object_module(obj); 884 885 name = klp_is_module(obj) ? obj->name : "vmlinux"; 886 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name); 887 if (ret) 888 return ret; 889 890 klp_for_each_func(obj, func) { 891 ret = klp_init_func(obj, func); 892 if (ret) 893 return ret; 894 } 895 896 if (klp_is_object_loaded(obj)) 897 ret = klp_init_object_loaded(patch, obj); 898 899 return ret; 900 } 901 902 static void klp_init_func_early(struct klp_object *obj, 903 struct klp_func *func) 904 { 905 kobject_init(&func->kobj, &klp_ktype_func); 906 list_add_tail(&func->node, &obj->func_list); 907 } 908 909 static void klp_init_object_early(struct klp_patch *patch, 910 struct klp_object *obj) 911 { 912 INIT_LIST_HEAD(&obj->func_list); 913 kobject_init(&obj->kobj, &klp_ktype_object); 914 list_add_tail(&obj->node, &patch->obj_list); 915 } 916 917 static void klp_init_patch_early(struct klp_patch *patch) 918 { 919 struct klp_object *obj; 920 struct klp_func *func; 921 922 INIT_LIST_HEAD(&patch->list); 923 INIT_LIST_HEAD(&patch->obj_list); 924 kobject_init(&patch->kobj, &klp_ktype_patch); 925 patch->enabled = false; 926 patch->forced = false; 927 INIT_WORK(&patch->free_work, klp_free_patch_work_fn); 928 init_completion(&patch->finish); 929 930 klp_for_each_object_static(patch, obj) { 931 klp_init_object_early(patch, obj); 932 933 klp_for_each_func_static(obj, func) { 934 klp_init_func_early(obj, func); 935 } 936 } 937 } 938 939 static int klp_init_patch(struct klp_patch *patch) 940 { 941 struct klp_object *obj; 942 int ret; 943 944 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name); 945 if (ret) 946 return ret; 947 948 if (patch->replace) { 949 ret = klp_add_nops(patch); 950 if (ret) 951 return ret; 952 } 953 954 klp_for_each_object(patch, obj) { 955 ret = klp_init_object(patch, obj); 956 if (ret) 957 return ret; 958 } 959 960 list_add_tail(&patch->list, &klp_patches); 961 962 return 0; 963 } 964 965 static int __klp_disable_patch(struct klp_patch *patch) 966 { 967 struct klp_object *obj; 968 969 if (WARN_ON(!patch->enabled)) 970 return -EINVAL; 971 972 if (klp_transition_patch) 973 return -EBUSY; 974 975 klp_init_transition(patch, KLP_UNPATCHED); 976 977 klp_for_each_object(patch, obj) 978 if (obj->patched) 979 klp_pre_unpatch_callback(obj); 980 981 /* 982 * Enforce the order of the func->transition writes in 983 * klp_init_transition() and the TIF_PATCH_PENDING writes in 984 * klp_start_transition(). In the rare case where klp_ftrace_handler() 985 * is called shortly after klp_update_patch_state() switches the task, 986 * this ensures the handler sees that func->transition is set. 987 */ 988 smp_wmb(); 989 990 klp_start_transition(); 991 patch->enabled = false; 992 klp_try_complete_transition(); 993 994 return 0; 995 } 996 997 static int __klp_enable_patch(struct klp_patch *patch) 998 { 999 struct klp_object *obj; 1000 int ret; 1001 1002 if (klp_transition_patch) 1003 return -EBUSY; 1004 1005 if (WARN_ON(patch->enabled)) 1006 return -EINVAL; 1007 1008 pr_notice("enabling patch '%s'\n", patch->mod->name); 1009 1010 klp_init_transition(patch, KLP_PATCHED); 1011 1012 /* 1013 * Enforce the order of the func->transition writes in 1014 * klp_init_transition() and the ops->func_stack writes in 1015 * klp_patch_object(), so that klp_ftrace_handler() will see the 1016 * func->transition updates before the handler is registered and the 1017 * new funcs become visible to the handler. 1018 */ 1019 smp_wmb(); 1020 1021 klp_for_each_object(patch, obj) { 1022 if (!klp_is_object_loaded(obj)) 1023 continue; 1024 1025 ret = klp_pre_patch_callback(obj); 1026 if (ret) { 1027 pr_warn("pre-patch callback failed for object '%s'\n", 1028 klp_is_module(obj) ? obj->name : "vmlinux"); 1029 goto err; 1030 } 1031 1032 ret = klp_patch_object(obj); 1033 if (ret) { 1034 pr_warn("failed to patch object '%s'\n", 1035 klp_is_module(obj) ? obj->name : "vmlinux"); 1036 goto err; 1037 } 1038 } 1039 1040 klp_start_transition(); 1041 patch->enabled = true; 1042 klp_try_complete_transition(); 1043 1044 return 0; 1045 err: 1046 pr_warn("failed to enable patch '%s'\n", patch->mod->name); 1047 1048 klp_cancel_transition(); 1049 return ret; 1050 } 1051 1052 /** 1053 * klp_enable_patch() - enable the livepatch 1054 * @patch: patch to be enabled 1055 * 1056 * Initializes the data structure associated with the patch, creates the sysfs 1057 * interface, performs the needed symbol lookups and code relocations, 1058 * registers the patched functions with ftrace. 1059 * 1060 * This function is supposed to be called from the livepatch module_init() 1061 * callback. 1062 * 1063 * Return: 0 on success, otherwise error 1064 */ 1065 int klp_enable_patch(struct klp_patch *patch) 1066 { 1067 int ret; 1068 struct klp_object *obj; 1069 1070 if (!patch || !patch->mod || !patch->objs) 1071 return -EINVAL; 1072 1073 klp_for_each_object_static(patch, obj) { 1074 if (!obj->funcs) 1075 return -EINVAL; 1076 } 1077 1078 1079 if (!is_livepatch_module(patch->mod)) { 1080 pr_err("module %s is not marked as a livepatch module\n", 1081 patch->mod->name); 1082 return -EINVAL; 1083 } 1084 1085 if (!klp_initialized()) 1086 return -ENODEV; 1087 1088 if (!klp_have_reliable_stack()) { 1089 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n"); 1090 pr_warn("The livepatch transition may never complete.\n"); 1091 } 1092 1093 mutex_lock(&klp_mutex); 1094 1095 if (!klp_is_patch_compatible(patch)) { 1096 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n", 1097 patch->mod->name); 1098 mutex_unlock(&klp_mutex); 1099 return -EINVAL; 1100 } 1101 1102 if (!try_module_get(patch->mod)) { 1103 mutex_unlock(&klp_mutex); 1104 return -ENODEV; 1105 } 1106 1107 klp_init_patch_early(patch); 1108 1109 ret = klp_init_patch(patch); 1110 if (ret) 1111 goto err; 1112 1113 ret = __klp_enable_patch(patch); 1114 if (ret) 1115 goto err; 1116 1117 mutex_unlock(&klp_mutex); 1118 1119 return 0; 1120 1121 err: 1122 klp_free_patch_start(patch); 1123 1124 mutex_unlock(&klp_mutex); 1125 1126 klp_free_patch_finish(patch); 1127 1128 return ret; 1129 } 1130 EXPORT_SYMBOL_GPL(klp_enable_patch); 1131 1132 /* 1133 * This function unpatches objects from the replaced livepatches. 1134 * 1135 * We could be pretty aggressive here. It is called in the situation where 1136 * these structures are no longer accessed from the ftrace handler. 1137 * All functions are redirected by the klp_transition_patch. They 1138 * use either a new code or they are in the original code because 1139 * of the special nop function patches. 1140 * 1141 * The only exception is when the transition was forced. In this case, 1142 * klp_ftrace_handler() might still see the replaced patch on the stack. 1143 * Fortunately, it is carefully designed to work with removed functions 1144 * thanks to RCU. We only have to keep the patches on the system. Also 1145 * this is handled transparently by patch->module_put. 1146 */ 1147 void klp_unpatch_replaced_patches(struct klp_patch *new_patch) 1148 { 1149 struct klp_patch *old_patch; 1150 1151 klp_for_each_patch(old_patch) { 1152 if (old_patch == new_patch) 1153 return; 1154 1155 old_patch->enabled = false; 1156 klp_unpatch_objects(old_patch); 1157 } 1158 } 1159 1160 /* 1161 * This function removes the dynamically allocated 'nop' functions. 1162 * 1163 * We could be pretty aggressive. NOPs do not change the existing 1164 * behavior except for adding unnecessary delay by the ftrace handler. 1165 * 1166 * It is safe even when the transition was forced. The ftrace handler 1167 * will see a valid ops->func_stack entry thanks to RCU. 1168 * 1169 * We could even free the NOPs structures. They must be the last entry 1170 * in ops->func_stack. Therefore unregister_ftrace_function() is called. 1171 * It does the same as klp_synchronize_transition() to make sure that 1172 * nobody is inside the ftrace handler once the operation finishes. 1173 * 1174 * IMPORTANT: It must be called right after removing the replaced patches! 1175 */ 1176 void klp_discard_nops(struct klp_patch *new_patch) 1177 { 1178 klp_unpatch_objects_dynamic(klp_transition_patch); 1179 klp_free_objects_dynamic(klp_transition_patch); 1180 } 1181 1182 /* 1183 * Remove parts of patches that touch a given kernel module. The list of 1184 * patches processed might be limited. When limit is NULL, all patches 1185 * will be handled. 1186 */ 1187 static void klp_cleanup_module_patches_limited(struct module *mod, 1188 struct klp_patch *limit) 1189 { 1190 struct klp_patch *patch; 1191 struct klp_object *obj; 1192 1193 klp_for_each_patch(patch) { 1194 if (patch == limit) 1195 break; 1196 1197 klp_for_each_object(patch, obj) { 1198 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1199 continue; 1200 1201 if (patch != klp_transition_patch) 1202 klp_pre_unpatch_callback(obj); 1203 1204 pr_notice("reverting patch '%s' on unloading module '%s'\n", 1205 patch->mod->name, obj->mod->name); 1206 klp_unpatch_object(obj); 1207 1208 klp_post_unpatch_callback(obj); 1209 klp_clear_object_relocs(patch, obj); 1210 klp_free_object_loaded(obj); 1211 break; 1212 } 1213 } 1214 } 1215 1216 int klp_module_coming(struct module *mod) 1217 { 1218 int ret; 1219 struct klp_patch *patch; 1220 struct klp_object *obj; 1221 1222 if (WARN_ON(mod->state != MODULE_STATE_COMING)) 1223 return -EINVAL; 1224 1225 if (!strcmp(mod->name, "vmlinux")) { 1226 pr_err("vmlinux.ko: invalid module name\n"); 1227 return -EINVAL; 1228 } 1229 1230 mutex_lock(&klp_mutex); 1231 /* 1232 * Each module has to know that klp_module_coming() 1233 * has been called. We never know what module will 1234 * get patched by a new patch. 1235 */ 1236 mod->klp_alive = true; 1237 1238 klp_for_each_patch(patch) { 1239 klp_for_each_object(patch, obj) { 1240 if (!klp_is_module(obj) || strcmp(obj->name, mod->name)) 1241 continue; 1242 1243 obj->mod = mod; 1244 1245 ret = klp_init_object_loaded(patch, obj); 1246 if (ret) { 1247 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n", 1248 patch->mod->name, obj->mod->name, ret); 1249 goto err; 1250 } 1251 1252 pr_notice("applying patch '%s' to loading module '%s'\n", 1253 patch->mod->name, obj->mod->name); 1254 1255 ret = klp_pre_patch_callback(obj); 1256 if (ret) { 1257 pr_warn("pre-patch callback failed for object '%s'\n", 1258 obj->name); 1259 goto err; 1260 } 1261 1262 ret = klp_patch_object(obj); 1263 if (ret) { 1264 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n", 1265 patch->mod->name, obj->mod->name, ret); 1266 1267 klp_post_unpatch_callback(obj); 1268 goto err; 1269 } 1270 1271 if (patch != klp_transition_patch) 1272 klp_post_patch_callback(obj); 1273 1274 break; 1275 } 1276 } 1277 1278 mutex_unlock(&klp_mutex); 1279 1280 return 0; 1281 1282 err: 1283 /* 1284 * If a patch is unsuccessfully applied, return 1285 * error to the module loader. 1286 */ 1287 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n", 1288 patch->mod->name, obj->mod->name, obj->mod->name); 1289 mod->klp_alive = false; 1290 obj->mod = NULL; 1291 klp_cleanup_module_patches_limited(mod, patch); 1292 mutex_unlock(&klp_mutex); 1293 1294 return ret; 1295 } 1296 1297 void klp_module_going(struct module *mod) 1298 { 1299 if (WARN_ON(mod->state != MODULE_STATE_GOING && 1300 mod->state != MODULE_STATE_COMING)) 1301 return; 1302 1303 mutex_lock(&klp_mutex); 1304 /* 1305 * Each module has to know that klp_module_going() 1306 * has been called. We never know what module will 1307 * get patched by a new patch. 1308 */ 1309 mod->klp_alive = false; 1310 1311 klp_cleanup_module_patches_limited(mod, NULL); 1312 1313 mutex_unlock(&klp_mutex); 1314 } 1315 1316 static int __init klp_init(void) 1317 { 1318 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj); 1319 if (!klp_root_kobj) 1320 return -ENOMEM; 1321 1322 return 0; 1323 } 1324 1325 module_init(klp_init); 1326