xref: /openbmc/linux/kernel/kthread.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <trace/events/sched.h>
31 
32 
33 static DEFINE_SPINLOCK(kthread_create_lock);
34 static LIST_HEAD(kthread_create_list);
35 struct task_struct *kthreadd_task;
36 
37 struct kthread_create_info
38 {
39 	/* Information passed to kthread() from kthreadd. */
40 	int (*threadfn)(void *data);
41 	void *data;
42 	int node;
43 
44 	/* Result passed back to kthread_create() from kthreadd. */
45 	struct task_struct *result;
46 	struct completion *done;
47 
48 	struct list_head list;
49 };
50 
51 struct kthread {
52 	unsigned long flags;
53 	unsigned int cpu;
54 	int (*threadfn)(void *);
55 	void *data;
56 	mm_segment_t oldfs;
57 	struct completion parked;
58 	struct completion exited;
59 #ifdef CONFIG_BLK_CGROUP
60 	struct cgroup_subsys_state *blkcg_css;
61 #endif
62 };
63 
64 enum KTHREAD_BITS {
65 	KTHREAD_IS_PER_CPU = 0,
66 	KTHREAD_SHOULD_STOP,
67 	KTHREAD_SHOULD_PARK,
68 };
69 
70 static inline void set_kthread_struct(void *kthread)
71 {
72 	/*
73 	 * We abuse ->set_child_tid to avoid the new member and because it
74 	 * can't be wrongly copied by copy_process(). We also rely on fact
75 	 * that the caller can't exec, so PF_KTHREAD can't be cleared.
76 	 */
77 	current->set_child_tid = (__force void __user *)kthread;
78 }
79 
80 static inline struct kthread *to_kthread(struct task_struct *k)
81 {
82 	WARN_ON(!(k->flags & PF_KTHREAD));
83 	return (__force void *)k->set_child_tid;
84 }
85 
86 void free_kthread_struct(struct task_struct *k)
87 {
88 	struct kthread *kthread;
89 
90 	/*
91 	 * Can be NULL if this kthread was created by kernel_thread()
92 	 * or if kmalloc() in kthread() failed.
93 	 */
94 	kthread = to_kthread(k);
95 #ifdef CONFIG_BLK_CGROUP
96 	WARN_ON_ONCE(kthread && kthread->blkcg_css);
97 #endif
98 	kfree(kthread);
99 }
100 
101 /**
102  * kthread_should_stop - should this kthread return now?
103  *
104  * When someone calls kthread_stop() on your kthread, it will be woken
105  * and this will return true.  You should then return, and your return
106  * value will be passed through to kthread_stop().
107  */
108 bool kthread_should_stop(void)
109 {
110 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
111 }
112 EXPORT_SYMBOL(kthread_should_stop);
113 
114 bool __kthread_should_park(struct task_struct *k)
115 {
116 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
117 }
118 EXPORT_SYMBOL_GPL(__kthread_should_park);
119 
120 /**
121  * kthread_should_park - should this kthread park now?
122  *
123  * When someone calls kthread_park() on your kthread, it will be woken
124  * and this will return true.  You should then do the necessary
125  * cleanup and call kthread_parkme()
126  *
127  * Similar to kthread_should_stop(), but this keeps the thread alive
128  * and in a park position. kthread_unpark() "restarts" the thread and
129  * calls the thread function again.
130  */
131 bool kthread_should_park(void)
132 {
133 	return __kthread_should_park(current);
134 }
135 EXPORT_SYMBOL_GPL(kthread_should_park);
136 
137 /**
138  * kthread_freezable_should_stop - should this freezable kthread return now?
139  * @was_frozen: optional out parameter, indicates whether %current was frozen
140  *
141  * kthread_should_stop() for freezable kthreads, which will enter
142  * refrigerator if necessary.  This function is safe from kthread_stop() /
143  * freezer deadlock and freezable kthreads should use this function instead
144  * of calling try_to_freeze() directly.
145  */
146 bool kthread_freezable_should_stop(bool *was_frozen)
147 {
148 	bool frozen = false;
149 
150 	might_sleep();
151 
152 	if (unlikely(freezing(current)))
153 		frozen = __refrigerator(true);
154 
155 	if (was_frozen)
156 		*was_frozen = frozen;
157 
158 	return kthread_should_stop();
159 }
160 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
161 
162 /**
163  * kthread_func - return the function specified on kthread creation
164  * @task: kthread task in question
165  *
166  * Returns NULL if the task is not a kthread.
167  */
168 void *kthread_func(struct task_struct *task)
169 {
170 	if (task->flags & PF_KTHREAD)
171 		return to_kthread(task)->threadfn;
172 	return NULL;
173 }
174 EXPORT_SYMBOL_GPL(kthread_func);
175 
176 /**
177  * kthread_data - return data value specified on kthread creation
178  * @task: kthread task in question
179  *
180  * Return the data value specified when kthread @task was created.
181  * The caller is responsible for ensuring the validity of @task when
182  * calling this function.
183  */
184 void *kthread_data(struct task_struct *task)
185 {
186 	return to_kthread(task)->data;
187 }
188 EXPORT_SYMBOL_GPL(kthread_data);
189 
190 /**
191  * kthread_probe_data - speculative version of kthread_data()
192  * @task: possible kthread task in question
193  *
194  * @task could be a kthread task.  Return the data value specified when it
195  * was created if accessible.  If @task isn't a kthread task or its data is
196  * inaccessible for any reason, %NULL is returned.  This function requires
197  * that @task itself is safe to dereference.
198  */
199 void *kthread_probe_data(struct task_struct *task)
200 {
201 	struct kthread *kthread = to_kthread(task);
202 	void *data = NULL;
203 
204 	probe_kernel_read(&data, &kthread->data, sizeof(data));
205 	return data;
206 }
207 
208 static void __kthread_parkme(struct kthread *self)
209 {
210 	for (;;) {
211 		/*
212 		 * TASK_PARKED is a special state; we must serialize against
213 		 * possible pending wakeups to avoid store-store collisions on
214 		 * task->state.
215 		 *
216 		 * Such a collision might possibly result in the task state
217 		 * changin from TASK_PARKED and us failing the
218 		 * wait_task_inactive() in kthread_park().
219 		 */
220 		set_special_state(TASK_PARKED);
221 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
222 			break;
223 
224 		/*
225 		 * Thread is going to call schedule(), do not preempt it,
226 		 * or the caller of kthread_park() may spend more time in
227 		 * wait_task_inactive().
228 		 */
229 		preempt_disable();
230 		complete(&self->parked);
231 		schedule_preempt_disabled();
232 		preempt_enable();
233 	}
234 	__set_current_state(TASK_RUNNING);
235 }
236 
237 void kthread_parkme(void)
238 {
239 	__kthread_parkme(to_kthread(current));
240 }
241 EXPORT_SYMBOL_GPL(kthread_parkme);
242 
243 static int kthread(void *_create)
244 {
245 	/* Copy data: it's on kthread's stack */
246 	struct kthread_create_info *create = _create;
247 	int (*threadfn)(void *data) = create->threadfn;
248 	void *data = create->data;
249 	struct completion *done;
250 	struct kthread *self;
251 	int ret;
252 
253 	self = kzalloc(sizeof(*self), GFP_KERNEL);
254 	set_kthread_struct(self);
255 
256 	/* If user was SIGKILLed, I release the structure. */
257 	done = xchg(&create->done, NULL);
258 	if (!done) {
259 		kfree(create);
260 		do_exit(-EINTR);
261 	}
262 
263 	if (!self) {
264 		create->result = ERR_PTR(-ENOMEM);
265 		complete(done);
266 		do_exit(-ENOMEM);
267 	}
268 
269 	self->threadfn = threadfn;
270 	self->data = data;
271 	init_completion(&self->exited);
272 	init_completion(&self->parked);
273 	current->vfork_done = &self->exited;
274 
275 	/* OK, tell user we're spawned, wait for stop or wakeup */
276 	__set_current_state(TASK_UNINTERRUPTIBLE);
277 	create->result = current;
278 	/*
279 	 * Thread is going to call schedule(), do not preempt it,
280 	 * or the creator may spend more time in wait_task_inactive().
281 	 */
282 	preempt_disable();
283 	complete(done);
284 	schedule_preempt_disabled();
285 	preempt_enable();
286 
287 	ret = -EINTR;
288 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
289 		cgroup_kthread_ready();
290 		__kthread_parkme(self);
291 		ret = threadfn(data);
292 	}
293 	do_exit(ret);
294 }
295 
296 /* called from do_fork() to get node information for about to be created task */
297 int tsk_fork_get_node(struct task_struct *tsk)
298 {
299 #ifdef CONFIG_NUMA
300 	if (tsk == kthreadd_task)
301 		return tsk->pref_node_fork;
302 #endif
303 	return NUMA_NO_NODE;
304 }
305 
306 static void create_kthread(struct kthread_create_info *create)
307 {
308 	int pid;
309 
310 #ifdef CONFIG_NUMA
311 	current->pref_node_fork = create->node;
312 #endif
313 	/* We want our own signal handler (we take no signals by default). */
314 	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
315 	if (pid < 0) {
316 		/* If user was SIGKILLed, I release the structure. */
317 		struct completion *done = xchg(&create->done, NULL);
318 
319 		if (!done) {
320 			kfree(create);
321 			return;
322 		}
323 		create->result = ERR_PTR(pid);
324 		complete(done);
325 	}
326 }
327 
328 static __printf(4, 0)
329 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
330 						    void *data, int node,
331 						    const char namefmt[],
332 						    va_list args)
333 {
334 	DECLARE_COMPLETION_ONSTACK(done);
335 	struct task_struct *task;
336 	struct kthread_create_info *create = kmalloc(sizeof(*create),
337 						     GFP_KERNEL);
338 
339 	if (!create)
340 		return ERR_PTR(-ENOMEM);
341 	create->threadfn = threadfn;
342 	create->data = data;
343 	create->node = node;
344 	create->done = &done;
345 
346 	spin_lock(&kthread_create_lock);
347 	list_add_tail(&create->list, &kthread_create_list);
348 	spin_unlock(&kthread_create_lock);
349 
350 	wake_up_process(kthreadd_task);
351 	/*
352 	 * Wait for completion in killable state, for I might be chosen by
353 	 * the OOM killer while kthreadd is trying to allocate memory for
354 	 * new kernel thread.
355 	 */
356 	if (unlikely(wait_for_completion_killable(&done))) {
357 		/*
358 		 * If I was SIGKILLed before kthreadd (or new kernel thread)
359 		 * calls complete(), leave the cleanup of this structure to
360 		 * that thread.
361 		 */
362 		if (xchg(&create->done, NULL))
363 			return ERR_PTR(-EINTR);
364 		/*
365 		 * kthreadd (or new kernel thread) will call complete()
366 		 * shortly.
367 		 */
368 		wait_for_completion(&done);
369 	}
370 	task = create->result;
371 	if (!IS_ERR(task)) {
372 		static const struct sched_param param = { .sched_priority = 0 };
373 		char name[TASK_COMM_LEN];
374 
375 		/*
376 		 * task is already visible to other tasks, so updating
377 		 * COMM must be protected.
378 		 */
379 		vsnprintf(name, sizeof(name), namefmt, args);
380 		set_task_comm(task, name);
381 		/*
382 		 * root may have changed our (kthreadd's) priority or CPU mask.
383 		 * The kernel thread should not inherit these properties.
384 		 */
385 		sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
386 		set_cpus_allowed_ptr(task, cpu_all_mask);
387 	}
388 	kfree(create);
389 	return task;
390 }
391 
392 /**
393  * kthread_create_on_node - create a kthread.
394  * @threadfn: the function to run until signal_pending(current).
395  * @data: data ptr for @threadfn.
396  * @node: task and thread structures for the thread are allocated on this node
397  * @namefmt: printf-style name for the thread.
398  *
399  * Description: This helper function creates and names a kernel
400  * thread.  The thread will be stopped: use wake_up_process() to start
401  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
402  * is affine to all CPUs.
403  *
404  * If thread is going to be bound on a particular cpu, give its node
405  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
406  * When woken, the thread will run @threadfn() with @data as its
407  * argument. @threadfn() can either call do_exit() directly if it is a
408  * standalone thread for which no one will call kthread_stop(), or
409  * return when 'kthread_should_stop()' is true (which means
410  * kthread_stop() has been called).  The return value should be zero
411  * or a negative error number; it will be passed to kthread_stop().
412  *
413  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
414  */
415 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
416 					   void *data, int node,
417 					   const char namefmt[],
418 					   ...)
419 {
420 	struct task_struct *task;
421 	va_list args;
422 
423 	va_start(args, namefmt);
424 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
425 	va_end(args);
426 
427 	return task;
428 }
429 EXPORT_SYMBOL(kthread_create_on_node);
430 
431 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
432 {
433 	unsigned long flags;
434 
435 	if (!wait_task_inactive(p, state)) {
436 		WARN_ON(1);
437 		return;
438 	}
439 
440 	/* It's safe because the task is inactive. */
441 	raw_spin_lock_irqsave(&p->pi_lock, flags);
442 	do_set_cpus_allowed(p, mask);
443 	p->flags |= PF_NO_SETAFFINITY;
444 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
445 }
446 
447 static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
448 {
449 	__kthread_bind_mask(p, cpumask_of(cpu), state);
450 }
451 
452 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
453 {
454 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
455 }
456 
457 /**
458  * kthread_bind - bind a just-created kthread to a cpu.
459  * @p: thread created by kthread_create().
460  * @cpu: cpu (might not be online, must be possible) for @k to run on.
461  *
462  * Description: This function is equivalent to set_cpus_allowed(),
463  * except that @cpu doesn't need to be online, and the thread must be
464  * stopped (i.e., just returned from kthread_create()).
465  */
466 void kthread_bind(struct task_struct *p, unsigned int cpu)
467 {
468 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
469 }
470 EXPORT_SYMBOL(kthread_bind);
471 
472 /**
473  * kthread_create_on_cpu - Create a cpu bound kthread
474  * @threadfn: the function to run until signal_pending(current).
475  * @data: data ptr for @threadfn.
476  * @cpu: The cpu on which the thread should be bound,
477  * @namefmt: printf-style name for the thread. Format is restricted
478  *	     to "name.*%u". Code fills in cpu number.
479  *
480  * Description: This helper function creates and names a kernel thread
481  * The thread will be woken and put into park mode.
482  */
483 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
484 					  void *data, unsigned int cpu,
485 					  const char *namefmt)
486 {
487 	struct task_struct *p;
488 
489 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
490 				   cpu);
491 	if (IS_ERR(p))
492 		return p;
493 	kthread_bind(p, cpu);
494 	/* CPU hotplug need to bind once again when unparking the thread. */
495 	set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
496 	to_kthread(p)->cpu = cpu;
497 	return p;
498 }
499 
500 /**
501  * kthread_unpark - unpark a thread created by kthread_create().
502  * @k:		thread created by kthread_create().
503  *
504  * Sets kthread_should_park() for @k to return false, wakes it, and
505  * waits for it to return. If the thread is marked percpu then its
506  * bound to the cpu again.
507  */
508 void kthread_unpark(struct task_struct *k)
509 {
510 	struct kthread *kthread = to_kthread(k);
511 
512 	/*
513 	 * Newly created kthread was parked when the CPU was offline.
514 	 * The binding was lost and we need to set it again.
515 	 */
516 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
517 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
518 
519 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
520 	/*
521 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
522 	 */
523 	wake_up_state(k, TASK_PARKED);
524 }
525 EXPORT_SYMBOL_GPL(kthread_unpark);
526 
527 /**
528  * kthread_park - park a thread created by kthread_create().
529  * @k: thread created by kthread_create().
530  *
531  * Sets kthread_should_park() for @k to return true, wakes it, and
532  * waits for it to return. This can also be called after kthread_create()
533  * instead of calling wake_up_process(): the thread will park without
534  * calling threadfn().
535  *
536  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
537  * If called by the kthread itself just the park bit is set.
538  */
539 int kthread_park(struct task_struct *k)
540 {
541 	struct kthread *kthread = to_kthread(k);
542 
543 	if (WARN_ON(k->flags & PF_EXITING))
544 		return -ENOSYS;
545 
546 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
547 		return -EBUSY;
548 
549 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
550 	if (k != current) {
551 		wake_up_process(k);
552 		/*
553 		 * Wait for __kthread_parkme() to complete(), this means we
554 		 * _will_ have TASK_PARKED and are about to call schedule().
555 		 */
556 		wait_for_completion(&kthread->parked);
557 		/*
558 		 * Now wait for that schedule() to complete and the task to
559 		 * get scheduled out.
560 		 */
561 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
562 	}
563 
564 	return 0;
565 }
566 EXPORT_SYMBOL_GPL(kthread_park);
567 
568 /**
569  * kthread_stop - stop a thread created by kthread_create().
570  * @k: thread created by kthread_create().
571  *
572  * Sets kthread_should_stop() for @k to return true, wakes it, and
573  * waits for it to exit. This can also be called after kthread_create()
574  * instead of calling wake_up_process(): the thread will exit without
575  * calling threadfn().
576  *
577  * If threadfn() may call do_exit() itself, the caller must ensure
578  * task_struct can't go away.
579  *
580  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
581  * was never called.
582  */
583 int kthread_stop(struct task_struct *k)
584 {
585 	struct kthread *kthread;
586 	int ret;
587 
588 	trace_sched_kthread_stop(k);
589 
590 	get_task_struct(k);
591 	kthread = to_kthread(k);
592 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
593 	kthread_unpark(k);
594 	wake_up_process(k);
595 	wait_for_completion(&kthread->exited);
596 	ret = k->exit_code;
597 	put_task_struct(k);
598 
599 	trace_sched_kthread_stop_ret(ret);
600 	return ret;
601 }
602 EXPORT_SYMBOL(kthread_stop);
603 
604 int kthreadd(void *unused)
605 {
606 	struct task_struct *tsk = current;
607 
608 	/* Setup a clean context for our children to inherit. */
609 	set_task_comm(tsk, "kthreadd");
610 	ignore_signals(tsk);
611 	set_cpus_allowed_ptr(tsk, cpu_all_mask);
612 	set_mems_allowed(node_states[N_MEMORY]);
613 
614 	current->flags |= PF_NOFREEZE;
615 	cgroup_init_kthreadd();
616 
617 	for (;;) {
618 		set_current_state(TASK_INTERRUPTIBLE);
619 		if (list_empty(&kthread_create_list))
620 			schedule();
621 		__set_current_state(TASK_RUNNING);
622 
623 		spin_lock(&kthread_create_lock);
624 		while (!list_empty(&kthread_create_list)) {
625 			struct kthread_create_info *create;
626 
627 			create = list_entry(kthread_create_list.next,
628 					    struct kthread_create_info, list);
629 			list_del_init(&create->list);
630 			spin_unlock(&kthread_create_lock);
631 
632 			create_kthread(create);
633 
634 			spin_lock(&kthread_create_lock);
635 		}
636 		spin_unlock(&kthread_create_lock);
637 	}
638 
639 	return 0;
640 }
641 
642 void __kthread_init_worker(struct kthread_worker *worker,
643 				const char *name,
644 				struct lock_class_key *key)
645 {
646 	memset(worker, 0, sizeof(struct kthread_worker));
647 	raw_spin_lock_init(&worker->lock);
648 	lockdep_set_class_and_name(&worker->lock, key, name);
649 	INIT_LIST_HEAD(&worker->work_list);
650 	INIT_LIST_HEAD(&worker->delayed_work_list);
651 }
652 EXPORT_SYMBOL_GPL(__kthread_init_worker);
653 
654 /**
655  * kthread_worker_fn - kthread function to process kthread_worker
656  * @worker_ptr: pointer to initialized kthread_worker
657  *
658  * This function implements the main cycle of kthread worker. It processes
659  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
660  * is empty.
661  *
662  * The works are not allowed to keep any locks, disable preemption or interrupts
663  * when they finish. There is defined a safe point for freezing when one work
664  * finishes and before a new one is started.
665  *
666  * Also the works must not be handled by more than one worker at the same time,
667  * see also kthread_queue_work().
668  */
669 int kthread_worker_fn(void *worker_ptr)
670 {
671 	struct kthread_worker *worker = worker_ptr;
672 	struct kthread_work *work;
673 
674 	/*
675 	 * FIXME: Update the check and remove the assignment when all kthread
676 	 * worker users are created using kthread_create_worker*() functions.
677 	 */
678 	WARN_ON(worker->task && worker->task != current);
679 	worker->task = current;
680 
681 	if (worker->flags & KTW_FREEZABLE)
682 		set_freezable();
683 
684 repeat:
685 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
686 
687 	if (kthread_should_stop()) {
688 		__set_current_state(TASK_RUNNING);
689 		raw_spin_lock_irq(&worker->lock);
690 		worker->task = NULL;
691 		raw_spin_unlock_irq(&worker->lock);
692 		return 0;
693 	}
694 
695 	work = NULL;
696 	raw_spin_lock_irq(&worker->lock);
697 	if (!list_empty(&worker->work_list)) {
698 		work = list_first_entry(&worker->work_list,
699 					struct kthread_work, node);
700 		list_del_init(&work->node);
701 	}
702 	worker->current_work = work;
703 	raw_spin_unlock_irq(&worker->lock);
704 
705 	if (work) {
706 		__set_current_state(TASK_RUNNING);
707 		work->func(work);
708 	} else if (!freezing(current))
709 		schedule();
710 
711 	try_to_freeze();
712 	cond_resched();
713 	goto repeat;
714 }
715 EXPORT_SYMBOL_GPL(kthread_worker_fn);
716 
717 static __printf(3, 0) struct kthread_worker *
718 __kthread_create_worker(int cpu, unsigned int flags,
719 			const char namefmt[], va_list args)
720 {
721 	struct kthread_worker *worker;
722 	struct task_struct *task;
723 	int node = NUMA_NO_NODE;
724 
725 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
726 	if (!worker)
727 		return ERR_PTR(-ENOMEM);
728 
729 	kthread_init_worker(worker);
730 
731 	if (cpu >= 0)
732 		node = cpu_to_node(cpu);
733 
734 	task = __kthread_create_on_node(kthread_worker_fn, worker,
735 						node, namefmt, args);
736 	if (IS_ERR(task))
737 		goto fail_task;
738 
739 	if (cpu >= 0)
740 		kthread_bind(task, cpu);
741 
742 	worker->flags = flags;
743 	worker->task = task;
744 	wake_up_process(task);
745 	return worker;
746 
747 fail_task:
748 	kfree(worker);
749 	return ERR_CAST(task);
750 }
751 
752 /**
753  * kthread_create_worker - create a kthread worker
754  * @flags: flags modifying the default behavior of the worker
755  * @namefmt: printf-style name for the kthread worker (task).
756  *
757  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
758  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
759  * when the worker was SIGKILLed.
760  */
761 struct kthread_worker *
762 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
763 {
764 	struct kthread_worker *worker;
765 	va_list args;
766 
767 	va_start(args, namefmt);
768 	worker = __kthread_create_worker(-1, flags, namefmt, args);
769 	va_end(args);
770 
771 	return worker;
772 }
773 EXPORT_SYMBOL(kthread_create_worker);
774 
775 /**
776  * kthread_create_worker_on_cpu - create a kthread worker and bind it
777  *	it to a given CPU and the associated NUMA node.
778  * @cpu: CPU number
779  * @flags: flags modifying the default behavior of the worker
780  * @namefmt: printf-style name for the kthread worker (task).
781  *
782  * Use a valid CPU number if you want to bind the kthread worker
783  * to the given CPU and the associated NUMA node.
784  *
785  * A good practice is to add the cpu number also into the worker name.
786  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
787  *
788  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
789  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
790  * when the worker was SIGKILLed.
791  */
792 struct kthread_worker *
793 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
794 			     const char namefmt[], ...)
795 {
796 	struct kthread_worker *worker;
797 	va_list args;
798 
799 	va_start(args, namefmt);
800 	worker = __kthread_create_worker(cpu, flags, namefmt, args);
801 	va_end(args);
802 
803 	return worker;
804 }
805 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
806 
807 /*
808  * Returns true when the work could not be queued at the moment.
809  * It happens when it is already pending in a worker list
810  * or when it is being cancelled.
811  */
812 static inline bool queuing_blocked(struct kthread_worker *worker,
813 				   struct kthread_work *work)
814 {
815 	lockdep_assert_held(&worker->lock);
816 
817 	return !list_empty(&work->node) || work->canceling;
818 }
819 
820 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
821 					     struct kthread_work *work)
822 {
823 	lockdep_assert_held(&worker->lock);
824 	WARN_ON_ONCE(!list_empty(&work->node));
825 	/* Do not use a work with >1 worker, see kthread_queue_work() */
826 	WARN_ON_ONCE(work->worker && work->worker != worker);
827 }
828 
829 /* insert @work before @pos in @worker */
830 static void kthread_insert_work(struct kthread_worker *worker,
831 				struct kthread_work *work,
832 				struct list_head *pos)
833 {
834 	kthread_insert_work_sanity_check(worker, work);
835 
836 	list_add_tail(&work->node, pos);
837 	work->worker = worker;
838 	if (!worker->current_work && likely(worker->task))
839 		wake_up_process(worker->task);
840 }
841 
842 /**
843  * kthread_queue_work - queue a kthread_work
844  * @worker: target kthread_worker
845  * @work: kthread_work to queue
846  *
847  * Queue @work to work processor @task for async execution.  @task
848  * must have been created with kthread_worker_create().  Returns %true
849  * if @work was successfully queued, %false if it was already pending.
850  *
851  * Reinitialize the work if it needs to be used by another worker.
852  * For example, when the worker was stopped and started again.
853  */
854 bool kthread_queue_work(struct kthread_worker *worker,
855 			struct kthread_work *work)
856 {
857 	bool ret = false;
858 	unsigned long flags;
859 
860 	raw_spin_lock_irqsave(&worker->lock, flags);
861 	if (!queuing_blocked(worker, work)) {
862 		kthread_insert_work(worker, work, &worker->work_list);
863 		ret = true;
864 	}
865 	raw_spin_unlock_irqrestore(&worker->lock, flags);
866 	return ret;
867 }
868 EXPORT_SYMBOL_GPL(kthread_queue_work);
869 
870 /**
871  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
872  *	delayed work when the timer expires.
873  * @t: pointer to the expired timer
874  *
875  * The format of the function is defined by struct timer_list.
876  * It should have been called from irqsafe timer with irq already off.
877  */
878 void kthread_delayed_work_timer_fn(struct timer_list *t)
879 {
880 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
881 	struct kthread_work *work = &dwork->work;
882 	struct kthread_worker *worker = work->worker;
883 	unsigned long flags;
884 
885 	/*
886 	 * This might happen when a pending work is reinitialized.
887 	 * It means that it is used a wrong way.
888 	 */
889 	if (WARN_ON_ONCE(!worker))
890 		return;
891 
892 	raw_spin_lock_irqsave(&worker->lock, flags);
893 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
894 	WARN_ON_ONCE(work->worker != worker);
895 
896 	/* Move the work from worker->delayed_work_list. */
897 	WARN_ON_ONCE(list_empty(&work->node));
898 	list_del_init(&work->node);
899 	kthread_insert_work(worker, work, &worker->work_list);
900 
901 	raw_spin_unlock_irqrestore(&worker->lock, flags);
902 }
903 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
904 
905 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
906 					 struct kthread_delayed_work *dwork,
907 					 unsigned long delay)
908 {
909 	struct timer_list *timer = &dwork->timer;
910 	struct kthread_work *work = &dwork->work;
911 
912 	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
913 
914 	/*
915 	 * If @delay is 0, queue @dwork->work immediately.  This is for
916 	 * both optimization and correctness.  The earliest @timer can
917 	 * expire is on the closest next tick and delayed_work users depend
918 	 * on that there's no such delay when @delay is 0.
919 	 */
920 	if (!delay) {
921 		kthread_insert_work(worker, work, &worker->work_list);
922 		return;
923 	}
924 
925 	/* Be paranoid and try to detect possible races already now. */
926 	kthread_insert_work_sanity_check(worker, work);
927 
928 	list_add(&work->node, &worker->delayed_work_list);
929 	work->worker = worker;
930 	timer->expires = jiffies + delay;
931 	add_timer(timer);
932 }
933 
934 /**
935  * kthread_queue_delayed_work - queue the associated kthread work
936  *	after a delay.
937  * @worker: target kthread_worker
938  * @dwork: kthread_delayed_work to queue
939  * @delay: number of jiffies to wait before queuing
940  *
941  * If the work has not been pending it starts a timer that will queue
942  * the work after the given @delay. If @delay is zero, it queues the
943  * work immediately.
944  *
945  * Return: %false if the @work has already been pending. It means that
946  * either the timer was running or the work was queued. It returns %true
947  * otherwise.
948  */
949 bool kthread_queue_delayed_work(struct kthread_worker *worker,
950 				struct kthread_delayed_work *dwork,
951 				unsigned long delay)
952 {
953 	struct kthread_work *work = &dwork->work;
954 	unsigned long flags;
955 	bool ret = false;
956 
957 	raw_spin_lock_irqsave(&worker->lock, flags);
958 
959 	if (!queuing_blocked(worker, work)) {
960 		__kthread_queue_delayed_work(worker, dwork, delay);
961 		ret = true;
962 	}
963 
964 	raw_spin_unlock_irqrestore(&worker->lock, flags);
965 	return ret;
966 }
967 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
968 
969 struct kthread_flush_work {
970 	struct kthread_work	work;
971 	struct completion	done;
972 };
973 
974 static void kthread_flush_work_fn(struct kthread_work *work)
975 {
976 	struct kthread_flush_work *fwork =
977 		container_of(work, struct kthread_flush_work, work);
978 	complete(&fwork->done);
979 }
980 
981 /**
982  * kthread_flush_work - flush a kthread_work
983  * @work: work to flush
984  *
985  * If @work is queued or executing, wait for it to finish execution.
986  */
987 void kthread_flush_work(struct kthread_work *work)
988 {
989 	struct kthread_flush_work fwork = {
990 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
991 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
992 	};
993 	struct kthread_worker *worker;
994 	bool noop = false;
995 
996 	worker = work->worker;
997 	if (!worker)
998 		return;
999 
1000 	raw_spin_lock_irq(&worker->lock);
1001 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1002 	WARN_ON_ONCE(work->worker != worker);
1003 
1004 	if (!list_empty(&work->node))
1005 		kthread_insert_work(worker, &fwork.work, work->node.next);
1006 	else if (worker->current_work == work)
1007 		kthread_insert_work(worker, &fwork.work,
1008 				    worker->work_list.next);
1009 	else
1010 		noop = true;
1011 
1012 	raw_spin_unlock_irq(&worker->lock);
1013 
1014 	if (!noop)
1015 		wait_for_completion(&fwork.done);
1016 }
1017 EXPORT_SYMBOL_GPL(kthread_flush_work);
1018 
1019 /*
1020  * This function removes the work from the worker queue. Also it makes sure
1021  * that it won't get queued later via the delayed work's timer.
1022  *
1023  * The work might still be in use when this function finishes. See the
1024  * current_work proceed by the worker.
1025  *
1026  * Return: %true if @work was pending and successfully canceled,
1027  *	%false if @work was not pending
1028  */
1029 static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork,
1030 				  unsigned long *flags)
1031 {
1032 	/* Try to cancel the timer if exists. */
1033 	if (is_dwork) {
1034 		struct kthread_delayed_work *dwork =
1035 			container_of(work, struct kthread_delayed_work, work);
1036 		struct kthread_worker *worker = work->worker;
1037 
1038 		/*
1039 		 * del_timer_sync() must be called to make sure that the timer
1040 		 * callback is not running. The lock must be temporary released
1041 		 * to avoid a deadlock with the callback. In the meantime,
1042 		 * any queuing is blocked by setting the canceling counter.
1043 		 */
1044 		work->canceling++;
1045 		raw_spin_unlock_irqrestore(&worker->lock, *flags);
1046 		del_timer_sync(&dwork->timer);
1047 		raw_spin_lock_irqsave(&worker->lock, *flags);
1048 		work->canceling--;
1049 	}
1050 
1051 	/*
1052 	 * Try to remove the work from a worker list. It might either
1053 	 * be from worker->work_list or from worker->delayed_work_list.
1054 	 */
1055 	if (!list_empty(&work->node)) {
1056 		list_del_init(&work->node);
1057 		return true;
1058 	}
1059 
1060 	return false;
1061 }
1062 
1063 /**
1064  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1065  * @worker: kthread worker to use
1066  * @dwork: kthread delayed work to queue
1067  * @delay: number of jiffies to wait before queuing
1068  *
1069  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1070  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1071  * @work is guaranteed to be queued immediately.
1072  *
1073  * Return: %true if @dwork was pending and its timer was modified,
1074  * %false otherwise.
1075  *
1076  * A special case is when the work is being canceled in parallel.
1077  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1078  * or yet another kthread_mod_delayed_work() call. We let the other command
1079  * win and return %false here. The caller is supposed to synchronize these
1080  * operations a reasonable way.
1081  *
1082  * This function is safe to call from any context including IRQ handler.
1083  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1084  * for details.
1085  */
1086 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1087 			      struct kthread_delayed_work *dwork,
1088 			      unsigned long delay)
1089 {
1090 	struct kthread_work *work = &dwork->work;
1091 	unsigned long flags;
1092 	int ret = false;
1093 
1094 	raw_spin_lock_irqsave(&worker->lock, flags);
1095 
1096 	/* Do not bother with canceling when never queued. */
1097 	if (!work->worker)
1098 		goto fast_queue;
1099 
1100 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1101 	WARN_ON_ONCE(work->worker != worker);
1102 
1103 	/* Do not fight with another command that is canceling this work. */
1104 	if (work->canceling)
1105 		goto out;
1106 
1107 	ret = __kthread_cancel_work(work, true, &flags);
1108 fast_queue:
1109 	__kthread_queue_delayed_work(worker, dwork, delay);
1110 out:
1111 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1112 	return ret;
1113 }
1114 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1115 
1116 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1117 {
1118 	struct kthread_worker *worker = work->worker;
1119 	unsigned long flags;
1120 	int ret = false;
1121 
1122 	if (!worker)
1123 		goto out;
1124 
1125 	raw_spin_lock_irqsave(&worker->lock, flags);
1126 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1127 	WARN_ON_ONCE(work->worker != worker);
1128 
1129 	ret = __kthread_cancel_work(work, is_dwork, &flags);
1130 
1131 	if (worker->current_work != work)
1132 		goto out_fast;
1133 
1134 	/*
1135 	 * The work is in progress and we need to wait with the lock released.
1136 	 * In the meantime, block any queuing by setting the canceling counter.
1137 	 */
1138 	work->canceling++;
1139 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1140 	kthread_flush_work(work);
1141 	raw_spin_lock_irqsave(&worker->lock, flags);
1142 	work->canceling--;
1143 
1144 out_fast:
1145 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1146 out:
1147 	return ret;
1148 }
1149 
1150 /**
1151  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1152  * @work: the kthread work to cancel
1153  *
1154  * Cancel @work and wait for its execution to finish.  This function
1155  * can be used even if the work re-queues itself. On return from this
1156  * function, @work is guaranteed to be not pending or executing on any CPU.
1157  *
1158  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1159  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1160  *
1161  * The caller must ensure that the worker on which @work was last
1162  * queued can't be destroyed before this function returns.
1163  *
1164  * Return: %true if @work was pending, %false otherwise.
1165  */
1166 bool kthread_cancel_work_sync(struct kthread_work *work)
1167 {
1168 	return __kthread_cancel_work_sync(work, false);
1169 }
1170 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1171 
1172 /**
1173  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1174  *	wait for it to finish.
1175  * @dwork: the kthread delayed work to cancel
1176  *
1177  * This is kthread_cancel_work_sync() for delayed works.
1178  *
1179  * Return: %true if @dwork was pending, %false otherwise.
1180  */
1181 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1182 {
1183 	return __kthread_cancel_work_sync(&dwork->work, true);
1184 }
1185 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1186 
1187 /**
1188  * kthread_flush_worker - flush all current works on a kthread_worker
1189  * @worker: worker to flush
1190  *
1191  * Wait until all currently executing or pending works on @worker are
1192  * finished.
1193  */
1194 void kthread_flush_worker(struct kthread_worker *worker)
1195 {
1196 	struct kthread_flush_work fwork = {
1197 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1198 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1199 	};
1200 
1201 	kthread_queue_work(worker, &fwork.work);
1202 	wait_for_completion(&fwork.done);
1203 }
1204 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1205 
1206 /**
1207  * kthread_destroy_worker - destroy a kthread worker
1208  * @worker: worker to be destroyed
1209  *
1210  * Flush and destroy @worker.  The simple flush is enough because the kthread
1211  * worker API is used only in trivial scenarios.  There are no multi-step state
1212  * machines needed.
1213  */
1214 void kthread_destroy_worker(struct kthread_worker *worker)
1215 {
1216 	struct task_struct *task;
1217 
1218 	task = worker->task;
1219 	if (WARN_ON(!task))
1220 		return;
1221 
1222 	kthread_flush_worker(worker);
1223 	kthread_stop(task);
1224 	WARN_ON(!list_empty(&worker->work_list));
1225 	kfree(worker);
1226 }
1227 EXPORT_SYMBOL(kthread_destroy_worker);
1228 
1229 /**
1230  * kthread_use_mm - make the calling kthread operate on an address space
1231  * @mm: address space to operate on
1232  */
1233 void kthread_use_mm(struct mm_struct *mm)
1234 {
1235 	struct mm_struct *active_mm;
1236 	struct task_struct *tsk = current;
1237 
1238 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1239 	WARN_ON_ONCE(tsk->mm);
1240 
1241 	task_lock(tsk);
1242 	active_mm = tsk->active_mm;
1243 	if (active_mm != mm) {
1244 		mmgrab(mm);
1245 		tsk->active_mm = mm;
1246 	}
1247 	tsk->mm = mm;
1248 	switch_mm(active_mm, mm, tsk);
1249 	task_unlock(tsk);
1250 #ifdef finish_arch_post_lock_switch
1251 	finish_arch_post_lock_switch();
1252 #endif
1253 
1254 	if (active_mm != mm)
1255 		mmdrop(active_mm);
1256 
1257 	to_kthread(tsk)->oldfs = get_fs();
1258 	set_fs(USER_DS);
1259 }
1260 EXPORT_SYMBOL_GPL(kthread_use_mm);
1261 
1262 /**
1263  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1264  * @mm: address space to operate on
1265  */
1266 void kthread_unuse_mm(struct mm_struct *mm)
1267 {
1268 	struct task_struct *tsk = current;
1269 
1270 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1271 	WARN_ON_ONCE(!tsk->mm);
1272 
1273 	set_fs(to_kthread(tsk)->oldfs);
1274 
1275 	task_lock(tsk);
1276 	sync_mm_rss(mm);
1277 	tsk->mm = NULL;
1278 	/* active_mm is still 'mm' */
1279 	enter_lazy_tlb(mm, tsk);
1280 	task_unlock(tsk);
1281 }
1282 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1283 
1284 #ifdef CONFIG_BLK_CGROUP
1285 /**
1286  * kthread_associate_blkcg - associate blkcg to current kthread
1287  * @css: the cgroup info
1288  *
1289  * Current thread must be a kthread. The thread is running jobs on behalf of
1290  * other threads. In some cases, we expect the jobs attach cgroup info of
1291  * original threads instead of that of current thread. This function stores
1292  * original thread's cgroup info in current kthread context for later
1293  * retrieval.
1294  */
1295 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1296 {
1297 	struct kthread *kthread;
1298 
1299 	if (!(current->flags & PF_KTHREAD))
1300 		return;
1301 	kthread = to_kthread(current);
1302 	if (!kthread)
1303 		return;
1304 
1305 	if (kthread->blkcg_css) {
1306 		css_put(kthread->blkcg_css);
1307 		kthread->blkcg_css = NULL;
1308 	}
1309 	if (css) {
1310 		css_get(css);
1311 		kthread->blkcg_css = css;
1312 	}
1313 }
1314 EXPORT_SYMBOL(kthread_associate_blkcg);
1315 
1316 /**
1317  * kthread_blkcg - get associated blkcg css of current kthread
1318  *
1319  * Current thread must be a kthread.
1320  */
1321 struct cgroup_subsys_state *kthread_blkcg(void)
1322 {
1323 	struct kthread *kthread;
1324 
1325 	if (current->flags & PF_KTHREAD) {
1326 		kthread = to_kthread(current);
1327 		if (kthread)
1328 			return kthread->blkcg_css;
1329 	}
1330 	return NULL;
1331 }
1332 EXPORT_SYMBOL(kthread_blkcg);
1333 #endif
1334