xref: /openbmc/linux/kernel/kthread.c (revision cead1855)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 struct kthread_create_info
39 {
40 	/* Information passed to kthread() from kthreadd. */
41 	int (*threadfn)(void *data);
42 	void *data;
43 	int node;
44 
45 	/* Result passed back to kthread_create() from kthreadd. */
46 	struct task_struct *result;
47 	struct completion *done;
48 
49 	struct list_head list;
50 };
51 
52 struct kthread {
53 	unsigned long flags;
54 	unsigned int cpu;
55 	int (*threadfn)(void *);
56 	void *data;
57 	mm_segment_t oldfs;
58 	struct completion parked;
59 	struct completion exited;
60 #ifdef CONFIG_BLK_CGROUP
61 	struct cgroup_subsys_state *blkcg_css;
62 #endif
63 };
64 
65 enum KTHREAD_BITS {
66 	KTHREAD_IS_PER_CPU = 0,
67 	KTHREAD_SHOULD_STOP,
68 	KTHREAD_SHOULD_PARK,
69 };
70 
71 static inline struct kthread *to_kthread(struct task_struct *k)
72 {
73 	WARN_ON(!(k->flags & PF_KTHREAD));
74 	return (__force void *)k->set_child_tid;
75 }
76 
77 /*
78  * Variant of to_kthread() that doesn't assume @p is a kthread.
79  *
80  * Per construction; when:
81  *
82  *   (p->flags & PF_KTHREAD) && p->set_child_tid
83  *
84  * the task is both a kthread and struct kthread is persistent. However
85  * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
86  * begin_new_exec()).
87  */
88 static inline struct kthread *__to_kthread(struct task_struct *p)
89 {
90 	void *kthread = (__force void *)p->set_child_tid;
91 	if (kthread && !(p->flags & PF_KTHREAD))
92 		kthread = NULL;
93 	return kthread;
94 }
95 
96 void set_kthread_struct(struct task_struct *p)
97 {
98 	struct kthread *kthread;
99 
100 	if (__to_kthread(p))
101 		return;
102 
103 	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
104 	/*
105 	 * We abuse ->set_child_tid to avoid the new member and because it
106 	 * can't be wrongly copied by copy_process(). We also rely on fact
107 	 * that the caller can't exec, so PF_KTHREAD can't be cleared.
108 	 */
109 	p->set_child_tid = (__force void __user *)kthread;
110 }
111 
112 void free_kthread_struct(struct task_struct *k)
113 {
114 	struct kthread *kthread;
115 
116 	/*
117 	 * Can be NULL if this kthread was created by kernel_thread()
118 	 * or if kmalloc() in kthread() failed.
119 	 */
120 	kthread = to_kthread(k);
121 #ifdef CONFIG_BLK_CGROUP
122 	WARN_ON_ONCE(kthread && kthread->blkcg_css);
123 #endif
124 	kfree(kthread);
125 }
126 
127 /**
128  * kthread_should_stop - should this kthread return now?
129  *
130  * When someone calls kthread_stop() on your kthread, it will be woken
131  * and this will return true.  You should then return, and your return
132  * value will be passed through to kthread_stop().
133  */
134 bool kthread_should_stop(void)
135 {
136 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
137 }
138 EXPORT_SYMBOL(kthread_should_stop);
139 
140 bool __kthread_should_park(struct task_struct *k)
141 {
142 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
143 }
144 EXPORT_SYMBOL_GPL(__kthread_should_park);
145 
146 /**
147  * kthread_should_park - should this kthread park now?
148  *
149  * When someone calls kthread_park() on your kthread, it will be woken
150  * and this will return true.  You should then do the necessary
151  * cleanup and call kthread_parkme()
152  *
153  * Similar to kthread_should_stop(), but this keeps the thread alive
154  * and in a park position. kthread_unpark() "restarts" the thread and
155  * calls the thread function again.
156  */
157 bool kthread_should_park(void)
158 {
159 	return __kthread_should_park(current);
160 }
161 EXPORT_SYMBOL_GPL(kthread_should_park);
162 
163 /**
164  * kthread_freezable_should_stop - should this freezable kthread return now?
165  * @was_frozen: optional out parameter, indicates whether %current was frozen
166  *
167  * kthread_should_stop() for freezable kthreads, which will enter
168  * refrigerator if necessary.  This function is safe from kthread_stop() /
169  * freezer deadlock and freezable kthreads should use this function instead
170  * of calling try_to_freeze() directly.
171  */
172 bool kthread_freezable_should_stop(bool *was_frozen)
173 {
174 	bool frozen = false;
175 
176 	might_sleep();
177 
178 	if (unlikely(freezing(current)))
179 		frozen = __refrigerator(true);
180 
181 	if (was_frozen)
182 		*was_frozen = frozen;
183 
184 	return kthread_should_stop();
185 }
186 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
187 
188 /**
189  * kthread_func - return the function specified on kthread creation
190  * @task: kthread task in question
191  *
192  * Returns NULL if the task is not a kthread.
193  */
194 void *kthread_func(struct task_struct *task)
195 {
196 	struct kthread *kthread = __to_kthread(task);
197 	if (kthread)
198 		return kthread->threadfn;
199 	return NULL;
200 }
201 EXPORT_SYMBOL_GPL(kthread_func);
202 
203 /**
204  * kthread_data - return data value specified on kthread creation
205  * @task: kthread task in question
206  *
207  * Return the data value specified when kthread @task was created.
208  * The caller is responsible for ensuring the validity of @task when
209  * calling this function.
210  */
211 void *kthread_data(struct task_struct *task)
212 {
213 	return to_kthread(task)->data;
214 }
215 EXPORT_SYMBOL_GPL(kthread_data);
216 
217 /**
218  * kthread_probe_data - speculative version of kthread_data()
219  * @task: possible kthread task in question
220  *
221  * @task could be a kthread task.  Return the data value specified when it
222  * was created if accessible.  If @task isn't a kthread task or its data is
223  * inaccessible for any reason, %NULL is returned.  This function requires
224  * that @task itself is safe to dereference.
225  */
226 void *kthread_probe_data(struct task_struct *task)
227 {
228 	struct kthread *kthread = __to_kthread(task);
229 	void *data = NULL;
230 
231 	if (kthread)
232 		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
233 	return data;
234 }
235 
236 static void __kthread_parkme(struct kthread *self)
237 {
238 	for (;;) {
239 		/*
240 		 * TASK_PARKED is a special state; we must serialize against
241 		 * possible pending wakeups to avoid store-store collisions on
242 		 * task->state.
243 		 *
244 		 * Such a collision might possibly result in the task state
245 		 * changin from TASK_PARKED and us failing the
246 		 * wait_task_inactive() in kthread_park().
247 		 */
248 		set_special_state(TASK_PARKED);
249 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
250 			break;
251 
252 		/*
253 		 * Thread is going to call schedule(), do not preempt it,
254 		 * or the caller of kthread_park() may spend more time in
255 		 * wait_task_inactive().
256 		 */
257 		preempt_disable();
258 		complete(&self->parked);
259 		schedule_preempt_disabled();
260 		preempt_enable();
261 	}
262 	__set_current_state(TASK_RUNNING);
263 }
264 
265 void kthread_parkme(void)
266 {
267 	__kthread_parkme(to_kthread(current));
268 }
269 EXPORT_SYMBOL_GPL(kthread_parkme);
270 
271 /**
272  * kthread_exit - Cause the current kthread return @result to kthread_stop().
273  * @result: The integer value to return to kthread_stop().
274  *
275  * While kthread_exit can be called directly, it exists so that
276  * functions which do some additional work in non-modular code such as
277  * module_put_and_kthread_exit can be implemented.
278  *
279  * Does not return.
280  */
281 void __noreturn kthread_exit(long result)
282 {
283 	do_exit(result);
284 }
285 
286 /**
287  * kthread_complete_and exit - Exit the current kthread.
288  * @comp: Completion to complete
289  * @code: The integer value to return to kthread_stop().
290  *
291  * If present complete @comp and the reuturn code to kthread_stop().
292  *
293  * A kernel thread whose module may be removed after the completion of
294  * @comp can use this function exit safely.
295  *
296  * Does not return.
297  */
298 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
299 {
300 	if (comp)
301 		complete(comp);
302 
303 	kthread_exit(code);
304 }
305 EXPORT_SYMBOL(kthread_complete_and_exit);
306 
307 static int kthread(void *_create)
308 {
309 	static const struct sched_param param = { .sched_priority = 0 };
310 	/* Copy data: it's on kthread's stack */
311 	struct kthread_create_info *create = _create;
312 	int (*threadfn)(void *data) = create->threadfn;
313 	void *data = create->data;
314 	struct completion *done;
315 	struct kthread *self;
316 	int ret;
317 
318 	set_kthread_struct(current);
319 	self = to_kthread(current);
320 
321 	/* If user was SIGKILLed, I release the structure. */
322 	done = xchg(&create->done, NULL);
323 	if (!done) {
324 		kfree(create);
325 		kthread_exit(-EINTR);
326 	}
327 
328 	if (!self) {
329 		create->result = ERR_PTR(-ENOMEM);
330 		complete(done);
331 		kthread_exit(-ENOMEM);
332 	}
333 
334 	self->threadfn = threadfn;
335 	self->data = data;
336 	init_completion(&self->exited);
337 	init_completion(&self->parked);
338 	current->vfork_done = &self->exited;
339 
340 	/*
341 	 * The new thread inherited kthreadd's priority and CPU mask. Reset
342 	 * back to default in case they have been changed.
343 	 */
344 	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
345 	set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_KTHREAD));
346 
347 	/* OK, tell user we're spawned, wait for stop or wakeup */
348 	__set_current_state(TASK_UNINTERRUPTIBLE);
349 	create->result = current;
350 	/*
351 	 * Thread is going to call schedule(), do not preempt it,
352 	 * or the creator may spend more time in wait_task_inactive().
353 	 */
354 	preempt_disable();
355 	complete(done);
356 	schedule_preempt_disabled();
357 	preempt_enable();
358 
359 	ret = -EINTR;
360 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
361 		cgroup_kthread_ready();
362 		__kthread_parkme(self);
363 		ret = threadfn(data);
364 	}
365 	kthread_exit(ret);
366 }
367 
368 /* called from kernel_clone() to get node information for about to be created task */
369 int tsk_fork_get_node(struct task_struct *tsk)
370 {
371 #ifdef CONFIG_NUMA
372 	if (tsk == kthreadd_task)
373 		return tsk->pref_node_fork;
374 #endif
375 	return NUMA_NO_NODE;
376 }
377 
378 static void create_kthread(struct kthread_create_info *create)
379 {
380 	int pid;
381 
382 #ifdef CONFIG_NUMA
383 	current->pref_node_fork = create->node;
384 #endif
385 	/* We want our own signal handler (we take no signals by default). */
386 	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
387 	if (pid < 0) {
388 		/* If user was SIGKILLed, I release the structure. */
389 		struct completion *done = xchg(&create->done, NULL);
390 
391 		if (!done) {
392 			kfree(create);
393 			return;
394 		}
395 		create->result = ERR_PTR(pid);
396 		complete(done);
397 	}
398 }
399 
400 static __printf(4, 0)
401 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
402 						    void *data, int node,
403 						    const char namefmt[],
404 						    va_list args)
405 {
406 	DECLARE_COMPLETION_ONSTACK(done);
407 	struct task_struct *task;
408 	struct kthread_create_info *create = kmalloc(sizeof(*create),
409 						     GFP_KERNEL);
410 
411 	if (!create)
412 		return ERR_PTR(-ENOMEM);
413 	create->threadfn = threadfn;
414 	create->data = data;
415 	create->node = node;
416 	create->done = &done;
417 
418 	spin_lock(&kthread_create_lock);
419 	list_add_tail(&create->list, &kthread_create_list);
420 	spin_unlock(&kthread_create_lock);
421 
422 	wake_up_process(kthreadd_task);
423 	/*
424 	 * Wait for completion in killable state, for I might be chosen by
425 	 * the OOM killer while kthreadd is trying to allocate memory for
426 	 * new kernel thread.
427 	 */
428 	if (unlikely(wait_for_completion_killable(&done))) {
429 		/*
430 		 * If I was SIGKILLed before kthreadd (or new kernel thread)
431 		 * calls complete(), leave the cleanup of this structure to
432 		 * that thread.
433 		 */
434 		if (xchg(&create->done, NULL))
435 			return ERR_PTR(-EINTR);
436 		/*
437 		 * kthreadd (or new kernel thread) will call complete()
438 		 * shortly.
439 		 */
440 		wait_for_completion(&done);
441 	}
442 	task = create->result;
443 	if (!IS_ERR(task)) {
444 		char name[TASK_COMM_LEN];
445 
446 		/*
447 		 * task is already visible to other tasks, so updating
448 		 * COMM must be protected.
449 		 */
450 		vsnprintf(name, sizeof(name), namefmt, args);
451 		set_task_comm(task, name);
452 	}
453 	kfree(create);
454 	return task;
455 }
456 
457 /**
458  * kthread_create_on_node - create a kthread.
459  * @threadfn: the function to run until signal_pending(current).
460  * @data: data ptr for @threadfn.
461  * @node: task and thread structures for the thread are allocated on this node
462  * @namefmt: printf-style name for the thread.
463  *
464  * Description: This helper function creates and names a kernel
465  * thread.  The thread will be stopped: use wake_up_process() to start
466  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
467  * is affine to all CPUs.
468  *
469  * If thread is going to be bound on a particular cpu, give its node
470  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
471  * When woken, the thread will run @threadfn() with @data as its
472  * argument. @threadfn() can either return directly if it is a
473  * standalone thread for which no one will call kthread_stop(), or
474  * return when 'kthread_should_stop()' is true (which means
475  * kthread_stop() has been called).  The return value should be zero
476  * or a negative error number; it will be passed to kthread_stop().
477  *
478  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
479  */
480 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
481 					   void *data, int node,
482 					   const char namefmt[],
483 					   ...)
484 {
485 	struct task_struct *task;
486 	va_list args;
487 
488 	va_start(args, namefmt);
489 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
490 	va_end(args);
491 
492 	return task;
493 }
494 EXPORT_SYMBOL(kthread_create_on_node);
495 
496 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
497 {
498 	unsigned long flags;
499 
500 	if (!wait_task_inactive(p, state)) {
501 		WARN_ON(1);
502 		return;
503 	}
504 
505 	/* It's safe because the task is inactive. */
506 	raw_spin_lock_irqsave(&p->pi_lock, flags);
507 	do_set_cpus_allowed(p, mask);
508 	p->flags |= PF_NO_SETAFFINITY;
509 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
510 }
511 
512 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
513 {
514 	__kthread_bind_mask(p, cpumask_of(cpu), state);
515 }
516 
517 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
518 {
519 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
520 }
521 
522 /**
523  * kthread_bind - bind a just-created kthread to a cpu.
524  * @p: thread created by kthread_create().
525  * @cpu: cpu (might not be online, must be possible) for @k to run on.
526  *
527  * Description: This function is equivalent to set_cpus_allowed(),
528  * except that @cpu doesn't need to be online, and the thread must be
529  * stopped (i.e., just returned from kthread_create()).
530  */
531 void kthread_bind(struct task_struct *p, unsigned int cpu)
532 {
533 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
534 }
535 EXPORT_SYMBOL(kthread_bind);
536 
537 /**
538  * kthread_create_on_cpu - Create a cpu bound kthread
539  * @threadfn: the function to run until signal_pending(current).
540  * @data: data ptr for @threadfn.
541  * @cpu: The cpu on which the thread should be bound,
542  * @namefmt: printf-style name for the thread. Format is restricted
543  *	     to "name.*%u". Code fills in cpu number.
544  *
545  * Description: This helper function creates and names a kernel thread
546  */
547 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
548 					  void *data, unsigned int cpu,
549 					  const char *namefmt)
550 {
551 	struct task_struct *p;
552 
553 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
554 				   cpu);
555 	if (IS_ERR(p))
556 		return p;
557 	kthread_bind(p, cpu);
558 	/* CPU hotplug need to bind once again when unparking the thread. */
559 	to_kthread(p)->cpu = cpu;
560 	return p;
561 }
562 
563 void kthread_set_per_cpu(struct task_struct *k, int cpu)
564 {
565 	struct kthread *kthread = to_kthread(k);
566 	if (!kthread)
567 		return;
568 
569 	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
570 
571 	if (cpu < 0) {
572 		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
573 		return;
574 	}
575 
576 	kthread->cpu = cpu;
577 	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
578 }
579 
580 bool kthread_is_per_cpu(struct task_struct *p)
581 {
582 	struct kthread *kthread = __to_kthread(p);
583 	if (!kthread)
584 		return false;
585 
586 	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
587 }
588 
589 /**
590  * kthread_unpark - unpark a thread created by kthread_create().
591  * @k:		thread created by kthread_create().
592  *
593  * Sets kthread_should_park() for @k to return false, wakes it, and
594  * waits for it to return. If the thread is marked percpu then its
595  * bound to the cpu again.
596  */
597 void kthread_unpark(struct task_struct *k)
598 {
599 	struct kthread *kthread = to_kthread(k);
600 
601 	/*
602 	 * Newly created kthread was parked when the CPU was offline.
603 	 * The binding was lost and we need to set it again.
604 	 */
605 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
606 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
607 
608 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
609 	/*
610 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
611 	 */
612 	wake_up_state(k, TASK_PARKED);
613 }
614 EXPORT_SYMBOL_GPL(kthread_unpark);
615 
616 /**
617  * kthread_park - park a thread created by kthread_create().
618  * @k: thread created by kthread_create().
619  *
620  * Sets kthread_should_park() for @k to return true, wakes it, and
621  * waits for it to return. This can also be called after kthread_create()
622  * instead of calling wake_up_process(): the thread will park without
623  * calling threadfn().
624  *
625  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
626  * If called by the kthread itself just the park bit is set.
627  */
628 int kthread_park(struct task_struct *k)
629 {
630 	struct kthread *kthread = to_kthread(k);
631 
632 	if (WARN_ON(k->flags & PF_EXITING))
633 		return -ENOSYS;
634 
635 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
636 		return -EBUSY;
637 
638 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
639 	if (k != current) {
640 		wake_up_process(k);
641 		/*
642 		 * Wait for __kthread_parkme() to complete(), this means we
643 		 * _will_ have TASK_PARKED and are about to call schedule().
644 		 */
645 		wait_for_completion(&kthread->parked);
646 		/*
647 		 * Now wait for that schedule() to complete and the task to
648 		 * get scheduled out.
649 		 */
650 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
651 	}
652 
653 	return 0;
654 }
655 EXPORT_SYMBOL_GPL(kthread_park);
656 
657 /**
658  * kthread_stop - stop a thread created by kthread_create().
659  * @k: thread created by kthread_create().
660  *
661  * Sets kthread_should_stop() for @k to return true, wakes it, and
662  * waits for it to exit. This can also be called after kthread_create()
663  * instead of calling wake_up_process(): the thread will exit without
664  * calling threadfn().
665  *
666  * If threadfn() may call kthread_exit() itself, the caller must ensure
667  * task_struct can't go away.
668  *
669  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
670  * was never called.
671  */
672 int kthread_stop(struct task_struct *k)
673 {
674 	struct kthread *kthread;
675 	int ret;
676 
677 	trace_sched_kthread_stop(k);
678 
679 	get_task_struct(k);
680 	kthread = to_kthread(k);
681 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
682 	kthread_unpark(k);
683 	wake_up_process(k);
684 	wait_for_completion(&kthread->exited);
685 	ret = k->exit_code;
686 	put_task_struct(k);
687 
688 	trace_sched_kthread_stop_ret(ret);
689 	return ret;
690 }
691 EXPORT_SYMBOL(kthread_stop);
692 
693 int kthreadd(void *unused)
694 {
695 	struct task_struct *tsk = current;
696 
697 	/* Setup a clean context for our children to inherit. */
698 	set_task_comm(tsk, "kthreadd");
699 	ignore_signals(tsk);
700 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
701 	set_mems_allowed(node_states[N_MEMORY]);
702 
703 	current->flags |= PF_NOFREEZE;
704 	cgroup_init_kthreadd();
705 
706 	for (;;) {
707 		set_current_state(TASK_INTERRUPTIBLE);
708 		if (list_empty(&kthread_create_list))
709 			schedule();
710 		__set_current_state(TASK_RUNNING);
711 
712 		spin_lock(&kthread_create_lock);
713 		while (!list_empty(&kthread_create_list)) {
714 			struct kthread_create_info *create;
715 
716 			create = list_entry(kthread_create_list.next,
717 					    struct kthread_create_info, list);
718 			list_del_init(&create->list);
719 			spin_unlock(&kthread_create_lock);
720 
721 			create_kthread(create);
722 
723 			spin_lock(&kthread_create_lock);
724 		}
725 		spin_unlock(&kthread_create_lock);
726 	}
727 
728 	return 0;
729 }
730 
731 void __kthread_init_worker(struct kthread_worker *worker,
732 				const char *name,
733 				struct lock_class_key *key)
734 {
735 	memset(worker, 0, sizeof(struct kthread_worker));
736 	raw_spin_lock_init(&worker->lock);
737 	lockdep_set_class_and_name(&worker->lock, key, name);
738 	INIT_LIST_HEAD(&worker->work_list);
739 	INIT_LIST_HEAD(&worker->delayed_work_list);
740 }
741 EXPORT_SYMBOL_GPL(__kthread_init_worker);
742 
743 /**
744  * kthread_worker_fn - kthread function to process kthread_worker
745  * @worker_ptr: pointer to initialized kthread_worker
746  *
747  * This function implements the main cycle of kthread worker. It processes
748  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
749  * is empty.
750  *
751  * The works are not allowed to keep any locks, disable preemption or interrupts
752  * when they finish. There is defined a safe point for freezing when one work
753  * finishes and before a new one is started.
754  *
755  * Also the works must not be handled by more than one worker at the same time,
756  * see also kthread_queue_work().
757  */
758 int kthread_worker_fn(void *worker_ptr)
759 {
760 	struct kthread_worker *worker = worker_ptr;
761 	struct kthread_work *work;
762 
763 	/*
764 	 * FIXME: Update the check and remove the assignment when all kthread
765 	 * worker users are created using kthread_create_worker*() functions.
766 	 */
767 	WARN_ON(worker->task && worker->task != current);
768 	worker->task = current;
769 
770 	if (worker->flags & KTW_FREEZABLE)
771 		set_freezable();
772 
773 repeat:
774 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
775 
776 	if (kthread_should_stop()) {
777 		__set_current_state(TASK_RUNNING);
778 		raw_spin_lock_irq(&worker->lock);
779 		worker->task = NULL;
780 		raw_spin_unlock_irq(&worker->lock);
781 		return 0;
782 	}
783 
784 	work = NULL;
785 	raw_spin_lock_irq(&worker->lock);
786 	if (!list_empty(&worker->work_list)) {
787 		work = list_first_entry(&worker->work_list,
788 					struct kthread_work, node);
789 		list_del_init(&work->node);
790 	}
791 	worker->current_work = work;
792 	raw_spin_unlock_irq(&worker->lock);
793 
794 	if (work) {
795 		kthread_work_func_t func = work->func;
796 		__set_current_state(TASK_RUNNING);
797 		trace_sched_kthread_work_execute_start(work);
798 		work->func(work);
799 		/*
800 		 * Avoid dereferencing work after this point.  The trace
801 		 * event only cares about the address.
802 		 */
803 		trace_sched_kthread_work_execute_end(work, func);
804 	} else if (!freezing(current))
805 		schedule();
806 
807 	try_to_freeze();
808 	cond_resched();
809 	goto repeat;
810 }
811 EXPORT_SYMBOL_GPL(kthread_worker_fn);
812 
813 static __printf(3, 0) struct kthread_worker *
814 __kthread_create_worker(int cpu, unsigned int flags,
815 			const char namefmt[], va_list args)
816 {
817 	struct kthread_worker *worker;
818 	struct task_struct *task;
819 	int node = NUMA_NO_NODE;
820 
821 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
822 	if (!worker)
823 		return ERR_PTR(-ENOMEM);
824 
825 	kthread_init_worker(worker);
826 
827 	if (cpu >= 0)
828 		node = cpu_to_node(cpu);
829 
830 	task = __kthread_create_on_node(kthread_worker_fn, worker,
831 						node, namefmt, args);
832 	if (IS_ERR(task))
833 		goto fail_task;
834 
835 	if (cpu >= 0)
836 		kthread_bind(task, cpu);
837 
838 	worker->flags = flags;
839 	worker->task = task;
840 	wake_up_process(task);
841 	return worker;
842 
843 fail_task:
844 	kfree(worker);
845 	return ERR_CAST(task);
846 }
847 
848 /**
849  * kthread_create_worker - create a kthread worker
850  * @flags: flags modifying the default behavior of the worker
851  * @namefmt: printf-style name for the kthread worker (task).
852  *
853  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
854  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
855  * when the worker was SIGKILLed.
856  */
857 struct kthread_worker *
858 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
859 {
860 	struct kthread_worker *worker;
861 	va_list args;
862 
863 	va_start(args, namefmt);
864 	worker = __kthread_create_worker(-1, flags, namefmt, args);
865 	va_end(args);
866 
867 	return worker;
868 }
869 EXPORT_SYMBOL(kthread_create_worker);
870 
871 /**
872  * kthread_create_worker_on_cpu - create a kthread worker and bind it
873  *	to a given CPU and the associated NUMA node.
874  * @cpu: CPU number
875  * @flags: flags modifying the default behavior of the worker
876  * @namefmt: printf-style name for the kthread worker (task).
877  *
878  * Use a valid CPU number if you want to bind the kthread worker
879  * to the given CPU and the associated NUMA node.
880  *
881  * A good practice is to add the cpu number also into the worker name.
882  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
883  *
884  * CPU hotplug:
885  * The kthread worker API is simple and generic. It just provides a way
886  * to create, use, and destroy workers.
887  *
888  * It is up to the API user how to handle CPU hotplug. They have to decide
889  * how to handle pending work items, prevent queuing new ones, and
890  * restore the functionality when the CPU goes off and on. There are a
891  * few catches:
892  *
893  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
894  *
895  *    - The worker might not exist when the CPU was off when the user
896  *      created the workers.
897  *
898  * Good practice is to implement two CPU hotplug callbacks and to
899  * destroy/create the worker when the CPU goes down/up.
900  *
901  * Return:
902  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
903  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
904  * when the worker was SIGKILLed.
905  */
906 struct kthread_worker *
907 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
908 			     const char namefmt[], ...)
909 {
910 	struct kthread_worker *worker;
911 	va_list args;
912 
913 	va_start(args, namefmt);
914 	worker = __kthread_create_worker(cpu, flags, namefmt, args);
915 	va_end(args);
916 
917 	return worker;
918 }
919 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
920 
921 /*
922  * Returns true when the work could not be queued at the moment.
923  * It happens when it is already pending in a worker list
924  * or when it is being cancelled.
925  */
926 static inline bool queuing_blocked(struct kthread_worker *worker,
927 				   struct kthread_work *work)
928 {
929 	lockdep_assert_held(&worker->lock);
930 
931 	return !list_empty(&work->node) || work->canceling;
932 }
933 
934 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
935 					     struct kthread_work *work)
936 {
937 	lockdep_assert_held(&worker->lock);
938 	WARN_ON_ONCE(!list_empty(&work->node));
939 	/* Do not use a work with >1 worker, see kthread_queue_work() */
940 	WARN_ON_ONCE(work->worker && work->worker != worker);
941 }
942 
943 /* insert @work before @pos in @worker */
944 static void kthread_insert_work(struct kthread_worker *worker,
945 				struct kthread_work *work,
946 				struct list_head *pos)
947 {
948 	kthread_insert_work_sanity_check(worker, work);
949 
950 	trace_sched_kthread_work_queue_work(worker, work);
951 
952 	list_add_tail(&work->node, pos);
953 	work->worker = worker;
954 	if (!worker->current_work && likely(worker->task))
955 		wake_up_process(worker->task);
956 }
957 
958 /**
959  * kthread_queue_work - queue a kthread_work
960  * @worker: target kthread_worker
961  * @work: kthread_work to queue
962  *
963  * Queue @work to work processor @task for async execution.  @task
964  * must have been created with kthread_worker_create().  Returns %true
965  * if @work was successfully queued, %false if it was already pending.
966  *
967  * Reinitialize the work if it needs to be used by another worker.
968  * For example, when the worker was stopped and started again.
969  */
970 bool kthread_queue_work(struct kthread_worker *worker,
971 			struct kthread_work *work)
972 {
973 	bool ret = false;
974 	unsigned long flags;
975 
976 	raw_spin_lock_irqsave(&worker->lock, flags);
977 	if (!queuing_blocked(worker, work)) {
978 		kthread_insert_work(worker, work, &worker->work_list);
979 		ret = true;
980 	}
981 	raw_spin_unlock_irqrestore(&worker->lock, flags);
982 	return ret;
983 }
984 EXPORT_SYMBOL_GPL(kthread_queue_work);
985 
986 /**
987  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
988  *	delayed work when the timer expires.
989  * @t: pointer to the expired timer
990  *
991  * The format of the function is defined by struct timer_list.
992  * It should have been called from irqsafe timer with irq already off.
993  */
994 void kthread_delayed_work_timer_fn(struct timer_list *t)
995 {
996 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
997 	struct kthread_work *work = &dwork->work;
998 	struct kthread_worker *worker = work->worker;
999 	unsigned long flags;
1000 
1001 	/*
1002 	 * This might happen when a pending work is reinitialized.
1003 	 * It means that it is used a wrong way.
1004 	 */
1005 	if (WARN_ON_ONCE(!worker))
1006 		return;
1007 
1008 	raw_spin_lock_irqsave(&worker->lock, flags);
1009 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1010 	WARN_ON_ONCE(work->worker != worker);
1011 
1012 	/* Move the work from worker->delayed_work_list. */
1013 	WARN_ON_ONCE(list_empty(&work->node));
1014 	list_del_init(&work->node);
1015 	if (!work->canceling)
1016 		kthread_insert_work(worker, work, &worker->work_list);
1017 
1018 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1019 }
1020 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1021 
1022 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1023 					 struct kthread_delayed_work *dwork,
1024 					 unsigned long delay)
1025 {
1026 	struct timer_list *timer = &dwork->timer;
1027 	struct kthread_work *work = &dwork->work;
1028 
1029 	WARN_ON_FUNCTION_MISMATCH(timer->function,
1030 				  kthread_delayed_work_timer_fn);
1031 
1032 	/*
1033 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1034 	 * both optimization and correctness.  The earliest @timer can
1035 	 * expire is on the closest next tick and delayed_work users depend
1036 	 * on that there's no such delay when @delay is 0.
1037 	 */
1038 	if (!delay) {
1039 		kthread_insert_work(worker, work, &worker->work_list);
1040 		return;
1041 	}
1042 
1043 	/* Be paranoid and try to detect possible races already now. */
1044 	kthread_insert_work_sanity_check(worker, work);
1045 
1046 	list_add(&work->node, &worker->delayed_work_list);
1047 	work->worker = worker;
1048 	timer->expires = jiffies + delay;
1049 	add_timer(timer);
1050 }
1051 
1052 /**
1053  * kthread_queue_delayed_work - queue the associated kthread work
1054  *	after a delay.
1055  * @worker: target kthread_worker
1056  * @dwork: kthread_delayed_work to queue
1057  * @delay: number of jiffies to wait before queuing
1058  *
1059  * If the work has not been pending it starts a timer that will queue
1060  * the work after the given @delay. If @delay is zero, it queues the
1061  * work immediately.
1062  *
1063  * Return: %false if the @work has already been pending. It means that
1064  * either the timer was running or the work was queued. It returns %true
1065  * otherwise.
1066  */
1067 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1068 				struct kthread_delayed_work *dwork,
1069 				unsigned long delay)
1070 {
1071 	struct kthread_work *work = &dwork->work;
1072 	unsigned long flags;
1073 	bool ret = false;
1074 
1075 	raw_spin_lock_irqsave(&worker->lock, flags);
1076 
1077 	if (!queuing_blocked(worker, work)) {
1078 		__kthread_queue_delayed_work(worker, dwork, delay);
1079 		ret = true;
1080 	}
1081 
1082 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1083 	return ret;
1084 }
1085 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1086 
1087 struct kthread_flush_work {
1088 	struct kthread_work	work;
1089 	struct completion	done;
1090 };
1091 
1092 static void kthread_flush_work_fn(struct kthread_work *work)
1093 {
1094 	struct kthread_flush_work *fwork =
1095 		container_of(work, struct kthread_flush_work, work);
1096 	complete(&fwork->done);
1097 }
1098 
1099 /**
1100  * kthread_flush_work - flush a kthread_work
1101  * @work: work to flush
1102  *
1103  * If @work is queued or executing, wait for it to finish execution.
1104  */
1105 void kthread_flush_work(struct kthread_work *work)
1106 {
1107 	struct kthread_flush_work fwork = {
1108 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1109 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1110 	};
1111 	struct kthread_worker *worker;
1112 	bool noop = false;
1113 
1114 	worker = work->worker;
1115 	if (!worker)
1116 		return;
1117 
1118 	raw_spin_lock_irq(&worker->lock);
1119 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1120 	WARN_ON_ONCE(work->worker != worker);
1121 
1122 	if (!list_empty(&work->node))
1123 		kthread_insert_work(worker, &fwork.work, work->node.next);
1124 	else if (worker->current_work == work)
1125 		kthread_insert_work(worker, &fwork.work,
1126 				    worker->work_list.next);
1127 	else
1128 		noop = true;
1129 
1130 	raw_spin_unlock_irq(&worker->lock);
1131 
1132 	if (!noop)
1133 		wait_for_completion(&fwork.done);
1134 }
1135 EXPORT_SYMBOL_GPL(kthread_flush_work);
1136 
1137 /*
1138  * Make sure that the timer is neither set nor running and could
1139  * not manipulate the work list_head any longer.
1140  *
1141  * The function is called under worker->lock. The lock is temporary
1142  * released but the timer can't be set again in the meantime.
1143  */
1144 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1145 					      unsigned long *flags)
1146 {
1147 	struct kthread_delayed_work *dwork =
1148 		container_of(work, struct kthread_delayed_work, work);
1149 	struct kthread_worker *worker = work->worker;
1150 
1151 	/*
1152 	 * del_timer_sync() must be called to make sure that the timer
1153 	 * callback is not running. The lock must be temporary released
1154 	 * to avoid a deadlock with the callback. In the meantime,
1155 	 * any queuing is blocked by setting the canceling counter.
1156 	 */
1157 	work->canceling++;
1158 	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1159 	del_timer_sync(&dwork->timer);
1160 	raw_spin_lock_irqsave(&worker->lock, *flags);
1161 	work->canceling--;
1162 }
1163 
1164 /*
1165  * This function removes the work from the worker queue.
1166  *
1167  * It is called under worker->lock. The caller must make sure that
1168  * the timer used by delayed work is not running, e.g. by calling
1169  * kthread_cancel_delayed_work_timer().
1170  *
1171  * The work might still be in use when this function finishes. See the
1172  * current_work proceed by the worker.
1173  *
1174  * Return: %true if @work was pending and successfully canceled,
1175  *	%false if @work was not pending
1176  */
1177 static bool __kthread_cancel_work(struct kthread_work *work)
1178 {
1179 	/*
1180 	 * Try to remove the work from a worker list. It might either
1181 	 * be from worker->work_list or from worker->delayed_work_list.
1182 	 */
1183 	if (!list_empty(&work->node)) {
1184 		list_del_init(&work->node);
1185 		return true;
1186 	}
1187 
1188 	return false;
1189 }
1190 
1191 /**
1192  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1193  * @worker: kthread worker to use
1194  * @dwork: kthread delayed work to queue
1195  * @delay: number of jiffies to wait before queuing
1196  *
1197  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1198  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1199  * @work is guaranteed to be queued immediately.
1200  *
1201  * Return: %false if @dwork was idle and queued, %true otherwise.
1202  *
1203  * A special case is when the work is being canceled in parallel.
1204  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1205  * or yet another kthread_mod_delayed_work() call. We let the other command
1206  * win and return %true here. The return value can be used for reference
1207  * counting and the number of queued works stays the same. Anyway, the caller
1208  * is supposed to synchronize these operations a reasonable way.
1209  *
1210  * This function is safe to call from any context including IRQ handler.
1211  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1212  * for details.
1213  */
1214 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1215 			      struct kthread_delayed_work *dwork,
1216 			      unsigned long delay)
1217 {
1218 	struct kthread_work *work = &dwork->work;
1219 	unsigned long flags;
1220 	int ret;
1221 
1222 	raw_spin_lock_irqsave(&worker->lock, flags);
1223 
1224 	/* Do not bother with canceling when never queued. */
1225 	if (!work->worker) {
1226 		ret = false;
1227 		goto fast_queue;
1228 	}
1229 
1230 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1231 	WARN_ON_ONCE(work->worker != worker);
1232 
1233 	/*
1234 	 * Temporary cancel the work but do not fight with another command
1235 	 * that is canceling the work as well.
1236 	 *
1237 	 * It is a bit tricky because of possible races with another
1238 	 * mod_delayed_work() and cancel_delayed_work() callers.
1239 	 *
1240 	 * The timer must be canceled first because worker->lock is released
1241 	 * when doing so. But the work can be removed from the queue (list)
1242 	 * only when it can be queued again so that the return value can
1243 	 * be used for reference counting.
1244 	 */
1245 	kthread_cancel_delayed_work_timer(work, &flags);
1246 	if (work->canceling) {
1247 		/* The number of works in the queue does not change. */
1248 		ret = true;
1249 		goto out;
1250 	}
1251 	ret = __kthread_cancel_work(work);
1252 
1253 fast_queue:
1254 	__kthread_queue_delayed_work(worker, dwork, delay);
1255 out:
1256 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1257 	return ret;
1258 }
1259 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1260 
1261 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1262 {
1263 	struct kthread_worker *worker = work->worker;
1264 	unsigned long flags;
1265 	int ret = false;
1266 
1267 	if (!worker)
1268 		goto out;
1269 
1270 	raw_spin_lock_irqsave(&worker->lock, flags);
1271 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1272 	WARN_ON_ONCE(work->worker != worker);
1273 
1274 	if (is_dwork)
1275 		kthread_cancel_delayed_work_timer(work, &flags);
1276 
1277 	ret = __kthread_cancel_work(work);
1278 
1279 	if (worker->current_work != work)
1280 		goto out_fast;
1281 
1282 	/*
1283 	 * The work is in progress and we need to wait with the lock released.
1284 	 * In the meantime, block any queuing by setting the canceling counter.
1285 	 */
1286 	work->canceling++;
1287 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1288 	kthread_flush_work(work);
1289 	raw_spin_lock_irqsave(&worker->lock, flags);
1290 	work->canceling--;
1291 
1292 out_fast:
1293 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1294 out:
1295 	return ret;
1296 }
1297 
1298 /**
1299  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1300  * @work: the kthread work to cancel
1301  *
1302  * Cancel @work and wait for its execution to finish.  This function
1303  * can be used even if the work re-queues itself. On return from this
1304  * function, @work is guaranteed to be not pending or executing on any CPU.
1305  *
1306  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1307  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1308  *
1309  * The caller must ensure that the worker on which @work was last
1310  * queued can't be destroyed before this function returns.
1311  *
1312  * Return: %true if @work was pending, %false otherwise.
1313  */
1314 bool kthread_cancel_work_sync(struct kthread_work *work)
1315 {
1316 	return __kthread_cancel_work_sync(work, false);
1317 }
1318 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1319 
1320 /**
1321  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1322  *	wait for it to finish.
1323  * @dwork: the kthread delayed work to cancel
1324  *
1325  * This is kthread_cancel_work_sync() for delayed works.
1326  *
1327  * Return: %true if @dwork was pending, %false otherwise.
1328  */
1329 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1330 {
1331 	return __kthread_cancel_work_sync(&dwork->work, true);
1332 }
1333 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1334 
1335 /**
1336  * kthread_flush_worker - flush all current works on a kthread_worker
1337  * @worker: worker to flush
1338  *
1339  * Wait until all currently executing or pending works on @worker are
1340  * finished.
1341  */
1342 void kthread_flush_worker(struct kthread_worker *worker)
1343 {
1344 	struct kthread_flush_work fwork = {
1345 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1346 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1347 	};
1348 
1349 	kthread_queue_work(worker, &fwork.work);
1350 	wait_for_completion(&fwork.done);
1351 }
1352 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1353 
1354 /**
1355  * kthread_destroy_worker - destroy a kthread worker
1356  * @worker: worker to be destroyed
1357  *
1358  * Flush and destroy @worker.  The simple flush is enough because the kthread
1359  * worker API is used only in trivial scenarios.  There are no multi-step state
1360  * machines needed.
1361  */
1362 void kthread_destroy_worker(struct kthread_worker *worker)
1363 {
1364 	struct task_struct *task;
1365 
1366 	task = worker->task;
1367 	if (WARN_ON(!task))
1368 		return;
1369 
1370 	kthread_flush_worker(worker);
1371 	kthread_stop(task);
1372 	WARN_ON(!list_empty(&worker->work_list));
1373 	kfree(worker);
1374 }
1375 EXPORT_SYMBOL(kthread_destroy_worker);
1376 
1377 /**
1378  * kthread_use_mm - make the calling kthread operate on an address space
1379  * @mm: address space to operate on
1380  */
1381 void kthread_use_mm(struct mm_struct *mm)
1382 {
1383 	struct mm_struct *active_mm;
1384 	struct task_struct *tsk = current;
1385 
1386 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1387 	WARN_ON_ONCE(tsk->mm);
1388 
1389 	task_lock(tsk);
1390 	/* Hold off tlb flush IPIs while switching mm's */
1391 	local_irq_disable();
1392 	active_mm = tsk->active_mm;
1393 	if (active_mm != mm) {
1394 		mmgrab(mm);
1395 		tsk->active_mm = mm;
1396 	}
1397 	tsk->mm = mm;
1398 	membarrier_update_current_mm(mm);
1399 	switch_mm_irqs_off(active_mm, mm, tsk);
1400 	local_irq_enable();
1401 	task_unlock(tsk);
1402 #ifdef finish_arch_post_lock_switch
1403 	finish_arch_post_lock_switch();
1404 #endif
1405 
1406 	/*
1407 	 * When a kthread starts operating on an address space, the loop
1408 	 * in membarrier_{private,global}_expedited() may not observe
1409 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1410 	 * memory barrier after storing to tsk->mm, before accessing
1411 	 * user-space memory. A full memory barrier for membarrier
1412 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1413 	 * mmdrop(), or explicitly with smp_mb().
1414 	 */
1415 	if (active_mm != mm)
1416 		mmdrop(active_mm);
1417 	else
1418 		smp_mb();
1419 
1420 	to_kthread(tsk)->oldfs = force_uaccess_begin();
1421 }
1422 EXPORT_SYMBOL_GPL(kthread_use_mm);
1423 
1424 /**
1425  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1426  * @mm: address space to operate on
1427  */
1428 void kthread_unuse_mm(struct mm_struct *mm)
1429 {
1430 	struct task_struct *tsk = current;
1431 
1432 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1433 	WARN_ON_ONCE(!tsk->mm);
1434 
1435 	force_uaccess_end(to_kthread(tsk)->oldfs);
1436 
1437 	task_lock(tsk);
1438 	/*
1439 	 * When a kthread stops operating on an address space, the loop
1440 	 * in membarrier_{private,global}_expedited() may not observe
1441 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1442 	 * memory barrier after accessing user-space memory, before
1443 	 * clearing tsk->mm.
1444 	 */
1445 	smp_mb__after_spinlock();
1446 	sync_mm_rss(mm);
1447 	local_irq_disable();
1448 	tsk->mm = NULL;
1449 	membarrier_update_current_mm(NULL);
1450 	/* active_mm is still 'mm' */
1451 	enter_lazy_tlb(mm, tsk);
1452 	local_irq_enable();
1453 	task_unlock(tsk);
1454 }
1455 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1456 
1457 #ifdef CONFIG_BLK_CGROUP
1458 /**
1459  * kthread_associate_blkcg - associate blkcg to current kthread
1460  * @css: the cgroup info
1461  *
1462  * Current thread must be a kthread. The thread is running jobs on behalf of
1463  * other threads. In some cases, we expect the jobs attach cgroup info of
1464  * original threads instead of that of current thread. This function stores
1465  * original thread's cgroup info in current kthread context for later
1466  * retrieval.
1467  */
1468 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1469 {
1470 	struct kthread *kthread;
1471 
1472 	if (!(current->flags & PF_KTHREAD))
1473 		return;
1474 	kthread = to_kthread(current);
1475 	if (!kthread)
1476 		return;
1477 
1478 	if (kthread->blkcg_css) {
1479 		css_put(kthread->blkcg_css);
1480 		kthread->blkcg_css = NULL;
1481 	}
1482 	if (css) {
1483 		css_get(css);
1484 		kthread->blkcg_css = css;
1485 	}
1486 }
1487 EXPORT_SYMBOL(kthread_associate_blkcg);
1488 
1489 /**
1490  * kthread_blkcg - get associated blkcg css of current kthread
1491  *
1492  * Current thread must be a kthread.
1493  */
1494 struct cgroup_subsys_state *kthread_blkcg(void)
1495 {
1496 	struct kthread *kthread;
1497 
1498 	if (current->flags & PF_KTHREAD) {
1499 		kthread = to_kthread(current);
1500 		if (kthread)
1501 			return kthread->blkcg_css;
1502 	}
1503 	return NULL;
1504 }
1505 EXPORT_SYMBOL(kthread_blkcg);
1506 #endif
1507