1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10 #include <uapi/linux/sched/types.h> 11 #include <linux/mm.h> 12 #include <linux/mmu_context.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/kthread.h> 17 #include <linux/completion.h> 18 #include <linux/err.h> 19 #include <linux/cgroup.h> 20 #include <linux/cpuset.h> 21 #include <linux/unistd.h> 22 #include <linux/file.h> 23 #include <linux/export.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/freezer.h> 27 #include <linux/ptrace.h> 28 #include <linux/uaccess.h> 29 #include <linux/numa.h> 30 #include <linux/sched/isolation.h> 31 #include <trace/events/sched.h> 32 33 34 static DEFINE_SPINLOCK(kthread_create_lock); 35 static LIST_HEAD(kthread_create_list); 36 struct task_struct *kthreadd_task; 37 38 struct kthread_create_info 39 { 40 /* Information passed to kthread() from kthreadd. */ 41 char *full_name; 42 int (*threadfn)(void *data); 43 void *data; 44 int node; 45 46 /* Result passed back to kthread_create() from kthreadd. */ 47 struct task_struct *result; 48 struct completion *done; 49 50 struct list_head list; 51 }; 52 53 struct kthread { 54 unsigned long flags; 55 unsigned int cpu; 56 int result; 57 int (*threadfn)(void *); 58 void *data; 59 struct completion parked; 60 struct completion exited; 61 #ifdef CONFIG_BLK_CGROUP 62 struct cgroup_subsys_state *blkcg_css; 63 #endif 64 /* To store the full name if task comm is truncated. */ 65 char *full_name; 66 }; 67 68 enum KTHREAD_BITS { 69 KTHREAD_IS_PER_CPU = 0, 70 KTHREAD_SHOULD_STOP, 71 KTHREAD_SHOULD_PARK, 72 }; 73 74 static inline struct kthread *to_kthread(struct task_struct *k) 75 { 76 WARN_ON(!(k->flags & PF_KTHREAD)); 77 return k->worker_private; 78 } 79 80 /* 81 * Variant of to_kthread() that doesn't assume @p is a kthread. 82 * 83 * Per construction; when: 84 * 85 * (p->flags & PF_KTHREAD) && p->worker_private 86 * 87 * the task is both a kthread and struct kthread is persistent. However 88 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and 89 * begin_new_exec()). 90 */ 91 static inline struct kthread *__to_kthread(struct task_struct *p) 92 { 93 void *kthread = p->worker_private; 94 if (kthread && !(p->flags & PF_KTHREAD)) 95 kthread = NULL; 96 return kthread; 97 } 98 99 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk) 100 { 101 struct kthread *kthread = to_kthread(tsk); 102 103 if (!kthread || !kthread->full_name) { 104 __get_task_comm(buf, buf_size, tsk); 105 return; 106 } 107 108 strscpy_pad(buf, kthread->full_name, buf_size); 109 } 110 111 bool set_kthread_struct(struct task_struct *p) 112 { 113 struct kthread *kthread; 114 115 if (WARN_ON_ONCE(to_kthread(p))) 116 return false; 117 118 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 119 if (!kthread) 120 return false; 121 122 init_completion(&kthread->exited); 123 init_completion(&kthread->parked); 124 p->vfork_done = &kthread->exited; 125 126 p->worker_private = kthread; 127 return true; 128 } 129 130 void free_kthread_struct(struct task_struct *k) 131 { 132 struct kthread *kthread; 133 134 /* 135 * Can be NULL if kmalloc() in set_kthread_struct() failed. 136 */ 137 kthread = to_kthread(k); 138 if (!kthread) 139 return; 140 141 #ifdef CONFIG_BLK_CGROUP 142 WARN_ON_ONCE(kthread->blkcg_css); 143 #endif 144 k->worker_private = NULL; 145 kfree(kthread->full_name); 146 kfree(kthread); 147 } 148 149 /** 150 * kthread_should_stop - should this kthread return now? 151 * 152 * When someone calls kthread_stop() on your kthread, it will be woken 153 * and this will return true. You should then return, and your return 154 * value will be passed through to kthread_stop(). 155 */ 156 bool kthread_should_stop(void) 157 { 158 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 159 } 160 EXPORT_SYMBOL(kthread_should_stop); 161 162 static bool __kthread_should_park(struct task_struct *k) 163 { 164 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 165 } 166 167 /** 168 * kthread_should_park - should this kthread park now? 169 * 170 * When someone calls kthread_park() on your kthread, it will be woken 171 * and this will return true. You should then do the necessary 172 * cleanup and call kthread_parkme() 173 * 174 * Similar to kthread_should_stop(), but this keeps the thread alive 175 * and in a park position. kthread_unpark() "restarts" the thread and 176 * calls the thread function again. 177 */ 178 bool kthread_should_park(void) 179 { 180 return __kthread_should_park(current); 181 } 182 EXPORT_SYMBOL_GPL(kthread_should_park); 183 184 bool kthread_should_stop_or_park(void) 185 { 186 struct kthread *kthread = __to_kthread(current); 187 188 if (!kthread) 189 return false; 190 191 return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK)); 192 } 193 194 /** 195 * kthread_freezable_should_stop - should this freezable kthread return now? 196 * @was_frozen: optional out parameter, indicates whether %current was frozen 197 * 198 * kthread_should_stop() for freezable kthreads, which will enter 199 * refrigerator if necessary. This function is safe from kthread_stop() / 200 * freezer deadlock and freezable kthreads should use this function instead 201 * of calling try_to_freeze() directly. 202 */ 203 bool kthread_freezable_should_stop(bool *was_frozen) 204 { 205 bool frozen = false; 206 207 might_sleep(); 208 209 if (unlikely(freezing(current))) 210 frozen = __refrigerator(true); 211 212 if (was_frozen) 213 *was_frozen = frozen; 214 215 return kthread_should_stop(); 216 } 217 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 218 219 /** 220 * kthread_func - return the function specified on kthread creation 221 * @task: kthread task in question 222 * 223 * Returns NULL if the task is not a kthread. 224 */ 225 void *kthread_func(struct task_struct *task) 226 { 227 struct kthread *kthread = __to_kthread(task); 228 if (kthread) 229 return kthread->threadfn; 230 return NULL; 231 } 232 EXPORT_SYMBOL_GPL(kthread_func); 233 234 /** 235 * kthread_data - return data value specified on kthread creation 236 * @task: kthread task in question 237 * 238 * Return the data value specified when kthread @task was created. 239 * The caller is responsible for ensuring the validity of @task when 240 * calling this function. 241 */ 242 void *kthread_data(struct task_struct *task) 243 { 244 return to_kthread(task)->data; 245 } 246 EXPORT_SYMBOL_GPL(kthread_data); 247 248 /** 249 * kthread_probe_data - speculative version of kthread_data() 250 * @task: possible kthread task in question 251 * 252 * @task could be a kthread task. Return the data value specified when it 253 * was created if accessible. If @task isn't a kthread task or its data is 254 * inaccessible for any reason, %NULL is returned. This function requires 255 * that @task itself is safe to dereference. 256 */ 257 void *kthread_probe_data(struct task_struct *task) 258 { 259 struct kthread *kthread = __to_kthread(task); 260 void *data = NULL; 261 262 if (kthread) 263 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 264 return data; 265 } 266 267 static void __kthread_parkme(struct kthread *self) 268 { 269 for (;;) { 270 /* 271 * TASK_PARKED is a special state; we must serialize against 272 * possible pending wakeups to avoid store-store collisions on 273 * task->state. 274 * 275 * Such a collision might possibly result in the task state 276 * changin from TASK_PARKED and us failing the 277 * wait_task_inactive() in kthread_park(). 278 */ 279 set_special_state(TASK_PARKED); 280 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 281 break; 282 283 /* 284 * Thread is going to call schedule(), do not preempt it, 285 * or the caller of kthread_park() may spend more time in 286 * wait_task_inactive(). 287 */ 288 preempt_disable(); 289 complete(&self->parked); 290 schedule_preempt_disabled(); 291 preempt_enable(); 292 } 293 __set_current_state(TASK_RUNNING); 294 } 295 296 void kthread_parkme(void) 297 { 298 __kthread_parkme(to_kthread(current)); 299 } 300 EXPORT_SYMBOL_GPL(kthread_parkme); 301 302 /** 303 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 304 * @result: The integer value to return to kthread_stop(). 305 * 306 * While kthread_exit can be called directly, it exists so that 307 * functions which do some additional work in non-modular code such as 308 * module_put_and_kthread_exit can be implemented. 309 * 310 * Does not return. 311 */ 312 void __noreturn kthread_exit(long result) 313 { 314 struct kthread *kthread = to_kthread(current); 315 kthread->result = result; 316 do_exit(0); 317 } 318 319 /** 320 * kthread_complete_and_exit - Exit the current kthread. 321 * @comp: Completion to complete 322 * @code: The integer value to return to kthread_stop(). 323 * 324 * If present, complete @comp and then return code to kthread_stop(). 325 * 326 * A kernel thread whose module may be removed after the completion of 327 * @comp can use this function to exit safely. 328 * 329 * Does not return. 330 */ 331 void __noreturn kthread_complete_and_exit(struct completion *comp, long code) 332 { 333 if (comp) 334 complete(comp); 335 336 kthread_exit(code); 337 } 338 EXPORT_SYMBOL(kthread_complete_and_exit); 339 340 static int kthread(void *_create) 341 { 342 static const struct sched_param param = { .sched_priority = 0 }; 343 /* Copy data: it's on kthread's stack */ 344 struct kthread_create_info *create = _create; 345 int (*threadfn)(void *data) = create->threadfn; 346 void *data = create->data; 347 struct completion *done; 348 struct kthread *self; 349 int ret; 350 351 self = to_kthread(current); 352 353 /* Release the structure when caller killed by a fatal signal. */ 354 done = xchg(&create->done, NULL); 355 if (!done) { 356 kfree(create->full_name); 357 kfree(create); 358 kthread_exit(-EINTR); 359 } 360 361 self->full_name = create->full_name; 362 self->threadfn = threadfn; 363 self->data = data; 364 365 /* 366 * The new thread inherited kthreadd's priority and CPU mask. Reset 367 * back to default in case they have been changed. 368 */ 369 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 370 set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD)); 371 372 /* OK, tell user we're spawned, wait for stop or wakeup */ 373 __set_current_state(TASK_UNINTERRUPTIBLE); 374 create->result = current; 375 /* 376 * Thread is going to call schedule(), do not preempt it, 377 * or the creator may spend more time in wait_task_inactive(). 378 */ 379 preempt_disable(); 380 complete(done); 381 schedule_preempt_disabled(); 382 preempt_enable(); 383 384 ret = -EINTR; 385 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 386 cgroup_kthread_ready(); 387 __kthread_parkme(self); 388 ret = threadfn(data); 389 } 390 kthread_exit(ret); 391 } 392 393 /* called from kernel_clone() to get node information for about to be created task */ 394 int tsk_fork_get_node(struct task_struct *tsk) 395 { 396 #ifdef CONFIG_NUMA 397 if (tsk == kthreadd_task) 398 return tsk->pref_node_fork; 399 #endif 400 return NUMA_NO_NODE; 401 } 402 403 static void create_kthread(struct kthread_create_info *create) 404 { 405 int pid; 406 407 #ifdef CONFIG_NUMA 408 current->pref_node_fork = create->node; 409 #endif 410 /* We want our own signal handler (we take no signals by default). */ 411 pid = kernel_thread(kthread, create, create->full_name, 412 CLONE_FS | CLONE_FILES | SIGCHLD); 413 if (pid < 0) { 414 /* Release the structure when caller killed by a fatal signal. */ 415 struct completion *done = xchg(&create->done, NULL); 416 417 kfree(create->full_name); 418 if (!done) { 419 kfree(create); 420 return; 421 } 422 create->result = ERR_PTR(pid); 423 complete(done); 424 } 425 } 426 427 static __printf(4, 0) 428 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 429 void *data, int node, 430 const char namefmt[], 431 va_list args) 432 { 433 DECLARE_COMPLETION_ONSTACK(done); 434 struct task_struct *task; 435 struct kthread_create_info *create = kmalloc(sizeof(*create), 436 GFP_KERNEL); 437 438 if (!create) 439 return ERR_PTR(-ENOMEM); 440 create->threadfn = threadfn; 441 create->data = data; 442 create->node = node; 443 create->done = &done; 444 create->full_name = kvasprintf(GFP_KERNEL, namefmt, args); 445 if (!create->full_name) { 446 task = ERR_PTR(-ENOMEM); 447 goto free_create; 448 } 449 450 spin_lock(&kthread_create_lock); 451 list_add_tail(&create->list, &kthread_create_list); 452 spin_unlock(&kthread_create_lock); 453 454 wake_up_process(kthreadd_task); 455 /* 456 * Wait for completion in killable state, for I might be chosen by 457 * the OOM killer while kthreadd is trying to allocate memory for 458 * new kernel thread. 459 */ 460 if (unlikely(wait_for_completion_killable(&done))) { 461 /* 462 * If I was killed by a fatal signal before kthreadd (or new 463 * kernel thread) calls complete(), leave the cleanup of this 464 * structure to that thread. 465 */ 466 if (xchg(&create->done, NULL)) 467 return ERR_PTR(-EINTR); 468 /* 469 * kthreadd (or new kernel thread) will call complete() 470 * shortly. 471 */ 472 wait_for_completion(&done); 473 } 474 task = create->result; 475 free_create: 476 kfree(create); 477 return task; 478 } 479 480 /** 481 * kthread_create_on_node - create a kthread. 482 * @threadfn: the function to run until signal_pending(current). 483 * @data: data ptr for @threadfn. 484 * @node: task and thread structures for the thread are allocated on this node 485 * @namefmt: printf-style name for the thread. 486 * 487 * Description: This helper function creates and names a kernel 488 * thread. The thread will be stopped: use wake_up_process() to start 489 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 490 * is affine to all CPUs. 491 * 492 * If thread is going to be bound on a particular cpu, give its node 493 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 494 * When woken, the thread will run @threadfn() with @data as its 495 * argument. @threadfn() can either return directly if it is a 496 * standalone thread for which no one will call kthread_stop(), or 497 * return when 'kthread_should_stop()' is true (which means 498 * kthread_stop() has been called). The return value should be zero 499 * or a negative error number; it will be passed to kthread_stop(). 500 * 501 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 502 */ 503 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 504 void *data, int node, 505 const char namefmt[], 506 ...) 507 { 508 struct task_struct *task; 509 va_list args; 510 511 va_start(args, namefmt); 512 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 513 va_end(args); 514 515 return task; 516 } 517 EXPORT_SYMBOL(kthread_create_on_node); 518 519 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 520 { 521 unsigned long flags; 522 523 if (!wait_task_inactive(p, state)) { 524 WARN_ON(1); 525 return; 526 } 527 528 /* It's safe because the task is inactive. */ 529 raw_spin_lock_irqsave(&p->pi_lock, flags); 530 do_set_cpus_allowed(p, mask); 531 p->flags |= PF_NO_SETAFFINITY; 532 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 533 } 534 535 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 536 { 537 __kthread_bind_mask(p, cpumask_of(cpu), state); 538 } 539 540 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 541 { 542 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 543 } 544 545 /** 546 * kthread_bind - bind a just-created kthread to a cpu. 547 * @p: thread created by kthread_create(). 548 * @cpu: cpu (might not be online, must be possible) for @k to run on. 549 * 550 * Description: This function is equivalent to set_cpus_allowed(), 551 * except that @cpu doesn't need to be online, and the thread must be 552 * stopped (i.e., just returned from kthread_create()). 553 */ 554 void kthread_bind(struct task_struct *p, unsigned int cpu) 555 { 556 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 557 } 558 EXPORT_SYMBOL(kthread_bind); 559 560 /** 561 * kthread_create_on_cpu - Create a cpu bound kthread 562 * @threadfn: the function to run until signal_pending(current). 563 * @data: data ptr for @threadfn. 564 * @cpu: The cpu on which the thread should be bound, 565 * @namefmt: printf-style name for the thread. Format is restricted 566 * to "name.*%u". Code fills in cpu number. 567 * 568 * Description: This helper function creates and names a kernel thread 569 */ 570 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 571 void *data, unsigned int cpu, 572 const char *namefmt) 573 { 574 struct task_struct *p; 575 576 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 577 cpu); 578 if (IS_ERR(p)) 579 return p; 580 kthread_bind(p, cpu); 581 /* CPU hotplug need to bind once again when unparking the thread. */ 582 to_kthread(p)->cpu = cpu; 583 return p; 584 } 585 EXPORT_SYMBOL(kthread_create_on_cpu); 586 587 void kthread_set_per_cpu(struct task_struct *k, int cpu) 588 { 589 struct kthread *kthread = to_kthread(k); 590 if (!kthread) 591 return; 592 593 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 594 595 if (cpu < 0) { 596 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 597 return; 598 } 599 600 kthread->cpu = cpu; 601 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 602 } 603 604 bool kthread_is_per_cpu(struct task_struct *p) 605 { 606 struct kthread *kthread = __to_kthread(p); 607 if (!kthread) 608 return false; 609 610 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 611 } 612 613 /** 614 * kthread_unpark - unpark a thread created by kthread_create(). 615 * @k: thread created by kthread_create(). 616 * 617 * Sets kthread_should_park() for @k to return false, wakes it, and 618 * waits for it to return. If the thread is marked percpu then its 619 * bound to the cpu again. 620 */ 621 void kthread_unpark(struct task_struct *k) 622 { 623 struct kthread *kthread = to_kthread(k); 624 625 if (!test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)) 626 return; 627 /* 628 * Newly created kthread was parked when the CPU was offline. 629 * The binding was lost and we need to set it again. 630 */ 631 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 632 __kthread_bind(k, kthread->cpu, TASK_PARKED); 633 634 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 635 /* 636 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 637 */ 638 wake_up_state(k, TASK_PARKED); 639 } 640 EXPORT_SYMBOL_GPL(kthread_unpark); 641 642 /** 643 * kthread_park - park a thread created by kthread_create(). 644 * @k: thread created by kthread_create(). 645 * 646 * Sets kthread_should_park() for @k to return true, wakes it, and 647 * waits for it to return. This can also be called after kthread_create() 648 * instead of calling wake_up_process(): the thread will park without 649 * calling threadfn(). 650 * 651 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 652 * If called by the kthread itself just the park bit is set. 653 */ 654 int kthread_park(struct task_struct *k) 655 { 656 struct kthread *kthread = to_kthread(k); 657 658 if (WARN_ON(k->flags & PF_EXITING)) 659 return -ENOSYS; 660 661 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 662 return -EBUSY; 663 664 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 665 if (k != current) { 666 wake_up_process(k); 667 /* 668 * Wait for __kthread_parkme() to complete(), this means we 669 * _will_ have TASK_PARKED and are about to call schedule(). 670 */ 671 wait_for_completion(&kthread->parked); 672 /* 673 * Now wait for that schedule() to complete and the task to 674 * get scheduled out. 675 */ 676 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 677 } 678 679 return 0; 680 } 681 EXPORT_SYMBOL_GPL(kthread_park); 682 683 /** 684 * kthread_stop - stop a thread created by kthread_create(). 685 * @k: thread created by kthread_create(). 686 * 687 * Sets kthread_should_stop() for @k to return true, wakes it, and 688 * waits for it to exit. This can also be called after kthread_create() 689 * instead of calling wake_up_process(): the thread will exit without 690 * calling threadfn(). 691 * 692 * If threadfn() may call kthread_exit() itself, the caller must ensure 693 * task_struct can't go away. 694 * 695 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 696 * was never called. 697 */ 698 int kthread_stop(struct task_struct *k) 699 { 700 struct kthread *kthread; 701 int ret; 702 703 trace_sched_kthread_stop(k); 704 705 get_task_struct(k); 706 kthread = to_kthread(k); 707 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 708 kthread_unpark(k); 709 set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL); 710 wake_up_process(k); 711 wait_for_completion(&kthread->exited); 712 ret = kthread->result; 713 put_task_struct(k); 714 715 trace_sched_kthread_stop_ret(ret); 716 return ret; 717 } 718 EXPORT_SYMBOL(kthread_stop); 719 720 /** 721 * kthread_stop_put - stop a thread and put its task struct 722 * @k: thread created by kthread_create(). 723 * 724 * Stops a thread created by kthread_create() and put its task_struct. 725 * Only use when holding an extra task struct reference obtained by 726 * calling get_task_struct(). 727 */ 728 int kthread_stop_put(struct task_struct *k) 729 { 730 int ret; 731 732 ret = kthread_stop(k); 733 put_task_struct(k); 734 return ret; 735 } 736 EXPORT_SYMBOL(kthread_stop_put); 737 738 int kthreadd(void *unused) 739 { 740 struct task_struct *tsk = current; 741 742 /* Setup a clean context for our children to inherit. */ 743 set_task_comm(tsk, "kthreadd"); 744 ignore_signals(tsk); 745 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD)); 746 set_mems_allowed(node_states[N_MEMORY]); 747 748 current->flags |= PF_NOFREEZE; 749 cgroup_init_kthreadd(); 750 751 for (;;) { 752 set_current_state(TASK_INTERRUPTIBLE); 753 if (list_empty(&kthread_create_list)) 754 schedule(); 755 __set_current_state(TASK_RUNNING); 756 757 spin_lock(&kthread_create_lock); 758 while (!list_empty(&kthread_create_list)) { 759 struct kthread_create_info *create; 760 761 create = list_entry(kthread_create_list.next, 762 struct kthread_create_info, list); 763 list_del_init(&create->list); 764 spin_unlock(&kthread_create_lock); 765 766 create_kthread(create); 767 768 spin_lock(&kthread_create_lock); 769 } 770 spin_unlock(&kthread_create_lock); 771 } 772 773 return 0; 774 } 775 776 void __kthread_init_worker(struct kthread_worker *worker, 777 const char *name, 778 struct lock_class_key *key) 779 { 780 memset(worker, 0, sizeof(struct kthread_worker)); 781 raw_spin_lock_init(&worker->lock); 782 lockdep_set_class_and_name(&worker->lock, key, name); 783 INIT_LIST_HEAD(&worker->work_list); 784 INIT_LIST_HEAD(&worker->delayed_work_list); 785 } 786 EXPORT_SYMBOL_GPL(__kthread_init_worker); 787 788 /** 789 * kthread_worker_fn - kthread function to process kthread_worker 790 * @worker_ptr: pointer to initialized kthread_worker 791 * 792 * This function implements the main cycle of kthread worker. It processes 793 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 794 * is empty. 795 * 796 * The works are not allowed to keep any locks, disable preemption or interrupts 797 * when they finish. There is defined a safe point for freezing when one work 798 * finishes and before a new one is started. 799 * 800 * Also the works must not be handled by more than one worker at the same time, 801 * see also kthread_queue_work(). 802 */ 803 int kthread_worker_fn(void *worker_ptr) 804 { 805 struct kthread_worker *worker = worker_ptr; 806 struct kthread_work *work; 807 808 /* 809 * FIXME: Update the check and remove the assignment when all kthread 810 * worker users are created using kthread_create_worker*() functions. 811 */ 812 WARN_ON(worker->task && worker->task != current); 813 worker->task = current; 814 815 if (worker->flags & KTW_FREEZABLE) 816 set_freezable(); 817 818 repeat: 819 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 820 821 if (kthread_should_stop()) { 822 __set_current_state(TASK_RUNNING); 823 raw_spin_lock_irq(&worker->lock); 824 worker->task = NULL; 825 raw_spin_unlock_irq(&worker->lock); 826 return 0; 827 } 828 829 work = NULL; 830 raw_spin_lock_irq(&worker->lock); 831 if (!list_empty(&worker->work_list)) { 832 work = list_first_entry(&worker->work_list, 833 struct kthread_work, node); 834 list_del_init(&work->node); 835 } 836 worker->current_work = work; 837 raw_spin_unlock_irq(&worker->lock); 838 839 if (work) { 840 kthread_work_func_t func = work->func; 841 __set_current_state(TASK_RUNNING); 842 trace_sched_kthread_work_execute_start(work); 843 work->func(work); 844 /* 845 * Avoid dereferencing work after this point. The trace 846 * event only cares about the address. 847 */ 848 trace_sched_kthread_work_execute_end(work, func); 849 } else if (!freezing(current)) { 850 schedule(); 851 } else { 852 /* 853 * Handle the case where the current remains 854 * TASK_INTERRUPTIBLE. try_to_freeze() expects 855 * the current to be TASK_RUNNING. 856 */ 857 __set_current_state(TASK_RUNNING); 858 } 859 860 try_to_freeze(); 861 cond_resched(); 862 goto repeat; 863 } 864 EXPORT_SYMBOL_GPL(kthread_worker_fn); 865 866 static __printf(3, 0) struct kthread_worker * 867 __kthread_create_worker(int cpu, unsigned int flags, 868 const char namefmt[], va_list args) 869 { 870 struct kthread_worker *worker; 871 struct task_struct *task; 872 int node = NUMA_NO_NODE; 873 874 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 875 if (!worker) 876 return ERR_PTR(-ENOMEM); 877 878 kthread_init_worker(worker); 879 880 if (cpu >= 0) 881 node = cpu_to_node(cpu); 882 883 task = __kthread_create_on_node(kthread_worker_fn, worker, 884 node, namefmt, args); 885 if (IS_ERR(task)) 886 goto fail_task; 887 888 if (cpu >= 0) 889 kthread_bind(task, cpu); 890 891 worker->flags = flags; 892 worker->task = task; 893 wake_up_process(task); 894 return worker; 895 896 fail_task: 897 kfree(worker); 898 return ERR_CAST(task); 899 } 900 901 /** 902 * kthread_create_worker - create a kthread worker 903 * @flags: flags modifying the default behavior of the worker 904 * @namefmt: printf-style name for the kthread worker (task). 905 * 906 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 907 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 908 * when the caller was killed by a fatal signal. 909 */ 910 struct kthread_worker * 911 kthread_create_worker(unsigned int flags, const char namefmt[], ...) 912 { 913 struct kthread_worker *worker; 914 va_list args; 915 916 va_start(args, namefmt); 917 worker = __kthread_create_worker(-1, flags, namefmt, args); 918 va_end(args); 919 920 return worker; 921 } 922 EXPORT_SYMBOL(kthread_create_worker); 923 924 /** 925 * kthread_create_worker_on_cpu - create a kthread worker and bind it 926 * to a given CPU and the associated NUMA node. 927 * @cpu: CPU number 928 * @flags: flags modifying the default behavior of the worker 929 * @namefmt: printf-style name for the kthread worker (task). 930 * 931 * Use a valid CPU number if you want to bind the kthread worker 932 * to the given CPU and the associated NUMA node. 933 * 934 * A good practice is to add the cpu number also into the worker name. 935 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 936 * 937 * CPU hotplug: 938 * The kthread worker API is simple and generic. It just provides a way 939 * to create, use, and destroy workers. 940 * 941 * It is up to the API user how to handle CPU hotplug. They have to decide 942 * how to handle pending work items, prevent queuing new ones, and 943 * restore the functionality when the CPU goes off and on. There are a 944 * few catches: 945 * 946 * - CPU affinity gets lost when it is scheduled on an offline CPU. 947 * 948 * - The worker might not exist when the CPU was off when the user 949 * created the workers. 950 * 951 * Good practice is to implement two CPU hotplug callbacks and to 952 * destroy/create the worker when the CPU goes down/up. 953 * 954 * Return: 955 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 956 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 957 * when the caller was killed by a fatal signal. 958 */ 959 struct kthread_worker * 960 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 961 const char namefmt[], ...) 962 { 963 struct kthread_worker *worker; 964 va_list args; 965 966 va_start(args, namefmt); 967 worker = __kthread_create_worker(cpu, flags, namefmt, args); 968 va_end(args); 969 970 return worker; 971 } 972 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 973 974 /* 975 * Returns true when the work could not be queued at the moment. 976 * It happens when it is already pending in a worker list 977 * or when it is being cancelled. 978 */ 979 static inline bool queuing_blocked(struct kthread_worker *worker, 980 struct kthread_work *work) 981 { 982 lockdep_assert_held(&worker->lock); 983 984 return !list_empty(&work->node) || work->canceling; 985 } 986 987 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 988 struct kthread_work *work) 989 { 990 lockdep_assert_held(&worker->lock); 991 WARN_ON_ONCE(!list_empty(&work->node)); 992 /* Do not use a work with >1 worker, see kthread_queue_work() */ 993 WARN_ON_ONCE(work->worker && work->worker != worker); 994 } 995 996 /* insert @work before @pos in @worker */ 997 static void kthread_insert_work(struct kthread_worker *worker, 998 struct kthread_work *work, 999 struct list_head *pos) 1000 { 1001 kthread_insert_work_sanity_check(worker, work); 1002 1003 trace_sched_kthread_work_queue_work(worker, work); 1004 1005 list_add_tail(&work->node, pos); 1006 work->worker = worker; 1007 if (!worker->current_work && likely(worker->task)) 1008 wake_up_process(worker->task); 1009 } 1010 1011 /** 1012 * kthread_queue_work - queue a kthread_work 1013 * @worker: target kthread_worker 1014 * @work: kthread_work to queue 1015 * 1016 * Queue @work to work processor @task for async execution. @task 1017 * must have been created with kthread_worker_create(). Returns %true 1018 * if @work was successfully queued, %false if it was already pending. 1019 * 1020 * Reinitialize the work if it needs to be used by another worker. 1021 * For example, when the worker was stopped and started again. 1022 */ 1023 bool kthread_queue_work(struct kthread_worker *worker, 1024 struct kthread_work *work) 1025 { 1026 bool ret = false; 1027 unsigned long flags; 1028 1029 raw_spin_lock_irqsave(&worker->lock, flags); 1030 if (!queuing_blocked(worker, work)) { 1031 kthread_insert_work(worker, work, &worker->work_list); 1032 ret = true; 1033 } 1034 raw_spin_unlock_irqrestore(&worker->lock, flags); 1035 return ret; 1036 } 1037 EXPORT_SYMBOL_GPL(kthread_queue_work); 1038 1039 /** 1040 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 1041 * delayed work when the timer expires. 1042 * @t: pointer to the expired timer 1043 * 1044 * The format of the function is defined by struct timer_list. 1045 * It should have been called from irqsafe timer with irq already off. 1046 */ 1047 void kthread_delayed_work_timer_fn(struct timer_list *t) 1048 { 1049 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); 1050 struct kthread_work *work = &dwork->work; 1051 struct kthread_worker *worker = work->worker; 1052 unsigned long flags; 1053 1054 /* 1055 * This might happen when a pending work is reinitialized. 1056 * It means that it is used a wrong way. 1057 */ 1058 if (WARN_ON_ONCE(!worker)) 1059 return; 1060 1061 raw_spin_lock_irqsave(&worker->lock, flags); 1062 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1063 WARN_ON_ONCE(work->worker != worker); 1064 1065 /* Move the work from worker->delayed_work_list. */ 1066 WARN_ON_ONCE(list_empty(&work->node)); 1067 list_del_init(&work->node); 1068 if (!work->canceling) 1069 kthread_insert_work(worker, work, &worker->work_list); 1070 1071 raw_spin_unlock_irqrestore(&worker->lock, flags); 1072 } 1073 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1074 1075 static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1076 struct kthread_delayed_work *dwork, 1077 unsigned long delay) 1078 { 1079 struct timer_list *timer = &dwork->timer; 1080 struct kthread_work *work = &dwork->work; 1081 1082 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn); 1083 1084 /* 1085 * If @delay is 0, queue @dwork->work immediately. This is for 1086 * both optimization and correctness. The earliest @timer can 1087 * expire is on the closest next tick and delayed_work users depend 1088 * on that there's no such delay when @delay is 0. 1089 */ 1090 if (!delay) { 1091 kthread_insert_work(worker, work, &worker->work_list); 1092 return; 1093 } 1094 1095 /* Be paranoid and try to detect possible races already now. */ 1096 kthread_insert_work_sanity_check(worker, work); 1097 1098 list_add(&work->node, &worker->delayed_work_list); 1099 work->worker = worker; 1100 timer->expires = jiffies + delay; 1101 add_timer(timer); 1102 } 1103 1104 /** 1105 * kthread_queue_delayed_work - queue the associated kthread work 1106 * after a delay. 1107 * @worker: target kthread_worker 1108 * @dwork: kthread_delayed_work to queue 1109 * @delay: number of jiffies to wait before queuing 1110 * 1111 * If the work has not been pending it starts a timer that will queue 1112 * the work after the given @delay. If @delay is zero, it queues the 1113 * work immediately. 1114 * 1115 * Return: %false if the @work has already been pending. It means that 1116 * either the timer was running or the work was queued. It returns %true 1117 * otherwise. 1118 */ 1119 bool kthread_queue_delayed_work(struct kthread_worker *worker, 1120 struct kthread_delayed_work *dwork, 1121 unsigned long delay) 1122 { 1123 struct kthread_work *work = &dwork->work; 1124 unsigned long flags; 1125 bool ret = false; 1126 1127 raw_spin_lock_irqsave(&worker->lock, flags); 1128 1129 if (!queuing_blocked(worker, work)) { 1130 __kthread_queue_delayed_work(worker, dwork, delay); 1131 ret = true; 1132 } 1133 1134 raw_spin_unlock_irqrestore(&worker->lock, flags); 1135 return ret; 1136 } 1137 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1138 1139 struct kthread_flush_work { 1140 struct kthread_work work; 1141 struct completion done; 1142 }; 1143 1144 static void kthread_flush_work_fn(struct kthread_work *work) 1145 { 1146 struct kthread_flush_work *fwork = 1147 container_of(work, struct kthread_flush_work, work); 1148 complete(&fwork->done); 1149 } 1150 1151 /** 1152 * kthread_flush_work - flush a kthread_work 1153 * @work: work to flush 1154 * 1155 * If @work is queued or executing, wait for it to finish execution. 1156 */ 1157 void kthread_flush_work(struct kthread_work *work) 1158 { 1159 struct kthread_flush_work fwork = { 1160 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1161 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1162 }; 1163 struct kthread_worker *worker; 1164 bool noop = false; 1165 1166 worker = work->worker; 1167 if (!worker) 1168 return; 1169 1170 raw_spin_lock_irq(&worker->lock); 1171 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1172 WARN_ON_ONCE(work->worker != worker); 1173 1174 if (!list_empty(&work->node)) 1175 kthread_insert_work(worker, &fwork.work, work->node.next); 1176 else if (worker->current_work == work) 1177 kthread_insert_work(worker, &fwork.work, 1178 worker->work_list.next); 1179 else 1180 noop = true; 1181 1182 raw_spin_unlock_irq(&worker->lock); 1183 1184 if (!noop) 1185 wait_for_completion(&fwork.done); 1186 } 1187 EXPORT_SYMBOL_GPL(kthread_flush_work); 1188 1189 /* 1190 * Make sure that the timer is neither set nor running and could 1191 * not manipulate the work list_head any longer. 1192 * 1193 * The function is called under worker->lock. The lock is temporary 1194 * released but the timer can't be set again in the meantime. 1195 */ 1196 static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1197 unsigned long *flags) 1198 { 1199 struct kthread_delayed_work *dwork = 1200 container_of(work, struct kthread_delayed_work, work); 1201 struct kthread_worker *worker = work->worker; 1202 1203 /* 1204 * del_timer_sync() must be called to make sure that the timer 1205 * callback is not running. The lock must be temporary released 1206 * to avoid a deadlock with the callback. In the meantime, 1207 * any queuing is blocked by setting the canceling counter. 1208 */ 1209 work->canceling++; 1210 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1211 del_timer_sync(&dwork->timer); 1212 raw_spin_lock_irqsave(&worker->lock, *flags); 1213 work->canceling--; 1214 } 1215 1216 /* 1217 * This function removes the work from the worker queue. 1218 * 1219 * It is called under worker->lock. The caller must make sure that 1220 * the timer used by delayed work is not running, e.g. by calling 1221 * kthread_cancel_delayed_work_timer(). 1222 * 1223 * The work might still be in use when this function finishes. See the 1224 * current_work proceed by the worker. 1225 * 1226 * Return: %true if @work was pending and successfully canceled, 1227 * %false if @work was not pending 1228 */ 1229 static bool __kthread_cancel_work(struct kthread_work *work) 1230 { 1231 /* 1232 * Try to remove the work from a worker list. It might either 1233 * be from worker->work_list or from worker->delayed_work_list. 1234 */ 1235 if (!list_empty(&work->node)) { 1236 list_del_init(&work->node); 1237 return true; 1238 } 1239 1240 return false; 1241 } 1242 1243 /** 1244 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1245 * @worker: kthread worker to use 1246 * @dwork: kthread delayed work to queue 1247 * @delay: number of jiffies to wait before queuing 1248 * 1249 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1250 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1251 * @work is guaranteed to be queued immediately. 1252 * 1253 * Return: %false if @dwork was idle and queued, %true otherwise. 1254 * 1255 * A special case is when the work is being canceled in parallel. 1256 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1257 * or yet another kthread_mod_delayed_work() call. We let the other command 1258 * win and return %true here. The return value can be used for reference 1259 * counting and the number of queued works stays the same. Anyway, the caller 1260 * is supposed to synchronize these operations a reasonable way. 1261 * 1262 * This function is safe to call from any context including IRQ handler. 1263 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1264 * for details. 1265 */ 1266 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1267 struct kthread_delayed_work *dwork, 1268 unsigned long delay) 1269 { 1270 struct kthread_work *work = &dwork->work; 1271 unsigned long flags; 1272 int ret; 1273 1274 raw_spin_lock_irqsave(&worker->lock, flags); 1275 1276 /* Do not bother with canceling when never queued. */ 1277 if (!work->worker) { 1278 ret = false; 1279 goto fast_queue; 1280 } 1281 1282 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1283 WARN_ON_ONCE(work->worker != worker); 1284 1285 /* 1286 * Temporary cancel the work but do not fight with another command 1287 * that is canceling the work as well. 1288 * 1289 * It is a bit tricky because of possible races with another 1290 * mod_delayed_work() and cancel_delayed_work() callers. 1291 * 1292 * The timer must be canceled first because worker->lock is released 1293 * when doing so. But the work can be removed from the queue (list) 1294 * only when it can be queued again so that the return value can 1295 * be used for reference counting. 1296 */ 1297 kthread_cancel_delayed_work_timer(work, &flags); 1298 if (work->canceling) { 1299 /* The number of works in the queue does not change. */ 1300 ret = true; 1301 goto out; 1302 } 1303 ret = __kthread_cancel_work(work); 1304 1305 fast_queue: 1306 __kthread_queue_delayed_work(worker, dwork, delay); 1307 out: 1308 raw_spin_unlock_irqrestore(&worker->lock, flags); 1309 return ret; 1310 } 1311 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1312 1313 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1314 { 1315 struct kthread_worker *worker = work->worker; 1316 unsigned long flags; 1317 int ret = false; 1318 1319 if (!worker) 1320 goto out; 1321 1322 raw_spin_lock_irqsave(&worker->lock, flags); 1323 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1324 WARN_ON_ONCE(work->worker != worker); 1325 1326 if (is_dwork) 1327 kthread_cancel_delayed_work_timer(work, &flags); 1328 1329 ret = __kthread_cancel_work(work); 1330 1331 if (worker->current_work != work) 1332 goto out_fast; 1333 1334 /* 1335 * The work is in progress and we need to wait with the lock released. 1336 * In the meantime, block any queuing by setting the canceling counter. 1337 */ 1338 work->canceling++; 1339 raw_spin_unlock_irqrestore(&worker->lock, flags); 1340 kthread_flush_work(work); 1341 raw_spin_lock_irqsave(&worker->lock, flags); 1342 work->canceling--; 1343 1344 out_fast: 1345 raw_spin_unlock_irqrestore(&worker->lock, flags); 1346 out: 1347 return ret; 1348 } 1349 1350 /** 1351 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1352 * @work: the kthread work to cancel 1353 * 1354 * Cancel @work and wait for its execution to finish. This function 1355 * can be used even if the work re-queues itself. On return from this 1356 * function, @work is guaranteed to be not pending or executing on any CPU. 1357 * 1358 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1359 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1360 * 1361 * The caller must ensure that the worker on which @work was last 1362 * queued can't be destroyed before this function returns. 1363 * 1364 * Return: %true if @work was pending, %false otherwise. 1365 */ 1366 bool kthread_cancel_work_sync(struct kthread_work *work) 1367 { 1368 return __kthread_cancel_work_sync(work, false); 1369 } 1370 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1371 1372 /** 1373 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1374 * wait for it to finish. 1375 * @dwork: the kthread delayed work to cancel 1376 * 1377 * This is kthread_cancel_work_sync() for delayed works. 1378 * 1379 * Return: %true if @dwork was pending, %false otherwise. 1380 */ 1381 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1382 { 1383 return __kthread_cancel_work_sync(&dwork->work, true); 1384 } 1385 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1386 1387 /** 1388 * kthread_flush_worker - flush all current works on a kthread_worker 1389 * @worker: worker to flush 1390 * 1391 * Wait until all currently executing or pending works on @worker are 1392 * finished. 1393 */ 1394 void kthread_flush_worker(struct kthread_worker *worker) 1395 { 1396 struct kthread_flush_work fwork = { 1397 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1398 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1399 }; 1400 1401 kthread_queue_work(worker, &fwork.work); 1402 wait_for_completion(&fwork.done); 1403 } 1404 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1405 1406 /** 1407 * kthread_destroy_worker - destroy a kthread worker 1408 * @worker: worker to be destroyed 1409 * 1410 * Flush and destroy @worker. The simple flush is enough because the kthread 1411 * worker API is used only in trivial scenarios. There are no multi-step state 1412 * machines needed. 1413 * 1414 * Note that this function is not responsible for handling delayed work, so 1415 * caller should be responsible for queuing or canceling all delayed work items 1416 * before invoke this function. 1417 */ 1418 void kthread_destroy_worker(struct kthread_worker *worker) 1419 { 1420 struct task_struct *task; 1421 1422 task = worker->task; 1423 if (WARN_ON(!task)) 1424 return; 1425 1426 kthread_flush_worker(worker); 1427 kthread_stop(task); 1428 WARN_ON(!list_empty(&worker->delayed_work_list)); 1429 WARN_ON(!list_empty(&worker->work_list)); 1430 kfree(worker); 1431 } 1432 EXPORT_SYMBOL(kthread_destroy_worker); 1433 1434 /** 1435 * kthread_use_mm - make the calling kthread operate on an address space 1436 * @mm: address space to operate on 1437 */ 1438 void kthread_use_mm(struct mm_struct *mm) 1439 { 1440 struct mm_struct *active_mm; 1441 struct task_struct *tsk = current; 1442 1443 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1444 WARN_ON_ONCE(tsk->mm); 1445 1446 /* 1447 * It is possible for mm to be the same as tsk->active_mm, but 1448 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm), 1449 * because these references are not equivalent. 1450 */ 1451 mmgrab(mm); 1452 1453 task_lock(tsk); 1454 /* Hold off tlb flush IPIs while switching mm's */ 1455 local_irq_disable(); 1456 active_mm = tsk->active_mm; 1457 tsk->active_mm = mm; 1458 tsk->mm = mm; 1459 membarrier_update_current_mm(mm); 1460 switch_mm_irqs_off(active_mm, mm, tsk); 1461 local_irq_enable(); 1462 task_unlock(tsk); 1463 #ifdef finish_arch_post_lock_switch 1464 finish_arch_post_lock_switch(); 1465 #endif 1466 1467 /* 1468 * When a kthread starts operating on an address space, the loop 1469 * in membarrier_{private,global}_expedited() may not observe 1470 * that tsk->mm, and not issue an IPI. Membarrier requires a 1471 * memory barrier after storing to tsk->mm, before accessing 1472 * user-space memory. A full memory barrier for membarrier 1473 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1474 * mmdrop_lazy_tlb(). 1475 */ 1476 mmdrop_lazy_tlb(active_mm); 1477 } 1478 EXPORT_SYMBOL_GPL(kthread_use_mm); 1479 1480 /** 1481 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1482 * @mm: address space to operate on 1483 */ 1484 void kthread_unuse_mm(struct mm_struct *mm) 1485 { 1486 struct task_struct *tsk = current; 1487 1488 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1489 WARN_ON_ONCE(!tsk->mm); 1490 1491 task_lock(tsk); 1492 /* 1493 * When a kthread stops operating on an address space, the loop 1494 * in membarrier_{private,global}_expedited() may not observe 1495 * that tsk->mm, and not issue an IPI. Membarrier requires a 1496 * memory barrier after accessing user-space memory, before 1497 * clearing tsk->mm. 1498 */ 1499 smp_mb__after_spinlock(); 1500 sync_mm_rss(mm); 1501 local_irq_disable(); 1502 tsk->mm = NULL; 1503 membarrier_update_current_mm(NULL); 1504 mmgrab_lazy_tlb(mm); 1505 /* active_mm is still 'mm' */ 1506 enter_lazy_tlb(mm, tsk); 1507 local_irq_enable(); 1508 task_unlock(tsk); 1509 1510 mmdrop(mm); 1511 } 1512 EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1513 1514 #ifdef CONFIG_BLK_CGROUP 1515 /** 1516 * kthread_associate_blkcg - associate blkcg to current kthread 1517 * @css: the cgroup info 1518 * 1519 * Current thread must be a kthread. The thread is running jobs on behalf of 1520 * other threads. In some cases, we expect the jobs attach cgroup info of 1521 * original threads instead of that of current thread. This function stores 1522 * original thread's cgroup info in current kthread context for later 1523 * retrieval. 1524 */ 1525 void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1526 { 1527 struct kthread *kthread; 1528 1529 if (!(current->flags & PF_KTHREAD)) 1530 return; 1531 kthread = to_kthread(current); 1532 if (!kthread) 1533 return; 1534 1535 if (kthread->blkcg_css) { 1536 css_put(kthread->blkcg_css); 1537 kthread->blkcg_css = NULL; 1538 } 1539 if (css) { 1540 css_get(css); 1541 kthread->blkcg_css = css; 1542 } 1543 } 1544 EXPORT_SYMBOL(kthread_associate_blkcg); 1545 1546 /** 1547 * kthread_blkcg - get associated blkcg css of current kthread 1548 * 1549 * Current thread must be a kthread. 1550 */ 1551 struct cgroup_subsys_state *kthread_blkcg(void) 1552 { 1553 struct kthread *kthread; 1554 1555 if (current->flags & PF_KTHREAD) { 1556 kthread = to_kthread(current); 1557 if (kthread) 1558 return kthread->blkcg_css; 1559 } 1560 return NULL; 1561 } 1562 #endif 1563