1 /* Kernel thread helper functions. 2 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 3 * 4 * Creation is done via kthreadd, so that we get a clean environment 5 * even if we're invoked from userspace (think modprobe, hotplug cpu, 6 * etc.). 7 */ 8 #include <linux/sched.h> 9 #include <linux/kthread.h> 10 #include <linux/completion.h> 11 #include <linux/err.h> 12 #include <linux/cpuset.h> 13 #include <linux/unistd.h> 14 #include <linux/file.h> 15 #include <linux/export.h> 16 #include <linux/mutex.h> 17 #include <linux/slab.h> 18 #include <linux/freezer.h> 19 #include <linux/ptrace.h> 20 #include <linux/uaccess.h> 21 #include <trace/events/sched.h> 22 23 static DEFINE_SPINLOCK(kthread_create_lock); 24 static LIST_HEAD(kthread_create_list); 25 struct task_struct *kthreadd_task; 26 27 struct kthread_create_info 28 { 29 /* Information passed to kthread() from kthreadd. */ 30 int (*threadfn)(void *data); 31 void *data; 32 int node; 33 34 /* Result passed back to kthread_create() from kthreadd. */ 35 struct task_struct *result; 36 struct completion *done; 37 38 struct list_head list; 39 }; 40 41 struct kthread { 42 unsigned long flags; 43 unsigned int cpu; 44 void *data; 45 struct completion parked; 46 struct completion exited; 47 }; 48 49 enum KTHREAD_BITS { 50 KTHREAD_IS_PER_CPU = 0, 51 KTHREAD_SHOULD_STOP, 52 KTHREAD_SHOULD_PARK, 53 KTHREAD_IS_PARKED, 54 }; 55 56 #define __to_kthread(vfork) \ 57 container_of(vfork, struct kthread, exited) 58 59 static inline struct kthread *to_kthread(struct task_struct *k) 60 { 61 return __to_kthread(k->vfork_done); 62 } 63 64 static struct kthread *to_live_kthread(struct task_struct *k) 65 { 66 struct completion *vfork = ACCESS_ONCE(k->vfork_done); 67 if (likely(vfork) && try_get_task_stack(k)) 68 return __to_kthread(vfork); 69 return NULL; 70 } 71 72 /** 73 * kthread_should_stop - should this kthread return now? 74 * 75 * When someone calls kthread_stop() on your kthread, it will be woken 76 * and this will return true. You should then return, and your return 77 * value will be passed through to kthread_stop(). 78 */ 79 bool kthread_should_stop(void) 80 { 81 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 82 } 83 EXPORT_SYMBOL(kthread_should_stop); 84 85 /** 86 * kthread_should_park - should this kthread park now? 87 * 88 * When someone calls kthread_park() on your kthread, it will be woken 89 * and this will return true. You should then do the necessary 90 * cleanup and call kthread_parkme() 91 * 92 * Similar to kthread_should_stop(), but this keeps the thread alive 93 * and in a park position. kthread_unpark() "restarts" the thread and 94 * calls the thread function again. 95 */ 96 bool kthread_should_park(void) 97 { 98 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(current)->flags); 99 } 100 EXPORT_SYMBOL_GPL(kthread_should_park); 101 102 /** 103 * kthread_freezable_should_stop - should this freezable kthread return now? 104 * @was_frozen: optional out parameter, indicates whether %current was frozen 105 * 106 * kthread_should_stop() for freezable kthreads, which will enter 107 * refrigerator if necessary. This function is safe from kthread_stop() / 108 * freezer deadlock and freezable kthreads should use this function instead 109 * of calling try_to_freeze() directly. 110 */ 111 bool kthread_freezable_should_stop(bool *was_frozen) 112 { 113 bool frozen = false; 114 115 might_sleep(); 116 117 if (unlikely(freezing(current))) 118 frozen = __refrigerator(true); 119 120 if (was_frozen) 121 *was_frozen = frozen; 122 123 return kthread_should_stop(); 124 } 125 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 126 127 /** 128 * kthread_data - return data value specified on kthread creation 129 * @task: kthread task in question 130 * 131 * Return the data value specified when kthread @task was created. 132 * The caller is responsible for ensuring the validity of @task when 133 * calling this function. 134 */ 135 void *kthread_data(struct task_struct *task) 136 { 137 return to_kthread(task)->data; 138 } 139 140 /** 141 * kthread_probe_data - speculative version of kthread_data() 142 * @task: possible kthread task in question 143 * 144 * @task could be a kthread task. Return the data value specified when it 145 * was created if accessible. If @task isn't a kthread task or its data is 146 * inaccessible for any reason, %NULL is returned. This function requires 147 * that @task itself is safe to dereference. 148 */ 149 void *kthread_probe_data(struct task_struct *task) 150 { 151 struct kthread *kthread = to_kthread(task); 152 void *data = NULL; 153 154 probe_kernel_read(&data, &kthread->data, sizeof(data)); 155 return data; 156 } 157 158 static void __kthread_parkme(struct kthread *self) 159 { 160 __set_current_state(TASK_PARKED); 161 while (test_bit(KTHREAD_SHOULD_PARK, &self->flags)) { 162 if (!test_and_set_bit(KTHREAD_IS_PARKED, &self->flags)) 163 complete(&self->parked); 164 schedule(); 165 __set_current_state(TASK_PARKED); 166 } 167 clear_bit(KTHREAD_IS_PARKED, &self->flags); 168 __set_current_state(TASK_RUNNING); 169 } 170 171 void kthread_parkme(void) 172 { 173 __kthread_parkme(to_kthread(current)); 174 } 175 EXPORT_SYMBOL_GPL(kthread_parkme); 176 177 static int kthread(void *_create) 178 { 179 /* Copy data: it's on kthread's stack */ 180 struct kthread_create_info *create = _create; 181 int (*threadfn)(void *data) = create->threadfn; 182 void *data = create->data; 183 struct completion *done; 184 struct kthread self; 185 int ret; 186 187 self.flags = 0; 188 self.data = data; 189 init_completion(&self.exited); 190 init_completion(&self.parked); 191 current->vfork_done = &self.exited; 192 193 /* If user was SIGKILLed, I release the structure. */ 194 done = xchg(&create->done, NULL); 195 if (!done) { 196 kfree(create); 197 do_exit(-EINTR); 198 } 199 /* OK, tell user we're spawned, wait for stop or wakeup */ 200 __set_current_state(TASK_UNINTERRUPTIBLE); 201 create->result = current; 202 complete(done); 203 schedule(); 204 205 ret = -EINTR; 206 207 if (!test_bit(KTHREAD_SHOULD_STOP, &self.flags)) { 208 __kthread_parkme(&self); 209 ret = threadfn(data); 210 } 211 /* we can't just return, we must preserve "self" on stack */ 212 do_exit(ret); 213 } 214 215 /* called from do_fork() to get node information for about to be created task */ 216 int tsk_fork_get_node(struct task_struct *tsk) 217 { 218 #ifdef CONFIG_NUMA 219 if (tsk == kthreadd_task) 220 return tsk->pref_node_fork; 221 #endif 222 return NUMA_NO_NODE; 223 } 224 225 static void create_kthread(struct kthread_create_info *create) 226 { 227 int pid; 228 229 #ifdef CONFIG_NUMA 230 current->pref_node_fork = create->node; 231 #endif 232 /* We want our own signal handler (we take no signals by default). */ 233 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD); 234 if (pid < 0) { 235 /* If user was SIGKILLed, I release the structure. */ 236 struct completion *done = xchg(&create->done, NULL); 237 238 if (!done) { 239 kfree(create); 240 return; 241 } 242 create->result = ERR_PTR(pid); 243 complete(done); 244 } 245 } 246 247 static struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 248 void *data, int node, 249 const char namefmt[], 250 va_list args) 251 { 252 DECLARE_COMPLETION_ONSTACK(done); 253 struct task_struct *task; 254 struct kthread_create_info *create = kmalloc(sizeof(*create), 255 GFP_KERNEL); 256 257 if (!create) 258 return ERR_PTR(-ENOMEM); 259 create->threadfn = threadfn; 260 create->data = data; 261 create->node = node; 262 create->done = &done; 263 264 spin_lock(&kthread_create_lock); 265 list_add_tail(&create->list, &kthread_create_list); 266 spin_unlock(&kthread_create_lock); 267 268 wake_up_process(kthreadd_task); 269 /* 270 * Wait for completion in killable state, for I might be chosen by 271 * the OOM killer while kthreadd is trying to allocate memory for 272 * new kernel thread. 273 */ 274 if (unlikely(wait_for_completion_killable(&done))) { 275 /* 276 * If I was SIGKILLed before kthreadd (or new kernel thread) 277 * calls complete(), leave the cleanup of this structure to 278 * that thread. 279 */ 280 if (xchg(&create->done, NULL)) 281 return ERR_PTR(-EINTR); 282 /* 283 * kthreadd (or new kernel thread) will call complete() 284 * shortly. 285 */ 286 wait_for_completion(&done); 287 } 288 task = create->result; 289 if (!IS_ERR(task)) { 290 static const struct sched_param param = { .sched_priority = 0 }; 291 292 vsnprintf(task->comm, sizeof(task->comm), namefmt, args); 293 /* 294 * root may have changed our (kthreadd's) priority or CPU mask. 295 * The kernel thread should not inherit these properties. 296 */ 297 sched_setscheduler_nocheck(task, SCHED_NORMAL, ¶m); 298 set_cpus_allowed_ptr(task, cpu_all_mask); 299 } 300 kfree(create); 301 return task; 302 } 303 304 /** 305 * kthread_create_on_node - create a kthread. 306 * @threadfn: the function to run until signal_pending(current). 307 * @data: data ptr for @threadfn. 308 * @node: task and thread structures for the thread are allocated on this node 309 * @namefmt: printf-style name for the thread. 310 * 311 * Description: This helper function creates and names a kernel 312 * thread. The thread will be stopped: use wake_up_process() to start 313 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 314 * is affine to all CPUs. 315 * 316 * If thread is going to be bound on a particular cpu, give its node 317 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 318 * When woken, the thread will run @threadfn() with @data as its 319 * argument. @threadfn() can either call do_exit() directly if it is a 320 * standalone thread for which no one will call kthread_stop(), or 321 * return when 'kthread_should_stop()' is true (which means 322 * kthread_stop() has been called). The return value should be zero 323 * or a negative error number; it will be passed to kthread_stop(). 324 * 325 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 326 */ 327 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 328 void *data, int node, 329 const char namefmt[], 330 ...) 331 { 332 struct task_struct *task; 333 va_list args; 334 335 va_start(args, namefmt); 336 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 337 va_end(args); 338 339 return task; 340 } 341 EXPORT_SYMBOL(kthread_create_on_node); 342 343 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state) 344 { 345 unsigned long flags; 346 347 if (!wait_task_inactive(p, state)) { 348 WARN_ON(1); 349 return; 350 } 351 352 /* It's safe because the task is inactive. */ 353 raw_spin_lock_irqsave(&p->pi_lock, flags); 354 do_set_cpus_allowed(p, mask); 355 p->flags |= PF_NO_SETAFFINITY; 356 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 357 } 358 359 static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state) 360 { 361 __kthread_bind_mask(p, cpumask_of(cpu), state); 362 } 363 364 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 365 { 366 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 367 } 368 369 /** 370 * kthread_bind - bind a just-created kthread to a cpu. 371 * @p: thread created by kthread_create(). 372 * @cpu: cpu (might not be online, must be possible) for @k to run on. 373 * 374 * Description: This function is equivalent to set_cpus_allowed(), 375 * except that @cpu doesn't need to be online, and the thread must be 376 * stopped (i.e., just returned from kthread_create()). 377 */ 378 void kthread_bind(struct task_struct *p, unsigned int cpu) 379 { 380 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 381 } 382 EXPORT_SYMBOL(kthread_bind); 383 384 /** 385 * kthread_create_on_cpu - Create a cpu bound kthread 386 * @threadfn: the function to run until signal_pending(current). 387 * @data: data ptr for @threadfn. 388 * @cpu: The cpu on which the thread should be bound, 389 * @namefmt: printf-style name for the thread. Format is restricted 390 * to "name.*%u". Code fills in cpu number. 391 * 392 * Description: This helper function creates and names a kernel thread 393 * The thread will be woken and put into park mode. 394 */ 395 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 396 void *data, unsigned int cpu, 397 const char *namefmt) 398 { 399 struct task_struct *p; 400 401 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 402 cpu); 403 if (IS_ERR(p)) 404 return p; 405 kthread_bind(p, cpu); 406 /* CPU hotplug need to bind once again when unparking the thread. */ 407 set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags); 408 to_kthread(p)->cpu = cpu; 409 return p; 410 } 411 412 static void __kthread_unpark(struct task_struct *k, struct kthread *kthread) 413 { 414 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 415 /* 416 * We clear the IS_PARKED bit here as we don't wait 417 * until the task has left the park code. So if we'd 418 * park before that happens we'd see the IS_PARKED bit 419 * which might be about to be cleared. 420 */ 421 if (test_and_clear_bit(KTHREAD_IS_PARKED, &kthread->flags)) { 422 /* 423 * Newly created kthread was parked when the CPU was offline. 424 * The binding was lost and we need to set it again. 425 */ 426 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 427 __kthread_bind(k, kthread->cpu, TASK_PARKED); 428 wake_up_state(k, TASK_PARKED); 429 } 430 } 431 432 /** 433 * kthread_unpark - unpark a thread created by kthread_create(). 434 * @k: thread created by kthread_create(). 435 * 436 * Sets kthread_should_park() for @k to return false, wakes it, and 437 * waits for it to return. If the thread is marked percpu then its 438 * bound to the cpu again. 439 */ 440 void kthread_unpark(struct task_struct *k) 441 { 442 struct kthread *kthread = to_live_kthread(k); 443 444 if (kthread) { 445 __kthread_unpark(k, kthread); 446 put_task_stack(k); 447 } 448 } 449 EXPORT_SYMBOL_GPL(kthread_unpark); 450 451 /** 452 * kthread_park - park a thread created by kthread_create(). 453 * @k: thread created by kthread_create(). 454 * 455 * Sets kthread_should_park() for @k to return true, wakes it, and 456 * waits for it to return. This can also be called after kthread_create() 457 * instead of calling wake_up_process(): the thread will park without 458 * calling threadfn(). 459 * 460 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 461 * If called by the kthread itself just the park bit is set. 462 */ 463 int kthread_park(struct task_struct *k) 464 { 465 struct kthread *kthread = to_live_kthread(k); 466 int ret = -ENOSYS; 467 468 if (kthread) { 469 if (!test_bit(KTHREAD_IS_PARKED, &kthread->flags)) { 470 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 471 if (k != current) { 472 wake_up_process(k); 473 wait_for_completion(&kthread->parked); 474 } 475 } 476 put_task_stack(k); 477 ret = 0; 478 } 479 return ret; 480 } 481 EXPORT_SYMBOL_GPL(kthread_park); 482 483 /** 484 * kthread_stop - stop a thread created by kthread_create(). 485 * @k: thread created by kthread_create(). 486 * 487 * Sets kthread_should_stop() for @k to return true, wakes it, and 488 * waits for it to exit. This can also be called after kthread_create() 489 * instead of calling wake_up_process(): the thread will exit without 490 * calling threadfn(). 491 * 492 * If threadfn() may call do_exit() itself, the caller must ensure 493 * task_struct can't go away. 494 * 495 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 496 * was never called. 497 */ 498 int kthread_stop(struct task_struct *k) 499 { 500 struct kthread *kthread; 501 int ret; 502 503 trace_sched_kthread_stop(k); 504 505 get_task_struct(k); 506 kthread = to_live_kthread(k); 507 if (kthread) { 508 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 509 __kthread_unpark(k, kthread); 510 wake_up_process(k); 511 wait_for_completion(&kthread->exited); 512 put_task_stack(k); 513 } 514 ret = k->exit_code; 515 put_task_struct(k); 516 517 trace_sched_kthread_stop_ret(ret); 518 return ret; 519 } 520 EXPORT_SYMBOL(kthread_stop); 521 522 int kthreadd(void *unused) 523 { 524 struct task_struct *tsk = current; 525 526 /* Setup a clean context for our children to inherit. */ 527 set_task_comm(tsk, "kthreadd"); 528 ignore_signals(tsk); 529 set_cpus_allowed_ptr(tsk, cpu_all_mask); 530 set_mems_allowed(node_states[N_MEMORY]); 531 532 current->flags |= PF_NOFREEZE; 533 534 for (;;) { 535 set_current_state(TASK_INTERRUPTIBLE); 536 if (list_empty(&kthread_create_list)) 537 schedule(); 538 __set_current_state(TASK_RUNNING); 539 540 spin_lock(&kthread_create_lock); 541 while (!list_empty(&kthread_create_list)) { 542 struct kthread_create_info *create; 543 544 create = list_entry(kthread_create_list.next, 545 struct kthread_create_info, list); 546 list_del_init(&create->list); 547 spin_unlock(&kthread_create_lock); 548 549 create_kthread(create); 550 551 spin_lock(&kthread_create_lock); 552 } 553 spin_unlock(&kthread_create_lock); 554 } 555 556 return 0; 557 } 558 559 void __kthread_init_worker(struct kthread_worker *worker, 560 const char *name, 561 struct lock_class_key *key) 562 { 563 memset(worker, 0, sizeof(struct kthread_worker)); 564 spin_lock_init(&worker->lock); 565 lockdep_set_class_and_name(&worker->lock, key, name); 566 INIT_LIST_HEAD(&worker->work_list); 567 INIT_LIST_HEAD(&worker->delayed_work_list); 568 } 569 EXPORT_SYMBOL_GPL(__kthread_init_worker); 570 571 /** 572 * kthread_worker_fn - kthread function to process kthread_worker 573 * @worker_ptr: pointer to initialized kthread_worker 574 * 575 * This function implements the main cycle of kthread worker. It processes 576 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 577 * is empty. 578 * 579 * The works are not allowed to keep any locks, disable preemption or interrupts 580 * when they finish. There is defined a safe point for freezing when one work 581 * finishes and before a new one is started. 582 * 583 * Also the works must not be handled by more than one worker at the same time, 584 * see also kthread_queue_work(). 585 */ 586 int kthread_worker_fn(void *worker_ptr) 587 { 588 struct kthread_worker *worker = worker_ptr; 589 struct kthread_work *work; 590 591 /* 592 * FIXME: Update the check and remove the assignment when all kthread 593 * worker users are created using kthread_create_worker*() functions. 594 */ 595 WARN_ON(worker->task && worker->task != current); 596 worker->task = current; 597 598 if (worker->flags & KTW_FREEZABLE) 599 set_freezable(); 600 601 repeat: 602 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 603 604 if (kthread_should_stop()) { 605 __set_current_state(TASK_RUNNING); 606 spin_lock_irq(&worker->lock); 607 worker->task = NULL; 608 spin_unlock_irq(&worker->lock); 609 return 0; 610 } 611 612 work = NULL; 613 spin_lock_irq(&worker->lock); 614 if (!list_empty(&worker->work_list)) { 615 work = list_first_entry(&worker->work_list, 616 struct kthread_work, node); 617 list_del_init(&work->node); 618 } 619 worker->current_work = work; 620 spin_unlock_irq(&worker->lock); 621 622 if (work) { 623 __set_current_state(TASK_RUNNING); 624 work->func(work); 625 } else if (!freezing(current)) 626 schedule(); 627 628 try_to_freeze(); 629 goto repeat; 630 } 631 EXPORT_SYMBOL_GPL(kthread_worker_fn); 632 633 static struct kthread_worker * 634 __kthread_create_worker(int cpu, unsigned int flags, 635 const char namefmt[], va_list args) 636 { 637 struct kthread_worker *worker; 638 struct task_struct *task; 639 640 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 641 if (!worker) 642 return ERR_PTR(-ENOMEM); 643 644 kthread_init_worker(worker); 645 646 if (cpu >= 0) { 647 char name[TASK_COMM_LEN]; 648 649 /* 650 * kthread_create_worker_on_cpu() allows to pass a generic 651 * namefmt in compare with kthread_create_on_cpu. We need 652 * to format it here. 653 */ 654 vsnprintf(name, sizeof(name), namefmt, args); 655 task = kthread_create_on_cpu(kthread_worker_fn, worker, 656 cpu, name); 657 } else { 658 task = __kthread_create_on_node(kthread_worker_fn, worker, 659 -1, namefmt, args); 660 } 661 662 if (IS_ERR(task)) 663 goto fail_task; 664 665 worker->flags = flags; 666 worker->task = task; 667 wake_up_process(task); 668 return worker; 669 670 fail_task: 671 kfree(worker); 672 return ERR_CAST(task); 673 } 674 675 /** 676 * kthread_create_worker - create a kthread worker 677 * @flags: flags modifying the default behavior of the worker 678 * @namefmt: printf-style name for the kthread worker (task). 679 * 680 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 681 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 682 * when the worker was SIGKILLed. 683 */ 684 struct kthread_worker * 685 kthread_create_worker(unsigned int flags, const char namefmt[], ...) 686 { 687 struct kthread_worker *worker; 688 va_list args; 689 690 va_start(args, namefmt); 691 worker = __kthread_create_worker(-1, flags, namefmt, args); 692 va_end(args); 693 694 return worker; 695 } 696 EXPORT_SYMBOL(kthread_create_worker); 697 698 /** 699 * kthread_create_worker_on_cpu - create a kthread worker and bind it 700 * it to a given CPU and the associated NUMA node. 701 * @cpu: CPU number 702 * @flags: flags modifying the default behavior of the worker 703 * @namefmt: printf-style name for the kthread worker (task). 704 * 705 * Use a valid CPU number if you want to bind the kthread worker 706 * to the given CPU and the associated NUMA node. 707 * 708 * A good practice is to add the cpu number also into the worker name. 709 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 710 * 711 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 712 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 713 * when the worker was SIGKILLed. 714 */ 715 struct kthread_worker * 716 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 717 const char namefmt[], ...) 718 { 719 struct kthread_worker *worker; 720 va_list args; 721 722 va_start(args, namefmt); 723 worker = __kthread_create_worker(cpu, flags, namefmt, args); 724 va_end(args); 725 726 return worker; 727 } 728 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 729 730 /* 731 * Returns true when the work could not be queued at the moment. 732 * It happens when it is already pending in a worker list 733 * or when it is being cancelled. 734 */ 735 static inline bool queuing_blocked(struct kthread_worker *worker, 736 struct kthread_work *work) 737 { 738 lockdep_assert_held(&worker->lock); 739 740 return !list_empty(&work->node) || work->canceling; 741 } 742 743 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 744 struct kthread_work *work) 745 { 746 lockdep_assert_held(&worker->lock); 747 WARN_ON_ONCE(!list_empty(&work->node)); 748 /* Do not use a work with >1 worker, see kthread_queue_work() */ 749 WARN_ON_ONCE(work->worker && work->worker != worker); 750 } 751 752 /* insert @work before @pos in @worker */ 753 static void kthread_insert_work(struct kthread_worker *worker, 754 struct kthread_work *work, 755 struct list_head *pos) 756 { 757 kthread_insert_work_sanity_check(worker, work); 758 759 list_add_tail(&work->node, pos); 760 work->worker = worker; 761 if (!worker->current_work && likely(worker->task)) 762 wake_up_process(worker->task); 763 } 764 765 /** 766 * kthread_queue_work - queue a kthread_work 767 * @worker: target kthread_worker 768 * @work: kthread_work to queue 769 * 770 * Queue @work to work processor @task for async execution. @task 771 * must have been created with kthread_worker_create(). Returns %true 772 * if @work was successfully queued, %false if it was already pending. 773 * 774 * Reinitialize the work if it needs to be used by another worker. 775 * For example, when the worker was stopped and started again. 776 */ 777 bool kthread_queue_work(struct kthread_worker *worker, 778 struct kthread_work *work) 779 { 780 bool ret = false; 781 unsigned long flags; 782 783 spin_lock_irqsave(&worker->lock, flags); 784 if (!queuing_blocked(worker, work)) { 785 kthread_insert_work(worker, work, &worker->work_list); 786 ret = true; 787 } 788 spin_unlock_irqrestore(&worker->lock, flags); 789 return ret; 790 } 791 EXPORT_SYMBOL_GPL(kthread_queue_work); 792 793 /** 794 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 795 * delayed work when the timer expires. 796 * @__data: pointer to the data associated with the timer 797 * 798 * The format of the function is defined by struct timer_list. 799 * It should have been called from irqsafe timer with irq already off. 800 */ 801 void kthread_delayed_work_timer_fn(unsigned long __data) 802 { 803 struct kthread_delayed_work *dwork = 804 (struct kthread_delayed_work *)__data; 805 struct kthread_work *work = &dwork->work; 806 struct kthread_worker *worker = work->worker; 807 808 /* 809 * This might happen when a pending work is reinitialized. 810 * It means that it is used a wrong way. 811 */ 812 if (WARN_ON_ONCE(!worker)) 813 return; 814 815 spin_lock(&worker->lock); 816 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 817 WARN_ON_ONCE(work->worker != worker); 818 819 /* Move the work from worker->delayed_work_list. */ 820 WARN_ON_ONCE(list_empty(&work->node)); 821 list_del_init(&work->node); 822 kthread_insert_work(worker, work, &worker->work_list); 823 824 spin_unlock(&worker->lock); 825 } 826 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 827 828 void __kthread_queue_delayed_work(struct kthread_worker *worker, 829 struct kthread_delayed_work *dwork, 830 unsigned long delay) 831 { 832 struct timer_list *timer = &dwork->timer; 833 struct kthread_work *work = &dwork->work; 834 835 WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn || 836 timer->data != (unsigned long)dwork); 837 838 /* 839 * If @delay is 0, queue @dwork->work immediately. This is for 840 * both optimization and correctness. The earliest @timer can 841 * expire is on the closest next tick and delayed_work users depend 842 * on that there's no such delay when @delay is 0. 843 */ 844 if (!delay) { 845 kthread_insert_work(worker, work, &worker->work_list); 846 return; 847 } 848 849 /* Be paranoid and try to detect possible races already now. */ 850 kthread_insert_work_sanity_check(worker, work); 851 852 list_add(&work->node, &worker->delayed_work_list); 853 work->worker = worker; 854 timer_stats_timer_set_start_info(&dwork->timer); 855 timer->expires = jiffies + delay; 856 add_timer(timer); 857 } 858 859 /** 860 * kthread_queue_delayed_work - queue the associated kthread work 861 * after a delay. 862 * @worker: target kthread_worker 863 * @dwork: kthread_delayed_work to queue 864 * @delay: number of jiffies to wait before queuing 865 * 866 * If the work has not been pending it starts a timer that will queue 867 * the work after the given @delay. If @delay is zero, it queues the 868 * work immediately. 869 * 870 * Return: %false if the @work has already been pending. It means that 871 * either the timer was running or the work was queued. It returns %true 872 * otherwise. 873 */ 874 bool kthread_queue_delayed_work(struct kthread_worker *worker, 875 struct kthread_delayed_work *dwork, 876 unsigned long delay) 877 { 878 struct kthread_work *work = &dwork->work; 879 unsigned long flags; 880 bool ret = false; 881 882 spin_lock_irqsave(&worker->lock, flags); 883 884 if (!queuing_blocked(worker, work)) { 885 __kthread_queue_delayed_work(worker, dwork, delay); 886 ret = true; 887 } 888 889 spin_unlock_irqrestore(&worker->lock, flags); 890 return ret; 891 } 892 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 893 894 struct kthread_flush_work { 895 struct kthread_work work; 896 struct completion done; 897 }; 898 899 static void kthread_flush_work_fn(struct kthread_work *work) 900 { 901 struct kthread_flush_work *fwork = 902 container_of(work, struct kthread_flush_work, work); 903 complete(&fwork->done); 904 } 905 906 /** 907 * kthread_flush_work - flush a kthread_work 908 * @work: work to flush 909 * 910 * If @work is queued or executing, wait for it to finish execution. 911 */ 912 void kthread_flush_work(struct kthread_work *work) 913 { 914 struct kthread_flush_work fwork = { 915 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 916 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 917 }; 918 struct kthread_worker *worker; 919 bool noop = false; 920 921 worker = work->worker; 922 if (!worker) 923 return; 924 925 spin_lock_irq(&worker->lock); 926 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 927 WARN_ON_ONCE(work->worker != worker); 928 929 if (!list_empty(&work->node)) 930 kthread_insert_work(worker, &fwork.work, work->node.next); 931 else if (worker->current_work == work) 932 kthread_insert_work(worker, &fwork.work, 933 worker->work_list.next); 934 else 935 noop = true; 936 937 spin_unlock_irq(&worker->lock); 938 939 if (!noop) 940 wait_for_completion(&fwork.done); 941 } 942 EXPORT_SYMBOL_GPL(kthread_flush_work); 943 944 /* 945 * This function removes the work from the worker queue. Also it makes sure 946 * that it won't get queued later via the delayed work's timer. 947 * 948 * The work might still be in use when this function finishes. See the 949 * current_work proceed by the worker. 950 * 951 * Return: %true if @work was pending and successfully canceled, 952 * %false if @work was not pending 953 */ 954 static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork, 955 unsigned long *flags) 956 { 957 /* Try to cancel the timer if exists. */ 958 if (is_dwork) { 959 struct kthread_delayed_work *dwork = 960 container_of(work, struct kthread_delayed_work, work); 961 struct kthread_worker *worker = work->worker; 962 963 /* 964 * del_timer_sync() must be called to make sure that the timer 965 * callback is not running. The lock must be temporary released 966 * to avoid a deadlock with the callback. In the meantime, 967 * any queuing is blocked by setting the canceling counter. 968 */ 969 work->canceling++; 970 spin_unlock_irqrestore(&worker->lock, *flags); 971 del_timer_sync(&dwork->timer); 972 spin_lock_irqsave(&worker->lock, *flags); 973 work->canceling--; 974 } 975 976 /* 977 * Try to remove the work from a worker list. It might either 978 * be from worker->work_list or from worker->delayed_work_list. 979 */ 980 if (!list_empty(&work->node)) { 981 list_del_init(&work->node); 982 return true; 983 } 984 985 return false; 986 } 987 988 /** 989 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 990 * @worker: kthread worker to use 991 * @dwork: kthread delayed work to queue 992 * @delay: number of jiffies to wait before queuing 993 * 994 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 995 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 996 * @work is guaranteed to be queued immediately. 997 * 998 * Return: %true if @dwork was pending and its timer was modified, 999 * %false otherwise. 1000 * 1001 * A special case is when the work is being canceled in parallel. 1002 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1003 * or yet another kthread_mod_delayed_work() call. We let the other command 1004 * win and return %false here. The caller is supposed to synchronize these 1005 * operations a reasonable way. 1006 * 1007 * This function is safe to call from any context including IRQ handler. 1008 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1009 * for details. 1010 */ 1011 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1012 struct kthread_delayed_work *dwork, 1013 unsigned long delay) 1014 { 1015 struct kthread_work *work = &dwork->work; 1016 unsigned long flags; 1017 int ret = false; 1018 1019 spin_lock_irqsave(&worker->lock, flags); 1020 1021 /* Do not bother with canceling when never queued. */ 1022 if (!work->worker) 1023 goto fast_queue; 1024 1025 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1026 WARN_ON_ONCE(work->worker != worker); 1027 1028 /* Do not fight with another command that is canceling this work. */ 1029 if (work->canceling) 1030 goto out; 1031 1032 ret = __kthread_cancel_work(work, true, &flags); 1033 fast_queue: 1034 __kthread_queue_delayed_work(worker, dwork, delay); 1035 out: 1036 spin_unlock_irqrestore(&worker->lock, flags); 1037 return ret; 1038 } 1039 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1040 1041 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1042 { 1043 struct kthread_worker *worker = work->worker; 1044 unsigned long flags; 1045 int ret = false; 1046 1047 if (!worker) 1048 goto out; 1049 1050 spin_lock_irqsave(&worker->lock, flags); 1051 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1052 WARN_ON_ONCE(work->worker != worker); 1053 1054 ret = __kthread_cancel_work(work, is_dwork, &flags); 1055 1056 if (worker->current_work != work) 1057 goto out_fast; 1058 1059 /* 1060 * The work is in progress and we need to wait with the lock released. 1061 * In the meantime, block any queuing by setting the canceling counter. 1062 */ 1063 work->canceling++; 1064 spin_unlock_irqrestore(&worker->lock, flags); 1065 kthread_flush_work(work); 1066 spin_lock_irqsave(&worker->lock, flags); 1067 work->canceling--; 1068 1069 out_fast: 1070 spin_unlock_irqrestore(&worker->lock, flags); 1071 out: 1072 return ret; 1073 } 1074 1075 /** 1076 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1077 * @work: the kthread work to cancel 1078 * 1079 * Cancel @work and wait for its execution to finish. This function 1080 * can be used even if the work re-queues itself. On return from this 1081 * function, @work is guaranteed to be not pending or executing on any CPU. 1082 * 1083 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1084 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1085 * 1086 * The caller must ensure that the worker on which @work was last 1087 * queued can't be destroyed before this function returns. 1088 * 1089 * Return: %true if @work was pending, %false otherwise. 1090 */ 1091 bool kthread_cancel_work_sync(struct kthread_work *work) 1092 { 1093 return __kthread_cancel_work_sync(work, false); 1094 } 1095 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1096 1097 /** 1098 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1099 * wait for it to finish. 1100 * @dwork: the kthread delayed work to cancel 1101 * 1102 * This is kthread_cancel_work_sync() for delayed works. 1103 * 1104 * Return: %true if @dwork was pending, %false otherwise. 1105 */ 1106 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1107 { 1108 return __kthread_cancel_work_sync(&dwork->work, true); 1109 } 1110 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1111 1112 /** 1113 * kthread_flush_worker - flush all current works on a kthread_worker 1114 * @worker: worker to flush 1115 * 1116 * Wait until all currently executing or pending works on @worker are 1117 * finished. 1118 */ 1119 void kthread_flush_worker(struct kthread_worker *worker) 1120 { 1121 struct kthread_flush_work fwork = { 1122 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1123 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1124 }; 1125 1126 kthread_queue_work(worker, &fwork.work); 1127 wait_for_completion(&fwork.done); 1128 } 1129 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1130 1131 /** 1132 * kthread_destroy_worker - destroy a kthread worker 1133 * @worker: worker to be destroyed 1134 * 1135 * Flush and destroy @worker. The simple flush is enough because the kthread 1136 * worker API is used only in trivial scenarios. There are no multi-step state 1137 * machines needed. 1138 */ 1139 void kthread_destroy_worker(struct kthread_worker *worker) 1140 { 1141 struct task_struct *task; 1142 1143 task = worker->task; 1144 if (WARN_ON(!task)) 1145 return; 1146 1147 kthread_flush_worker(worker); 1148 kthread_stop(task); 1149 WARN_ON(!list_empty(&worker->work_list)); 1150 kfree(worker); 1151 } 1152 EXPORT_SYMBOL(kthread_destroy_worker); 1153