1 // SPDX-License-Identifier: GPL-2.0-only 2 /* Kernel thread helper functions. 3 * Copyright (C) 2004 IBM Corporation, Rusty Russell. 4 * Copyright (C) 2009 Red Hat, Inc. 5 * 6 * Creation is done via kthreadd, so that we get a clean environment 7 * even if we're invoked from userspace (think modprobe, hotplug cpu, 8 * etc.). 9 */ 10 #include <uapi/linux/sched/types.h> 11 #include <linux/mm.h> 12 #include <linux/mmu_context.h> 13 #include <linux/sched.h> 14 #include <linux/sched/mm.h> 15 #include <linux/sched/task.h> 16 #include <linux/kthread.h> 17 #include <linux/completion.h> 18 #include <linux/err.h> 19 #include <linux/cgroup.h> 20 #include <linux/cpuset.h> 21 #include <linux/unistd.h> 22 #include <linux/file.h> 23 #include <linux/export.h> 24 #include <linux/mutex.h> 25 #include <linux/slab.h> 26 #include <linux/freezer.h> 27 #include <linux/ptrace.h> 28 #include <linux/uaccess.h> 29 #include <linux/numa.h> 30 #include <linux/sched/isolation.h> 31 #include <trace/events/sched.h> 32 33 34 static DEFINE_SPINLOCK(kthread_create_lock); 35 static LIST_HEAD(kthread_create_list); 36 struct task_struct *kthreadd_task; 37 38 struct kthread_create_info 39 { 40 /* Information passed to kthread() from kthreadd. */ 41 int (*threadfn)(void *data); 42 void *data; 43 int node; 44 45 /* Result passed back to kthread_create() from kthreadd. */ 46 struct task_struct *result; 47 struct completion *done; 48 49 struct list_head list; 50 }; 51 52 struct kthread { 53 unsigned long flags; 54 unsigned int cpu; 55 int result; 56 int (*threadfn)(void *); 57 void *data; 58 mm_segment_t oldfs; 59 struct completion parked; 60 struct completion exited; 61 #ifdef CONFIG_BLK_CGROUP 62 struct cgroup_subsys_state *blkcg_css; 63 #endif 64 }; 65 66 enum KTHREAD_BITS { 67 KTHREAD_IS_PER_CPU = 0, 68 KTHREAD_SHOULD_STOP, 69 KTHREAD_SHOULD_PARK, 70 }; 71 72 static inline struct kthread *to_kthread(struct task_struct *k) 73 { 74 WARN_ON(!(k->flags & PF_KTHREAD)); 75 return k->worker_private; 76 } 77 78 /* 79 * Variant of to_kthread() that doesn't assume @p is a kthread. 80 * 81 * Per construction; when: 82 * 83 * (p->flags & PF_KTHREAD) && p->worker_private 84 * 85 * the task is both a kthread and struct kthread is persistent. However 86 * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and 87 * begin_new_exec()). 88 */ 89 static inline struct kthread *__to_kthread(struct task_struct *p) 90 { 91 void *kthread = p->worker_private; 92 if (kthread && !(p->flags & PF_KTHREAD)) 93 kthread = NULL; 94 return kthread; 95 } 96 97 bool set_kthread_struct(struct task_struct *p) 98 { 99 struct kthread *kthread; 100 101 if (WARN_ON_ONCE(to_kthread(p))) 102 return false; 103 104 kthread = kzalloc(sizeof(*kthread), GFP_KERNEL); 105 if (!kthread) 106 return false; 107 108 init_completion(&kthread->exited); 109 init_completion(&kthread->parked); 110 p->vfork_done = &kthread->exited; 111 112 p->worker_private = kthread; 113 return true; 114 } 115 116 void free_kthread_struct(struct task_struct *k) 117 { 118 struct kthread *kthread; 119 120 /* 121 * Can be NULL if kmalloc() in set_kthread_struct() failed. 122 */ 123 kthread = to_kthread(k); 124 #ifdef CONFIG_BLK_CGROUP 125 WARN_ON_ONCE(kthread && kthread->blkcg_css); 126 #endif 127 k->worker_private = NULL; 128 kfree(kthread); 129 } 130 131 /** 132 * kthread_should_stop - should this kthread return now? 133 * 134 * When someone calls kthread_stop() on your kthread, it will be woken 135 * and this will return true. You should then return, and your return 136 * value will be passed through to kthread_stop(). 137 */ 138 bool kthread_should_stop(void) 139 { 140 return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags); 141 } 142 EXPORT_SYMBOL(kthread_should_stop); 143 144 bool __kthread_should_park(struct task_struct *k) 145 { 146 return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags); 147 } 148 EXPORT_SYMBOL_GPL(__kthread_should_park); 149 150 /** 151 * kthread_should_park - should this kthread park now? 152 * 153 * When someone calls kthread_park() on your kthread, it will be woken 154 * and this will return true. You should then do the necessary 155 * cleanup and call kthread_parkme() 156 * 157 * Similar to kthread_should_stop(), but this keeps the thread alive 158 * and in a park position. kthread_unpark() "restarts" the thread and 159 * calls the thread function again. 160 */ 161 bool kthread_should_park(void) 162 { 163 return __kthread_should_park(current); 164 } 165 EXPORT_SYMBOL_GPL(kthread_should_park); 166 167 /** 168 * kthread_freezable_should_stop - should this freezable kthread return now? 169 * @was_frozen: optional out parameter, indicates whether %current was frozen 170 * 171 * kthread_should_stop() for freezable kthreads, which will enter 172 * refrigerator if necessary. This function is safe from kthread_stop() / 173 * freezer deadlock and freezable kthreads should use this function instead 174 * of calling try_to_freeze() directly. 175 */ 176 bool kthread_freezable_should_stop(bool *was_frozen) 177 { 178 bool frozen = false; 179 180 might_sleep(); 181 182 if (unlikely(freezing(current))) 183 frozen = __refrigerator(true); 184 185 if (was_frozen) 186 *was_frozen = frozen; 187 188 return kthread_should_stop(); 189 } 190 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop); 191 192 /** 193 * kthread_func - return the function specified on kthread creation 194 * @task: kthread task in question 195 * 196 * Returns NULL if the task is not a kthread. 197 */ 198 void *kthread_func(struct task_struct *task) 199 { 200 struct kthread *kthread = __to_kthread(task); 201 if (kthread) 202 return kthread->threadfn; 203 return NULL; 204 } 205 EXPORT_SYMBOL_GPL(kthread_func); 206 207 /** 208 * kthread_data - return data value specified on kthread creation 209 * @task: kthread task in question 210 * 211 * Return the data value specified when kthread @task was created. 212 * The caller is responsible for ensuring the validity of @task when 213 * calling this function. 214 */ 215 void *kthread_data(struct task_struct *task) 216 { 217 return to_kthread(task)->data; 218 } 219 EXPORT_SYMBOL_GPL(kthread_data); 220 221 /** 222 * kthread_probe_data - speculative version of kthread_data() 223 * @task: possible kthread task in question 224 * 225 * @task could be a kthread task. Return the data value specified when it 226 * was created if accessible. If @task isn't a kthread task or its data is 227 * inaccessible for any reason, %NULL is returned. This function requires 228 * that @task itself is safe to dereference. 229 */ 230 void *kthread_probe_data(struct task_struct *task) 231 { 232 struct kthread *kthread = __to_kthread(task); 233 void *data = NULL; 234 235 if (kthread) 236 copy_from_kernel_nofault(&data, &kthread->data, sizeof(data)); 237 return data; 238 } 239 240 static void __kthread_parkme(struct kthread *self) 241 { 242 for (;;) { 243 /* 244 * TASK_PARKED is a special state; we must serialize against 245 * possible pending wakeups to avoid store-store collisions on 246 * task->state. 247 * 248 * Such a collision might possibly result in the task state 249 * changin from TASK_PARKED and us failing the 250 * wait_task_inactive() in kthread_park(). 251 */ 252 set_special_state(TASK_PARKED); 253 if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags)) 254 break; 255 256 /* 257 * Thread is going to call schedule(), do not preempt it, 258 * or the caller of kthread_park() may spend more time in 259 * wait_task_inactive(). 260 */ 261 preempt_disable(); 262 complete(&self->parked); 263 schedule_preempt_disabled(); 264 preempt_enable(); 265 } 266 __set_current_state(TASK_RUNNING); 267 } 268 269 void kthread_parkme(void) 270 { 271 __kthread_parkme(to_kthread(current)); 272 } 273 EXPORT_SYMBOL_GPL(kthread_parkme); 274 275 /** 276 * kthread_exit - Cause the current kthread return @result to kthread_stop(). 277 * @result: The integer value to return to kthread_stop(). 278 * 279 * While kthread_exit can be called directly, it exists so that 280 * functions which do some additional work in non-modular code such as 281 * module_put_and_kthread_exit can be implemented. 282 * 283 * Does not return. 284 */ 285 void __noreturn kthread_exit(long result) 286 { 287 struct kthread *kthread = to_kthread(current); 288 kthread->result = result; 289 do_exit(0); 290 } 291 292 /** 293 * kthread_complete_and_exit - Exit the current kthread. 294 * @comp: Completion to complete 295 * @code: The integer value to return to kthread_stop(). 296 * 297 * If present complete @comp and the reuturn code to kthread_stop(). 298 * 299 * A kernel thread whose module may be removed after the completion of 300 * @comp can use this function exit safely. 301 * 302 * Does not return. 303 */ 304 void __noreturn kthread_complete_and_exit(struct completion *comp, long code) 305 { 306 if (comp) 307 complete(comp); 308 309 kthread_exit(code); 310 } 311 EXPORT_SYMBOL(kthread_complete_and_exit); 312 313 static int kthread(void *_create) 314 { 315 static const struct sched_param param = { .sched_priority = 0 }; 316 /* Copy data: it's on kthread's stack */ 317 struct kthread_create_info *create = _create; 318 int (*threadfn)(void *data) = create->threadfn; 319 void *data = create->data; 320 struct completion *done; 321 struct kthread *self; 322 int ret; 323 324 self = to_kthread(current); 325 326 /* If user was SIGKILLed, I release the structure. */ 327 done = xchg(&create->done, NULL); 328 if (!done) { 329 kfree(create); 330 kthread_exit(-EINTR); 331 } 332 333 self->threadfn = threadfn; 334 self->data = data; 335 336 /* 337 * The new thread inherited kthreadd's priority and CPU mask. Reset 338 * back to default in case they have been changed. 339 */ 340 sched_setscheduler_nocheck(current, SCHED_NORMAL, ¶m); 341 set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_KTHREAD)); 342 343 /* OK, tell user we're spawned, wait for stop or wakeup */ 344 __set_current_state(TASK_UNINTERRUPTIBLE); 345 create->result = current; 346 /* 347 * Thread is going to call schedule(), do not preempt it, 348 * or the creator may spend more time in wait_task_inactive(). 349 */ 350 preempt_disable(); 351 complete(done); 352 schedule_preempt_disabled(); 353 preempt_enable(); 354 355 ret = -EINTR; 356 if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) { 357 cgroup_kthread_ready(); 358 __kthread_parkme(self); 359 ret = threadfn(data); 360 } 361 kthread_exit(ret); 362 } 363 364 /* called from kernel_clone() to get node information for about to be created task */ 365 int tsk_fork_get_node(struct task_struct *tsk) 366 { 367 #ifdef CONFIG_NUMA 368 if (tsk == kthreadd_task) 369 return tsk->pref_node_fork; 370 #endif 371 return NUMA_NO_NODE; 372 } 373 374 static void create_kthread(struct kthread_create_info *create) 375 { 376 int pid; 377 378 #ifdef CONFIG_NUMA 379 current->pref_node_fork = create->node; 380 #endif 381 /* We want our own signal handler (we take no signals by default). */ 382 pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD); 383 if (pid < 0) { 384 /* If user was SIGKILLed, I release the structure. */ 385 struct completion *done = xchg(&create->done, NULL); 386 387 if (!done) { 388 kfree(create); 389 return; 390 } 391 create->result = ERR_PTR(pid); 392 complete(done); 393 } 394 } 395 396 static __printf(4, 0) 397 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data), 398 void *data, int node, 399 const char namefmt[], 400 va_list args) 401 { 402 DECLARE_COMPLETION_ONSTACK(done); 403 struct task_struct *task; 404 struct kthread_create_info *create = kmalloc(sizeof(*create), 405 GFP_KERNEL); 406 407 if (!create) 408 return ERR_PTR(-ENOMEM); 409 create->threadfn = threadfn; 410 create->data = data; 411 create->node = node; 412 create->done = &done; 413 414 spin_lock(&kthread_create_lock); 415 list_add_tail(&create->list, &kthread_create_list); 416 spin_unlock(&kthread_create_lock); 417 418 wake_up_process(kthreadd_task); 419 /* 420 * Wait for completion in killable state, for I might be chosen by 421 * the OOM killer while kthreadd is trying to allocate memory for 422 * new kernel thread. 423 */ 424 if (unlikely(wait_for_completion_killable(&done))) { 425 /* 426 * If I was SIGKILLed before kthreadd (or new kernel thread) 427 * calls complete(), leave the cleanup of this structure to 428 * that thread. 429 */ 430 if (xchg(&create->done, NULL)) 431 return ERR_PTR(-EINTR); 432 /* 433 * kthreadd (or new kernel thread) will call complete() 434 * shortly. 435 */ 436 wait_for_completion(&done); 437 } 438 task = create->result; 439 if (!IS_ERR(task)) { 440 char name[TASK_COMM_LEN]; 441 442 /* 443 * task is already visible to other tasks, so updating 444 * COMM must be protected. 445 */ 446 vsnprintf(name, sizeof(name), namefmt, args); 447 set_task_comm(task, name); 448 } 449 kfree(create); 450 return task; 451 } 452 453 /** 454 * kthread_create_on_node - create a kthread. 455 * @threadfn: the function to run until signal_pending(current). 456 * @data: data ptr for @threadfn. 457 * @node: task and thread structures for the thread are allocated on this node 458 * @namefmt: printf-style name for the thread. 459 * 460 * Description: This helper function creates and names a kernel 461 * thread. The thread will be stopped: use wake_up_process() to start 462 * it. See also kthread_run(). The new thread has SCHED_NORMAL policy and 463 * is affine to all CPUs. 464 * 465 * If thread is going to be bound on a particular cpu, give its node 466 * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE. 467 * When woken, the thread will run @threadfn() with @data as its 468 * argument. @threadfn() can either return directly if it is a 469 * standalone thread for which no one will call kthread_stop(), or 470 * return when 'kthread_should_stop()' is true (which means 471 * kthread_stop() has been called). The return value should be zero 472 * or a negative error number; it will be passed to kthread_stop(). 473 * 474 * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR). 475 */ 476 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data), 477 void *data, int node, 478 const char namefmt[], 479 ...) 480 { 481 struct task_struct *task; 482 va_list args; 483 484 va_start(args, namefmt); 485 task = __kthread_create_on_node(threadfn, data, node, namefmt, args); 486 va_end(args); 487 488 return task; 489 } 490 EXPORT_SYMBOL(kthread_create_on_node); 491 492 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state) 493 { 494 unsigned long flags; 495 496 if (!wait_task_inactive(p, state)) { 497 WARN_ON(1); 498 return; 499 } 500 501 /* It's safe because the task is inactive. */ 502 raw_spin_lock_irqsave(&p->pi_lock, flags); 503 do_set_cpus_allowed(p, mask); 504 p->flags |= PF_NO_SETAFFINITY; 505 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 506 } 507 508 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state) 509 { 510 __kthread_bind_mask(p, cpumask_of(cpu), state); 511 } 512 513 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask) 514 { 515 __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE); 516 } 517 518 /** 519 * kthread_bind - bind a just-created kthread to a cpu. 520 * @p: thread created by kthread_create(). 521 * @cpu: cpu (might not be online, must be possible) for @k to run on. 522 * 523 * Description: This function is equivalent to set_cpus_allowed(), 524 * except that @cpu doesn't need to be online, and the thread must be 525 * stopped (i.e., just returned from kthread_create()). 526 */ 527 void kthread_bind(struct task_struct *p, unsigned int cpu) 528 { 529 __kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE); 530 } 531 EXPORT_SYMBOL(kthread_bind); 532 533 /** 534 * kthread_create_on_cpu - Create a cpu bound kthread 535 * @threadfn: the function to run until signal_pending(current). 536 * @data: data ptr for @threadfn. 537 * @cpu: The cpu on which the thread should be bound, 538 * @namefmt: printf-style name for the thread. Format is restricted 539 * to "name.*%u". Code fills in cpu number. 540 * 541 * Description: This helper function creates and names a kernel thread 542 */ 543 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data), 544 void *data, unsigned int cpu, 545 const char *namefmt) 546 { 547 struct task_struct *p; 548 549 p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt, 550 cpu); 551 if (IS_ERR(p)) 552 return p; 553 kthread_bind(p, cpu); 554 /* CPU hotplug need to bind once again when unparking the thread. */ 555 to_kthread(p)->cpu = cpu; 556 return p; 557 } 558 EXPORT_SYMBOL(kthread_create_on_cpu); 559 560 void kthread_set_per_cpu(struct task_struct *k, int cpu) 561 { 562 struct kthread *kthread = to_kthread(k); 563 if (!kthread) 564 return; 565 566 WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY)); 567 568 if (cpu < 0) { 569 clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 570 return; 571 } 572 573 kthread->cpu = cpu; 574 set_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 575 } 576 577 bool kthread_is_per_cpu(struct task_struct *p) 578 { 579 struct kthread *kthread = __to_kthread(p); 580 if (!kthread) 581 return false; 582 583 return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags); 584 } 585 586 /** 587 * kthread_unpark - unpark a thread created by kthread_create(). 588 * @k: thread created by kthread_create(). 589 * 590 * Sets kthread_should_park() for @k to return false, wakes it, and 591 * waits for it to return. If the thread is marked percpu then its 592 * bound to the cpu again. 593 */ 594 void kthread_unpark(struct task_struct *k) 595 { 596 struct kthread *kthread = to_kthread(k); 597 598 /* 599 * Newly created kthread was parked when the CPU was offline. 600 * The binding was lost and we need to set it again. 601 */ 602 if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags)) 603 __kthread_bind(k, kthread->cpu, TASK_PARKED); 604 605 clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 606 /* 607 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup. 608 */ 609 wake_up_state(k, TASK_PARKED); 610 } 611 EXPORT_SYMBOL_GPL(kthread_unpark); 612 613 /** 614 * kthread_park - park a thread created by kthread_create(). 615 * @k: thread created by kthread_create(). 616 * 617 * Sets kthread_should_park() for @k to return true, wakes it, and 618 * waits for it to return. This can also be called after kthread_create() 619 * instead of calling wake_up_process(): the thread will park without 620 * calling threadfn(). 621 * 622 * Returns 0 if the thread is parked, -ENOSYS if the thread exited. 623 * If called by the kthread itself just the park bit is set. 624 */ 625 int kthread_park(struct task_struct *k) 626 { 627 struct kthread *kthread = to_kthread(k); 628 629 if (WARN_ON(k->flags & PF_EXITING)) 630 return -ENOSYS; 631 632 if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags))) 633 return -EBUSY; 634 635 set_bit(KTHREAD_SHOULD_PARK, &kthread->flags); 636 if (k != current) { 637 wake_up_process(k); 638 /* 639 * Wait for __kthread_parkme() to complete(), this means we 640 * _will_ have TASK_PARKED and are about to call schedule(). 641 */ 642 wait_for_completion(&kthread->parked); 643 /* 644 * Now wait for that schedule() to complete and the task to 645 * get scheduled out. 646 */ 647 WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED)); 648 } 649 650 return 0; 651 } 652 EXPORT_SYMBOL_GPL(kthread_park); 653 654 /** 655 * kthread_stop - stop a thread created by kthread_create(). 656 * @k: thread created by kthread_create(). 657 * 658 * Sets kthread_should_stop() for @k to return true, wakes it, and 659 * waits for it to exit. This can also be called after kthread_create() 660 * instead of calling wake_up_process(): the thread will exit without 661 * calling threadfn(). 662 * 663 * If threadfn() may call kthread_exit() itself, the caller must ensure 664 * task_struct can't go away. 665 * 666 * Returns the result of threadfn(), or %-EINTR if wake_up_process() 667 * was never called. 668 */ 669 int kthread_stop(struct task_struct *k) 670 { 671 struct kthread *kthread; 672 int ret; 673 674 trace_sched_kthread_stop(k); 675 676 get_task_struct(k); 677 kthread = to_kthread(k); 678 set_bit(KTHREAD_SHOULD_STOP, &kthread->flags); 679 kthread_unpark(k); 680 wake_up_process(k); 681 wait_for_completion(&kthread->exited); 682 ret = kthread->result; 683 put_task_struct(k); 684 685 trace_sched_kthread_stop_ret(ret); 686 return ret; 687 } 688 EXPORT_SYMBOL(kthread_stop); 689 690 int kthreadd(void *unused) 691 { 692 struct task_struct *tsk = current; 693 694 /* Setup a clean context for our children to inherit. */ 695 set_task_comm(tsk, "kthreadd"); 696 ignore_signals(tsk); 697 set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD)); 698 set_mems_allowed(node_states[N_MEMORY]); 699 700 current->flags |= PF_NOFREEZE; 701 cgroup_init_kthreadd(); 702 703 for (;;) { 704 set_current_state(TASK_INTERRUPTIBLE); 705 if (list_empty(&kthread_create_list)) 706 schedule(); 707 __set_current_state(TASK_RUNNING); 708 709 spin_lock(&kthread_create_lock); 710 while (!list_empty(&kthread_create_list)) { 711 struct kthread_create_info *create; 712 713 create = list_entry(kthread_create_list.next, 714 struct kthread_create_info, list); 715 list_del_init(&create->list); 716 spin_unlock(&kthread_create_lock); 717 718 create_kthread(create); 719 720 spin_lock(&kthread_create_lock); 721 } 722 spin_unlock(&kthread_create_lock); 723 } 724 725 return 0; 726 } 727 728 void __kthread_init_worker(struct kthread_worker *worker, 729 const char *name, 730 struct lock_class_key *key) 731 { 732 memset(worker, 0, sizeof(struct kthread_worker)); 733 raw_spin_lock_init(&worker->lock); 734 lockdep_set_class_and_name(&worker->lock, key, name); 735 INIT_LIST_HEAD(&worker->work_list); 736 INIT_LIST_HEAD(&worker->delayed_work_list); 737 } 738 EXPORT_SYMBOL_GPL(__kthread_init_worker); 739 740 /** 741 * kthread_worker_fn - kthread function to process kthread_worker 742 * @worker_ptr: pointer to initialized kthread_worker 743 * 744 * This function implements the main cycle of kthread worker. It processes 745 * work_list until it is stopped with kthread_stop(). It sleeps when the queue 746 * is empty. 747 * 748 * The works are not allowed to keep any locks, disable preemption or interrupts 749 * when they finish. There is defined a safe point for freezing when one work 750 * finishes and before a new one is started. 751 * 752 * Also the works must not be handled by more than one worker at the same time, 753 * see also kthread_queue_work(). 754 */ 755 int kthread_worker_fn(void *worker_ptr) 756 { 757 struct kthread_worker *worker = worker_ptr; 758 struct kthread_work *work; 759 760 /* 761 * FIXME: Update the check and remove the assignment when all kthread 762 * worker users are created using kthread_create_worker*() functions. 763 */ 764 WARN_ON(worker->task && worker->task != current); 765 worker->task = current; 766 767 if (worker->flags & KTW_FREEZABLE) 768 set_freezable(); 769 770 repeat: 771 set_current_state(TASK_INTERRUPTIBLE); /* mb paired w/ kthread_stop */ 772 773 if (kthread_should_stop()) { 774 __set_current_state(TASK_RUNNING); 775 raw_spin_lock_irq(&worker->lock); 776 worker->task = NULL; 777 raw_spin_unlock_irq(&worker->lock); 778 return 0; 779 } 780 781 work = NULL; 782 raw_spin_lock_irq(&worker->lock); 783 if (!list_empty(&worker->work_list)) { 784 work = list_first_entry(&worker->work_list, 785 struct kthread_work, node); 786 list_del_init(&work->node); 787 } 788 worker->current_work = work; 789 raw_spin_unlock_irq(&worker->lock); 790 791 if (work) { 792 kthread_work_func_t func = work->func; 793 __set_current_state(TASK_RUNNING); 794 trace_sched_kthread_work_execute_start(work); 795 work->func(work); 796 /* 797 * Avoid dereferencing work after this point. The trace 798 * event only cares about the address. 799 */ 800 trace_sched_kthread_work_execute_end(work, func); 801 } else if (!freezing(current)) 802 schedule(); 803 804 try_to_freeze(); 805 cond_resched(); 806 goto repeat; 807 } 808 EXPORT_SYMBOL_GPL(kthread_worker_fn); 809 810 static __printf(3, 0) struct kthread_worker * 811 __kthread_create_worker(int cpu, unsigned int flags, 812 const char namefmt[], va_list args) 813 { 814 struct kthread_worker *worker; 815 struct task_struct *task; 816 int node = NUMA_NO_NODE; 817 818 worker = kzalloc(sizeof(*worker), GFP_KERNEL); 819 if (!worker) 820 return ERR_PTR(-ENOMEM); 821 822 kthread_init_worker(worker); 823 824 if (cpu >= 0) 825 node = cpu_to_node(cpu); 826 827 task = __kthread_create_on_node(kthread_worker_fn, worker, 828 node, namefmt, args); 829 if (IS_ERR(task)) 830 goto fail_task; 831 832 if (cpu >= 0) 833 kthread_bind(task, cpu); 834 835 worker->flags = flags; 836 worker->task = task; 837 wake_up_process(task); 838 return worker; 839 840 fail_task: 841 kfree(worker); 842 return ERR_CAST(task); 843 } 844 845 /** 846 * kthread_create_worker - create a kthread worker 847 * @flags: flags modifying the default behavior of the worker 848 * @namefmt: printf-style name for the kthread worker (task). 849 * 850 * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 851 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 852 * when the worker was SIGKILLed. 853 */ 854 struct kthread_worker * 855 kthread_create_worker(unsigned int flags, const char namefmt[], ...) 856 { 857 struct kthread_worker *worker; 858 va_list args; 859 860 va_start(args, namefmt); 861 worker = __kthread_create_worker(-1, flags, namefmt, args); 862 va_end(args); 863 864 return worker; 865 } 866 EXPORT_SYMBOL(kthread_create_worker); 867 868 /** 869 * kthread_create_worker_on_cpu - create a kthread worker and bind it 870 * to a given CPU and the associated NUMA node. 871 * @cpu: CPU number 872 * @flags: flags modifying the default behavior of the worker 873 * @namefmt: printf-style name for the kthread worker (task). 874 * 875 * Use a valid CPU number if you want to bind the kthread worker 876 * to the given CPU and the associated NUMA node. 877 * 878 * A good practice is to add the cpu number also into the worker name. 879 * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu). 880 * 881 * CPU hotplug: 882 * The kthread worker API is simple and generic. It just provides a way 883 * to create, use, and destroy workers. 884 * 885 * It is up to the API user how to handle CPU hotplug. They have to decide 886 * how to handle pending work items, prevent queuing new ones, and 887 * restore the functionality when the CPU goes off and on. There are a 888 * few catches: 889 * 890 * - CPU affinity gets lost when it is scheduled on an offline CPU. 891 * 892 * - The worker might not exist when the CPU was off when the user 893 * created the workers. 894 * 895 * Good practice is to implement two CPU hotplug callbacks and to 896 * destroy/create the worker when the CPU goes down/up. 897 * 898 * Return: 899 * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM) 900 * when the needed structures could not get allocated, and ERR_PTR(-EINTR) 901 * when the worker was SIGKILLed. 902 */ 903 struct kthread_worker * 904 kthread_create_worker_on_cpu(int cpu, unsigned int flags, 905 const char namefmt[], ...) 906 { 907 struct kthread_worker *worker; 908 va_list args; 909 910 va_start(args, namefmt); 911 worker = __kthread_create_worker(cpu, flags, namefmt, args); 912 va_end(args); 913 914 return worker; 915 } 916 EXPORT_SYMBOL(kthread_create_worker_on_cpu); 917 918 /* 919 * Returns true when the work could not be queued at the moment. 920 * It happens when it is already pending in a worker list 921 * or when it is being cancelled. 922 */ 923 static inline bool queuing_blocked(struct kthread_worker *worker, 924 struct kthread_work *work) 925 { 926 lockdep_assert_held(&worker->lock); 927 928 return !list_empty(&work->node) || work->canceling; 929 } 930 931 static void kthread_insert_work_sanity_check(struct kthread_worker *worker, 932 struct kthread_work *work) 933 { 934 lockdep_assert_held(&worker->lock); 935 WARN_ON_ONCE(!list_empty(&work->node)); 936 /* Do not use a work with >1 worker, see kthread_queue_work() */ 937 WARN_ON_ONCE(work->worker && work->worker != worker); 938 } 939 940 /* insert @work before @pos in @worker */ 941 static void kthread_insert_work(struct kthread_worker *worker, 942 struct kthread_work *work, 943 struct list_head *pos) 944 { 945 kthread_insert_work_sanity_check(worker, work); 946 947 trace_sched_kthread_work_queue_work(worker, work); 948 949 list_add_tail(&work->node, pos); 950 work->worker = worker; 951 if (!worker->current_work && likely(worker->task)) 952 wake_up_process(worker->task); 953 } 954 955 /** 956 * kthread_queue_work - queue a kthread_work 957 * @worker: target kthread_worker 958 * @work: kthread_work to queue 959 * 960 * Queue @work to work processor @task for async execution. @task 961 * must have been created with kthread_worker_create(). Returns %true 962 * if @work was successfully queued, %false if it was already pending. 963 * 964 * Reinitialize the work if it needs to be used by another worker. 965 * For example, when the worker was stopped and started again. 966 */ 967 bool kthread_queue_work(struct kthread_worker *worker, 968 struct kthread_work *work) 969 { 970 bool ret = false; 971 unsigned long flags; 972 973 raw_spin_lock_irqsave(&worker->lock, flags); 974 if (!queuing_blocked(worker, work)) { 975 kthread_insert_work(worker, work, &worker->work_list); 976 ret = true; 977 } 978 raw_spin_unlock_irqrestore(&worker->lock, flags); 979 return ret; 980 } 981 EXPORT_SYMBOL_GPL(kthread_queue_work); 982 983 /** 984 * kthread_delayed_work_timer_fn - callback that queues the associated kthread 985 * delayed work when the timer expires. 986 * @t: pointer to the expired timer 987 * 988 * The format of the function is defined by struct timer_list. 989 * It should have been called from irqsafe timer with irq already off. 990 */ 991 void kthread_delayed_work_timer_fn(struct timer_list *t) 992 { 993 struct kthread_delayed_work *dwork = from_timer(dwork, t, timer); 994 struct kthread_work *work = &dwork->work; 995 struct kthread_worker *worker = work->worker; 996 unsigned long flags; 997 998 /* 999 * This might happen when a pending work is reinitialized. 1000 * It means that it is used a wrong way. 1001 */ 1002 if (WARN_ON_ONCE(!worker)) 1003 return; 1004 1005 raw_spin_lock_irqsave(&worker->lock, flags); 1006 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1007 WARN_ON_ONCE(work->worker != worker); 1008 1009 /* Move the work from worker->delayed_work_list. */ 1010 WARN_ON_ONCE(list_empty(&work->node)); 1011 list_del_init(&work->node); 1012 if (!work->canceling) 1013 kthread_insert_work(worker, work, &worker->work_list); 1014 1015 raw_spin_unlock_irqrestore(&worker->lock, flags); 1016 } 1017 EXPORT_SYMBOL(kthread_delayed_work_timer_fn); 1018 1019 static void __kthread_queue_delayed_work(struct kthread_worker *worker, 1020 struct kthread_delayed_work *dwork, 1021 unsigned long delay) 1022 { 1023 struct timer_list *timer = &dwork->timer; 1024 struct kthread_work *work = &dwork->work; 1025 1026 WARN_ON_FUNCTION_MISMATCH(timer->function, 1027 kthread_delayed_work_timer_fn); 1028 1029 /* 1030 * If @delay is 0, queue @dwork->work immediately. This is for 1031 * both optimization and correctness. The earliest @timer can 1032 * expire is on the closest next tick and delayed_work users depend 1033 * on that there's no such delay when @delay is 0. 1034 */ 1035 if (!delay) { 1036 kthread_insert_work(worker, work, &worker->work_list); 1037 return; 1038 } 1039 1040 /* Be paranoid and try to detect possible races already now. */ 1041 kthread_insert_work_sanity_check(worker, work); 1042 1043 list_add(&work->node, &worker->delayed_work_list); 1044 work->worker = worker; 1045 timer->expires = jiffies + delay; 1046 add_timer(timer); 1047 } 1048 1049 /** 1050 * kthread_queue_delayed_work - queue the associated kthread work 1051 * after a delay. 1052 * @worker: target kthread_worker 1053 * @dwork: kthread_delayed_work to queue 1054 * @delay: number of jiffies to wait before queuing 1055 * 1056 * If the work has not been pending it starts a timer that will queue 1057 * the work after the given @delay. If @delay is zero, it queues the 1058 * work immediately. 1059 * 1060 * Return: %false if the @work has already been pending. It means that 1061 * either the timer was running or the work was queued. It returns %true 1062 * otherwise. 1063 */ 1064 bool kthread_queue_delayed_work(struct kthread_worker *worker, 1065 struct kthread_delayed_work *dwork, 1066 unsigned long delay) 1067 { 1068 struct kthread_work *work = &dwork->work; 1069 unsigned long flags; 1070 bool ret = false; 1071 1072 raw_spin_lock_irqsave(&worker->lock, flags); 1073 1074 if (!queuing_blocked(worker, work)) { 1075 __kthread_queue_delayed_work(worker, dwork, delay); 1076 ret = true; 1077 } 1078 1079 raw_spin_unlock_irqrestore(&worker->lock, flags); 1080 return ret; 1081 } 1082 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work); 1083 1084 struct kthread_flush_work { 1085 struct kthread_work work; 1086 struct completion done; 1087 }; 1088 1089 static void kthread_flush_work_fn(struct kthread_work *work) 1090 { 1091 struct kthread_flush_work *fwork = 1092 container_of(work, struct kthread_flush_work, work); 1093 complete(&fwork->done); 1094 } 1095 1096 /** 1097 * kthread_flush_work - flush a kthread_work 1098 * @work: work to flush 1099 * 1100 * If @work is queued or executing, wait for it to finish execution. 1101 */ 1102 void kthread_flush_work(struct kthread_work *work) 1103 { 1104 struct kthread_flush_work fwork = { 1105 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1106 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1107 }; 1108 struct kthread_worker *worker; 1109 bool noop = false; 1110 1111 worker = work->worker; 1112 if (!worker) 1113 return; 1114 1115 raw_spin_lock_irq(&worker->lock); 1116 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1117 WARN_ON_ONCE(work->worker != worker); 1118 1119 if (!list_empty(&work->node)) 1120 kthread_insert_work(worker, &fwork.work, work->node.next); 1121 else if (worker->current_work == work) 1122 kthread_insert_work(worker, &fwork.work, 1123 worker->work_list.next); 1124 else 1125 noop = true; 1126 1127 raw_spin_unlock_irq(&worker->lock); 1128 1129 if (!noop) 1130 wait_for_completion(&fwork.done); 1131 } 1132 EXPORT_SYMBOL_GPL(kthread_flush_work); 1133 1134 /* 1135 * Make sure that the timer is neither set nor running and could 1136 * not manipulate the work list_head any longer. 1137 * 1138 * The function is called under worker->lock. The lock is temporary 1139 * released but the timer can't be set again in the meantime. 1140 */ 1141 static void kthread_cancel_delayed_work_timer(struct kthread_work *work, 1142 unsigned long *flags) 1143 { 1144 struct kthread_delayed_work *dwork = 1145 container_of(work, struct kthread_delayed_work, work); 1146 struct kthread_worker *worker = work->worker; 1147 1148 /* 1149 * del_timer_sync() must be called to make sure that the timer 1150 * callback is not running. The lock must be temporary released 1151 * to avoid a deadlock with the callback. In the meantime, 1152 * any queuing is blocked by setting the canceling counter. 1153 */ 1154 work->canceling++; 1155 raw_spin_unlock_irqrestore(&worker->lock, *flags); 1156 del_timer_sync(&dwork->timer); 1157 raw_spin_lock_irqsave(&worker->lock, *flags); 1158 work->canceling--; 1159 } 1160 1161 /* 1162 * This function removes the work from the worker queue. 1163 * 1164 * It is called under worker->lock. The caller must make sure that 1165 * the timer used by delayed work is not running, e.g. by calling 1166 * kthread_cancel_delayed_work_timer(). 1167 * 1168 * The work might still be in use when this function finishes. See the 1169 * current_work proceed by the worker. 1170 * 1171 * Return: %true if @work was pending and successfully canceled, 1172 * %false if @work was not pending 1173 */ 1174 static bool __kthread_cancel_work(struct kthread_work *work) 1175 { 1176 /* 1177 * Try to remove the work from a worker list. It might either 1178 * be from worker->work_list or from worker->delayed_work_list. 1179 */ 1180 if (!list_empty(&work->node)) { 1181 list_del_init(&work->node); 1182 return true; 1183 } 1184 1185 return false; 1186 } 1187 1188 /** 1189 * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work 1190 * @worker: kthread worker to use 1191 * @dwork: kthread delayed work to queue 1192 * @delay: number of jiffies to wait before queuing 1193 * 1194 * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise, 1195 * modify @dwork's timer so that it expires after @delay. If @delay is zero, 1196 * @work is guaranteed to be queued immediately. 1197 * 1198 * Return: %false if @dwork was idle and queued, %true otherwise. 1199 * 1200 * A special case is when the work is being canceled in parallel. 1201 * It might be caused either by the real kthread_cancel_delayed_work_sync() 1202 * or yet another kthread_mod_delayed_work() call. We let the other command 1203 * win and return %true here. The return value can be used for reference 1204 * counting and the number of queued works stays the same. Anyway, the caller 1205 * is supposed to synchronize these operations a reasonable way. 1206 * 1207 * This function is safe to call from any context including IRQ handler. 1208 * See __kthread_cancel_work() and kthread_delayed_work_timer_fn() 1209 * for details. 1210 */ 1211 bool kthread_mod_delayed_work(struct kthread_worker *worker, 1212 struct kthread_delayed_work *dwork, 1213 unsigned long delay) 1214 { 1215 struct kthread_work *work = &dwork->work; 1216 unsigned long flags; 1217 int ret; 1218 1219 raw_spin_lock_irqsave(&worker->lock, flags); 1220 1221 /* Do not bother with canceling when never queued. */ 1222 if (!work->worker) { 1223 ret = false; 1224 goto fast_queue; 1225 } 1226 1227 /* Work must not be used with >1 worker, see kthread_queue_work() */ 1228 WARN_ON_ONCE(work->worker != worker); 1229 1230 /* 1231 * Temporary cancel the work but do not fight with another command 1232 * that is canceling the work as well. 1233 * 1234 * It is a bit tricky because of possible races with another 1235 * mod_delayed_work() and cancel_delayed_work() callers. 1236 * 1237 * The timer must be canceled first because worker->lock is released 1238 * when doing so. But the work can be removed from the queue (list) 1239 * only when it can be queued again so that the return value can 1240 * be used for reference counting. 1241 */ 1242 kthread_cancel_delayed_work_timer(work, &flags); 1243 if (work->canceling) { 1244 /* The number of works in the queue does not change. */ 1245 ret = true; 1246 goto out; 1247 } 1248 ret = __kthread_cancel_work(work); 1249 1250 fast_queue: 1251 __kthread_queue_delayed_work(worker, dwork, delay); 1252 out: 1253 raw_spin_unlock_irqrestore(&worker->lock, flags); 1254 return ret; 1255 } 1256 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work); 1257 1258 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork) 1259 { 1260 struct kthread_worker *worker = work->worker; 1261 unsigned long flags; 1262 int ret = false; 1263 1264 if (!worker) 1265 goto out; 1266 1267 raw_spin_lock_irqsave(&worker->lock, flags); 1268 /* Work must not be used with >1 worker, see kthread_queue_work(). */ 1269 WARN_ON_ONCE(work->worker != worker); 1270 1271 if (is_dwork) 1272 kthread_cancel_delayed_work_timer(work, &flags); 1273 1274 ret = __kthread_cancel_work(work); 1275 1276 if (worker->current_work != work) 1277 goto out_fast; 1278 1279 /* 1280 * The work is in progress and we need to wait with the lock released. 1281 * In the meantime, block any queuing by setting the canceling counter. 1282 */ 1283 work->canceling++; 1284 raw_spin_unlock_irqrestore(&worker->lock, flags); 1285 kthread_flush_work(work); 1286 raw_spin_lock_irqsave(&worker->lock, flags); 1287 work->canceling--; 1288 1289 out_fast: 1290 raw_spin_unlock_irqrestore(&worker->lock, flags); 1291 out: 1292 return ret; 1293 } 1294 1295 /** 1296 * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish 1297 * @work: the kthread work to cancel 1298 * 1299 * Cancel @work and wait for its execution to finish. This function 1300 * can be used even if the work re-queues itself. On return from this 1301 * function, @work is guaranteed to be not pending or executing on any CPU. 1302 * 1303 * kthread_cancel_work_sync(&delayed_work->work) must not be used for 1304 * delayed_work's. Use kthread_cancel_delayed_work_sync() instead. 1305 * 1306 * The caller must ensure that the worker on which @work was last 1307 * queued can't be destroyed before this function returns. 1308 * 1309 * Return: %true if @work was pending, %false otherwise. 1310 */ 1311 bool kthread_cancel_work_sync(struct kthread_work *work) 1312 { 1313 return __kthread_cancel_work_sync(work, false); 1314 } 1315 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync); 1316 1317 /** 1318 * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and 1319 * wait for it to finish. 1320 * @dwork: the kthread delayed work to cancel 1321 * 1322 * This is kthread_cancel_work_sync() for delayed works. 1323 * 1324 * Return: %true if @dwork was pending, %false otherwise. 1325 */ 1326 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork) 1327 { 1328 return __kthread_cancel_work_sync(&dwork->work, true); 1329 } 1330 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync); 1331 1332 /** 1333 * kthread_flush_worker - flush all current works on a kthread_worker 1334 * @worker: worker to flush 1335 * 1336 * Wait until all currently executing or pending works on @worker are 1337 * finished. 1338 */ 1339 void kthread_flush_worker(struct kthread_worker *worker) 1340 { 1341 struct kthread_flush_work fwork = { 1342 KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn), 1343 COMPLETION_INITIALIZER_ONSTACK(fwork.done), 1344 }; 1345 1346 kthread_queue_work(worker, &fwork.work); 1347 wait_for_completion(&fwork.done); 1348 } 1349 EXPORT_SYMBOL_GPL(kthread_flush_worker); 1350 1351 /** 1352 * kthread_destroy_worker - destroy a kthread worker 1353 * @worker: worker to be destroyed 1354 * 1355 * Flush and destroy @worker. The simple flush is enough because the kthread 1356 * worker API is used only in trivial scenarios. There are no multi-step state 1357 * machines needed. 1358 */ 1359 void kthread_destroy_worker(struct kthread_worker *worker) 1360 { 1361 struct task_struct *task; 1362 1363 task = worker->task; 1364 if (WARN_ON(!task)) 1365 return; 1366 1367 kthread_flush_worker(worker); 1368 kthread_stop(task); 1369 WARN_ON(!list_empty(&worker->work_list)); 1370 kfree(worker); 1371 } 1372 EXPORT_SYMBOL(kthread_destroy_worker); 1373 1374 /** 1375 * kthread_use_mm - make the calling kthread operate on an address space 1376 * @mm: address space to operate on 1377 */ 1378 void kthread_use_mm(struct mm_struct *mm) 1379 { 1380 struct mm_struct *active_mm; 1381 struct task_struct *tsk = current; 1382 1383 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1384 WARN_ON_ONCE(tsk->mm); 1385 1386 task_lock(tsk); 1387 /* Hold off tlb flush IPIs while switching mm's */ 1388 local_irq_disable(); 1389 active_mm = tsk->active_mm; 1390 if (active_mm != mm) { 1391 mmgrab(mm); 1392 tsk->active_mm = mm; 1393 } 1394 tsk->mm = mm; 1395 membarrier_update_current_mm(mm); 1396 switch_mm_irqs_off(active_mm, mm, tsk); 1397 local_irq_enable(); 1398 task_unlock(tsk); 1399 #ifdef finish_arch_post_lock_switch 1400 finish_arch_post_lock_switch(); 1401 #endif 1402 1403 /* 1404 * When a kthread starts operating on an address space, the loop 1405 * in membarrier_{private,global}_expedited() may not observe 1406 * that tsk->mm, and not issue an IPI. Membarrier requires a 1407 * memory barrier after storing to tsk->mm, before accessing 1408 * user-space memory. A full memory barrier for membarrier 1409 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by 1410 * mmdrop(), or explicitly with smp_mb(). 1411 */ 1412 if (active_mm != mm) 1413 mmdrop(active_mm); 1414 else 1415 smp_mb(); 1416 1417 to_kthread(tsk)->oldfs = force_uaccess_begin(); 1418 } 1419 EXPORT_SYMBOL_GPL(kthread_use_mm); 1420 1421 /** 1422 * kthread_unuse_mm - reverse the effect of kthread_use_mm() 1423 * @mm: address space to operate on 1424 */ 1425 void kthread_unuse_mm(struct mm_struct *mm) 1426 { 1427 struct task_struct *tsk = current; 1428 1429 WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD)); 1430 WARN_ON_ONCE(!tsk->mm); 1431 1432 force_uaccess_end(to_kthread(tsk)->oldfs); 1433 1434 task_lock(tsk); 1435 /* 1436 * When a kthread stops operating on an address space, the loop 1437 * in membarrier_{private,global}_expedited() may not observe 1438 * that tsk->mm, and not issue an IPI. Membarrier requires a 1439 * memory barrier after accessing user-space memory, before 1440 * clearing tsk->mm. 1441 */ 1442 smp_mb__after_spinlock(); 1443 sync_mm_rss(mm); 1444 local_irq_disable(); 1445 tsk->mm = NULL; 1446 membarrier_update_current_mm(NULL); 1447 /* active_mm is still 'mm' */ 1448 enter_lazy_tlb(mm, tsk); 1449 local_irq_enable(); 1450 task_unlock(tsk); 1451 } 1452 EXPORT_SYMBOL_GPL(kthread_unuse_mm); 1453 1454 #ifdef CONFIG_BLK_CGROUP 1455 /** 1456 * kthread_associate_blkcg - associate blkcg to current kthread 1457 * @css: the cgroup info 1458 * 1459 * Current thread must be a kthread. The thread is running jobs on behalf of 1460 * other threads. In some cases, we expect the jobs attach cgroup info of 1461 * original threads instead of that of current thread. This function stores 1462 * original thread's cgroup info in current kthread context for later 1463 * retrieval. 1464 */ 1465 void kthread_associate_blkcg(struct cgroup_subsys_state *css) 1466 { 1467 struct kthread *kthread; 1468 1469 if (!(current->flags & PF_KTHREAD)) 1470 return; 1471 kthread = to_kthread(current); 1472 if (!kthread) 1473 return; 1474 1475 if (kthread->blkcg_css) { 1476 css_put(kthread->blkcg_css); 1477 kthread->blkcg_css = NULL; 1478 } 1479 if (css) { 1480 css_get(css); 1481 kthread->blkcg_css = css; 1482 } 1483 } 1484 EXPORT_SYMBOL(kthread_associate_blkcg); 1485 1486 /** 1487 * kthread_blkcg - get associated blkcg css of current kthread 1488 * 1489 * Current thread must be a kthread. 1490 */ 1491 struct cgroup_subsys_state *kthread_blkcg(void) 1492 { 1493 struct kthread *kthread; 1494 1495 if (current->flags & PF_KTHREAD) { 1496 kthread = to_kthread(current); 1497 if (kthread) 1498 return kthread->blkcg_css; 1499 } 1500 return NULL; 1501 } 1502 EXPORT_SYMBOL(kthread_blkcg); 1503 #endif 1504