xref: /openbmc/linux/kernel/kthread.c (revision 34fa67e7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 struct kthread_create_info
39 {
40 	/* Information passed to kthread() from kthreadd. */
41 	int (*threadfn)(void *data);
42 	void *data;
43 	int node;
44 
45 	/* Result passed back to kthread_create() from kthreadd. */
46 	struct task_struct *result;
47 	struct completion *done;
48 
49 	struct list_head list;
50 };
51 
52 struct kthread {
53 	unsigned long flags;
54 	unsigned int cpu;
55 	int result;
56 	int (*threadfn)(void *);
57 	void *data;
58 	mm_segment_t oldfs;
59 	struct completion parked;
60 	struct completion exited;
61 #ifdef CONFIG_BLK_CGROUP
62 	struct cgroup_subsys_state *blkcg_css;
63 #endif
64 };
65 
66 enum KTHREAD_BITS {
67 	KTHREAD_IS_PER_CPU = 0,
68 	KTHREAD_SHOULD_STOP,
69 	KTHREAD_SHOULD_PARK,
70 };
71 
72 static inline struct kthread *to_kthread(struct task_struct *k)
73 {
74 	WARN_ON(!(k->flags & PF_KTHREAD));
75 	return k->worker_private;
76 }
77 
78 /*
79  * Variant of to_kthread() that doesn't assume @p is a kthread.
80  *
81  * Per construction; when:
82  *
83  *   (p->flags & PF_KTHREAD) && p->worker_private
84  *
85  * the task is both a kthread and struct kthread is persistent. However
86  * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
87  * begin_new_exec()).
88  */
89 static inline struct kthread *__to_kthread(struct task_struct *p)
90 {
91 	void *kthread = p->worker_private;
92 	if (kthread && !(p->flags & PF_KTHREAD))
93 		kthread = NULL;
94 	return kthread;
95 }
96 
97 bool set_kthread_struct(struct task_struct *p)
98 {
99 	struct kthread *kthread;
100 
101 	if (WARN_ON_ONCE(to_kthread(p)))
102 		return false;
103 
104 	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
105 	if (!kthread)
106 		return false;
107 
108 	init_completion(&kthread->exited);
109 	init_completion(&kthread->parked);
110 	p->vfork_done = &kthread->exited;
111 
112 	p->worker_private = kthread;
113 	return true;
114 }
115 
116 void free_kthread_struct(struct task_struct *k)
117 {
118 	struct kthread *kthread;
119 
120 	/*
121 	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
122 	 */
123 	kthread = to_kthread(k);
124 #ifdef CONFIG_BLK_CGROUP
125 	WARN_ON_ONCE(kthread && kthread->blkcg_css);
126 #endif
127 	k->worker_private = NULL;
128 	kfree(kthread);
129 }
130 
131 /**
132  * kthread_should_stop - should this kthread return now?
133  *
134  * When someone calls kthread_stop() on your kthread, it will be woken
135  * and this will return true.  You should then return, and your return
136  * value will be passed through to kthread_stop().
137  */
138 bool kthread_should_stop(void)
139 {
140 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
141 }
142 EXPORT_SYMBOL(kthread_should_stop);
143 
144 bool __kthread_should_park(struct task_struct *k)
145 {
146 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
147 }
148 EXPORT_SYMBOL_GPL(__kthread_should_park);
149 
150 /**
151  * kthread_should_park - should this kthread park now?
152  *
153  * When someone calls kthread_park() on your kthread, it will be woken
154  * and this will return true.  You should then do the necessary
155  * cleanup and call kthread_parkme()
156  *
157  * Similar to kthread_should_stop(), but this keeps the thread alive
158  * and in a park position. kthread_unpark() "restarts" the thread and
159  * calls the thread function again.
160  */
161 bool kthread_should_park(void)
162 {
163 	return __kthread_should_park(current);
164 }
165 EXPORT_SYMBOL_GPL(kthread_should_park);
166 
167 /**
168  * kthread_freezable_should_stop - should this freezable kthread return now?
169  * @was_frozen: optional out parameter, indicates whether %current was frozen
170  *
171  * kthread_should_stop() for freezable kthreads, which will enter
172  * refrigerator if necessary.  This function is safe from kthread_stop() /
173  * freezer deadlock and freezable kthreads should use this function instead
174  * of calling try_to_freeze() directly.
175  */
176 bool kthread_freezable_should_stop(bool *was_frozen)
177 {
178 	bool frozen = false;
179 
180 	might_sleep();
181 
182 	if (unlikely(freezing(current)))
183 		frozen = __refrigerator(true);
184 
185 	if (was_frozen)
186 		*was_frozen = frozen;
187 
188 	return kthread_should_stop();
189 }
190 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
191 
192 /**
193  * kthread_func - return the function specified on kthread creation
194  * @task: kthread task in question
195  *
196  * Returns NULL if the task is not a kthread.
197  */
198 void *kthread_func(struct task_struct *task)
199 {
200 	struct kthread *kthread = __to_kthread(task);
201 	if (kthread)
202 		return kthread->threadfn;
203 	return NULL;
204 }
205 EXPORT_SYMBOL_GPL(kthread_func);
206 
207 /**
208  * kthread_data - return data value specified on kthread creation
209  * @task: kthread task in question
210  *
211  * Return the data value specified when kthread @task was created.
212  * The caller is responsible for ensuring the validity of @task when
213  * calling this function.
214  */
215 void *kthread_data(struct task_struct *task)
216 {
217 	return to_kthread(task)->data;
218 }
219 EXPORT_SYMBOL_GPL(kthread_data);
220 
221 /**
222  * kthread_probe_data - speculative version of kthread_data()
223  * @task: possible kthread task in question
224  *
225  * @task could be a kthread task.  Return the data value specified when it
226  * was created if accessible.  If @task isn't a kthread task or its data is
227  * inaccessible for any reason, %NULL is returned.  This function requires
228  * that @task itself is safe to dereference.
229  */
230 void *kthread_probe_data(struct task_struct *task)
231 {
232 	struct kthread *kthread = __to_kthread(task);
233 	void *data = NULL;
234 
235 	if (kthread)
236 		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
237 	return data;
238 }
239 
240 static void __kthread_parkme(struct kthread *self)
241 {
242 	for (;;) {
243 		/*
244 		 * TASK_PARKED is a special state; we must serialize against
245 		 * possible pending wakeups to avoid store-store collisions on
246 		 * task->state.
247 		 *
248 		 * Such a collision might possibly result in the task state
249 		 * changin from TASK_PARKED and us failing the
250 		 * wait_task_inactive() in kthread_park().
251 		 */
252 		set_special_state(TASK_PARKED);
253 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
254 			break;
255 
256 		/*
257 		 * Thread is going to call schedule(), do not preempt it,
258 		 * or the caller of kthread_park() may spend more time in
259 		 * wait_task_inactive().
260 		 */
261 		preempt_disable();
262 		complete(&self->parked);
263 		schedule_preempt_disabled();
264 		preempt_enable();
265 	}
266 	__set_current_state(TASK_RUNNING);
267 }
268 
269 void kthread_parkme(void)
270 {
271 	__kthread_parkme(to_kthread(current));
272 }
273 EXPORT_SYMBOL_GPL(kthread_parkme);
274 
275 /**
276  * kthread_exit - Cause the current kthread return @result to kthread_stop().
277  * @result: The integer value to return to kthread_stop().
278  *
279  * While kthread_exit can be called directly, it exists so that
280  * functions which do some additional work in non-modular code such as
281  * module_put_and_kthread_exit can be implemented.
282  *
283  * Does not return.
284  */
285 void __noreturn kthread_exit(long result)
286 {
287 	struct kthread *kthread = to_kthread(current);
288 	kthread->result = result;
289 	do_exit(0);
290 }
291 
292 /**
293  * kthread_complete_and_exit - Exit the current kthread.
294  * @comp: Completion to complete
295  * @code: The integer value to return to kthread_stop().
296  *
297  * If present complete @comp and the reuturn code to kthread_stop().
298  *
299  * A kernel thread whose module may be removed after the completion of
300  * @comp can use this function exit safely.
301  *
302  * Does not return.
303  */
304 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
305 {
306 	if (comp)
307 		complete(comp);
308 
309 	kthread_exit(code);
310 }
311 EXPORT_SYMBOL(kthread_complete_and_exit);
312 
313 static int kthread(void *_create)
314 {
315 	static const struct sched_param param = { .sched_priority = 0 };
316 	/* Copy data: it's on kthread's stack */
317 	struct kthread_create_info *create = _create;
318 	int (*threadfn)(void *data) = create->threadfn;
319 	void *data = create->data;
320 	struct completion *done;
321 	struct kthread *self;
322 	int ret;
323 
324 	self = to_kthread(current);
325 
326 	/* If user was SIGKILLed, I release the structure. */
327 	done = xchg(&create->done, NULL);
328 	if (!done) {
329 		kfree(create);
330 		kthread_exit(-EINTR);
331 	}
332 
333 	self->threadfn = threadfn;
334 	self->data = data;
335 
336 	/*
337 	 * The new thread inherited kthreadd's priority and CPU mask. Reset
338 	 * back to default in case they have been changed.
339 	 */
340 	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
341 	set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_KTHREAD));
342 
343 	/* OK, tell user we're spawned, wait for stop or wakeup */
344 	__set_current_state(TASK_UNINTERRUPTIBLE);
345 	create->result = current;
346 	/*
347 	 * Thread is going to call schedule(), do not preempt it,
348 	 * or the creator may spend more time in wait_task_inactive().
349 	 */
350 	preempt_disable();
351 	complete(done);
352 	schedule_preempt_disabled();
353 	preempt_enable();
354 
355 	ret = -EINTR;
356 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
357 		cgroup_kthread_ready();
358 		__kthread_parkme(self);
359 		ret = threadfn(data);
360 	}
361 	kthread_exit(ret);
362 }
363 
364 /* called from kernel_clone() to get node information for about to be created task */
365 int tsk_fork_get_node(struct task_struct *tsk)
366 {
367 #ifdef CONFIG_NUMA
368 	if (tsk == kthreadd_task)
369 		return tsk->pref_node_fork;
370 #endif
371 	return NUMA_NO_NODE;
372 }
373 
374 static void create_kthread(struct kthread_create_info *create)
375 {
376 	int pid;
377 
378 #ifdef CONFIG_NUMA
379 	current->pref_node_fork = create->node;
380 #endif
381 	/* We want our own signal handler (we take no signals by default). */
382 	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
383 	if (pid < 0) {
384 		/* If user was SIGKILLed, I release the structure. */
385 		struct completion *done = xchg(&create->done, NULL);
386 
387 		if (!done) {
388 			kfree(create);
389 			return;
390 		}
391 		create->result = ERR_PTR(pid);
392 		complete(done);
393 	}
394 }
395 
396 static __printf(4, 0)
397 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
398 						    void *data, int node,
399 						    const char namefmt[],
400 						    va_list args)
401 {
402 	DECLARE_COMPLETION_ONSTACK(done);
403 	struct task_struct *task;
404 	struct kthread_create_info *create = kmalloc(sizeof(*create),
405 						     GFP_KERNEL);
406 
407 	if (!create)
408 		return ERR_PTR(-ENOMEM);
409 	create->threadfn = threadfn;
410 	create->data = data;
411 	create->node = node;
412 	create->done = &done;
413 
414 	spin_lock(&kthread_create_lock);
415 	list_add_tail(&create->list, &kthread_create_list);
416 	spin_unlock(&kthread_create_lock);
417 
418 	wake_up_process(kthreadd_task);
419 	/*
420 	 * Wait for completion in killable state, for I might be chosen by
421 	 * the OOM killer while kthreadd is trying to allocate memory for
422 	 * new kernel thread.
423 	 */
424 	if (unlikely(wait_for_completion_killable(&done))) {
425 		/*
426 		 * If I was SIGKILLed before kthreadd (or new kernel thread)
427 		 * calls complete(), leave the cleanup of this structure to
428 		 * that thread.
429 		 */
430 		if (xchg(&create->done, NULL))
431 			return ERR_PTR(-EINTR);
432 		/*
433 		 * kthreadd (or new kernel thread) will call complete()
434 		 * shortly.
435 		 */
436 		wait_for_completion(&done);
437 	}
438 	task = create->result;
439 	if (!IS_ERR(task)) {
440 		char name[TASK_COMM_LEN];
441 
442 		/*
443 		 * task is already visible to other tasks, so updating
444 		 * COMM must be protected.
445 		 */
446 		vsnprintf(name, sizeof(name), namefmt, args);
447 		set_task_comm(task, name);
448 	}
449 	kfree(create);
450 	return task;
451 }
452 
453 /**
454  * kthread_create_on_node - create a kthread.
455  * @threadfn: the function to run until signal_pending(current).
456  * @data: data ptr for @threadfn.
457  * @node: task and thread structures for the thread are allocated on this node
458  * @namefmt: printf-style name for the thread.
459  *
460  * Description: This helper function creates and names a kernel
461  * thread.  The thread will be stopped: use wake_up_process() to start
462  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
463  * is affine to all CPUs.
464  *
465  * If thread is going to be bound on a particular cpu, give its node
466  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
467  * When woken, the thread will run @threadfn() with @data as its
468  * argument. @threadfn() can either return directly if it is a
469  * standalone thread for which no one will call kthread_stop(), or
470  * return when 'kthread_should_stop()' is true (which means
471  * kthread_stop() has been called).  The return value should be zero
472  * or a negative error number; it will be passed to kthread_stop().
473  *
474  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
475  */
476 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
477 					   void *data, int node,
478 					   const char namefmt[],
479 					   ...)
480 {
481 	struct task_struct *task;
482 	va_list args;
483 
484 	va_start(args, namefmt);
485 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
486 	va_end(args);
487 
488 	return task;
489 }
490 EXPORT_SYMBOL(kthread_create_on_node);
491 
492 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
493 {
494 	unsigned long flags;
495 
496 	if (!wait_task_inactive(p, state)) {
497 		WARN_ON(1);
498 		return;
499 	}
500 
501 	/* It's safe because the task is inactive. */
502 	raw_spin_lock_irqsave(&p->pi_lock, flags);
503 	do_set_cpus_allowed(p, mask);
504 	p->flags |= PF_NO_SETAFFINITY;
505 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
506 }
507 
508 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
509 {
510 	__kthread_bind_mask(p, cpumask_of(cpu), state);
511 }
512 
513 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
514 {
515 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
516 }
517 
518 /**
519  * kthread_bind - bind a just-created kthread to a cpu.
520  * @p: thread created by kthread_create().
521  * @cpu: cpu (might not be online, must be possible) for @k to run on.
522  *
523  * Description: This function is equivalent to set_cpus_allowed(),
524  * except that @cpu doesn't need to be online, and the thread must be
525  * stopped (i.e., just returned from kthread_create()).
526  */
527 void kthread_bind(struct task_struct *p, unsigned int cpu)
528 {
529 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
530 }
531 EXPORT_SYMBOL(kthread_bind);
532 
533 /**
534  * kthread_create_on_cpu - Create a cpu bound kthread
535  * @threadfn: the function to run until signal_pending(current).
536  * @data: data ptr for @threadfn.
537  * @cpu: The cpu on which the thread should be bound,
538  * @namefmt: printf-style name for the thread. Format is restricted
539  *	     to "name.*%u". Code fills in cpu number.
540  *
541  * Description: This helper function creates and names a kernel thread
542  */
543 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
544 					  void *data, unsigned int cpu,
545 					  const char *namefmt)
546 {
547 	struct task_struct *p;
548 
549 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
550 				   cpu);
551 	if (IS_ERR(p))
552 		return p;
553 	kthread_bind(p, cpu);
554 	/* CPU hotplug need to bind once again when unparking the thread. */
555 	to_kthread(p)->cpu = cpu;
556 	return p;
557 }
558 EXPORT_SYMBOL(kthread_create_on_cpu);
559 
560 void kthread_set_per_cpu(struct task_struct *k, int cpu)
561 {
562 	struct kthread *kthread = to_kthread(k);
563 	if (!kthread)
564 		return;
565 
566 	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
567 
568 	if (cpu < 0) {
569 		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
570 		return;
571 	}
572 
573 	kthread->cpu = cpu;
574 	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
575 }
576 
577 bool kthread_is_per_cpu(struct task_struct *p)
578 {
579 	struct kthread *kthread = __to_kthread(p);
580 	if (!kthread)
581 		return false;
582 
583 	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
584 }
585 
586 /**
587  * kthread_unpark - unpark a thread created by kthread_create().
588  * @k:		thread created by kthread_create().
589  *
590  * Sets kthread_should_park() for @k to return false, wakes it, and
591  * waits for it to return. If the thread is marked percpu then its
592  * bound to the cpu again.
593  */
594 void kthread_unpark(struct task_struct *k)
595 {
596 	struct kthread *kthread = to_kthread(k);
597 
598 	/*
599 	 * Newly created kthread was parked when the CPU was offline.
600 	 * The binding was lost and we need to set it again.
601 	 */
602 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
603 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
604 
605 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
606 	/*
607 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
608 	 */
609 	wake_up_state(k, TASK_PARKED);
610 }
611 EXPORT_SYMBOL_GPL(kthread_unpark);
612 
613 /**
614  * kthread_park - park a thread created by kthread_create().
615  * @k: thread created by kthread_create().
616  *
617  * Sets kthread_should_park() for @k to return true, wakes it, and
618  * waits for it to return. This can also be called after kthread_create()
619  * instead of calling wake_up_process(): the thread will park without
620  * calling threadfn().
621  *
622  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
623  * If called by the kthread itself just the park bit is set.
624  */
625 int kthread_park(struct task_struct *k)
626 {
627 	struct kthread *kthread = to_kthread(k);
628 
629 	if (WARN_ON(k->flags & PF_EXITING))
630 		return -ENOSYS;
631 
632 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
633 		return -EBUSY;
634 
635 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
636 	if (k != current) {
637 		wake_up_process(k);
638 		/*
639 		 * Wait for __kthread_parkme() to complete(), this means we
640 		 * _will_ have TASK_PARKED and are about to call schedule().
641 		 */
642 		wait_for_completion(&kthread->parked);
643 		/*
644 		 * Now wait for that schedule() to complete and the task to
645 		 * get scheduled out.
646 		 */
647 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
648 	}
649 
650 	return 0;
651 }
652 EXPORT_SYMBOL_GPL(kthread_park);
653 
654 /**
655  * kthread_stop - stop a thread created by kthread_create().
656  * @k: thread created by kthread_create().
657  *
658  * Sets kthread_should_stop() for @k to return true, wakes it, and
659  * waits for it to exit. This can also be called after kthread_create()
660  * instead of calling wake_up_process(): the thread will exit without
661  * calling threadfn().
662  *
663  * If threadfn() may call kthread_exit() itself, the caller must ensure
664  * task_struct can't go away.
665  *
666  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
667  * was never called.
668  */
669 int kthread_stop(struct task_struct *k)
670 {
671 	struct kthread *kthread;
672 	int ret;
673 
674 	trace_sched_kthread_stop(k);
675 
676 	get_task_struct(k);
677 	kthread = to_kthread(k);
678 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
679 	kthread_unpark(k);
680 	wake_up_process(k);
681 	wait_for_completion(&kthread->exited);
682 	ret = kthread->result;
683 	put_task_struct(k);
684 
685 	trace_sched_kthread_stop_ret(ret);
686 	return ret;
687 }
688 EXPORT_SYMBOL(kthread_stop);
689 
690 int kthreadd(void *unused)
691 {
692 	struct task_struct *tsk = current;
693 
694 	/* Setup a clean context for our children to inherit. */
695 	set_task_comm(tsk, "kthreadd");
696 	ignore_signals(tsk);
697 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
698 	set_mems_allowed(node_states[N_MEMORY]);
699 
700 	current->flags |= PF_NOFREEZE;
701 	cgroup_init_kthreadd();
702 
703 	for (;;) {
704 		set_current_state(TASK_INTERRUPTIBLE);
705 		if (list_empty(&kthread_create_list))
706 			schedule();
707 		__set_current_state(TASK_RUNNING);
708 
709 		spin_lock(&kthread_create_lock);
710 		while (!list_empty(&kthread_create_list)) {
711 			struct kthread_create_info *create;
712 
713 			create = list_entry(kthread_create_list.next,
714 					    struct kthread_create_info, list);
715 			list_del_init(&create->list);
716 			spin_unlock(&kthread_create_lock);
717 
718 			create_kthread(create);
719 
720 			spin_lock(&kthread_create_lock);
721 		}
722 		spin_unlock(&kthread_create_lock);
723 	}
724 
725 	return 0;
726 }
727 
728 void __kthread_init_worker(struct kthread_worker *worker,
729 				const char *name,
730 				struct lock_class_key *key)
731 {
732 	memset(worker, 0, sizeof(struct kthread_worker));
733 	raw_spin_lock_init(&worker->lock);
734 	lockdep_set_class_and_name(&worker->lock, key, name);
735 	INIT_LIST_HEAD(&worker->work_list);
736 	INIT_LIST_HEAD(&worker->delayed_work_list);
737 }
738 EXPORT_SYMBOL_GPL(__kthread_init_worker);
739 
740 /**
741  * kthread_worker_fn - kthread function to process kthread_worker
742  * @worker_ptr: pointer to initialized kthread_worker
743  *
744  * This function implements the main cycle of kthread worker. It processes
745  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
746  * is empty.
747  *
748  * The works are not allowed to keep any locks, disable preemption or interrupts
749  * when they finish. There is defined a safe point for freezing when one work
750  * finishes and before a new one is started.
751  *
752  * Also the works must not be handled by more than one worker at the same time,
753  * see also kthread_queue_work().
754  */
755 int kthread_worker_fn(void *worker_ptr)
756 {
757 	struct kthread_worker *worker = worker_ptr;
758 	struct kthread_work *work;
759 
760 	/*
761 	 * FIXME: Update the check and remove the assignment when all kthread
762 	 * worker users are created using kthread_create_worker*() functions.
763 	 */
764 	WARN_ON(worker->task && worker->task != current);
765 	worker->task = current;
766 
767 	if (worker->flags & KTW_FREEZABLE)
768 		set_freezable();
769 
770 repeat:
771 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
772 
773 	if (kthread_should_stop()) {
774 		__set_current_state(TASK_RUNNING);
775 		raw_spin_lock_irq(&worker->lock);
776 		worker->task = NULL;
777 		raw_spin_unlock_irq(&worker->lock);
778 		return 0;
779 	}
780 
781 	work = NULL;
782 	raw_spin_lock_irq(&worker->lock);
783 	if (!list_empty(&worker->work_list)) {
784 		work = list_first_entry(&worker->work_list,
785 					struct kthread_work, node);
786 		list_del_init(&work->node);
787 	}
788 	worker->current_work = work;
789 	raw_spin_unlock_irq(&worker->lock);
790 
791 	if (work) {
792 		kthread_work_func_t func = work->func;
793 		__set_current_state(TASK_RUNNING);
794 		trace_sched_kthread_work_execute_start(work);
795 		work->func(work);
796 		/*
797 		 * Avoid dereferencing work after this point.  The trace
798 		 * event only cares about the address.
799 		 */
800 		trace_sched_kthread_work_execute_end(work, func);
801 	} else if (!freezing(current))
802 		schedule();
803 
804 	try_to_freeze();
805 	cond_resched();
806 	goto repeat;
807 }
808 EXPORT_SYMBOL_GPL(kthread_worker_fn);
809 
810 static __printf(3, 0) struct kthread_worker *
811 __kthread_create_worker(int cpu, unsigned int flags,
812 			const char namefmt[], va_list args)
813 {
814 	struct kthread_worker *worker;
815 	struct task_struct *task;
816 	int node = NUMA_NO_NODE;
817 
818 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
819 	if (!worker)
820 		return ERR_PTR(-ENOMEM);
821 
822 	kthread_init_worker(worker);
823 
824 	if (cpu >= 0)
825 		node = cpu_to_node(cpu);
826 
827 	task = __kthread_create_on_node(kthread_worker_fn, worker,
828 						node, namefmt, args);
829 	if (IS_ERR(task))
830 		goto fail_task;
831 
832 	if (cpu >= 0)
833 		kthread_bind(task, cpu);
834 
835 	worker->flags = flags;
836 	worker->task = task;
837 	wake_up_process(task);
838 	return worker;
839 
840 fail_task:
841 	kfree(worker);
842 	return ERR_CAST(task);
843 }
844 
845 /**
846  * kthread_create_worker - create a kthread worker
847  * @flags: flags modifying the default behavior of the worker
848  * @namefmt: printf-style name for the kthread worker (task).
849  *
850  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
851  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
852  * when the worker was SIGKILLed.
853  */
854 struct kthread_worker *
855 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
856 {
857 	struct kthread_worker *worker;
858 	va_list args;
859 
860 	va_start(args, namefmt);
861 	worker = __kthread_create_worker(-1, flags, namefmt, args);
862 	va_end(args);
863 
864 	return worker;
865 }
866 EXPORT_SYMBOL(kthread_create_worker);
867 
868 /**
869  * kthread_create_worker_on_cpu - create a kthread worker and bind it
870  *	to a given CPU and the associated NUMA node.
871  * @cpu: CPU number
872  * @flags: flags modifying the default behavior of the worker
873  * @namefmt: printf-style name for the kthread worker (task).
874  *
875  * Use a valid CPU number if you want to bind the kthread worker
876  * to the given CPU and the associated NUMA node.
877  *
878  * A good practice is to add the cpu number also into the worker name.
879  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
880  *
881  * CPU hotplug:
882  * The kthread worker API is simple and generic. It just provides a way
883  * to create, use, and destroy workers.
884  *
885  * It is up to the API user how to handle CPU hotplug. They have to decide
886  * how to handle pending work items, prevent queuing new ones, and
887  * restore the functionality when the CPU goes off and on. There are a
888  * few catches:
889  *
890  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
891  *
892  *    - The worker might not exist when the CPU was off when the user
893  *      created the workers.
894  *
895  * Good practice is to implement two CPU hotplug callbacks and to
896  * destroy/create the worker when the CPU goes down/up.
897  *
898  * Return:
899  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
900  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
901  * when the worker was SIGKILLed.
902  */
903 struct kthread_worker *
904 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
905 			     const char namefmt[], ...)
906 {
907 	struct kthread_worker *worker;
908 	va_list args;
909 
910 	va_start(args, namefmt);
911 	worker = __kthread_create_worker(cpu, flags, namefmt, args);
912 	va_end(args);
913 
914 	return worker;
915 }
916 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
917 
918 /*
919  * Returns true when the work could not be queued at the moment.
920  * It happens when it is already pending in a worker list
921  * or when it is being cancelled.
922  */
923 static inline bool queuing_blocked(struct kthread_worker *worker,
924 				   struct kthread_work *work)
925 {
926 	lockdep_assert_held(&worker->lock);
927 
928 	return !list_empty(&work->node) || work->canceling;
929 }
930 
931 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
932 					     struct kthread_work *work)
933 {
934 	lockdep_assert_held(&worker->lock);
935 	WARN_ON_ONCE(!list_empty(&work->node));
936 	/* Do not use a work with >1 worker, see kthread_queue_work() */
937 	WARN_ON_ONCE(work->worker && work->worker != worker);
938 }
939 
940 /* insert @work before @pos in @worker */
941 static void kthread_insert_work(struct kthread_worker *worker,
942 				struct kthread_work *work,
943 				struct list_head *pos)
944 {
945 	kthread_insert_work_sanity_check(worker, work);
946 
947 	trace_sched_kthread_work_queue_work(worker, work);
948 
949 	list_add_tail(&work->node, pos);
950 	work->worker = worker;
951 	if (!worker->current_work && likely(worker->task))
952 		wake_up_process(worker->task);
953 }
954 
955 /**
956  * kthread_queue_work - queue a kthread_work
957  * @worker: target kthread_worker
958  * @work: kthread_work to queue
959  *
960  * Queue @work to work processor @task for async execution.  @task
961  * must have been created with kthread_worker_create().  Returns %true
962  * if @work was successfully queued, %false if it was already pending.
963  *
964  * Reinitialize the work if it needs to be used by another worker.
965  * For example, when the worker was stopped and started again.
966  */
967 bool kthread_queue_work(struct kthread_worker *worker,
968 			struct kthread_work *work)
969 {
970 	bool ret = false;
971 	unsigned long flags;
972 
973 	raw_spin_lock_irqsave(&worker->lock, flags);
974 	if (!queuing_blocked(worker, work)) {
975 		kthread_insert_work(worker, work, &worker->work_list);
976 		ret = true;
977 	}
978 	raw_spin_unlock_irqrestore(&worker->lock, flags);
979 	return ret;
980 }
981 EXPORT_SYMBOL_GPL(kthread_queue_work);
982 
983 /**
984  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
985  *	delayed work when the timer expires.
986  * @t: pointer to the expired timer
987  *
988  * The format of the function is defined by struct timer_list.
989  * It should have been called from irqsafe timer with irq already off.
990  */
991 void kthread_delayed_work_timer_fn(struct timer_list *t)
992 {
993 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
994 	struct kthread_work *work = &dwork->work;
995 	struct kthread_worker *worker = work->worker;
996 	unsigned long flags;
997 
998 	/*
999 	 * This might happen when a pending work is reinitialized.
1000 	 * It means that it is used a wrong way.
1001 	 */
1002 	if (WARN_ON_ONCE(!worker))
1003 		return;
1004 
1005 	raw_spin_lock_irqsave(&worker->lock, flags);
1006 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1007 	WARN_ON_ONCE(work->worker != worker);
1008 
1009 	/* Move the work from worker->delayed_work_list. */
1010 	WARN_ON_ONCE(list_empty(&work->node));
1011 	list_del_init(&work->node);
1012 	if (!work->canceling)
1013 		kthread_insert_work(worker, work, &worker->work_list);
1014 
1015 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1016 }
1017 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1018 
1019 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1020 					 struct kthread_delayed_work *dwork,
1021 					 unsigned long delay)
1022 {
1023 	struct timer_list *timer = &dwork->timer;
1024 	struct kthread_work *work = &dwork->work;
1025 
1026 	WARN_ON_FUNCTION_MISMATCH(timer->function,
1027 				  kthread_delayed_work_timer_fn);
1028 
1029 	/*
1030 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1031 	 * both optimization and correctness.  The earliest @timer can
1032 	 * expire is on the closest next tick and delayed_work users depend
1033 	 * on that there's no such delay when @delay is 0.
1034 	 */
1035 	if (!delay) {
1036 		kthread_insert_work(worker, work, &worker->work_list);
1037 		return;
1038 	}
1039 
1040 	/* Be paranoid and try to detect possible races already now. */
1041 	kthread_insert_work_sanity_check(worker, work);
1042 
1043 	list_add(&work->node, &worker->delayed_work_list);
1044 	work->worker = worker;
1045 	timer->expires = jiffies + delay;
1046 	add_timer(timer);
1047 }
1048 
1049 /**
1050  * kthread_queue_delayed_work - queue the associated kthread work
1051  *	after a delay.
1052  * @worker: target kthread_worker
1053  * @dwork: kthread_delayed_work to queue
1054  * @delay: number of jiffies to wait before queuing
1055  *
1056  * If the work has not been pending it starts a timer that will queue
1057  * the work after the given @delay. If @delay is zero, it queues the
1058  * work immediately.
1059  *
1060  * Return: %false if the @work has already been pending. It means that
1061  * either the timer was running or the work was queued. It returns %true
1062  * otherwise.
1063  */
1064 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1065 				struct kthread_delayed_work *dwork,
1066 				unsigned long delay)
1067 {
1068 	struct kthread_work *work = &dwork->work;
1069 	unsigned long flags;
1070 	bool ret = false;
1071 
1072 	raw_spin_lock_irqsave(&worker->lock, flags);
1073 
1074 	if (!queuing_blocked(worker, work)) {
1075 		__kthread_queue_delayed_work(worker, dwork, delay);
1076 		ret = true;
1077 	}
1078 
1079 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1080 	return ret;
1081 }
1082 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1083 
1084 struct kthread_flush_work {
1085 	struct kthread_work	work;
1086 	struct completion	done;
1087 };
1088 
1089 static void kthread_flush_work_fn(struct kthread_work *work)
1090 {
1091 	struct kthread_flush_work *fwork =
1092 		container_of(work, struct kthread_flush_work, work);
1093 	complete(&fwork->done);
1094 }
1095 
1096 /**
1097  * kthread_flush_work - flush a kthread_work
1098  * @work: work to flush
1099  *
1100  * If @work is queued or executing, wait for it to finish execution.
1101  */
1102 void kthread_flush_work(struct kthread_work *work)
1103 {
1104 	struct kthread_flush_work fwork = {
1105 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1106 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1107 	};
1108 	struct kthread_worker *worker;
1109 	bool noop = false;
1110 
1111 	worker = work->worker;
1112 	if (!worker)
1113 		return;
1114 
1115 	raw_spin_lock_irq(&worker->lock);
1116 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1117 	WARN_ON_ONCE(work->worker != worker);
1118 
1119 	if (!list_empty(&work->node))
1120 		kthread_insert_work(worker, &fwork.work, work->node.next);
1121 	else if (worker->current_work == work)
1122 		kthread_insert_work(worker, &fwork.work,
1123 				    worker->work_list.next);
1124 	else
1125 		noop = true;
1126 
1127 	raw_spin_unlock_irq(&worker->lock);
1128 
1129 	if (!noop)
1130 		wait_for_completion(&fwork.done);
1131 }
1132 EXPORT_SYMBOL_GPL(kthread_flush_work);
1133 
1134 /*
1135  * Make sure that the timer is neither set nor running and could
1136  * not manipulate the work list_head any longer.
1137  *
1138  * The function is called under worker->lock. The lock is temporary
1139  * released but the timer can't be set again in the meantime.
1140  */
1141 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1142 					      unsigned long *flags)
1143 {
1144 	struct kthread_delayed_work *dwork =
1145 		container_of(work, struct kthread_delayed_work, work);
1146 	struct kthread_worker *worker = work->worker;
1147 
1148 	/*
1149 	 * del_timer_sync() must be called to make sure that the timer
1150 	 * callback is not running. The lock must be temporary released
1151 	 * to avoid a deadlock with the callback. In the meantime,
1152 	 * any queuing is blocked by setting the canceling counter.
1153 	 */
1154 	work->canceling++;
1155 	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1156 	del_timer_sync(&dwork->timer);
1157 	raw_spin_lock_irqsave(&worker->lock, *flags);
1158 	work->canceling--;
1159 }
1160 
1161 /*
1162  * This function removes the work from the worker queue.
1163  *
1164  * It is called under worker->lock. The caller must make sure that
1165  * the timer used by delayed work is not running, e.g. by calling
1166  * kthread_cancel_delayed_work_timer().
1167  *
1168  * The work might still be in use when this function finishes. See the
1169  * current_work proceed by the worker.
1170  *
1171  * Return: %true if @work was pending and successfully canceled,
1172  *	%false if @work was not pending
1173  */
1174 static bool __kthread_cancel_work(struct kthread_work *work)
1175 {
1176 	/*
1177 	 * Try to remove the work from a worker list. It might either
1178 	 * be from worker->work_list or from worker->delayed_work_list.
1179 	 */
1180 	if (!list_empty(&work->node)) {
1181 		list_del_init(&work->node);
1182 		return true;
1183 	}
1184 
1185 	return false;
1186 }
1187 
1188 /**
1189  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1190  * @worker: kthread worker to use
1191  * @dwork: kthread delayed work to queue
1192  * @delay: number of jiffies to wait before queuing
1193  *
1194  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1195  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1196  * @work is guaranteed to be queued immediately.
1197  *
1198  * Return: %false if @dwork was idle and queued, %true otherwise.
1199  *
1200  * A special case is when the work is being canceled in parallel.
1201  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1202  * or yet another kthread_mod_delayed_work() call. We let the other command
1203  * win and return %true here. The return value can be used for reference
1204  * counting and the number of queued works stays the same. Anyway, the caller
1205  * is supposed to synchronize these operations a reasonable way.
1206  *
1207  * This function is safe to call from any context including IRQ handler.
1208  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1209  * for details.
1210  */
1211 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1212 			      struct kthread_delayed_work *dwork,
1213 			      unsigned long delay)
1214 {
1215 	struct kthread_work *work = &dwork->work;
1216 	unsigned long flags;
1217 	int ret;
1218 
1219 	raw_spin_lock_irqsave(&worker->lock, flags);
1220 
1221 	/* Do not bother with canceling when never queued. */
1222 	if (!work->worker) {
1223 		ret = false;
1224 		goto fast_queue;
1225 	}
1226 
1227 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1228 	WARN_ON_ONCE(work->worker != worker);
1229 
1230 	/*
1231 	 * Temporary cancel the work but do not fight with another command
1232 	 * that is canceling the work as well.
1233 	 *
1234 	 * It is a bit tricky because of possible races with another
1235 	 * mod_delayed_work() and cancel_delayed_work() callers.
1236 	 *
1237 	 * The timer must be canceled first because worker->lock is released
1238 	 * when doing so. But the work can be removed from the queue (list)
1239 	 * only when it can be queued again so that the return value can
1240 	 * be used for reference counting.
1241 	 */
1242 	kthread_cancel_delayed_work_timer(work, &flags);
1243 	if (work->canceling) {
1244 		/* The number of works in the queue does not change. */
1245 		ret = true;
1246 		goto out;
1247 	}
1248 	ret = __kthread_cancel_work(work);
1249 
1250 fast_queue:
1251 	__kthread_queue_delayed_work(worker, dwork, delay);
1252 out:
1253 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1254 	return ret;
1255 }
1256 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1257 
1258 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1259 {
1260 	struct kthread_worker *worker = work->worker;
1261 	unsigned long flags;
1262 	int ret = false;
1263 
1264 	if (!worker)
1265 		goto out;
1266 
1267 	raw_spin_lock_irqsave(&worker->lock, flags);
1268 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1269 	WARN_ON_ONCE(work->worker != worker);
1270 
1271 	if (is_dwork)
1272 		kthread_cancel_delayed_work_timer(work, &flags);
1273 
1274 	ret = __kthread_cancel_work(work);
1275 
1276 	if (worker->current_work != work)
1277 		goto out_fast;
1278 
1279 	/*
1280 	 * The work is in progress and we need to wait with the lock released.
1281 	 * In the meantime, block any queuing by setting the canceling counter.
1282 	 */
1283 	work->canceling++;
1284 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1285 	kthread_flush_work(work);
1286 	raw_spin_lock_irqsave(&worker->lock, flags);
1287 	work->canceling--;
1288 
1289 out_fast:
1290 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1291 out:
1292 	return ret;
1293 }
1294 
1295 /**
1296  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1297  * @work: the kthread work to cancel
1298  *
1299  * Cancel @work and wait for its execution to finish.  This function
1300  * can be used even if the work re-queues itself. On return from this
1301  * function, @work is guaranteed to be not pending or executing on any CPU.
1302  *
1303  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1304  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1305  *
1306  * The caller must ensure that the worker on which @work was last
1307  * queued can't be destroyed before this function returns.
1308  *
1309  * Return: %true if @work was pending, %false otherwise.
1310  */
1311 bool kthread_cancel_work_sync(struct kthread_work *work)
1312 {
1313 	return __kthread_cancel_work_sync(work, false);
1314 }
1315 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1316 
1317 /**
1318  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1319  *	wait for it to finish.
1320  * @dwork: the kthread delayed work to cancel
1321  *
1322  * This is kthread_cancel_work_sync() for delayed works.
1323  *
1324  * Return: %true if @dwork was pending, %false otherwise.
1325  */
1326 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1327 {
1328 	return __kthread_cancel_work_sync(&dwork->work, true);
1329 }
1330 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1331 
1332 /**
1333  * kthread_flush_worker - flush all current works on a kthread_worker
1334  * @worker: worker to flush
1335  *
1336  * Wait until all currently executing or pending works on @worker are
1337  * finished.
1338  */
1339 void kthread_flush_worker(struct kthread_worker *worker)
1340 {
1341 	struct kthread_flush_work fwork = {
1342 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1343 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1344 	};
1345 
1346 	kthread_queue_work(worker, &fwork.work);
1347 	wait_for_completion(&fwork.done);
1348 }
1349 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1350 
1351 /**
1352  * kthread_destroy_worker - destroy a kthread worker
1353  * @worker: worker to be destroyed
1354  *
1355  * Flush and destroy @worker.  The simple flush is enough because the kthread
1356  * worker API is used only in trivial scenarios.  There are no multi-step state
1357  * machines needed.
1358  */
1359 void kthread_destroy_worker(struct kthread_worker *worker)
1360 {
1361 	struct task_struct *task;
1362 
1363 	task = worker->task;
1364 	if (WARN_ON(!task))
1365 		return;
1366 
1367 	kthread_flush_worker(worker);
1368 	kthread_stop(task);
1369 	WARN_ON(!list_empty(&worker->work_list));
1370 	kfree(worker);
1371 }
1372 EXPORT_SYMBOL(kthread_destroy_worker);
1373 
1374 /**
1375  * kthread_use_mm - make the calling kthread operate on an address space
1376  * @mm: address space to operate on
1377  */
1378 void kthread_use_mm(struct mm_struct *mm)
1379 {
1380 	struct mm_struct *active_mm;
1381 	struct task_struct *tsk = current;
1382 
1383 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1384 	WARN_ON_ONCE(tsk->mm);
1385 
1386 	task_lock(tsk);
1387 	/* Hold off tlb flush IPIs while switching mm's */
1388 	local_irq_disable();
1389 	active_mm = tsk->active_mm;
1390 	if (active_mm != mm) {
1391 		mmgrab(mm);
1392 		tsk->active_mm = mm;
1393 	}
1394 	tsk->mm = mm;
1395 	membarrier_update_current_mm(mm);
1396 	switch_mm_irqs_off(active_mm, mm, tsk);
1397 	local_irq_enable();
1398 	task_unlock(tsk);
1399 #ifdef finish_arch_post_lock_switch
1400 	finish_arch_post_lock_switch();
1401 #endif
1402 
1403 	/*
1404 	 * When a kthread starts operating on an address space, the loop
1405 	 * in membarrier_{private,global}_expedited() may not observe
1406 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1407 	 * memory barrier after storing to tsk->mm, before accessing
1408 	 * user-space memory. A full memory barrier for membarrier
1409 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1410 	 * mmdrop(), or explicitly with smp_mb().
1411 	 */
1412 	if (active_mm != mm)
1413 		mmdrop(active_mm);
1414 	else
1415 		smp_mb();
1416 
1417 	to_kthread(tsk)->oldfs = force_uaccess_begin();
1418 }
1419 EXPORT_SYMBOL_GPL(kthread_use_mm);
1420 
1421 /**
1422  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1423  * @mm: address space to operate on
1424  */
1425 void kthread_unuse_mm(struct mm_struct *mm)
1426 {
1427 	struct task_struct *tsk = current;
1428 
1429 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1430 	WARN_ON_ONCE(!tsk->mm);
1431 
1432 	force_uaccess_end(to_kthread(tsk)->oldfs);
1433 
1434 	task_lock(tsk);
1435 	/*
1436 	 * When a kthread stops operating on an address space, the loop
1437 	 * in membarrier_{private,global}_expedited() may not observe
1438 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1439 	 * memory barrier after accessing user-space memory, before
1440 	 * clearing tsk->mm.
1441 	 */
1442 	smp_mb__after_spinlock();
1443 	sync_mm_rss(mm);
1444 	local_irq_disable();
1445 	tsk->mm = NULL;
1446 	membarrier_update_current_mm(NULL);
1447 	/* active_mm is still 'mm' */
1448 	enter_lazy_tlb(mm, tsk);
1449 	local_irq_enable();
1450 	task_unlock(tsk);
1451 }
1452 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1453 
1454 #ifdef CONFIG_BLK_CGROUP
1455 /**
1456  * kthread_associate_blkcg - associate blkcg to current kthread
1457  * @css: the cgroup info
1458  *
1459  * Current thread must be a kthread. The thread is running jobs on behalf of
1460  * other threads. In some cases, we expect the jobs attach cgroup info of
1461  * original threads instead of that of current thread. This function stores
1462  * original thread's cgroup info in current kthread context for later
1463  * retrieval.
1464  */
1465 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1466 {
1467 	struct kthread *kthread;
1468 
1469 	if (!(current->flags & PF_KTHREAD))
1470 		return;
1471 	kthread = to_kthread(current);
1472 	if (!kthread)
1473 		return;
1474 
1475 	if (kthread->blkcg_css) {
1476 		css_put(kthread->blkcg_css);
1477 		kthread->blkcg_css = NULL;
1478 	}
1479 	if (css) {
1480 		css_get(css);
1481 		kthread->blkcg_css = css;
1482 	}
1483 }
1484 EXPORT_SYMBOL(kthread_associate_blkcg);
1485 
1486 /**
1487  * kthread_blkcg - get associated blkcg css of current kthread
1488  *
1489  * Current thread must be a kthread.
1490  */
1491 struct cgroup_subsys_state *kthread_blkcg(void)
1492 {
1493 	struct kthread *kthread;
1494 
1495 	if (current->flags & PF_KTHREAD) {
1496 		kthread = to_kthread(current);
1497 		if (kthread)
1498 			return kthread->blkcg_css;
1499 	}
1500 	return NULL;
1501 }
1502 EXPORT_SYMBOL(kthread_blkcg);
1503 #endif
1504