xref: /openbmc/linux/kernel/kthread.c (revision 297e77e5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 struct kthread_create_info
39 {
40 	/* Information passed to kthread() from kthreadd. */
41 	int (*threadfn)(void *data);
42 	void *data;
43 	int node;
44 
45 	/* Result passed back to kthread_create() from kthreadd. */
46 	struct task_struct *result;
47 	struct completion *done;
48 
49 	struct list_head list;
50 };
51 
52 struct kthread {
53 	unsigned long flags;
54 	unsigned int cpu;
55 	int (*threadfn)(void *);
56 	void *data;
57 	mm_segment_t oldfs;
58 	struct completion parked;
59 	struct completion exited;
60 #ifdef CONFIG_BLK_CGROUP
61 	struct cgroup_subsys_state *blkcg_css;
62 #endif
63 };
64 
65 enum KTHREAD_BITS {
66 	KTHREAD_IS_PER_CPU = 0,
67 	KTHREAD_SHOULD_STOP,
68 	KTHREAD_SHOULD_PARK,
69 };
70 
71 static inline void set_kthread_struct(void *kthread)
72 {
73 	/*
74 	 * We abuse ->set_child_tid to avoid the new member and because it
75 	 * can't be wrongly copied by copy_process(). We also rely on fact
76 	 * that the caller can't exec, so PF_KTHREAD can't be cleared.
77 	 */
78 	current->set_child_tid = (__force void __user *)kthread;
79 }
80 
81 static inline struct kthread *to_kthread(struct task_struct *k)
82 {
83 	WARN_ON(!(k->flags & PF_KTHREAD));
84 	return (__force void *)k->set_child_tid;
85 }
86 
87 void free_kthread_struct(struct task_struct *k)
88 {
89 	struct kthread *kthread;
90 
91 	/*
92 	 * Can be NULL if this kthread was created by kernel_thread()
93 	 * or if kmalloc() in kthread() failed.
94 	 */
95 	kthread = to_kthread(k);
96 #ifdef CONFIG_BLK_CGROUP
97 	WARN_ON_ONCE(kthread && kthread->blkcg_css);
98 #endif
99 	kfree(kthread);
100 }
101 
102 /**
103  * kthread_should_stop - should this kthread return now?
104  *
105  * When someone calls kthread_stop() on your kthread, it will be woken
106  * and this will return true.  You should then return, and your return
107  * value will be passed through to kthread_stop().
108  */
109 bool kthread_should_stop(void)
110 {
111 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
112 }
113 EXPORT_SYMBOL(kthread_should_stop);
114 
115 bool __kthread_should_park(struct task_struct *k)
116 {
117 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
118 }
119 EXPORT_SYMBOL_GPL(__kthread_should_park);
120 
121 /**
122  * kthread_should_park - should this kthread park now?
123  *
124  * When someone calls kthread_park() on your kthread, it will be woken
125  * and this will return true.  You should then do the necessary
126  * cleanup and call kthread_parkme()
127  *
128  * Similar to kthread_should_stop(), but this keeps the thread alive
129  * and in a park position. kthread_unpark() "restarts" the thread and
130  * calls the thread function again.
131  */
132 bool kthread_should_park(void)
133 {
134 	return __kthread_should_park(current);
135 }
136 EXPORT_SYMBOL_GPL(kthread_should_park);
137 
138 /**
139  * kthread_freezable_should_stop - should this freezable kthread return now?
140  * @was_frozen: optional out parameter, indicates whether %current was frozen
141  *
142  * kthread_should_stop() for freezable kthreads, which will enter
143  * refrigerator if necessary.  This function is safe from kthread_stop() /
144  * freezer deadlock and freezable kthreads should use this function instead
145  * of calling try_to_freeze() directly.
146  */
147 bool kthread_freezable_should_stop(bool *was_frozen)
148 {
149 	bool frozen = false;
150 
151 	might_sleep();
152 
153 	if (unlikely(freezing(current)))
154 		frozen = __refrigerator(true);
155 
156 	if (was_frozen)
157 		*was_frozen = frozen;
158 
159 	return kthread_should_stop();
160 }
161 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
162 
163 /**
164  * kthread_func - return the function specified on kthread creation
165  * @task: kthread task in question
166  *
167  * Returns NULL if the task is not a kthread.
168  */
169 void *kthread_func(struct task_struct *task)
170 {
171 	if (task->flags & PF_KTHREAD)
172 		return to_kthread(task)->threadfn;
173 	return NULL;
174 }
175 EXPORT_SYMBOL_GPL(kthread_func);
176 
177 /**
178  * kthread_data - return data value specified on kthread creation
179  * @task: kthread task in question
180  *
181  * Return the data value specified when kthread @task was created.
182  * The caller is responsible for ensuring the validity of @task when
183  * calling this function.
184  */
185 void *kthread_data(struct task_struct *task)
186 {
187 	return to_kthread(task)->data;
188 }
189 EXPORT_SYMBOL_GPL(kthread_data);
190 
191 /**
192  * kthread_probe_data - speculative version of kthread_data()
193  * @task: possible kthread task in question
194  *
195  * @task could be a kthread task.  Return the data value specified when it
196  * was created if accessible.  If @task isn't a kthread task or its data is
197  * inaccessible for any reason, %NULL is returned.  This function requires
198  * that @task itself is safe to dereference.
199  */
200 void *kthread_probe_data(struct task_struct *task)
201 {
202 	struct kthread *kthread = to_kthread(task);
203 	void *data = NULL;
204 
205 	copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
206 	return data;
207 }
208 
209 static void __kthread_parkme(struct kthread *self)
210 {
211 	for (;;) {
212 		/*
213 		 * TASK_PARKED is a special state; we must serialize against
214 		 * possible pending wakeups to avoid store-store collisions on
215 		 * task->state.
216 		 *
217 		 * Such a collision might possibly result in the task state
218 		 * changin from TASK_PARKED and us failing the
219 		 * wait_task_inactive() in kthread_park().
220 		 */
221 		set_special_state(TASK_PARKED);
222 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
223 			break;
224 
225 		/*
226 		 * Thread is going to call schedule(), do not preempt it,
227 		 * or the caller of kthread_park() may spend more time in
228 		 * wait_task_inactive().
229 		 */
230 		preempt_disable();
231 		complete(&self->parked);
232 		schedule_preempt_disabled();
233 		preempt_enable();
234 	}
235 	__set_current_state(TASK_RUNNING);
236 }
237 
238 void kthread_parkme(void)
239 {
240 	__kthread_parkme(to_kthread(current));
241 }
242 EXPORT_SYMBOL_GPL(kthread_parkme);
243 
244 static int kthread(void *_create)
245 {
246 	/* Copy data: it's on kthread's stack */
247 	struct kthread_create_info *create = _create;
248 	int (*threadfn)(void *data) = create->threadfn;
249 	void *data = create->data;
250 	struct completion *done;
251 	struct kthread *self;
252 	int ret;
253 
254 	self = kzalloc(sizeof(*self), GFP_KERNEL);
255 	set_kthread_struct(self);
256 
257 	/* If user was SIGKILLed, I release the structure. */
258 	done = xchg(&create->done, NULL);
259 	if (!done) {
260 		kfree(create);
261 		do_exit(-EINTR);
262 	}
263 
264 	if (!self) {
265 		create->result = ERR_PTR(-ENOMEM);
266 		complete(done);
267 		do_exit(-ENOMEM);
268 	}
269 
270 	self->threadfn = threadfn;
271 	self->data = data;
272 	init_completion(&self->exited);
273 	init_completion(&self->parked);
274 	current->vfork_done = &self->exited;
275 
276 	/* OK, tell user we're spawned, wait for stop or wakeup */
277 	__set_current_state(TASK_UNINTERRUPTIBLE);
278 	create->result = current;
279 	/*
280 	 * Thread is going to call schedule(), do not preempt it,
281 	 * or the creator may spend more time in wait_task_inactive().
282 	 */
283 	preempt_disable();
284 	complete(done);
285 	schedule_preempt_disabled();
286 	preempt_enable();
287 
288 	ret = -EINTR;
289 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
290 		cgroup_kthread_ready();
291 		__kthread_parkme(self);
292 		ret = threadfn(data);
293 	}
294 	do_exit(ret);
295 }
296 
297 /* called from do_fork() to get node information for about to be created task */
298 int tsk_fork_get_node(struct task_struct *tsk)
299 {
300 #ifdef CONFIG_NUMA
301 	if (tsk == kthreadd_task)
302 		return tsk->pref_node_fork;
303 #endif
304 	return NUMA_NO_NODE;
305 }
306 
307 static void create_kthread(struct kthread_create_info *create)
308 {
309 	int pid;
310 
311 #ifdef CONFIG_NUMA
312 	current->pref_node_fork = create->node;
313 #endif
314 	/* We want our own signal handler (we take no signals by default). */
315 	pid = kernel_thread(kthread, create, CLONE_FS | CLONE_FILES | SIGCHLD);
316 	if (pid < 0) {
317 		/* If user was SIGKILLed, I release the structure. */
318 		struct completion *done = xchg(&create->done, NULL);
319 
320 		if (!done) {
321 			kfree(create);
322 			return;
323 		}
324 		create->result = ERR_PTR(pid);
325 		complete(done);
326 	}
327 }
328 
329 static __printf(4, 0)
330 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
331 						    void *data, int node,
332 						    const char namefmt[],
333 						    va_list args)
334 {
335 	DECLARE_COMPLETION_ONSTACK(done);
336 	struct task_struct *task;
337 	struct kthread_create_info *create = kmalloc(sizeof(*create),
338 						     GFP_KERNEL);
339 
340 	if (!create)
341 		return ERR_PTR(-ENOMEM);
342 	create->threadfn = threadfn;
343 	create->data = data;
344 	create->node = node;
345 	create->done = &done;
346 
347 	spin_lock(&kthread_create_lock);
348 	list_add_tail(&create->list, &kthread_create_list);
349 	spin_unlock(&kthread_create_lock);
350 
351 	wake_up_process(kthreadd_task);
352 	/*
353 	 * Wait for completion in killable state, for I might be chosen by
354 	 * the OOM killer while kthreadd is trying to allocate memory for
355 	 * new kernel thread.
356 	 */
357 	if (unlikely(wait_for_completion_killable(&done))) {
358 		/*
359 		 * If I was SIGKILLed before kthreadd (or new kernel thread)
360 		 * calls complete(), leave the cleanup of this structure to
361 		 * that thread.
362 		 */
363 		if (xchg(&create->done, NULL))
364 			return ERR_PTR(-EINTR);
365 		/*
366 		 * kthreadd (or new kernel thread) will call complete()
367 		 * shortly.
368 		 */
369 		wait_for_completion(&done);
370 	}
371 	task = create->result;
372 	if (!IS_ERR(task)) {
373 		static const struct sched_param param = { .sched_priority = 0 };
374 		char name[TASK_COMM_LEN];
375 
376 		/*
377 		 * task is already visible to other tasks, so updating
378 		 * COMM must be protected.
379 		 */
380 		vsnprintf(name, sizeof(name), namefmt, args);
381 		set_task_comm(task, name);
382 		/*
383 		 * root may have changed our (kthreadd's) priority or CPU mask.
384 		 * The kernel thread should not inherit these properties.
385 		 */
386 		sched_setscheduler_nocheck(task, SCHED_NORMAL, &param);
387 		set_cpus_allowed_ptr(task,
388 				     housekeeping_cpumask(HK_FLAG_KTHREAD));
389 	}
390 	kfree(create);
391 	return task;
392 }
393 
394 /**
395  * kthread_create_on_node - create a kthread.
396  * @threadfn: the function to run until signal_pending(current).
397  * @data: data ptr for @threadfn.
398  * @node: task and thread structures for the thread are allocated on this node
399  * @namefmt: printf-style name for the thread.
400  *
401  * Description: This helper function creates and names a kernel
402  * thread.  The thread will be stopped: use wake_up_process() to start
403  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
404  * is affine to all CPUs.
405  *
406  * If thread is going to be bound on a particular cpu, give its node
407  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
408  * When woken, the thread will run @threadfn() with @data as its
409  * argument. @threadfn() can either call do_exit() directly if it is a
410  * standalone thread for which no one will call kthread_stop(), or
411  * return when 'kthread_should_stop()' is true (which means
412  * kthread_stop() has been called).  The return value should be zero
413  * or a negative error number; it will be passed to kthread_stop().
414  *
415  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
416  */
417 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
418 					   void *data, int node,
419 					   const char namefmt[],
420 					   ...)
421 {
422 	struct task_struct *task;
423 	va_list args;
424 
425 	va_start(args, namefmt);
426 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
427 	va_end(args);
428 
429 	return task;
430 }
431 EXPORT_SYMBOL(kthread_create_on_node);
432 
433 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
434 {
435 	unsigned long flags;
436 
437 	if (!wait_task_inactive(p, state)) {
438 		WARN_ON(1);
439 		return;
440 	}
441 
442 	/* It's safe because the task is inactive. */
443 	raw_spin_lock_irqsave(&p->pi_lock, flags);
444 	do_set_cpus_allowed(p, mask);
445 	p->flags |= PF_NO_SETAFFINITY;
446 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
447 }
448 
449 static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
450 {
451 	__kthread_bind_mask(p, cpumask_of(cpu), state);
452 }
453 
454 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
455 {
456 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
457 }
458 
459 /**
460  * kthread_bind - bind a just-created kthread to a cpu.
461  * @p: thread created by kthread_create().
462  * @cpu: cpu (might not be online, must be possible) for @k to run on.
463  *
464  * Description: This function is equivalent to set_cpus_allowed(),
465  * except that @cpu doesn't need to be online, and the thread must be
466  * stopped (i.e., just returned from kthread_create()).
467  */
468 void kthread_bind(struct task_struct *p, unsigned int cpu)
469 {
470 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
471 }
472 EXPORT_SYMBOL(kthread_bind);
473 
474 /**
475  * kthread_create_on_cpu - Create a cpu bound kthread
476  * @threadfn: the function to run until signal_pending(current).
477  * @data: data ptr for @threadfn.
478  * @cpu: The cpu on which the thread should be bound,
479  * @namefmt: printf-style name for the thread. Format is restricted
480  *	     to "name.*%u". Code fills in cpu number.
481  *
482  * Description: This helper function creates and names a kernel thread
483  */
484 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
485 					  void *data, unsigned int cpu,
486 					  const char *namefmt)
487 {
488 	struct task_struct *p;
489 
490 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
491 				   cpu);
492 	if (IS_ERR(p))
493 		return p;
494 	kthread_bind(p, cpu);
495 	/* CPU hotplug need to bind once again when unparking the thread. */
496 	set_bit(KTHREAD_IS_PER_CPU, &to_kthread(p)->flags);
497 	to_kthread(p)->cpu = cpu;
498 	return p;
499 }
500 
501 /**
502  * kthread_unpark - unpark a thread created by kthread_create().
503  * @k:		thread created by kthread_create().
504  *
505  * Sets kthread_should_park() for @k to return false, wakes it, and
506  * waits for it to return. If the thread is marked percpu then its
507  * bound to the cpu again.
508  */
509 void kthread_unpark(struct task_struct *k)
510 {
511 	struct kthread *kthread = to_kthread(k);
512 
513 	/*
514 	 * Newly created kthread was parked when the CPU was offline.
515 	 * The binding was lost and we need to set it again.
516 	 */
517 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
518 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
519 
520 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
521 	/*
522 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
523 	 */
524 	wake_up_state(k, TASK_PARKED);
525 }
526 EXPORT_SYMBOL_GPL(kthread_unpark);
527 
528 /**
529  * kthread_park - park a thread created by kthread_create().
530  * @k: thread created by kthread_create().
531  *
532  * Sets kthread_should_park() for @k to return true, wakes it, and
533  * waits for it to return. This can also be called after kthread_create()
534  * instead of calling wake_up_process(): the thread will park without
535  * calling threadfn().
536  *
537  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
538  * If called by the kthread itself just the park bit is set.
539  */
540 int kthread_park(struct task_struct *k)
541 {
542 	struct kthread *kthread = to_kthread(k);
543 
544 	if (WARN_ON(k->flags & PF_EXITING))
545 		return -ENOSYS;
546 
547 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
548 		return -EBUSY;
549 
550 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
551 	if (k != current) {
552 		wake_up_process(k);
553 		/*
554 		 * Wait for __kthread_parkme() to complete(), this means we
555 		 * _will_ have TASK_PARKED and are about to call schedule().
556 		 */
557 		wait_for_completion(&kthread->parked);
558 		/*
559 		 * Now wait for that schedule() to complete and the task to
560 		 * get scheduled out.
561 		 */
562 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
563 	}
564 
565 	return 0;
566 }
567 EXPORT_SYMBOL_GPL(kthread_park);
568 
569 /**
570  * kthread_stop - stop a thread created by kthread_create().
571  * @k: thread created by kthread_create().
572  *
573  * Sets kthread_should_stop() for @k to return true, wakes it, and
574  * waits for it to exit. This can also be called after kthread_create()
575  * instead of calling wake_up_process(): the thread will exit without
576  * calling threadfn().
577  *
578  * If threadfn() may call do_exit() itself, the caller must ensure
579  * task_struct can't go away.
580  *
581  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
582  * was never called.
583  */
584 int kthread_stop(struct task_struct *k)
585 {
586 	struct kthread *kthread;
587 	int ret;
588 
589 	trace_sched_kthread_stop(k);
590 
591 	get_task_struct(k);
592 	kthread = to_kthread(k);
593 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
594 	kthread_unpark(k);
595 	wake_up_process(k);
596 	wait_for_completion(&kthread->exited);
597 	ret = k->exit_code;
598 	put_task_struct(k);
599 
600 	trace_sched_kthread_stop_ret(ret);
601 	return ret;
602 }
603 EXPORT_SYMBOL(kthread_stop);
604 
605 int kthreadd(void *unused)
606 {
607 	struct task_struct *tsk = current;
608 
609 	/* Setup a clean context for our children to inherit. */
610 	set_task_comm(tsk, "kthreadd");
611 	ignore_signals(tsk);
612 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_FLAG_KTHREAD));
613 	set_mems_allowed(node_states[N_MEMORY]);
614 
615 	current->flags |= PF_NOFREEZE;
616 	cgroup_init_kthreadd();
617 
618 	for (;;) {
619 		set_current_state(TASK_INTERRUPTIBLE);
620 		if (list_empty(&kthread_create_list))
621 			schedule();
622 		__set_current_state(TASK_RUNNING);
623 
624 		spin_lock(&kthread_create_lock);
625 		while (!list_empty(&kthread_create_list)) {
626 			struct kthread_create_info *create;
627 
628 			create = list_entry(kthread_create_list.next,
629 					    struct kthread_create_info, list);
630 			list_del_init(&create->list);
631 			spin_unlock(&kthread_create_lock);
632 
633 			create_kthread(create);
634 
635 			spin_lock(&kthread_create_lock);
636 		}
637 		spin_unlock(&kthread_create_lock);
638 	}
639 
640 	return 0;
641 }
642 
643 void __kthread_init_worker(struct kthread_worker *worker,
644 				const char *name,
645 				struct lock_class_key *key)
646 {
647 	memset(worker, 0, sizeof(struct kthread_worker));
648 	raw_spin_lock_init(&worker->lock);
649 	lockdep_set_class_and_name(&worker->lock, key, name);
650 	INIT_LIST_HEAD(&worker->work_list);
651 	INIT_LIST_HEAD(&worker->delayed_work_list);
652 }
653 EXPORT_SYMBOL_GPL(__kthread_init_worker);
654 
655 /**
656  * kthread_worker_fn - kthread function to process kthread_worker
657  * @worker_ptr: pointer to initialized kthread_worker
658  *
659  * This function implements the main cycle of kthread worker. It processes
660  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
661  * is empty.
662  *
663  * The works are not allowed to keep any locks, disable preemption or interrupts
664  * when they finish. There is defined a safe point for freezing when one work
665  * finishes and before a new one is started.
666  *
667  * Also the works must not be handled by more than one worker at the same time,
668  * see also kthread_queue_work().
669  */
670 int kthread_worker_fn(void *worker_ptr)
671 {
672 	struct kthread_worker *worker = worker_ptr;
673 	struct kthread_work *work;
674 
675 	/*
676 	 * FIXME: Update the check and remove the assignment when all kthread
677 	 * worker users are created using kthread_create_worker*() functions.
678 	 */
679 	WARN_ON(worker->task && worker->task != current);
680 	worker->task = current;
681 
682 	if (worker->flags & KTW_FREEZABLE)
683 		set_freezable();
684 
685 repeat:
686 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
687 
688 	if (kthread_should_stop()) {
689 		__set_current_state(TASK_RUNNING);
690 		raw_spin_lock_irq(&worker->lock);
691 		worker->task = NULL;
692 		raw_spin_unlock_irq(&worker->lock);
693 		return 0;
694 	}
695 
696 	work = NULL;
697 	raw_spin_lock_irq(&worker->lock);
698 	if (!list_empty(&worker->work_list)) {
699 		work = list_first_entry(&worker->work_list,
700 					struct kthread_work, node);
701 		list_del_init(&work->node);
702 	}
703 	worker->current_work = work;
704 	raw_spin_unlock_irq(&worker->lock);
705 
706 	if (work) {
707 		__set_current_state(TASK_RUNNING);
708 		work->func(work);
709 	} else if (!freezing(current))
710 		schedule();
711 
712 	try_to_freeze();
713 	cond_resched();
714 	goto repeat;
715 }
716 EXPORT_SYMBOL_GPL(kthread_worker_fn);
717 
718 static __printf(3, 0) struct kthread_worker *
719 __kthread_create_worker(int cpu, unsigned int flags,
720 			const char namefmt[], va_list args)
721 {
722 	struct kthread_worker *worker;
723 	struct task_struct *task;
724 	int node = NUMA_NO_NODE;
725 
726 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
727 	if (!worker)
728 		return ERR_PTR(-ENOMEM);
729 
730 	kthread_init_worker(worker);
731 
732 	if (cpu >= 0)
733 		node = cpu_to_node(cpu);
734 
735 	task = __kthread_create_on_node(kthread_worker_fn, worker,
736 						node, namefmt, args);
737 	if (IS_ERR(task))
738 		goto fail_task;
739 
740 	if (cpu >= 0)
741 		kthread_bind(task, cpu);
742 
743 	worker->flags = flags;
744 	worker->task = task;
745 	wake_up_process(task);
746 	return worker;
747 
748 fail_task:
749 	kfree(worker);
750 	return ERR_CAST(task);
751 }
752 
753 /**
754  * kthread_create_worker - create a kthread worker
755  * @flags: flags modifying the default behavior of the worker
756  * @namefmt: printf-style name for the kthread worker (task).
757  *
758  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
759  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
760  * when the worker was SIGKILLed.
761  */
762 struct kthread_worker *
763 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
764 {
765 	struct kthread_worker *worker;
766 	va_list args;
767 
768 	va_start(args, namefmt);
769 	worker = __kthread_create_worker(-1, flags, namefmt, args);
770 	va_end(args);
771 
772 	return worker;
773 }
774 EXPORT_SYMBOL(kthread_create_worker);
775 
776 /**
777  * kthread_create_worker_on_cpu - create a kthread worker and bind it
778  *	it to a given CPU and the associated NUMA node.
779  * @cpu: CPU number
780  * @flags: flags modifying the default behavior of the worker
781  * @namefmt: printf-style name for the kthread worker (task).
782  *
783  * Use a valid CPU number if you want to bind the kthread worker
784  * to the given CPU and the associated NUMA node.
785  *
786  * A good practice is to add the cpu number also into the worker name.
787  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
788  *
789  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
790  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
791  * when the worker was SIGKILLed.
792  */
793 struct kthread_worker *
794 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
795 			     const char namefmt[], ...)
796 {
797 	struct kthread_worker *worker;
798 	va_list args;
799 
800 	va_start(args, namefmt);
801 	worker = __kthread_create_worker(cpu, flags, namefmt, args);
802 	va_end(args);
803 
804 	return worker;
805 }
806 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
807 
808 /*
809  * Returns true when the work could not be queued at the moment.
810  * It happens when it is already pending in a worker list
811  * or when it is being cancelled.
812  */
813 static inline bool queuing_blocked(struct kthread_worker *worker,
814 				   struct kthread_work *work)
815 {
816 	lockdep_assert_held(&worker->lock);
817 
818 	return !list_empty(&work->node) || work->canceling;
819 }
820 
821 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
822 					     struct kthread_work *work)
823 {
824 	lockdep_assert_held(&worker->lock);
825 	WARN_ON_ONCE(!list_empty(&work->node));
826 	/* Do not use a work with >1 worker, see kthread_queue_work() */
827 	WARN_ON_ONCE(work->worker && work->worker != worker);
828 }
829 
830 /* insert @work before @pos in @worker */
831 static void kthread_insert_work(struct kthread_worker *worker,
832 				struct kthread_work *work,
833 				struct list_head *pos)
834 {
835 	kthread_insert_work_sanity_check(worker, work);
836 
837 	list_add_tail(&work->node, pos);
838 	work->worker = worker;
839 	if (!worker->current_work && likely(worker->task))
840 		wake_up_process(worker->task);
841 }
842 
843 /**
844  * kthread_queue_work - queue a kthread_work
845  * @worker: target kthread_worker
846  * @work: kthread_work to queue
847  *
848  * Queue @work to work processor @task for async execution.  @task
849  * must have been created with kthread_worker_create().  Returns %true
850  * if @work was successfully queued, %false if it was already pending.
851  *
852  * Reinitialize the work if it needs to be used by another worker.
853  * For example, when the worker was stopped and started again.
854  */
855 bool kthread_queue_work(struct kthread_worker *worker,
856 			struct kthread_work *work)
857 {
858 	bool ret = false;
859 	unsigned long flags;
860 
861 	raw_spin_lock_irqsave(&worker->lock, flags);
862 	if (!queuing_blocked(worker, work)) {
863 		kthread_insert_work(worker, work, &worker->work_list);
864 		ret = true;
865 	}
866 	raw_spin_unlock_irqrestore(&worker->lock, flags);
867 	return ret;
868 }
869 EXPORT_SYMBOL_GPL(kthread_queue_work);
870 
871 /**
872  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
873  *	delayed work when the timer expires.
874  * @t: pointer to the expired timer
875  *
876  * The format of the function is defined by struct timer_list.
877  * It should have been called from irqsafe timer with irq already off.
878  */
879 void kthread_delayed_work_timer_fn(struct timer_list *t)
880 {
881 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
882 	struct kthread_work *work = &dwork->work;
883 	struct kthread_worker *worker = work->worker;
884 	unsigned long flags;
885 
886 	/*
887 	 * This might happen when a pending work is reinitialized.
888 	 * It means that it is used a wrong way.
889 	 */
890 	if (WARN_ON_ONCE(!worker))
891 		return;
892 
893 	raw_spin_lock_irqsave(&worker->lock, flags);
894 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
895 	WARN_ON_ONCE(work->worker != worker);
896 
897 	/* Move the work from worker->delayed_work_list. */
898 	WARN_ON_ONCE(list_empty(&work->node));
899 	list_del_init(&work->node);
900 	kthread_insert_work(worker, work, &worker->work_list);
901 
902 	raw_spin_unlock_irqrestore(&worker->lock, flags);
903 }
904 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
905 
906 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
907 					 struct kthread_delayed_work *dwork,
908 					 unsigned long delay)
909 {
910 	struct timer_list *timer = &dwork->timer;
911 	struct kthread_work *work = &dwork->work;
912 
913 	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
914 
915 	/*
916 	 * If @delay is 0, queue @dwork->work immediately.  This is for
917 	 * both optimization and correctness.  The earliest @timer can
918 	 * expire is on the closest next tick and delayed_work users depend
919 	 * on that there's no such delay when @delay is 0.
920 	 */
921 	if (!delay) {
922 		kthread_insert_work(worker, work, &worker->work_list);
923 		return;
924 	}
925 
926 	/* Be paranoid and try to detect possible races already now. */
927 	kthread_insert_work_sanity_check(worker, work);
928 
929 	list_add(&work->node, &worker->delayed_work_list);
930 	work->worker = worker;
931 	timer->expires = jiffies + delay;
932 	add_timer(timer);
933 }
934 
935 /**
936  * kthread_queue_delayed_work - queue the associated kthread work
937  *	after a delay.
938  * @worker: target kthread_worker
939  * @dwork: kthread_delayed_work to queue
940  * @delay: number of jiffies to wait before queuing
941  *
942  * If the work has not been pending it starts a timer that will queue
943  * the work after the given @delay. If @delay is zero, it queues the
944  * work immediately.
945  *
946  * Return: %false if the @work has already been pending. It means that
947  * either the timer was running or the work was queued. It returns %true
948  * otherwise.
949  */
950 bool kthread_queue_delayed_work(struct kthread_worker *worker,
951 				struct kthread_delayed_work *dwork,
952 				unsigned long delay)
953 {
954 	struct kthread_work *work = &dwork->work;
955 	unsigned long flags;
956 	bool ret = false;
957 
958 	raw_spin_lock_irqsave(&worker->lock, flags);
959 
960 	if (!queuing_blocked(worker, work)) {
961 		__kthread_queue_delayed_work(worker, dwork, delay);
962 		ret = true;
963 	}
964 
965 	raw_spin_unlock_irqrestore(&worker->lock, flags);
966 	return ret;
967 }
968 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
969 
970 struct kthread_flush_work {
971 	struct kthread_work	work;
972 	struct completion	done;
973 };
974 
975 static void kthread_flush_work_fn(struct kthread_work *work)
976 {
977 	struct kthread_flush_work *fwork =
978 		container_of(work, struct kthread_flush_work, work);
979 	complete(&fwork->done);
980 }
981 
982 /**
983  * kthread_flush_work - flush a kthread_work
984  * @work: work to flush
985  *
986  * If @work is queued or executing, wait for it to finish execution.
987  */
988 void kthread_flush_work(struct kthread_work *work)
989 {
990 	struct kthread_flush_work fwork = {
991 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
992 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
993 	};
994 	struct kthread_worker *worker;
995 	bool noop = false;
996 
997 	worker = work->worker;
998 	if (!worker)
999 		return;
1000 
1001 	raw_spin_lock_irq(&worker->lock);
1002 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1003 	WARN_ON_ONCE(work->worker != worker);
1004 
1005 	if (!list_empty(&work->node))
1006 		kthread_insert_work(worker, &fwork.work, work->node.next);
1007 	else if (worker->current_work == work)
1008 		kthread_insert_work(worker, &fwork.work,
1009 				    worker->work_list.next);
1010 	else
1011 		noop = true;
1012 
1013 	raw_spin_unlock_irq(&worker->lock);
1014 
1015 	if (!noop)
1016 		wait_for_completion(&fwork.done);
1017 }
1018 EXPORT_SYMBOL_GPL(kthread_flush_work);
1019 
1020 /*
1021  * This function removes the work from the worker queue. Also it makes sure
1022  * that it won't get queued later via the delayed work's timer.
1023  *
1024  * The work might still be in use when this function finishes. See the
1025  * current_work proceed by the worker.
1026  *
1027  * Return: %true if @work was pending and successfully canceled,
1028  *	%false if @work was not pending
1029  */
1030 static bool __kthread_cancel_work(struct kthread_work *work, bool is_dwork,
1031 				  unsigned long *flags)
1032 {
1033 	/* Try to cancel the timer if exists. */
1034 	if (is_dwork) {
1035 		struct kthread_delayed_work *dwork =
1036 			container_of(work, struct kthread_delayed_work, work);
1037 		struct kthread_worker *worker = work->worker;
1038 
1039 		/*
1040 		 * del_timer_sync() must be called to make sure that the timer
1041 		 * callback is not running. The lock must be temporary released
1042 		 * to avoid a deadlock with the callback. In the meantime,
1043 		 * any queuing is blocked by setting the canceling counter.
1044 		 */
1045 		work->canceling++;
1046 		raw_spin_unlock_irqrestore(&worker->lock, *flags);
1047 		del_timer_sync(&dwork->timer);
1048 		raw_spin_lock_irqsave(&worker->lock, *flags);
1049 		work->canceling--;
1050 	}
1051 
1052 	/*
1053 	 * Try to remove the work from a worker list. It might either
1054 	 * be from worker->work_list or from worker->delayed_work_list.
1055 	 */
1056 	if (!list_empty(&work->node)) {
1057 		list_del_init(&work->node);
1058 		return true;
1059 	}
1060 
1061 	return false;
1062 }
1063 
1064 /**
1065  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1066  * @worker: kthread worker to use
1067  * @dwork: kthread delayed work to queue
1068  * @delay: number of jiffies to wait before queuing
1069  *
1070  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1071  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1072  * @work is guaranteed to be queued immediately.
1073  *
1074  * Return: %true if @dwork was pending and its timer was modified,
1075  * %false otherwise.
1076  *
1077  * A special case is when the work is being canceled in parallel.
1078  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1079  * or yet another kthread_mod_delayed_work() call. We let the other command
1080  * win and return %false here. The caller is supposed to synchronize these
1081  * operations a reasonable way.
1082  *
1083  * This function is safe to call from any context including IRQ handler.
1084  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1085  * for details.
1086  */
1087 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1088 			      struct kthread_delayed_work *dwork,
1089 			      unsigned long delay)
1090 {
1091 	struct kthread_work *work = &dwork->work;
1092 	unsigned long flags;
1093 	int ret = false;
1094 
1095 	raw_spin_lock_irqsave(&worker->lock, flags);
1096 
1097 	/* Do not bother with canceling when never queued. */
1098 	if (!work->worker)
1099 		goto fast_queue;
1100 
1101 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1102 	WARN_ON_ONCE(work->worker != worker);
1103 
1104 	/* Do not fight with another command that is canceling this work. */
1105 	if (work->canceling)
1106 		goto out;
1107 
1108 	ret = __kthread_cancel_work(work, true, &flags);
1109 fast_queue:
1110 	__kthread_queue_delayed_work(worker, dwork, delay);
1111 out:
1112 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1113 	return ret;
1114 }
1115 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1116 
1117 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1118 {
1119 	struct kthread_worker *worker = work->worker;
1120 	unsigned long flags;
1121 	int ret = false;
1122 
1123 	if (!worker)
1124 		goto out;
1125 
1126 	raw_spin_lock_irqsave(&worker->lock, flags);
1127 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1128 	WARN_ON_ONCE(work->worker != worker);
1129 
1130 	ret = __kthread_cancel_work(work, is_dwork, &flags);
1131 
1132 	if (worker->current_work != work)
1133 		goto out_fast;
1134 
1135 	/*
1136 	 * The work is in progress and we need to wait with the lock released.
1137 	 * In the meantime, block any queuing by setting the canceling counter.
1138 	 */
1139 	work->canceling++;
1140 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1141 	kthread_flush_work(work);
1142 	raw_spin_lock_irqsave(&worker->lock, flags);
1143 	work->canceling--;
1144 
1145 out_fast:
1146 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1147 out:
1148 	return ret;
1149 }
1150 
1151 /**
1152  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1153  * @work: the kthread work to cancel
1154  *
1155  * Cancel @work and wait for its execution to finish.  This function
1156  * can be used even if the work re-queues itself. On return from this
1157  * function, @work is guaranteed to be not pending or executing on any CPU.
1158  *
1159  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1160  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1161  *
1162  * The caller must ensure that the worker on which @work was last
1163  * queued can't be destroyed before this function returns.
1164  *
1165  * Return: %true if @work was pending, %false otherwise.
1166  */
1167 bool kthread_cancel_work_sync(struct kthread_work *work)
1168 {
1169 	return __kthread_cancel_work_sync(work, false);
1170 }
1171 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1172 
1173 /**
1174  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1175  *	wait for it to finish.
1176  * @dwork: the kthread delayed work to cancel
1177  *
1178  * This is kthread_cancel_work_sync() for delayed works.
1179  *
1180  * Return: %true if @dwork was pending, %false otherwise.
1181  */
1182 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1183 {
1184 	return __kthread_cancel_work_sync(&dwork->work, true);
1185 }
1186 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1187 
1188 /**
1189  * kthread_flush_worker - flush all current works on a kthread_worker
1190  * @worker: worker to flush
1191  *
1192  * Wait until all currently executing or pending works on @worker are
1193  * finished.
1194  */
1195 void kthread_flush_worker(struct kthread_worker *worker)
1196 {
1197 	struct kthread_flush_work fwork = {
1198 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1199 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1200 	};
1201 
1202 	kthread_queue_work(worker, &fwork.work);
1203 	wait_for_completion(&fwork.done);
1204 }
1205 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1206 
1207 /**
1208  * kthread_destroy_worker - destroy a kthread worker
1209  * @worker: worker to be destroyed
1210  *
1211  * Flush and destroy @worker.  The simple flush is enough because the kthread
1212  * worker API is used only in trivial scenarios.  There are no multi-step state
1213  * machines needed.
1214  */
1215 void kthread_destroy_worker(struct kthread_worker *worker)
1216 {
1217 	struct task_struct *task;
1218 
1219 	task = worker->task;
1220 	if (WARN_ON(!task))
1221 		return;
1222 
1223 	kthread_flush_worker(worker);
1224 	kthread_stop(task);
1225 	WARN_ON(!list_empty(&worker->work_list));
1226 	kfree(worker);
1227 }
1228 EXPORT_SYMBOL(kthread_destroy_worker);
1229 
1230 /**
1231  * kthread_use_mm - make the calling kthread operate on an address space
1232  * @mm: address space to operate on
1233  */
1234 void kthread_use_mm(struct mm_struct *mm)
1235 {
1236 	struct mm_struct *active_mm;
1237 	struct task_struct *tsk = current;
1238 
1239 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1240 	WARN_ON_ONCE(tsk->mm);
1241 
1242 	task_lock(tsk);
1243 	/* Hold off tlb flush IPIs while switching mm's */
1244 	local_irq_disable();
1245 	active_mm = tsk->active_mm;
1246 	if (active_mm != mm) {
1247 		mmgrab(mm);
1248 		tsk->active_mm = mm;
1249 	}
1250 	tsk->mm = mm;
1251 	switch_mm_irqs_off(active_mm, mm, tsk);
1252 	local_irq_enable();
1253 	task_unlock(tsk);
1254 #ifdef finish_arch_post_lock_switch
1255 	finish_arch_post_lock_switch();
1256 #endif
1257 
1258 	if (active_mm != mm)
1259 		mmdrop(active_mm);
1260 
1261 	to_kthread(tsk)->oldfs = force_uaccess_begin();
1262 }
1263 EXPORT_SYMBOL_GPL(kthread_use_mm);
1264 
1265 /**
1266  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1267  * @mm: address space to operate on
1268  */
1269 void kthread_unuse_mm(struct mm_struct *mm)
1270 {
1271 	struct task_struct *tsk = current;
1272 
1273 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1274 	WARN_ON_ONCE(!tsk->mm);
1275 
1276 	force_uaccess_end(to_kthread(tsk)->oldfs);
1277 
1278 	task_lock(tsk);
1279 	sync_mm_rss(mm);
1280 	local_irq_disable();
1281 	tsk->mm = NULL;
1282 	/* active_mm is still 'mm' */
1283 	enter_lazy_tlb(mm, tsk);
1284 	local_irq_enable();
1285 	task_unlock(tsk);
1286 }
1287 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1288 
1289 #ifdef CONFIG_BLK_CGROUP
1290 /**
1291  * kthread_associate_blkcg - associate blkcg to current kthread
1292  * @css: the cgroup info
1293  *
1294  * Current thread must be a kthread. The thread is running jobs on behalf of
1295  * other threads. In some cases, we expect the jobs attach cgroup info of
1296  * original threads instead of that of current thread. This function stores
1297  * original thread's cgroup info in current kthread context for later
1298  * retrieval.
1299  */
1300 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1301 {
1302 	struct kthread *kthread;
1303 
1304 	if (!(current->flags & PF_KTHREAD))
1305 		return;
1306 	kthread = to_kthread(current);
1307 	if (!kthread)
1308 		return;
1309 
1310 	if (kthread->blkcg_css) {
1311 		css_put(kthread->blkcg_css);
1312 		kthread->blkcg_css = NULL;
1313 	}
1314 	if (css) {
1315 		css_get(css);
1316 		kthread->blkcg_css = css;
1317 	}
1318 }
1319 EXPORT_SYMBOL(kthread_associate_blkcg);
1320 
1321 /**
1322  * kthread_blkcg - get associated blkcg css of current kthread
1323  *
1324  * Current thread must be a kthread.
1325  */
1326 struct cgroup_subsys_state *kthread_blkcg(void)
1327 {
1328 	struct kthread *kthread;
1329 
1330 	if (current->flags & PF_KTHREAD) {
1331 		kthread = to_kthread(current);
1332 		if (kthread)
1333 			return kthread->blkcg_css;
1334 	}
1335 	return NULL;
1336 }
1337 EXPORT_SYMBOL(kthread_blkcg);
1338 #endif
1339