xref: /openbmc/linux/kernel/kthread.c (revision 1587db11)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Kernel thread helper functions.
3  *   Copyright (C) 2004 IBM Corporation, Rusty Russell.
4  *   Copyright (C) 2009 Red Hat, Inc.
5  *
6  * Creation is done via kthreadd, so that we get a clean environment
7  * even if we're invoked from userspace (think modprobe, hotplug cpu,
8  * etc.).
9  */
10 #include <uapi/linux/sched/types.h>
11 #include <linux/mm.h>
12 #include <linux/mmu_context.h>
13 #include <linux/sched.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/task.h>
16 #include <linux/kthread.h>
17 #include <linux/completion.h>
18 #include <linux/err.h>
19 #include <linux/cgroup.h>
20 #include <linux/cpuset.h>
21 #include <linux/unistd.h>
22 #include <linux/file.h>
23 #include <linux/export.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/freezer.h>
27 #include <linux/ptrace.h>
28 #include <linux/uaccess.h>
29 #include <linux/numa.h>
30 #include <linux/sched/isolation.h>
31 #include <trace/events/sched.h>
32 
33 
34 static DEFINE_SPINLOCK(kthread_create_lock);
35 static LIST_HEAD(kthread_create_list);
36 struct task_struct *kthreadd_task;
37 
38 struct kthread_create_info
39 {
40 	/* Information passed to kthread() from kthreadd. */
41 	char *full_name;
42 	int (*threadfn)(void *data);
43 	void *data;
44 	int node;
45 
46 	/* Result passed back to kthread_create() from kthreadd. */
47 	struct task_struct *result;
48 	struct completion *done;
49 
50 	struct list_head list;
51 };
52 
53 struct kthread {
54 	unsigned long flags;
55 	unsigned int cpu;
56 	int result;
57 	int (*threadfn)(void *);
58 	void *data;
59 	struct completion parked;
60 	struct completion exited;
61 #ifdef CONFIG_BLK_CGROUP
62 	struct cgroup_subsys_state *blkcg_css;
63 #endif
64 	/* To store the full name if task comm is truncated. */
65 	char *full_name;
66 };
67 
68 enum KTHREAD_BITS {
69 	KTHREAD_IS_PER_CPU = 0,
70 	KTHREAD_SHOULD_STOP,
71 	KTHREAD_SHOULD_PARK,
72 };
73 
74 static inline struct kthread *to_kthread(struct task_struct *k)
75 {
76 	WARN_ON(!(k->flags & PF_KTHREAD));
77 	return k->worker_private;
78 }
79 
80 /*
81  * Variant of to_kthread() that doesn't assume @p is a kthread.
82  *
83  * Per construction; when:
84  *
85  *   (p->flags & PF_KTHREAD) && p->worker_private
86  *
87  * the task is both a kthread and struct kthread is persistent. However
88  * PF_KTHREAD on it's own is not, kernel_thread() can exec() (See umh.c and
89  * begin_new_exec()).
90  */
91 static inline struct kthread *__to_kthread(struct task_struct *p)
92 {
93 	void *kthread = p->worker_private;
94 	if (kthread && !(p->flags & PF_KTHREAD))
95 		kthread = NULL;
96 	return kthread;
97 }
98 
99 void get_kthread_comm(char *buf, size_t buf_size, struct task_struct *tsk)
100 {
101 	struct kthread *kthread = to_kthread(tsk);
102 
103 	if (!kthread || !kthread->full_name) {
104 		__get_task_comm(buf, buf_size, tsk);
105 		return;
106 	}
107 
108 	strscpy_pad(buf, kthread->full_name, buf_size);
109 }
110 
111 bool set_kthread_struct(struct task_struct *p)
112 {
113 	struct kthread *kthread;
114 
115 	if (WARN_ON_ONCE(to_kthread(p)))
116 		return false;
117 
118 	kthread = kzalloc(sizeof(*kthread), GFP_KERNEL);
119 	if (!kthread)
120 		return false;
121 
122 	init_completion(&kthread->exited);
123 	init_completion(&kthread->parked);
124 	p->vfork_done = &kthread->exited;
125 
126 	p->worker_private = kthread;
127 	return true;
128 }
129 
130 void free_kthread_struct(struct task_struct *k)
131 {
132 	struct kthread *kthread;
133 
134 	/*
135 	 * Can be NULL if kmalloc() in set_kthread_struct() failed.
136 	 */
137 	kthread = to_kthread(k);
138 	if (!kthread)
139 		return;
140 
141 #ifdef CONFIG_BLK_CGROUP
142 	WARN_ON_ONCE(kthread->blkcg_css);
143 #endif
144 	k->worker_private = NULL;
145 	kfree(kthread->full_name);
146 	kfree(kthread);
147 }
148 
149 /**
150  * kthread_should_stop - should this kthread return now?
151  *
152  * When someone calls kthread_stop() on your kthread, it will be woken
153  * and this will return true.  You should then return, and your return
154  * value will be passed through to kthread_stop().
155  */
156 bool kthread_should_stop(void)
157 {
158 	return test_bit(KTHREAD_SHOULD_STOP, &to_kthread(current)->flags);
159 }
160 EXPORT_SYMBOL(kthread_should_stop);
161 
162 static bool __kthread_should_park(struct task_struct *k)
163 {
164 	return test_bit(KTHREAD_SHOULD_PARK, &to_kthread(k)->flags);
165 }
166 
167 /**
168  * kthread_should_park - should this kthread park now?
169  *
170  * When someone calls kthread_park() on your kthread, it will be woken
171  * and this will return true.  You should then do the necessary
172  * cleanup and call kthread_parkme()
173  *
174  * Similar to kthread_should_stop(), but this keeps the thread alive
175  * and in a park position. kthread_unpark() "restarts" the thread and
176  * calls the thread function again.
177  */
178 bool kthread_should_park(void)
179 {
180 	return __kthread_should_park(current);
181 }
182 EXPORT_SYMBOL_GPL(kthread_should_park);
183 
184 bool kthread_should_stop_or_park(void)
185 {
186 	struct kthread *kthread = __to_kthread(current);
187 
188 	if (!kthread)
189 		return false;
190 
191 	return kthread->flags & (BIT(KTHREAD_SHOULD_STOP) | BIT(KTHREAD_SHOULD_PARK));
192 }
193 
194 /**
195  * kthread_freezable_should_stop - should this freezable kthread return now?
196  * @was_frozen: optional out parameter, indicates whether %current was frozen
197  *
198  * kthread_should_stop() for freezable kthreads, which will enter
199  * refrigerator if necessary.  This function is safe from kthread_stop() /
200  * freezer deadlock and freezable kthreads should use this function instead
201  * of calling try_to_freeze() directly.
202  */
203 bool kthread_freezable_should_stop(bool *was_frozen)
204 {
205 	bool frozen = false;
206 
207 	might_sleep();
208 
209 	if (unlikely(freezing(current)))
210 		frozen = __refrigerator(true);
211 
212 	if (was_frozen)
213 		*was_frozen = frozen;
214 
215 	return kthread_should_stop();
216 }
217 EXPORT_SYMBOL_GPL(kthread_freezable_should_stop);
218 
219 /**
220  * kthread_func - return the function specified on kthread creation
221  * @task: kthread task in question
222  *
223  * Returns NULL if the task is not a kthread.
224  */
225 void *kthread_func(struct task_struct *task)
226 {
227 	struct kthread *kthread = __to_kthread(task);
228 	if (kthread)
229 		return kthread->threadfn;
230 	return NULL;
231 }
232 EXPORT_SYMBOL_GPL(kthread_func);
233 
234 /**
235  * kthread_data - return data value specified on kthread creation
236  * @task: kthread task in question
237  *
238  * Return the data value specified when kthread @task was created.
239  * The caller is responsible for ensuring the validity of @task when
240  * calling this function.
241  */
242 void *kthread_data(struct task_struct *task)
243 {
244 	return to_kthread(task)->data;
245 }
246 EXPORT_SYMBOL_GPL(kthread_data);
247 
248 /**
249  * kthread_probe_data - speculative version of kthread_data()
250  * @task: possible kthread task in question
251  *
252  * @task could be a kthread task.  Return the data value specified when it
253  * was created if accessible.  If @task isn't a kthread task or its data is
254  * inaccessible for any reason, %NULL is returned.  This function requires
255  * that @task itself is safe to dereference.
256  */
257 void *kthread_probe_data(struct task_struct *task)
258 {
259 	struct kthread *kthread = __to_kthread(task);
260 	void *data = NULL;
261 
262 	if (kthread)
263 		copy_from_kernel_nofault(&data, &kthread->data, sizeof(data));
264 	return data;
265 }
266 
267 static void __kthread_parkme(struct kthread *self)
268 {
269 	for (;;) {
270 		/*
271 		 * TASK_PARKED is a special state; we must serialize against
272 		 * possible pending wakeups to avoid store-store collisions on
273 		 * task->state.
274 		 *
275 		 * Such a collision might possibly result in the task state
276 		 * changin from TASK_PARKED and us failing the
277 		 * wait_task_inactive() in kthread_park().
278 		 */
279 		set_special_state(TASK_PARKED);
280 		if (!test_bit(KTHREAD_SHOULD_PARK, &self->flags))
281 			break;
282 
283 		/*
284 		 * Thread is going to call schedule(), do not preempt it,
285 		 * or the caller of kthread_park() may spend more time in
286 		 * wait_task_inactive().
287 		 */
288 		preempt_disable();
289 		complete(&self->parked);
290 		schedule_preempt_disabled();
291 		preempt_enable();
292 	}
293 	__set_current_state(TASK_RUNNING);
294 }
295 
296 void kthread_parkme(void)
297 {
298 	__kthread_parkme(to_kthread(current));
299 }
300 EXPORT_SYMBOL_GPL(kthread_parkme);
301 
302 /**
303  * kthread_exit - Cause the current kthread return @result to kthread_stop().
304  * @result: The integer value to return to kthread_stop().
305  *
306  * While kthread_exit can be called directly, it exists so that
307  * functions which do some additional work in non-modular code such as
308  * module_put_and_kthread_exit can be implemented.
309  *
310  * Does not return.
311  */
312 void __noreturn kthread_exit(long result)
313 {
314 	struct kthread *kthread = to_kthread(current);
315 	kthread->result = result;
316 	do_exit(0);
317 }
318 
319 /**
320  * kthread_complete_and_exit - Exit the current kthread.
321  * @comp: Completion to complete
322  * @code: The integer value to return to kthread_stop().
323  *
324  * If present, complete @comp and then return code to kthread_stop().
325  *
326  * A kernel thread whose module may be removed after the completion of
327  * @comp can use this function to exit safely.
328  *
329  * Does not return.
330  */
331 void __noreturn kthread_complete_and_exit(struct completion *comp, long code)
332 {
333 	if (comp)
334 		complete(comp);
335 
336 	kthread_exit(code);
337 }
338 EXPORT_SYMBOL(kthread_complete_and_exit);
339 
340 static int kthread(void *_create)
341 {
342 	static const struct sched_param param = { .sched_priority = 0 };
343 	/* Copy data: it's on kthread's stack */
344 	struct kthread_create_info *create = _create;
345 	int (*threadfn)(void *data) = create->threadfn;
346 	void *data = create->data;
347 	struct completion *done;
348 	struct kthread *self;
349 	int ret;
350 
351 	self = to_kthread(current);
352 
353 	/* Release the structure when caller killed by a fatal signal. */
354 	done = xchg(&create->done, NULL);
355 	if (!done) {
356 		kfree(create->full_name);
357 		kfree(create);
358 		kthread_exit(-EINTR);
359 	}
360 
361 	self->full_name = create->full_name;
362 	self->threadfn = threadfn;
363 	self->data = data;
364 
365 	/*
366 	 * The new thread inherited kthreadd's priority and CPU mask. Reset
367 	 * back to default in case they have been changed.
368 	 */
369 	sched_setscheduler_nocheck(current, SCHED_NORMAL, &param);
370 	set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_KTHREAD));
371 
372 	/* OK, tell user we're spawned, wait for stop or wakeup */
373 	__set_current_state(TASK_UNINTERRUPTIBLE);
374 	create->result = current;
375 	/*
376 	 * Thread is going to call schedule(), do not preempt it,
377 	 * or the creator may spend more time in wait_task_inactive().
378 	 */
379 	preempt_disable();
380 	complete(done);
381 	schedule_preempt_disabled();
382 	preempt_enable();
383 
384 	ret = -EINTR;
385 	if (!test_bit(KTHREAD_SHOULD_STOP, &self->flags)) {
386 		cgroup_kthread_ready();
387 		__kthread_parkme(self);
388 		ret = threadfn(data);
389 	}
390 	kthread_exit(ret);
391 }
392 
393 /* called from kernel_clone() to get node information for about to be created task */
394 int tsk_fork_get_node(struct task_struct *tsk)
395 {
396 #ifdef CONFIG_NUMA
397 	if (tsk == kthreadd_task)
398 		return tsk->pref_node_fork;
399 #endif
400 	return NUMA_NO_NODE;
401 }
402 
403 static void create_kthread(struct kthread_create_info *create)
404 {
405 	int pid;
406 
407 #ifdef CONFIG_NUMA
408 	current->pref_node_fork = create->node;
409 #endif
410 	/* We want our own signal handler (we take no signals by default). */
411 	pid = kernel_thread(kthread, create, create->full_name,
412 			    CLONE_FS | CLONE_FILES | SIGCHLD);
413 	if (pid < 0) {
414 		/* Release the structure when caller killed by a fatal signal. */
415 		struct completion *done = xchg(&create->done, NULL);
416 
417 		kfree(create->full_name);
418 		if (!done) {
419 			kfree(create);
420 			return;
421 		}
422 		create->result = ERR_PTR(pid);
423 		complete(done);
424 	}
425 }
426 
427 static __printf(4, 0)
428 struct task_struct *__kthread_create_on_node(int (*threadfn)(void *data),
429 						    void *data, int node,
430 						    const char namefmt[],
431 						    va_list args)
432 {
433 	DECLARE_COMPLETION_ONSTACK(done);
434 	struct task_struct *task;
435 	struct kthread_create_info *create = kmalloc(sizeof(*create),
436 						     GFP_KERNEL);
437 
438 	if (!create)
439 		return ERR_PTR(-ENOMEM);
440 	create->threadfn = threadfn;
441 	create->data = data;
442 	create->node = node;
443 	create->done = &done;
444 	create->full_name = kvasprintf(GFP_KERNEL, namefmt, args);
445 	if (!create->full_name) {
446 		task = ERR_PTR(-ENOMEM);
447 		goto free_create;
448 	}
449 
450 	spin_lock(&kthread_create_lock);
451 	list_add_tail(&create->list, &kthread_create_list);
452 	spin_unlock(&kthread_create_lock);
453 
454 	wake_up_process(kthreadd_task);
455 	/*
456 	 * Wait for completion in killable state, for I might be chosen by
457 	 * the OOM killer while kthreadd is trying to allocate memory for
458 	 * new kernel thread.
459 	 */
460 	if (unlikely(wait_for_completion_killable(&done))) {
461 		/*
462 		 * If I was killed by a fatal signal before kthreadd (or new
463 		 * kernel thread) calls complete(), leave the cleanup of this
464 		 * structure to that thread.
465 		 */
466 		if (xchg(&create->done, NULL))
467 			return ERR_PTR(-EINTR);
468 		/*
469 		 * kthreadd (or new kernel thread) will call complete()
470 		 * shortly.
471 		 */
472 		wait_for_completion(&done);
473 	}
474 	task = create->result;
475 free_create:
476 	kfree(create);
477 	return task;
478 }
479 
480 /**
481  * kthread_create_on_node - create a kthread.
482  * @threadfn: the function to run until signal_pending(current).
483  * @data: data ptr for @threadfn.
484  * @node: task and thread structures for the thread are allocated on this node
485  * @namefmt: printf-style name for the thread.
486  *
487  * Description: This helper function creates and names a kernel
488  * thread.  The thread will be stopped: use wake_up_process() to start
489  * it.  See also kthread_run().  The new thread has SCHED_NORMAL policy and
490  * is affine to all CPUs.
491  *
492  * If thread is going to be bound on a particular cpu, give its node
493  * in @node, to get NUMA affinity for kthread stack, or else give NUMA_NO_NODE.
494  * When woken, the thread will run @threadfn() with @data as its
495  * argument. @threadfn() can either return directly if it is a
496  * standalone thread for which no one will call kthread_stop(), or
497  * return when 'kthread_should_stop()' is true (which means
498  * kthread_stop() has been called).  The return value should be zero
499  * or a negative error number; it will be passed to kthread_stop().
500  *
501  * Returns a task_struct or ERR_PTR(-ENOMEM) or ERR_PTR(-EINTR).
502  */
503 struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
504 					   void *data, int node,
505 					   const char namefmt[],
506 					   ...)
507 {
508 	struct task_struct *task;
509 	va_list args;
510 
511 	va_start(args, namefmt);
512 	task = __kthread_create_on_node(threadfn, data, node, namefmt, args);
513 	va_end(args);
514 
515 	return task;
516 }
517 EXPORT_SYMBOL(kthread_create_on_node);
518 
519 static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, unsigned int state)
520 {
521 	unsigned long flags;
522 
523 	if (!wait_task_inactive(p, state)) {
524 		WARN_ON(1);
525 		return;
526 	}
527 
528 	/* It's safe because the task is inactive. */
529 	raw_spin_lock_irqsave(&p->pi_lock, flags);
530 	do_set_cpus_allowed(p, mask);
531 	p->flags |= PF_NO_SETAFFINITY;
532 	raw_spin_unlock_irqrestore(&p->pi_lock, flags);
533 }
534 
535 static void __kthread_bind(struct task_struct *p, unsigned int cpu, unsigned int state)
536 {
537 	__kthread_bind_mask(p, cpumask_of(cpu), state);
538 }
539 
540 void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
541 {
542 	__kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
543 }
544 
545 /**
546  * kthread_bind - bind a just-created kthread to a cpu.
547  * @p: thread created by kthread_create().
548  * @cpu: cpu (might not be online, must be possible) for @k to run on.
549  *
550  * Description: This function is equivalent to set_cpus_allowed(),
551  * except that @cpu doesn't need to be online, and the thread must be
552  * stopped (i.e., just returned from kthread_create()).
553  */
554 void kthread_bind(struct task_struct *p, unsigned int cpu)
555 {
556 	__kthread_bind(p, cpu, TASK_UNINTERRUPTIBLE);
557 }
558 EXPORT_SYMBOL(kthread_bind);
559 
560 /**
561  * kthread_create_on_cpu - Create a cpu bound kthread
562  * @threadfn: the function to run until signal_pending(current).
563  * @data: data ptr for @threadfn.
564  * @cpu: The cpu on which the thread should be bound,
565  * @namefmt: printf-style name for the thread. Format is restricted
566  *	     to "name.*%u". Code fills in cpu number.
567  *
568  * Description: This helper function creates and names a kernel thread
569  */
570 struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
571 					  void *data, unsigned int cpu,
572 					  const char *namefmt)
573 {
574 	struct task_struct *p;
575 
576 	p = kthread_create_on_node(threadfn, data, cpu_to_node(cpu), namefmt,
577 				   cpu);
578 	if (IS_ERR(p))
579 		return p;
580 	kthread_bind(p, cpu);
581 	/* CPU hotplug need to bind once again when unparking the thread. */
582 	to_kthread(p)->cpu = cpu;
583 	return p;
584 }
585 EXPORT_SYMBOL(kthread_create_on_cpu);
586 
587 void kthread_set_per_cpu(struct task_struct *k, int cpu)
588 {
589 	struct kthread *kthread = to_kthread(k);
590 	if (!kthread)
591 		return;
592 
593 	WARN_ON_ONCE(!(k->flags & PF_NO_SETAFFINITY));
594 
595 	if (cpu < 0) {
596 		clear_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
597 		return;
598 	}
599 
600 	kthread->cpu = cpu;
601 	set_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
602 }
603 
604 bool kthread_is_per_cpu(struct task_struct *p)
605 {
606 	struct kthread *kthread = __to_kthread(p);
607 	if (!kthread)
608 		return false;
609 
610 	return test_bit(KTHREAD_IS_PER_CPU, &kthread->flags);
611 }
612 
613 /**
614  * kthread_unpark - unpark a thread created by kthread_create().
615  * @k:		thread created by kthread_create().
616  *
617  * Sets kthread_should_park() for @k to return false, wakes it, and
618  * waits for it to return. If the thread is marked percpu then its
619  * bound to the cpu again.
620  */
621 void kthread_unpark(struct task_struct *k)
622 {
623 	struct kthread *kthread = to_kthread(k);
624 
625 	/*
626 	 * Newly created kthread was parked when the CPU was offline.
627 	 * The binding was lost and we need to set it again.
628 	 */
629 	if (test_bit(KTHREAD_IS_PER_CPU, &kthread->flags))
630 		__kthread_bind(k, kthread->cpu, TASK_PARKED);
631 
632 	clear_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
633 	/*
634 	 * __kthread_parkme() will either see !SHOULD_PARK or get the wakeup.
635 	 */
636 	wake_up_state(k, TASK_PARKED);
637 }
638 EXPORT_SYMBOL_GPL(kthread_unpark);
639 
640 /**
641  * kthread_park - park a thread created by kthread_create().
642  * @k: thread created by kthread_create().
643  *
644  * Sets kthread_should_park() for @k to return true, wakes it, and
645  * waits for it to return. This can also be called after kthread_create()
646  * instead of calling wake_up_process(): the thread will park without
647  * calling threadfn().
648  *
649  * Returns 0 if the thread is parked, -ENOSYS if the thread exited.
650  * If called by the kthread itself just the park bit is set.
651  */
652 int kthread_park(struct task_struct *k)
653 {
654 	struct kthread *kthread = to_kthread(k);
655 
656 	if (WARN_ON(k->flags & PF_EXITING))
657 		return -ENOSYS;
658 
659 	if (WARN_ON_ONCE(test_bit(KTHREAD_SHOULD_PARK, &kthread->flags)))
660 		return -EBUSY;
661 
662 	set_bit(KTHREAD_SHOULD_PARK, &kthread->flags);
663 	if (k != current) {
664 		wake_up_process(k);
665 		/*
666 		 * Wait for __kthread_parkme() to complete(), this means we
667 		 * _will_ have TASK_PARKED and are about to call schedule().
668 		 */
669 		wait_for_completion(&kthread->parked);
670 		/*
671 		 * Now wait for that schedule() to complete and the task to
672 		 * get scheduled out.
673 		 */
674 		WARN_ON_ONCE(!wait_task_inactive(k, TASK_PARKED));
675 	}
676 
677 	return 0;
678 }
679 EXPORT_SYMBOL_GPL(kthread_park);
680 
681 /**
682  * kthread_stop - stop a thread created by kthread_create().
683  * @k: thread created by kthread_create().
684  *
685  * Sets kthread_should_stop() for @k to return true, wakes it, and
686  * waits for it to exit. This can also be called after kthread_create()
687  * instead of calling wake_up_process(): the thread will exit without
688  * calling threadfn().
689  *
690  * If threadfn() may call kthread_exit() itself, the caller must ensure
691  * task_struct can't go away.
692  *
693  * Returns the result of threadfn(), or %-EINTR if wake_up_process()
694  * was never called.
695  */
696 int kthread_stop(struct task_struct *k)
697 {
698 	struct kthread *kthread;
699 	int ret;
700 
701 	trace_sched_kthread_stop(k);
702 
703 	get_task_struct(k);
704 	kthread = to_kthread(k);
705 	set_bit(KTHREAD_SHOULD_STOP, &kthread->flags);
706 	kthread_unpark(k);
707 	set_tsk_thread_flag(k, TIF_NOTIFY_SIGNAL);
708 	wake_up_process(k);
709 	wait_for_completion(&kthread->exited);
710 	ret = kthread->result;
711 	put_task_struct(k);
712 
713 	trace_sched_kthread_stop_ret(ret);
714 	return ret;
715 }
716 EXPORT_SYMBOL(kthread_stop);
717 
718 /**
719  * kthread_stop_put - stop a thread and put its task struct
720  * @k: thread created by kthread_create().
721  *
722  * Stops a thread created by kthread_create() and put its task_struct.
723  * Only use when holding an extra task struct reference obtained by
724  * calling get_task_struct().
725  */
726 int kthread_stop_put(struct task_struct *k)
727 {
728 	int ret;
729 
730 	ret = kthread_stop(k);
731 	put_task_struct(k);
732 	return ret;
733 }
734 EXPORT_SYMBOL(kthread_stop_put);
735 
736 int kthreadd(void *unused)
737 {
738 	struct task_struct *tsk = current;
739 
740 	/* Setup a clean context for our children to inherit. */
741 	set_task_comm(tsk, "kthreadd");
742 	ignore_signals(tsk);
743 	set_cpus_allowed_ptr(tsk, housekeeping_cpumask(HK_TYPE_KTHREAD));
744 	set_mems_allowed(node_states[N_MEMORY]);
745 
746 	current->flags |= PF_NOFREEZE;
747 	cgroup_init_kthreadd();
748 
749 	for (;;) {
750 		set_current_state(TASK_INTERRUPTIBLE);
751 		if (list_empty(&kthread_create_list))
752 			schedule();
753 		__set_current_state(TASK_RUNNING);
754 
755 		spin_lock(&kthread_create_lock);
756 		while (!list_empty(&kthread_create_list)) {
757 			struct kthread_create_info *create;
758 
759 			create = list_entry(kthread_create_list.next,
760 					    struct kthread_create_info, list);
761 			list_del_init(&create->list);
762 			spin_unlock(&kthread_create_lock);
763 
764 			create_kthread(create);
765 
766 			spin_lock(&kthread_create_lock);
767 		}
768 		spin_unlock(&kthread_create_lock);
769 	}
770 
771 	return 0;
772 }
773 
774 void __kthread_init_worker(struct kthread_worker *worker,
775 				const char *name,
776 				struct lock_class_key *key)
777 {
778 	memset(worker, 0, sizeof(struct kthread_worker));
779 	raw_spin_lock_init(&worker->lock);
780 	lockdep_set_class_and_name(&worker->lock, key, name);
781 	INIT_LIST_HEAD(&worker->work_list);
782 	INIT_LIST_HEAD(&worker->delayed_work_list);
783 }
784 EXPORT_SYMBOL_GPL(__kthread_init_worker);
785 
786 /**
787  * kthread_worker_fn - kthread function to process kthread_worker
788  * @worker_ptr: pointer to initialized kthread_worker
789  *
790  * This function implements the main cycle of kthread worker. It processes
791  * work_list until it is stopped with kthread_stop(). It sleeps when the queue
792  * is empty.
793  *
794  * The works are not allowed to keep any locks, disable preemption or interrupts
795  * when they finish. There is defined a safe point for freezing when one work
796  * finishes and before a new one is started.
797  *
798  * Also the works must not be handled by more than one worker at the same time,
799  * see also kthread_queue_work().
800  */
801 int kthread_worker_fn(void *worker_ptr)
802 {
803 	struct kthread_worker *worker = worker_ptr;
804 	struct kthread_work *work;
805 
806 	/*
807 	 * FIXME: Update the check and remove the assignment when all kthread
808 	 * worker users are created using kthread_create_worker*() functions.
809 	 */
810 	WARN_ON(worker->task && worker->task != current);
811 	worker->task = current;
812 
813 	if (worker->flags & KTW_FREEZABLE)
814 		set_freezable();
815 
816 repeat:
817 	set_current_state(TASK_INTERRUPTIBLE);	/* mb paired w/ kthread_stop */
818 
819 	if (kthread_should_stop()) {
820 		__set_current_state(TASK_RUNNING);
821 		raw_spin_lock_irq(&worker->lock);
822 		worker->task = NULL;
823 		raw_spin_unlock_irq(&worker->lock);
824 		return 0;
825 	}
826 
827 	work = NULL;
828 	raw_spin_lock_irq(&worker->lock);
829 	if (!list_empty(&worker->work_list)) {
830 		work = list_first_entry(&worker->work_list,
831 					struct kthread_work, node);
832 		list_del_init(&work->node);
833 	}
834 	worker->current_work = work;
835 	raw_spin_unlock_irq(&worker->lock);
836 
837 	if (work) {
838 		kthread_work_func_t func = work->func;
839 		__set_current_state(TASK_RUNNING);
840 		trace_sched_kthread_work_execute_start(work);
841 		work->func(work);
842 		/*
843 		 * Avoid dereferencing work after this point.  The trace
844 		 * event only cares about the address.
845 		 */
846 		trace_sched_kthread_work_execute_end(work, func);
847 	} else if (!freezing(current)) {
848 		schedule();
849 	} else {
850 		/*
851 		 * Handle the case where the current remains
852 		 * TASK_INTERRUPTIBLE. try_to_freeze() expects
853 		 * the current to be TASK_RUNNING.
854 		 */
855 		__set_current_state(TASK_RUNNING);
856 	}
857 
858 	try_to_freeze();
859 	cond_resched();
860 	goto repeat;
861 }
862 EXPORT_SYMBOL_GPL(kthread_worker_fn);
863 
864 static __printf(3, 0) struct kthread_worker *
865 __kthread_create_worker(int cpu, unsigned int flags,
866 			const char namefmt[], va_list args)
867 {
868 	struct kthread_worker *worker;
869 	struct task_struct *task;
870 	int node = NUMA_NO_NODE;
871 
872 	worker = kzalloc(sizeof(*worker), GFP_KERNEL);
873 	if (!worker)
874 		return ERR_PTR(-ENOMEM);
875 
876 	kthread_init_worker(worker);
877 
878 	if (cpu >= 0)
879 		node = cpu_to_node(cpu);
880 
881 	task = __kthread_create_on_node(kthread_worker_fn, worker,
882 						node, namefmt, args);
883 	if (IS_ERR(task))
884 		goto fail_task;
885 
886 	if (cpu >= 0)
887 		kthread_bind(task, cpu);
888 
889 	worker->flags = flags;
890 	worker->task = task;
891 	wake_up_process(task);
892 	return worker;
893 
894 fail_task:
895 	kfree(worker);
896 	return ERR_CAST(task);
897 }
898 
899 /**
900  * kthread_create_worker - create a kthread worker
901  * @flags: flags modifying the default behavior of the worker
902  * @namefmt: printf-style name for the kthread worker (task).
903  *
904  * Returns a pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
905  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
906  * when the caller was killed by a fatal signal.
907  */
908 struct kthread_worker *
909 kthread_create_worker(unsigned int flags, const char namefmt[], ...)
910 {
911 	struct kthread_worker *worker;
912 	va_list args;
913 
914 	va_start(args, namefmt);
915 	worker = __kthread_create_worker(-1, flags, namefmt, args);
916 	va_end(args);
917 
918 	return worker;
919 }
920 EXPORT_SYMBOL(kthread_create_worker);
921 
922 /**
923  * kthread_create_worker_on_cpu - create a kthread worker and bind it
924  *	to a given CPU and the associated NUMA node.
925  * @cpu: CPU number
926  * @flags: flags modifying the default behavior of the worker
927  * @namefmt: printf-style name for the kthread worker (task).
928  *
929  * Use a valid CPU number if you want to bind the kthread worker
930  * to the given CPU and the associated NUMA node.
931  *
932  * A good practice is to add the cpu number also into the worker name.
933  * For example, use kthread_create_worker_on_cpu(cpu, "helper/%d", cpu).
934  *
935  * CPU hotplug:
936  * The kthread worker API is simple and generic. It just provides a way
937  * to create, use, and destroy workers.
938  *
939  * It is up to the API user how to handle CPU hotplug. They have to decide
940  * how to handle pending work items, prevent queuing new ones, and
941  * restore the functionality when the CPU goes off and on. There are a
942  * few catches:
943  *
944  *    - CPU affinity gets lost when it is scheduled on an offline CPU.
945  *
946  *    - The worker might not exist when the CPU was off when the user
947  *      created the workers.
948  *
949  * Good practice is to implement two CPU hotplug callbacks and to
950  * destroy/create the worker when the CPU goes down/up.
951  *
952  * Return:
953  * The pointer to the allocated worker on success, ERR_PTR(-ENOMEM)
954  * when the needed structures could not get allocated, and ERR_PTR(-EINTR)
955  * when the caller was killed by a fatal signal.
956  */
957 struct kthread_worker *
958 kthread_create_worker_on_cpu(int cpu, unsigned int flags,
959 			     const char namefmt[], ...)
960 {
961 	struct kthread_worker *worker;
962 	va_list args;
963 
964 	va_start(args, namefmt);
965 	worker = __kthread_create_worker(cpu, flags, namefmt, args);
966 	va_end(args);
967 
968 	return worker;
969 }
970 EXPORT_SYMBOL(kthread_create_worker_on_cpu);
971 
972 /*
973  * Returns true when the work could not be queued at the moment.
974  * It happens when it is already pending in a worker list
975  * or when it is being cancelled.
976  */
977 static inline bool queuing_blocked(struct kthread_worker *worker,
978 				   struct kthread_work *work)
979 {
980 	lockdep_assert_held(&worker->lock);
981 
982 	return !list_empty(&work->node) || work->canceling;
983 }
984 
985 static void kthread_insert_work_sanity_check(struct kthread_worker *worker,
986 					     struct kthread_work *work)
987 {
988 	lockdep_assert_held(&worker->lock);
989 	WARN_ON_ONCE(!list_empty(&work->node));
990 	/* Do not use a work with >1 worker, see kthread_queue_work() */
991 	WARN_ON_ONCE(work->worker && work->worker != worker);
992 }
993 
994 /* insert @work before @pos in @worker */
995 static void kthread_insert_work(struct kthread_worker *worker,
996 				struct kthread_work *work,
997 				struct list_head *pos)
998 {
999 	kthread_insert_work_sanity_check(worker, work);
1000 
1001 	trace_sched_kthread_work_queue_work(worker, work);
1002 
1003 	list_add_tail(&work->node, pos);
1004 	work->worker = worker;
1005 	if (!worker->current_work && likely(worker->task))
1006 		wake_up_process(worker->task);
1007 }
1008 
1009 /**
1010  * kthread_queue_work - queue a kthread_work
1011  * @worker: target kthread_worker
1012  * @work: kthread_work to queue
1013  *
1014  * Queue @work to work processor @task for async execution.  @task
1015  * must have been created with kthread_worker_create().  Returns %true
1016  * if @work was successfully queued, %false if it was already pending.
1017  *
1018  * Reinitialize the work if it needs to be used by another worker.
1019  * For example, when the worker was stopped and started again.
1020  */
1021 bool kthread_queue_work(struct kthread_worker *worker,
1022 			struct kthread_work *work)
1023 {
1024 	bool ret = false;
1025 	unsigned long flags;
1026 
1027 	raw_spin_lock_irqsave(&worker->lock, flags);
1028 	if (!queuing_blocked(worker, work)) {
1029 		kthread_insert_work(worker, work, &worker->work_list);
1030 		ret = true;
1031 	}
1032 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1033 	return ret;
1034 }
1035 EXPORT_SYMBOL_GPL(kthread_queue_work);
1036 
1037 /**
1038  * kthread_delayed_work_timer_fn - callback that queues the associated kthread
1039  *	delayed work when the timer expires.
1040  * @t: pointer to the expired timer
1041  *
1042  * The format of the function is defined by struct timer_list.
1043  * It should have been called from irqsafe timer with irq already off.
1044  */
1045 void kthread_delayed_work_timer_fn(struct timer_list *t)
1046 {
1047 	struct kthread_delayed_work *dwork = from_timer(dwork, t, timer);
1048 	struct kthread_work *work = &dwork->work;
1049 	struct kthread_worker *worker = work->worker;
1050 	unsigned long flags;
1051 
1052 	/*
1053 	 * This might happen when a pending work is reinitialized.
1054 	 * It means that it is used a wrong way.
1055 	 */
1056 	if (WARN_ON_ONCE(!worker))
1057 		return;
1058 
1059 	raw_spin_lock_irqsave(&worker->lock, flags);
1060 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1061 	WARN_ON_ONCE(work->worker != worker);
1062 
1063 	/* Move the work from worker->delayed_work_list. */
1064 	WARN_ON_ONCE(list_empty(&work->node));
1065 	list_del_init(&work->node);
1066 	if (!work->canceling)
1067 		kthread_insert_work(worker, work, &worker->work_list);
1068 
1069 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1070 }
1071 EXPORT_SYMBOL(kthread_delayed_work_timer_fn);
1072 
1073 static void __kthread_queue_delayed_work(struct kthread_worker *worker,
1074 					 struct kthread_delayed_work *dwork,
1075 					 unsigned long delay)
1076 {
1077 	struct timer_list *timer = &dwork->timer;
1078 	struct kthread_work *work = &dwork->work;
1079 
1080 	WARN_ON_ONCE(timer->function != kthread_delayed_work_timer_fn);
1081 
1082 	/*
1083 	 * If @delay is 0, queue @dwork->work immediately.  This is for
1084 	 * both optimization and correctness.  The earliest @timer can
1085 	 * expire is on the closest next tick and delayed_work users depend
1086 	 * on that there's no such delay when @delay is 0.
1087 	 */
1088 	if (!delay) {
1089 		kthread_insert_work(worker, work, &worker->work_list);
1090 		return;
1091 	}
1092 
1093 	/* Be paranoid and try to detect possible races already now. */
1094 	kthread_insert_work_sanity_check(worker, work);
1095 
1096 	list_add(&work->node, &worker->delayed_work_list);
1097 	work->worker = worker;
1098 	timer->expires = jiffies + delay;
1099 	add_timer(timer);
1100 }
1101 
1102 /**
1103  * kthread_queue_delayed_work - queue the associated kthread work
1104  *	after a delay.
1105  * @worker: target kthread_worker
1106  * @dwork: kthread_delayed_work to queue
1107  * @delay: number of jiffies to wait before queuing
1108  *
1109  * If the work has not been pending it starts a timer that will queue
1110  * the work after the given @delay. If @delay is zero, it queues the
1111  * work immediately.
1112  *
1113  * Return: %false if the @work has already been pending. It means that
1114  * either the timer was running or the work was queued. It returns %true
1115  * otherwise.
1116  */
1117 bool kthread_queue_delayed_work(struct kthread_worker *worker,
1118 				struct kthread_delayed_work *dwork,
1119 				unsigned long delay)
1120 {
1121 	struct kthread_work *work = &dwork->work;
1122 	unsigned long flags;
1123 	bool ret = false;
1124 
1125 	raw_spin_lock_irqsave(&worker->lock, flags);
1126 
1127 	if (!queuing_blocked(worker, work)) {
1128 		__kthread_queue_delayed_work(worker, dwork, delay);
1129 		ret = true;
1130 	}
1131 
1132 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL_GPL(kthread_queue_delayed_work);
1136 
1137 struct kthread_flush_work {
1138 	struct kthread_work	work;
1139 	struct completion	done;
1140 };
1141 
1142 static void kthread_flush_work_fn(struct kthread_work *work)
1143 {
1144 	struct kthread_flush_work *fwork =
1145 		container_of(work, struct kthread_flush_work, work);
1146 	complete(&fwork->done);
1147 }
1148 
1149 /**
1150  * kthread_flush_work - flush a kthread_work
1151  * @work: work to flush
1152  *
1153  * If @work is queued or executing, wait for it to finish execution.
1154  */
1155 void kthread_flush_work(struct kthread_work *work)
1156 {
1157 	struct kthread_flush_work fwork = {
1158 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1159 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1160 	};
1161 	struct kthread_worker *worker;
1162 	bool noop = false;
1163 
1164 	worker = work->worker;
1165 	if (!worker)
1166 		return;
1167 
1168 	raw_spin_lock_irq(&worker->lock);
1169 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1170 	WARN_ON_ONCE(work->worker != worker);
1171 
1172 	if (!list_empty(&work->node))
1173 		kthread_insert_work(worker, &fwork.work, work->node.next);
1174 	else if (worker->current_work == work)
1175 		kthread_insert_work(worker, &fwork.work,
1176 				    worker->work_list.next);
1177 	else
1178 		noop = true;
1179 
1180 	raw_spin_unlock_irq(&worker->lock);
1181 
1182 	if (!noop)
1183 		wait_for_completion(&fwork.done);
1184 }
1185 EXPORT_SYMBOL_GPL(kthread_flush_work);
1186 
1187 /*
1188  * Make sure that the timer is neither set nor running and could
1189  * not manipulate the work list_head any longer.
1190  *
1191  * The function is called under worker->lock. The lock is temporary
1192  * released but the timer can't be set again in the meantime.
1193  */
1194 static void kthread_cancel_delayed_work_timer(struct kthread_work *work,
1195 					      unsigned long *flags)
1196 {
1197 	struct kthread_delayed_work *dwork =
1198 		container_of(work, struct kthread_delayed_work, work);
1199 	struct kthread_worker *worker = work->worker;
1200 
1201 	/*
1202 	 * del_timer_sync() must be called to make sure that the timer
1203 	 * callback is not running. The lock must be temporary released
1204 	 * to avoid a deadlock with the callback. In the meantime,
1205 	 * any queuing is blocked by setting the canceling counter.
1206 	 */
1207 	work->canceling++;
1208 	raw_spin_unlock_irqrestore(&worker->lock, *flags);
1209 	del_timer_sync(&dwork->timer);
1210 	raw_spin_lock_irqsave(&worker->lock, *flags);
1211 	work->canceling--;
1212 }
1213 
1214 /*
1215  * This function removes the work from the worker queue.
1216  *
1217  * It is called under worker->lock. The caller must make sure that
1218  * the timer used by delayed work is not running, e.g. by calling
1219  * kthread_cancel_delayed_work_timer().
1220  *
1221  * The work might still be in use when this function finishes. See the
1222  * current_work proceed by the worker.
1223  *
1224  * Return: %true if @work was pending and successfully canceled,
1225  *	%false if @work was not pending
1226  */
1227 static bool __kthread_cancel_work(struct kthread_work *work)
1228 {
1229 	/*
1230 	 * Try to remove the work from a worker list. It might either
1231 	 * be from worker->work_list or from worker->delayed_work_list.
1232 	 */
1233 	if (!list_empty(&work->node)) {
1234 		list_del_init(&work->node);
1235 		return true;
1236 	}
1237 
1238 	return false;
1239 }
1240 
1241 /**
1242  * kthread_mod_delayed_work - modify delay of or queue a kthread delayed work
1243  * @worker: kthread worker to use
1244  * @dwork: kthread delayed work to queue
1245  * @delay: number of jiffies to wait before queuing
1246  *
1247  * If @dwork is idle, equivalent to kthread_queue_delayed_work(). Otherwise,
1248  * modify @dwork's timer so that it expires after @delay. If @delay is zero,
1249  * @work is guaranteed to be queued immediately.
1250  *
1251  * Return: %false if @dwork was idle and queued, %true otherwise.
1252  *
1253  * A special case is when the work is being canceled in parallel.
1254  * It might be caused either by the real kthread_cancel_delayed_work_sync()
1255  * or yet another kthread_mod_delayed_work() call. We let the other command
1256  * win and return %true here. The return value can be used for reference
1257  * counting and the number of queued works stays the same. Anyway, the caller
1258  * is supposed to synchronize these operations a reasonable way.
1259  *
1260  * This function is safe to call from any context including IRQ handler.
1261  * See __kthread_cancel_work() and kthread_delayed_work_timer_fn()
1262  * for details.
1263  */
1264 bool kthread_mod_delayed_work(struct kthread_worker *worker,
1265 			      struct kthread_delayed_work *dwork,
1266 			      unsigned long delay)
1267 {
1268 	struct kthread_work *work = &dwork->work;
1269 	unsigned long flags;
1270 	int ret;
1271 
1272 	raw_spin_lock_irqsave(&worker->lock, flags);
1273 
1274 	/* Do not bother with canceling when never queued. */
1275 	if (!work->worker) {
1276 		ret = false;
1277 		goto fast_queue;
1278 	}
1279 
1280 	/* Work must not be used with >1 worker, see kthread_queue_work() */
1281 	WARN_ON_ONCE(work->worker != worker);
1282 
1283 	/*
1284 	 * Temporary cancel the work but do not fight with another command
1285 	 * that is canceling the work as well.
1286 	 *
1287 	 * It is a bit tricky because of possible races with another
1288 	 * mod_delayed_work() and cancel_delayed_work() callers.
1289 	 *
1290 	 * The timer must be canceled first because worker->lock is released
1291 	 * when doing so. But the work can be removed from the queue (list)
1292 	 * only when it can be queued again so that the return value can
1293 	 * be used for reference counting.
1294 	 */
1295 	kthread_cancel_delayed_work_timer(work, &flags);
1296 	if (work->canceling) {
1297 		/* The number of works in the queue does not change. */
1298 		ret = true;
1299 		goto out;
1300 	}
1301 	ret = __kthread_cancel_work(work);
1302 
1303 fast_queue:
1304 	__kthread_queue_delayed_work(worker, dwork, delay);
1305 out:
1306 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1307 	return ret;
1308 }
1309 EXPORT_SYMBOL_GPL(kthread_mod_delayed_work);
1310 
1311 static bool __kthread_cancel_work_sync(struct kthread_work *work, bool is_dwork)
1312 {
1313 	struct kthread_worker *worker = work->worker;
1314 	unsigned long flags;
1315 	int ret = false;
1316 
1317 	if (!worker)
1318 		goto out;
1319 
1320 	raw_spin_lock_irqsave(&worker->lock, flags);
1321 	/* Work must not be used with >1 worker, see kthread_queue_work(). */
1322 	WARN_ON_ONCE(work->worker != worker);
1323 
1324 	if (is_dwork)
1325 		kthread_cancel_delayed_work_timer(work, &flags);
1326 
1327 	ret = __kthread_cancel_work(work);
1328 
1329 	if (worker->current_work != work)
1330 		goto out_fast;
1331 
1332 	/*
1333 	 * The work is in progress and we need to wait with the lock released.
1334 	 * In the meantime, block any queuing by setting the canceling counter.
1335 	 */
1336 	work->canceling++;
1337 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1338 	kthread_flush_work(work);
1339 	raw_spin_lock_irqsave(&worker->lock, flags);
1340 	work->canceling--;
1341 
1342 out_fast:
1343 	raw_spin_unlock_irqrestore(&worker->lock, flags);
1344 out:
1345 	return ret;
1346 }
1347 
1348 /**
1349  * kthread_cancel_work_sync - cancel a kthread work and wait for it to finish
1350  * @work: the kthread work to cancel
1351  *
1352  * Cancel @work and wait for its execution to finish.  This function
1353  * can be used even if the work re-queues itself. On return from this
1354  * function, @work is guaranteed to be not pending or executing on any CPU.
1355  *
1356  * kthread_cancel_work_sync(&delayed_work->work) must not be used for
1357  * delayed_work's. Use kthread_cancel_delayed_work_sync() instead.
1358  *
1359  * The caller must ensure that the worker on which @work was last
1360  * queued can't be destroyed before this function returns.
1361  *
1362  * Return: %true if @work was pending, %false otherwise.
1363  */
1364 bool kthread_cancel_work_sync(struct kthread_work *work)
1365 {
1366 	return __kthread_cancel_work_sync(work, false);
1367 }
1368 EXPORT_SYMBOL_GPL(kthread_cancel_work_sync);
1369 
1370 /**
1371  * kthread_cancel_delayed_work_sync - cancel a kthread delayed work and
1372  *	wait for it to finish.
1373  * @dwork: the kthread delayed work to cancel
1374  *
1375  * This is kthread_cancel_work_sync() for delayed works.
1376  *
1377  * Return: %true if @dwork was pending, %false otherwise.
1378  */
1379 bool kthread_cancel_delayed_work_sync(struct kthread_delayed_work *dwork)
1380 {
1381 	return __kthread_cancel_work_sync(&dwork->work, true);
1382 }
1383 EXPORT_SYMBOL_GPL(kthread_cancel_delayed_work_sync);
1384 
1385 /**
1386  * kthread_flush_worker - flush all current works on a kthread_worker
1387  * @worker: worker to flush
1388  *
1389  * Wait until all currently executing or pending works on @worker are
1390  * finished.
1391  */
1392 void kthread_flush_worker(struct kthread_worker *worker)
1393 {
1394 	struct kthread_flush_work fwork = {
1395 		KTHREAD_WORK_INIT(fwork.work, kthread_flush_work_fn),
1396 		COMPLETION_INITIALIZER_ONSTACK(fwork.done),
1397 	};
1398 
1399 	kthread_queue_work(worker, &fwork.work);
1400 	wait_for_completion(&fwork.done);
1401 }
1402 EXPORT_SYMBOL_GPL(kthread_flush_worker);
1403 
1404 /**
1405  * kthread_destroy_worker - destroy a kthread worker
1406  * @worker: worker to be destroyed
1407  *
1408  * Flush and destroy @worker.  The simple flush is enough because the kthread
1409  * worker API is used only in trivial scenarios.  There are no multi-step state
1410  * machines needed.
1411  *
1412  * Note that this function is not responsible for handling delayed work, so
1413  * caller should be responsible for queuing or canceling all delayed work items
1414  * before invoke this function.
1415  */
1416 void kthread_destroy_worker(struct kthread_worker *worker)
1417 {
1418 	struct task_struct *task;
1419 
1420 	task = worker->task;
1421 	if (WARN_ON(!task))
1422 		return;
1423 
1424 	kthread_flush_worker(worker);
1425 	kthread_stop(task);
1426 	WARN_ON(!list_empty(&worker->delayed_work_list));
1427 	WARN_ON(!list_empty(&worker->work_list));
1428 	kfree(worker);
1429 }
1430 EXPORT_SYMBOL(kthread_destroy_worker);
1431 
1432 /**
1433  * kthread_use_mm - make the calling kthread operate on an address space
1434  * @mm: address space to operate on
1435  */
1436 void kthread_use_mm(struct mm_struct *mm)
1437 {
1438 	struct mm_struct *active_mm;
1439 	struct task_struct *tsk = current;
1440 
1441 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1442 	WARN_ON_ONCE(tsk->mm);
1443 
1444 	/*
1445 	 * It is possible for mm to be the same as tsk->active_mm, but
1446 	 * we must still mmgrab(mm) and mmdrop_lazy_tlb(active_mm),
1447 	 * because these references are not equivalent.
1448 	 */
1449 	mmgrab(mm);
1450 
1451 	task_lock(tsk);
1452 	/* Hold off tlb flush IPIs while switching mm's */
1453 	local_irq_disable();
1454 	active_mm = tsk->active_mm;
1455 	tsk->active_mm = mm;
1456 	tsk->mm = mm;
1457 	membarrier_update_current_mm(mm);
1458 	switch_mm_irqs_off(active_mm, mm, tsk);
1459 	local_irq_enable();
1460 	task_unlock(tsk);
1461 #ifdef finish_arch_post_lock_switch
1462 	finish_arch_post_lock_switch();
1463 #endif
1464 
1465 	/*
1466 	 * When a kthread starts operating on an address space, the loop
1467 	 * in membarrier_{private,global}_expedited() may not observe
1468 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1469 	 * memory barrier after storing to tsk->mm, before accessing
1470 	 * user-space memory. A full memory barrier for membarrier
1471 	 * {PRIVATE,GLOBAL}_EXPEDITED is implicitly provided by
1472 	 * mmdrop_lazy_tlb().
1473 	 */
1474 	mmdrop_lazy_tlb(active_mm);
1475 }
1476 EXPORT_SYMBOL_GPL(kthread_use_mm);
1477 
1478 /**
1479  * kthread_unuse_mm - reverse the effect of kthread_use_mm()
1480  * @mm: address space to operate on
1481  */
1482 void kthread_unuse_mm(struct mm_struct *mm)
1483 {
1484 	struct task_struct *tsk = current;
1485 
1486 	WARN_ON_ONCE(!(tsk->flags & PF_KTHREAD));
1487 	WARN_ON_ONCE(!tsk->mm);
1488 
1489 	task_lock(tsk);
1490 	/*
1491 	 * When a kthread stops operating on an address space, the loop
1492 	 * in membarrier_{private,global}_expedited() may not observe
1493 	 * that tsk->mm, and not issue an IPI. Membarrier requires a
1494 	 * memory barrier after accessing user-space memory, before
1495 	 * clearing tsk->mm.
1496 	 */
1497 	smp_mb__after_spinlock();
1498 	sync_mm_rss(mm);
1499 	local_irq_disable();
1500 	tsk->mm = NULL;
1501 	membarrier_update_current_mm(NULL);
1502 	mmgrab_lazy_tlb(mm);
1503 	/* active_mm is still 'mm' */
1504 	enter_lazy_tlb(mm, tsk);
1505 	local_irq_enable();
1506 	task_unlock(tsk);
1507 
1508 	mmdrop(mm);
1509 }
1510 EXPORT_SYMBOL_GPL(kthread_unuse_mm);
1511 
1512 #ifdef CONFIG_BLK_CGROUP
1513 /**
1514  * kthread_associate_blkcg - associate blkcg to current kthread
1515  * @css: the cgroup info
1516  *
1517  * Current thread must be a kthread. The thread is running jobs on behalf of
1518  * other threads. In some cases, we expect the jobs attach cgroup info of
1519  * original threads instead of that of current thread. This function stores
1520  * original thread's cgroup info in current kthread context for later
1521  * retrieval.
1522  */
1523 void kthread_associate_blkcg(struct cgroup_subsys_state *css)
1524 {
1525 	struct kthread *kthread;
1526 
1527 	if (!(current->flags & PF_KTHREAD))
1528 		return;
1529 	kthread = to_kthread(current);
1530 	if (!kthread)
1531 		return;
1532 
1533 	if (kthread->blkcg_css) {
1534 		css_put(kthread->blkcg_css);
1535 		kthread->blkcg_css = NULL;
1536 	}
1537 	if (css) {
1538 		css_get(css);
1539 		kthread->blkcg_css = css;
1540 	}
1541 }
1542 EXPORT_SYMBOL(kthread_associate_blkcg);
1543 
1544 /**
1545  * kthread_blkcg - get associated blkcg css of current kthread
1546  *
1547  * Current thread must be a kthread.
1548  */
1549 struct cgroup_subsys_state *kthread_blkcg(void)
1550 {
1551 	struct kthread *kthread;
1552 
1553 	if (current->flags & PF_KTHREAD) {
1554 		kthread = to_kthread(current);
1555 		if (kthread)
1556 			return kthread->blkcg_css;
1557 	}
1558 	return NULL;
1559 }
1560 #endif
1561